1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/prefetch.h>
27 #include <linux/suspend.h>
30 #define CREATE_TRACE_POINTS
31 #include "e1000e_trace.h"
33 char e1000e_driver_name[] = "e1000e";
35 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
36 static int debug = -1;
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
40 static const struct e1000_info *e1000_info_tbl[] = {
41 [board_82571] = &e1000_82571_info,
42 [board_82572] = &e1000_82572_info,
43 [board_82573] = &e1000_82573_info,
44 [board_82574] = &e1000_82574_info,
45 [board_82583] = &e1000_82583_info,
46 [board_80003es2lan] = &e1000_es2_info,
47 [board_ich8lan] = &e1000_ich8_info,
48 [board_ich9lan] = &e1000_ich9_info,
49 [board_ich10lan] = &e1000_ich10_info,
50 [board_pchlan] = &e1000_pch_info,
51 [board_pch2lan] = &e1000_pch2_info,
52 [board_pch_lpt] = &e1000_pch_lpt_info,
53 [board_pch_spt] = &e1000_pch_spt_info,
54 [board_pch_cnp] = &e1000_pch_cnp_info,
55 [board_pch_tgp] = &e1000_pch_tgp_info,
56 [board_pch_adp] = &e1000_pch_adp_info,
57 [board_pch_mtp] = &e1000_pch_mtp_info,
60 struct e1000_reg_info {
65 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
66 /* General Registers */
68 {E1000_STATUS, "STATUS"},
69 {E1000_CTRL_EXT, "CTRL_EXT"},
71 /* Interrupt Registers */
76 {E1000_RDLEN(0), "RDLEN"},
77 {E1000_RDH(0), "RDH"},
78 {E1000_RDT(0), "RDT"},
80 {E1000_RXDCTL(0), "RXDCTL"},
82 {E1000_RDBAL(0), "RDBAL"},
83 {E1000_RDBAH(0), "RDBAH"},
86 {E1000_RDFHS, "RDFHS"},
87 {E1000_RDFTS, "RDFTS"},
88 {E1000_RDFPC, "RDFPC"},
92 {E1000_TDBAL(0), "TDBAL"},
93 {E1000_TDBAH(0), "TDBAH"},
94 {E1000_TDLEN(0), "TDLEN"},
95 {E1000_TDH(0), "TDH"},
96 {E1000_TDT(0), "TDT"},
98 {E1000_TXDCTL(0), "TXDCTL"},
100 {E1000_TARC(0), "TARC"},
101 {E1000_TDFH, "TDFH"},
102 {E1000_TDFT, "TDFT"},
103 {E1000_TDFHS, "TDFHS"},
104 {E1000_TDFTS, "TDFTS"},
105 {E1000_TDFPC, "TDFPC"},
107 /* List Terminator */
112 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
113 * @hw: pointer to the HW structure
115 * When updating the MAC CSR registers, the Manageability Engine (ME) could
116 * be accessing the registers at the same time. Normally, this is handled in
117 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
118 * accesses later than it should which could result in the register to have
119 * an incorrect value. Workaround this by checking the FWSM register which
120 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
121 * and try again a number of times.
123 static void __ew32_prepare(struct e1000_hw *hw)
125 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
127 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
131 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
133 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
136 writel(val, hw->hw_addr + reg);
140 * e1000_regdump - register printout routine
141 * @hw: pointer to the HW structure
142 * @reginfo: pointer to the register info table
144 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
150 switch (reginfo->ofs) {
151 case E1000_RXDCTL(0):
152 for (n = 0; n < 2; n++)
153 regs[n] = __er32(hw, E1000_RXDCTL(n));
155 case E1000_TXDCTL(0):
156 for (n = 0; n < 2; n++)
157 regs[n] = __er32(hw, E1000_TXDCTL(n));
160 for (n = 0; n < 2; n++)
161 regs[n] = __er32(hw, E1000_TARC(n));
164 pr_info("%-15s %08x\n",
165 reginfo->name, __er32(hw, reginfo->ofs));
169 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
170 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
173 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
174 struct e1000_buffer *bi)
177 struct e1000_ps_page *ps_page;
179 for (i = 0; i < adapter->rx_ps_pages; i++) {
180 ps_page = &bi->ps_pages[i];
183 pr_info("packet dump for ps_page %d:\n", i);
184 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
185 16, 1, page_address(ps_page->page),
192 * e1000e_dump - Print registers, Tx-ring and Rx-ring
193 * @adapter: board private structure
195 static void e1000e_dump(struct e1000_adapter *adapter)
197 struct net_device *netdev = adapter->netdev;
198 struct e1000_hw *hw = &adapter->hw;
199 struct e1000_reg_info *reginfo;
200 struct e1000_ring *tx_ring = adapter->tx_ring;
201 struct e1000_tx_desc *tx_desc;
206 struct e1000_buffer *buffer_info;
207 struct e1000_ring *rx_ring = adapter->rx_ring;
208 union e1000_rx_desc_packet_split *rx_desc_ps;
209 union e1000_rx_desc_extended *rx_desc;
219 if (!netif_msg_hw(adapter))
222 /* Print netdevice Info */
224 dev_info(&adapter->pdev->dev, "Net device Info\n");
225 pr_info("Device Name state trans_start\n");
226 pr_info("%-15s %016lX %016lX\n", netdev->name,
227 netdev->state, dev_trans_start(netdev));
230 /* Print Registers */
231 dev_info(&adapter->pdev->dev, "Register Dump\n");
232 pr_info(" Register Name Value\n");
233 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
234 reginfo->name; reginfo++) {
235 e1000_regdump(hw, reginfo);
238 /* Print Tx Ring Summary */
239 if (!netdev || !netif_running(netdev))
242 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
243 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
244 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
245 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
246 0, tx_ring->next_to_use, tx_ring->next_to_clean,
247 (unsigned long long)buffer_info->dma,
249 buffer_info->next_to_watch,
250 (unsigned long long)buffer_info->time_stamp);
253 if (!netif_msg_tx_done(adapter))
254 goto rx_ring_summary;
256 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
258 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
260 * Legacy Transmit Descriptor
261 * +--------------------------------------------------------------+
262 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
263 * +--------------------------------------------------------------+
264 * 8 | Special | CSS | Status | CMD | CSO | Length |
265 * +--------------------------------------------------------------+
266 * 63 48 47 36 35 32 31 24 23 16 15 0
268 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
269 * 63 48 47 40 39 32 31 16 15 8 7 0
270 * +----------------------------------------------------------------+
271 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
272 * +----------------------------------------------------------------+
273 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
274 * +----------------------------------------------------------------+
275 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
277 * Extended Data Descriptor (DTYP=0x1)
278 * +----------------------------------------------------------------+
279 * 0 | Buffer Address [63:0] |
280 * +----------------------------------------------------------------+
281 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
282 * +----------------------------------------------------------------+
283 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
285 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
286 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
287 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
288 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
289 const char *next_desc;
290 tx_desc = E1000_TX_DESC(*tx_ring, i);
291 buffer_info = &tx_ring->buffer_info[i];
292 u0 = (struct my_u0 *)tx_desc;
293 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
294 next_desc = " NTC/U";
295 else if (i == tx_ring->next_to_use)
297 else if (i == tx_ring->next_to_clean)
301 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
302 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
303 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
305 (unsigned long long)le64_to_cpu(u0->a),
306 (unsigned long long)le64_to_cpu(u0->b),
307 (unsigned long long)buffer_info->dma,
308 buffer_info->length, buffer_info->next_to_watch,
309 (unsigned long long)buffer_info->time_stamp,
310 buffer_info->skb, next_desc);
312 if (netif_msg_pktdata(adapter) && buffer_info->skb)
313 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
314 16, 1, buffer_info->skb->data,
315 buffer_info->skb->len, true);
318 /* Print Rx Ring Summary */
320 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
321 pr_info("Queue [NTU] [NTC]\n");
322 pr_info(" %5d %5X %5X\n",
323 0, rx_ring->next_to_use, rx_ring->next_to_clean);
326 if (!netif_msg_rx_status(adapter))
329 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
330 switch (adapter->rx_ps_pages) {
334 /* [Extended] Packet Split Receive Descriptor Format
336 * +-----------------------------------------------------+
337 * 0 | Buffer Address 0 [63:0] |
338 * +-----------------------------------------------------+
339 * 8 | Buffer Address 1 [63:0] |
340 * +-----------------------------------------------------+
341 * 16 | Buffer Address 2 [63:0] |
342 * +-----------------------------------------------------+
343 * 24 | Buffer Address 3 [63:0] |
344 * +-----------------------------------------------------+
346 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
347 /* [Extended] Receive Descriptor (Write-Back) Format
349 * 63 48 47 32 31 13 12 8 7 4 3 0
350 * +------------------------------------------------------+
351 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
352 * | Checksum | Ident | | Queue | | Type |
353 * +------------------------------------------------------+
354 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
355 * +------------------------------------------------------+
356 * 63 48 47 32 31 20 19 0
358 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
359 for (i = 0; i < rx_ring->count; i++) {
360 const char *next_desc;
361 buffer_info = &rx_ring->buffer_info[i];
362 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
363 u1 = (struct my_u1 *)rx_desc_ps;
365 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
367 if (i == rx_ring->next_to_use)
369 else if (i == rx_ring->next_to_clean)
374 if (staterr & E1000_RXD_STAT_DD) {
375 /* Descriptor Done */
376 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
378 (unsigned long long)le64_to_cpu(u1->a),
379 (unsigned long long)le64_to_cpu(u1->b),
380 (unsigned long long)le64_to_cpu(u1->c),
381 (unsigned long long)le64_to_cpu(u1->d),
382 buffer_info->skb, next_desc);
384 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
386 (unsigned long long)le64_to_cpu(u1->a),
387 (unsigned long long)le64_to_cpu(u1->b),
388 (unsigned long long)le64_to_cpu(u1->c),
389 (unsigned long long)le64_to_cpu(u1->d),
390 (unsigned long long)buffer_info->dma,
391 buffer_info->skb, next_desc);
393 if (netif_msg_pktdata(adapter))
394 e1000e_dump_ps_pages(adapter,
401 /* Extended Receive Descriptor (Read) Format
403 * +-----------------------------------------------------+
404 * 0 | Buffer Address [63:0] |
405 * +-----------------------------------------------------+
407 * +-----------------------------------------------------+
409 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
410 /* Extended Receive Descriptor (Write-Back) Format
412 * 63 48 47 32 31 24 23 4 3 0
413 * +------------------------------------------------------+
415 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
416 * | Packet | IP | | | Type |
417 * | Checksum | Ident | | | |
418 * +------------------------------------------------------+
419 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
420 * +------------------------------------------------------+
421 * 63 48 47 32 31 20 19 0
423 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
425 for (i = 0; i < rx_ring->count; i++) {
426 const char *next_desc;
428 buffer_info = &rx_ring->buffer_info[i];
429 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
430 u1 = (struct my_u1 *)rx_desc;
431 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
433 if (i == rx_ring->next_to_use)
435 else if (i == rx_ring->next_to_clean)
440 if (staterr & E1000_RXD_STAT_DD) {
441 /* Descriptor Done */
442 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
444 (unsigned long long)le64_to_cpu(u1->a),
445 (unsigned long long)le64_to_cpu(u1->b),
446 buffer_info->skb, next_desc);
448 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
450 (unsigned long long)le64_to_cpu(u1->a),
451 (unsigned long long)le64_to_cpu(u1->b),
452 (unsigned long long)buffer_info->dma,
453 buffer_info->skb, next_desc);
455 if (netif_msg_pktdata(adapter) &&
457 print_hex_dump(KERN_INFO, "",
458 DUMP_PREFIX_ADDRESS, 16,
460 buffer_info->skb->data,
461 adapter->rx_buffer_len,
469 * e1000_desc_unused - calculate if we have unused descriptors
470 * @ring: pointer to ring struct to perform calculation on
472 static int e1000_desc_unused(struct e1000_ring *ring)
474 if (ring->next_to_clean > ring->next_to_use)
475 return ring->next_to_clean - ring->next_to_use - 1;
477 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
481 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
482 * @adapter: board private structure
483 * @hwtstamps: time stamp structure to update
484 * @systim: unsigned 64bit system time value.
486 * Convert the system time value stored in the RX/TXSTMP registers into a
487 * hwtstamp which can be used by the upper level time stamping functions.
489 * The 'systim_lock' spinlock is used to protect the consistency of the
490 * system time value. This is needed because reading the 64 bit time
491 * value involves reading two 32 bit registers. The first read latches the
494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
495 struct skb_shared_hwtstamps *hwtstamps,
501 spin_lock_irqsave(&adapter->systim_lock, flags);
502 ns = timecounter_cyc2time(&adapter->tc, systim);
503 spin_unlock_irqrestore(&adapter->systim_lock, flags);
505 memset(hwtstamps, 0, sizeof(*hwtstamps));
506 hwtstamps->hwtstamp = ns_to_ktime(ns);
510 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
511 * @adapter: board private structure
512 * @status: descriptor extended error and status field
513 * @skb: particular skb to include time stamp
515 * If the time stamp is valid, convert it into the timecounter ns value
516 * and store that result into the shhwtstamps structure which is passed
517 * up the network stack.
519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
522 struct e1000_hw *hw = &adapter->hw;
525 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
526 !(status & E1000_RXDEXT_STATERR_TST) ||
527 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
530 /* The Rx time stamp registers contain the time stamp. No other
531 * received packet will be time stamped until the Rx time stamp
532 * registers are read. Because only one packet can be time stamped
533 * at a time, the register values must belong to this packet and
534 * therefore none of the other additional attributes need to be
537 rxstmp = (u64)er32(RXSTMPL);
538 rxstmp |= (u64)er32(RXSTMPH) << 32;
539 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
541 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
545 * e1000_receive_skb - helper function to handle Rx indications
546 * @adapter: board private structure
547 * @netdev: pointer to netdev struct
548 * @staterr: descriptor extended error and status field as written by hardware
549 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
550 * @skb: pointer to sk_buff to be indicated to stack
552 static void e1000_receive_skb(struct e1000_adapter *adapter,
553 struct net_device *netdev, struct sk_buff *skb,
554 u32 staterr, __le16 vlan)
556 u16 tag = le16_to_cpu(vlan);
558 e1000e_rx_hwtstamp(adapter, staterr, skb);
560 skb->protocol = eth_type_trans(skb, netdev);
562 if (staterr & E1000_RXD_STAT_VP)
563 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
565 napi_gro_receive(&adapter->napi, skb);
569 * e1000_rx_checksum - Receive Checksum Offload
570 * @adapter: board private structure
571 * @status_err: receive descriptor status and error fields
572 * @skb: socket buffer with received data
574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
577 u16 status = (u16)status_err;
578 u8 errors = (u8)(status_err >> 24);
580 skb_checksum_none_assert(skb);
582 /* Rx checksum disabled */
583 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
586 /* Ignore Checksum bit is set */
587 if (status & E1000_RXD_STAT_IXSM)
590 /* TCP/UDP checksum error bit or IP checksum error bit is set */
591 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
592 /* let the stack verify checksum errors */
593 adapter->hw_csum_err++;
597 /* TCP/UDP Checksum has not been calculated */
598 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
601 /* It must be a TCP or UDP packet with a valid checksum */
602 skb->ip_summed = CHECKSUM_UNNECESSARY;
603 adapter->hw_csum_good++;
606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
608 struct e1000_adapter *adapter = rx_ring->adapter;
609 struct e1000_hw *hw = &adapter->hw;
612 writel(i, rx_ring->tail);
614 if (unlikely(i != readl(rx_ring->tail))) {
615 u32 rctl = er32(RCTL);
617 ew32(RCTL, rctl & ~E1000_RCTL_EN);
618 e_err("ME firmware caused invalid RDT - resetting\n");
619 schedule_work(&adapter->reset_task);
623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
625 struct e1000_adapter *adapter = tx_ring->adapter;
626 struct e1000_hw *hw = &adapter->hw;
629 writel(i, tx_ring->tail);
631 if (unlikely(i != readl(tx_ring->tail))) {
632 u32 tctl = er32(TCTL);
634 ew32(TCTL, tctl & ~E1000_TCTL_EN);
635 e_err("ME firmware caused invalid TDT - resetting\n");
636 schedule_work(&adapter->reset_task);
641 * e1000_alloc_rx_buffers - Replace used receive buffers
642 * @rx_ring: Rx descriptor ring
643 * @cleaned_count: number to reallocate
644 * @gfp: flags for allocation
646 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
647 int cleaned_count, gfp_t gfp)
649 struct e1000_adapter *adapter = rx_ring->adapter;
650 struct net_device *netdev = adapter->netdev;
651 struct pci_dev *pdev = adapter->pdev;
652 union e1000_rx_desc_extended *rx_desc;
653 struct e1000_buffer *buffer_info;
656 unsigned int bufsz = adapter->rx_buffer_len;
658 i = rx_ring->next_to_use;
659 buffer_info = &rx_ring->buffer_info[i];
661 while (cleaned_count--) {
662 skb = buffer_info->skb;
668 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
670 /* Better luck next round */
671 adapter->alloc_rx_buff_failed++;
675 buffer_info->skb = skb;
677 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
678 adapter->rx_buffer_len,
680 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
681 dev_err(&pdev->dev, "Rx DMA map failed\n");
682 adapter->rx_dma_failed++;
686 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
687 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
689 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
690 /* Force memory writes to complete before letting h/w
691 * know there are new descriptors to fetch. (Only
692 * applicable for weak-ordered memory model archs,
696 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
697 e1000e_update_rdt_wa(rx_ring, i);
699 writel(i, rx_ring->tail);
702 if (i == rx_ring->count)
704 buffer_info = &rx_ring->buffer_info[i];
707 rx_ring->next_to_use = i;
711 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
712 * @rx_ring: Rx descriptor ring
713 * @cleaned_count: number to reallocate
714 * @gfp: flags for allocation
716 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
717 int cleaned_count, gfp_t gfp)
719 struct e1000_adapter *adapter = rx_ring->adapter;
720 struct net_device *netdev = adapter->netdev;
721 struct pci_dev *pdev = adapter->pdev;
722 union e1000_rx_desc_packet_split *rx_desc;
723 struct e1000_buffer *buffer_info;
724 struct e1000_ps_page *ps_page;
728 i = rx_ring->next_to_use;
729 buffer_info = &rx_ring->buffer_info[i];
731 while (cleaned_count--) {
732 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
734 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
735 ps_page = &buffer_info->ps_pages[j];
736 if (j >= adapter->rx_ps_pages) {
737 /* all unused desc entries get hw null ptr */
738 rx_desc->read.buffer_addr[j + 1] =
742 if (!ps_page->page) {
743 ps_page->page = alloc_page(gfp);
744 if (!ps_page->page) {
745 adapter->alloc_rx_buff_failed++;
748 ps_page->dma = dma_map_page(&pdev->dev,
752 if (dma_mapping_error(&pdev->dev,
754 dev_err(&adapter->pdev->dev,
755 "Rx DMA page map failed\n");
756 adapter->rx_dma_failed++;
760 /* Refresh the desc even if buffer_addrs
761 * didn't change because each write-back
764 rx_desc->read.buffer_addr[j + 1] =
765 cpu_to_le64(ps_page->dma);
768 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
772 adapter->alloc_rx_buff_failed++;
776 buffer_info->skb = skb;
777 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
778 adapter->rx_ps_bsize0,
780 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
781 dev_err(&pdev->dev, "Rx DMA map failed\n");
782 adapter->rx_dma_failed++;
784 dev_kfree_skb_any(skb);
785 buffer_info->skb = NULL;
789 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
791 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
792 /* Force memory writes to complete before letting h/w
793 * know there are new descriptors to fetch. (Only
794 * applicable for weak-ordered memory model archs,
798 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
799 e1000e_update_rdt_wa(rx_ring, i << 1);
801 writel(i << 1, rx_ring->tail);
805 if (i == rx_ring->count)
807 buffer_info = &rx_ring->buffer_info[i];
811 rx_ring->next_to_use = i;
815 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
816 * @rx_ring: Rx descriptor ring
817 * @cleaned_count: number of buffers to allocate this pass
818 * @gfp: flags for allocation
821 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
822 int cleaned_count, gfp_t gfp)
824 struct e1000_adapter *adapter = rx_ring->adapter;
825 struct net_device *netdev = adapter->netdev;
826 struct pci_dev *pdev = adapter->pdev;
827 union e1000_rx_desc_extended *rx_desc;
828 struct e1000_buffer *buffer_info;
831 unsigned int bufsz = 256 - 16; /* for skb_reserve */
833 i = rx_ring->next_to_use;
834 buffer_info = &rx_ring->buffer_info[i];
836 while (cleaned_count--) {
837 skb = buffer_info->skb;
843 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
844 if (unlikely(!skb)) {
845 /* Better luck next round */
846 adapter->alloc_rx_buff_failed++;
850 buffer_info->skb = skb;
852 /* allocate a new page if necessary */
853 if (!buffer_info->page) {
854 buffer_info->page = alloc_page(gfp);
855 if (unlikely(!buffer_info->page)) {
856 adapter->alloc_rx_buff_failed++;
861 if (!buffer_info->dma) {
862 buffer_info->dma = dma_map_page(&pdev->dev,
863 buffer_info->page, 0,
866 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
867 adapter->alloc_rx_buff_failed++;
872 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
873 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
875 if (unlikely(++i == rx_ring->count))
877 buffer_info = &rx_ring->buffer_info[i];
880 if (likely(rx_ring->next_to_use != i)) {
881 rx_ring->next_to_use = i;
882 if (unlikely(i-- == 0))
883 i = (rx_ring->count - 1);
885 /* Force memory writes to complete before letting h/w
886 * know there are new descriptors to fetch. (Only
887 * applicable for weak-ordered memory model archs,
891 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
892 e1000e_update_rdt_wa(rx_ring, i);
894 writel(i, rx_ring->tail);
898 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
901 if (netdev->features & NETIF_F_RXHASH)
902 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
906 * e1000_clean_rx_irq - Send received data up the network stack
907 * @rx_ring: Rx descriptor ring
908 * @work_done: output parameter for indicating completed work
909 * @work_to_do: how many packets we can clean
911 * the return value indicates whether actual cleaning was done, there
912 * is no guarantee that everything was cleaned
914 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
917 struct e1000_adapter *adapter = rx_ring->adapter;
918 struct net_device *netdev = adapter->netdev;
919 struct pci_dev *pdev = adapter->pdev;
920 struct e1000_hw *hw = &adapter->hw;
921 union e1000_rx_desc_extended *rx_desc, *next_rxd;
922 struct e1000_buffer *buffer_info, *next_buffer;
925 int cleaned_count = 0;
926 bool cleaned = false;
927 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
929 i = rx_ring->next_to_clean;
930 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
931 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
932 buffer_info = &rx_ring->buffer_info[i];
934 while (staterr & E1000_RXD_STAT_DD) {
937 if (*work_done >= work_to_do)
940 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
942 skb = buffer_info->skb;
943 buffer_info->skb = NULL;
945 prefetch(skb->data - NET_IP_ALIGN);
948 if (i == rx_ring->count)
950 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
953 next_buffer = &rx_ring->buffer_info[i];
957 dma_unmap_single(&pdev->dev, buffer_info->dma,
958 adapter->rx_buffer_len, DMA_FROM_DEVICE);
959 buffer_info->dma = 0;
961 length = le16_to_cpu(rx_desc->wb.upper.length);
963 /* !EOP means multiple descriptors were used to store a single
964 * packet, if that's the case we need to toss it. In fact, we
965 * need to toss every packet with the EOP bit clear and the
966 * next frame that _does_ have the EOP bit set, as it is by
967 * definition only a frame fragment
969 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
970 adapter->flags2 |= FLAG2_IS_DISCARDING;
972 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
973 /* All receives must fit into a single buffer */
974 e_dbg("Receive packet consumed multiple buffers\n");
976 buffer_info->skb = skb;
977 if (staterr & E1000_RXD_STAT_EOP)
978 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
982 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
983 !(netdev->features & NETIF_F_RXALL))) {
985 buffer_info->skb = skb;
989 /* adjust length to remove Ethernet CRC */
990 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
991 /* If configured to store CRC, don't subtract FCS,
992 * but keep the FCS bytes out of the total_rx_bytes
995 if (netdev->features & NETIF_F_RXFCS)
1001 total_rx_bytes += length;
1004 /* code added for copybreak, this should improve
1005 * performance for small packets with large amounts
1006 * of reassembly being done in the stack
1008 if (length < copybreak) {
1009 struct sk_buff *new_skb =
1010 napi_alloc_skb(&adapter->napi, length);
1012 skb_copy_to_linear_data_offset(new_skb,
1018 /* save the skb in buffer_info as good */
1019 buffer_info->skb = skb;
1022 /* else just continue with the old one */
1024 /* end copybreak code */
1025 skb_put(skb, length);
1027 /* Receive Checksum Offload */
1028 e1000_rx_checksum(adapter, staterr, skb);
1030 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1032 e1000_receive_skb(adapter, netdev, skb, staterr,
1033 rx_desc->wb.upper.vlan);
1036 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1038 /* return some buffers to hardware, one at a time is too slow */
1039 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1040 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1045 /* use prefetched values */
1047 buffer_info = next_buffer;
1049 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1051 rx_ring->next_to_clean = i;
1053 cleaned_count = e1000_desc_unused(rx_ring);
1055 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1057 adapter->total_rx_bytes += total_rx_bytes;
1058 adapter->total_rx_packets += total_rx_packets;
1062 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1063 struct e1000_buffer *buffer_info,
1066 struct e1000_adapter *adapter = tx_ring->adapter;
1068 if (buffer_info->dma) {
1069 if (buffer_info->mapped_as_page)
1070 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1071 buffer_info->length, DMA_TO_DEVICE);
1073 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1074 buffer_info->length, DMA_TO_DEVICE);
1075 buffer_info->dma = 0;
1077 if (buffer_info->skb) {
1079 dev_kfree_skb_any(buffer_info->skb);
1081 dev_consume_skb_any(buffer_info->skb);
1082 buffer_info->skb = NULL;
1084 buffer_info->time_stamp = 0;
1087 static void e1000_print_hw_hang(struct work_struct *work)
1089 struct e1000_adapter *adapter = container_of(work,
1090 struct e1000_adapter,
1092 struct net_device *netdev = adapter->netdev;
1093 struct e1000_ring *tx_ring = adapter->tx_ring;
1094 unsigned int i = tx_ring->next_to_clean;
1095 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1096 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1097 struct e1000_hw *hw = &adapter->hw;
1098 u16 phy_status, phy_1000t_status, phy_ext_status;
1101 if (test_bit(__E1000_DOWN, &adapter->state))
1104 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1105 /* May be block on write-back, flush and detect again
1106 * flush pending descriptor writebacks to memory
1108 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1109 /* execute the writes immediately */
1111 /* Due to rare timing issues, write to TIDV again to ensure
1112 * the write is successful
1114 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115 /* execute the writes immediately */
1117 adapter->tx_hang_recheck = true;
1120 adapter->tx_hang_recheck = false;
1122 if (er32(TDH(0)) == er32(TDT(0))) {
1123 e_dbg("false hang detected, ignoring\n");
1127 /* Real hang detected */
1128 netif_stop_queue(netdev);
1130 e1e_rphy(hw, MII_BMSR, &phy_status);
1131 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1132 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1134 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1136 /* detected Hardware unit hang */
1137 e_err("Detected Hardware Unit Hang:\n"
1140 " next_to_use <%x>\n"
1141 " next_to_clean <%x>\n"
1142 "buffer_info[next_to_clean]:\n"
1143 " time_stamp <%lx>\n"
1144 " next_to_watch <%x>\n"
1146 " next_to_watch.status <%x>\n"
1149 "PHY 1000BASE-T Status <%x>\n"
1150 "PHY Extended Status <%x>\n"
1151 "PCI Status <%x>\n",
1152 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1153 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1154 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1155 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1157 e1000e_dump(adapter);
1159 /* Suggest workaround for known h/w issue */
1160 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1161 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1165 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166 * @work: pointer to work struct
1168 * This work function polls the TSYNCTXCTL valid bit to determine when a
1169 * timestamp has been taken for the current stored skb. The timestamp must
1170 * be for this skb because only one such packet is allowed in the queue.
1172 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1174 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1176 struct e1000_hw *hw = &adapter->hw;
1178 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1179 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1180 struct skb_shared_hwtstamps shhwtstamps;
1183 txstmp = er32(TXSTMPL);
1184 txstmp |= (u64)er32(TXSTMPH) << 32;
1186 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1188 /* Clear the global tx_hwtstamp_skb pointer and force writes
1189 * prior to notifying the stack of a Tx timestamp.
1191 adapter->tx_hwtstamp_skb = NULL;
1192 wmb(); /* force write prior to skb_tstamp_tx */
1194 skb_tstamp_tx(skb, &shhwtstamps);
1195 dev_consume_skb_any(skb);
1196 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197 + adapter->tx_timeout_factor * HZ)) {
1198 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199 adapter->tx_hwtstamp_skb = NULL;
1200 adapter->tx_hwtstamp_timeouts++;
1201 e_warn("clearing Tx timestamp hang\n");
1203 /* reschedule to check later */
1204 schedule_work(&adapter->tx_hwtstamp_work);
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1217 struct e1000_adapter *adapter = tx_ring->adapter;
1218 struct net_device *netdev = adapter->netdev;
1219 struct e1000_hw *hw = &adapter->hw;
1220 struct e1000_tx_desc *tx_desc, *eop_desc;
1221 struct e1000_buffer *buffer_info;
1222 unsigned int i, eop;
1223 unsigned int count = 0;
1224 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225 unsigned int bytes_compl = 0, pkts_compl = 0;
1227 i = tx_ring->next_to_clean;
1228 eop = tx_ring->buffer_info[i].next_to_watch;
1229 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1231 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232 (count < tx_ring->count)) {
1233 bool cleaned = false;
1235 dma_rmb(); /* read buffer_info after eop_desc */
1236 for (; !cleaned; count++) {
1237 tx_desc = E1000_TX_DESC(*tx_ring, i);
1238 buffer_info = &tx_ring->buffer_info[i];
1239 cleaned = (i == eop);
1242 total_tx_packets += buffer_info->segs;
1243 total_tx_bytes += buffer_info->bytecount;
1244 if (buffer_info->skb) {
1245 bytes_compl += buffer_info->skb->len;
1250 e1000_put_txbuf(tx_ring, buffer_info, false);
1251 tx_desc->upper.data = 0;
1254 if (i == tx_ring->count)
1258 if (i == tx_ring->next_to_use)
1260 eop = tx_ring->buffer_info[i].next_to_watch;
1261 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1264 tx_ring->next_to_clean = i;
1266 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1268 #define TX_WAKE_THRESHOLD 32
1269 if (count && netif_carrier_ok(netdev) &&
1270 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271 /* Make sure that anybody stopping the queue after this
1272 * sees the new next_to_clean.
1276 if (netif_queue_stopped(netdev) &&
1277 !(test_bit(__E1000_DOWN, &adapter->state))) {
1278 netif_wake_queue(netdev);
1279 ++adapter->restart_queue;
1283 if (adapter->detect_tx_hung) {
1284 /* Detect a transmit hang in hardware, this serializes the
1285 * check with the clearing of time_stamp and movement of i
1287 adapter->detect_tx_hung = false;
1288 if (tx_ring->buffer_info[i].time_stamp &&
1289 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290 + (adapter->tx_timeout_factor * HZ)) &&
1291 !(er32(STATUS) & E1000_STATUS_TXOFF))
1292 schedule_work(&adapter->print_hang_task);
1294 adapter->tx_hang_recheck = false;
1296 adapter->total_tx_bytes += total_tx_bytes;
1297 adapter->total_tx_packets += total_tx_packets;
1298 return count < tx_ring->count;
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1304 * @work_done: output parameter for indicating completed work
1305 * @work_to_do: how many packets we can clean
1307 * the return value indicates whether actual cleaning was done, there
1308 * is no guarantee that everything was cleaned
1310 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1313 struct e1000_adapter *adapter = rx_ring->adapter;
1314 struct e1000_hw *hw = &adapter->hw;
1315 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1316 struct net_device *netdev = adapter->netdev;
1317 struct pci_dev *pdev = adapter->pdev;
1318 struct e1000_buffer *buffer_info, *next_buffer;
1319 struct e1000_ps_page *ps_page;
1320 struct sk_buff *skb;
1322 u32 length, staterr;
1323 int cleaned_count = 0;
1324 bool cleaned = false;
1325 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1327 i = rx_ring->next_to_clean;
1328 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1329 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1330 buffer_info = &rx_ring->buffer_info[i];
1332 while (staterr & E1000_RXD_STAT_DD) {
1333 if (*work_done >= work_to_do)
1336 skb = buffer_info->skb;
1337 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1339 /* in the packet split case this is header only */
1340 prefetch(skb->data - NET_IP_ALIGN);
1343 if (i == rx_ring->count)
1345 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1348 next_buffer = &rx_ring->buffer_info[i];
1352 dma_unmap_single(&pdev->dev, buffer_info->dma,
1353 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1354 buffer_info->dma = 0;
1356 /* see !EOP comment in other Rx routine */
1357 if (!(staterr & E1000_RXD_STAT_EOP))
1358 adapter->flags2 |= FLAG2_IS_DISCARDING;
1360 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1361 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362 dev_kfree_skb_irq(skb);
1363 if (staterr & E1000_RXD_STAT_EOP)
1364 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1368 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1369 !(netdev->features & NETIF_F_RXALL))) {
1370 dev_kfree_skb_irq(skb);
1374 length = le16_to_cpu(rx_desc->wb.middle.length0);
1377 e_dbg("Last part of the packet spanning multiple descriptors\n");
1378 dev_kfree_skb_irq(skb);
1383 skb_put(skb, length);
1386 /* this looks ugly, but it seems compiler issues make
1387 * it more efficient than reusing j
1389 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1391 /* page alloc/put takes too long and effects small
1392 * packet throughput, so unsplit small packets and
1393 * save the alloc/put
1395 if (l1 && (l1 <= copybreak) &&
1396 ((length + l1) <= adapter->rx_ps_bsize0)) {
1397 ps_page = &buffer_info->ps_pages[0];
1399 dma_sync_single_for_cpu(&pdev->dev,
1403 memcpy(skb_tail_pointer(skb),
1404 page_address(ps_page->page), l1);
1405 dma_sync_single_for_device(&pdev->dev,
1410 /* remove the CRC */
1411 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1412 if (!(netdev->features & NETIF_F_RXFCS))
1421 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1422 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1426 ps_page = &buffer_info->ps_pages[j];
1427 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1430 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1431 ps_page->page = NULL;
1433 skb->data_len += length;
1434 skb->truesize += PAGE_SIZE;
1437 /* strip the ethernet crc, problem is we're using pages now so
1438 * this whole operation can get a little cpu intensive
1440 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1441 if (!(netdev->features & NETIF_F_RXFCS))
1442 pskb_trim(skb, skb->len - 4);
1446 total_rx_bytes += skb->len;
1449 e1000_rx_checksum(adapter, staterr, skb);
1451 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1453 if (rx_desc->wb.upper.header_status &
1454 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1455 adapter->rx_hdr_split++;
1457 e1000_receive_skb(adapter, netdev, skb, staterr,
1458 rx_desc->wb.middle.vlan);
1461 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1462 buffer_info->skb = NULL;
1464 /* return some buffers to hardware, one at a time is too slow */
1465 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1466 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1471 /* use prefetched values */
1473 buffer_info = next_buffer;
1475 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1477 rx_ring->next_to_clean = i;
1479 cleaned_count = e1000_desc_unused(rx_ring);
1481 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1483 adapter->total_rx_bytes += total_rx_bytes;
1484 adapter->total_rx_packets += total_rx_packets;
1488 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1493 skb->data_len += length;
1494 skb->truesize += PAGE_SIZE;
1498 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499 * @rx_ring: Rx descriptor ring
1500 * @work_done: output parameter for indicating completed work
1501 * @work_to_do: how many packets we can clean
1503 * the return value indicates whether actual cleaning was done, there
1504 * is no guarantee that everything was cleaned
1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1509 struct e1000_adapter *adapter = rx_ring->adapter;
1510 struct net_device *netdev = adapter->netdev;
1511 struct pci_dev *pdev = adapter->pdev;
1512 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513 struct e1000_buffer *buffer_info, *next_buffer;
1514 u32 length, staterr;
1516 int cleaned_count = 0;
1517 bool cleaned = false;
1518 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519 struct skb_shared_info *shinfo;
1521 i = rx_ring->next_to_clean;
1522 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524 buffer_info = &rx_ring->buffer_info[i];
1526 while (staterr & E1000_RXD_STAT_DD) {
1527 struct sk_buff *skb;
1529 if (*work_done >= work_to_do)
1532 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1534 skb = buffer_info->skb;
1535 buffer_info->skb = NULL;
1538 if (i == rx_ring->count)
1540 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1543 next_buffer = &rx_ring->buffer_info[i];
1547 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1549 buffer_info->dma = 0;
1551 length = le16_to_cpu(rx_desc->wb.upper.length);
1553 /* errors is only valid for DD + EOP descriptors */
1554 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556 !(netdev->features & NETIF_F_RXALL)))) {
1557 /* recycle both page and skb */
1558 buffer_info->skb = skb;
1559 /* an error means any chain goes out the window too */
1560 if (rx_ring->rx_skb_top)
1561 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562 rx_ring->rx_skb_top = NULL;
1565 #define rxtop (rx_ring->rx_skb_top)
1566 if (!(staterr & E1000_RXD_STAT_EOP)) {
1567 /* this descriptor is only the beginning (or middle) */
1569 /* this is the beginning of a chain */
1571 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1574 /* this is the middle of a chain */
1575 shinfo = skb_shinfo(rxtop);
1576 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577 buffer_info->page, 0,
1579 /* re-use the skb, only consumed the page */
1580 buffer_info->skb = skb;
1582 e1000_consume_page(buffer_info, rxtop, length);
1586 /* end of the chain */
1587 shinfo = skb_shinfo(rxtop);
1588 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589 buffer_info->page, 0,
1591 /* re-use the current skb, we only consumed the
1594 buffer_info->skb = skb;
1597 e1000_consume_page(buffer_info, skb, length);
1599 /* no chain, got EOP, this buf is the packet
1600 * copybreak to save the put_page/alloc_page
1602 if (length <= copybreak &&
1603 skb_tailroom(skb) >= length) {
1604 memcpy(skb_tail_pointer(skb),
1605 page_address(buffer_info->page),
1607 /* re-use the page, so don't erase
1610 skb_put(skb, length);
1612 skb_fill_page_desc(skb, 0,
1613 buffer_info->page, 0,
1615 e1000_consume_page(buffer_info, skb,
1621 /* Receive Checksum Offload */
1622 e1000_rx_checksum(adapter, staterr, skb);
1624 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1626 /* probably a little skewed due to removing CRC */
1627 total_rx_bytes += skb->len;
1630 /* eth type trans needs skb->data to point to something */
1631 if (!pskb_may_pull(skb, ETH_HLEN)) {
1632 e_err("pskb_may_pull failed.\n");
1633 dev_kfree_skb_irq(skb);
1637 e1000_receive_skb(adapter, netdev, skb, staterr,
1638 rx_desc->wb.upper.vlan);
1641 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1643 /* return some buffers to hardware, one at a time is too slow */
1644 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1650 /* use prefetched values */
1652 buffer_info = next_buffer;
1654 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1656 rx_ring->next_to_clean = i;
1658 cleaned_count = e1000_desc_unused(rx_ring);
1660 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1662 adapter->total_rx_bytes += total_rx_bytes;
1663 adapter->total_rx_packets += total_rx_packets;
1668 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669 * @rx_ring: Rx descriptor ring
1671 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1673 struct e1000_adapter *adapter = rx_ring->adapter;
1674 struct e1000_buffer *buffer_info;
1675 struct e1000_ps_page *ps_page;
1676 struct pci_dev *pdev = adapter->pdev;
1679 /* Free all the Rx ring sk_buffs */
1680 for (i = 0; i < rx_ring->count; i++) {
1681 buffer_info = &rx_ring->buffer_info[i];
1682 if (buffer_info->dma) {
1683 if (adapter->clean_rx == e1000_clean_rx_irq)
1684 dma_unmap_single(&pdev->dev, buffer_info->dma,
1685 adapter->rx_buffer_len,
1687 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688 dma_unmap_page(&pdev->dev, buffer_info->dma,
1689 PAGE_SIZE, DMA_FROM_DEVICE);
1690 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691 dma_unmap_single(&pdev->dev, buffer_info->dma,
1692 adapter->rx_ps_bsize0,
1694 buffer_info->dma = 0;
1697 if (buffer_info->page) {
1698 put_page(buffer_info->page);
1699 buffer_info->page = NULL;
1702 if (buffer_info->skb) {
1703 dev_kfree_skb(buffer_info->skb);
1704 buffer_info->skb = NULL;
1707 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708 ps_page = &buffer_info->ps_pages[j];
1711 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1714 put_page(ps_page->page);
1715 ps_page->page = NULL;
1719 /* there also may be some cached data from a chained receive */
1720 if (rx_ring->rx_skb_top) {
1721 dev_kfree_skb(rx_ring->rx_skb_top);
1722 rx_ring->rx_skb_top = NULL;
1725 /* Zero out the descriptor ring */
1726 memset(rx_ring->desc, 0, rx_ring->size);
1728 rx_ring->next_to_clean = 0;
1729 rx_ring->next_to_use = 0;
1730 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1733 static void e1000e_downshift_workaround(struct work_struct *work)
1735 struct e1000_adapter *adapter = container_of(work,
1736 struct e1000_adapter,
1739 if (test_bit(__E1000_DOWN, &adapter->state))
1742 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1746 * e1000_intr_msi - Interrupt Handler
1747 * @irq: interrupt number
1748 * @data: pointer to a network interface device structure
1750 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1752 struct net_device *netdev = data;
1753 struct e1000_adapter *adapter = netdev_priv(netdev);
1754 struct e1000_hw *hw = &adapter->hw;
1755 u32 icr = er32(ICR);
1757 /* read ICR disables interrupts using IAM */
1758 if (icr & E1000_ICR_LSC) {
1759 hw->mac.get_link_status = true;
1760 /* ICH8 workaround-- Call gig speed drop workaround on cable
1761 * disconnect (LSC) before accessing any PHY registers
1763 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764 (!(er32(STATUS) & E1000_STATUS_LU)))
1765 schedule_work(&adapter->downshift_task);
1767 /* 80003ES2LAN workaround-- For packet buffer work-around on
1768 * link down event; disable receives here in the ISR and reset
1769 * adapter in watchdog
1771 if (netif_carrier_ok(netdev) &&
1772 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773 /* disable receives */
1774 u32 rctl = er32(RCTL);
1776 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777 adapter->flags |= FLAG_RESTART_NOW;
1779 /* guard against interrupt when we're going down */
1780 if (!test_bit(__E1000_DOWN, &adapter->state))
1781 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1784 /* Reset on uncorrectable ECC error */
1785 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786 u32 pbeccsts = er32(PBECCSTS);
1788 adapter->corr_errors +=
1789 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790 adapter->uncorr_errors +=
1791 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1792 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1794 /* Do the reset outside of interrupt context */
1795 schedule_work(&adapter->reset_task);
1797 /* return immediately since reset is imminent */
1801 if (napi_schedule_prep(&adapter->napi)) {
1802 adapter->total_tx_bytes = 0;
1803 adapter->total_tx_packets = 0;
1804 adapter->total_rx_bytes = 0;
1805 adapter->total_rx_packets = 0;
1806 __napi_schedule(&adapter->napi);
1813 * e1000_intr - Interrupt Handler
1814 * @irq: interrupt number
1815 * @data: pointer to a network interface device structure
1817 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1819 struct net_device *netdev = data;
1820 struct e1000_adapter *adapter = netdev_priv(netdev);
1821 struct e1000_hw *hw = &adapter->hw;
1822 u32 rctl, icr = er32(ICR);
1824 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1825 return IRQ_NONE; /* Not our interrupt */
1827 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1828 * not set, then the adapter didn't send an interrupt
1830 if (!(icr & E1000_ICR_INT_ASSERTED))
1833 /* Interrupt Auto-Mask...upon reading ICR,
1834 * interrupts are masked. No need for the
1838 if (icr & E1000_ICR_LSC) {
1839 hw->mac.get_link_status = true;
1840 /* ICH8 workaround-- Call gig speed drop workaround on cable
1841 * disconnect (LSC) before accessing any PHY registers
1843 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1844 (!(er32(STATUS) & E1000_STATUS_LU)))
1845 schedule_work(&adapter->downshift_task);
1847 /* 80003ES2LAN workaround--
1848 * For packet buffer work-around on link down event;
1849 * disable receives here in the ISR and
1850 * reset adapter in watchdog
1852 if (netif_carrier_ok(netdev) &&
1853 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1854 /* disable receives */
1856 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1857 adapter->flags |= FLAG_RESTART_NOW;
1859 /* guard against interrupt when we're going down */
1860 if (!test_bit(__E1000_DOWN, &adapter->state))
1861 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1864 /* Reset on uncorrectable ECC error */
1865 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1866 u32 pbeccsts = er32(PBECCSTS);
1868 adapter->corr_errors +=
1869 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1870 adapter->uncorr_errors +=
1871 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1872 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1874 /* Do the reset outside of interrupt context */
1875 schedule_work(&adapter->reset_task);
1877 /* return immediately since reset is imminent */
1881 if (napi_schedule_prep(&adapter->napi)) {
1882 adapter->total_tx_bytes = 0;
1883 adapter->total_tx_packets = 0;
1884 adapter->total_rx_bytes = 0;
1885 adapter->total_rx_packets = 0;
1886 __napi_schedule(&adapter->napi);
1892 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1894 struct net_device *netdev = data;
1895 struct e1000_adapter *adapter = netdev_priv(netdev);
1896 struct e1000_hw *hw = &adapter->hw;
1897 u32 icr = er32(ICR);
1899 if (icr & adapter->eiac_mask)
1900 ew32(ICS, (icr & adapter->eiac_mask));
1902 if (icr & E1000_ICR_LSC) {
1903 hw->mac.get_link_status = true;
1904 /* guard against interrupt when we're going down */
1905 if (!test_bit(__E1000_DOWN, &adapter->state))
1906 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1909 if (!test_bit(__E1000_DOWN, &adapter->state))
1910 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1915 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1917 struct net_device *netdev = data;
1918 struct e1000_adapter *adapter = netdev_priv(netdev);
1919 struct e1000_hw *hw = &adapter->hw;
1920 struct e1000_ring *tx_ring = adapter->tx_ring;
1922 adapter->total_tx_bytes = 0;
1923 adapter->total_tx_packets = 0;
1925 if (!e1000_clean_tx_irq(tx_ring))
1926 /* Ring was not completely cleaned, so fire another interrupt */
1927 ew32(ICS, tx_ring->ims_val);
1929 if (!test_bit(__E1000_DOWN, &adapter->state))
1930 ew32(IMS, adapter->tx_ring->ims_val);
1935 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1937 struct net_device *netdev = data;
1938 struct e1000_adapter *adapter = netdev_priv(netdev);
1939 struct e1000_ring *rx_ring = adapter->rx_ring;
1941 /* Write the ITR value calculated at the end of the
1942 * previous interrupt.
1944 if (rx_ring->set_itr) {
1945 u32 itr = rx_ring->itr_val ?
1946 1000000000 / (rx_ring->itr_val * 256) : 0;
1948 writel(itr, rx_ring->itr_register);
1949 rx_ring->set_itr = 0;
1952 if (napi_schedule_prep(&adapter->napi)) {
1953 adapter->total_rx_bytes = 0;
1954 adapter->total_rx_packets = 0;
1955 __napi_schedule(&adapter->napi);
1961 * e1000_configure_msix - Configure MSI-X hardware
1962 * @adapter: board private structure
1964 * e1000_configure_msix sets up the hardware to properly
1965 * generate MSI-X interrupts.
1967 static void e1000_configure_msix(struct e1000_adapter *adapter)
1969 struct e1000_hw *hw = &adapter->hw;
1970 struct e1000_ring *rx_ring = adapter->rx_ring;
1971 struct e1000_ring *tx_ring = adapter->tx_ring;
1973 u32 ctrl_ext, ivar = 0;
1975 adapter->eiac_mask = 0;
1977 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1978 if (hw->mac.type == e1000_82574) {
1979 u32 rfctl = er32(RFCTL);
1981 rfctl |= E1000_RFCTL_ACK_DIS;
1985 /* Configure Rx vector */
1986 rx_ring->ims_val = E1000_IMS_RXQ0;
1987 adapter->eiac_mask |= rx_ring->ims_val;
1988 if (rx_ring->itr_val)
1989 writel(1000000000 / (rx_ring->itr_val * 256),
1990 rx_ring->itr_register);
1992 writel(1, rx_ring->itr_register);
1993 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1995 /* Configure Tx vector */
1996 tx_ring->ims_val = E1000_IMS_TXQ0;
1998 if (tx_ring->itr_val)
1999 writel(1000000000 / (tx_ring->itr_val * 256),
2000 tx_ring->itr_register);
2002 writel(1, tx_ring->itr_register);
2003 adapter->eiac_mask |= tx_ring->ims_val;
2004 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2006 /* set vector for Other Causes, e.g. link changes */
2008 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2009 if (rx_ring->itr_val)
2010 writel(1000000000 / (rx_ring->itr_val * 256),
2011 hw->hw_addr + E1000_EITR_82574(vector));
2013 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2015 /* Cause Tx interrupts on every write back */
2020 /* enable MSI-X PBA support */
2021 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2022 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2023 ew32(CTRL_EXT, ctrl_ext);
2027 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2029 if (adapter->msix_entries) {
2030 pci_disable_msix(adapter->pdev);
2031 kfree(adapter->msix_entries);
2032 adapter->msix_entries = NULL;
2033 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2034 pci_disable_msi(adapter->pdev);
2035 adapter->flags &= ~FLAG_MSI_ENABLED;
2040 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2041 * @adapter: board private structure
2043 * Attempt to configure interrupts using the best available
2044 * capabilities of the hardware and kernel.
2046 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2051 switch (adapter->int_mode) {
2052 case E1000E_INT_MODE_MSIX:
2053 if (adapter->flags & FLAG_HAS_MSIX) {
2054 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2055 adapter->msix_entries = kcalloc(adapter->num_vectors,
2059 if (adapter->msix_entries) {
2060 struct e1000_adapter *a = adapter;
2062 for (i = 0; i < adapter->num_vectors; i++)
2063 adapter->msix_entries[i].entry = i;
2065 err = pci_enable_msix_range(a->pdev,
2072 /* MSI-X failed, so fall through and try MSI */
2073 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2074 e1000e_reset_interrupt_capability(adapter);
2076 adapter->int_mode = E1000E_INT_MODE_MSI;
2078 case E1000E_INT_MODE_MSI:
2079 if (!pci_enable_msi(adapter->pdev)) {
2080 adapter->flags |= FLAG_MSI_ENABLED;
2082 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2083 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2086 case E1000E_INT_MODE_LEGACY:
2087 /* Don't do anything; this is the system default */
2091 /* store the number of vectors being used */
2092 adapter->num_vectors = 1;
2096 * e1000_request_msix - Initialize MSI-X interrupts
2097 * @adapter: board private structure
2099 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2102 static int e1000_request_msix(struct e1000_adapter *adapter)
2104 struct net_device *netdev = adapter->netdev;
2105 int err = 0, vector = 0;
2107 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2108 snprintf(adapter->rx_ring->name,
2109 sizeof(adapter->rx_ring->name) - 1,
2110 "%.14s-rx-0", netdev->name);
2112 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2113 err = request_irq(adapter->msix_entries[vector].vector,
2114 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2118 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2119 E1000_EITR_82574(vector);
2120 adapter->rx_ring->itr_val = adapter->itr;
2123 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2124 snprintf(adapter->tx_ring->name,
2125 sizeof(adapter->tx_ring->name) - 1,
2126 "%.14s-tx-0", netdev->name);
2128 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2129 err = request_irq(adapter->msix_entries[vector].vector,
2130 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2134 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2135 E1000_EITR_82574(vector);
2136 adapter->tx_ring->itr_val = adapter->itr;
2139 err = request_irq(adapter->msix_entries[vector].vector,
2140 e1000_msix_other, 0, netdev->name, netdev);
2144 e1000_configure_msix(adapter);
2150 * e1000_request_irq - initialize interrupts
2151 * @adapter: board private structure
2153 * Attempts to configure interrupts using the best available
2154 * capabilities of the hardware and kernel.
2156 static int e1000_request_irq(struct e1000_adapter *adapter)
2158 struct net_device *netdev = adapter->netdev;
2161 if (adapter->msix_entries) {
2162 err = e1000_request_msix(adapter);
2165 /* fall back to MSI */
2166 e1000e_reset_interrupt_capability(adapter);
2167 adapter->int_mode = E1000E_INT_MODE_MSI;
2168 e1000e_set_interrupt_capability(adapter);
2170 if (adapter->flags & FLAG_MSI_ENABLED) {
2171 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2172 netdev->name, netdev);
2176 /* fall back to legacy interrupt */
2177 e1000e_reset_interrupt_capability(adapter);
2178 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2181 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2182 netdev->name, netdev);
2184 e_err("Unable to allocate interrupt, Error: %d\n", err);
2189 static void e1000_free_irq(struct e1000_adapter *adapter)
2191 struct net_device *netdev = adapter->netdev;
2193 if (adapter->msix_entries) {
2196 free_irq(adapter->msix_entries[vector].vector, netdev);
2199 free_irq(adapter->msix_entries[vector].vector, netdev);
2202 /* Other Causes interrupt vector */
2203 free_irq(adapter->msix_entries[vector].vector, netdev);
2207 free_irq(adapter->pdev->irq, netdev);
2211 * e1000_irq_disable - Mask off interrupt generation on the NIC
2212 * @adapter: board private structure
2214 static void e1000_irq_disable(struct e1000_adapter *adapter)
2216 struct e1000_hw *hw = &adapter->hw;
2219 if (adapter->msix_entries)
2220 ew32(EIAC_82574, 0);
2223 if (adapter->msix_entries) {
2226 for (i = 0; i < adapter->num_vectors; i++)
2227 synchronize_irq(adapter->msix_entries[i].vector);
2229 synchronize_irq(adapter->pdev->irq);
2234 * e1000_irq_enable - Enable default interrupt generation settings
2235 * @adapter: board private structure
2237 static void e1000_irq_enable(struct e1000_adapter *adapter)
2239 struct e1000_hw *hw = &adapter->hw;
2241 if (adapter->msix_entries) {
2242 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2243 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2245 } else if (hw->mac.type >= e1000_pch_lpt) {
2246 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2248 ew32(IMS, IMS_ENABLE_MASK);
2254 * e1000e_get_hw_control - get control of the h/w from f/w
2255 * @adapter: address of board private structure
2257 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2258 * For ASF and Pass Through versions of f/w this means that
2259 * the driver is loaded. For AMT version (only with 82573)
2260 * of the f/w this means that the network i/f is open.
2262 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2264 struct e1000_hw *hw = &adapter->hw;
2268 /* Let firmware know the driver has taken over */
2269 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2271 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2272 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2273 ctrl_ext = er32(CTRL_EXT);
2274 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2279 * e1000e_release_hw_control - release control of the h/w to f/w
2280 * @adapter: address of board private structure
2282 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2283 * For ASF and Pass Through versions of f/w this means that the
2284 * driver is no longer loaded. For AMT version (only with 82573) i
2285 * of the f/w this means that the network i/f is closed.
2288 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2290 struct e1000_hw *hw = &adapter->hw;
2294 /* Let firmware taken over control of h/w */
2295 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2297 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2298 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2299 ctrl_ext = er32(CTRL_EXT);
2300 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2305 * e1000_alloc_ring_dma - allocate memory for a ring structure
2306 * @adapter: board private structure
2307 * @ring: ring struct for which to allocate dma
2309 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2310 struct e1000_ring *ring)
2312 struct pci_dev *pdev = adapter->pdev;
2314 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2323 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2324 * @tx_ring: Tx descriptor ring
2326 * Return 0 on success, negative on failure
2328 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2330 struct e1000_adapter *adapter = tx_ring->adapter;
2331 int err = -ENOMEM, size;
2333 size = sizeof(struct e1000_buffer) * tx_ring->count;
2334 tx_ring->buffer_info = vzalloc(size);
2335 if (!tx_ring->buffer_info)
2338 /* round up to nearest 4K */
2339 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2340 tx_ring->size = ALIGN(tx_ring->size, 4096);
2342 err = e1000_alloc_ring_dma(adapter, tx_ring);
2346 tx_ring->next_to_use = 0;
2347 tx_ring->next_to_clean = 0;
2351 vfree(tx_ring->buffer_info);
2352 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2357 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2358 * @rx_ring: Rx descriptor ring
2360 * Returns 0 on success, negative on failure
2362 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2364 struct e1000_adapter *adapter = rx_ring->adapter;
2365 struct e1000_buffer *buffer_info;
2366 int i, size, desc_len, err = -ENOMEM;
2368 size = sizeof(struct e1000_buffer) * rx_ring->count;
2369 rx_ring->buffer_info = vzalloc(size);
2370 if (!rx_ring->buffer_info)
2373 for (i = 0; i < rx_ring->count; i++) {
2374 buffer_info = &rx_ring->buffer_info[i];
2375 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2376 sizeof(struct e1000_ps_page),
2378 if (!buffer_info->ps_pages)
2382 desc_len = sizeof(union e1000_rx_desc_packet_split);
2384 /* Round up to nearest 4K */
2385 rx_ring->size = rx_ring->count * desc_len;
2386 rx_ring->size = ALIGN(rx_ring->size, 4096);
2388 err = e1000_alloc_ring_dma(adapter, rx_ring);
2392 rx_ring->next_to_clean = 0;
2393 rx_ring->next_to_use = 0;
2394 rx_ring->rx_skb_top = NULL;
2399 for (i = 0; i < rx_ring->count; i++) {
2400 buffer_info = &rx_ring->buffer_info[i];
2401 kfree(buffer_info->ps_pages);
2404 vfree(rx_ring->buffer_info);
2405 e_err("Unable to allocate memory for the receive descriptor ring\n");
2410 * e1000_clean_tx_ring - Free Tx Buffers
2411 * @tx_ring: Tx descriptor ring
2413 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2415 struct e1000_adapter *adapter = tx_ring->adapter;
2416 struct e1000_buffer *buffer_info;
2420 for (i = 0; i < tx_ring->count; i++) {
2421 buffer_info = &tx_ring->buffer_info[i];
2422 e1000_put_txbuf(tx_ring, buffer_info, false);
2425 netdev_reset_queue(adapter->netdev);
2426 size = sizeof(struct e1000_buffer) * tx_ring->count;
2427 memset(tx_ring->buffer_info, 0, size);
2429 memset(tx_ring->desc, 0, tx_ring->size);
2431 tx_ring->next_to_use = 0;
2432 tx_ring->next_to_clean = 0;
2436 * e1000e_free_tx_resources - Free Tx Resources per Queue
2437 * @tx_ring: Tx descriptor ring
2439 * Free all transmit software resources
2441 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2443 struct e1000_adapter *adapter = tx_ring->adapter;
2444 struct pci_dev *pdev = adapter->pdev;
2446 e1000_clean_tx_ring(tx_ring);
2448 vfree(tx_ring->buffer_info);
2449 tx_ring->buffer_info = NULL;
2451 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2453 tx_ring->desc = NULL;
2457 * e1000e_free_rx_resources - Free Rx Resources
2458 * @rx_ring: Rx descriptor ring
2460 * Free all receive software resources
2462 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2464 struct e1000_adapter *adapter = rx_ring->adapter;
2465 struct pci_dev *pdev = adapter->pdev;
2468 e1000_clean_rx_ring(rx_ring);
2470 for (i = 0; i < rx_ring->count; i++)
2471 kfree(rx_ring->buffer_info[i].ps_pages);
2473 vfree(rx_ring->buffer_info);
2474 rx_ring->buffer_info = NULL;
2476 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2478 rx_ring->desc = NULL;
2482 * e1000_update_itr - update the dynamic ITR value based on statistics
2483 * @itr_setting: current adapter->itr
2484 * @packets: the number of packets during this measurement interval
2485 * @bytes: the number of bytes during this measurement interval
2487 * Stores a new ITR value based on packets and byte
2488 * counts during the last interrupt. The advantage of per interrupt
2489 * computation is faster updates and more accurate ITR for the current
2490 * traffic pattern. Constants in this function were computed
2491 * based on theoretical maximum wire speed and thresholds were set based
2492 * on testing data as well as attempting to minimize response time
2493 * while increasing bulk throughput. This functionality is controlled
2494 * by the InterruptThrottleRate module parameter.
2496 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2498 unsigned int retval = itr_setting;
2503 switch (itr_setting) {
2504 case lowest_latency:
2505 /* handle TSO and jumbo frames */
2506 if (bytes / packets > 8000)
2507 retval = bulk_latency;
2508 else if ((packets < 5) && (bytes > 512))
2509 retval = low_latency;
2511 case low_latency: /* 50 usec aka 20000 ints/s */
2512 if (bytes > 10000) {
2513 /* this if handles the TSO accounting */
2514 if (bytes / packets > 8000)
2515 retval = bulk_latency;
2516 else if ((packets < 10) || ((bytes / packets) > 1200))
2517 retval = bulk_latency;
2518 else if ((packets > 35))
2519 retval = lowest_latency;
2520 } else if (bytes / packets > 2000) {
2521 retval = bulk_latency;
2522 } else if (packets <= 2 && bytes < 512) {
2523 retval = lowest_latency;
2526 case bulk_latency: /* 250 usec aka 4000 ints/s */
2527 if (bytes > 25000) {
2529 retval = low_latency;
2530 } else if (bytes < 6000) {
2531 retval = low_latency;
2539 static void e1000_set_itr(struct e1000_adapter *adapter)
2542 u32 new_itr = adapter->itr;
2544 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2545 if (adapter->link_speed != SPEED_1000) {
2550 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2555 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2556 adapter->total_tx_packets,
2557 adapter->total_tx_bytes);
2558 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2559 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2560 adapter->tx_itr = low_latency;
2562 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2563 adapter->total_rx_packets,
2564 adapter->total_rx_bytes);
2565 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2566 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2567 adapter->rx_itr = low_latency;
2569 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2571 /* counts and packets in update_itr are dependent on these numbers */
2572 switch (current_itr) {
2573 case lowest_latency:
2577 new_itr = 20000; /* aka hwitr = ~200 */
2587 if (new_itr != adapter->itr) {
2588 /* this attempts to bias the interrupt rate towards Bulk
2589 * by adding intermediate steps when interrupt rate is
2592 new_itr = new_itr > adapter->itr ?
2593 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2594 adapter->itr = new_itr;
2595 adapter->rx_ring->itr_val = new_itr;
2596 if (adapter->msix_entries)
2597 adapter->rx_ring->set_itr = 1;
2599 e1000e_write_itr(adapter, new_itr);
2604 * e1000e_write_itr - write the ITR value to the appropriate registers
2605 * @adapter: address of board private structure
2606 * @itr: new ITR value to program
2608 * e1000e_write_itr determines if the adapter is in MSI-X mode
2609 * and, if so, writes the EITR registers with the ITR value.
2610 * Otherwise, it writes the ITR value into the ITR register.
2612 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2614 struct e1000_hw *hw = &adapter->hw;
2615 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2617 if (adapter->msix_entries) {
2620 for (vector = 0; vector < adapter->num_vectors; vector++)
2621 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2628 * e1000_alloc_queues - Allocate memory for all rings
2629 * @adapter: board private structure to initialize
2631 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2633 int size = sizeof(struct e1000_ring);
2635 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2636 if (!adapter->tx_ring)
2638 adapter->tx_ring->count = adapter->tx_ring_count;
2639 adapter->tx_ring->adapter = adapter;
2641 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2642 if (!adapter->rx_ring)
2644 adapter->rx_ring->count = adapter->rx_ring_count;
2645 adapter->rx_ring->adapter = adapter;
2649 e_err("Unable to allocate memory for queues\n");
2650 kfree(adapter->rx_ring);
2651 kfree(adapter->tx_ring);
2656 * e1000e_poll - NAPI Rx polling callback
2657 * @napi: struct associated with this polling callback
2658 * @budget: number of packets driver is allowed to process this poll
2660 static int e1000e_poll(struct napi_struct *napi, int budget)
2662 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2664 struct e1000_hw *hw = &adapter->hw;
2665 struct net_device *poll_dev = adapter->netdev;
2666 int tx_cleaned = 1, work_done = 0;
2668 adapter = netdev_priv(poll_dev);
2670 if (!adapter->msix_entries ||
2671 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2672 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2674 adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2676 if (!tx_cleaned || work_done == budget)
2679 /* Exit the polling mode, but don't re-enable interrupts if stack might
2680 * poll us due to busy-polling
2682 if (likely(napi_complete_done(napi, work_done))) {
2683 if (adapter->itr_setting & 3)
2684 e1000_set_itr(adapter);
2685 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2686 if (adapter->msix_entries)
2687 ew32(IMS, adapter->rx_ring->ims_val);
2689 e1000_irq_enable(adapter);
2696 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2697 __always_unused __be16 proto, u16 vid)
2699 struct e1000_adapter *adapter = netdev_priv(netdev);
2700 struct e1000_hw *hw = &adapter->hw;
2703 /* don't update vlan cookie if already programmed */
2704 if ((adapter->hw.mng_cookie.status &
2705 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2706 (vid == adapter->mng_vlan_id))
2709 /* add VID to filter table */
2710 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2711 index = (vid >> 5) & 0x7F;
2712 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2713 vfta |= BIT((vid & 0x1F));
2714 hw->mac.ops.write_vfta(hw, index, vfta);
2717 set_bit(vid, adapter->active_vlans);
2722 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2723 __always_unused __be16 proto, u16 vid)
2725 struct e1000_adapter *adapter = netdev_priv(netdev);
2726 struct e1000_hw *hw = &adapter->hw;
2729 if ((adapter->hw.mng_cookie.status &
2730 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2731 (vid == adapter->mng_vlan_id)) {
2732 /* release control to f/w */
2733 e1000e_release_hw_control(adapter);
2737 /* remove VID from filter table */
2738 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2739 index = (vid >> 5) & 0x7F;
2740 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2741 vfta &= ~BIT((vid & 0x1F));
2742 hw->mac.ops.write_vfta(hw, index, vfta);
2745 clear_bit(vid, adapter->active_vlans);
2751 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2752 * @adapter: board private structure to initialize
2754 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2756 struct net_device *netdev = adapter->netdev;
2757 struct e1000_hw *hw = &adapter->hw;
2760 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2761 /* disable VLAN receive filtering */
2763 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2766 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2767 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2768 adapter->mng_vlan_id);
2769 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2775 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2776 * @adapter: board private structure to initialize
2778 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2780 struct e1000_hw *hw = &adapter->hw;
2783 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2784 /* enable VLAN receive filtering */
2786 rctl |= E1000_RCTL_VFE;
2787 rctl &= ~E1000_RCTL_CFIEN;
2793 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2794 * @adapter: board private structure to initialize
2796 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2798 struct e1000_hw *hw = &adapter->hw;
2801 /* disable VLAN tag insert/strip */
2803 ctrl &= ~E1000_CTRL_VME;
2808 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2809 * @adapter: board private structure to initialize
2811 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2813 struct e1000_hw *hw = &adapter->hw;
2816 /* enable VLAN tag insert/strip */
2818 ctrl |= E1000_CTRL_VME;
2822 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2824 struct net_device *netdev = adapter->netdev;
2825 u16 vid = adapter->hw.mng_cookie.vlan_id;
2826 u16 old_vid = adapter->mng_vlan_id;
2828 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2829 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2830 adapter->mng_vlan_id = vid;
2833 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2834 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2837 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2841 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2843 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2844 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2847 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2849 struct e1000_hw *hw = &adapter->hw;
2850 u32 manc, manc2h, mdef, i, j;
2852 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2857 /* enable receiving management packets to the host. this will probably
2858 * generate destination unreachable messages from the host OS, but
2859 * the packets will be handled on SMBUS
2861 manc |= E1000_MANC_EN_MNG2HOST;
2862 manc2h = er32(MANC2H);
2864 switch (hw->mac.type) {
2866 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2870 /* Check if IPMI pass-through decision filter already exists;
2873 for (i = 0, j = 0; i < 8; i++) {
2874 mdef = er32(MDEF(i));
2876 /* Ignore filters with anything other than IPMI ports */
2877 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2880 /* Enable this decision filter in MANC2H */
2887 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2890 /* Create new decision filter in an empty filter */
2891 for (i = 0, j = 0; i < 8; i++)
2892 if (er32(MDEF(i)) == 0) {
2893 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2894 E1000_MDEF_PORT_664));
2901 e_warn("Unable to create IPMI pass-through filter\n");
2905 ew32(MANC2H, manc2h);
2910 * e1000_configure_tx - Configure Transmit Unit after Reset
2911 * @adapter: board private structure
2913 * Configure the Tx unit of the MAC after a reset.
2915 static void e1000_configure_tx(struct e1000_adapter *adapter)
2917 struct e1000_hw *hw = &adapter->hw;
2918 struct e1000_ring *tx_ring = adapter->tx_ring;
2920 u32 tdlen, tctl, tarc;
2922 /* Setup the HW Tx Head and Tail descriptor pointers */
2923 tdba = tx_ring->dma;
2924 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2925 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2926 ew32(TDBAH(0), (tdba >> 32));
2927 ew32(TDLEN(0), tdlen);
2930 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2931 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2933 writel(0, tx_ring->head);
2934 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2935 e1000e_update_tdt_wa(tx_ring, 0);
2937 writel(0, tx_ring->tail);
2939 /* Set the Tx Interrupt Delay register */
2940 ew32(TIDV, adapter->tx_int_delay);
2941 /* Tx irq moderation */
2942 ew32(TADV, adapter->tx_abs_int_delay);
2944 if (adapter->flags2 & FLAG2_DMA_BURST) {
2945 u32 txdctl = er32(TXDCTL(0));
2947 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2948 E1000_TXDCTL_WTHRESH);
2949 /* set up some performance related parameters to encourage the
2950 * hardware to use the bus more efficiently in bursts, depends
2951 * on the tx_int_delay to be enabled,
2952 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2953 * hthresh = 1 ==> prefetch when one or more available
2954 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2955 * BEWARE: this seems to work but should be considered first if
2956 * there are Tx hangs or other Tx related bugs
2958 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2959 ew32(TXDCTL(0), txdctl);
2961 /* erratum work around: set txdctl the same for both queues */
2962 ew32(TXDCTL(1), er32(TXDCTL(0)));
2964 /* Program the Transmit Control Register */
2966 tctl &= ~E1000_TCTL_CT;
2967 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2968 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2970 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2971 tarc = er32(TARC(0));
2972 /* set the speed mode bit, we'll clear it if we're not at
2973 * gigabit link later
2975 #define SPEED_MODE_BIT BIT(21)
2976 tarc |= SPEED_MODE_BIT;
2977 ew32(TARC(0), tarc);
2980 /* errata: program both queues to unweighted RR */
2981 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2982 tarc = er32(TARC(0));
2984 ew32(TARC(0), tarc);
2985 tarc = er32(TARC(1));
2987 ew32(TARC(1), tarc);
2990 /* Setup Transmit Descriptor Settings for eop descriptor */
2991 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2993 /* only set IDE if we are delaying interrupts using the timers */
2994 if (adapter->tx_int_delay)
2995 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2997 /* enable Report Status bit */
2998 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3002 hw->mac.ops.config_collision_dist(hw);
3004 /* SPT and KBL Si errata workaround to avoid data corruption */
3005 if (hw->mac.type == e1000_pch_spt) {
3008 reg_val = er32(IOSFPC);
3009 reg_val |= E1000_RCTL_RDMTS_HEX;
3010 ew32(IOSFPC, reg_val);
3012 reg_val = er32(TARC(0));
3013 /* SPT and KBL Si errata workaround to avoid Tx hang.
3014 * Dropping the number of outstanding requests from
3015 * 3 to 2 in order to avoid a buffer overrun.
3017 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3018 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3019 ew32(TARC(0), reg_val);
3023 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3024 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3027 * e1000_setup_rctl - configure the receive control registers
3028 * @adapter: Board private structure
3030 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3032 struct e1000_hw *hw = &adapter->hw;
3036 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3037 * If jumbo frames not set, program related MAC/PHY registers
3040 if (hw->mac.type >= e1000_pch2lan) {
3043 if (adapter->netdev->mtu > ETH_DATA_LEN)
3044 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3046 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3049 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3052 /* Program MC offset vector base */
3054 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3055 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3056 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3057 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3059 /* Do not Store bad packets */
3060 rctl &= ~E1000_RCTL_SBP;
3062 /* Enable Long Packet receive */
3063 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3064 rctl &= ~E1000_RCTL_LPE;
3066 rctl |= E1000_RCTL_LPE;
3068 /* Some systems expect that the CRC is included in SMBUS traffic. The
3069 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3070 * host memory when this is enabled
3072 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3073 rctl |= E1000_RCTL_SECRC;
3075 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3076 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3079 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3082 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3084 e1e_rphy(hw, 22, &phy_data);
3086 phy_data |= BIT(14);
3087 e1e_wphy(hw, 0x10, 0x2823);
3088 e1e_wphy(hw, 0x11, 0x0003);
3089 e1e_wphy(hw, 22, phy_data);
3092 /* Setup buffer sizes */
3093 rctl &= ~E1000_RCTL_SZ_4096;
3094 rctl |= E1000_RCTL_BSEX;
3095 switch (adapter->rx_buffer_len) {
3098 rctl |= E1000_RCTL_SZ_2048;
3099 rctl &= ~E1000_RCTL_BSEX;
3102 rctl |= E1000_RCTL_SZ_4096;
3105 rctl |= E1000_RCTL_SZ_8192;
3108 rctl |= E1000_RCTL_SZ_16384;
3112 /* Enable Extended Status in all Receive Descriptors */
3113 rfctl = er32(RFCTL);
3114 rfctl |= E1000_RFCTL_EXTEN;
3117 /* 82571 and greater support packet-split where the protocol
3118 * header is placed in skb->data and the packet data is
3119 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3120 * In the case of a non-split, skb->data is linearly filled,
3121 * followed by the page buffers. Therefore, skb->data is
3122 * sized to hold the largest protocol header.
3124 * allocations using alloc_page take too long for regular MTU
3125 * so only enable packet split for jumbo frames
3127 * Using pages when the page size is greater than 16k wastes
3128 * a lot of memory, since we allocate 3 pages at all times
3131 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3132 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3133 adapter->rx_ps_pages = pages;
3135 adapter->rx_ps_pages = 0;
3137 if (adapter->rx_ps_pages) {
3140 /* Enable Packet split descriptors */
3141 rctl |= E1000_RCTL_DTYP_PS;
3143 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3145 switch (adapter->rx_ps_pages) {
3147 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3150 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3153 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3157 ew32(PSRCTL, psrctl);
3160 /* This is useful for sniffing bad packets. */
3161 if (adapter->netdev->features & NETIF_F_RXALL) {
3162 /* UPE and MPE will be handled by normal PROMISC logic
3163 * in e1000e_set_rx_mode
3165 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3166 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3167 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3169 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3170 E1000_RCTL_DPF | /* Allow filtered pause */
3171 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3172 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3173 * and that breaks VLANs.
3178 /* just started the receive unit, no need to restart */
3179 adapter->flags &= ~FLAG_RESTART_NOW;
3183 * e1000_configure_rx - Configure Receive Unit after Reset
3184 * @adapter: board private structure
3186 * Configure the Rx unit of the MAC after a reset.
3188 static void e1000_configure_rx(struct e1000_adapter *adapter)
3190 struct e1000_hw *hw = &adapter->hw;
3191 struct e1000_ring *rx_ring = adapter->rx_ring;
3193 u32 rdlen, rctl, rxcsum, ctrl_ext;
3195 if (adapter->rx_ps_pages) {
3196 /* this is a 32 byte descriptor */
3197 rdlen = rx_ring->count *
3198 sizeof(union e1000_rx_desc_packet_split);
3199 adapter->clean_rx = e1000_clean_rx_irq_ps;
3200 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3201 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3202 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3203 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3204 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3206 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3207 adapter->clean_rx = e1000_clean_rx_irq;
3208 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3211 /* disable receives while setting up the descriptors */
3213 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3214 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3216 usleep_range(10000, 11000);
3218 if (adapter->flags2 & FLAG2_DMA_BURST) {
3219 /* set the writeback threshold (only takes effect if the RDTR
3220 * is set). set GRAN=1 and write back up to 0x4 worth, and
3221 * enable prefetching of 0x20 Rx descriptors
3227 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3228 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3231 /* set the Receive Delay Timer Register */
3232 ew32(RDTR, adapter->rx_int_delay);
3234 /* irq moderation */
3235 ew32(RADV, adapter->rx_abs_int_delay);
3236 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3237 e1000e_write_itr(adapter, adapter->itr);
3239 ctrl_ext = er32(CTRL_EXT);
3240 /* Auto-Mask interrupts upon ICR access */
3241 ctrl_ext |= E1000_CTRL_EXT_IAME;
3242 ew32(IAM, 0xffffffff);
3243 ew32(CTRL_EXT, ctrl_ext);
3246 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3247 * the Base and Length of the Rx Descriptor Ring
3249 rdba = rx_ring->dma;
3250 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3251 ew32(RDBAH(0), (rdba >> 32));
3252 ew32(RDLEN(0), rdlen);
3255 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3256 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3258 writel(0, rx_ring->head);
3259 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3260 e1000e_update_rdt_wa(rx_ring, 0);
3262 writel(0, rx_ring->tail);
3264 /* Enable Receive Checksum Offload for TCP and UDP */
3265 rxcsum = er32(RXCSUM);
3266 if (adapter->netdev->features & NETIF_F_RXCSUM)
3267 rxcsum |= E1000_RXCSUM_TUOFL;
3269 rxcsum &= ~E1000_RXCSUM_TUOFL;
3270 ew32(RXCSUM, rxcsum);
3272 /* With jumbo frames, excessive C-state transition latencies result
3273 * in dropped transactions.
3275 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3277 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3278 adapter->max_frame_size) * 8 / 1000;
3280 if (adapter->flags & FLAG_IS_ICH) {
3281 u32 rxdctl = er32(RXDCTL(0));
3283 ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3286 dev_info(&adapter->pdev->dev,
3287 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3288 cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3290 cpu_latency_qos_update_request(&adapter->pm_qos_req,
3291 PM_QOS_DEFAULT_VALUE);
3294 /* Enable Receives */
3299 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3300 * @netdev: network interface device structure
3302 * Writes multicast address list to the MTA hash table.
3303 * Returns: -ENOMEM on failure
3304 * 0 on no addresses written
3305 * X on writing X addresses to MTA
3307 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3309 struct e1000_adapter *adapter = netdev_priv(netdev);
3310 struct e1000_hw *hw = &adapter->hw;
3311 struct netdev_hw_addr *ha;
3315 if (netdev_mc_empty(netdev)) {
3316 /* nothing to program, so clear mc list */
3317 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3321 mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3325 /* update_mc_addr_list expects a packed array of only addresses. */
3327 netdev_for_each_mc_addr(ha, netdev)
3328 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3330 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3333 return netdev_mc_count(netdev);
3337 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3338 * @netdev: network interface device structure
3340 * Writes unicast address list to the RAR table.
3341 * Returns: -ENOMEM on failure/insufficient address space
3342 * 0 on no addresses written
3343 * X on writing X addresses to the RAR table
3345 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3347 struct e1000_adapter *adapter = netdev_priv(netdev);
3348 struct e1000_hw *hw = &adapter->hw;
3349 unsigned int rar_entries;
3352 rar_entries = hw->mac.ops.rar_get_count(hw);
3354 /* save a rar entry for our hardware address */
3357 /* save a rar entry for the LAA workaround */
3358 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3361 /* return ENOMEM indicating insufficient memory for addresses */
3362 if (netdev_uc_count(netdev) > rar_entries)
3365 if (!netdev_uc_empty(netdev) && rar_entries) {
3366 struct netdev_hw_addr *ha;
3368 /* write the addresses in reverse order to avoid write
3371 netdev_for_each_uc_addr(ha, netdev) {
3376 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3383 /* zero out the remaining RAR entries not used above */
3384 for (; rar_entries > 0; rar_entries--) {
3385 ew32(RAH(rar_entries), 0);
3386 ew32(RAL(rar_entries), 0);
3394 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3395 * @netdev: network interface device structure
3397 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3398 * address list or the network interface flags are updated. This routine is
3399 * responsible for configuring the hardware for proper unicast, multicast,
3400 * promiscuous mode, and all-multi behavior.
3402 static void e1000e_set_rx_mode(struct net_device *netdev)
3404 struct e1000_adapter *adapter = netdev_priv(netdev);
3405 struct e1000_hw *hw = &adapter->hw;
3408 if (pm_runtime_suspended(netdev->dev.parent))
3411 /* Check for Promiscuous and All Multicast modes */
3414 /* clear the affected bits */
3415 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3417 if (netdev->flags & IFF_PROMISC) {
3418 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3419 /* Do not hardware filter VLANs in promisc mode */
3420 e1000e_vlan_filter_disable(adapter);
3424 if (netdev->flags & IFF_ALLMULTI) {
3425 rctl |= E1000_RCTL_MPE;
3427 /* Write addresses to the MTA, if the attempt fails
3428 * then we should just turn on promiscuous mode so
3429 * that we can at least receive multicast traffic
3431 count = e1000e_write_mc_addr_list(netdev);
3433 rctl |= E1000_RCTL_MPE;
3435 e1000e_vlan_filter_enable(adapter);
3436 /* Write addresses to available RAR registers, if there is not
3437 * sufficient space to store all the addresses then enable
3438 * unicast promiscuous mode
3440 count = e1000e_write_uc_addr_list(netdev);
3442 rctl |= E1000_RCTL_UPE;
3447 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3448 e1000e_vlan_strip_enable(adapter);
3450 e1000e_vlan_strip_disable(adapter);
3453 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3455 struct e1000_hw *hw = &adapter->hw;
3460 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3461 for (i = 0; i < 10; i++)
3462 ew32(RSSRK(i), rss_key[i]);
3464 /* Direct all traffic to queue 0 */
3465 for (i = 0; i < 32; i++)
3468 /* Disable raw packet checksumming so that RSS hash is placed in
3469 * descriptor on writeback.
3471 rxcsum = er32(RXCSUM);
3472 rxcsum |= E1000_RXCSUM_PCSD;
3474 ew32(RXCSUM, rxcsum);
3476 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3477 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3478 E1000_MRQC_RSS_FIELD_IPV6 |
3479 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3480 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3486 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3487 * @adapter: board private structure
3488 * @timinca: pointer to returned time increment attributes
3490 * Get attributes for incrementing the System Time Register SYSTIML/H at
3491 * the default base frequency, and set the cyclecounter shift value.
3493 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3495 struct e1000_hw *hw = &adapter->hw;
3496 u32 incvalue, incperiod, shift;
3498 /* Make sure clock is enabled on I217/I218/I219 before checking
3501 if ((hw->mac.type >= e1000_pch_lpt) &&
3502 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3503 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3504 u32 fextnvm7 = er32(FEXTNVM7);
3506 if (!(fextnvm7 & BIT(0))) {
3507 ew32(FEXTNVM7, fextnvm7 | BIT(0));
3512 switch (hw->mac.type) {
3514 /* Stable 96MHz frequency */
3515 incperiod = INCPERIOD_96MHZ;
3516 incvalue = INCVALUE_96MHZ;
3517 shift = INCVALUE_SHIFT_96MHZ;
3518 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3521 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3522 /* Stable 96MHz frequency */
3523 incperiod = INCPERIOD_96MHZ;
3524 incvalue = INCVALUE_96MHZ;
3525 shift = INCVALUE_SHIFT_96MHZ;
3526 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3528 /* Stable 25MHz frequency */
3529 incperiod = INCPERIOD_25MHZ;
3530 incvalue = INCVALUE_25MHZ;
3531 shift = INCVALUE_SHIFT_25MHZ;
3532 adapter->cc.shift = shift;
3536 /* Stable 24MHz frequency */
3537 incperiod = INCPERIOD_24MHZ;
3538 incvalue = INCVALUE_24MHZ;
3539 shift = INCVALUE_SHIFT_24MHZ;
3540 adapter->cc.shift = shift;
3548 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3549 /* Stable 24MHz frequency */
3550 incperiod = INCPERIOD_24MHZ;
3551 incvalue = INCVALUE_24MHZ;
3552 shift = INCVALUE_SHIFT_24MHZ;
3553 adapter->cc.shift = shift;
3555 /* Stable 38400KHz frequency */
3556 incperiod = INCPERIOD_38400KHZ;
3557 incvalue = INCVALUE_38400KHZ;
3558 shift = INCVALUE_SHIFT_38400KHZ;
3559 adapter->cc.shift = shift;
3564 /* Stable 25MHz frequency */
3565 incperiod = INCPERIOD_25MHZ;
3566 incvalue = INCVALUE_25MHZ;
3567 shift = INCVALUE_SHIFT_25MHZ;
3568 adapter->cc.shift = shift;
3574 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3575 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3581 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3582 * @adapter: board private structure
3583 * @config: timestamp configuration
3585 * Outgoing time stamping can be enabled and disabled. Play nice and
3586 * disable it when requested, although it shouldn't cause any overhead
3587 * when no packet needs it. At most one packet in the queue may be
3588 * marked for time stamping, otherwise it would be impossible to tell
3589 * for sure to which packet the hardware time stamp belongs.
3591 * Incoming time stamping has to be configured via the hardware filters.
3592 * Not all combinations are supported, in particular event type has to be
3593 * specified. Matching the kind of event packet is not supported, with the
3594 * exception of "all V2 events regardless of level 2 or 4".
3596 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3597 struct hwtstamp_config *config)
3599 struct e1000_hw *hw = &adapter->hw;
3600 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3601 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3608 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3611 switch (config->tx_type) {
3612 case HWTSTAMP_TX_OFF:
3615 case HWTSTAMP_TX_ON:
3621 switch (config->rx_filter) {
3622 case HWTSTAMP_FILTER_NONE:
3625 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3626 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3627 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3630 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3631 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3632 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3635 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3636 /* Also time stamps V2 L2 Path Delay Request/Response */
3637 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3638 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3641 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3642 /* Also time stamps V2 L2 Path Delay Request/Response. */
3643 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3644 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3647 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3648 /* Hardware cannot filter just V2 L4 Sync messages */
3650 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3651 /* Also time stamps V2 Path Delay Request/Response. */
3652 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3653 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3657 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3658 /* Hardware cannot filter just V2 L4 Delay Request messages */
3660 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3661 /* Also time stamps V2 Path Delay Request/Response. */
3662 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3663 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3667 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3668 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3669 /* Hardware cannot filter just V2 L4 or L2 Event messages */
3671 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3672 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3673 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3677 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3678 /* For V1, the hardware can only filter Sync messages or
3679 * Delay Request messages but not both so fall-through to
3680 * time stamp all packets.
3683 case HWTSTAMP_FILTER_NTP_ALL:
3684 case HWTSTAMP_FILTER_ALL:
3687 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3688 config->rx_filter = HWTSTAMP_FILTER_ALL;
3694 adapter->hwtstamp_config = *config;
3696 /* enable/disable Tx h/w time stamping */
3697 regval = er32(TSYNCTXCTL);
3698 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3699 regval |= tsync_tx_ctl;
3700 ew32(TSYNCTXCTL, regval);
3701 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3702 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3703 e_err("Timesync Tx Control register not set as expected\n");
3707 /* enable/disable Rx h/w time stamping */
3708 regval = er32(TSYNCRXCTL);
3709 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3710 regval |= tsync_rx_ctl;
3711 ew32(TSYNCRXCTL, regval);
3712 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3713 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3714 (regval & (E1000_TSYNCRXCTL_ENABLED |
3715 E1000_TSYNCRXCTL_TYPE_MASK))) {
3716 e_err("Timesync Rx Control register not set as expected\n");
3720 /* L2: define ethertype filter for time stamped packets */
3722 rxmtrl |= ETH_P_1588;
3724 /* define which PTP packets get time stamped */
3725 ew32(RXMTRL, rxmtrl);
3727 /* Filter by destination port */
3729 rxudp = PTP_EV_PORT;
3730 cpu_to_be16s(&rxudp);
3736 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3744 * e1000_configure - configure the hardware for Rx and Tx
3745 * @adapter: private board structure
3747 static void e1000_configure(struct e1000_adapter *adapter)
3749 struct e1000_ring *rx_ring = adapter->rx_ring;
3751 e1000e_set_rx_mode(adapter->netdev);
3753 e1000_restore_vlan(adapter);
3754 e1000_init_manageability_pt(adapter);
3756 e1000_configure_tx(adapter);
3758 if (adapter->netdev->features & NETIF_F_RXHASH)
3759 e1000e_setup_rss_hash(adapter);
3760 e1000_setup_rctl(adapter);
3761 e1000_configure_rx(adapter);
3762 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3766 * e1000e_power_up_phy - restore link in case the phy was powered down
3767 * @adapter: address of board private structure
3769 * The phy may be powered down to save power and turn off link when the
3770 * driver is unloaded and wake on lan is not enabled (among others)
3771 * *** this routine MUST be followed by a call to e1000e_reset ***
3773 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3775 if (adapter->hw.phy.ops.power_up)
3776 adapter->hw.phy.ops.power_up(&adapter->hw);
3778 adapter->hw.mac.ops.setup_link(&adapter->hw);
3782 * e1000_power_down_phy - Power down the PHY
3783 * @adapter: board private structure
3785 * Power down the PHY so no link is implied when interface is down.
3786 * The PHY cannot be powered down if management or WoL is active.
3788 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3790 if (adapter->hw.phy.ops.power_down)
3791 adapter->hw.phy.ops.power_down(&adapter->hw);
3795 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3796 * @adapter: board private structure
3798 * We want to clear all pending descriptors from the TX ring.
3799 * zeroing happens when the HW reads the regs. We assign the ring itself as
3800 * the data of the next descriptor. We don't care about the data we are about
3803 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3805 struct e1000_hw *hw = &adapter->hw;
3806 struct e1000_ring *tx_ring = adapter->tx_ring;
3807 struct e1000_tx_desc *tx_desc = NULL;
3808 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3812 ew32(TCTL, tctl | E1000_TCTL_EN);
3814 BUG_ON(tdt != tx_ring->next_to_use);
3815 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3816 tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3818 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3819 tx_desc->upper.data = 0;
3820 /* flush descriptors to memory before notifying the HW */
3822 tx_ring->next_to_use++;
3823 if (tx_ring->next_to_use == tx_ring->count)
3824 tx_ring->next_to_use = 0;
3825 ew32(TDT(0), tx_ring->next_to_use);
3826 usleep_range(200, 250);
3830 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3831 * @adapter: board private structure
3833 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3835 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3838 struct e1000_hw *hw = &adapter->hw;
3841 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3843 usleep_range(100, 150);
3845 rxdctl = er32(RXDCTL(0));
3846 /* zero the lower 14 bits (prefetch and host thresholds) */
3847 rxdctl &= 0xffffc000;
3849 /* update thresholds: prefetch threshold to 31, host threshold to 1
3850 * and make sure the granularity is "descriptors" and not "cache lines"
3852 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3854 ew32(RXDCTL(0), rxdctl);
3855 /* momentarily enable the RX ring for the changes to take effect */
3856 ew32(RCTL, rctl | E1000_RCTL_EN);
3858 usleep_range(100, 150);
3859 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3863 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3864 * @adapter: board private structure
3866 * In i219, the descriptor rings must be emptied before resetting the HW
3867 * or before changing the device state to D3 during runtime (runtime PM).
3869 * Failure to do this will cause the HW to enter a unit hang state which can
3870 * only be released by PCI reset on the device
3874 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3877 u32 fext_nvm11, tdlen;
3878 struct e1000_hw *hw = &adapter->hw;
3880 /* First, disable MULR fix in FEXTNVM11 */
3881 fext_nvm11 = er32(FEXTNVM11);
3882 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3883 ew32(FEXTNVM11, fext_nvm11);
3884 /* do nothing if we're not in faulty state, or if the queue is empty */
3885 tdlen = er32(TDLEN(0));
3886 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3888 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3890 e1000_flush_tx_ring(adapter);
3891 /* recheck, maybe the fault is caused by the rx ring */
3892 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3894 if (hang_state & FLUSH_DESC_REQUIRED)
3895 e1000_flush_rx_ring(adapter);
3899 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3900 * @adapter: board private structure
3902 * When the MAC is reset, all hardware bits for timesync will be reset to the
3903 * default values. This function will restore the settings last in place.
3904 * Since the clock SYSTIME registers are reset, we will simply restore the
3905 * cyclecounter to the kernel real clock time.
3907 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3909 struct ptp_clock_info *info = &adapter->ptp_clock_info;
3910 struct e1000_hw *hw = &adapter->hw;
3911 unsigned long flags;
3915 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3918 if (info->adjfine) {
3919 /* restore the previous ptp frequency delta */
3920 ret_val = info->adjfine(info, adapter->ptp_delta);
3922 /* set the default base frequency if no adjustment possible */
3923 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3925 ew32(TIMINCA, timinca);
3929 dev_warn(&adapter->pdev->dev,
3930 "Failed to restore TIMINCA clock rate delta: %d\n",
3935 /* reset the systim ns time counter */
3936 spin_lock_irqsave(&adapter->systim_lock, flags);
3937 timecounter_init(&adapter->tc, &adapter->cc,
3938 ktime_to_ns(ktime_get_real()));
3939 spin_unlock_irqrestore(&adapter->systim_lock, flags);
3941 /* restore the previous hwtstamp configuration settings */
3942 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3946 * e1000e_reset - bring the hardware into a known good state
3947 * @adapter: board private structure
3949 * This function boots the hardware and enables some settings that
3950 * require a configuration cycle of the hardware - those cannot be
3951 * set/changed during runtime. After reset the device needs to be
3952 * properly configured for Rx, Tx etc.
3954 void e1000e_reset(struct e1000_adapter *adapter)
3956 struct e1000_mac_info *mac = &adapter->hw.mac;
3957 struct e1000_fc_info *fc = &adapter->hw.fc;
3958 struct e1000_hw *hw = &adapter->hw;
3959 u32 tx_space, min_tx_space, min_rx_space;
3960 u32 pba = adapter->pba;
3963 /* reset Packet Buffer Allocation to default */
3966 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3967 /* To maintain wire speed transmits, the Tx FIFO should be
3968 * large enough to accommodate two full transmit packets,
3969 * rounded up to the next 1KB and expressed in KB. Likewise,
3970 * the Rx FIFO should be large enough to accommodate at least
3971 * one full receive packet and is similarly rounded up and
3975 /* upper 16 bits has Tx packet buffer allocation size in KB */
3976 tx_space = pba >> 16;
3977 /* lower 16 bits has Rx packet buffer allocation size in KB */
3979 /* the Tx fifo also stores 16 bytes of information about the Tx
3980 * but don't include ethernet FCS because hardware appends it
3982 min_tx_space = (adapter->max_frame_size +
3983 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3984 min_tx_space = ALIGN(min_tx_space, 1024);
3985 min_tx_space >>= 10;
3986 /* software strips receive CRC, so leave room for it */
3987 min_rx_space = adapter->max_frame_size;
3988 min_rx_space = ALIGN(min_rx_space, 1024);
3989 min_rx_space >>= 10;
3991 /* If current Tx allocation is less than the min Tx FIFO size,
3992 * and the min Tx FIFO size is less than the current Rx FIFO
3993 * allocation, take space away from current Rx allocation
3995 if ((tx_space < min_tx_space) &&
3996 ((min_tx_space - tx_space) < pba)) {
3997 pba -= min_tx_space - tx_space;
3999 /* if short on Rx space, Rx wins and must trump Tx
4002 if (pba < min_rx_space)
4009 /* flow control settings
4011 * The high water mark must be low enough to fit one full frame
4012 * (or the size used for early receive) above it in the Rx FIFO.
4013 * Set it to the lower of:
4014 * - 90% of the Rx FIFO size, and
4015 * - the full Rx FIFO size minus one full frame
4017 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4018 fc->pause_time = 0xFFFF;
4020 fc->pause_time = E1000_FC_PAUSE_TIME;
4021 fc->send_xon = true;
4022 fc->current_mode = fc->requested_mode;
4024 switch (hw->mac.type) {
4026 case e1000_ich10lan:
4027 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4030 fc->high_water = 0x2800;
4031 fc->low_water = fc->high_water - 8;
4036 hwm = min(((pba << 10) * 9 / 10),
4037 ((pba << 10) - adapter->max_frame_size));
4039 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4040 fc->low_water = fc->high_water - 8;
4043 /* Workaround PCH LOM adapter hangs with certain network
4044 * loads. If hangs persist, try disabling Tx flow control.
4046 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4047 fc->high_water = 0x3500;
4048 fc->low_water = 0x1500;
4050 fc->high_water = 0x5000;
4051 fc->low_water = 0x3000;
4053 fc->refresh_time = 0x1000;
4064 fc->refresh_time = 0xFFFF;
4065 fc->pause_time = 0xFFFF;
4067 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4068 fc->high_water = 0x05C20;
4069 fc->low_water = 0x05048;
4075 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4076 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4080 /* Alignment of Tx data is on an arbitrary byte boundary with the
4081 * maximum size per Tx descriptor limited only to the transmit
4082 * allocation of the packet buffer minus 96 bytes with an upper
4083 * limit of 24KB due to receive synchronization limitations.
4085 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4088 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4089 * fit in receive buffer.
4091 if (adapter->itr_setting & 0x3) {
4092 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4093 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4094 dev_info(&adapter->pdev->dev,
4095 "Interrupt Throttle Rate off\n");
4096 adapter->flags2 |= FLAG2_DISABLE_AIM;
4097 e1000e_write_itr(adapter, 0);
4099 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4100 dev_info(&adapter->pdev->dev,
4101 "Interrupt Throttle Rate on\n");
4102 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4103 adapter->itr = 20000;
4104 e1000e_write_itr(adapter, adapter->itr);
4108 if (hw->mac.type >= e1000_pch_spt)
4109 e1000_flush_desc_rings(adapter);
4110 /* Allow time for pending master requests to run */
4111 mac->ops.reset_hw(hw);
4113 /* For parts with AMT enabled, let the firmware know
4114 * that the network interface is in control
4116 if (adapter->flags & FLAG_HAS_AMT)
4117 e1000e_get_hw_control(adapter);
4121 if (mac->ops.init_hw(hw))
4122 e_err("Hardware Error\n");
4124 e1000_update_mng_vlan(adapter);
4126 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4127 ew32(VET, ETH_P_8021Q);
4129 e1000e_reset_adaptive(hw);
4131 /* restore systim and hwtstamp settings */
4132 e1000e_systim_reset(adapter);
4134 /* Set EEE advertisement as appropriate */
4135 if (adapter->flags2 & FLAG2_HAS_EEE) {
4139 switch (hw->phy.type) {
4140 case e1000_phy_82579:
4141 adv_addr = I82579_EEE_ADVERTISEMENT;
4143 case e1000_phy_i217:
4144 adv_addr = I217_EEE_ADVERTISEMENT;
4147 dev_err(&adapter->pdev->dev,
4148 "Invalid PHY type setting EEE advertisement\n");
4152 ret_val = hw->phy.ops.acquire(hw);
4154 dev_err(&adapter->pdev->dev,
4155 "EEE advertisement - unable to acquire PHY\n");
4159 e1000_write_emi_reg_locked(hw, adv_addr,
4160 hw->dev_spec.ich8lan.eee_disable ?
4161 0 : adapter->eee_advert);
4163 hw->phy.ops.release(hw);
4166 if (!netif_running(adapter->netdev) &&
4167 !test_bit(__E1000_TESTING, &adapter->state))
4168 e1000_power_down_phy(adapter);
4170 e1000_get_phy_info(hw);
4172 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4173 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4175 /* speed up time to link by disabling smart power down, ignore
4176 * the return value of this function because there is nothing
4177 * different we would do if it failed
4179 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4180 phy_data &= ~IGP02E1000_PM_SPD;
4181 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4183 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4186 /* Fextnvm7 @ 0xe4[2] = 1 */
4187 reg = er32(FEXTNVM7);
4188 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4189 ew32(FEXTNVM7, reg);
4190 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4191 reg = er32(FEXTNVM9);
4192 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4193 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4194 ew32(FEXTNVM9, reg);
4200 * e1000e_trigger_lsc - trigger an LSC interrupt
4203 * Fire a link status change interrupt to start the watchdog.
4205 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4207 struct e1000_hw *hw = &adapter->hw;
4209 if (adapter->msix_entries)
4210 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4212 ew32(ICS, E1000_ICS_LSC);
4215 void e1000e_up(struct e1000_adapter *adapter)
4217 /* hardware has been reset, we need to reload some things */
4218 e1000_configure(adapter);
4220 clear_bit(__E1000_DOWN, &adapter->state);
4222 if (adapter->msix_entries)
4223 e1000_configure_msix(adapter);
4224 e1000_irq_enable(adapter);
4226 /* Tx queue started by watchdog timer when link is up */
4228 e1000e_trigger_lsc(adapter);
4231 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4233 struct e1000_hw *hw = &adapter->hw;
4235 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4238 /* flush pending descriptor writebacks to memory */
4239 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4240 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4242 /* execute the writes immediately */
4245 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4246 * write is successful
4248 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4249 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4251 /* execute the writes immediately */
4255 static void e1000e_update_stats(struct e1000_adapter *adapter);
4258 * e1000e_down - quiesce the device and optionally reset the hardware
4259 * @adapter: board private structure
4260 * @reset: boolean flag to reset the hardware or not
4262 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4264 struct net_device *netdev = adapter->netdev;
4265 struct e1000_hw *hw = &adapter->hw;
4268 /* signal that we're down so the interrupt handler does not
4269 * reschedule our watchdog timer
4271 set_bit(__E1000_DOWN, &adapter->state);
4273 netif_carrier_off(netdev);
4275 /* disable receives in the hardware */
4277 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4278 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4279 /* flush and sleep below */
4281 netif_stop_queue(netdev);
4283 /* disable transmits in the hardware */
4285 tctl &= ~E1000_TCTL_EN;
4288 /* flush both disables and wait for them to finish */
4290 usleep_range(10000, 11000);
4292 e1000_irq_disable(adapter);
4294 napi_synchronize(&adapter->napi);
4296 del_timer_sync(&adapter->watchdog_timer);
4297 del_timer_sync(&adapter->phy_info_timer);
4299 spin_lock(&adapter->stats64_lock);
4300 e1000e_update_stats(adapter);
4301 spin_unlock(&adapter->stats64_lock);
4303 e1000e_flush_descriptors(adapter);
4305 adapter->link_speed = 0;
4306 adapter->link_duplex = 0;
4308 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4309 if ((hw->mac.type >= e1000_pch2lan) &&
4310 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4311 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4312 e_dbg("failed to disable jumbo frame workaround mode\n");
4314 if (!pci_channel_offline(adapter->pdev)) {
4316 e1000e_reset(adapter);
4317 else if (hw->mac.type >= e1000_pch_spt)
4318 e1000_flush_desc_rings(adapter);
4320 e1000_clean_tx_ring(adapter->tx_ring);
4321 e1000_clean_rx_ring(adapter->rx_ring);
4324 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4327 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4328 usleep_range(1000, 1100);
4329 e1000e_down(adapter, true);
4331 clear_bit(__E1000_RESETTING, &adapter->state);
4335 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4336 * @hw: pointer to the HW structure
4337 * @systim: PHC time value read, sanitized and returned
4338 * @sts: structure to hold system time before and after reading SYSTIML,
4341 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4342 * check to see that the time is incrementing at a reasonable
4343 * rate and is a multiple of incvalue.
4345 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4346 struct ptp_system_timestamp *sts)
4348 u64 time_delta, rem, temp;
4353 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4354 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4355 /* latch SYSTIMH on read of SYSTIML */
4356 ptp_read_system_prets(sts);
4357 systim_next = (u64)er32(SYSTIML);
4358 ptp_read_system_postts(sts);
4359 systim_next |= (u64)er32(SYSTIMH) << 32;
4361 time_delta = systim_next - systim;
4363 /* VMWare users have seen incvalue of zero, don't div / 0 */
4364 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4366 systim = systim_next;
4368 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4376 * e1000e_read_systim - read SYSTIM register
4377 * @adapter: board private structure
4378 * @sts: structure which will contain system time before and after reading
4379 * SYSTIML, may be NULL
4381 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4382 struct ptp_system_timestamp *sts)
4384 struct e1000_hw *hw = &adapter->hw;
4385 u32 systimel, systimel_2, systimeh;
4387 /* SYSTIMH latching upon SYSTIML read does not work well.
4388 * This means that if SYSTIML overflows after we read it but before
4389 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4390 * will experience a huge non linear increment in the systime value
4391 * to fix that we test for overflow and if true, we re-read systime.
4393 ptp_read_system_prets(sts);
4394 systimel = er32(SYSTIML);
4395 ptp_read_system_postts(sts);
4396 systimeh = er32(SYSTIMH);
4397 /* Is systimel is so large that overflow is possible? */
4398 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4399 ptp_read_system_prets(sts);
4400 systimel_2 = er32(SYSTIML);
4401 ptp_read_system_postts(sts);
4402 if (systimel > systimel_2) {
4403 /* There was an overflow, read again SYSTIMH, and use
4406 systimeh = er32(SYSTIMH);
4407 systimel = systimel_2;
4410 systim = (u64)systimel;
4411 systim |= (u64)systimeh << 32;
4413 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4414 systim = e1000e_sanitize_systim(hw, systim, sts);
4420 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4421 * @cc: cyclecounter structure
4423 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4425 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4428 return e1000e_read_systim(adapter, NULL);
4432 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4433 * @adapter: board private structure to initialize
4435 * e1000_sw_init initializes the Adapter private data structure.
4436 * Fields are initialized based on PCI device information and
4437 * OS network device settings (MTU size).
4439 static int e1000_sw_init(struct e1000_adapter *adapter)
4441 struct net_device *netdev = adapter->netdev;
4443 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4444 adapter->rx_ps_bsize0 = 128;
4445 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4446 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4447 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4448 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4450 spin_lock_init(&adapter->stats64_lock);
4452 e1000e_set_interrupt_capability(adapter);
4454 if (e1000_alloc_queues(adapter))
4457 /* Setup hardware time stamping cyclecounter */
4458 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4459 adapter->cc.read = e1000e_cyclecounter_read;
4460 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4461 adapter->cc.mult = 1;
4462 /* cc.shift set in e1000e_get_base_tininca() */
4464 spin_lock_init(&adapter->systim_lock);
4465 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4468 /* Explicitly disable IRQ since the NIC can be in any state. */
4469 e1000_irq_disable(adapter);
4471 set_bit(__E1000_DOWN, &adapter->state);
4476 * e1000_intr_msi_test - Interrupt Handler
4477 * @irq: interrupt number
4478 * @data: pointer to a network interface device structure
4480 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4482 struct net_device *netdev = data;
4483 struct e1000_adapter *adapter = netdev_priv(netdev);
4484 struct e1000_hw *hw = &adapter->hw;
4485 u32 icr = er32(ICR);
4487 e_dbg("icr is %08X\n", icr);
4488 if (icr & E1000_ICR_RXSEQ) {
4489 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4490 /* Force memory writes to complete before acknowledging the
4491 * interrupt is handled.
4500 * e1000_test_msi_interrupt - Returns 0 for successful test
4501 * @adapter: board private struct
4503 * code flow taken from tg3.c
4505 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4507 struct net_device *netdev = adapter->netdev;
4508 struct e1000_hw *hw = &adapter->hw;
4511 /* poll_enable hasn't been called yet, so don't need disable */
4512 /* clear any pending events */
4515 /* free the real vector and request a test handler */
4516 e1000_free_irq(adapter);
4517 e1000e_reset_interrupt_capability(adapter);
4519 /* Assume that the test fails, if it succeeds then the test
4520 * MSI irq handler will unset this flag
4522 adapter->flags |= FLAG_MSI_TEST_FAILED;
4524 err = pci_enable_msi(adapter->pdev);
4526 goto msi_test_failed;
4528 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4529 netdev->name, netdev);
4531 pci_disable_msi(adapter->pdev);
4532 goto msi_test_failed;
4535 /* Force memory writes to complete before enabling and firing an
4540 e1000_irq_enable(adapter);
4542 /* fire an unusual interrupt on the test handler */
4543 ew32(ICS, E1000_ICS_RXSEQ);
4547 e1000_irq_disable(adapter);
4549 rmb(); /* read flags after interrupt has been fired */
4551 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4552 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4553 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4555 e_dbg("MSI interrupt test succeeded!\n");
4558 free_irq(adapter->pdev->irq, netdev);
4559 pci_disable_msi(adapter->pdev);
4562 e1000e_set_interrupt_capability(adapter);
4563 return e1000_request_irq(adapter);
4567 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4568 * @adapter: board private struct
4570 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4572 static int e1000_test_msi(struct e1000_adapter *adapter)
4577 if (!(adapter->flags & FLAG_MSI_ENABLED))
4580 /* disable SERR in case the MSI write causes a master abort */
4581 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4582 if (pci_cmd & PCI_COMMAND_SERR)
4583 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4584 pci_cmd & ~PCI_COMMAND_SERR);
4586 err = e1000_test_msi_interrupt(adapter);
4588 /* re-enable SERR */
4589 if (pci_cmd & PCI_COMMAND_SERR) {
4590 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4591 pci_cmd |= PCI_COMMAND_SERR;
4592 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4599 * e1000e_open - Called when a network interface is made active
4600 * @netdev: network interface device structure
4602 * Returns 0 on success, negative value on failure
4604 * The open entry point is called when a network interface is made
4605 * active by the system (IFF_UP). At this point all resources needed
4606 * for transmit and receive operations are allocated, the interrupt
4607 * handler is registered with the OS, the watchdog timer is started,
4608 * and the stack is notified that the interface is ready.
4610 int e1000e_open(struct net_device *netdev)
4612 struct e1000_adapter *adapter = netdev_priv(netdev);
4613 struct e1000_hw *hw = &adapter->hw;
4614 struct pci_dev *pdev = adapter->pdev;
4617 /* disallow open during test */
4618 if (test_bit(__E1000_TESTING, &adapter->state))
4621 pm_runtime_get_sync(&pdev->dev);
4623 netif_carrier_off(netdev);
4624 netif_stop_queue(netdev);
4626 /* allocate transmit descriptors */
4627 err = e1000e_setup_tx_resources(adapter->tx_ring);
4631 /* allocate receive descriptors */
4632 err = e1000e_setup_rx_resources(adapter->rx_ring);
4636 /* If AMT is enabled, let the firmware know that the network
4637 * interface is now open and reset the part to a known state.
4639 if (adapter->flags & FLAG_HAS_AMT) {
4640 e1000e_get_hw_control(adapter);
4641 e1000e_reset(adapter);
4644 e1000e_power_up_phy(adapter);
4646 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4647 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4648 e1000_update_mng_vlan(adapter);
4650 /* DMA latency requirement to workaround jumbo issue */
4651 cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4653 /* before we allocate an interrupt, we must be ready to handle it.
4654 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4655 * as soon as we call pci_request_irq, so we have to setup our
4656 * clean_rx handler before we do so.
4658 e1000_configure(adapter);
4660 err = e1000_request_irq(adapter);
4664 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4665 * ignore e1000e MSI messages, which means we need to test our MSI
4668 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4669 err = e1000_test_msi(adapter);
4671 e_err("Interrupt allocation failed\n");
4676 /* From here on the code is the same as e1000e_up() */
4677 clear_bit(__E1000_DOWN, &adapter->state);
4679 napi_enable(&adapter->napi);
4681 e1000_irq_enable(adapter);
4683 adapter->tx_hang_recheck = false;
4685 hw->mac.get_link_status = true;
4686 pm_runtime_put(&pdev->dev);
4688 e1000e_trigger_lsc(adapter);
4693 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4694 e1000e_release_hw_control(adapter);
4695 e1000_power_down_phy(adapter);
4696 e1000e_free_rx_resources(adapter->rx_ring);
4698 e1000e_free_tx_resources(adapter->tx_ring);
4700 e1000e_reset(adapter);
4701 pm_runtime_put_sync(&pdev->dev);
4707 * e1000e_close - Disables a network interface
4708 * @netdev: network interface device structure
4710 * Returns 0, this is not allowed to fail
4712 * The close entry point is called when an interface is de-activated
4713 * by the OS. The hardware is still under the drivers control, but
4714 * needs to be disabled. A global MAC reset is issued to stop the
4715 * hardware, and all transmit and receive resources are freed.
4717 int e1000e_close(struct net_device *netdev)
4719 struct e1000_adapter *adapter = netdev_priv(netdev);
4720 struct pci_dev *pdev = adapter->pdev;
4721 int count = E1000_CHECK_RESET_COUNT;
4723 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4724 usleep_range(10000, 11000);
4726 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4728 pm_runtime_get_sync(&pdev->dev);
4730 if (netif_device_present(netdev)) {
4731 e1000e_down(adapter, true);
4732 e1000_free_irq(adapter);
4734 /* Link status message must follow this format */
4735 netdev_info(netdev, "NIC Link is Down\n");
4738 napi_disable(&adapter->napi);
4740 e1000e_free_tx_resources(adapter->tx_ring);
4741 e1000e_free_rx_resources(adapter->rx_ring);
4743 /* kill manageability vlan ID if supported, but not if a vlan with
4744 * the same ID is registered on the host OS (let 8021q kill it)
4746 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4747 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4748 adapter->mng_vlan_id);
4750 /* If AMT is enabled, let the firmware know that the network
4751 * interface is now closed
4753 if ((adapter->flags & FLAG_HAS_AMT) &&
4754 !test_bit(__E1000_TESTING, &adapter->state))
4755 e1000e_release_hw_control(adapter);
4757 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4759 pm_runtime_put_sync(&pdev->dev);
4765 * e1000_set_mac - Change the Ethernet Address of the NIC
4766 * @netdev: network interface device structure
4767 * @p: pointer to an address structure
4769 * Returns 0 on success, negative on failure
4771 static int e1000_set_mac(struct net_device *netdev, void *p)
4773 struct e1000_adapter *adapter = netdev_priv(netdev);
4774 struct e1000_hw *hw = &adapter->hw;
4775 struct sockaddr *addr = p;
4777 if (!is_valid_ether_addr(addr->sa_data))
4778 return -EADDRNOTAVAIL;
4780 eth_hw_addr_set(netdev, addr->sa_data);
4781 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4783 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4785 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4786 /* activate the work around */
4787 e1000e_set_laa_state_82571(&adapter->hw, 1);
4789 /* Hold a copy of the LAA in RAR[14] This is done so that
4790 * between the time RAR[0] gets clobbered and the time it
4791 * gets fixed (in e1000_watchdog), the actual LAA is in one
4792 * of the RARs and no incoming packets directed to this port
4793 * are dropped. Eventually the LAA will be in RAR[0] and
4796 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4797 adapter->hw.mac.rar_entry_count - 1);
4804 * e1000e_update_phy_task - work thread to update phy
4805 * @work: pointer to our work struct
4807 * this worker thread exists because we must acquire a
4808 * semaphore to read the phy, which we could msleep while
4809 * waiting for it, and we can't msleep in a timer.
4811 static void e1000e_update_phy_task(struct work_struct *work)
4813 struct e1000_adapter *adapter = container_of(work,
4814 struct e1000_adapter,
4816 struct e1000_hw *hw = &adapter->hw;
4818 if (test_bit(__E1000_DOWN, &adapter->state))
4821 e1000_get_phy_info(hw);
4823 /* Enable EEE on 82579 after link up */
4824 if (hw->phy.type >= e1000_phy_82579)
4825 e1000_set_eee_pchlan(hw);
4829 * e1000_update_phy_info - timre call-back to update PHY info
4830 * @t: pointer to timer_list containing private info adapter
4832 * Need to wait a few seconds after link up to get diagnostic information from
4835 static void e1000_update_phy_info(struct timer_list *t)
4837 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4839 if (test_bit(__E1000_DOWN, &adapter->state))
4842 schedule_work(&adapter->update_phy_task);
4846 * e1000e_update_phy_stats - Update the PHY statistics counters
4847 * @adapter: board private structure
4849 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4851 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4853 struct e1000_hw *hw = &adapter->hw;
4857 ret_val = hw->phy.ops.acquire(hw);
4861 /* A page set is expensive so check if already on desired page.
4862 * If not, set to the page with the PHY status registers.
4865 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4869 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4870 ret_val = hw->phy.ops.set_page(hw,
4871 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4876 /* Single Collision Count */
4877 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4878 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4880 adapter->stats.scc += phy_data;
4882 /* Excessive Collision Count */
4883 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4884 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4886 adapter->stats.ecol += phy_data;
4888 /* Multiple Collision Count */
4889 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4890 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4892 adapter->stats.mcc += phy_data;
4894 /* Late Collision Count */
4895 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4896 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4898 adapter->stats.latecol += phy_data;
4900 /* Collision Count - also used for adaptive IFS */
4901 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4902 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4904 hw->mac.collision_delta = phy_data;
4907 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4908 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4910 adapter->stats.dc += phy_data;
4912 /* Transmit with no CRS */
4913 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4914 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4916 adapter->stats.tncrs += phy_data;
4919 hw->phy.ops.release(hw);
4923 * e1000e_update_stats - Update the board statistics counters
4924 * @adapter: board private structure
4926 static void e1000e_update_stats(struct e1000_adapter *adapter)
4928 struct net_device *netdev = adapter->netdev;
4929 struct e1000_hw *hw = &adapter->hw;
4930 struct pci_dev *pdev = adapter->pdev;
4932 /* Prevent stats update while adapter is being reset, or if the pci
4933 * connection is down.
4935 if (adapter->link_speed == 0)
4937 if (pci_channel_offline(pdev))
4940 adapter->stats.crcerrs += er32(CRCERRS);
4941 adapter->stats.gprc += er32(GPRC);
4942 adapter->stats.gorc += er32(GORCL);
4943 er32(GORCH); /* Clear gorc */
4944 adapter->stats.bprc += er32(BPRC);
4945 adapter->stats.mprc += er32(MPRC);
4946 adapter->stats.roc += er32(ROC);
4948 adapter->stats.mpc += er32(MPC);
4950 /* Half-duplex statistics */
4951 if (adapter->link_duplex == HALF_DUPLEX) {
4952 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4953 e1000e_update_phy_stats(adapter);
4955 adapter->stats.scc += er32(SCC);
4956 adapter->stats.ecol += er32(ECOL);
4957 adapter->stats.mcc += er32(MCC);
4958 adapter->stats.latecol += er32(LATECOL);
4959 adapter->stats.dc += er32(DC);
4961 hw->mac.collision_delta = er32(COLC);
4963 if ((hw->mac.type != e1000_82574) &&
4964 (hw->mac.type != e1000_82583))
4965 adapter->stats.tncrs += er32(TNCRS);
4967 adapter->stats.colc += hw->mac.collision_delta;
4970 adapter->stats.xonrxc += er32(XONRXC);
4971 adapter->stats.xontxc += er32(XONTXC);
4972 adapter->stats.xoffrxc += er32(XOFFRXC);
4973 adapter->stats.xofftxc += er32(XOFFTXC);
4974 adapter->stats.gptc += er32(GPTC);
4975 adapter->stats.gotc += er32(GOTCL);
4976 er32(GOTCH); /* Clear gotc */
4977 adapter->stats.rnbc += er32(RNBC);
4978 adapter->stats.ruc += er32(RUC);
4980 adapter->stats.mptc += er32(MPTC);
4981 adapter->stats.bptc += er32(BPTC);
4983 /* used for adaptive IFS */
4985 hw->mac.tx_packet_delta = er32(TPT);
4986 adapter->stats.tpt += hw->mac.tx_packet_delta;
4988 adapter->stats.algnerrc += er32(ALGNERRC);
4989 adapter->stats.rxerrc += er32(RXERRC);
4990 adapter->stats.cexterr += er32(CEXTERR);
4991 adapter->stats.tsctc += er32(TSCTC);
4992 adapter->stats.tsctfc += er32(TSCTFC);
4994 /* Fill out the OS statistics structure */
4995 netdev->stats.multicast = adapter->stats.mprc;
4996 netdev->stats.collisions = adapter->stats.colc;
5000 /* RLEC on some newer hardware can be incorrect so build
5001 * our own version based on RUC and ROC
5003 netdev->stats.rx_errors = adapter->stats.rxerrc +
5004 adapter->stats.crcerrs + adapter->stats.algnerrc +
5005 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5006 netdev->stats.rx_length_errors = adapter->stats.ruc +
5008 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5009 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5010 netdev->stats.rx_missed_errors = adapter->stats.mpc;
5013 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5014 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5015 netdev->stats.tx_window_errors = adapter->stats.latecol;
5016 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5018 /* Tx Dropped needs to be maintained elsewhere */
5020 /* Management Stats */
5021 adapter->stats.mgptc += er32(MGTPTC);
5022 adapter->stats.mgprc += er32(MGTPRC);
5023 adapter->stats.mgpdc += er32(MGTPDC);
5025 /* Correctable ECC Errors */
5026 if (hw->mac.type >= e1000_pch_lpt) {
5027 u32 pbeccsts = er32(PBECCSTS);
5029 adapter->corr_errors +=
5030 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5031 adapter->uncorr_errors +=
5032 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5033 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5038 * e1000_phy_read_status - Update the PHY register status snapshot
5039 * @adapter: board private structure
5041 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5043 struct e1000_hw *hw = &adapter->hw;
5044 struct e1000_phy_regs *phy = &adapter->phy_regs;
5046 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5047 (er32(STATUS) & E1000_STATUS_LU) &&
5048 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5051 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5052 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5053 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5054 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5055 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5056 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5057 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5058 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5060 e_warn("Error reading PHY register\n");
5062 /* Do not read PHY registers if link is not up
5063 * Set values to typical power-on defaults
5065 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5066 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5067 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5069 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5070 ADVERTISE_ALL | ADVERTISE_CSMA);
5072 phy->expansion = EXPANSION_ENABLENPAGE;
5073 phy->ctrl1000 = ADVERTISE_1000FULL;
5075 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5079 static void e1000_print_link_info(struct e1000_adapter *adapter)
5081 struct e1000_hw *hw = &adapter->hw;
5082 u32 ctrl = er32(CTRL);
5084 /* Link status message must follow this format for user tools */
5085 netdev_info(adapter->netdev,
5086 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5087 adapter->link_speed,
5088 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5089 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5090 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5091 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5094 static bool e1000e_has_link(struct e1000_adapter *adapter)
5096 struct e1000_hw *hw = &adapter->hw;
5097 bool link_active = false;
5100 /* get_link_status is set on LSC (link status) interrupt or
5101 * Rx sequence error interrupt. get_link_status will stay
5102 * true until the check_for_link establishes link
5103 * for copper adapters ONLY
5105 switch (hw->phy.media_type) {
5106 case e1000_media_type_copper:
5107 if (hw->mac.get_link_status) {
5108 ret_val = hw->mac.ops.check_for_link(hw);
5109 link_active = !hw->mac.get_link_status;
5114 case e1000_media_type_fiber:
5115 ret_val = hw->mac.ops.check_for_link(hw);
5116 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5118 case e1000_media_type_internal_serdes:
5119 ret_val = hw->mac.ops.check_for_link(hw);
5120 link_active = hw->mac.serdes_has_link;
5123 case e1000_media_type_unknown:
5127 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5128 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5129 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5130 e_info("Gigabit has been disabled, downgrading speed\n");
5136 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5138 /* make sure the receive unit is started */
5139 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5140 (adapter->flags & FLAG_RESTART_NOW)) {
5141 struct e1000_hw *hw = &adapter->hw;
5142 u32 rctl = er32(RCTL);
5144 ew32(RCTL, rctl | E1000_RCTL_EN);
5145 adapter->flags &= ~FLAG_RESTART_NOW;
5149 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5151 struct e1000_hw *hw = &adapter->hw;
5153 /* With 82574 controllers, PHY needs to be checked periodically
5154 * for hung state and reset, if two calls return true
5156 if (e1000_check_phy_82574(hw))
5157 adapter->phy_hang_count++;
5159 adapter->phy_hang_count = 0;
5161 if (adapter->phy_hang_count > 1) {
5162 adapter->phy_hang_count = 0;
5163 e_dbg("PHY appears hung - resetting\n");
5164 schedule_work(&adapter->reset_task);
5169 * e1000_watchdog - Timer Call-back
5170 * @t: pointer to timer_list containing private info adapter
5172 static void e1000_watchdog(struct timer_list *t)
5174 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5176 /* Do the rest outside of interrupt context */
5177 schedule_work(&adapter->watchdog_task);
5179 /* TODO: make this use queue_delayed_work() */
5182 static void e1000_watchdog_task(struct work_struct *work)
5184 struct e1000_adapter *adapter = container_of(work,
5185 struct e1000_adapter,
5187 struct net_device *netdev = adapter->netdev;
5188 struct e1000_mac_info *mac = &adapter->hw.mac;
5189 struct e1000_phy_info *phy = &adapter->hw.phy;
5190 struct e1000_ring *tx_ring = adapter->tx_ring;
5191 u32 dmoff_exit_timeout = 100, tries = 0;
5192 struct e1000_hw *hw = &adapter->hw;
5193 u32 link, tctl, pcim_state;
5195 if (test_bit(__E1000_DOWN, &adapter->state))
5198 link = e1000e_has_link(adapter);
5199 if ((netif_carrier_ok(netdev)) && link) {
5200 /* Cancel scheduled suspend requests. */
5201 pm_runtime_resume(netdev->dev.parent);
5203 e1000e_enable_receives(adapter);
5207 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5208 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5209 e1000_update_mng_vlan(adapter);
5212 if (!netif_carrier_ok(netdev)) {
5215 /* Cancel scheduled suspend requests. */
5216 pm_runtime_resume(netdev->dev.parent);
5218 /* Checking if MAC is in DMoff state*/
5219 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5220 pcim_state = er32(STATUS);
5221 while (pcim_state & E1000_STATUS_PCIM_STATE) {
5222 if (tries++ == dmoff_exit_timeout) {
5223 e_dbg("Error in exiting dmoff\n");
5226 usleep_range(10000, 20000);
5227 pcim_state = er32(STATUS);
5229 /* Checking if MAC exited DMoff state */
5230 if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5231 e1000_phy_hw_reset(&adapter->hw);
5235 /* update snapshot of PHY registers on LSC */
5236 e1000_phy_read_status(adapter);
5237 mac->ops.get_link_up_info(&adapter->hw,
5238 &adapter->link_speed,
5239 &adapter->link_duplex);
5240 e1000_print_link_info(adapter);
5242 /* check if SmartSpeed worked */
5243 e1000e_check_downshift(hw);
5244 if (phy->speed_downgraded)
5246 "Link Speed was downgraded by SmartSpeed\n");
5248 /* On supported PHYs, check for duplex mismatch only
5249 * if link has autonegotiated at 10/100 half
5251 if ((hw->phy.type == e1000_phy_igp_3 ||
5252 hw->phy.type == e1000_phy_bm) &&
5254 (adapter->link_speed == SPEED_10 ||
5255 adapter->link_speed == SPEED_100) &&
5256 (adapter->link_duplex == HALF_DUPLEX)) {
5259 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5261 if (!(autoneg_exp & EXPANSION_NWAY))
5262 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5265 /* adjust timeout factor according to speed/duplex */
5266 adapter->tx_timeout_factor = 1;
5267 switch (adapter->link_speed) {
5270 adapter->tx_timeout_factor = 16;
5274 adapter->tx_timeout_factor = 10;
5278 /* workaround: re-program speed mode bit after
5281 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5285 tarc0 = er32(TARC(0));
5286 tarc0 &= ~SPEED_MODE_BIT;
5287 ew32(TARC(0), tarc0);
5290 /* enable transmits in the hardware, need to do this
5291 * after setting TARC(0)
5294 tctl |= E1000_TCTL_EN;
5297 /* Perform any post-link-up configuration before
5298 * reporting link up.
5300 if (phy->ops.cfg_on_link_up)
5301 phy->ops.cfg_on_link_up(hw);
5303 netif_wake_queue(netdev);
5304 netif_carrier_on(netdev);
5306 if (!test_bit(__E1000_DOWN, &adapter->state))
5307 mod_timer(&adapter->phy_info_timer,
5308 round_jiffies(jiffies + 2 * HZ));
5311 if (netif_carrier_ok(netdev)) {
5312 adapter->link_speed = 0;
5313 adapter->link_duplex = 0;
5314 /* Link status message must follow this format */
5315 netdev_info(netdev, "NIC Link is Down\n");
5316 netif_carrier_off(netdev);
5317 netif_stop_queue(netdev);
5318 if (!test_bit(__E1000_DOWN, &adapter->state))
5319 mod_timer(&adapter->phy_info_timer,
5320 round_jiffies(jiffies + 2 * HZ));
5322 /* 8000ES2LAN requires a Rx packet buffer work-around
5323 * on link down event; reset the controller to flush
5324 * the Rx packet buffer.
5326 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5327 adapter->flags |= FLAG_RESTART_NOW;
5329 pm_schedule_suspend(netdev->dev.parent,
5335 spin_lock(&adapter->stats64_lock);
5336 e1000e_update_stats(adapter);
5338 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5339 adapter->tpt_old = adapter->stats.tpt;
5340 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5341 adapter->colc_old = adapter->stats.colc;
5343 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5344 adapter->gorc_old = adapter->stats.gorc;
5345 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5346 adapter->gotc_old = adapter->stats.gotc;
5347 spin_unlock(&adapter->stats64_lock);
5349 /* If the link is lost the controller stops DMA, but
5350 * if there is queued Tx work it cannot be done. So
5351 * reset the controller to flush the Tx packet buffers.
5353 if (!netif_carrier_ok(netdev) &&
5354 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5355 adapter->flags |= FLAG_RESTART_NOW;
5357 /* If reset is necessary, do it outside of interrupt context. */
5358 if (adapter->flags & FLAG_RESTART_NOW) {
5359 schedule_work(&adapter->reset_task);
5360 /* return immediately since reset is imminent */
5364 e1000e_update_adaptive(&adapter->hw);
5366 /* Simple mode for Interrupt Throttle Rate (ITR) */
5367 if (adapter->itr_setting == 4) {
5368 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5369 * Total asymmetrical Tx or Rx gets ITR=8000;
5370 * everyone else is between 2000-8000.
5372 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5373 u32 dif = (adapter->gotc > adapter->gorc ?
5374 adapter->gotc - adapter->gorc :
5375 adapter->gorc - adapter->gotc) / 10000;
5376 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5378 e1000e_write_itr(adapter, itr);
5381 /* Cause software interrupt to ensure Rx ring is cleaned */
5382 if (adapter->msix_entries)
5383 ew32(ICS, adapter->rx_ring->ims_val);
5385 ew32(ICS, E1000_ICS_RXDMT0);
5387 /* flush pending descriptors to memory before detecting Tx hang */
5388 e1000e_flush_descriptors(adapter);
5390 /* Force detection of hung controller every watchdog period */
5391 adapter->detect_tx_hung = true;
5393 /* With 82571 controllers, LAA may be overwritten due to controller
5394 * reset from the other port. Set the appropriate LAA in RAR[0]
5396 if (e1000e_get_laa_state_82571(hw))
5397 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5399 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5400 e1000e_check_82574_phy_workaround(adapter);
5402 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5403 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5404 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5405 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5407 adapter->rx_hwtstamp_cleared++;
5409 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5413 /* Reset the timer */
5414 if (!test_bit(__E1000_DOWN, &adapter->state))
5415 mod_timer(&adapter->watchdog_timer,
5416 round_jiffies(jiffies + 2 * HZ));
5419 #define E1000_TX_FLAGS_CSUM 0x00000001
5420 #define E1000_TX_FLAGS_VLAN 0x00000002
5421 #define E1000_TX_FLAGS_TSO 0x00000004
5422 #define E1000_TX_FLAGS_IPV4 0x00000008
5423 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5424 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5425 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5426 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5428 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5431 struct e1000_context_desc *context_desc;
5432 struct e1000_buffer *buffer_info;
5436 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5439 if (!skb_is_gso(skb))
5442 err = skb_cow_head(skb, 0);
5446 hdr_len = skb_tcp_all_headers(skb);
5447 mss = skb_shinfo(skb)->gso_size;
5448 if (protocol == htons(ETH_P_IP)) {
5449 struct iphdr *iph = ip_hdr(skb);
5452 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5454 cmd_length = E1000_TXD_CMD_IP;
5455 ipcse = skb_transport_offset(skb) - 1;
5456 } else if (skb_is_gso_v6(skb)) {
5457 tcp_v6_gso_csum_prep(skb);
5460 ipcss = skb_network_offset(skb);
5461 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5462 tucss = skb_transport_offset(skb);
5463 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5465 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5466 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5468 i = tx_ring->next_to_use;
5469 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5470 buffer_info = &tx_ring->buffer_info[i];
5472 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5473 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5474 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5475 context_desc->upper_setup.tcp_fields.tucss = tucss;
5476 context_desc->upper_setup.tcp_fields.tucso = tucso;
5477 context_desc->upper_setup.tcp_fields.tucse = 0;
5478 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5479 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5480 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5482 buffer_info->time_stamp = jiffies;
5483 buffer_info->next_to_watch = i;
5486 if (i == tx_ring->count)
5488 tx_ring->next_to_use = i;
5493 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5496 struct e1000_adapter *adapter = tx_ring->adapter;
5497 struct e1000_context_desc *context_desc;
5498 struct e1000_buffer *buffer_info;
5501 u32 cmd_len = E1000_TXD_CMD_DEXT;
5503 if (skb->ip_summed != CHECKSUM_PARTIAL)
5507 case cpu_to_be16(ETH_P_IP):
5508 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5509 cmd_len |= E1000_TXD_CMD_TCP;
5511 case cpu_to_be16(ETH_P_IPV6):
5512 /* XXX not handling all IPV6 headers */
5513 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5514 cmd_len |= E1000_TXD_CMD_TCP;
5517 if (unlikely(net_ratelimit()))
5518 e_warn("checksum_partial proto=%x!\n",
5519 be16_to_cpu(protocol));
5523 css = skb_checksum_start_offset(skb);
5525 i = tx_ring->next_to_use;
5526 buffer_info = &tx_ring->buffer_info[i];
5527 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5529 context_desc->lower_setup.ip_config = 0;
5530 context_desc->upper_setup.tcp_fields.tucss = css;
5531 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5532 context_desc->upper_setup.tcp_fields.tucse = 0;
5533 context_desc->tcp_seg_setup.data = 0;
5534 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5536 buffer_info->time_stamp = jiffies;
5537 buffer_info->next_to_watch = i;
5540 if (i == tx_ring->count)
5542 tx_ring->next_to_use = i;
5547 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5548 unsigned int first, unsigned int max_per_txd,
5549 unsigned int nr_frags)
5551 struct e1000_adapter *adapter = tx_ring->adapter;
5552 struct pci_dev *pdev = adapter->pdev;
5553 struct e1000_buffer *buffer_info;
5554 unsigned int len = skb_headlen(skb);
5555 unsigned int offset = 0, size, count = 0, i;
5556 unsigned int f, bytecount, segs;
5558 i = tx_ring->next_to_use;
5561 buffer_info = &tx_ring->buffer_info[i];
5562 size = min(len, max_per_txd);
5564 buffer_info->length = size;
5565 buffer_info->time_stamp = jiffies;
5566 buffer_info->next_to_watch = i;
5567 buffer_info->dma = dma_map_single(&pdev->dev,
5569 size, DMA_TO_DEVICE);
5570 buffer_info->mapped_as_page = false;
5571 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5580 if (i == tx_ring->count)
5585 for (f = 0; f < nr_frags; f++) {
5586 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5588 len = skb_frag_size(frag);
5593 if (i == tx_ring->count)
5596 buffer_info = &tx_ring->buffer_info[i];
5597 size = min(len, max_per_txd);
5599 buffer_info->length = size;
5600 buffer_info->time_stamp = jiffies;
5601 buffer_info->next_to_watch = i;
5602 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5605 buffer_info->mapped_as_page = true;
5606 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5615 segs = skb_shinfo(skb)->gso_segs ? : 1;
5616 /* multiply data chunks by size of headers */
5617 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5619 tx_ring->buffer_info[i].skb = skb;
5620 tx_ring->buffer_info[i].segs = segs;
5621 tx_ring->buffer_info[i].bytecount = bytecount;
5622 tx_ring->buffer_info[first].next_to_watch = i;
5627 dev_err(&pdev->dev, "Tx DMA map failed\n");
5628 buffer_info->dma = 0;
5634 i += tx_ring->count;
5636 buffer_info = &tx_ring->buffer_info[i];
5637 e1000_put_txbuf(tx_ring, buffer_info, true);
5643 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5645 struct e1000_adapter *adapter = tx_ring->adapter;
5646 struct e1000_tx_desc *tx_desc = NULL;
5647 struct e1000_buffer *buffer_info;
5648 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5651 if (tx_flags & E1000_TX_FLAGS_TSO) {
5652 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5654 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5656 if (tx_flags & E1000_TX_FLAGS_IPV4)
5657 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5660 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5661 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5662 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5665 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5666 txd_lower |= E1000_TXD_CMD_VLE;
5667 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5670 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5671 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5673 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5674 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5675 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5678 i = tx_ring->next_to_use;
5681 buffer_info = &tx_ring->buffer_info[i];
5682 tx_desc = E1000_TX_DESC(*tx_ring, i);
5683 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5684 tx_desc->lower.data = cpu_to_le32(txd_lower |
5685 buffer_info->length);
5686 tx_desc->upper.data = cpu_to_le32(txd_upper);
5689 if (i == tx_ring->count)
5691 } while (--count > 0);
5693 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5695 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5696 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5697 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5699 /* Force memory writes to complete before letting h/w
5700 * know there are new descriptors to fetch. (Only
5701 * applicable for weak-ordered memory model archs,
5706 tx_ring->next_to_use = i;
5709 #define MINIMUM_DHCP_PACKET_SIZE 282
5710 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5711 struct sk_buff *skb)
5713 struct e1000_hw *hw = &adapter->hw;
5716 if (skb_vlan_tag_present(skb) &&
5717 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5718 (adapter->hw.mng_cookie.status &
5719 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5722 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5725 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5729 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5732 if (ip->protocol != IPPROTO_UDP)
5735 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5736 if (ntohs(udp->dest) != 67)
5739 offset = (u8 *)udp + 8 - skb->data;
5740 length = skb->len - offset;
5741 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5747 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5749 struct e1000_adapter *adapter = tx_ring->adapter;
5751 netif_stop_queue(adapter->netdev);
5752 /* Herbert's original patch had:
5753 * smp_mb__after_netif_stop_queue();
5754 * but since that doesn't exist yet, just open code it.
5758 /* We need to check again in a case another CPU has just
5759 * made room available.
5761 if (e1000_desc_unused(tx_ring) < size)
5765 netif_start_queue(adapter->netdev);
5766 ++adapter->restart_queue;
5770 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5772 BUG_ON(size > tx_ring->count);
5774 if (e1000_desc_unused(tx_ring) >= size)
5776 return __e1000_maybe_stop_tx(tx_ring, size);
5779 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5780 struct net_device *netdev)
5782 struct e1000_adapter *adapter = netdev_priv(netdev);
5783 struct e1000_ring *tx_ring = adapter->tx_ring;
5785 unsigned int tx_flags = 0;
5786 unsigned int len = skb_headlen(skb);
5787 unsigned int nr_frags;
5792 __be16 protocol = vlan_get_protocol(skb);
5794 if (test_bit(__E1000_DOWN, &adapter->state)) {
5795 dev_kfree_skb_any(skb);
5796 return NETDEV_TX_OK;
5799 if (skb->len <= 0) {
5800 dev_kfree_skb_any(skb);
5801 return NETDEV_TX_OK;
5804 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5805 * pad skb in order to meet this minimum size requirement
5807 if (skb_put_padto(skb, 17))
5808 return NETDEV_TX_OK;
5810 mss = skb_shinfo(skb)->gso_size;
5814 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5815 * points to just header, pull a few bytes of payload from
5816 * frags into skb->data
5818 hdr_len = skb_tcp_all_headers(skb);
5819 /* we do this workaround for ES2LAN, but it is un-necessary,
5820 * avoiding it could save a lot of cycles
5822 if (skb->data_len && (hdr_len == len)) {
5823 unsigned int pull_size;
5825 pull_size = min_t(unsigned int, 4, skb->data_len);
5826 if (!__pskb_pull_tail(skb, pull_size)) {
5827 e_err("__pskb_pull_tail failed.\n");
5828 dev_kfree_skb_any(skb);
5829 return NETDEV_TX_OK;
5831 len = skb_headlen(skb);
5835 /* reserve a descriptor for the offload context */
5836 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5840 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5842 nr_frags = skb_shinfo(skb)->nr_frags;
5843 for (f = 0; f < nr_frags; f++)
5844 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5845 adapter->tx_fifo_limit);
5847 if (adapter->hw.mac.tx_pkt_filtering)
5848 e1000_transfer_dhcp_info(adapter, skb);
5850 /* need: count + 2 desc gap to keep tail from touching
5851 * head, otherwise try next time
5853 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5854 return NETDEV_TX_BUSY;
5856 if (skb_vlan_tag_present(skb)) {
5857 tx_flags |= E1000_TX_FLAGS_VLAN;
5858 tx_flags |= (skb_vlan_tag_get(skb) <<
5859 E1000_TX_FLAGS_VLAN_SHIFT);
5862 first = tx_ring->next_to_use;
5864 tso = e1000_tso(tx_ring, skb, protocol);
5866 dev_kfree_skb_any(skb);
5867 return NETDEV_TX_OK;
5871 tx_flags |= E1000_TX_FLAGS_TSO;
5872 else if (e1000_tx_csum(tx_ring, skb, protocol))
5873 tx_flags |= E1000_TX_FLAGS_CSUM;
5875 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5876 * 82571 hardware supports TSO capabilities for IPv6 as well...
5877 * no longer assume, we must.
5879 if (protocol == htons(ETH_P_IP))
5880 tx_flags |= E1000_TX_FLAGS_IPV4;
5882 if (unlikely(skb->no_fcs))
5883 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5885 /* if count is 0 then mapping error has occurred */
5886 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5889 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5890 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5891 if (!adapter->tx_hwtstamp_skb) {
5892 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5893 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5894 adapter->tx_hwtstamp_skb = skb_get(skb);
5895 adapter->tx_hwtstamp_start = jiffies;
5896 schedule_work(&adapter->tx_hwtstamp_work);
5898 adapter->tx_hwtstamp_skipped++;
5902 skb_tx_timestamp(skb);
5904 netdev_sent_queue(netdev, skb->len);
5905 e1000_tx_queue(tx_ring, tx_flags, count);
5906 /* Make sure there is space in the ring for the next send. */
5907 e1000_maybe_stop_tx(tx_ring,
5908 ((MAX_SKB_FRAGS + 1) *
5909 DIV_ROUND_UP(PAGE_SIZE,
5910 adapter->tx_fifo_limit) + 4));
5912 if (!netdev_xmit_more() ||
5913 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5914 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5915 e1000e_update_tdt_wa(tx_ring,
5916 tx_ring->next_to_use);
5918 writel(tx_ring->next_to_use, tx_ring->tail);
5921 dev_kfree_skb_any(skb);
5922 tx_ring->buffer_info[first].time_stamp = 0;
5923 tx_ring->next_to_use = first;
5926 return NETDEV_TX_OK;
5930 * e1000_tx_timeout - Respond to a Tx Hang
5931 * @netdev: network interface device structure
5932 * @txqueue: index of the hung queue (unused)
5934 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5936 struct e1000_adapter *adapter = netdev_priv(netdev);
5938 /* Do the reset outside of interrupt context */
5939 adapter->tx_timeout_count++;
5940 schedule_work(&adapter->reset_task);
5943 static void e1000_reset_task(struct work_struct *work)
5945 struct e1000_adapter *adapter;
5946 adapter = container_of(work, struct e1000_adapter, reset_task);
5949 /* don't run the task if already down */
5950 if (test_bit(__E1000_DOWN, &adapter->state)) {
5955 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5956 e1000e_dump(adapter);
5957 e_err("Reset adapter unexpectedly\n");
5959 e1000e_reinit_locked(adapter);
5964 * e1000e_get_stats64 - Get System Network Statistics
5965 * @netdev: network interface device structure
5966 * @stats: rtnl_link_stats64 pointer
5968 * Returns the address of the device statistics structure.
5970 void e1000e_get_stats64(struct net_device *netdev,
5971 struct rtnl_link_stats64 *stats)
5973 struct e1000_adapter *adapter = netdev_priv(netdev);
5975 spin_lock(&adapter->stats64_lock);
5976 e1000e_update_stats(adapter);
5977 /* Fill out the OS statistics structure */
5978 stats->rx_bytes = adapter->stats.gorc;
5979 stats->rx_packets = adapter->stats.gprc;
5980 stats->tx_bytes = adapter->stats.gotc;
5981 stats->tx_packets = adapter->stats.gptc;
5982 stats->multicast = adapter->stats.mprc;
5983 stats->collisions = adapter->stats.colc;
5987 /* RLEC on some newer hardware can be incorrect so build
5988 * our own version based on RUC and ROC
5990 stats->rx_errors = adapter->stats.rxerrc +
5991 adapter->stats.crcerrs + adapter->stats.algnerrc +
5992 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5993 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5994 stats->rx_crc_errors = adapter->stats.crcerrs;
5995 stats->rx_frame_errors = adapter->stats.algnerrc;
5996 stats->rx_missed_errors = adapter->stats.mpc;
5999 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6000 stats->tx_aborted_errors = adapter->stats.ecol;
6001 stats->tx_window_errors = adapter->stats.latecol;
6002 stats->tx_carrier_errors = adapter->stats.tncrs;
6004 /* Tx Dropped needs to be maintained elsewhere */
6006 spin_unlock(&adapter->stats64_lock);
6010 * e1000_change_mtu - Change the Maximum Transfer Unit
6011 * @netdev: network interface device structure
6012 * @new_mtu: new value for maximum frame size
6014 * Returns 0 on success, negative on failure
6016 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6018 struct e1000_adapter *adapter = netdev_priv(netdev);
6019 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6021 /* Jumbo frame support */
6022 if ((new_mtu > ETH_DATA_LEN) &&
6023 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6024 e_err("Jumbo Frames not supported.\n");
6028 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6029 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6030 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6031 (new_mtu > ETH_DATA_LEN)) {
6032 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6036 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6037 usleep_range(1000, 1100);
6038 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6039 adapter->max_frame_size = max_frame;
6040 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6041 netdev->mtu, new_mtu);
6042 netdev->mtu = new_mtu;
6044 pm_runtime_get_sync(netdev->dev.parent);
6046 if (netif_running(netdev))
6047 e1000e_down(adapter, true);
6049 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6050 * means we reserve 2 more, this pushes us to allocate from the next
6052 * i.e. RXBUFFER_2048 --> size-4096 slab
6053 * However with the new *_jumbo_rx* routines, jumbo receives will use
6057 if (max_frame <= 2048)
6058 adapter->rx_buffer_len = 2048;
6060 adapter->rx_buffer_len = 4096;
6062 /* adjust allocation if LPE protects us, and we aren't using SBP */
6063 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6064 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6066 if (netif_running(netdev))
6069 e1000e_reset(adapter);
6071 pm_runtime_put_sync(netdev->dev.parent);
6073 clear_bit(__E1000_RESETTING, &adapter->state);
6078 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6081 struct e1000_adapter *adapter = netdev_priv(netdev);
6082 struct mii_ioctl_data *data = if_mii(ifr);
6084 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6089 data->phy_id = adapter->hw.phy.addr;
6092 e1000_phy_read_status(adapter);
6094 switch (data->reg_num & 0x1F) {
6096 data->val_out = adapter->phy_regs.bmcr;
6099 data->val_out = adapter->phy_regs.bmsr;
6102 data->val_out = (adapter->hw.phy.id >> 16);
6105 data->val_out = (adapter->hw.phy.id & 0xFFFF);
6108 data->val_out = adapter->phy_regs.advertise;
6111 data->val_out = adapter->phy_regs.lpa;
6114 data->val_out = adapter->phy_regs.expansion;
6117 data->val_out = adapter->phy_regs.ctrl1000;
6120 data->val_out = adapter->phy_regs.stat1000;
6123 data->val_out = adapter->phy_regs.estatus;
6137 * e1000e_hwtstamp_set - control hardware time stamping
6138 * @netdev: network interface device structure
6139 * @ifr: interface request
6141 * Outgoing time stamping can be enabled and disabled. Play nice and
6142 * disable it when requested, although it shouldn't cause any overhead
6143 * when no packet needs it. At most one packet in the queue may be
6144 * marked for time stamping, otherwise it would be impossible to tell
6145 * for sure to which packet the hardware time stamp belongs.
6147 * Incoming time stamping has to be configured via the hardware filters.
6148 * Not all combinations are supported, in particular event type has to be
6149 * specified. Matching the kind of event packet is not supported, with the
6150 * exception of "all V2 events regardless of level 2 or 4".
6152 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6154 struct e1000_adapter *adapter = netdev_priv(netdev);
6155 struct hwtstamp_config config;
6158 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6161 ret_val = e1000e_config_hwtstamp(adapter, &config);
6165 switch (config.rx_filter) {
6166 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6167 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6168 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6169 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6170 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6171 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6172 /* With V2 type filters which specify a Sync or Delay Request,
6173 * Path Delay Request/Response messages are also time stamped
6174 * by hardware so notify the caller the requested packets plus
6175 * some others are time stamped.
6177 config.rx_filter = HWTSTAMP_FILTER_SOME;
6183 return copy_to_user(ifr->ifr_data, &config,
6184 sizeof(config)) ? -EFAULT : 0;
6187 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6189 struct e1000_adapter *adapter = netdev_priv(netdev);
6191 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6192 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6195 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6201 return e1000_mii_ioctl(netdev, ifr, cmd);
6203 return e1000e_hwtstamp_set(netdev, ifr);
6205 return e1000e_hwtstamp_get(netdev, ifr);
6211 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6213 struct e1000_hw *hw = &adapter->hw;
6214 u32 i, mac_reg, wuc;
6215 u16 phy_reg, wuc_enable;
6218 /* copy MAC RARs to PHY RARs */
6219 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6221 retval = hw->phy.ops.acquire(hw);
6223 e_err("Could not acquire PHY\n");
6227 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6228 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6232 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6233 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6234 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6235 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6236 (u16)(mac_reg & 0xFFFF));
6237 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6238 (u16)((mac_reg >> 16) & 0xFFFF));
6241 /* configure PHY Rx Control register */
6242 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6243 mac_reg = er32(RCTL);
6244 if (mac_reg & E1000_RCTL_UPE)
6245 phy_reg |= BM_RCTL_UPE;
6246 if (mac_reg & E1000_RCTL_MPE)
6247 phy_reg |= BM_RCTL_MPE;
6248 phy_reg &= ~(BM_RCTL_MO_MASK);
6249 if (mac_reg & E1000_RCTL_MO_3)
6250 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6251 << BM_RCTL_MO_SHIFT);
6252 if (mac_reg & E1000_RCTL_BAM)
6253 phy_reg |= BM_RCTL_BAM;
6254 if (mac_reg & E1000_RCTL_PMCF)
6255 phy_reg |= BM_RCTL_PMCF;
6256 mac_reg = er32(CTRL);
6257 if (mac_reg & E1000_CTRL_RFCE)
6258 phy_reg |= BM_RCTL_RFCE;
6259 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6261 wuc = E1000_WUC_PME_EN;
6262 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6263 wuc |= E1000_WUC_APME;
6265 /* enable PHY wakeup in MAC register */
6267 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6268 E1000_WUC_PME_STATUS | wuc));
6270 /* configure and enable PHY wakeup in PHY registers */
6271 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6272 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6274 /* activate PHY wakeup */
6275 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6276 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6278 e_err("Could not set PHY Host Wakeup bit\n");
6280 hw->phy.ops.release(hw);
6285 static void e1000e_flush_lpic(struct pci_dev *pdev)
6287 struct net_device *netdev = pci_get_drvdata(pdev);
6288 struct e1000_adapter *adapter = netdev_priv(netdev);
6289 struct e1000_hw *hw = &adapter->hw;
6292 pm_runtime_get_sync(netdev->dev.parent);
6294 ret_val = hw->phy.ops.acquire(hw);
6298 pr_info("EEE TX LPI TIMER: %08X\n",
6299 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6301 hw->phy.ops.release(hw);
6304 pm_runtime_put_sync(netdev->dev.parent);
6307 /* S0ix implementation */
6308 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6310 struct e1000_hw *hw = &adapter->hw;
6314 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6315 hw->mac.type >= e1000_pch_adp) {
6316 /* Request ME configure the device for S0ix */
6317 mac_data = er32(H2ME);
6318 mac_data |= E1000_H2ME_START_DPG;
6319 mac_data &= ~E1000_H2ME_EXIT_DPG;
6320 trace_e1000e_trace_mac_register(mac_data);
6321 ew32(H2ME, mac_data);
6323 /* Request driver configure the device to S0ix */
6324 /* Disable the periodic inband message,
6325 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6327 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6328 phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6329 phy_data |= BIT(10);
6330 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6332 /* Make sure we don't exit K1 every time a new packet arrives
6333 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6335 e1e_rphy(hw, I217_CGFREG, &phy_data);
6337 e1e_wphy(hw, I217_CGFREG, phy_data);
6339 /* Change the MAC/PHY interface to SMBus
6340 * Force the SMBus in PHY page769_23[0] = 1
6341 * Force the SMBus in MAC CTRL_EXT[11] = 1
6343 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6344 phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6345 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6346 mac_data = er32(CTRL_EXT);
6347 mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6348 ew32(CTRL_EXT, mac_data);
6350 /* DFT control: PHY bit: page769_20[0] = 1
6351 * page769_20[7] - PHY PLL stop
6352 * page769_20[8] - PHY go to the electrical idle
6353 * page769_20[9] - PHY serdes disable
6354 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6356 e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6361 e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6363 mac_data = er32(EXTCNF_CTRL);
6364 mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6365 ew32(EXTCNF_CTRL, mac_data);
6367 /* Enable the Dynamic Power Gating in the MAC */
6368 mac_data = er32(FEXTNVM7);
6369 mac_data |= BIT(22);
6370 ew32(FEXTNVM7, mac_data);
6372 /* Disable disconnected cable conditioning for Power Gating */
6373 mac_data = er32(DPGFR);
6375 ew32(DPGFR, mac_data);
6377 /* Don't wake from dynamic Power Gating with clock request */
6378 mac_data = er32(FEXTNVM12);
6379 mac_data |= BIT(12);
6380 ew32(FEXTNVM12, mac_data);
6382 /* Ungate PGCB clock */
6383 mac_data = er32(FEXTNVM9);
6384 mac_data &= ~BIT(28);
6385 ew32(FEXTNVM9, mac_data);
6387 /* Enable K1 off to enable mPHY Power Gating */
6388 mac_data = er32(FEXTNVM6);
6389 mac_data |= BIT(31);
6390 ew32(FEXTNVM6, mac_data);
6392 /* Enable mPHY power gating for any link and speed */
6393 mac_data = er32(FEXTNVM8);
6395 ew32(FEXTNVM8, mac_data);
6397 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6398 mac_data = er32(CTRL_EXT);
6399 mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6400 ew32(CTRL_EXT, mac_data);
6402 /* No MAC DPG gating SLP_S0 in modern standby
6403 * Switch the logic of the lanphypc to use PMC counter
6405 mac_data = er32(FEXTNVM5);
6407 ew32(FEXTNVM5, mac_data);
6410 /* Disable the time synchronization clock */
6411 mac_data = er32(FEXTNVM7);
6412 mac_data |= BIT(31);
6413 mac_data &= ~BIT(0);
6414 ew32(FEXTNVM7, mac_data);
6416 /* Dynamic Power Gating Enable */
6417 mac_data = er32(CTRL_EXT);
6419 ew32(CTRL_EXT, mac_data);
6421 /* Check MAC Tx/Rx packet buffer pointers.
6422 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6423 * pending traffic indication that would prevent power gating.
6425 mac_data = er32(TDFH);
6428 mac_data = er32(TDFT);
6431 mac_data = er32(TDFHS);
6434 mac_data = er32(TDFTS);
6437 mac_data = er32(TDFPC);
6440 mac_data = er32(RDFH);
6443 mac_data = er32(RDFT);
6446 mac_data = er32(RDFHS);
6449 mac_data = er32(RDFTS);
6452 mac_data = er32(RDFPC);
6457 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6459 struct e1000_hw *hw = &adapter->hw;
6460 bool firmware_bug = false;
6465 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6466 hw->mac.type >= e1000_pch_adp) {
6467 /* Keep the GPT clock enabled for CSME */
6468 mac_data = er32(FEXTNVM);
6470 ew32(FEXTNVM, mac_data);
6471 /* Request ME unconfigure the device from S0ix */
6472 mac_data = er32(H2ME);
6473 mac_data &= ~E1000_H2ME_START_DPG;
6474 mac_data |= E1000_H2ME_EXIT_DPG;
6475 trace_e1000e_trace_mac_register(mac_data);
6476 ew32(H2ME, mac_data);
6478 /* Poll up to 2.5 seconds for ME to unconfigure DPG.
6479 * If this takes more than 1 second, show a warning indicating a
6482 while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6483 if (i > 100 && !firmware_bug)
6484 firmware_bug = true;
6487 e_dbg("Timeout (firmware bug): %d msec\n",
6492 usleep_range(10000, 11000);
6495 e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6498 e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6500 /* Request driver unconfigure the device from S0ix */
6502 /* Disable the Dynamic Power Gating in the MAC */
6503 mac_data = er32(FEXTNVM7);
6504 mac_data &= 0xFFBFFFFF;
6505 ew32(FEXTNVM7, mac_data);
6507 /* Disable mPHY power gating for any link and speed */
6508 mac_data = er32(FEXTNVM8);
6509 mac_data &= ~BIT(9);
6510 ew32(FEXTNVM8, mac_data);
6512 /* Disable K1 off */
6513 mac_data = er32(FEXTNVM6);
6514 mac_data &= ~BIT(31);
6515 ew32(FEXTNVM6, mac_data);
6517 /* Disable Ungate PGCB clock */
6518 mac_data = er32(FEXTNVM9);
6519 mac_data |= BIT(28);
6520 ew32(FEXTNVM9, mac_data);
6522 /* Cancel not waking from dynamic
6523 * Power Gating with clock request
6525 mac_data = er32(FEXTNVM12);
6526 mac_data &= ~BIT(12);
6527 ew32(FEXTNVM12, mac_data);
6529 /* Cancel disable disconnected cable conditioning
6532 mac_data = er32(DPGFR);
6533 mac_data &= ~BIT(2);
6534 ew32(DPGFR, mac_data);
6536 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6537 mac_data = er32(CTRL_EXT);
6538 mac_data &= 0xFFF7FFFF;
6539 ew32(CTRL_EXT, mac_data);
6541 /* Revert the lanphypc logic to use the internal Gbe counter
6542 * and not the PMC counter
6544 mac_data = er32(FEXTNVM5);
6545 mac_data &= 0xFFFFFF7F;
6546 ew32(FEXTNVM5, mac_data);
6548 /* Enable the periodic inband message,
6549 * Request PCIe clock in K1 page770_17[10:9] =01b
6551 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6553 phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6554 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6556 /* Return back configuration
6557 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6559 e1e_rphy(hw, I217_CGFREG, &phy_data);
6561 e1e_wphy(hw, I217_CGFREG, phy_data);
6563 /* Change the MAC/PHY interface to Kumeran
6564 * Unforce the SMBus in PHY page769_23[0] = 0
6565 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6567 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6568 phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6569 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6570 mac_data = er32(CTRL_EXT);
6571 mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6572 ew32(CTRL_EXT, mac_data);
6575 /* Disable Dynamic Power Gating */
6576 mac_data = er32(CTRL_EXT);
6577 mac_data &= 0xFFFFFFF7;
6578 ew32(CTRL_EXT, mac_data);
6580 /* Enable the time synchronization clock */
6581 mac_data = er32(FEXTNVM7);
6582 mac_data &= ~BIT(31);
6584 ew32(FEXTNVM7, mac_data);
6587 static int e1000e_pm_freeze(struct device *dev)
6589 struct net_device *netdev = dev_get_drvdata(dev);
6590 struct e1000_adapter *adapter = netdev_priv(netdev);
6595 present = netif_device_present(netdev);
6596 netif_device_detach(netdev);
6598 if (present && netif_running(netdev)) {
6599 int count = E1000_CHECK_RESET_COUNT;
6601 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6602 usleep_range(10000, 11000);
6604 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6606 /* Quiesce the device without resetting the hardware */
6607 e1000e_down(adapter, false);
6608 e1000_free_irq(adapter);
6612 e1000e_reset_interrupt_capability(adapter);
6614 /* Allow time for pending master requests to run */
6615 e1000e_disable_pcie_master(&adapter->hw);
6620 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6622 struct net_device *netdev = pci_get_drvdata(pdev);
6623 struct e1000_adapter *adapter = netdev_priv(netdev);
6624 struct e1000_hw *hw = &adapter->hw;
6625 u32 ctrl, ctrl_ext, rctl, status, wufc;
6628 /* Runtime suspend should only enable wakeup for link changes */
6630 wufc = E1000_WUFC_LNKC;
6631 else if (device_may_wakeup(&pdev->dev))
6632 wufc = adapter->wol;
6636 status = er32(STATUS);
6637 if (status & E1000_STATUS_LU)
6638 wufc &= ~E1000_WUFC_LNKC;
6641 e1000_setup_rctl(adapter);
6642 e1000e_set_rx_mode(netdev);
6644 /* turn on all-multi mode if wake on multicast is enabled */
6645 if (wufc & E1000_WUFC_MC) {
6647 rctl |= E1000_RCTL_MPE;
6652 ctrl |= E1000_CTRL_ADVD3WUC;
6653 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6654 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6657 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6658 adapter->hw.phy.media_type ==
6659 e1000_media_type_internal_serdes) {
6660 /* keep the laser running in D3 */
6661 ctrl_ext = er32(CTRL_EXT);
6662 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6663 ew32(CTRL_EXT, ctrl_ext);
6667 e1000e_power_up_phy(adapter);
6669 if (adapter->flags & FLAG_IS_ICH)
6670 e1000_suspend_workarounds_ich8lan(&adapter->hw);
6672 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6673 /* enable wakeup by the PHY */
6674 retval = e1000_init_phy_wakeup(adapter, wufc);
6678 /* enable wakeup by the MAC */
6680 ew32(WUC, E1000_WUC_PME_EN);
6686 e1000_power_down_phy(adapter);
6689 if (adapter->hw.phy.type == e1000_phy_igp_3) {
6690 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6691 } else if (hw->mac.type >= e1000_pch_lpt) {
6692 if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6693 /* ULP does not support wake from unicast, multicast
6696 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6702 /* Ensure that the appropriate bits are set in LPI_CTRL
6705 if ((hw->phy.type >= e1000_phy_i217) &&
6706 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6709 retval = hw->phy.ops.acquire(hw);
6711 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6714 if (adapter->eee_advert &
6715 hw->dev_spec.ich8lan.eee_lp_ability &
6716 I82579_EEE_100_SUPPORTED)
6717 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6718 if (adapter->eee_advert &
6719 hw->dev_spec.ich8lan.eee_lp_ability &
6720 I82579_EEE_1000_SUPPORTED)
6721 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6723 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6727 hw->phy.ops.release(hw);
6730 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6731 * would have already happened in close and is redundant.
6733 e1000e_release_hw_control(adapter);
6735 pci_clear_master(pdev);
6737 /* The pci-e switch on some quad port adapters will report a
6738 * correctable error when the MAC transitions from D0 to D3. To
6739 * prevent this we need to mask off the correctable errors on the
6740 * downstream port of the pci-e switch.
6742 * We don't have the associated upstream bridge while assigning
6743 * the PCI device into guest. For example, the KVM on power is
6746 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6747 struct pci_dev *us_dev = pdev->bus->self;
6753 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6754 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6755 (devctl & ~PCI_EXP_DEVCTL_CERE));
6757 pci_save_state(pdev);
6758 pci_prepare_to_sleep(pdev);
6760 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6767 * __e1000e_disable_aspm - Disable ASPM states
6768 * @pdev: pointer to PCI device struct
6769 * @state: bit-mask of ASPM states to disable
6770 * @locked: indication if this context holds pci_bus_sem locked.
6772 * Some devices *must* have certain ASPM states disabled per hardware errata.
6774 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6776 struct pci_dev *parent = pdev->bus->self;
6777 u16 aspm_dis_mask = 0;
6778 u16 pdev_aspmc, parent_aspmc;
6781 case PCIE_LINK_STATE_L0S:
6782 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6783 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6784 fallthrough; /* can't have L1 without L0s */
6785 case PCIE_LINK_STATE_L1:
6786 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6792 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6793 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6796 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6798 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6801 /* Nothing to do if the ASPM states to be disabled already are */
6802 if (!(pdev_aspmc & aspm_dis_mask) &&
6803 (!parent || !(parent_aspmc & aspm_dis_mask)))
6806 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6807 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6809 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6812 #ifdef CONFIG_PCIEASPM
6814 pci_disable_link_state_locked(pdev, state);
6816 pci_disable_link_state(pdev, state);
6818 /* Double-check ASPM control. If not disabled by the above, the
6819 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6820 * not enabled); override by writing PCI config space directly.
6822 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6823 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6825 if (!(aspm_dis_mask & pdev_aspmc))
6829 /* Both device and parent should have the same ASPM setting.
6830 * Disable ASPM in downstream component first and then upstream.
6832 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6835 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6840 * e1000e_disable_aspm - Disable ASPM states.
6841 * @pdev: pointer to PCI device struct
6842 * @state: bit-mask of ASPM states to disable
6844 * This function acquires the pci_bus_sem!
6845 * Some devices *must* have certain ASPM states disabled per hardware errata.
6847 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6849 __e1000e_disable_aspm(pdev, state, 0);
6853 * e1000e_disable_aspm_locked - Disable ASPM states.
6854 * @pdev: pointer to PCI device struct
6855 * @state: bit-mask of ASPM states to disable
6857 * This function must be called with pci_bus_sem acquired!
6858 * Some devices *must* have certain ASPM states disabled per hardware errata.
6860 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6862 __e1000e_disable_aspm(pdev, state, 1);
6865 static int e1000e_pm_thaw(struct device *dev)
6867 struct net_device *netdev = dev_get_drvdata(dev);
6868 struct e1000_adapter *adapter = netdev_priv(netdev);
6871 e1000e_set_interrupt_capability(adapter);
6874 if (netif_running(netdev)) {
6875 rc = e1000_request_irq(adapter);
6882 netif_device_attach(netdev);
6889 static int __e1000_resume(struct pci_dev *pdev)
6891 struct net_device *netdev = pci_get_drvdata(pdev);
6892 struct e1000_adapter *adapter = netdev_priv(netdev);
6893 struct e1000_hw *hw = &adapter->hw;
6894 u16 aspm_disable_flag = 0;
6896 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6897 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6898 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6899 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6900 if (aspm_disable_flag)
6901 e1000e_disable_aspm(pdev, aspm_disable_flag);
6903 pci_set_master(pdev);
6905 if (hw->mac.type >= e1000_pch2lan)
6906 e1000_resume_workarounds_pchlan(&adapter->hw);
6908 e1000e_power_up_phy(adapter);
6910 /* report the system wakeup cause from S3/S4 */
6911 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6914 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6916 e_info("PHY Wakeup cause - %s\n",
6917 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6918 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6919 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6920 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6921 phy_data & E1000_WUS_LNKC ?
6922 "Link Status Change" : "other");
6924 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6926 u32 wus = er32(WUS);
6929 e_info("MAC Wakeup cause - %s\n",
6930 wus & E1000_WUS_EX ? "Unicast Packet" :
6931 wus & E1000_WUS_MC ? "Multicast Packet" :
6932 wus & E1000_WUS_BC ? "Broadcast Packet" :
6933 wus & E1000_WUS_MAG ? "Magic Packet" :
6934 wus & E1000_WUS_LNKC ? "Link Status Change" :
6940 e1000e_reset(adapter);
6942 e1000_init_manageability_pt(adapter);
6944 /* If the controller has AMT, do not set DRV_LOAD until the interface
6945 * is up. For all other cases, let the f/w know that the h/w is now
6946 * under the control of the driver.
6948 if (!(adapter->flags & FLAG_HAS_AMT))
6949 e1000e_get_hw_control(adapter);
6954 static __maybe_unused int e1000e_pm_prepare(struct device *dev)
6956 return pm_runtime_suspended(dev) &&
6957 pm_suspend_via_firmware();
6960 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6962 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6963 struct e1000_adapter *adapter = netdev_priv(netdev);
6964 struct pci_dev *pdev = to_pci_dev(dev);
6967 e1000e_flush_lpic(pdev);
6969 e1000e_pm_freeze(dev);
6971 rc = __e1000_shutdown(pdev, false);
6973 e1000e_pm_thaw(dev);
6975 /* Introduce S0ix implementation */
6976 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6977 e1000e_s0ix_entry_flow(adapter);
6983 static __maybe_unused int e1000e_pm_resume(struct device *dev)
6985 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6986 struct e1000_adapter *adapter = netdev_priv(netdev);
6987 struct pci_dev *pdev = to_pci_dev(dev);
6990 /* Introduce S0ix implementation */
6991 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6992 e1000e_s0ix_exit_flow(adapter);
6994 rc = __e1000_resume(pdev);
6998 return e1000e_pm_thaw(dev);
7001 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7003 struct net_device *netdev = dev_get_drvdata(dev);
7004 struct e1000_adapter *adapter = netdev_priv(netdev);
7007 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7009 if (!e1000e_has_link(adapter)) {
7010 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7011 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7017 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
7019 struct pci_dev *pdev = to_pci_dev(dev);
7020 struct net_device *netdev = pci_get_drvdata(pdev);
7021 struct e1000_adapter *adapter = netdev_priv(netdev);
7024 rc = __e1000_resume(pdev);
7028 if (netdev->flags & IFF_UP)
7034 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7036 struct pci_dev *pdev = to_pci_dev(dev);
7037 struct net_device *netdev = pci_get_drvdata(pdev);
7038 struct e1000_adapter *adapter = netdev_priv(netdev);
7040 if (netdev->flags & IFF_UP) {
7041 int count = E1000_CHECK_RESET_COUNT;
7043 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7044 usleep_range(10000, 11000);
7046 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7048 /* Down the device without resetting the hardware */
7049 e1000e_down(adapter, false);
7052 if (__e1000_shutdown(pdev, true)) {
7053 e1000e_pm_runtime_resume(dev);
7060 static void e1000_shutdown(struct pci_dev *pdev)
7062 e1000e_flush_lpic(pdev);
7064 e1000e_pm_freeze(&pdev->dev);
7066 __e1000_shutdown(pdev, false);
7069 #ifdef CONFIG_NET_POLL_CONTROLLER
7071 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7073 struct net_device *netdev = data;
7074 struct e1000_adapter *adapter = netdev_priv(netdev);
7076 if (adapter->msix_entries) {
7077 int vector, msix_irq;
7080 msix_irq = adapter->msix_entries[vector].vector;
7081 if (disable_hardirq(msix_irq))
7082 e1000_intr_msix_rx(msix_irq, netdev);
7083 enable_irq(msix_irq);
7086 msix_irq = adapter->msix_entries[vector].vector;
7087 if (disable_hardirq(msix_irq))
7088 e1000_intr_msix_tx(msix_irq, netdev);
7089 enable_irq(msix_irq);
7092 msix_irq = adapter->msix_entries[vector].vector;
7093 if (disable_hardirq(msix_irq))
7094 e1000_msix_other(msix_irq, netdev);
7095 enable_irq(msix_irq);
7103 * @netdev: network interface device structure
7105 * Polling 'interrupt' - used by things like netconsole to send skbs
7106 * without having to re-enable interrupts. It's not called while
7107 * the interrupt routine is executing.
7109 static void e1000_netpoll(struct net_device *netdev)
7111 struct e1000_adapter *adapter = netdev_priv(netdev);
7113 switch (adapter->int_mode) {
7114 case E1000E_INT_MODE_MSIX:
7115 e1000_intr_msix(adapter->pdev->irq, netdev);
7117 case E1000E_INT_MODE_MSI:
7118 if (disable_hardirq(adapter->pdev->irq))
7119 e1000_intr_msi(adapter->pdev->irq, netdev);
7120 enable_irq(adapter->pdev->irq);
7122 default: /* E1000E_INT_MODE_LEGACY */
7123 if (disable_hardirq(adapter->pdev->irq))
7124 e1000_intr(adapter->pdev->irq, netdev);
7125 enable_irq(adapter->pdev->irq);
7132 * e1000_io_error_detected - called when PCI error is detected
7133 * @pdev: Pointer to PCI device
7134 * @state: The current pci connection state
7136 * This function is called after a PCI bus error affecting
7137 * this device has been detected.
7139 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7140 pci_channel_state_t state)
7142 e1000e_pm_freeze(&pdev->dev);
7144 if (state == pci_channel_io_perm_failure)
7145 return PCI_ERS_RESULT_DISCONNECT;
7147 pci_disable_device(pdev);
7149 /* Request a slot reset. */
7150 return PCI_ERS_RESULT_NEED_RESET;
7154 * e1000_io_slot_reset - called after the pci bus has been reset.
7155 * @pdev: Pointer to PCI device
7157 * Restart the card from scratch, as if from a cold-boot. Implementation
7158 * resembles the first-half of the e1000e_pm_resume routine.
7160 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7162 struct net_device *netdev = pci_get_drvdata(pdev);
7163 struct e1000_adapter *adapter = netdev_priv(netdev);
7164 struct e1000_hw *hw = &adapter->hw;
7165 u16 aspm_disable_flag = 0;
7167 pci_ers_result_t result;
7169 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7170 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7171 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7172 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7173 if (aspm_disable_flag)
7174 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7176 err = pci_enable_device_mem(pdev);
7179 "Cannot re-enable PCI device after reset.\n");
7180 result = PCI_ERS_RESULT_DISCONNECT;
7182 pdev->state_saved = true;
7183 pci_restore_state(pdev);
7184 pci_set_master(pdev);
7186 pci_enable_wake(pdev, PCI_D3hot, 0);
7187 pci_enable_wake(pdev, PCI_D3cold, 0);
7189 e1000e_reset(adapter);
7191 result = PCI_ERS_RESULT_RECOVERED;
7198 * e1000_io_resume - called when traffic can start flowing again.
7199 * @pdev: Pointer to PCI device
7201 * This callback is called when the error recovery driver tells us that
7202 * its OK to resume normal operation. Implementation resembles the
7203 * second-half of the e1000e_pm_resume routine.
7205 static void e1000_io_resume(struct pci_dev *pdev)
7207 struct net_device *netdev = pci_get_drvdata(pdev);
7208 struct e1000_adapter *adapter = netdev_priv(netdev);
7210 e1000_init_manageability_pt(adapter);
7212 e1000e_pm_thaw(&pdev->dev);
7214 /* If the controller has AMT, do not set DRV_LOAD until the interface
7215 * is up. For all other cases, let the f/w know that the h/w is now
7216 * under the control of the driver.
7218 if (!(adapter->flags & FLAG_HAS_AMT))
7219 e1000e_get_hw_control(adapter);
7222 static void e1000_print_device_info(struct e1000_adapter *adapter)
7224 struct e1000_hw *hw = &adapter->hw;
7225 struct net_device *netdev = adapter->netdev;
7227 u8 pba_str[E1000_PBANUM_LENGTH];
7229 /* print bus type/speed/width info */
7230 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7232 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7236 e_info("Intel(R) PRO/%s Network Connection\n",
7237 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7238 ret_val = e1000_read_pba_string_generic(hw, pba_str,
7239 E1000_PBANUM_LENGTH);
7241 strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7242 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7243 hw->mac.type, hw->phy.type, pba_str);
7246 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7248 struct e1000_hw *hw = &adapter->hw;
7252 if (hw->mac.type != e1000_82573)
7255 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7257 if (!ret_val && (!(buf & BIT(0)))) {
7258 /* Deep Smart Power Down (DSPD) */
7259 dev_warn(&adapter->pdev->dev,
7260 "Warning: detected DSPD enabled in EEPROM\n");
7264 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7265 netdev_features_t features)
7267 struct e1000_adapter *adapter = netdev_priv(netdev);
7268 struct e1000_hw *hw = &adapter->hw;
7270 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7271 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7272 features &= ~NETIF_F_RXFCS;
7274 /* Since there is no support for separate Rx/Tx vlan accel
7275 * enable/disable make sure Tx flag is always in same state as Rx.
7277 if (features & NETIF_F_HW_VLAN_CTAG_RX)
7278 features |= NETIF_F_HW_VLAN_CTAG_TX;
7280 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7285 static int e1000_set_features(struct net_device *netdev,
7286 netdev_features_t features)
7288 struct e1000_adapter *adapter = netdev_priv(netdev);
7289 netdev_features_t changed = features ^ netdev->features;
7291 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7292 adapter->flags |= FLAG_TSO_FORCE;
7294 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7295 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7299 if (changed & NETIF_F_RXFCS) {
7300 if (features & NETIF_F_RXFCS) {
7301 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7303 /* We need to take it back to defaults, which might mean
7304 * stripping is still disabled at the adapter level.
7306 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7307 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7309 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7313 netdev->features = features;
7315 if (netif_running(netdev))
7316 e1000e_reinit_locked(adapter);
7318 e1000e_reset(adapter);
7323 static const struct net_device_ops e1000e_netdev_ops = {
7324 .ndo_open = e1000e_open,
7325 .ndo_stop = e1000e_close,
7326 .ndo_start_xmit = e1000_xmit_frame,
7327 .ndo_get_stats64 = e1000e_get_stats64,
7328 .ndo_set_rx_mode = e1000e_set_rx_mode,
7329 .ndo_set_mac_address = e1000_set_mac,
7330 .ndo_change_mtu = e1000_change_mtu,
7331 .ndo_eth_ioctl = e1000_ioctl,
7332 .ndo_tx_timeout = e1000_tx_timeout,
7333 .ndo_validate_addr = eth_validate_addr,
7335 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
7336 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
7337 #ifdef CONFIG_NET_POLL_CONTROLLER
7338 .ndo_poll_controller = e1000_netpoll,
7340 .ndo_set_features = e1000_set_features,
7341 .ndo_fix_features = e1000_fix_features,
7342 .ndo_features_check = passthru_features_check,
7346 * e1000_probe - Device Initialization Routine
7347 * @pdev: PCI device information struct
7348 * @ent: entry in e1000_pci_tbl
7350 * Returns 0 on success, negative on failure
7352 * e1000_probe initializes an adapter identified by a pci_dev structure.
7353 * The OS initialization, configuring of the adapter private structure,
7354 * and a hardware reset occur.
7356 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7358 struct net_device *netdev;
7359 struct e1000_adapter *adapter;
7360 struct e1000_hw *hw;
7361 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7362 resource_size_t mmio_start, mmio_len;
7363 resource_size_t flash_start, flash_len;
7364 static int cards_found;
7365 u16 aspm_disable_flag = 0;
7366 u16 eeprom_data = 0;
7367 u16 eeprom_apme_mask = E1000_EEPROM_APME;
7371 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7372 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7373 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7374 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7375 if (aspm_disable_flag)
7376 e1000e_disable_aspm(pdev, aspm_disable_flag);
7378 err = pci_enable_device_mem(pdev);
7382 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7385 "No usable DMA configuration, aborting\n");
7389 bars = pci_select_bars(pdev, IORESOURCE_MEM);
7390 err = pci_request_selected_regions_exclusive(pdev, bars,
7391 e1000e_driver_name);
7395 pci_set_master(pdev);
7396 /* PCI config space info */
7397 err = pci_save_state(pdev);
7399 goto err_alloc_etherdev;
7402 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7404 goto err_alloc_etherdev;
7406 SET_NETDEV_DEV(netdev, &pdev->dev);
7408 netdev->irq = pdev->irq;
7410 pci_set_drvdata(pdev, netdev);
7411 adapter = netdev_priv(netdev);
7413 adapter->netdev = netdev;
7414 adapter->pdev = pdev;
7416 adapter->pba = ei->pba;
7417 adapter->flags = ei->flags;
7418 adapter->flags2 = ei->flags2;
7419 adapter->hw.adapter = adapter;
7420 adapter->hw.mac.type = ei->mac;
7421 adapter->max_hw_frame_size = ei->max_hw_frame_size;
7422 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7424 mmio_start = pci_resource_start(pdev, 0);
7425 mmio_len = pci_resource_len(pdev, 0);
7428 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7429 if (!adapter->hw.hw_addr)
7432 if ((adapter->flags & FLAG_HAS_FLASH) &&
7433 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7434 (hw->mac.type < e1000_pch_spt)) {
7435 flash_start = pci_resource_start(pdev, 1);
7436 flash_len = pci_resource_len(pdev, 1);
7437 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7438 if (!adapter->hw.flash_address)
7442 /* Set default EEE advertisement */
7443 if (adapter->flags2 & FLAG2_HAS_EEE)
7444 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7446 /* construct the net_device struct */
7447 netdev->netdev_ops = &e1000e_netdev_ops;
7448 e1000e_set_ethtool_ops(netdev);
7449 netdev->watchdog_timeo = 5 * HZ;
7450 netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7451 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7453 netdev->mem_start = mmio_start;
7454 netdev->mem_end = mmio_start + mmio_len;
7456 adapter->bd_number = cards_found++;
7458 e1000e_check_options(adapter);
7460 /* setup adapter struct */
7461 err = e1000_sw_init(adapter);
7465 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7466 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7467 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7469 err = ei->get_variants(adapter);
7473 if ((adapter->flags & FLAG_IS_ICH) &&
7474 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7475 (hw->mac.type < e1000_pch_spt))
7476 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7478 hw->mac.ops.get_bus_info(&adapter->hw);
7480 adapter->hw.phy.autoneg_wait_to_complete = 0;
7482 /* Copper options */
7483 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7484 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7485 adapter->hw.phy.disable_polarity_correction = 0;
7486 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7489 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7490 dev_info(&pdev->dev,
7491 "PHY reset is blocked due to SOL/IDER session.\n");
7493 /* Set initial default active device features */
7494 netdev->features = (NETIF_F_SG |
7495 NETIF_F_HW_VLAN_CTAG_RX |
7496 NETIF_F_HW_VLAN_CTAG_TX |
7503 /* disable TSO for pcie and 10/100 speeds to avoid
7504 * some hardware issues and for i219 to fix transfer
7505 * speed being capped at 60%
7507 if (!(adapter->flags & FLAG_TSO_FORCE)) {
7508 switch (adapter->link_speed) {
7511 e_info("10/100 speed: disabling TSO\n");
7512 netdev->features &= ~NETIF_F_TSO;
7513 netdev->features &= ~NETIF_F_TSO6;
7516 netdev->features |= NETIF_F_TSO;
7517 netdev->features |= NETIF_F_TSO6;
7523 if (hw->mac.type == e1000_pch_spt) {
7524 netdev->features &= ~NETIF_F_TSO;
7525 netdev->features &= ~NETIF_F_TSO6;
7529 /* Set user-changeable features (subset of all device features) */
7530 netdev->hw_features = netdev->features;
7531 netdev->hw_features |= NETIF_F_RXFCS;
7532 netdev->priv_flags |= IFF_SUPP_NOFCS;
7533 netdev->hw_features |= NETIF_F_RXALL;
7535 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7536 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7538 netdev->vlan_features |= (NETIF_F_SG |
7543 netdev->priv_flags |= IFF_UNICAST_FLT;
7545 netdev->features |= NETIF_F_HIGHDMA;
7546 netdev->vlan_features |= NETIF_F_HIGHDMA;
7548 /* MTU range: 68 - max_hw_frame_size */
7549 netdev->min_mtu = ETH_MIN_MTU;
7550 netdev->max_mtu = adapter->max_hw_frame_size -
7551 (VLAN_ETH_HLEN + ETH_FCS_LEN);
7553 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7554 adapter->flags |= FLAG_MNG_PT_ENABLED;
7556 /* before reading the NVM, reset the controller to
7557 * put the device in a known good starting state
7559 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7561 /* systems with ASPM and others may see the checksum fail on the first
7562 * attempt. Let's give it a few tries
7565 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7568 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7574 e1000_eeprom_checks(adapter);
7576 /* copy the MAC address */
7577 if (e1000e_read_mac_addr(&adapter->hw))
7579 "NVM Read Error while reading MAC address\n");
7581 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7583 if (!is_valid_ether_addr(netdev->dev_addr)) {
7584 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7590 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7591 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7593 INIT_WORK(&adapter->reset_task, e1000_reset_task);
7594 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7595 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7596 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7597 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7599 /* Initialize link parameters. User can change them with ethtool */
7600 adapter->hw.mac.autoneg = 1;
7601 adapter->fc_autoneg = true;
7602 adapter->hw.fc.requested_mode = e1000_fc_default;
7603 adapter->hw.fc.current_mode = e1000_fc_default;
7604 adapter->hw.phy.autoneg_advertised = 0x2f;
7606 /* Initial Wake on LAN setting - If APM wake is enabled in
7607 * the EEPROM, enable the ACPI Magic Packet filter
7609 if (adapter->flags & FLAG_APME_IN_WUC) {
7610 /* APME bit in EEPROM is mapped to WUC.APME */
7611 eeprom_data = er32(WUC);
7612 eeprom_apme_mask = E1000_WUC_APME;
7613 if ((hw->mac.type > e1000_ich10lan) &&
7614 (eeprom_data & E1000_WUC_PHY_WAKE))
7615 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7616 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7617 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7618 (adapter->hw.bus.func == 1))
7619 ret_val = e1000_read_nvm(&adapter->hw,
7620 NVM_INIT_CONTROL3_PORT_B,
7623 ret_val = e1000_read_nvm(&adapter->hw,
7624 NVM_INIT_CONTROL3_PORT_A,
7628 /* fetch WoL from EEPROM */
7630 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7631 else if (eeprom_data & eeprom_apme_mask)
7632 adapter->eeprom_wol |= E1000_WUFC_MAG;
7634 /* now that we have the eeprom settings, apply the special cases
7635 * where the eeprom may be wrong or the board simply won't support
7636 * wake on lan on a particular port
7638 if (!(adapter->flags & FLAG_HAS_WOL))
7639 adapter->eeprom_wol = 0;
7641 /* initialize the wol settings based on the eeprom settings */
7642 adapter->wol = adapter->eeprom_wol;
7644 /* make sure adapter isn't asleep if manageability is enabled */
7645 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7646 (hw->mac.ops.check_mng_mode(hw)))
7647 device_wakeup_enable(&pdev->dev);
7649 /* save off EEPROM version number */
7650 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7653 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7654 adapter->eeprom_vers = 0;
7657 /* init PTP hardware clock */
7658 e1000e_ptp_init(adapter);
7660 /* reset the hardware with the new settings */
7661 e1000e_reset(adapter);
7663 /* If the controller has AMT, do not set DRV_LOAD until the interface
7664 * is up. For all other cases, let the f/w know that the h/w is now
7665 * under the control of the driver.
7667 if (!(adapter->flags & FLAG_HAS_AMT))
7668 e1000e_get_hw_control(adapter);
7670 if (hw->mac.type >= e1000_pch_cnp)
7671 adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7673 strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7674 err = register_netdev(netdev);
7678 /* carrier off reporting is important to ethtool even BEFORE open */
7679 netif_carrier_off(netdev);
7681 e1000_print_device_info(adapter);
7683 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7685 if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
7686 pm_runtime_put_noidle(&pdev->dev);
7691 if (!(adapter->flags & FLAG_HAS_AMT))
7692 e1000e_release_hw_control(adapter);
7694 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7695 e1000_phy_hw_reset(&adapter->hw);
7697 kfree(adapter->tx_ring);
7698 kfree(adapter->rx_ring);
7700 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7701 iounmap(adapter->hw.flash_address);
7702 e1000e_reset_interrupt_capability(adapter);
7704 iounmap(adapter->hw.hw_addr);
7706 free_netdev(netdev);
7708 pci_release_mem_regions(pdev);
7711 pci_disable_device(pdev);
7716 * e1000_remove - Device Removal Routine
7717 * @pdev: PCI device information struct
7719 * e1000_remove is called by the PCI subsystem to alert the driver
7720 * that it should release a PCI device. This could be caused by a
7721 * Hot-Plug event, or because the driver is going to be removed from
7724 static void e1000_remove(struct pci_dev *pdev)
7726 struct net_device *netdev = pci_get_drvdata(pdev);
7727 struct e1000_adapter *adapter = netdev_priv(netdev);
7729 e1000e_ptp_remove(adapter);
7731 /* The timers may be rescheduled, so explicitly disable them
7732 * from being rescheduled.
7734 set_bit(__E1000_DOWN, &adapter->state);
7735 del_timer_sync(&adapter->watchdog_timer);
7736 del_timer_sync(&adapter->phy_info_timer);
7738 cancel_work_sync(&adapter->reset_task);
7739 cancel_work_sync(&adapter->watchdog_task);
7740 cancel_work_sync(&adapter->downshift_task);
7741 cancel_work_sync(&adapter->update_phy_task);
7742 cancel_work_sync(&adapter->print_hang_task);
7744 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7745 cancel_work_sync(&adapter->tx_hwtstamp_work);
7746 if (adapter->tx_hwtstamp_skb) {
7747 dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7748 adapter->tx_hwtstamp_skb = NULL;
7752 unregister_netdev(netdev);
7754 if (pci_dev_run_wake(pdev))
7755 pm_runtime_get_noresume(&pdev->dev);
7757 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7758 * would have already happened in close and is redundant.
7760 e1000e_release_hw_control(adapter);
7762 e1000e_reset_interrupt_capability(adapter);
7763 kfree(adapter->tx_ring);
7764 kfree(adapter->rx_ring);
7766 iounmap(adapter->hw.hw_addr);
7767 if ((adapter->hw.flash_address) &&
7768 (adapter->hw.mac.type < e1000_pch_spt))
7769 iounmap(adapter->hw.flash_address);
7770 pci_release_mem_regions(pdev);
7772 free_netdev(netdev);
7774 pci_disable_device(pdev);
7777 /* PCI Error Recovery (ERS) */
7778 static const struct pci_error_handlers e1000_err_handler = {
7779 .error_detected = e1000_io_error_detected,
7780 .slot_reset = e1000_io_slot_reset,
7781 .resume = e1000_io_resume,
7784 static const struct pci_device_id e1000_pci_tbl[] = {
7785 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7786 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7787 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7788 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7790 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7791 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7792 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7793 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7794 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7796 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7797 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7798 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7799 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7801 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7802 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7803 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7805 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7806 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7807 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7809 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7810 board_80003es2lan },
7811 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7812 board_80003es2lan },
7813 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7814 board_80003es2lan },
7815 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7816 board_80003es2lan },
7818 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7819 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7820 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7821 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7822 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7823 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7824 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7825 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7827 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7828 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7829 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7830 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7831 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7832 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7833 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7834 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7835 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7837 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7838 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7839 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7841 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7842 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7843 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7845 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7846 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7847 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7848 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7850 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7851 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7853 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7854 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7855 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7856 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7857 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7858 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7859 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7860 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7861 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7862 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7863 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7864 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7865 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7866 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7867 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7868 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7869 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7870 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7871 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7872 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7873 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7874 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7875 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7876 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7877 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7878 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7879 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7880 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7881 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7882 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7883 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7884 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7885 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7886 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7887 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7888 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7889 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7890 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7891 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7892 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7893 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7894 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7895 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7896 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7897 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7898 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7899 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7900 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_mtp },
7901 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_mtp },
7902 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7903 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7904 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7905 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7906 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7907 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7908 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7909 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7910 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7911 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7912 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7913 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7915 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7917 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7919 static const struct dev_pm_ops e1000_pm_ops = {
7920 #ifdef CONFIG_PM_SLEEP
7921 .prepare = e1000e_pm_prepare,
7922 .suspend = e1000e_pm_suspend,
7923 .resume = e1000e_pm_resume,
7924 .freeze = e1000e_pm_freeze,
7925 .thaw = e1000e_pm_thaw,
7926 .poweroff = e1000e_pm_suspend,
7927 .restore = e1000e_pm_resume,
7929 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7930 e1000e_pm_runtime_idle)
7933 /* PCI Device API Driver */
7934 static struct pci_driver e1000_driver = {
7935 .name = e1000e_driver_name,
7936 .id_table = e1000_pci_tbl,
7937 .probe = e1000_probe,
7938 .remove = e1000_remove,
7940 .pm = &e1000_pm_ops,
7942 .shutdown = e1000_shutdown,
7943 .err_handler = &e1000_err_handler
7947 * e1000_init_module - Driver Registration Routine
7949 * e1000_init_module is the first routine called when the driver is
7950 * loaded. All it does is register with the PCI subsystem.
7952 static int __init e1000_init_module(void)
7954 pr_info("Intel(R) PRO/1000 Network Driver\n");
7955 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7957 return pci_register_driver(&e1000_driver);
7959 module_init(e1000_init_module);
7962 * e1000_exit_module - Driver Exit Cleanup Routine
7964 * e1000_exit_module is called just before the driver is removed
7967 static void __exit e1000_exit_module(void)
7969 pci_unregister_driver(&e1000_driver);
7971 module_exit(e1000_exit_module);
7974 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7975 MODULE_LICENSE("GPL v2");