1 // SPDX-License-Identifier: MIT
3 * Copyright © 2020 Intel Corporation
9 #include "intel_gt_clock_utils.h"
10 #include "intel_gt_print.h"
11 #include "intel_gt_regs.h"
12 #include "soc/intel_dram.h"
14 static u32 read_reference_ts_freq(struct intel_uncore *uncore)
16 u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
17 u32 base_freq, frac_freq;
19 base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
20 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
23 frac_freq = ((ts_override &
24 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
25 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
26 frac_freq = 1000000 / (frac_freq + 1);
28 return base_freq + frac_freq;
31 static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
34 u32 f19_2_mhz = 19200000;
35 u32 f24_mhz = 24000000;
36 u32 f25_mhz = 25000000;
37 u32 f38_4_mhz = 38400000;
39 (rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
40 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
42 switch (crystal_clock) {
43 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
45 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
47 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
49 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
52 MISSING_CASE(crystal_clock);
57 static u32 gen11_read_clock_frequency(struct intel_uncore *uncore)
59 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
63 * Note that on gen11+, the clock frequency may be reconfigured.
64 * We do not, and we assume nobody else does.
66 * First figure out the reference frequency. There are 2 ways
67 * we can compute the frequency, either through the
68 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
69 * tells us which one we should use.
71 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
72 freq = read_reference_ts_freq(uncore);
74 u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
76 freq = gen11_get_crystal_clock_freq(uncore, c0);
79 * Now figure out how the command stream's timestamp
80 * register increments from this frequency (it might
81 * increment only every few clock cycle).
83 freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
84 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
90 static u32 gen9_read_clock_frequency(struct intel_uncore *uncore)
92 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
95 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
96 freq = read_reference_ts_freq(uncore);
98 freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000;
101 * Now figure out how the command stream's timestamp
102 * register increments from this frequency (it might
103 * increment only every few clock cycle).
105 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
106 CTC_SHIFT_PARAMETER_SHIFT);
112 static u32 gen6_read_clock_frequency(struct intel_uncore *uncore)
117 * "The PCU TSC counts 10ns increments; this timestamp
118 * reflects bits 38:3 of the TSC (i.e. 80ns granularity,
119 * rolling over every 1.5 hours).
124 static u32 gen5_read_clock_frequency(struct intel_uncore *uncore)
127 * 63:32 increments every 1000 ns
130 return 1000000000 / 1000;
133 static u32 g4x_read_clock_frequency(struct intel_uncore *uncore)
136 * 63:20 increments every 1/4 ns
139 * -> 63:32 increments every 1024 ns
141 return 1000000000 / 1024;
144 static u32 gen4_read_clock_frequency(struct intel_uncore *uncore)
149 * "The value in this register increments once every 16
150 * hclks." (through the “Clocking Configuration”
151 * (“CLKCFG”) MCHBAR register)
153 * Testing on actual hardware has shown there is no /16.
155 return DIV_ROUND_CLOSEST(i9xx_fsb_freq(uncore->i915), 4) * 1000;
158 static u32 read_clock_frequency(struct intel_uncore *uncore)
160 if (GRAPHICS_VER(uncore->i915) >= 11)
161 return gen11_read_clock_frequency(uncore);
162 else if (GRAPHICS_VER(uncore->i915) >= 9)
163 return gen9_read_clock_frequency(uncore);
164 else if (GRAPHICS_VER(uncore->i915) >= 6)
165 return gen6_read_clock_frequency(uncore);
166 else if (GRAPHICS_VER(uncore->i915) == 5)
167 return gen5_read_clock_frequency(uncore);
168 else if (IS_G4X(uncore->i915))
169 return g4x_read_clock_frequency(uncore);
170 else if (GRAPHICS_VER(uncore->i915) == 4)
171 return gen4_read_clock_frequency(uncore);
176 void intel_gt_init_clock_frequency(struct intel_gt *gt)
178 gt->clock_frequency = read_clock_frequency(gt->uncore);
180 /* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */
181 if (GRAPHICS_VER(gt->i915) == 11)
182 gt->clock_period_ns = NSEC_PER_SEC / 13750000;
183 else if (gt->clock_frequency)
184 gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
187 "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
188 gt->clock_frequency / 1000,
190 div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
194 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
195 void intel_gt_check_clock_frequency(const struct intel_gt *gt)
197 if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
198 gt_err(gt, "GT clock frequency changed, was %uHz, now %uHz!\n",
200 read_clock_frequency(gt->uncore));
205 static u64 div_u64_roundup(u64 nom, u32 den)
207 return div_u64(nom + den - 1, den);
210 u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
212 return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
215 u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
217 return intel_gt_clock_interval_to_ns(gt, 16 * count);
220 u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
222 return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
225 u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
230 * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
231 * 8300) freezing up around GPU hangs. Looks as if even
232 * scheduling/timer interrupts start misbehaving if the RPS
233 * EI/thresholds are "bad", leading to a very sluggish or even
236 val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
237 if (GRAPHICS_VER(gt->i915) == 6)
238 val = div_u64_roundup(val, 25) * 25;