]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/e1000e/netdev.c
selftests: error out if kernel header files are not yet built
[linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/prefetch.h>
27 #include <linux/suspend.h>
28
29 #include "e1000.h"
30 #define CREATE_TRACE_POINTS
31 #include "e1000e_trace.h"
32
33 char e1000e_driver_name[] = "e1000e";
34
35 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
36 static int debug = -1;
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 static const struct e1000_info *e1000_info_tbl[] = {
41         [board_82571]           = &e1000_82571_info,
42         [board_82572]           = &e1000_82572_info,
43         [board_82573]           = &e1000_82573_info,
44         [board_82574]           = &e1000_82574_info,
45         [board_82583]           = &e1000_82583_info,
46         [board_80003es2lan]     = &e1000_es2_info,
47         [board_ich8lan]         = &e1000_ich8_info,
48         [board_ich9lan]         = &e1000_ich9_info,
49         [board_ich10lan]        = &e1000_ich10_info,
50         [board_pchlan]          = &e1000_pch_info,
51         [board_pch2lan]         = &e1000_pch2_info,
52         [board_pch_lpt]         = &e1000_pch_lpt_info,
53         [board_pch_spt]         = &e1000_pch_spt_info,
54         [board_pch_cnp]         = &e1000_pch_cnp_info,
55         [board_pch_tgp]         = &e1000_pch_tgp_info,
56         [board_pch_adp]         = &e1000_pch_adp_info,
57         [board_pch_mtp]         = &e1000_pch_mtp_info,
58 };
59
60 struct e1000_reg_info {
61         u32 ofs;
62         char *name;
63 };
64
65 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
66         /* General Registers */
67         {E1000_CTRL, "CTRL"},
68         {E1000_STATUS, "STATUS"},
69         {E1000_CTRL_EXT, "CTRL_EXT"},
70
71         /* Interrupt Registers */
72         {E1000_ICR, "ICR"},
73
74         /* Rx Registers */
75         {E1000_RCTL, "RCTL"},
76         {E1000_RDLEN(0), "RDLEN"},
77         {E1000_RDH(0), "RDH"},
78         {E1000_RDT(0), "RDT"},
79         {E1000_RDTR, "RDTR"},
80         {E1000_RXDCTL(0), "RXDCTL"},
81         {E1000_ERT, "ERT"},
82         {E1000_RDBAL(0), "RDBAL"},
83         {E1000_RDBAH(0), "RDBAH"},
84         {E1000_RDFH, "RDFH"},
85         {E1000_RDFT, "RDFT"},
86         {E1000_RDFHS, "RDFHS"},
87         {E1000_RDFTS, "RDFTS"},
88         {E1000_RDFPC, "RDFPC"},
89
90         /* Tx Registers */
91         {E1000_TCTL, "TCTL"},
92         {E1000_TDBAL(0), "TDBAL"},
93         {E1000_TDBAH(0), "TDBAH"},
94         {E1000_TDLEN(0), "TDLEN"},
95         {E1000_TDH(0), "TDH"},
96         {E1000_TDT(0), "TDT"},
97         {E1000_TIDV, "TIDV"},
98         {E1000_TXDCTL(0), "TXDCTL"},
99         {E1000_TADV, "TADV"},
100         {E1000_TARC(0), "TARC"},
101         {E1000_TDFH, "TDFH"},
102         {E1000_TDFT, "TDFT"},
103         {E1000_TDFHS, "TDFHS"},
104         {E1000_TDFTS, "TDFTS"},
105         {E1000_TDFPC, "TDFPC"},
106
107         /* List Terminator */
108         {0, NULL}
109 };
110
111 /**
112  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
113  * @hw: pointer to the HW structure
114  *
115  * When updating the MAC CSR registers, the Manageability Engine (ME) could
116  * be accessing the registers at the same time.  Normally, this is handled in
117  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
118  * accesses later than it should which could result in the register to have
119  * an incorrect value.  Workaround this by checking the FWSM register which
120  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
121  * and try again a number of times.
122  **/
123 static void __ew32_prepare(struct e1000_hw *hw)
124 {
125         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
126
127         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
128                 udelay(50);
129 }
130
131 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
132 {
133         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
134                 __ew32_prepare(hw);
135
136         writel(val, hw->hw_addr + reg);
137 }
138
139 /**
140  * e1000_regdump - register printout routine
141  * @hw: pointer to the HW structure
142  * @reginfo: pointer to the register info table
143  **/
144 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
145 {
146         int n = 0;
147         char rname[16];
148         u32 regs[8];
149
150         switch (reginfo->ofs) {
151         case E1000_RXDCTL(0):
152                 for (n = 0; n < 2; n++)
153                         regs[n] = __er32(hw, E1000_RXDCTL(n));
154                 break;
155         case E1000_TXDCTL(0):
156                 for (n = 0; n < 2; n++)
157                         regs[n] = __er32(hw, E1000_TXDCTL(n));
158                 break;
159         case E1000_TARC(0):
160                 for (n = 0; n < 2; n++)
161                         regs[n] = __er32(hw, E1000_TARC(n));
162                 break;
163         default:
164                 pr_info("%-15s %08x\n",
165                         reginfo->name, __er32(hw, reginfo->ofs));
166                 return;
167         }
168
169         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
170         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
171 }
172
173 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
174                                  struct e1000_buffer *bi)
175 {
176         int i;
177         struct e1000_ps_page *ps_page;
178
179         for (i = 0; i < adapter->rx_ps_pages; i++) {
180                 ps_page = &bi->ps_pages[i];
181
182                 if (ps_page->page) {
183                         pr_info("packet dump for ps_page %d:\n", i);
184                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
185                                        16, 1, page_address(ps_page->page),
186                                        PAGE_SIZE, true);
187                 }
188         }
189 }
190
191 /**
192  * e1000e_dump - Print registers, Tx-ring and Rx-ring
193  * @adapter: board private structure
194  **/
195 static void e1000e_dump(struct e1000_adapter *adapter)
196 {
197         struct net_device *netdev = adapter->netdev;
198         struct e1000_hw *hw = &adapter->hw;
199         struct e1000_reg_info *reginfo;
200         struct e1000_ring *tx_ring = adapter->tx_ring;
201         struct e1000_tx_desc *tx_desc;
202         struct my_u0 {
203                 __le64 a;
204                 __le64 b;
205         } *u0;
206         struct e1000_buffer *buffer_info;
207         struct e1000_ring *rx_ring = adapter->rx_ring;
208         union e1000_rx_desc_packet_split *rx_desc_ps;
209         union e1000_rx_desc_extended *rx_desc;
210         struct my_u1 {
211                 __le64 a;
212                 __le64 b;
213                 __le64 c;
214                 __le64 d;
215         } *u1;
216         u32 staterr;
217         int i = 0;
218
219         if (!netif_msg_hw(adapter))
220                 return;
221
222         /* Print netdevice Info */
223         if (netdev) {
224                 dev_info(&adapter->pdev->dev, "Net device Info\n");
225                 pr_info("Device Name     state            trans_start\n");
226                 pr_info("%-15s %016lX %016lX\n", netdev->name,
227                         netdev->state, dev_trans_start(netdev));
228         }
229
230         /* Print Registers */
231         dev_info(&adapter->pdev->dev, "Register Dump\n");
232         pr_info(" Register Name   Value\n");
233         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
234              reginfo->name; reginfo++) {
235                 e1000_regdump(hw, reginfo);
236         }
237
238         /* Print Tx Ring Summary */
239         if (!netdev || !netif_running(netdev))
240                 return;
241
242         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
243         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
244         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
245         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
246                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
247                 (unsigned long long)buffer_info->dma,
248                 buffer_info->length,
249                 buffer_info->next_to_watch,
250                 (unsigned long long)buffer_info->time_stamp);
251
252         /* Print Tx Ring */
253         if (!netif_msg_tx_done(adapter))
254                 goto rx_ring_summary;
255
256         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
257
258         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
259          *
260          * Legacy Transmit Descriptor
261          *   +--------------------------------------------------------------+
262          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
263          *   +--------------------------------------------------------------+
264          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
265          *   +--------------------------------------------------------------+
266          *   63       48 47        36 35    32 31     24 23    16 15        0
267          *
268          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
269          *   63      48 47    40 39       32 31             16 15    8 7      0
270          *   +----------------------------------------------------------------+
271          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
272          *   +----------------------------------------------------------------+
273          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
274          *   +----------------------------------------------------------------+
275          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
276          *
277          * Extended Data Descriptor (DTYP=0x1)
278          *   +----------------------------------------------------------------+
279          * 0 |                     Buffer Address [63:0]                      |
280          *   +----------------------------------------------------------------+
281          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
282          *   +----------------------------------------------------------------+
283          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
284          */
285         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
286         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
287         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
288         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
289                 const char *next_desc;
290                 tx_desc = E1000_TX_DESC(*tx_ring, i);
291                 buffer_info = &tx_ring->buffer_info[i];
292                 u0 = (struct my_u0 *)tx_desc;
293                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
294                         next_desc = " NTC/U";
295                 else if (i == tx_ring->next_to_use)
296                         next_desc = " NTU";
297                 else if (i == tx_ring->next_to_clean)
298                         next_desc = " NTC";
299                 else
300                         next_desc = "";
301                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
302                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
303                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
304                         i,
305                         (unsigned long long)le64_to_cpu(u0->a),
306                         (unsigned long long)le64_to_cpu(u0->b),
307                         (unsigned long long)buffer_info->dma,
308                         buffer_info->length, buffer_info->next_to_watch,
309                         (unsigned long long)buffer_info->time_stamp,
310                         buffer_info->skb, next_desc);
311
312                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
313                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
314                                        16, 1, buffer_info->skb->data,
315                                        buffer_info->skb->len, true);
316         }
317
318         /* Print Rx Ring Summary */
319 rx_ring_summary:
320         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
321         pr_info("Queue [NTU] [NTC]\n");
322         pr_info(" %5d %5X %5X\n",
323                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
324
325         /* Print Rx Ring */
326         if (!netif_msg_rx_status(adapter))
327                 return;
328
329         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
330         switch (adapter->rx_ps_pages) {
331         case 1:
332         case 2:
333         case 3:
334                 /* [Extended] Packet Split Receive Descriptor Format
335                  *
336                  *    +-----------------------------------------------------+
337                  *  0 |                Buffer Address 0 [63:0]              |
338                  *    +-----------------------------------------------------+
339                  *  8 |                Buffer Address 1 [63:0]              |
340                  *    +-----------------------------------------------------+
341                  * 16 |                Buffer Address 2 [63:0]              |
342                  *    +-----------------------------------------------------+
343                  * 24 |                Buffer Address 3 [63:0]              |
344                  *    +-----------------------------------------------------+
345                  */
346                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
347                 /* [Extended] Receive Descriptor (Write-Back) Format
348                  *
349                  *   63       48 47    32 31     13 12    8 7    4 3        0
350                  *   +------------------------------------------------------+
351                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
352                  *   | Checksum | Ident  |         | Queue |      |  Type   |
353                  *   +------------------------------------------------------+
354                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
355                  *   +------------------------------------------------------+
356                  *   63       48 47    32 31            20 19               0
357                  */
358                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
359                 for (i = 0; i < rx_ring->count; i++) {
360                         const char *next_desc;
361                         buffer_info = &rx_ring->buffer_info[i];
362                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
363                         u1 = (struct my_u1 *)rx_desc_ps;
364                         staterr =
365                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
366
367                         if (i == rx_ring->next_to_use)
368                                 next_desc = " NTU";
369                         else if (i == rx_ring->next_to_clean)
370                                 next_desc = " NTC";
371                         else
372                                 next_desc = "";
373
374                         if (staterr & E1000_RXD_STAT_DD) {
375                                 /* Descriptor Done */
376                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
377                                         "RWB", i,
378                                         (unsigned long long)le64_to_cpu(u1->a),
379                                         (unsigned long long)le64_to_cpu(u1->b),
380                                         (unsigned long long)le64_to_cpu(u1->c),
381                                         (unsigned long long)le64_to_cpu(u1->d),
382                                         buffer_info->skb, next_desc);
383                         } else {
384                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
385                                         "R  ", i,
386                                         (unsigned long long)le64_to_cpu(u1->a),
387                                         (unsigned long long)le64_to_cpu(u1->b),
388                                         (unsigned long long)le64_to_cpu(u1->c),
389                                         (unsigned long long)le64_to_cpu(u1->d),
390                                         (unsigned long long)buffer_info->dma,
391                                         buffer_info->skb, next_desc);
392
393                                 if (netif_msg_pktdata(adapter))
394                                         e1000e_dump_ps_pages(adapter,
395                                                              buffer_info);
396                         }
397                 }
398                 break;
399         default:
400         case 0:
401                 /* Extended Receive Descriptor (Read) Format
402                  *
403                  *   +-----------------------------------------------------+
404                  * 0 |                Buffer Address [63:0]                |
405                  *   +-----------------------------------------------------+
406                  * 8 |                      Reserved                       |
407                  *   +-----------------------------------------------------+
408                  */
409                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
410                 /* Extended Receive Descriptor (Write-Back) Format
411                  *
412                  *   63       48 47    32 31    24 23            4 3        0
413                  *   +------------------------------------------------------+
414                  *   |     RSS Hash      |        |               |         |
415                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
416                  *   | Packet   | IP     |        |               |  Type   |
417                  *   | Checksum | Ident  |        |               |         |
418                  *   +------------------------------------------------------+
419                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
420                  *   +------------------------------------------------------+
421                  *   63       48 47    32 31            20 19               0
422                  */
423                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
424
425                 for (i = 0; i < rx_ring->count; i++) {
426                         const char *next_desc;
427
428                         buffer_info = &rx_ring->buffer_info[i];
429                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
430                         u1 = (struct my_u1 *)rx_desc;
431                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
432
433                         if (i == rx_ring->next_to_use)
434                                 next_desc = " NTU";
435                         else if (i == rx_ring->next_to_clean)
436                                 next_desc = " NTC";
437                         else
438                                 next_desc = "";
439
440                         if (staterr & E1000_RXD_STAT_DD) {
441                                 /* Descriptor Done */
442                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
443                                         "RWB", i,
444                                         (unsigned long long)le64_to_cpu(u1->a),
445                                         (unsigned long long)le64_to_cpu(u1->b),
446                                         buffer_info->skb, next_desc);
447                         } else {
448                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
449                                         "R  ", i,
450                                         (unsigned long long)le64_to_cpu(u1->a),
451                                         (unsigned long long)le64_to_cpu(u1->b),
452                                         (unsigned long long)buffer_info->dma,
453                                         buffer_info->skb, next_desc);
454
455                                 if (netif_msg_pktdata(adapter) &&
456                                     buffer_info->skb)
457                                         print_hex_dump(KERN_INFO, "",
458                                                        DUMP_PREFIX_ADDRESS, 16,
459                                                        1,
460                                                        buffer_info->skb->data,
461                                                        adapter->rx_buffer_len,
462                                                        true);
463                         }
464                 }
465         }
466 }
467
468 /**
469  * e1000_desc_unused - calculate if we have unused descriptors
470  * @ring: pointer to ring struct to perform calculation on
471  **/
472 static int e1000_desc_unused(struct e1000_ring *ring)
473 {
474         if (ring->next_to_clean > ring->next_to_use)
475                 return ring->next_to_clean - ring->next_to_use - 1;
476
477         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
478 }
479
480 /**
481  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
482  * @adapter: board private structure
483  * @hwtstamps: time stamp structure to update
484  * @systim: unsigned 64bit system time value.
485  *
486  * Convert the system time value stored in the RX/TXSTMP registers into a
487  * hwtstamp which can be used by the upper level time stamping functions.
488  *
489  * The 'systim_lock' spinlock is used to protect the consistency of the
490  * system time value. This is needed because reading the 64 bit time
491  * value involves reading two 32 bit registers. The first read latches the
492  * value.
493  **/
494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
495                                       struct skb_shared_hwtstamps *hwtstamps,
496                                       u64 systim)
497 {
498         u64 ns;
499         unsigned long flags;
500
501         spin_lock_irqsave(&adapter->systim_lock, flags);
502         ns = timecounter_cyc2time(&adapter->tc, systim);
503         spin_unlock_irqrestore(&adapter->systim_lock, flags);
504
505         memset(hwtstamps, 0, sizeof(*hwtstamps));
506         hwtstamps->hwtstamp = ns_to_ktime(ns);
507 }
508
509 /**
510  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
511  * @adapter: board private structure
512  * @status: descriptor extended error and status field
513  * @skb: particular skb to include time stamp
514  *
515  * If the time stamp is valid, convert it into the timecounter ns value
516  * and store that result into the shhwtstamps structure which is passed
517  * up the network stack.
518  **/
519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
520                                struct sk_buff *skb)
521 {
522         struct e1000_hw *hw = &adapter->hw;
523         u64 rxstmp;
524
525         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
526             !(status & E1000_RXDEXT_STATERR_TST) ||
527             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
528                 return;
529
530         /* The Rx time stamp registers contain the time stamp.  No other
531          * received packet will be time stamped until the Rx time stamp
532          * registers are read.  Because only one packet can be time stamped
533          * at a time, the register values must belong to this packet and
534          * therefore none of the other additional attributes need to be
535          * compared.
536          */
537         rxstmp = (u64)er32(RXSTMPL);
538         rxstmp |= (u64)er32(RXSTMPH) << 32;
539         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
540
541         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
542 }
543
544 /**
545  * e1000_receive_skb - helper function to handle Rx indications
546  * @adapter: board private structure
547  * @netdev: pointer to netdev struct
548  * @staterr: descriptor extended error and status field as written by hardware
549  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
550  * @skb: pointer to sk_buff to be indicated to stack
551  **/
552 static void e1000_receive_skb(struct e1000_adapter *adapter,
553                               struct net_device *netdev, struct sk_buff *skb,
554                               u32 staterr, __le16 vlan)
555 {
556         u16 tag = le16_to_cpu(vlan);
557
558         e1000e_rx_hwtstamp(adapter, staterr, skb);
559
560         skb->protocol = eth_type_trans(skb, netdev);
561
562         if (staterr & E1000_RXD_STAT_VP)
563                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
564
565         napi_gro_receive(&adapter->napi, skb);
566 }
567
568 /**
569  * e1000_rx_checksum - Receive Checksum Offload
570  * @adapter: board private structure
571  * @status_err: receive descriptor status and error fields
572  * @skb: socket buffer with received data
573  **/
574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
575                               struct sk_buff *skb)
576 {
577         u16 status = (u16)status_err;
578         u8 errors = (u8)(status_err >> 24);
579
580         skb_checksum_none_assert(skb);
581
582         /* Rx checksum disabled */
583         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
584                 return;
585
586         /* Ignore Checksum bit is set */
587         if (status & E1000_RXD_STAT_IXSM)
588                 return;
589
590         /* TCP/UDP checksum error bit or IP checksum error bit is set */
591         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
592                 /* let the stack verify checksum errors */
593                 adapter->hw_csum_err++;
594                 return;
595         }
596
597         /* TCP/UDP Checksum has not been calculated */
598         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
599                 return;
600
601         /* It must be a TCP or UDP packet with a valid checksum */
602         skb->ip_summed = CHECKSUM_UNNECESSARY;
603         adapter->hw_csum_good++;
604 }
605
606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
607 {
608         struct e1000_adapter *adapter = rx_ring->adapter;
609         struct e1000_hw *hw = &adapter->hw;
610
611         __ew32_prepare(hw);
612         writel(i, rx_ring->tail);
613
614         if (unlikely(i != readl(rx_ring->tail))) {
615                 u32 rctl = er32(RCTL);
616
617                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
618                 e_err("ME firmware caused invalid RDT - resetting\n");
619                 schedule_work(&adapter->reset_task);
620         }
621 }
622
623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
624 {
625         struct e1000_adapter *adapter = tx_ring->adapter;
626         struct e1000_hw *hw = &adapter->hw;
627
628         __ew32_prepare(hw);
629         writel(i, tx_ring->tail);
630
631         if (unlikely(i != readl(tx_ring->tail))) {
632                 u32 tctl = er32(TCTL);
633
634                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
635                 e_err("ME firmware caused invalid TDT - resetting\n");
636                 schedule_work(&adapter->reset_task);
637         }
638 }
639
640 /**
641  * e1000_alloc_rx_buffers - Replace used receive buffers
642  * @rx_ring: Rx descriptor ring
643  * @cleaned_count: number to reallocate
644  * @gfp: flags for allocation
645  **/
646 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
647                                    int cleaned_count, gfp_t gfp)
648 {
649         struct e1000_adapter *adapter = rx_ring->adapter;
650         struct net_device *netdev = adapter->netdev;
651         struct pci_dev *pdev = adapter->pdev;
652         union e1000_rx_desc_extended *rx_desc;
653         struct e1000_buffer *buffer_info;
654         struct sk_buff *skb;
655         unsigned int i;
656         unsigned int bufsz = adapter->rx_buffer_len;
657
658         i = rx_ring->next_to_use;
659         buffer_info = &rx_ring->buffer_info[i];
660
661         while (cleaned_count--) {
662                 skb = buffer_info->skb;
663                 if (skb) {
664                         skb_trim(skb, 0);
665                         goto map_skb;
666                 }
667
668                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
669                 if (!skb) {
670                         /* Better luck next round */
671                         adapter->alloc_rx_buff_failed++;
672                         break;
673                 }
674
675                 buffer_info->skb = skb;
676 map_skb:
677                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
678                                                   adapter->rx_buffer_len,
679                                                   DMA_FROM_DEVICE);
680                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
681                         dev_err(&pdev->dev, "Rx DMA map failed\n");
682                         adapter->rx_dma_failed++;
683                         break;
684                 }
685
686                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
687                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
688
689                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
690                         /* Force memory writes to complete before letting h/w
691                          * know there are new descriptors to fetch.  (Only
692                          * applicable for weak-ordered memory model archs,
693                          * such as IA-64).
694                          */
695                         wmb();
696                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
697                                 e1000e_update_rdt_wa(rx_ring, i);
698                         else
699                                 writel(i, rx_ring->tail);
700                 }
701                 i++;
702                 if (i == rx_ring->count)
703                         i = 0;
704                 buffer_info = &rx_ring->buffer_info[i];
705         }
706
707         rx_ring->next_to_use = i;
708 }
709
710 /**
711  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
712  * @rx_ring: Rx descriptor ring
713  * @cleaned_count: number to reallocate
714  * @gfp: flags for allocation
715  **/
716 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
717                                       int cleaned_count, gfp_t gfp)
718 {
719         struct e1000_adapter *adapter = rx_ring->adapter;
720         struct net_device *netdev = adapter->netdev;
721         struct pci_dev *pdev = adapter->pdev;
722         union e1000_rx_desc_packet_split *rx_desc;
723         struct e1000_buffer *buffer_info;
724         struct e1000_ps_page *ps_page;
725         struct sk_buff *skb;
726         unsigned int i, j;
727
728         i = rx_ring->next_to_use;
729         buffer_info = &rx_ring->buffer_info[i];
730
731         while (cleaned_count--) {
732                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
733
734                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
735                         ps_page = &buffer_info->ps_pages[j];
736                         if (j >= adapter->rx_ps_pages) {
737                                 /* all unused desc entries get hw null ptr */
738                                 rx_desc->read.buffer_addr[j + 1] =
739                                     ~cpu_to_le64(0);
740                                 continue;
741                         }
742                         if (!ps_page->page) {
743                                 ps_page->page = alloc_page(gfp);
744                                 if (!ps_page->page) {
745                                         adapter->alloc_rx_buff_failed++;
746                                         goto no_buffers;
747                                 }
748                                 ps_page->dma = dma_map_page(&pdev->dev,
749                                                             ps_page->page,
750                                                             0, PAGE_SIZE,
751                                                             DMA_FROM_DEVICE);
752                                 if (dma_mapping_error(&pdev->dev,
753                                                       ps_page->dma)) {
754                                         dev_err(&adapter->pdev->dev,
755                                                 "Rx DMA page map failed\n");
756                                         adapter->rx_dma_failed++;
757                                         goto no_buffers;
758                                 }
759                         }
760                         /* Refresh the desc even if buffer_addrs
761                          * didn't change because each write-back
762                          * erases this info.
763                          */
764                         rx_desc->read.buffer_addr[j + 1] =
765                             cpu_to_le64(ps_page->dma);
766                 }
767
768                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
769                                                   gfp);
770
771                 if (!skb) {
772                         adapter->alloc_rx_buff_failed++;
773                         break;
774                 }
775
776                 buffer_info->skb = skb;
777                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
778                                                   adapter->rx_ps_bsize0,
779                                                   DMA_FROM_DEVICE);
780                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
781                         dev_err(&pdev->dev, "Rx DMA map failed\n");
782                         adapter->rx_dma_failed++;
783                         /* cleanup skb */
784                         dev_kfree_skb_any(skb);
785                         buffer_info->skb = NULL;
786                         break;
787                 }
788
789                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
790
791                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
792                         /* Force memory writes to complete before letting h/w
793                          * know there are new descriptors to fetch.  (Only
794                          * applicable for weak-ordered memory model archs,
795                          * such as IA-64).
796                          */
797                         wmb();
798                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
799                                 e1000e_update_rdt_wa(rx_ring, i << 1);
800                         else
801                                 writel(i << 1, rx_ring->tail);
802                 }
803
804                 i++;
805                 if (i == rx_ring->count)
806                         i = 0;
807                 buffer_info = &rx_ring->buffer_info[i];
808         }
809
810 no_buffers:
811         rx_ring->next_to_use = i;
812 }
813
814 /**
815  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
816  * @rx_ring: Rx descriptor ring
817  * @cleaned_count: number of buffers to allocate this pass
818  * @gfp: flags for allocation
819  **/
820
821 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
822                                          int cleaned_count, gfp_t gfp)
823 {
824         struct e1000_adapter *adapter = rx_ring->adapter;
825         struct net_device *netdev = adapter->netdev;
826         struct pci_dev *pdev = adapter->pdev;
827         union e1000_rx_desc_extended *rx_desc;
828         struct e1000_buffer *buffer_info;
829         struct sk_buff *skb;
830         unsigned int i;
831         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
832
833         i = rx_ring->next_to_use;
834         buffer_info = &rx_ring->buffer_info[i];
835
836         while (cleaned_count--) {
837                 skb = buffer_info->skb;
838                 if (skb) {
839                         skb_trim(skb, 0);
840                         goto check_page;
841                 }
842
843                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
844                 if (unlikely(!skb)) {
845                         /* Better luck next round */
846                         adapter->alloc_rx_buff_failed++;
847                         break;
848                 }
849
850                 buffer_info->skb = skb;
851 check_page:
852                 /* allocate a new page if necessary */
853                 if (!buffer_info->page) {
854                         buffer_info->page = alloc_page(gfp);
855                         if (unlikely(!buffer_info->page)) {
856                                 adapter->alloc_rx_buff_failed++;
857                                 break;
858                         }
859                 }
860
861                 if (!buffer_info->dma) {
862                         buffer_info->dma = dma_map_page(&pdev->dev,
863                                                         buffer_info->page, 0,
864                                                         PAGE_SIZE,
865                                                         DMA_FROM_DEVICE);
866                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
867                                 adapter->alloc_rx_buff_failed++;
868                                 break;
869                         }
870                 }
871
872                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
873                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
874
875                 if (unlikely(++i == rx_ring->count))
876                         i = 0;
877                 buffer_info = &rx_ring->buffer_info[i];
878         }
879
880         if (likely(rx_ring->next_to_use != i)) {
881                 rx_ring->next_to_use = i;
882                 if (unlikely(i-- == 0))
883                         i = (rx_ring->count - 1);
884
885                 /* Force memory writes to complete before letting h/w
886                  * know there are new descriptors to fetch.  (Only
887                  * applicable for weak-ordered memory model archs,
888                  * such as IA-64).
889                  */
890                 wmb();
891                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
892                         e1000e_update_rdt_wa(rx_ring, i);
893                 else
894                         writel(i, rx_ring->tail);
895         }
896 }
897
898 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
899                                  struct sk_buff *skb)
900 {
901         if (netdev->features & NETIF_F_RXHASH)
902                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
903 }
904
905 /**
906  * e1000_clean_rx_irq - Send received data up the network stack
907  * @rx_ring: Rx descriptor ring
908  * @work_done: output parameter for indicating completed work
909  * @work_to_do: how many packets we can clean
910  *
911  * the return value indicates whether actual cleaning was done, there
912  * is no guarantee that everything was cleaned
913  **/
914 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
915                                int work_to_do)
916 {
917         struct e1000_adapter *adapter = rx_ring->adapter;
918         struct net_device *netdev = adapter->netdev;
919         struct pci_dev *pdev = adapter->pdev;
920         struct e1000_hw *hw = &adapter->hw;
921         union e1000_rx_desc_extended *rx_desc, *next_rxd;
922         struct e1000_buffer *buffer_info, *next_buffer;
923         u32 length, staterr;
924         unsigned int i;
925         int cleaned_count = 0;
926         bool cleaned = false;
927         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
928
929         i = rx_ring->next_to_clean;
930         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
931         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
932         buffer_info = &rx_ring->buffer_info[i];
933
934         while (staterr & E1000_RXD_STAT_DD) {
935                 struct sk_buff *skb;
936
937                 if (*work_done >= work_to_do)
938                         break;
939                 (*work_done)++;
940                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
941
942                 skb = buffer_info->skb;
943                 buffer_info->skb = NULL;
944
945                 prefetch(skb->data - NET_IP_ALIGN);
946
947                 i++;
948                 if (i == rx_ring->count)
949                         i = 0;
950                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
951                 prefetch(next_rxd);
952
953                 next_buffer = &rx_ring->buffer_info[i];
954
955                 cleaned = true;
956                 cleaned_count++;
957                 dma_unmap_single(&pdev->dev, buffer_info->dma,
958                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
959                 buffer_info->dma = 0;
960
961                 length = le16_to_cpu(rx_desc->wb.upper.length);
962
963                 /* !EOP means multiple descriptors were used to store a single
964                  * packet, if that's the case we need to toss it.  In fact, we
965                  * need to toss every packet with the EOP bit clear and the
966                  * next frame that _does_ have the EOP bit set, as it is by
967                  * definition only a frame fragment
968                  */
969                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
970                         adapter->flags2 |= FLAG2_IS_DISCARDING;
971
972                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
973                         /* All receives must fit into a single buffer */
974                         e_dbg("Receive packet consumed multiple buffers\n");
975                         /* recycle */
976                         buffer_info->skb = skb;
977                         if (staterr & E1000_RXD_STAT_EOP)
978                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
979                         goto next_desc;
980                 }
981
982                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
983                              !(netdev->features & NETIF_F_RXALL))) {
984                         /* recycle */
985                         buffer_info->skb = skb;
986                         goto next_desc;
987                 }
988
989                 /* adjust length to remove Ethernet CRC */
990                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
991                         /* If configured to store CRC, don't subtract FCS,
992                          * but keep the FCS bytes out of the total_rx_bytes
993                          * counter
994                          */
995                         if (netdev->features & NETIF_F_RXFCS)
996                                 total_rx_bytes -= 4;
997                         else
998                                 length -= 4;
999                 }
1000
1001                 total_rx_bytes += length;
1002                 total_rx_packets++;
1003
1004                 /* code added for copybreak, this should improve
1005                  * performance for small packets with large amounts
1006                  * of reassembly being done in the stack
1007                  */
1008                 if (length < copybreak) {
1009                         struct sk_buff *new_skb =
1010                                 napi_alloc_skb(&adapter->napi, length);
1011                         if (new_skb) {
1012                                 skb_copy_to_linear_data_offset(new_skb,
1013                                                                -NET_IP_ALIGN,
1014                                                                (skb->data -
1015                                                                 NET_IP_ALIGN),
1016                                                                (length +
1017                                                                 NET_IP_ALIGN));
1018                                 /* save the skb in buffer_info as good */
1019                                 buffer_info->skb = skb;
1020                                 skb = new_skb;
1021                         }
1022                         /* else just continue with the old one */
1023                 }
1024                 /* end copybreak code */
1025                 skb_put(skb, length);
1026
1027                 /* Receive Checksum Offload */
1028                 e1000_rx_checksum(adapter, staterr, skb);
1029
1030                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1031
1032                 e1000_receive_skb(adapter, netdev, skb, staterr,
1033                                   rx_desc->wb.upper.vlan);
1034
1035 next_desc:
1036                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1037
1038                 /* return some buffers to hardware, one at a time is too slow */
1039                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1040                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1041                                               GFP_ATOMIC);
1042                         cleaned_count = 0;
1043                 }
1044
1045                 /* use prefetched values */
1046                 rx_desc = next_rxd;
1047                 buffer_info = next_buffer;
1048
1049                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1050         }
1051         rx_ring->next_to_clean = i;
1052
1053         cleaned_count = e1000_desc_unused(rx_ring);
1054         if (cleaned_count)
1055                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1056
1057         adapter->total_rx_bytes += total_rx_bytes;
1058         adapter->total_rx_packets += total_rx_packets;
1059         return cleaned;
1060 }
1061
1062 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1063                             struct e1000_buffer *buffer_info,
1064                             bool drop)
1065 {
1066         struct e1000_adapter *adapter = tx_ring->adapter;
1067
1068         if (buffer_info->dma) {
1069                 if (buffer_info->mapped_as_page)
1070                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1071                                        buffer_info->length, DMA_TO_DEVICE);
1072                 else
1073                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1074                                          buffer_info->length, DMA_TO_DEVICE);
1075                 buffer_info->dma = 0;
1076         }
1077         if (buffer_info->skb) {
1078                 if (drop)
1079                         dev_kfree_skb_any(buffer_info->skb);
1080                 else
1081                         dev_consume_skb_any(buffer_info->skb);
1082                 buffer_info->skb = NULL;
1083         }
1084         buffer_info->time_stamp = 0;
1085 }
1086
1087 static void e1000_print_hw_hang(struct work_struct *work)
1088 {
1089         struct e1000_adapter *adapter = container_of(work,
1090                                                      struct e1000_adapter,
1091                                                      print_hang_task);
1092         struct net_device *netdev = adapter->netdev;
1093         struct e1000_ring *tx_ring = adapter->tx_ring;
1094         unsigned int i = tx_ring->next_to_clean;
1095         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1096         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1097         struct e1000_hw *hw = &adapter->hw;
1098         u16 phy_status, phy_1000t_status, phy_ext_status;
1099         u16 pci_status;
1100
1101         if (test_bit(__E1000_DOWN, &adapter->state))
1102                 return;
1103
1104         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1105                 /* May be block on write-back, flush and detect again
1106                  * flush pending descriptor writebacks to memory
1107                  */
1108                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1109                 /* execute the writes immediately */
1110                 e1e_flush();
1111                 /* Due to rare timing issues, write to TIDV again to ensure
1112                  * the write is successful
1113                  */
1114                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115                 /* execute the writes immediately */
1116                 e1e_flush();
1117                 adapter->tx_hang_recheck = true;
1118                 return;
1119         }
1120         adapter->tx_hang_recheck = false;
1121
1122         if (er32(TDH(0)) == er32(TDT(0))) {
1123                 e_dbg("false hang detected, ignoring\n");
1124                 return;
1125         }
1126
1127         /* Real hang detected */
1128         netif_stop_queue(netdev);
1129
1130         e1e_rphy(hw, MII_BMSR, &phy_status);
1131         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1132         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1133
1134         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1135
1136         /* detected Hardware unit hang */
1137         e_err("Detected Hardware Unit Hang:\n"
1138               "  TDH                  <%x>\n"
1139               "  TDT                  <%x>\n"
1140               "  next_to_use          <%x>\n"
1141               "  next_to_clean        <%x>\n"
1142               "buffer_info[next_to_clean]:\n"
1143               "  time_stamp           <%lx>\n"
1144               "  next_to_watch        <%x>\n"
1145               "  jiffies              <%lx>\n"
1146               "  next_to_watch.status <%x>\n"
1147               "MAC Status             <%x>\n"
1148               "PHY Status             <%x>\n"
1149               "PHY 1000BASE-T Status  <%x>\n"
1150               "PHY Extended Status    <%x>\n"
1151               "PCI Status             <%x>\n",
1152               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1153               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1154               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1155               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1156
1157         e1000e_dump(adapter);
1158
1159         /* Suggest workaround for known h/w issue */
1160         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1161                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1162 }
1163
1164 /**
1165  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166  * @work: pointer to work struct
1167  *
1168  * This work function polls the TSYNCTXCTL valid bit to determine when a
1169  * timestamp has been taken for the current stored skb.  The timestamp must
1170  * be for this skb because only one such packet is allowed in the queue.
1171  */
1172 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1173 {
1174         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1175                                                      tx_hwtstamp_work);
1176         struct e1000_hw *hw = &adapter->hw;
1177
1178         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1179                 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1180                 struct skb_shared_hwtstamps shhwtstamps;
1181                 u64 txstmp;
1182
1183                 txstmp = er32(TXSTMPL);
1184                 txstmp |= (u64)er32(TXSTMPH) << 32;
1185
1186                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1187
1188                 /* Clear the global tx_hwtstamp_skb pointer and force writes
1189                  * prior to notifying the stack of a Tx timestamp.
1190                  */
1191                 adapter->tx_hwtstamp_skb = NULL;
1192                 wmb(); /* force write prior to skb_tstamp_tx */
1193
1194                 skb_tstamp_tx(skb, &shhwtstamps);
1195                 dev_consume_skb_any(skb);
1196         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197                               + adapter->tx_timeout_factor * HZ)) {
1198                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199                 adapter->tx_hwtstamp_skb = NULL;
1200                 adapter->tx_hwtstamp_timeouts++;
1201                 e_warn("clearing Tx timestamp hang\n");
1202         } else {
1203                 /* reschedule to check later */
1204                 schedule_work(&adapter->tx_hwtstamp_work);
1205         }
1206 }
1207
1208 /**
1209  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210  * @tx_ring: Tx descriptor ring
1211  *
1212  * the return value indicates whether actual cleaning was done, there
1213  * is no guarantee that everything was cleaned
1214  **/
1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216 {
1217         struct e1000_adapter *adapter = tx_ring->adapter;
1218         struct net_device *netdev = adapter->netdev;
1219         struct e1000_hw *hw = &adapter->hw;
1220         struct e1000_tx_desc *tx_desc, *eop_desc;
1221         struct e1000_buffer *buffer_info;
1222         unsigned int i, eop;
1223         unsigned int count = 0;
1224         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225         unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227         i = tx_ring->next_to_clean;
1228         eop = tx_ring->buffer_info[i].next_to_watch;
1229         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232                (count < tx_ring->count)) {
1233                 bool cleaned = false;
1234
1235                 dma_rmb();              /* read buffer_info after eop_desc */
1236                 for (; !cleaned; count++) {
1237                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1238                         buffer_info = &tx_ring->buffer_info[i];
1239                         cleaned = (i == eop);
1240
1241                         if (cleaned) {
1242                                 total_tx_packets += buffer_info->segs;
1243                                 total_tx_bytes += buffer_info->bytecount;
1244                                 if (buffer_info->skb) {
1245                                         bytes_compl += buffer_info->skb->len;
1246                                         pkts_compl++;
1247                                 }
1248                         }
1249
1250                         e1000_put_txbuf(tx_ring, buffer_info, false);
1251                         tx_desc->upper.data = 0;
1252
1253                         i++;
1254                         if (i == tx_ring->count)
1255                                 i = 0;
1256                 }
1257
1258                 if (i == tx_ring->next_to_use)
1259                         break;
1260                 eop = tx_ring->buffer_info[i].next_to_watch;
1261                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262         }
1263
1264         tx_ring->next_to_clean = i;
1265
1266         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268 #define TX_WAKE_THRESHOLD 32
1269         if (count && netif_carrier_ok(netdev) &&
1270             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271                 /* Make sure that anybody stopping the queue after this
1272                  * sees the new next_to_clean.
1273                  */
1274                 smp_mb();
1275
1276                 if (netif_queue_stopped(netdev) &&
1277                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1278                         netif_wake_queue(netdev);
1279                         ++adapter->restart_queue;
1280                 }
1281         }
1282
1283         if (adapter->detect_tx_hung) {
1284                 /* Detect a transmit hang in hardware, this serializes the
1285                  * check with the clearing of time_stamp and movement of i
1286                  */
1287                 adapter->detect_tx_hung = false;
1288                 if (tx_ring->buffer_info[i].time_stamp &&
1289                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290                                + (adapter->tx_timeout_factor * HZ)) &&
1291                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1292                         schedule_work(&adapter->print_hang_task);
1293                 else
1294                         adapter->tx_hang_recheck = false;
1295         }
1296         adapter->total_tx_bytes += total_tx_bytes;
1297         adapter->total_tx_packets += total_tx_packets;
1298         return count < tx_ring->count;
1299 }
1300
1301 /**
1302  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303  * @rx_ring: Rx descriptor ring
1304  * @work_done: output parameter for indicating completed work
1305  * @work_to_do: how many packets we can clean
1306  *
1307  * the return value indicates whether actual cleaning was done, there
1308  * is no guarantee that everything was cleaned
1309  **/
1310 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1311                                   int work_to_do)
1312 {
1313         struct e1000_adapter *adapter = rx_ring->adapter;
1314         struct e1000_hw *hw = &adapter->hw;
1315         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1316         struct net_device *netdev = adapter->netdev;
1317         struct pci_dev *pdev = adapter->pdev;
1318         struct e1000_buffer *buffer_info, *next_buffer;
1319         struct e1000_ps_page *ps_page;
1320         struct sk_buff *skb;
1321         unsigned int i, j;
1322         u32 length, staterr;
1323         int cleaned_count = 0;
1324         bool cleaned = false;
1325         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1326
1327         i = rx_ring->next_to_clean;
1328         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1329         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1330         buffer_info = &rx_ring->buffer_info[i];
1331
1332         while (staterr & E1000_RXD_STAT_DD) {
1333                 if (*work_done >= work_to_do)
1334                         break;
1335                 (*work_done)++;
1336                 skb = buffer_info->skb;
1337                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1338
1339                 /* in the packet split case this is header only */
1340                 prefetch(skb->data - NET_IP_ALIGN);
1341
1342                 i++;
1343                 if (i == rx_ring->count)
1344                         i = 0;
1345                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1346                 prefetch(next_rxd);
1347
1348                 next_buffer = &rx_ring->buffer_info[i];
1349
1350                 cleaned = true;
1351                 cleaned_count++;
1352                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1353                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1354                 buffer_info->dma = 0;
1355
1356                 /* see !EOP comment in other Rx routine */
1357                 if (!(staterr & E1000_RXD_STAT_EOP))
1358                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1359
1360                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1361                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362                         dev_kfree_skb_irq(skb);
1363                         if (staterr & E1000_RXD_STAT_EOP)
1364                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1365                         goto next_desc;
1366                 }
1367
1368                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1369                              !(netdev->features & NETIF_F_RXALL))) {
1370                         dev_kfree_skb_irq(skb);
1371                         goto next_desc;
1372                 }
1373
1374                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1375
1376                 if (!length) {
1377                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1378                         dev_kfree_skb_irq(skb);
1379                         goto next_desc;
1380                 }
1381
1382                 /* Good Receive */
1383                 skb_put(skb, length);
1384
1385                 {
1386                         /* this looks ugly, but it seems compiler issues make
1387                          * it more efficient than reusing j
1388                          */
1389                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1390
1391                         /* page alloc/put takes too long and effects small
1392                          * packet throughput, so unsplit small packets and
1393                          * save the alloc/put
1394                          */
1395                         if (l1 && (l1 <= copybreak) &&
1396                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1397                                 ps_page = &buffer_info->ps_pages[0];
1398
1399                                 dma_sync_single_for_cpu(&pdev->dev,
1400                                                         ps_page->dma,
1401                                                         PAGE_SIZE,
1402                                                         DMA_FROM_DEVICE);
1403                                 memcpy(skb_tail_pointer(skb),
1404                                        page_address(ps_page->page), l1);
1405                                 dma_sync_single_for_device(&pdev->dev,
1406                                                            ps_page->dma,
1407                                                            PAGE_SIZE,
1408                                                            DMA_FROM_DEVICE);
1409
1410                                 /* remove the CRC */
1411                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1412                                         if (!(netdev->features & NETIF_F_RXFCS))
1413                                                 l1 -= 4;
1414                                 }
1415
1416                                 skb_put(skb, l1);
1417                                 goto copydone;
1418                         }       /* if */
1419                 }
1420
1421                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1422                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1423                         if (!length)
1424                                 break;
1425
1426                         ps_page = &buffer_info->ps_pages[j];
1427                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1428                                        DMA_FROM_DEVICE);
1429                         ps_page->dma = 0;
1430                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1431                         ps_page->page = NULL;
1432                         skb->len += length;
1433                         skb->data_len += length;
1434                         skb->truesize += PAGE_SIZE;
1435                 }
1436
1437                 /* strip the ethernet crc, problem is we're using pages now so
1438                  * this whole operation can get a little cpu intensive
1439                  */
1440                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1441                         if (!(netdev->features & NETIF_F_RXFCS))
1442                                 pskb_trim(skb, skb->len - 4);
1443                 }
1444
1445 copydone:
1446                 total_rx_bytes += skb->len;
1447                 total_rx_packets++;
1448
1449                 e1000_rx_checksum(adapter, staterr, skb);
1450
1451                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1452
1453                 if (rx_desc->wb.upper.header_status &
1454                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1455                         adapter->rx_hdr_split++;
1456
1457                 e1000_receive_skb(adapter, netdev, skb, staterr,
1458                                   rx_desc->wb.middle.vlan);
1459
1460 next_desc:
1461                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1462                 buffer_info->skb = NULL;
1463
1464                 /* return some buffers to hardware, one at a time is too slow */
1465                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1466                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1467                                               GFP_ATOMIC);
1468                         cleaned_count = 0;
1469                 }
1470
1471                 /* use prefetched values */
1472                 rx_desc = next_rxd;
1473                 buffer_info = next_buffer;
1474
1475                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1476         }
1477         rx_ring->next_to_clean = i;
1478
1479         cleaned_count = e1000_desc_unused(rx_ring);
1480         if (cleaned_count)
1481                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1482
1483         adapter->total_rx_bytes += total_rx_bytes;
1484         adapter->total_rx_packets += total_rx_packets;
1485         return cleaned;
1486 }
1487
1488 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489                                u16 length)
1490 {
1491         bi->page = NULL;
1492         skb->len += length;
1493         skb->data_len += length;
1494         skb->truesize += PAGE_SIZE;
1495 }
1496
1497 /**
1498  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499  * @rx_ring: Rx descriptor ring
1500  * @work_done: output parameter for indicating completed work
1501  * @work_to_do: how many packets we can clean
1502  *
1503  * the return value indicates whether actual cleaning was done, there
1504  * is no guarantee that everything was cleaned
1505  **/
1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507                                      int work_to_do)
1508 {
1509         struct e1000_adapter *adapter = rx_ring->adapter;
1510         struct net_device *netdev = adapter->netdev;
1511         struct pci_dev *pdev = adapter->pdev;
1512         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513         struct e1000_buffer *buffer_info, *next_buffer;
1514         u32 length, staterr;
1515         unsigned int i;
1516         int cleaned_count = 0;
1517         bool cleaned = false;
1518         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519         struct skb_shared_info *shinfo;
1520
1521         i = rx_ring->next_to_clean;
1522         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524         buffer_info = &rx_ring->buffer_info[i];
1525
1526         while (staterr & E1000_RXD_STAT_DD) {
1527                 struct sk_buff *skb;
1528
1529                 if (*work_done >= work_to_do)
1530                         break;
1531                 (*work_done)++;
1532                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1533
1534                 skb = buffer_info->skb;
1535                 buffer_info->skb = NULL;
1536
1537                 ++i;
1538                 if (i == rx_ring->count)
1539                         i = 0;
1540                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541                 prefetch(next_rxd);
1542
1543                 next_buffer = &rx_ring->buffer_info[i];
1544
1545                 cleaned = true;
1546                 cleaned_count++;
1547                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548                                DMA_FROM_DEVICE);
1549                 buffer_info->dma = 0;
1550
1551                 length = le16_to_cpu(rx_desc->wb.upper.length);
1552
1553                 /* errors is only valid for DD + EOP descriptors */
1554                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556                               !(netdev->features & NETIF_F_RXALL)))) {
1557                         /* recycle both page and skb */
1558                         buffer_info->skb = skb;
1559                         /* an error means any chain goes out the window too */
1560                         if (rx_ring->rx_skb_top)
1561                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562                         rx_ring->rx_skb_top = NULL;
1563                         goto next_desc;
1564                 }
1565 #define rxtop (rx_ring->rx_skb_top)
1566                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1567                         /* this descriptor is only the beginning (or middle) */
1568                         if (!rxtop) {
1569                                 /* this is the beginning of a chain */
1570                                 rxtop = skb;
1571                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572                                                    0, length);
1573                         } else {
1574                                 /* this is the middle of a chain */
1575                                 shinfo = skb_shinfo(rxtop);
1576                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577                                                    buffer_info->page, 0,
1578                                                    length);
1579                                 /* re-use the skb, only consumed the page */
1580                                 buffer_info->skb = skb;
1581                         }
1582                         e1000_consume_page(buffer_info, rxtop, length);
1583                         goto next_desc;
1584                 } else {
1585                         if (rxtop) {
1586                                 /* end of the chain */
1587                                 shinfo = skb_shinfo(rxtop);
1588                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589                                                    buffer_info->page, 0,
1590                                                    length);
1591                                 /* re-use the current skb, we only consumed the
1592                                  * page
1593                                  */
1594                                 buffer_info->skb = skb;
1595                                 skb = rxtop;
1596                                 rxtop = NULL;
1597                                 e1000_consume_page(buffer_info, skb, length);
1598                         } else {
1599                                 /* no chain, got EOP, this buf is the packet
1600                                  * copybreak to save the put_page/alloc_page
1601                                  */
1602                                 if (length <= copybreak &&
1603                                     skb_tailroom(skb) >= length) {
1604                                         memcpy(skb_tail_pointer(skb),
1605                                                page_address(buffer_info->page),
1606                                                length);
1607                                         /* re-use the page, so don't erase
1608                                          * buffer_info->page
1609                                          */
1610                                         skb_put(skb, length);
1611                                 } else {
1612                                         skb_fill_page_desc(skb, 0,
1613                                                            buffer_info->page, 0,
1614                                                            length);
1615                                         e1000_consume_page(buffer_info, skb,
1616                                                            length);
1617                                 }
1618                         }
1619                 }
1620
1621                 /* Receive Checksum Offload */
1622                 e1000_rx_checksum(adapter, staterr, skb);
1623
1624                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625
1626                 /* probably a little skewed due to removing CRC */
1627                 total_rx_bytes += skb->len;
1628                 total_rx_packets++;
1629
1630                 /* eth type trans needs skb->data to point to something */
1631                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1632                         e_err("pskb_may_pull failed.\n");
1633                         dev_kfree_skb_irq(skb);
1634                         goto next_desc;
1635                 }
1636
1637                 e1000_receive_skb(adapter, netdev, skb, staterr,
1638                                   rx_desc->wb.upper.vlan);
1639
1640 next_desc:
1641                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642
1643                 /* return some buffers to hardware, one at a time is too slow */
1644                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646                                               GFP_ATOMIC);
1647                         cleaned_count = 0;
1648                 }
1649
1650                 /* use prefetched values */
1651                 rx_desc = next_rxd;
1652                 buffer_info = next_buffer;
1653
1654                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655         }
1656         rx_ring->next_to_clean = i;
1657
1658         cleaned_count = e1000_desc_unused(rx_ring);
1659         if (cleaned_count)
1660                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661
1662         adapter->total_rx_bytes += total_rx_bytes;
1663         adapter->total_rx_packets += total_rx_packets;
1664         return cleaned;
1665 }
1666
1667 /**
1668  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669  * @rx_ring: Rx descriptor ring
1670  **/
1671 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672 {
1673         struct e1000_adapter *adapter = rx_ring->adapter;
1674         struct e1000_buffer *buffer_info;
1675         struct e1000_ps_page *ps_page;
1676         struct pci_dev *pdev = adapter->pdev;
1677         unsigned int i, j;
1678
1679         /* Free all the Rx ring sk_buffs */
1680         for (i = 0; i < rx_ring->count; i++) {
1681                 buffer_info = &rx_ring->buffer_info[i];
1682                 if (buffer_info->dma) {
1683                         if (adapter->clean_rx == e1000_clean_rx_irq)
1684                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1685                                                  adapter->rx_buffer_len,
1686                                                  DMA_FROM_DEVICE);
1687                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1689                                                PAGE_SIZE, DMA_FROM_DEVICE);
1690                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1692                                                  adapter->rx_ps_bsize0,
1693                                                  DMA_FROM_DEVICE);
1694                         buffer_info->dma = 0;
1695                 }
1696
1697                 if (buffer_info->page) {
1698                         put_page(buffer_info->page);
1699                         buffer_info->page = NULL;
1700                 }
1701
1702                 if (buffer_info->skb) {
1703                         dev_kfree_skb(buffer_info->skb);
1704                         buffer_info->skb = NULL;
1705                 }
1706
1707                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708                         ps_page = &buffer_info->ps_pages[j];
1709                         if (!ps_page->page)
1710                                 break;
1711                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712                                        DMA_FROM_DEVICE);
1713                         ps_page->dma = 0;
1714                         put_page(ps_page->page);
1715                         ps_page->page = NULL;
1716                 }
1717         }
1718
1719         /* there also may be some cached data from a chained receive */
1720         if (rx_ring->rx_skb_top) {
1721                 dev_kfree_skb(rx_ring->rx_skb_top);
1722                 rx_ring->rx_skb_top = NULL;
1723         }
1724
1725         /* Zero out the descriptor ring */
1726         memset(rx_ring->desc, 0, rx_ring->size);
1727
1728         rx_ring->next_to_clean = 0;
1729         rx_ring->next_to_use = 0;
1730         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1731 }
1732
1733 static void e1000e_downshift_workaround(struct work_struct *work)
1734 {
1735         struct e1000_adapter *adapter = container_of(work,
1736                                                      struct e1000_adapter,
1737                                                      downshift_task);
1738
1739         if (test_bit(__E1000_DOWN, &adapter->state))
1740                 return;
1741
1742         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743 }
1744
1745 /**
1746  * e1000_intr_msi - Interrupt Handler
1747  * @irq: interrupt number
1748  * @data: pointer to a network interface device structure
1749  **/
1750 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751 {
1752         struct net_device *netdev = data;
1753         struct e1000_adapter *adapter = netdev_priv(netdev);
1754         struct e1000_hw *hw = &adapter->hw;
1755         u32 icr = er32(ICR);
1756
1757         /* read ICR disables interrupts using IAM */
1758         if (icr & E1000_ICR_LSC) {
1759                 hw->mac.get_link_status = true;
1760                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1761                  * disconnect (LSC) before accessing any PHY registers
1762                  */
1763                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764                     (!(er32(STATUS) & E1000_STATUS_LU)))
1765                         schedule_work(&adapter->downshift_task);
1766
1767                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1768                  * link down event; disable receives here in the ISR and reset
1769                  * adapter in watchdog
1770                  */
1771                 if (netif_carrier_ok(netdev) &&
1772                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773                         /* disable receives */
1774                         u32 rctl = er32(RCTL);
1775
1776                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777                         adapter->flags |= FLAG_RESTART_NOW;
1778                 }
1779                 /* guard against interrupt when we're going down */
1780                 if (!test_bit(__E1000_DOWN, &adapter->state))
1781                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782         }
1783
1784         /* Reset on uncorrectable ECC error */
1785         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786                 u32 pbeccsts = er32(PBECCSTS);
1787
1788                 adapter->corr_errors +=
1789                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790                 adapter->uncorr_errors +=
1791                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1792                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1793
1794                 /* Do the reset outside of interrupt context */
1795                 schedule_work(&adapter->reset_task);
1796
1797                 /* return immediately since reset is imminent */
1798                 return IRQ_HANDLED;
1799         }
1800
1801         if (napi_schedule_prep(&adapter->napi)) {
1802                 adapter->total_tx_bytes = 0;
1803                 adapter->total_tx_packets = 0;
1804                 adapter->total_rx_bytes = 0;
1805                 adapter->total_rx_packets = 0;
1806                 __napi_schedule(&adapter->napi);
1807         }
1808
1809         return IRQ_HANDLED;
1810 }
1811
1812 /**
1813  * e1000_intr - Interrupt Handler
1814  * @irq: interrupt number
1815  * @data: pointer to a network interface device structure
1816  **/
1817 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1818 {
1819         struct net_device *netdev = data;
1820         struct e1000_adapter *adapter = netdev_priv(netdev);
1821         struct e1000_hw *hw = &adapter->hw;
1822         u32 rctl, icr = er32(ICR);
1823
1824         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1825                 return IRQ_NONE;        /* Not our interrupt */
1826
1827         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1828          * not set, then the adapter didn't send an interrupt
1829          */
1830         if (!(icr & E1000_ICR_INT_ASSERTED))
1831                 return IRQ_NONE;
1832
1833         /* Interrupt Auto-Mask...upon reading ICR,
1834          * interrupts are masked.  No need for the
1835          * IMC write
1836          */
1837
1838         if (icr & E1000_ICR_LSC) {
1839                 hw->mac.get_link_status = true;
1840                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1841                  * disconnect (LSC) before accessing any PHY registers
1842                  */
1843                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1844                     (!(er32(STATUS) & E1000_STATUS_LU)))
1845                         schedule_work(&adapter->downshift_task);
1846
1847                 /* 80003ES2LAN workaround--
1848                  * For packet buffer work-around on link down event;
1849                  * disable receives here in the ISR and
1850                  * reset adapter in watchdog
1851                  */
1852                 if (netif_carrier_ok(netdev) &&
1853                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1854                         /* disable receives */
1855                         rctl = er32(RCTL);
1856                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1857                         adapter->flags |= FLAG_RESTART_NOW;
1858                 }
1859                 /* guard against interrupt when we're going down */
1860                 if (!test_bit(__E1000_DOWN, &adapter->state))
1861                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1862         }
1863
1864         /* Reset on uncorrectable ECC error */
1865         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1866                 u32 pbeccsts = er32(PBECCSTS);
1867
1868                 adapter->corr_errors +=
1869                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1870                 adapter->uncorr_errors +=
1871                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1872                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1873
1874                 /* Do the reset outside of interrupt context */
1875                 schedule_work(&adapter->reset_task);
1876
1877                 /* return immediately since reset is imminent */
1878                 return IRQ_HANDLED;
1879         }
1880
1881         if (napi_schedule_prep(&adapter->napi)) {
1882                 adapter->total_tx_bytes = 0;
1883                 adapter->total_tx_packets = 0;
1884                 adapter->total_rx_bytes = 0;
1885                 adapter->total_rx_packets = 0;
1886                 __napi_schedule(&adapter->napi);
1887         }
1888
1889         return IRQ_HANDLED;
1890 }
1891
1892 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1893 {
1894         struct net_device *netdev = data;
1895         struct e1000_adapter *adapter = netdev_priv(netdev);
1896         struct e1000_hw *hw = &adapter->hw;
1897         u32 icr = er32(ICR);
1898
1899         if (icr & adapter->eiac_mask)
1900                 ew32(ICS, (icr & adapter->eiac_mask));
1901
1902         if (icr & E1000_ICR_LSC) {
1903                 hw->mac.get_link_status = true;
1904                 /* guard against interrupt when we're going down */
1905                 if (!test_bit(__E1000_DOWN, &adapter->state))
1906                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1907         }
1908
1909         if (!test_bit(__E1000_DOWN, &adapter->state))
1910                 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1911
1912         return IRQ_HANDLED;
1913 }
1914
1915 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1916 {
1917         struct net_device *netdev = data;
1918         struct e1000_adapter *adapter = netdev_priv(netdev);
1919         struct e1000_hw *hw = &adapter->hw;
1920         struct e1000_ring *tx_ring = adapter->tx_ring;
1921
1922         adapter->total_tx_bytes = 0;
1923         adapter->total_tx_packets = 0;
1924
1925         if (!e1000_clean_tx_irq(tx_ring))
1926                 /* Ring was not completely cleaned, so fire another interrupt */
1927                 ew32(ICS, tx_ring->ims_val);
1928
1929         if (!test_bit(__E1000_DOWN, &adapter->state))
1930                 ew32(IMS, adapter->tx_ring->ims_val);
1931
1932         return IRQ_HANDLED;
1933 }
1934
1935 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1936 {
1937         struct net_device *netdev = data;
1938         struct e1000_adapter *adapter = netdev_priv(netdev);
1939         struct e1000_ring *rx_ring = adapter->rx_ring;
1940
1941         /* Write the ITR value calculated at the end of the
1942          * previous interrupt.
1943          */
1944         if (rx_ring->set_itr) {
1945                 u32 itr = rx_ring->itr_val ?
1946                           1000000000 / (rx_ring->itr_val * 256) : 0;
1947
1948                 writel(itr, rx_ring->itr_register);
1949                 rx_ring->set_itr = 0;
1950         }
1951
1952         if (napi_schedule_prep(&adapter->napi)) {
1953                 adapter->total_rx_bytes = 0;
1954                 adapter->total_rx_packets = 0;
1955                 __napi_schedule(&adapter->napi);
1956         }
1957         return IRQ_HANDLED;
1958 }
1959
1960 /**
1961  * e1000_configure_msix - Configure MSI-X hardware
1962  * @adapter: board private structure
1963  *
1964  * e1000_configure_msix sets up the hardware to properly
1965  * generate MSI-X interrupts.
1966  **/
1967 static void e1000_configure_msix(struct e1000_adapter *adapter)
1968 {
1969         struct e1000_hw *hw = &adapter->hw;
1970         struct e1000_ring *rx_ring = adapter->rx_ring;
1971         struct e1000_ring *tx_ring = adapter->tx_ring;
1972         int vector = 0;
1973         u32 ctrl_ext, ivar = 0;
1974
1975         adapter->eiac_mask = 0;
1976
1977         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1978         if (hw->mac.type == e1000_82574) {
1979                 u32 rfctl = er32(RFCTL);
1980
1981                 rfctl |= E1000_RFCTL_ACK_DIS;
1982                 ew32(RFCTL, rfctl);
1983         }
1984
1985         /* Configure Rx vector */
1986         rx_ring->ims_val = E1000_IMS_RXQ0;
1987         adapter->eiac_mask |= rx_ring->ims_val;
1988         if (rx_ring->itr_val)
1989                 writel(1000000000 / (rx_ring->itr_val * 256),
1990                        rx_ring->itr_register);
1991         else
1992                 writel(1, rx_ring->itr_register);
1993         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1994
1995         /* Configure Tx vector */
1996         tx_ring->ims_val = E1000_IMS_TXQ0;
1997         vector++;
1998         if (tx_ring->itr_val)
1999                 writel(1000000000 / (tx_ring->itr_val * 256),
2000                        tx_ring->itr_register);
2001         else
2002                 writel(1, tx_ring->itr_register);
2003         adapter->eiac_mask |= tx_ring->ims_val;
2004         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2005
2006         /* set vector for Other Causes, e.g. link changes */
2007         vector++;
2008         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2009         if (rx_ring->itr_val)
2010                 writel(1000000000 / (rx_ring->itr_val * 256),
2011                        hw->hw_addr + E1000_EITR_82574(vector));
2012         else
2013                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2014
2015         /* Cause Tx interrupts on every write back */
2016         ivar |= BIT(31);
2017
2018         ew32(IVAR, ivar);
2019
2020         /* enable MSI-X PBA support */
2021         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2022         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2023         ew32(CTRL_EXT, ctrl_ext);
2024         e1e_flush();
2025 }
2026
2027 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2028 {
2029         if (adapter->msix_entries) {
2030                 pci_disable_msix(adapter->pdev);
2031                 kfree(adapter->msix_entries);
2032                 adapter->msix_entries = NULL;
2033         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2034                 pci_disable_msi(adapter->pdev);
2035                 adapter->flags &= ~FLAG_MSI_ENABLED;
2036         }
2037 }
2038
2039 /**
2040  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2041  * @adapter: board private structure
2042  *
2043  * Attempt to configure interrupts using the best available
2044  * capabilities of the hardware and kernel.
2045  **/
2046 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2047 {
2048         int err;
2049         int i;
2050
2051         switch (adapter->int_mode) {
2052         case E1000E_INT_MODE_MSIX:
2053                 if (adapter->flags & FLAG_HAS_MSIX) {
2054                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2055                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2056                                                         sizeof(struct
2057                                                                msix_entry),
2058                                                         GFP_KERNEL);
2059                         if (adapter->msix_entries) {
2060                                 struct e1000_adapter *a = adapter;
2061
2062                                 for (i = 0; i < adapter->num_vectors; i++)
2063                                         adapter->msix_entries[i].entry = i;
2064
2065                                 err = pci_enable_msix_range(a->pdev,
2066                                                             a->msix_entries,
2067                                                             a->num_vectors,
2068                                                             a->num_vectors);
2069                                 if (err > 0)
2070                                         return;
2071                         }
2072                         /* MSI-X failed, so fall through and try MSI */
2073                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2074                         e1000e_reset_interrupt_capability(adapter);
2075                 }
2076                 adapter->int_mode = E1000E_INT_MODE_MSI;
2077                 fallthrough;
2078         case E1000E_INT_MODE_MSI:
2079                 if (!pci_enable_msi(adapter->pdev)) {
2080                         adapter->flags |= FLAG_MSI_ENABLED;
2081                 } else {
2082                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2083                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2084                 }
2085                 fallthrough;
2086         case E1000E_INT_MODE_LEGACY:
2087                 /* Don't do anything; this is the system default */
2088                 break;
2089         }
2090
2091         /* store the number of vectors being used */
2092         adapter->num_vectors = 1;
2093 }
2094
2095 /**
2096  * e1000_request_msix - Initialize MSI-X interrupts
2097  * @adapter: board private structure
2098  *
2099  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2100  * kernel.
2101  **/
2102 static int e1000_request_msix(struct e1000_adapter *adapter)
2103 {
2104         struct net_device *netdev = adapter->netdev;
2105         int err = 0, vector = 0;
2106
2107         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2108                 snprintf(adapter->rx_ring->name,
2109                          sizeof(adapter->rx_ring->name) - 1,
2110                          "%.14s-rx-0", netdev->name);
2111         else
2112                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2113         err = request_irq(adapter->msix_entries[vector].vector,
2114                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2115                           netdev);
2116         if (err)
2117                 return err;
2118         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2119             E1000_EITR_82574(vector);
2120         adapter->rx_ring->itr_val = adapter->itr;
2121         vector++;
2122
2123         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2124                 snprintf(adapter->tx_ring->name,
2125                          sizeof(adapter->tx_ring->name) - 1,
2126                          "%.14s-tx-0", netdev->name);
2127         else
2128                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2129         err = request_irq(adapter->msix_entries[vector].vector,
2130                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2131                           netdev);
2132         if (err)
2133                 return err;
2134         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2135             E1000_EITR_82574(vector);
2136         adapter->tx_ring->itr_val = adapter->itr;
2137         vector++;
2138
2139         err = request_irq(adapter->msix_entries[vector].vector,
2140                           e1000_msix_other, 0, netdev->name, netdev);
2141         if (err)
2142                 return err;
2143
2144         e1000_configure_msix(adapter);
2145
2146         return 0;
2147 }
2148
2149 /**
2150  * e1000_request_irq - initialize interrupts
2151  * @adapter: board private structure
2152  *
2153  * Attempts to configure interrupts using the best available
2154  * capabilities of the hardware and kernel.
2155  **/
2156 static int e1000_request_irq(struct e1000_adapter *adapter)
2157 {
2158         struct net_device *netdev = adapter->netdev;
2159         int err;
2160
2161         if (adapter->msix_entries) {
2162                 err = e1000_request_msix(adapter);
2163                 if (!err)
2164                         return err;
2165                 /* fall back to MSI */
2166                 e1000e_reset_interrupt_capability(adapter);
2167                 adapter->int_mode = E1000E_INT_MODE_MSI;
2168                 e1000e_set_interrupt_capability(adapter);
2169         }
2170         if (adapter->flags & FLAG_MSI_ENABLED) {
2171                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2172                                   netdev->name, netdev);
2173                 if (!err)
2174                         return err;
2175
2176                 /* fall back to legacy interrupt */
2177                 e1000e_reset_interrupt_capability(adapter);
2178                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2179         }
2180
2181         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2182                           netdev->name, netdev);
2183         if (err)
2184                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2185
2186         return err;
2187 }
2188
2189 static void e1000_free_irq(struct e1000_adapter *adapter)
2190 {
2191         struct net_device *netdev = adapter->netdev;
2192
2193         if (adapter->msix_entries) {
2194                 int vector = 0;
2195
2196                 free_irq(adapter->msix_entries[vector].vector, netdev);
2197                 vector++;
2198
2199                 free_irq(adapter->msix_entries[vector].vector, netdev);
2200                 vector++;
2201
2202                 /* Other Causes interrupt vector */
2203                 free_irq(adapter->msix_entries[vector].vector, netdev);
2204                 return;
2205         }
2206
2207         free_irq(adapter->pdev->irq, netdev);
2208 }
2209
2210 /**
2211  * e1000_irq_disable - Mask off interrupt generation on the NIC
2212  * @adapter: board private structure
2213  **/
2214 static void e1000_irq_disable(struct e1000_adapter *adapter)
2215 {
2216         struct e1000_hw *hw = &adapter->hw;
2217
2218         ew32(IMC, ~0);
2219         if (adapter->msix_entries)
2220                 ew32(EIAC_82574, 0);
2221         e1e_flush();
2222
2223         if (adapter->msix_entries) {
2224                 int i;
2225
2226                 for (i = 0; i < adapter->num_vectors; i++)
2227                         synchronize_irq(adapter->msix_entries[i].vector);
2228         } else {
2229                 synchronize_irq(adapter->pdev->irq);
2230         }
2231 }
2232
2233 /**
2234  * e1000_irq_enable - Enable default interrupt generation settings
2235  * @adapter: board private structure
2236  **/
2237 static void e1000_irq_enable(struct e1000_adapter *adapter)
2238 {
2239         struct e1000_hw *hw = &adapter->hw;
2240
2241         if (adapter->msix_entries) {
2242                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2243                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2244                      IMS_OTHER_MASK);
2245         } else if (hw->mac.type >= e1000_pch_lpt) {
2246                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2247         } else {
2248                 ew32(IMS, IMS_ENABLE_MASK);
2249         }
2250         e1e_flush();
2251 }
2252
2253 /**
2254  * e1000e_get_hw_control - get control of the h/w from f/w
2255  * @adapter: address of board private structure
2256  *
2257  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2258  * For ASF and Pass Through versions of f/w this means that
2259  * the driver is loaded. For AMT version (only with 82573)
2260  * of the f/w this means that the network i/f is open.
2261  **/
2262 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2263 {
2264         struct e1000_hw *hw = &adapter->hw;
2265         u32 ctrl_ext;
2266         u32 swsm;
2267
2268         /* Let firmware know the driver has taken over */
2269         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2270                 swsm = er32(SWSM);
2271                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2272         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2273                 ctrl_ext = er32(CTRL_EXT);
2274                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2275         }
2276 }
2277
2278 /**
2279  * e1000e_release_hw_control - release control of the h/w to f/w
2280  * @adapter: address of board private structure
2281  *
2282  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2283  * For ASF and Pass Through versions of f/w this means that the
2284  * driver is no longer loaded. For AMT version (only with 82573) i
2285  * of the f/w this means that the network i/f is closed.
2286  *
2287  **/
2288 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2289 {
2290         struct e1000_hw *hw = &adapter->hw;
2291         u32 ctrl_ext;
2292         u32 swsm;
2293
2294         /* Let firmware taken over control of h/w */
2295         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2296                 swsm = er32(SWSM);
2297                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2298         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2299                 ctrl_ext = er32(CTRL_EXT);
2300                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2301         }
2302 }
2303
2304 /**
2305  * e1000_alloc_ring_dma - allocate memory for a ring structure
2306  * @adapter: board private structure
2307  * @ring: ring struct for which to allocate dma
2308  **/
2309 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2310                                 struct e1000_ring *ring)
2311 {
2312         struct pci_dev *pdev = adapter->pdev;
2313
2314         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2315                                         GFP_KERNEL);
2316         if (!ring->desc)
2317                 return -ENOMEM;
2318
2319         return 0;
2320 }
2321
2322 /**
2323  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2324  * @tx_ring: Tx descriptor ring
2325  *
2326  * Return 0 on success, negative on failure
2327  **/
2328 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2329 {
2330         struct e1000_adapter *adapter = tx_ring->adapter;
2331         int err = -ENOMEM, size;
2332
2333         size = sizeof(struct e1000_buffer) * tx_ring->count;
2334         tx_ring->buffer_info = vzalloc(size);
2335         if (!tx_ring->buffer_info)
2336                 goto err;
2337
2338         /* round up to nearest 4K */
2339         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2340         tx_ring->size = ALIGN(tx_ring->size, 4096);
2341
2342         err = e1000_alloc_ring_dma(adapter, tx_ring);
2343         if (err)
2344                 goto err;
2345
2346         tx_ring->next_to_use = 0;
2347         tx_ring->next_to_clean = 0;
2348
2349         return 0;
2350 err:
2351         vfree(tx_ring->buffer_info);
2352         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2353         return err;
2354 }
2355
2356 /**
2357  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2358  * @rx_ring: Rx descriptor ring
2359  *
2360  * Returns 0 on success, negative on failure
2361  **/
2362 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2363 {
2364         struct e1000_adapter *adapter = rx_ring->adapter;
2365         struct e1000_buffer *buffer_info;
2366         int i, size, desc_len, err = -ENOMEM;
2367
2368         size = sizeof(struct e1000_buffer) * rx_ring->count;
2369         rx_ring->buffer_info = vzalloc(size);
2370         if (!rx_ring->buffer_info)
2371                 goto err;
2372
2373         for (i = 0; i < rx_ring->count; i++) {
2374                 buffer_info = &rx_ring->buffer_info[i];
2375                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2376                                                 sizeof(struct e1000_ps_page),
2377                                                 GFP_KERNEL);
2378                 if (!buffer_info->ps_pages)
2379                         goto err_pages;
2380         }
2381
2382         desc_len = sizeof(union e1000_rx_desc_packet_split);
2383
2384         /* Round up to nearest 4K */
2385         rx_ring->size = rx_ring->count * desc_len;
2386         rx_ring->size = ALIGN(rx_ring->size, 4096);
2387
2388         err = e1000_alloc_ring_dma(adapter, rx_ring);
2389         if (err)
2390                 goto err_pages;
2391
2392         rx_ring->next_to_clean = 0;
2393         rx_ring->next_to_use = 0;
2394         rx_ring->rx_skb_top = NULL;
2395
2396         return 0;
2397
2398 err_pages:
2399         for (i = 0; i < rx_ring->count; i++) {
2400                 buffer_info = &rx_ring->buffer_info[i];
2401                 kfree(buffer_info->ps_pages);
2402         }
2403 err:
2404         vfree(rx_ring->buffer_info);
2405         e_err("Unable to allocate memory for the receive descriptor ring\n");
2406         return err;
2407 }
2408
2409 /**
2410  * e1000_clean_tx_ring - Free Tx Buffers
2411  * @tx_ring: Tx descriptor ring
2412  **/
2413 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2414 {
2415         struct e1000_adapter *adapter = tx_ring->adapter;
2416         struct e1000_buffer *buffer_info;
2417         unsigned long size;
2418         unsigned int i;
2419
2420         for (i = 0; i < tx_ring->count; i++) {
2421                 buffer_info = &tx_ring->buffer_info[i];
2422                 e1000_put_txbuf(tx_ring, buffer_info, false);
2423         }
2424
2425         netdev_reset_queue(adapter->netdev);
2426         size = sizeof(struct e1000_buffer) * tx_ring->count;
2427         memset(tx_ring->buffer_info, 0, size);
2428
2429         memset(tx_ring->desc, 0, tx_ring->size);
2430
2431         tx_ring->next_to_use = 0;
2432         tx_ring->next_to_clean = 0;
2433 }
2434
2435 /**
2436  * e1000e_free_tx_resources - Free Tx Resources per Queue
2437  * @tx_ring: Tx descriptor ring
2438  *
2439  * Free all transmit software resources
2440  **/
2441 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2442 {
2443         struct e1000_adapter *adapter = tx_ring->adapter;
2444         struct pci_dev *pdev = adapter->pdev;
2445
2446         e1000_clean_tx_ring(tx_ring);
2447
2448         vfree(tx_ring->buffer_info);
2449         tx_ring->buffer_info = NULL;
2450
2451         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2452                           tx_ring->dma);
2453         tx_ring->desc = NULL;
2454 }
2455
2456 /**
2457  * e1000e_free_rx_resources - Free Rx Resources
2458  * @rx_ring: Rx descriptor ring
2459  *
2460  * Free all receive software resources
2461  **/
2462 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2463 {
2464         struct e1000_adapter *adapter = rx_ring->adapter;
2465         struct pci_dev *pdev = adapter->pdev;
2466         int i;
2467
2468         e1000_clean_rx_ring(rx_ring);
2469
2470         for (i = 0; i < rx_ring->count; i++)
2471                 kfree(rx_ring->buffer_info[i].ps_pages);
2472
2473         vfree(rx_ring->buffer_info);
2474         rx_ring->buffer_info = NULL;
2475
2476         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2477                           rx_ring->dma);
2478         rx_ring->desc = NULL;
2479 }
2480
2481 /**
2482  * e1000_update_itr - update the dynamic ITR value based on statistics
2483  * @itr_setting: current adapter->itr
2484  * @packets: the number of packets during this measurement interval
2485  * @bytes: the number of bytes during this measurement interval
2486  *
2487  *      Stores a new ITR value based on packets and byte
2488  *      counts during the last interrupt.  The advantage of per interrupt
2489  *      computation is faster updates and more accurate ITR for the current
2490  *      traffic pattern.  Constants in this function were computed
2491  *      based on theoretical maximum wire speed and thresholds were set based
2492  *      on testing data as well as attempting to minimize response time
2493  *      while increasing bulk throughput.  This functionality is controlled
2494  *      by the InterruptThrottleRate module parameter.
2495  **/
2496 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2497 {
2498         unsigned int retval = itr_setting;
2499
2500         if (packets == 0)
2501                 return itr_setting;
2502
2503         switch (itr_setting) {
2504         case lowest_latency:
2505                 /* handle TSO and jumbo frames */
2506                 if (bytes / packets > 8000)
2507                         retval = bulk_latency;
2508                 else if ((packets < 5) && (bytes > 512))
2509                         retval = low_latency;
2510                 break;
2511         case low_latency:       /* 50 usec aka 20000 ints/s */
2512                 if (bytes > 10000) {
2513                         /* this if handles the TSO accounting */
2514                         if (bytes / packets > 8000)
2515                                 retval = bulk_latency;
2516                         else if ((packets < 10) || ((bytes / packets) > 1200))
2517                                 retval = bulk_latency;
2518                         else if ((packets > 35))
2519                                 retval = lowest_latency;
2520                 } else if (bytes / packets > 2000) {
2521                         retval = bulk_latency;
2522                 } else if (packets <= 2 && bytes < 512) {
2523                         retval = lowest_latency;
2524                 }
2525                 break;
2526         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2527                 if (bytes > 25000) {
2528                         if (packets > 35)
2529                                 retval = low_latency;
2530                 } else if (bytes < 6000) {
2531                         retval = low_latency;
2532                 }
2533                 break;
2534         }
2535
2536         return retval;
2537 }
2538
2539 static void e1000_set_itr(struct e1000_adapter *adapter)
2540 {
2541         u16 current_itr;
2542         u32 new_itr = adapter->itr;
2543
2544         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2545         if (adapter->link_speed != SPEED_1000) {
2546                 new_itr = 4000;
2547                 goto set_itr_now;
2548         }
2549
2550         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2551                 new_itr = 0;
2552                 goto set_itr_now;
2553         }
2554
2555         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2556                                            adapter->total_tx_packets,
2557                                            adapter->total_tx_bytes);
2558         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2559         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2560                 adapter->tx_itr = low_latency;
2561
2562         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2563                                            adapter->total_rx_packets,
2564                                            adapter->total_rx_bytes);
2565         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2566         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2567                 adapter->rx_itr = low_latency;
2568
2569         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2570
2571         /* counts and packets in update_itr are dependent on these numbers */
2572         switch (current_itr) {
2573         case lowest_latency:
2574                 new_itr = 70000;
2575                 break;
2576         case low_latency:
2577                 new_itr = 20000;        /* aka hwitr = ~200 */
2578                 break;
2579         case bulk_latency:
2580                 new_itr = 4000;
2581                 break;
2582         default:
2583                 break;
2584         }
2585
2586 set_itr_now:
2587         if (new_itr != adapter->itr) {
2588                 /* this attempts to bias the interrupt rate towards Bulk
2589                  * by adding intermediate steps when interrupt rate is
2590                  * increasing
2591                  */
2592                 new_itr = new_itr > adapter->itr ?
2593                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2594                 adapter->itr = new_itr;
2595                 adapter->rx_ring->itr_val = new_itr;
2596                 if (adapter->msix_entries)
2597                         adapter->rx_ring->set_itr = 1;
2598                 else
2599                         e1000e_write_itr(adapter, new_itr);
2600         }
2601 }
2602
2603 /**
2604  * e1000e_write_itr - write the ITR value to the appropriate registers
2605  * @adapter: address of board private structure
2606  * @itr: new ITR value to program
2607  *
2608  * e1000e_write_itr determines if the adapter is in MSI-X mode
2609  * and, if so, writes the EITR registers with the ITR value.
2610  * Otherwise, it writes the ITR value into the ITR register.
2611  **/
2612 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2613 {
2614         struct e1000_hw *hw = &adapter->hw;
2615         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2616
2617         if (adapter->msix_entries) {
2618                 int vector;
2619
2620                 for (vector = 0; vector < adapter->num_vectors; vector++)
2621                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2622         } else {
2623                 ew32(ITR, new_itr);
2624         }
2625 }
2626
2627 /**
2628  * e1000_alloc_queues - Allocate memory for all rings
2629  * @adapter: board private structure to initialize
2630  **/
2631 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2632 {
2633         int size = sizeof(struct e1000_ring);
2634
2635         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2636         if (!adapter->tx_ring)
2637                 goto err;
2638         adapter->tx_ring->count = adapter->tx_ring_count;
2639         adapter->tx_ring->adapter = adapter;
2640
2641         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2642         if (!adapter->rx_ring)
2643                 goto err;
2644         adapter->rx_ring->count = adapter->rx_ring_count;
2645         adapter->rx_ring->adapter = adapter;
2646
2647         return 0;
2648 err:
2649         e_err("Unable to allocate memory for queues\n");
2650         kfree(adapter->rx_ring);
2651         kfree(adapter->tx_ring);
2652         return -ENOMEM;
2653 }
2654
2655 /**
2656  * e1000e_poll - NAPI Rx polling callback
2657  * @napi: struct associated with this polling callback
2658  * @budget: number of packets driver is allowed to process this poll
2659  **/
2660 static int e1000e_poll(struct napi_struct *napi, int budget)
2661 {
2662         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2663                                                      napi);
2664         struct e1000_hw *hw = &adapter->hw;
2665         struct net_device *poll_dev = adapter->netdev;
2666         int tx_cleaned = 1, work_done = 0;
2667
2668         adapter = netdev_priv(poll_dev);
2669
2670         if (!adapter->msix_entries ||
2671             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2672                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2673
2674         adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2675
2676         if (!tx_cleaned || work_done == budget)
2677                 return budget;
2678
2679         /* Exit the polling mode, but don't re-enable interrupts if stack might
2680          * poll us due to busy-polling
2681          */
2682         if (likely(napi_complete_done(napi, work_done))) {
2683                 if (adapter->itr_setting & 3)
2684                         e1000_set_itr(adapter);
2685                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2686                         if (adapter->msix_entries)
2687                                 ew32(IMS, adapter->rx_ring->ims_val);
2688                         else
2689                                 e1000_irq_enable(adapter);
2690                 }
2691         }
2692
2693         return work_done;
2694 }
2695
2696 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2697                                  __always_unused __be16 proto, u16 vid)
2698 {
2699         struct e1000_adapter *adapter = netdev_priv(netdev);
2700         struct e1000_hw *hw = &adapter->hw;
2701         u32 vfta, index;
2702
2703         /* don't update vlan cookie if already programmed */
2704         if ((adapter->hw.mng_cookie.status &
2705              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2706             (vid == adapter->mng_vlan_id))
2707                 return 0;
2708
2709         /* add VID to filter table */
2710         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2711                 index = (vid >> 5) & 0x7F;
2712                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2713                 vfta |= BIT((vid & 0x1F));
2714                 hw->mac.ops.write_vfta(hw, index, vfta);
2715         }
2716
2717         set_bit(vid, adapter->active_vlans);
2718
2719         return 0;
2720 }
2721
2722 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2723                                   __always_unused __be16 proto, u16 vid)
2724 {
2725         struct e1000_adapter *adapter = netdev_priv(netdev);
2726         struct e1000_hw *hw = &adapter->hw;
2727         u32 vfta, index;
2728
2729         if ((adapter->hw.mng_cookie.status &
2730              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2731             (vid == adapter->mng_vlan_id)) {
2732                 /* release control to f/w */
2733                 e1000e_release_hw_control(adapter);
2734                 return 0;
2735         }
2736
2737         /* remove VID from filter table */
2738         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2739                 index = (vid >> 5) & 0x7F;
2740                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2741                 vfta &= ~BIT((vid & 0x1F));
2742                 hw->mac.ops.write_vfta(hw, index, vfta);
2743         }
2744
2745         clear_bit(vid, adapter->active_vlans);
2746
2747         return 0;
2748 }
2749
2750 /**
2751  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2752  * @adapter: board private structure to initialize
2753  **/
2754 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2755 {
2756         struct net_device *netdev = adapter->netdev;
2757         struct e1000_hw *hw = &adapter->hw;
2758         u32 rctl;
2759
2760         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2761                 /* disable VLAN receive filtering */
2762                 rctl = er32(RCTL);
2763                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2764                 ew32(RCTL, rctl);
2765
2766                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2767                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2768                                                adapter->mng_vlan_id);
2769                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2770                 }
2771         }
2772 }
2773
2774 /**
2775  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2776  * @adapter: board private structure to initialize
2777  **/
2778 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2779 {
2780         struct e1000_hw *hw = &adapter->hw;
2781         u32 rctl;
2782
2783         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2784                 /* enable VLAN receive filtering */
2785                 rctl = er32(RCTL);
2786                 rctl |= E1000_RCTL_VFE;
2787                 rctl &= ~E1000_RCTL_CFIEN;
2788                 ew32(RCTL, rctl);
2789         }
2790 }
2791
2792 /**
2793  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2794  * @adapter: board private structure to initialize
2795  **/
2796 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2797 {
2798         struct e1000_hw *hw = &adapter->hw;
2799         u32 ctrl;
2800
2801         /* disable VLAN tag insert/strip */
2802         ctrl = er32(CTRL);
2803         ctrl &= ~E1000_CTRL_VME;
2804         ew32(CTRL, ctrl);
2805 }
2806
2807 /**
2808  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2809  * @adapter: board private structure to initialize
2810  **/
2811 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2812 {
2813         struct e1000_hw *hw = &adapter->hw;
2814         u32 ctrl;
2815
2816         /* enable VLAN tag insert/strip */
2817         ctrl = er32(CTRL);
2818         ctrl |= E1000_CTRL_VME;
2819         ew32(CTRL, ctrl);
2820 }
2821
2822 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2823 {
2824         struct net_device *netdev = adapter->netdev;
2825         u16 vid = adapter->hw.mng_cookie.vlan_id;
2826         u16 old_vid = adapter->mng_vlan_id;
2827
2828         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2829                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2830                 adapter->mng_vlan_id = vid;
2831         }
2832
2833         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2834                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2835 }
2836
2837 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2838 {
2839         u16 vid;
2840
2841         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2842
2843         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2844             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2845 }
2846
2847 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2848 {
2849         struct e1000_hw *hw = &adapter->hw;
2850         u32 manc, manc2h, mdef, i, j;
2851
2852         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2853                 return;
2854
2855         manc = er32(MANC);
2856
2857         /* enable receiving management packets to the host. this will probably
2858          * generate destination unreachable messages from the host OS, but
2859          * the packets will be handled on SMBUS
2860          */
2861         manc |= E1000_MANC_EN_MNG2HOST;
2862         manc2h = er32(MANC2H);
2863
2864         switch (hw->mac.type) {
2865         default:
2866                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2867                 break;
2868         case e1000_82574:
2869         case e1000_82583:
2870                 /* Check if IPMI pass-through decision filter already exists;
2871                  * if so, enable it.
2872                  */
2873                 for (i = 0, j = 0; i < 8; i++) {
2874                         mdef = er32(MDEF(i));
2875
2876                         /* Ignore filters with anything other than IPMI ports */
2877                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2878                                 continue;
2879
2880                         /* Enable this decision filter in MANC2H */
2881                         if (mdef)
2882                                 manc2h |= BIT(i);
2883
2884                         j |= mdef;
2885                 }
2886
2887                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2888                         break;
2889
2890                 /* Create new decision filter in an empty filter */
2891                 for (i = 0, j = 0; i < 8; i++)
2892                         if (er32(MDEF(i)) == 0) {
2893                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2894                                                E1000_MDEF_PORT_664));
2895                                 manc2h |= BIT(1);
2896                                 j++;
2897                                 break;
2898                         }
2899
2900                 if (!j)
2901                         e_warn("Unable to create IPMI pass-through filter\n");
2902                 break;
2903         }
2904
2905         ew32(MANC2H, manc2h);
2906         ew32(MANC, manc);
2907 }
2908
2909 /**
2910  * e1000_configure_tx - Configure Transmit Unit after Reset
2911  * @adapter: board private structure
2912  *
2913  * Configure the Tx unit of the MAC after a reset.
2914  **/
2915 static void e1000_configure_tx(struct e1000_adapter *adapter)
2916 {
2917         struct e1000_hw *hw = &adapter->hw;
2918         struct e1000_ring *tx_ring = adapter->tx_ring;
2919         u64 tdba;
2920         u32 tdlen, tctl, tarc;
2921
2922         /* Setup the HW Tx Head and Tail descriptor pointers */
2923         tdba = tx_ring->dma;
2924         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2925         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2926         ew32(TDBAH(0), (tdba >> 32));
2927         ew32(TDLEN(0), tdlen);
2928         ew32(TDH(0), 0);
2929         ew32(TDT(0), 0);
2930         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2931         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2932
2933         writel(0, tx_ring->head);
2934         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2935                 e1000e_update_tdt_wa(tx_ring, 0);
2936         else
2937                 writel(0, tx_ring->tail);
2938
2939         /* Set the Tx Interrupt Delay register */
2940         ew32(TIDV, adapter->tx_int_delay);
2941         /* Tx irq moderation */
2942         ew32(TADV, adapter->tx_abs_int_delay);
2943
2944         if (adapter->flags2 & FLAG2_DMA_BURST) {
2945                 u32 txdctl = er32(TXDCTL(0));
2946
2947                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2948                             E1000_TXDCTL_WTHRESH);
2949                 /* set up some performance related parameters to encourage the
2950                  * hardware to use the bus more efficiently in bursts, depends
2951                  * on the tx_int_delay to be enabled,
2952                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2953                  * hthresh = 1 ==> prefetch when one or more available
2954                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2955                  * BEWARE: this seems to work but should be considered first if
2956                  * there are Tx hangs or other Tx related bugs
2957                  */
2958                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2959                 ew32(TXDCTL(0), txdctl);
2960         }
2961         /* erratum work around: set txdctl the same for both queues */
2962         ew32(TXDCTL(1), er32(TXDCTL(0)));
2963
2964         /* Program the Transmit Control Register */
2965         tctl = er32(TCTL);
2966         tctl &= ~E1000_TCTL_CT;
2967         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2968                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2969
2970         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2971                 tarc = er32(TARC(0));
2972                 /* set the speed mode bit, we'll clear it if we're not at
2973                  * gigabit link later
2974                  */
2975 #define SPEED_MODE_BIT BIT(21)
2976                 tarc |= SPEED_MODE_BIT;
2977                 ew32(TARC(0), tarc);
2978         }
2979
2980         /* errata: program both queues to unweighted RR */
2981         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2982                 tarc = er32(TARC(0));
2983                 tarc |= 1;
2984                 ew32(TARC(0), tarc);
2985                 tarc = er32(TARC(1));
2986                 tarc |= 1;
2987                 ew32(TARC(1), tarc);
2988         }
2989
2990         /* Setup Transmit Descriptor Settings for eop descriptor */
2991         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2992
2993         /* only set IDE if we are delaying interrupts using the timers */
2994         if (adapter->tx_int_delay)
2995                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2996
2997         /* enable Report Status bit */
2998         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2999
3000         ew32(TCTL, tctl);
3001
3002         hw->mac.ops.config_collision_dist(hw);
3003
3004         /* SPT and KBL Si errata workaround to avoid data corruption */
3005         if (hw->mac.type == e1000_pch_spt) {
3006                 u32 reg_val;
3007
3008                 reg_val = er32(IOSFPC);
3009                 reg_val |= E1000_RCTL_RDMTS_HEX;
3010                 ew32(IOSFPC, reg_val);
3011
3012                 reg_val = er32(TARC(0));
3013                 /* SPT and KBL Si errata workaround to avoid Tx hang.
3014                  * Dropping the number of outstanding requests from
3015                  * 3 to 2 in order to avoid a buffer overrun.
3016                  */
3017                 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3018                 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3019                 ew32(TARC(0), reg_val);
3020         }
3021 }
3022
3023 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3024                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3025
3026 /**
3027  * e1000_setup_rctl - configure the receive control registers
3028  * @adapter: Board private structure
3029  **/
3030 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3031 {
3032         struct e1000_hw *hw = &adapter->hw;
3033         u32 rctl, rfctl;
3034         u32 pages = 0;
3035
3036         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3037          * If jumbo frames not set, program related MAC/PHY registers
3038          * to h/w defaults
3039          */
3040         if (hw->mac.type >= e1000_pch2lan) {
3041                 s32 ret_val;
3042
3043                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3044                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3045                 else
3046                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3047
3048                 if (ret_val)
3049                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3050         }
3051
3052         /* Program MC offset vector base */
3053         rctl = er32(RCTL);
3054         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3055         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3056             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3057             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3058
3059         /* Do not Store bad packets */
3060         rctl &= ~E1000_RCTL_SBP;
3061
3062         /* Enable Long Packet receive */
3063         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3064                 rctl &= ~E1000_RCTL_LPE;
3065         else
3066                 rctl |= E1000_RCTL_LPE;
3067
3068         /* Some systems expect that the CRC is included in SMBUS traffic. The
3069          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3070          * host memory when this is enabled
3071          */
3072         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3073                 rctl |= E1000_RCTL_SECRC;
3074
3075         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3076         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3077                 u16 phy_data;
3078
3079                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3080                 phy_data &= 0xfff8;
3081                 phy_data |= BIT(2);
3082                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3083
3084                 e1e_rphy(hw, 22, &phy_data);
3085                 phy_data &= 0x0fff;
3086                 phy_data |= BIT(14);
3087                 e1e_wphy(hw, 0x10, 0x2823);
3088                 e1e_wphy(hw, 0x11, 0x0003);
3089                 e1e_wphy(hw, 22, phy_data);
3090         }
3091
3092         /* Setup buffer sizes */
3093         rctl &= ~E1000_RCTL_SZ_4096;
3094         rctl |= E1000_RCTL_BSEX;
3095         switch (adapter->rx_buffer_len) {
3096         case 2048:
3097         default:
3098                 rctl |= E1000_RCTL_SZ_2048;
3099                 rctl &= ~E1000_RCTL_BSEX;
3100                 break;
3101         case 4096:
3102                 rctl |= E1000_RCTL_SZ_4096;
3103                 break;
3104         case 8192:
3105                 rctl |= E1000_RCTL_SZ_8192;
3106                 break;
3107         case 16384:
3108                 rctl |= E1000_RCTL_SZ_16384;
3109                 break;
3110         }
3111
3112         /* Enable Extended Status in all Receive Descriptors */
3113         rfctl = er32(RFCTL);
3114         rfctl |= E1000_RFCTL_EXTEN;
3115         ew32(RFCTL, rfctl);
3116
3117         /* 82571 and greater support packet-split where the protocol
3118          * header is placed in skb->data and the packet data is
3119          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3120          * In the case of a non-split, skb->data is linearly filled,
3121          * followed by the page buffers.  Therefore, skb->data is
3122          * sized to hold the largest protocol header.
3123          *
3124          * allocations using alloc_page take too long for regular MTU
3125          * so only enable packet split for jumbo frames
3126          *
3127          * Using pages when the page size is greater than 16k wastes
3128          * a lot of memory, since we allocate 3 pages at all times
3129          * per packet.
3130          */
3131         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3132         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3133                 adapter->rx_ps_pages = pages;
3134         else
3135                 adapter->rx_ps_pages = 0;
3136
3137         if (adapter->rx_ps_pages) {
3138                 u32 psrctl = 0;
3139
3140                 /* Enable Packet split descriptors */
3141                 rctl |= E1000_RCTL_DTYP_PS;
3142
3143                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3144
3145                 switch (adapter->rx_ps_pages) {
3146                 case 3:
3147                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3148                         fallthrough;
3149                 case 2:
3150                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3151                         fallthrough;
3152                 case 1:
3153                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3154                         break;
3155                 }
3156
3157                 ew32(PSRCTL, psrctl);
3158         }
3159
3160         /* This is useful for sniffing bad packets. */
3161         if (adapter->netdev->features & NETIF_F_RXALL) {
3162                 /* UPE and MPE will be handled by normal PROMISC logic
3163                  * in e1000e_set_rx_mode
3164                  */
3165                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3166                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3167                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3168
3169                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3170                           E1000_RCTL_DPF |      /* Allow filtered pause */
3171                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3172                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3173                  * and that breaks VLANs.
3174                  */
3175         }
3176
3177         ew32(RCTL, rctl);
3178         /* just started the receive unit, no need to restart */
3179         adapter->flags &= ~FLAG_RESTART_NOW;
3180 }
3181
3182 /**
3183  * e1000_configure_rx - Configure Receive Unit after Reset
3184  * @adapter: board private structure
3185  *
3186  * Configure the Rx unit of the MAC after a reset.
3187  **/
3188 static void e1000_configure_rx(struct e1000_adapter *adapter)
3189 {
3190         struct e1000_hw *hw = &adapter->hw;
3191         struct e1000_ring *rx_ring = adapter->rx_ring;
3192         u64 rdba;
3193         u32 rdlen, rctl, rxcsum, ctrl_ext;
3194
3195         if (adapter->rx_ps_pages) {
3196                 /* this is a 32 byte descriptor */
3197                 rdlen = rx_ring->count *
3198                     sizeof(union e1000_rx_desc_packet_split);
3199                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3200                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3201         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3202                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3203                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3204                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3205         } else {
3206                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3207                 adapter->clean_rx = e1000_clean_rx_irq;
3208                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3209         }
3210
3211         /* disable receives while setting up the descriptors */
3212         rctl = er32(RCTL);
3213         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3214                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3215         e1e_flush();
3216         usleep_range(10000, 11000);
3217
3218         if (adapter->flags2 & FLAG2_DMA_BURST) {
3219                 /* set the writeback threshold (only takes effect if the RDTR
3220                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3221                  * enable prefetching of 0x20 Rx descriptors
3222                  * granularity = 01
3223                  * wthresh = 04,
3224                  * hthresh = 04,
3225                  * pthresh = 0x20
3226                  */
3227                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3228                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3229         }
3230
3231         /* set the Receive Delay Timer Register */
3232         ew32(RDTR, adapter->rx_int_delay);
3233
3234         /* irq moderation */
3235         ew32(RADV, adapter->rx_abs_int_delay);
3236         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3237                 e1000e_write_itr(adapter, adapter->itr);
3238
3239         ctrl_ext = er32(CTRL_EXT);
3240         /* Auto-Mask interrupts upon ICR access */
3241         ctrl_ext |= E1000_CTRL_EXT_IAME;
3242         ew32(IAM, 0xffffffff);
3243         ew32(CTRL_EXT, ctrl_ext);
3244         e1e_flush();
3245
3246         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3247          * the Base and Length of the Rx Descriptor Ring
3248          */
3249         rdba = rx_ring->dma;
3250         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3251         ew32(RDBAH(0), (rdba >> 32));
3252         ew32(RDLEN(0), rdlen);
3253         ew32(RDH(0), 0);
3254         ew32(RDT(0), 0);
3255         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3256         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3257
3258         writel(0, rx_ring->head);
3259         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3260                 e1000e_update_rdt_wa(rx_ring, 0);
3261         else
3262                 writel(0, rx_ring->tail);
3263
3264         /* Enable Receive Checksum Offload for TCP and UDP */
3265         rxcsum = er32(RXCSUM);
3266         if (adapter->netdev->features & NETIF_F_RXCSUM)
3267                 rxcsum |= E1000_RXCSUM_TUOFL;
3268         else
3269                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3270         ew32(RXCSUM, rxcsum);
3271
3272         /* With jumbo frames, excessive C-state transition latencies result
3273          * in dropped transactions.
3274          */
3275         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3276                 u32 lat =
3277                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3278                      adapter->max_frame_size) * 8 / 1000;
3279
3280                 if (adapter->flags & FLAG_IS_ICH) {
3281                         u32 rxdctl = er32(RXDCTL(0));
3282
3283                         ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3284                 }
3285
3286                 dev_info(&adapter->pdev->dev,
3287                          "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3288                 cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3289         } else {
3290                 cpu_latency_qos_update_request(&adapter->pm_qos_req,
3291                                                PM_QOS_DEFAULT_VALUE);
3292         }
3293
3294         /* Enable Receives */
3295         ew32(RCTL, rctl);
3296 }
3297
3298 /**
3299  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3300  * @netdev: network interface device structure
3301  *
3302  * Writes multicast address list to the MTA hash table.
3303  * Returns: -ENOMEM on failure
3304  *                0 on no addresses written
3305  *                X on writing X addresses to MTA
3306  */
3307 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3308 {
3309         struct e1000_adapter *adapter = netdev_priv(netdev);
3310         struct e1000_hw *hw = &adapter->hw;
3311         struct netdev_hw_addr *ha;
3312         u8 *mta_list;
3313         int i;
3314
3315         if (netdev_mc_empty(netdev)) {
3316                 /* nothing to program, so clear mc list */
3317                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3318                 return 0;
3319         }
3320
3321         mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3322         if (!mta_list)
3323                 return -ENOMEM;
3324
3325         /* update_mc_addr_list expects a packed array of only addresses. */
3326         i = 0;
3327         netdev_for_each_mc_addr(ha, netdev)
3328             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3329
3330         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3331         kfree(mta_list);
3332
3333         return netdev_mc_count(netdev);
3334 }
3335
3336 /**
3337  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3338  * @netdev: network interface device structure
3339  *
3340  * Writes unicast address list to the RAR table.
3341  * Returns: -ENOMEM on failure/insufficient address space
3342  *                0 on no addresses written
3343  *                X on writing X addresses to the RAR table
3344  **/
3345 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3346 {
3347         struct e1000_adapter *adapter = netdev_priv(netdev);
3348         struct e1000_hw *hw = &adapter->hw;
3349         unsigned int rar_entries;
3350         int count = 0;
3351
3352         rar_entries = hw->mac.ops.rar_get_count(hw);
3353
3354         /* save a rar entry for our hardware address */
3355         rar_entries--;
3356
3357         /* save a rar entry for the LAA workaround */
3358         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3359                 rar_entries--;
3360
3361         /* return ENOMEM indicating insufficient memory for addresses */
3362         if (netdev_uc_count(netdev) > rar_entries)
3363                 return -ENOMEM;
3364
3365         if (!netdev_uc_empty(netdev) && rar_entries) {
3366                 struct netdev_hw_addr *ha;
3367
3368                 /* write the addresses in reverse order to avoid write
3369                  * combining
3370                  */
3371                 netdev_for_each_uc_addr(ha, netdev) {
3372                         int ret_val;
3373
3374                         if (!rar_entries)
3375                                 break;
3376                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3377                         if (ret_val < 0)
3378                                 return -ENOMEM;
3379                         count++;
3380                 }
3381         }
3382
3383         /* zero out the remaining RAR entries not used above */
3384         for (; rar_entries > 0; rar_entries--) {
3385                 ew32(RAH(rar_entries), 0);
3386                 ew32(RAL(rar_entries), 0);
3387         }
3388         e1e_flush();
3389
3390         return count;
3391 }
3392
3393 /**
3394  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3395  * @netdev: network interface device structure
3396  *
3397  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3398  * address list or the network interface flags are updated.  This routine is
3399  * responsible for configuring the hardware for proper unicast, multicast,
3400  * promiscuous mode, and all-multi behavior.
3401  **/
3402 static void e1000e_set_rx_mode(struct net_device *netdev)
3403 {
3404         struct e1000_adapter *adapter = netdev_priv(netdev);
3405         struct e1000_hw *hw = &adapter->hw;
3406         u32 rctl;
3407
3408         if (pm_runtime_suspended(netdev->dev.parent))
3409                 return;
3410
3411         /* Check for Promiscuous and All Multicast modes */
3412         rctl = er32(RCTL);
3413
3414         /* clear the affected bits */
3415         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3416
3417         if (netdev->flags & IFF_PROMISC) {
3418                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3419                 /* Do not hardware filter VLANs in promisc mode */
3420                 e1000e_vlan_filter_disable(adapter);
3421         } else {
3422                 int count;
3423
3424                 if (netdev->flags & IFF_ALLMULTI) {
3425                         rctl |= E1000_RCTL_MPE;
3426                 } else {
3427                         /* Write addresses to the MTA, if the attempt fails
3428                          * then we should just turn on promiscuous mode so
3429                          * that we can at least receive multicast traffic
3430                          */
3431                         count = e1000e_write_mc_addr_list(netdev);
3432                         if (count < 0)
3433                                 rctl |= E1000_RCTL_MPE;
3434                 }
3435                 e1000e_vlan_filter_enable(adapter);
3436                 /* Write addresses to available RAR registers, if there is not
3437                  * sufficient space to store all the addresses then enable
3438                  * unicast promiscuous mode
3439                  */
3440                 count = e1000e_write_uc_addr_list(netdev);
3441                 if (count < 0)
3442                         rctl |= E1000_RCTL_UPE;
3443         }
3444
3445         ew32(RCTL, rctl);
3446
3447         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3448                 e1000e_vlan_strip_enable(adapter);
3449         else
3450                 e1000e_vlan_strip_disable(adapter);
3451 }
3452
3453 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3454 {
3455         struct e1000_hw *hw = &adapter->hw;
3456         u32 mrqc, rxcsum;
3457         u32 rss_key[10];
3458         int i;
3459
3460         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3461         for (i = 0; i < 10; i++)
3462                 ew32(RSSRK(i), rss_key[i]);
3463
3464         /* Direct all traffic to queue 0 */
3465         for (i = 0; i < 32; i++)
3466                 ew32(RETA(i), 0);
3467
3468         /* Disable raw packet checksumming so that RSS hash is placed in
3469          * descriptor on writeback.
3470          */
3471         rxcsum = er32(RXCSUM);
3472         rxcsum |= E1000_RXCSUM_PCSD;
3473
3474         ew32(RXCSUM, rxcsum);
3475
3476         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3477                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3478                 E1000_MRQC_RSS_FIELD_IPV6 |
3479                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3480                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3481
3482         ew32(MRQC, mrqc);
3483 }
3484
3485 /**
3486  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3487  * @adapter: board private structure
3488  * @timinca: pointer to returned time increment attributes
3489  *
3490  * Get attributes for incrementing the System Time Register SYSTIML/H at
3491  * the default base frequency, and set the cyclecounter shift value.
3492  **/
3493 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3494 {
3495         struct e1000_hw *hw = &adapter->hw;
3496         u32 incvalue, incperiod, shift;
3497
3498         /* Make sure clock is enabled on I217/I218/I219  before checking
3499          * the frequency
3500          */
3501         if ((hw->mac.type >= e1000_pch_lpt) &&
3502             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3503             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3504                 u32 fextnvm7 = er32(FEXTNVM7);
3505
3506                 if (!(fextnvm7 & BIT(0))) {
3507                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3508                         e1e_flush();
3509                 }
3510         }
3511
3512         switch (hw->mac.type) {
3513         case e1000_pch2lan:
3514                 /* Stable 96MHz frequency */
3515                 incperiod = INCPERIOD_96MHZ;
3516                 incvalue = INCVALUE_96MHZ;
3517                 shift = INCVALUE_SHIFT_96MHZ;
3518                 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3519                 break;
3520         case e1000_pch_lpt:
3521                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3522                         /* Stable 96MHz frequency */
3523                         incperiod = INCPERIOD_96MHZ;
3524                         incvalue = INCVALUE_96MHZ;
3525                         shift = INCVALUE_SHIFT_96MHZ;
3526                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3527                 } else {
3528                         /* Stable 25MHz frequency */
3529                         incperiod = INCPERIOD_25MHZ;
3530                         incvalue = INCVALUE_25MHZ;
3531                         shift = INCVALUE_SHIFT_25MHZ;
3532                         adapter->cc.shift = shift;
3533                 }
3534                 break;
3535         case e1000_pch_spt:
3536                 /* Stable 24MHz frequency */
3537                 incperiod = INCPERIOD_24MHZ;
3538                 incvalue = INCVALUE_24MHZ;
3539                 shift = INCVALUE_SHIFT_24MHZ;
3540                 adapter->cc.shift = shift;
3541                 break;
3542         case e1000_pch_cnp:
3543         case e1000_pch_tgp:
3544         case e1000_pch_adp:
3545         case e1000_pch_mtp:
3546         case e1000_pch_lnp:
3547         case e1000_pch_ptp:
3548                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3549                         /* Stable 24MHz frequency */
3550                         incperiod = INCPERIOD_24MHZ;
3551                         incvalue = INCVALUE_24MHZ;
3552                         shift = INCVALUE_SHIFT_24MHZ;
3553                         adapter->cc.shift = shift;
3554                 } else {
3555                         /* Stable 38400KHz frequency */
3556                         incperiod = INCPERIOD_38400KHZ;
3557                         incvalue = INCVALUE_38400KHZ;
3558                         shift = INCVALUE_SHIFT_38400KHZ;
3559                         adapter->cc.shift = shift;
3560                 }
3561                 break;
3562         case e1000_82574:
3563         case e1000_82583:
3564                 /* Stable 25MHz frequency */
3565                 incperiod = INCPERIOD_25MHZ;
3566                 incvalue = INCVALUE_25MHZ;
3567                 shift = INCVALUE_SHIFT_25MHZ;
3568                 adapter->cc.shift = shift;
3569                 break;
3570         default:
3571                 return -EINVAL;
3572         }
3573
3574         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3575                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3576
3577         return 0;
3578 }
3579
3580 /**
3581  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3582  * @adapter: board private structure
3583  * @config: timestamp configuration
3584  *
3585  * Outgoing time stamping can be enabled and disabled. Play nice and
3586  * disable it when requested, although it shouldn't cause any overhead
3587  * when no packet needs it. At most one packet in the queue may be
3588  * marked for time stamping, otherwise it would be impossible to tell
3589  * for sure to which packet the hardware time stamp belongs.
3590  *
3591  * Incoming time stamping has to be configured via the hardware filters.
3592  * Not all combinations are supported, in particular event type has to be
3593  * specified. Matching the kind of event packet is not supported, with the
3594  * exception of "all V2 events regardless of level 2 or 4".
3595  **/
3596 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3597                                   struct hwtstamp_config *config)
3598 {
3599         struct e1000_hw *hw = &adapter->hw;
3600         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3601         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3602         u32 rxmtrl = 0;
3603         u16 rxudp = 0;
3604         bool is_l4 = false;
3605         bool is_l2 = false;
3606         u32 regval;
3607
3608         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3609                 return -EINVAL;
3610
3611         switch (config->tx_type) {
3612         case HWTSTAMP_TX_OFF:
3613                 tsync_tx_ctl = 0;
3614                 break;
3615         case HWTSTAMP_TX_ON:
3616                 break;
3617         default:
3618                 return -ERANGE;
3619         }
3620
3621         switch (config->rx_filter) {
3622         case HWTSTAMP_FILTER_NONE:
3623                 tsync_rx_ctl = 0;
3624                 break;
3625         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3626                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3627                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3628                 is_l4 = true;
3629                 break;
3630         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3631                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3632                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3633                 is_l4 = true;
3634                 break;
3635         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3636                 /* Also time stamps V2 L2 Path Delay Request/Response */
3637                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3638                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3639                 is_l2 = true;
3640                 break;
3641         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3642                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3643                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3644                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3645                 is_l2 = true;
3646                 break;
3647         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3648                 /* Hardware cannot filter just V2 L4 Sync messages */
3649                 fallthrough;
3650         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3651                 /* Also time stamps V2 Path Delay Request/Response. */
3652                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3653                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3654                 is_l2 = true;
3655                 is_l4 = true;
3656                 break;
3657         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3658                 /* Hardware cannot filter just V2 L4 Delay Request messages */
3659                 fallthrough;
3660         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3661                 /* Also time stamps V2 Path Delay Request/Response. */
3662                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3663                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3664                 is_l2 = true;
3665                 is_l4 = true;
3666                 break;
3667         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3668         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3669                 /* Hardware cannot filter just V2 L4 or L2 Event messages */
3670                 fallthrough;
3671         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3672                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3673                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3674                 is_l2 = true;
3675                 is_l4 = true;
3676                 break;
3677         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3678                 /* For V1, the hardware can only filter Sync messages or
3679                  * Delay Request messages but not both so fall-through to
3680                  * time stamp all packets.
3681                  */
3682                 fallthrough;
3683         case HWTSTAMP_FILTER_NTP_ALL:
3684         case HWTSTAMP_FILTER_ALL:
3685                 is_l2 = true;
3686                 is_l4 = true;
3687                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3688                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3689                 break;
3690         default:
3691                 return -ERANGE;
3692         }
3693
3694         adapter->hwtstamp_config = *config;
3695
3696         /* enable/disable Tx h/w time stamping */
3697         regval = er32(TSYNCTXCTL);
3698         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3699         regval |= tsync_tx_ctl;
3700         ew32(TSYNCTXCTL, regval);
3701         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3702             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3703                 e_err("Timesync Tx Control register not set as expected\n");
3704                 return -EAGAIN;
3705         }
3706
3707         /* enable/disable Rx h/w time stamping */
3708         regval = er32(TSYNCRXCTL);
3709         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3710         regval |= tsync_rx_ctl;
3711         ew32(TSYNCRXCTL, regval);
3712         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3713                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3714             (regval & (E1000_TSYNCRXCTL_ENABLED |
3715                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3716                 e_err("Timesync Rx Control register not set as expected\n");
3717                 return -EAGAIN;
3718         }
3719
3720         /* L2: define ethertype filter for time stamped packets */
3721         if (is_l2)
3722                 rxmtrl |= ETH_P_1588;
3723
3724         /* define which PTP packets get time stamped */
3725         ew32(RXMTRL, rxmtrl);
3726
3727         /* Filter by destination port */
3728         if (is_l4) {
3729                 rxudp = PTP_EV_PORT;
3730                 cpu_to_be16s(&rxudp);
3731         }
3732         ew32(RXUDP, rxudp);
3733
3734         e1e_flush();
3735
3736         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3737         er32(RXSTMPH);
3738         er32(TXSTMPH);
3739
3740         return 0;
3741 }
3742
3743 /**
3744  * e1000_configure - configure the hardware for Rx and Tx
3745  * @adapter: private board structure
3746  **/
3747 static void e1000_configure(struct e1000_adapter *adapter)
3748 {
3749         struct e1000_ring *rx_ring = adapter->rx_ring;
3750
3751         e1000e_set_rx_mode(adapter->netdev);
3752
3753         e1000_restore_vlan(adapter);
3754         e1000_init_manageability_pt(adapter);
3755
3756         e1000_configure_tx(adapter);
3757
3758         if (adapter->netdev->features & NETIF_F_RXHASH)
3759                 e1000e_setup_rss_hash(adapter);
3760         e1000_setup_rctl(adapter);
3761         e1000_configure_rx(adapter);
3762         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3763 }
3764
3765 /**
3766  * e1000e_power_up_phy - restore link in case the phy was powered down
3767  * @adapter: address of board private structure
3768  *
3769  * The phy may be powered down to save power and turn off link when the
3770  * driver is unloaded and wake on lan is not enabled (among others)
3771  * *** this routine MUST be followed by a call to e1000e_reset ***
3772  **/
3773 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3774 {
3775         if (adapter->hw.phy.ops.power_up)
3776                 adapter->hw.phy.ops.power_up(&adapter->hw);
3777
3778         adapter->hw.mac.ops.setup_link(&adapter->hw);
3779 }
3780
3781 /**
3782  * e1000_power_down_phy - Power down the PHY
3783  * @adapter: board private structure
3784  *
3785  * Power down the PHY so no link is implied when interface is down.
3786  * The PHY cannot be powered down if management or WoL is active.
3787  */
3788 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3789 {
3790         if (adapter->hw.phy.ops.power_down)
3791                 adapter->hw.phy.ops.power_down(&adapter->hw);
3792 }
3793
3794 /**
3795  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3796  * @adapter: board private structure
3797  *
3798  * We want to clear all pending descriptors from the TX ring.
3799  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3800  * the data of the next descriptor. We don't care about the data we are about
3801  * to reset the HW.
3802  */
3803 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3804 {
3805         struct e1000_hw *hw = &adapter->hw;
3806         struct e1000_ring *tx_ring = adapter->tx_ring;
3807         struct e1000_tx_desc *tx_desc = NULL;
3808         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3809         u16 size = 512;
3810
3811         tctl = er32(TCTL);
3812         ew32(TCTL, tctl | E1000_TCTL_EN);
3813         tdt = er32(TDT(0));
3814         BUG_ON(tdt != tx_ring->next_to_use);
3815         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3816         tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3817
3818         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3819         tx_desc->upper.data = 0;
3820         /* flush descriptors to memory before notifying the HW */
3821         wmb();
3822         tx_ring->next_to_use++;
3823         if (tx_ring->next_to_use == tx_ring->count)
3824                 tx_ring->next_to_use = 0;
3825         ew32(TDT(0), tx_ring->next_to_use);
3826         usleep_range(200, 250);
3827 }
3828
3829 /**
3830  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3831  * @adapter: board private structure
3832  *
3833  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3834  */
3835 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3836 {
3837         u32 rctl, rxdctl;
3838         struct e1000_hw *hw = &adapter->hw;
3839
3840         rctl = er32(RCTL);
3841         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3842         e1e_flush();
3843         usleep_range(100, 150);
3844
3845         rxdctl = er32(RXDCTL(0));
3846         /* zero the lower 14 bits (prefetch and host thresholds) */
3847         rxdctl &= 0xffffc000;
3848
3849         /* update thresholds: prefetch threshold to 31, host threshold to 1
3850          * and make sure the granularity is "descriptors" and not "cache lines"
3851          */
3852         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3853
3854         ew32(RXDCTL(0), rxdctl);
3855         /* momentarily enable the RX ring for the changes to take effect */
3856         ew32(RCTL, rctl | E1000_RCTL_EN);
3857         e1e_flush();
3858         usleep_range(100, 150);
3859         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3860 }
3861
3862 /**
3863  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3864  * @adapter: board private structure
3865  *
3866  * In i219, the descriptor rings must be emptied before resetting the HW
3867  * or before changing the device state to D3 during runtime (runtime PM).
3868  *
3869  * Failure to do this will cause the HW to enter a unit hang state which can
3870  * only be released by PCI reset on the device
3871  *
3872  */
3873
3874 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3875 {
3876         u16 hang_state;
3877         u32 fext_nvm11, tdlen;
3878         struct e1000_hw *hw = &adapter->hw;
3879
3880         /* First, disable MULR fix in FEXTNVM11 */
3881         fext_nvm11 = er32(FEXTNVM11);
3882         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3883         ew32(FEXTNVM11, fext_nvm11);
3884         /* do nothing if we're not in faulty state, or if the queue is empty */
3885         tdlen = er32(TDLEN(0));
3886         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3887                              &hang_state);
3888         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3889                 return;
3890         e1000_flush_tx_ring(adapter);
3891         /* recheck, maybe the fault is caused by the rx ring */
3892         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3893                              &hang_state);
3894         if (hang_state & FLUSH_DESC_REQUIRED)
3895                 e1000_flush_rx_ring(adapter);
3896 }
3897
3898 /**
3899  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3900  * @adapter: board private structure
3901  *
3902  * When the MAC is reset, all hardware bits for timesync will be reset to the
3903  * default values. This function will restore the settings last in place.
3904  * Since the clock SYSTIME registers are reset, we will simply restore the
3905  * cyclecounter to the kernel real clock time.
3906  **/
3907 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3908 {
3909         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3910         struct e1000_hw *hw = &adapter->hw;
3911         unsigned long flags;
3912         u32 timinca;
3913         s32 ret_val;
3914
3915         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3916                 return;
3917
3918         if (info->adjfine) {
3919                 /* restore the previous ptp frequency delta */
3920                 ret_val = info->adjfine(info, adapter->ptp_delta);
3921         } else {
3922                 /* set the default base frequency if no adjustment possible */
3923                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3924                 if (!ret_val)
3925                         ew32(TIMINCA, timinca);
3926         }
3927
3928         if (ret_val) {
3929                 dev_warn(&adapter->pdev->dev,
3930                          "Failed to restore TIMINCA clock rate delta: %d\n",
3931                          ret_val);
3932                 return;
3933         }
3934
3935         /* reset the systim ns time counter */
3936         spin_lock_irqsave(&adapter->systim_lock, flags);
3937         timecounter_init(&adapter->tc, &adapter->cc,
3938                          ktime_to_ns(ktime_get_real()));
3939         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3940
3941         /* restore the previous hwtstamp configuration settings */
3942         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3943 }
3944
3945 /**
3946  * e1000e_reset - bring the hardware into a known good state
3947  * @adapter: board private structure
3948  *
3949  * This function boots the hardware and enables some settings that
3950  * require a configuration cycle of the hardware - those cannot be
3951  * set/changed during runtime. After reset the device needs to be
3952  * properly configured for Rx, Tx etc.
3953  */
3954 void e1000e_reset(struct e1000_adapter *adapter)
3955 {
3956         struct e1000_mac_info *mac = &adapter->hw.mac;
3957         struct e1000_fc_info *fc = &adapter->hw.fc;
3958         struct e1000_hw *hw = &adapter->hw;
3959         u32 tx_space, min_tx_space, min_rx_space;
3960         u32 pba = adapter->pba;
3961         u16 hwm;
3962
3963         /* reset Packet Buffer Allocation to default */
3964         ew32(PBA, pba);
3965
3966         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3967                 /* To maintain wire speed transmits, the Tx FIFO should be
3968                  * large enough to accommodate two full transmit packets,
3969                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3970                  * the Rx FIFO should be large enough to accommodate at least
3971                  * one full receive packet and is similarly rounded up and
3972                  * expressed in KB.
3973                  */
3974                 pba = er32(PBA);
3975                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3976                 tx_space = pba >> 16;
3977                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3978                 pba &= 0xffff;
3979                 /* the Tx fifo also stores 16 bytes of information about the Tx
3980                  * but don't include ethernet FCS because hardware appends it
3981                  */
3982                 min_tx_space = (adapter->max_frame_size +
3983                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3984                 min_tx_space = ALIGN(min_tx_space, 1024);
3985                 min_tx_space >>= 10;
3986                 /* software strips receive CRC, so leave room for it */
3987                 min_rx_space = adapter->max_frame_size;
3988                 min_rx_space = ALIGN(min_rx_space, 1024);
3989                 min_rx_space >>= 10;
3990
3991                 /* If current Tx allocation is less than the min Tx FIFO size,
3992                  * and the min Tx FIFO size is less than the current Rx FIFO
3993                  * allocation, take space away from current Rx allocation
3994                  */
3995                 if ((tx_space < min_tx_space) &&
3996                     ((min_tx_space - tx_space) < pba)) {
3997                         pba -= min_tx_space - tx_space;
3998
3999                         /* if short on Rx space, Rx wins and must trump Tx
4000                          * adjustment
4001                          */
4002                         if (pba < min_rx_space)
4003                                 pba = min_rx_space;
4004                 }
4005
4006                 ew32(PBA, pba);
4007         }
4008
4009         /* flow control settings
4010          *
4011          * The high water mark must be low enough to fit one full frame
4012          * (or the size used for early receive) above it in the Rx FIFO.
4013          * Set it to the lower of:
4014          * - 90% of the Rx FIFO size, and
4015          * - the full Rx FIFO size minus one full frame
4016          */
4017         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4018                 fc->pause_time = 0xFFFF;
4019         else
4020                 fc->pause_time = E1000_FC_PAUSE_TIME;
4021         fc->send_xon = true;
4022         fc->current_mode = fc->requested_mode;
4023
4024         switch (hw->mac.type) {
4025         case e1000_ich9lan:
4026         case e1000_ich10lan:
4027                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4028                         pba = 14;
4029                         ew32(PBA, pba);
4030                         fc->high_water = 0x2800;
4031                         fc->low_water = fc->high_water - 8;
4032                         break;
4033                 }
4034                 fallthrough;
4035         default:
4036                 hwm = min(((pba << 10) * 9 / 10),
4037                           ((pba << 10) - adapter->max_frame_size));
4038
4039                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4040                 fc->low_water = fc->high_water - 8;
4041                 break;
4042         case e1000_pchlan:
4043                 /* Workaround PCH LOM adapter hangs with certain network
4044                  * loads.  If hangs persist, try disabling Tx flow control.
4045                  */
4046                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4047                         fc->high_water = 0x3500;
4048                         fc->low_water = 0x1500;
4049                 } else {
4050                         fc->high_water = 0x5000;
4051                         fc->low_water = 0x3000;
4052                 }
4053                 fc->refresh_time = 0x1000;
4054                 break;
4055         case e1000_pch2lan:
4056         case e1000_pch_lpt:
4057         case e1000_pch_spt:
4058         case e1000_pch_cnp:
4059         case e1000_pch_tgp:
4060         case e1000_pch_adp:
4061         case e1000_pch_mtp:
4062         case e1000_pch_lnp:
4063         case e1000_pch_ptp:
4064                 fc->refresh_time = 0xFFFF;
4065                 fc->pause_time = 0xFFFF;
4066
4067                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4068                         fc->high_water = 0x05C20;
4069                         fc->low_water = 0x05048;
4070                         break;
4071                 }
4072
4073                 pba = 14;
4074                 ew32(PBA, pba);
4075                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4076                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4077                 break;
4078         }
4079
4080         /* Alignment of Tx data is on an arbitrary byte boundary with the
4081          * maximum size per Tx descriptor limited only to the transmit
4082          * allocation of the packet buffer minus 96 bytes with an upper
4083          * limit of 24KB due to receive synchronization limitations.
4084          */
4085         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4086                                        24 << 10);
4087
4088         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4089          * fit in receive buffer.
4090          */
4091         if (adapter->itr_setting & 0x3) {
4092                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4093                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4094                                 dev_info(&adapter->pdev->dev,
4095                                          "Interrupt Throttle Rate off\n");
4096                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4097                                 e1000e_write_itr(adapter, 0);
4098                         }
4099                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4100                         dev_info(&adapter->pdev->dev,
4101                                  "Interrupt Throttle Rate on\n");
4102                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4103                         adapter->itr = 20000;
4104                         e1000e_write_itr(adapter, adapter->itr);
4105                 }
4106         }
4107
4108         if (hw->mac.type >= e1000_pch_spt)
4109                 e1000_flush_desc_rings(adapter);
4110         /* Allow time for pending master requests to run */
4111         mac->ops.reset_hw(hw);
4112
4113         /* For parts with AMT enabled, let the firmware know
4114          * that the network interface is in control
4115          */
4116         if (adapter->flags & FLAG_HAS_AMT)
4117                 e1000e_get_hw_control(adapter);
4118
4119         ew32(WUC, 0);
4120
4121         if (mac->ops.init_hw(hw))
4122                 e_err("Hardware Error\n");
4123
4124         e1000_update_mng_vlan(adapter);
4125
4126         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4127         ew32(VET, ETH_P_8021Q);
4128
4129         e1000e_reset_adaptive(hw);
4130
4131         /* restore systim and hwtstamp settings */
4132         e1000e_systim_reset(adapter);
4133
4134         /* Set EEE advertisement as appropriate */
4135         if (adapter->flags2 & FLAG2_HAS_EEE) {
4136                 s32 ret_val;
4137                 u16 adv_addr;
4138
4139                 switch (hw->phy.type) {
4140                 case e1000_phy_82579:
4141                         adv_addr = I82579_EEE_ADVERTISEMENT;
4142                         break;
4143                 case e1000_phy_i217:
4144                         adv_addr = I217_EEE_ADVERTISEMENT;
4145                         break;
4146                 default:
4147                         dev_err(&adapter->pdev->dev,
4148                                 "Invalid PHY type setting EEE advertisement\n");
4149                         return;
4150                 }
4151
4152                 ret_val = hw->phy.ops.acquire(hw);
4153                 if (ret_val) {
4154                         dev_err(&adapter->pdev->dev,
4155                                 "EEE advertisement - unable to acquire PHY\n");
4156                         return;
4157                 }
4158
4159                 e1000_write_emi_reg_locked(hw, adv_addr,
4160                                            hw->dev_spec.ich8lan.eee_disable ?
4161                                            0 : adapter->eee_advert);
4162
4163                 hw->phy.ops.release(hw);
4164         }
4165
4166         if (!netif_running(adapter->netdev) &&
4167             !test_bit(__E1000_TESTING, &adapter->state))
4168                 e1000_power_down_phy(adapter);
4169
4170         e1000_get_phy_info(hw);
4171
4172         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4173             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4174                 u16 phy_data = 0;
4175                 /* speed up time to link by disabling smart power down, ignore
4176                  * the return value of this function because there is nothing
4177                  * different we would do if it failed
4178                  */
4179                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4180                 phy_data &= ~IGP02E1000_PM_SPD;
4181                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4182         }
4183         if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4184                 u32 reg;
4185
4186                 /* Fextnvm7 @ 0xe4[2] = 1 */
4187                 reg = er32(FEXTNVM7);
4188                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4189                 ew32(FEXTNVM7, reg);
4190                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4191                 reg = er32(FEXTNVM9);
4192                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4193                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4194                 ew32(FEXTNVM9, reg);
4195         }
4196
4197 }
4198
4199 /**
4200  * e1000e_trigger_lsc - trigger an LSC interrupt
4201  * @adapter: 
4202  *
4203  * Fire a link status change interrupt to start the watchdog.
4204  **/
4205 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4206 {
4207         struct e1000_hw *hw = &adapter->hw;
4208
4209         if (adapter->msix_entries)
4210                 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4211         else
4212                 ew32(ICS, E1000_ICS_LSC);
4213 }
4214
4215 void e1000e_up(struct e1000_adapter *adapter)
4216 {
4217         /* hardware has been reset, we need to reload some things */
4218         e1000_configure(adapter);
4219
4220         clear_bit(__E1000_DOWN, &adapter->state);
4221
4222         if (adapter->msix_entries)
4223                 e1000_configure_msix(adapter);
4224         e1000_irq_enable(adapter);
4225
4226         /* Tx queue started by watchdog timer when link is up */
4227
4228         e1000e_trigger_lsc(adapter);
4229 }
4230
4231 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4232 {
4233         struct e1000_hw *hw = &adapter->hw;
4234
4235         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4236                 return;
4237
4238         /* flush pending descriptor writebacks to memory */
4239         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4240         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4241
4242         /* execute the writes immediately */
4243         e1e_flush();
4244
4245         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4246          * write is successful
4247          */
4248         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4249         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4250
4251         /* execute the writes immediately */
4252         e1e_flush();
4253 }
4254
4255 static void e1000e_update_stats(struct e1000_adapter *adapter);
4256
4257 /**
4258  * e1000e_down - quiesce the device and optionally reset the hardware
4259  * @adapter: board private structure
4260  * @reset: boolean flag to reset the hardware or not
4261  */
4262 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4263 {
4264         struct net_device *netdev = adapter->netdev;
4265         struct e1000_hw *hw = &adapter->hw;
4266         u32 tctl, rctl;
4267
4268         /* signal that we're down so the interrupt handler does not
4269          * reschedule our watchdog timer
4270          */
4271         set_bit(__E1000_DOWN, &adapter->state);
4272
4273         netif_carrier_off(netdev);
4274
4275         /* disable receives in the hardware */
4276         rctl = er32(RCTL);
4277         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4278                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4279         /* flush and sleep below */
4280
4281         netif_stop_queue(netdev);
4282
4283         /* disable transmits in the hardware */
4284         tctl = er32(TCTL);
4285         tctl &= ~E1000_TCTL_EN;
4286         ew32(TCTL, tctl);
4287
4288         /* flush both disables and wait for them to finish */
4289         e1e_flush();
4290         usleep_range(10000, 11000);
4291
4292         e1000_irq_disable(adapter);
4293
4294         napi_synchronize(&adapter->napi);
4295
4296         del_timer_sync(&adapter->watchdog_timer);
4297         del_timer_sync(&adapter->phy_info_timer);
4298
4299         spin_lock(&adapter->stats64_lock);
4300         e1000e_update_stats(adapter);
4301         spin_unlock(&adapter->stats64_lock);
4302
4303         e1000e_flush_descriptors(adapter);
4304
4305         adapter->link_speed = 0;
4306         adapter->link_duplex = 0;
4307
4308         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4309         if ((hw->mac.type >= e1000_pch2lan) &&
4310             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4311             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4312                 e_dbg("failed to disable jumbo frame workaround mode\n");
4313
4314         if (!pci_channel_offline(adapter->pdev)) {
4315                 if (reset)
4316                         e1000e_reset(adapter);
4317                 else if (hw->mac.type >= e1000_pch_spt)
4318                         e1000_flush_desc_rings(adapter);
4319         }
4320         e1000_clean_tx_ring(adapter->tx_ring);
4321         e1000_clean_rx_ring(adapter->rx_ring);
4322 }
4323
4324 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4325 {
4326         might_sleep();
4327         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4328                 usleep_range(1000, 1100);
4329         e1000e_down(adapter, true);
4330         e1000e_up(adapter);
4331         clear_bit(__E1000_RESETTING, &adapter->state);
4332 }
4333
4334 /**
4335  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4336  * @hw: pointer to the HW structure
4337  * @systim: PHC time value read, sanitized and returned
4338  * @sts: structure to hold system time before and after reading SYSTIML,
4339  * may be NULL
4340  *
4341  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4342  * check to see that the time is incrementing at a reasonable
4343  * rate and is a multiple of incvalue.
4344  **/
4345 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4346                                   struct ptp_system_timestamp *sts)
4347 {
4348         u64 time_delta, rem, temp;
4349         u64 systim_next;
4350         u32 incvalue;
4351         int i;
4352
4353         incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4354         for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4355                 /* latch SYSTIMH on read of SYSTIML */
4356                 ptp_read_system_prets(sts);
4357                 systim_next = (u64)er32(SYSTIML);
4358                 ptp_read_system_postts(sts);
4359                 systim_next |= (u64)er32(SYSTIMH) << 32;
4360
4361                 time_delta = systim_next - systim;
4362                 temp = time_delta;
4363                 /* VMWare users have seen incvalue of zero, don't div / 0 */
4364                 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4365
4366                 systim = systim_next;
4367
4368                 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4369                         break;
4370         }
4371
4372         return systim;
4373 }
4374
4375 /**
4376  * e1000e_read_systim - read SYSTIM register
4377  * @adapter: board private structure
4378  * @sts: structure which will contain system time before and after reading
4379  * SYSTIML, may be NULL
4380  **/
4381 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4382                        struct ptp_system_timestamp *sts)
4383 {
4384         struct e1000_hw *hw = &adapter->hw;
4385         u32 systimel, systimel_2, systimeh;
4386         u64 systim;
4387         /* SYSTIMH latching upon SYSTIML read does not work well.
4388          * This means that if SYSTIML overflows after we read it but before
4389          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4390          * will experience a huge non linear increment in the systime value
4391          * to fix that we test for overflow and if true, we re-read systime.
4392          */
4393         ptp_read_system_prets(sts);
4394         systimel = er32(SYSTIML);
4395         ptp_read_system_postts(sts);
4396         systimeh = er32(SYSTIMH);
4397         /* Is systimel is so large that overflow is possible? */
4398         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4399                 ptp_read_system_prets(sts);
4400                 systimel_2 = er32(SYSTIML);
4401                 ptp_read_system_postts(sts);
4402                 if (systimel > systimel_2) {
4403                         /* There was an overflow, read again SYSTIMH, and use
4404                          * systimel_2
4405                          */
4406                         systimeh = er32(SYSTIMH);
4407                         systimel = systimel_2;
4408                 }
4409         }
4410         systim = (u64)systimel;
4411         systim |= (u64)systimeh << 32;
4412
4413         if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4414                 systim = e1000e_sanitize_systim(hw, systim, sts);
4415
4416         return systim;
4417 }
4418
4419 /**
4420  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4421  * @cc: cyclecounter structure
4422  **/
4423 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4424 {
4425         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4426                                                      cc);
4427
4428         return e1000e_read_systim(adapter, NULL);
4429 }
4430
4431 /**
4432  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4433  * @adapter: board private structure to initialize
4434  *
4435  * e1000_sw_init initializes the Adapter private data structure.
4436  * Fields are initialized based on PCI device information and
4437  * OS network device settings (MTU size).
4438  **/
4439 static int e1000_sw_init(struct e1000_adapter *adapter)
4440 {
4441         struct net_device *netdev = adapter->netdev;
4442
4443         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4444         adapter->rx_ps_bsize0 = 128;
4445         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4446         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4447         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4448         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4449
4450         spin_lock_init(&adapter->stats64_lock);
4451
4452         e1000e_set_interrupt_capability(adapter);
4453
4454         if (e1000_alloc_queues(adapter))
4455                 return -ENOMEM;
4456
4457         /* Setup hardware time stamping cyclecounter */
4458         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4459                 adapter->cc.read = e1000e_cyclecounter_read;
4460                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4461                 adapter->cc.mult = 1;
4462                 /* cc.shift set in e1000e_get_base_tininca() */
4463
4464                 spin_lock_init(&adapter->systim_lock);
4465                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4466         }
4467
4468         /* Explicitly disable IRQ since the NIC can be in any state. */
4469         e1000_irq_disable(adapter);
4470
4471         set_bit(__E1000_DOWN, &adapter->state);
4472         return 0;
4473 }
4474
4475 /**
4476  * e1000_intr_msi_test - Interrupt Handler
4477  * @irq: interrupt number
4478  * @data: pointer to a network interface device structure
4479  **/
4480 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4481 {
4482         struct net_device *netdev = data;
4483         struct e1000_adapter *adapter = netdev_priv(netdev);
4484         struct e1000_hw *hw = &adapter->hw;
4485         u32 icr = er32(ICR);
4486
4487         e_dbg("icr is %08X\n", icr);
4488         if (icr & E1000_ICR_RXSEQ) {
4489                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4490                 /* Force memory writes to complete before acknowledging the
4491                  * interrupt is handled.
4492                  */
4493                 wmb();
4494         }
4495
4496         return IRQ_HANDLED;
4497 }
4498
4499 /**
4500  * e1000_test_msi_interrupt - Returns 0 for successful test
4501  * @adapter: board private struct
4502  *
4503  * code flow taken from tg3.c
4504  **/
4505 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4506 {
4507         struct net_device *netdev = adapter->netdev;
4508         struct e1000_hw *hw = &adapter->hw;
4509         int err;
4510
4511         /* poll_enable hasn't been called yet, so don't need disable */
4512         /* clear any pending events */
4513         er32(ICR);
4514
4515         /* free the real vector and request a test handler */
4516         e1000_free_irq(adapter);
4517         e1000e_reset_interrupt_capability(adapter);
4518
4519         /* Assume that the test fails, if it succeeds then the test
4520          * MSI irq handler will unset this flag
4521          */
4522         adapter->flags |= FLAG_MSI_TEST_FAILED;
4523
4524         err = pci_enable_msi(adapter->pdev);
4525         if (err)
4526                 goto msi_test_failed;
4527
4528         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4529                           netdev->name, netdev);
4530         if (err) {
4531                 pci_disable_msi(adapter->pdev);
4532                 goto msi_test_failed;
4533         }
4534
4535         /* Force memory writes to complete before enabling and firing an
4536          * interrupt.
4537          */
4538         wmb();
4539
4540         e1000_irq_enable(adapter);
4541
4542         /* fire an unusual interrupt on the test handler */
4543         ew32(ICS, E1000_ICS_RXSEQ);
4544         e1e_flush();
4545         msleep(100);
4546
4547         e1000_irq_disable(adapter);
4548
4549         rmb();                  /* read flags after interrupt has been fired */
4550
4551         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4552                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4553                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4554         } else {
4555                 e_dbg("MSI interrupt test succeeded!\n");
4556         }
4557
4558         free_irq(adapter->pdev->irq, netdev);
4559         pci_disable_msi(adapter->pdev);
4560
4561 msi_test_failed:
4562         e1000e_set_interrupt_capability(adapter);
4563         return e1000_request_irq(adapter);
4564 }
4565
4566 /**
4567  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4568  * @adapter: board private struct
4569  *
4570  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4571  **/
4572 static int e1000_test_msi(struct e1000_adapter *adapter)
4573 {
4574         int err;
4575         u16 pci_cmd;
4576
4577         if (!(adapter->flags & FLAG_MSI_ENABLED))
4578                 return 0;
4579
4580         /* disable SERR in case the MSI write causes a master abort */
4581         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4582         if (pci_cmd & PCI_COMMAND_SERR)
4583                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4584                                       pci_cmd & ~PCI_COMMAND_SERR);
4585
4586         err = e1000_test_msi_interrupt(adapter);
4587
4588         /* re-enable SERR */
4589         if (pci_cmd & PCI_COMMAND_SERR) {
4590                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4591                 pci_cmd |= PCI_COMMAND_SERR;
4592                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4593         }
4594
4595         return err;
4596 }
4597
4598 /**
4599  * e1000e_open - Called when a network interface is made active
4600  * @netdev: network interface device structure
4601  *
4602  * Returns 0 on success, negative value on failure
4603  *
4604  * The open entry point is called when a network interface is made
4605  * active by the system (IFF_UP).  At this point all resources needed
4606  * for transmit and receive operations are allocated, the interrupt
4607  * handler is registered with the OS, the watchdog timer is started,
4608  * and the stack is notified that the interface is ready.
4609  **/
4610 int e1000e_open(struct net_device *netdev)
4611 {
4612         struct e1000_adapter *adapter = netdev_priv(netdev);
4613         struct e1000_hw *hw = &adapter->hw;
4614         struct pci_dev *pdev = adapter->pdev;
4615         int err;
4616
4617         /* disallow open during test */
4618         if (test_bit(__E1000_TESTING, &adapter->state))
4619                 return -EBUSY;
4620
4621         pm_runtime_get_sync(&pdev->dev);
4622
4623         netif_carrier_off(netdev);
4624         netif_stop_queue(netdev);
4625
4626         /* allocate transmit descriptors */
4627         err = e1000e_setup_tx_resources(adapter->tx_ring);
4628         if (err)
4629                 goto err_setup_tx;
4630
4631         /* allocate receive descriptors */
4632         err = e1000e_setup_rx_resources(adapter->rx_ring);
4633         if (err)
4634                 goto err_setup_rx;
4635
4636         /* If AMT is enabled, let the firmware know that the network
4637          * interface is now open and reset the part to a known state.
4638          */
4639         if (adapter->flags & FLAG_HAS_AMT) {
4640                 e1000e_get_hw_control(adapter);
4641                 e1000e_reset(adapter);
4642         }
4643
4644         e1000e_power_up_phy(adapter);
4645
4646         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4647         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4648                 e1000_update_mng_vlan(adapter);
4649
4650         /* DMA latency requirement to workaround jumbo issue */
4651         cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4652
4653         /* before we allocate an interrupt, we must be ready to handle it.
4654          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4655          * as soon as we call pci_request_irq, so we have to setup our
4656          * clean_rx handler before we do so.
4657          */
4658         e1000_configure(adapter);
4659
4660         err = e1000_request_irq(adapter);
4661         if (err)
4662                 goto err_req_irq;
4663
4664         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4665          * ignore e1000e MSI messages, which means we need to test our MSI
4666          * interrupt now
4667          */
4668         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4669                 err = e1000_test_msi(adapter);
4670                 if (err) {
4671                         e_err("Interrupt allocation failed\n");
4672                         goto err_req_irq;
4673                 }
4674         }
4675
4676         /* From here on the code is the same as e1000e_up() */
4677         clear_bit(__E1000_DOWN, &adapter->state);
4678
4679         napi_enable(&adapter->napi);
4680
4681         e1000_irq_enable(adapter);
4682
4683         adapter->tx_hang_recheck = false;
4684
4685         hw->mac.get_link_status = true;
4686         pm_runtime_put(&pdev->dev);
4687
4688         e1000e_trigger_lsc(adapter);
4689
4690         return 0;
4691
4692 err_req_irq:
4693         cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4694         e1000e_release_hw_control(adapter);
4695         e1000_power_down_phy(adapter);
4696         e1000e_free_rx_resources(adapter->rx_ring);
4697 err_setup_rx:
4698         e1000e_free_tx_resources(adapter->tx_ring);
4699 err_setup_tx:
4700         e1000e_reset(adapter);
4701         pm_runtime_put_sync(&pdev->dev);
4702
4703         return err;
4704 }
4705
4706 /**
4707  * e1000e_close - Disables a network interface
4708  * @netdev: network interface device structure
4709  *
4710  * Returns 0, this is not allowed to fail
4711  *
4712  * The close entry point is called when an interface is de-activated
4713  * by the OS.  The hardware is still under the drivers control, but
4714  * needs to be disabled.  A global MAC reset is issued to stop the
4715  * hardware, and all transmit and receive resources are freed.
4716  **/
4717 int e1000e_close(struct net_device *netdev)
4718 {
4719         struct e1000_adapter *adapter = netdev_priv(netdev);
4720         struct pci_dev *pdev = adapter->pdev;
4721         int count = E1000_CHECK_RESET_COUNT;
4722
4723         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4724                 usleep_range(10000, 11000);
4725
4726         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4727
4728         pm_runtime_get_sync(&pdev->dev);
4729
4730         if (netif_device_present(netdev)) {
4731                 e1000e_down(adapter, true);
4732                 e1000_free_irq(adapter);
4733
4734                 /* Link status message must follow this format */
4735                 netdev_info(netdev, "NIC Link is Down\n");
4736         }
4737
4738         napi_disable(&adapter->napi);
4739
4740         e1000e_free_tx_resources(adapter->tx_ring);
4741         e1000e_free_rx_resources(adapter->rx_ring);
4742
4743         /* kill manageability vlan ID if supported, but not if a vlan with
4744          * the same ID is registered on the host OS (let 8021q kill it)
4745          */
4746         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4747                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4748                                        adapter->mng_vlan_id);
4749
4750         /* If AMT is enabled, let the firmware know that the network
4751          * interface is now closed
4752          */
4753         if ((adapter->flags & FLAG_HAS_AMT) &&
4754             !test_bit(__E1000_TESTING, &adapter->state))
4755                 e1000e_release_hw_control(adapter);
4756
4757         cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4758
4759         pm_runtime_put_sync(&pdev->dev);
4760
4761         return 0;
4762 }
4763
4764 /**
4765  * e1000_set_mac - Change the Ethernet Address of the NIC
4766  * @netdev: network interface device structure
4767  * @p: pointer to an address structure
4768  *
4769  * Returns 0 on success, negative on failure
4770  **/
4771 static int e1000_set_mac(struct net_device *netdev, void *p)
4772 {
4773         struct e1000_adapter *adapter = netdev_priv(netdev);
4774         struct e1000_hw *hw = &adapter->hw;
4775         struct sockaddr *addr = p;
4776
4777         if (!is_valid_ether_addr(addr->sa_data))
4778                 return -EADDRNOTAVAIL;
4779
4780         eth_hw_addr_set(netdev, addr->sa_data);
4781         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4782
4783         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4784
4785         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4786                 /* activate the work around */
4787                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4788
4789                 /* Hold a copy of the LAA in RAR[14] This is done so that
4790                  * between the time RAR[0] gets clobbered  and the time it
4791                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4792                  * of the RARs and no incoming packets directed to this port
4793                  * are dropped. Eventually the LAA will be in RAR[0] and
4794                  * RAR[14]
4795                  */
4796                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4797                                     adapter->hw.mac.rar_entry_count - 1);
4798         }
4799
4800         return 0;
4801 }
4802
4803 /**
4804  * e1000e_update_phy_task - work thread to update phy
4805  * @work: pointer to our work struct
4806  *
4807  * this worker thread exists because we must acquire a
4808  * semaphore to read the phy, which we could msleep while
4809  * waiting for it, and we can't msleep in a timer.
4810  **/
4811 static void e1000e_update_phy_task(struct work_struct *work)
4812 {
4813         struct e1000_adapter *adapter = container_of(work,
4814                                                      struct e1000_adapter,
4815                                                      update_phy_task);
4816         struct e1000_hw *hw = &adapter->hw;
4817
4818         if (test_bit(__E1000_DOWN, &adapter->state))
4819                 return;
4820
4821         e1000_get_phy_info(hw);
4822
4823         /* Enable EEE on 82579 after link up */
4824         if (hw->phy.type >= e1000_phy_82579)
4825                 e1000_set_eee_pchlan(hw);
4826 }
4827
4828 /**
4829  * e1000_update_phy_info - timre call-back to update PHY info
4830  * @t: pointer to timer_list containing private info adapter
4831  *
4832  * Need to wait a few seconds after link up to get diagnostic information from
4833  * the phy
4834  **/
4835 static void e1000_update_phy_info(struct timer_list *t)
4836 {
4837         struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4838
4839         if (test_bit(__E1000_DOWN, &adapter->state))
4840                 return;
4841
4842         schedule_work(&adapter->update_phy_task);
4843 }
4844
4845 /**
4846  * e1000e_update_phy_stats - Update the PHY statistics counters
4847  * @adapter: board private structure
4848  *
4849  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4850  **/
4851 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4852 {
4853         struct e1000_hw *hw = &adapter->hw;
4854         s32 ret_val;
4855         u16 phy_data;
4856
4857         ret_val = hw->phy.ops.acquire(hw);
4858         if (ret_val)
4859                 return;
4860
4861         /* A page set is expensive so check if already on desired page.
4862          * If not, set to the page with the PHY status registers.
4863          */
4864         hw->phy.addr = 1;
4865         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4866                                            &phy_data);
4867         if (ret_val)
4868                 goto release;
4869         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4870                 ret_val = hw->phy.ops.set_page(hw,
4871                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4872                 if (ret_val)
4873                         goto release;
4874         }
4875
4876         /* Single Collision Count */
4877         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4878         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4879         if (!ret_val)
4880                 adapter->stats.scc += phy_data;
4881
4882         /* Excessive Collision Count */
4883         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4884         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4885         if (!ret_val)
4886                 adapter->stats.ecol += phy_data;
4887
4888         /* Multiple Collision Count */
4889         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4890         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4891         if (!ret_val)
4892                 adapter->stats.mcc += phy_data;
4893
4894         /* Late Collision Count */
4895         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4896         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4897         if (!ret_val)
4898                 adapter->stats.latecol += phy_data;
4899
4900         /* Collision Count - also used for adaptive IFS */
4901         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4902         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4903         if (!ret_val)
4904                 hw->mac.collision_delta = phy_data;
4905
4906         /* Defer Count */
4907         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4908         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4909         if (!ret_val)
4910                 adapter->stats.dc += phy_data;
4911
4912         /* Transmit with no CRS */
4913         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4914         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4915         if (!ret_val)
4916                 adapter->stats.tncrs += phy_data;
4917
4918 release:
4919         hw->phy.ops.release(hw);
4920 }
4921
4922 /**
4923  * e1000e_update_stats - Update the board statistics counters
4924  * @adapter: board private structure
4925  **/
4926 static void e1000e_update_stats(struct e1000_adapter *adapter)
4927 {
4928         struct net_device *netdev = adapter->netdev;
4929         struct e1000_hw *hw = &adapter->hw;
4930         struct pci_dev *pdev = adapter->pdev;
4931
4932         /* Prevent stats update while adapter is being reset, or if the pci
4933          * connection is down.
4934          */
4935         if (adapter->link_speed == 0)
4936                 return;
4937         if (pci_channel_offline(pdev))
4938                 return;
4939
4940         adapter->stats.crcerrs += er32(CRCERRS);
4941         adapter->stats.gprc += er32(GPRC);
4942         adapter->stats.gorc += er32(GORCL);
4943         er32(GORCH);            /* Clear gorc */
4944         adapter->stats.bprc += er32(BPRC);
4945         adapter->stats.mprc += er32(MPRC);
4946         adapter->stats.roc += er32(ROC);
4947
4948         adapter->stats.mpc += er32(MPC);
4949
4950         /* Half-duplex statistics */
4951         if (adapter->link_duplex == HALF_DUPLEX) {
4952                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4953                         e1000e_update_phy_stats(adapter);
4954                 } else {
4955                         adapter->stats.scc += er32(SCC);
4956                         adapter->stats.ecol += er32(ECOL);
4957                         adapter->stats.mcc += er32(MCC);
4958                         adapter->stats.latecol += er32(LATECOL);
4959                         adapter->stats.dc += er32(DC);
4960
4961                         hw->mac.collision_delta = er32(COLC);
4962
4963                         if ((hw->mac.type != e1000_82574) &&
4964                             (hw->mac.type != e1000_82583))
4965                                 adapter->stats.tncrs += er32(TNCRS);
4966                 }
4967                 adapter->stats.colc += hw->mac.collision_delta;
4968         }
4969
4970         adapter->stats.xonrxc += er32(XONRXC);
4971         adapter->stats.xontxc += er32(XONTXC);
4972         adapter->stats.xoffrxc += er32(XOFFRXC);
4973         adapter->stats.xofftxc += er32(XOFFTXC);
4974         adapter->stats.gptc += er32(GPTC);
4975         adapter->stats.gotc += er32(GOTCL);
4976         er32(GOTCH);            /* Clear gotc */
4977         adapter->stats.rnbc += er32(RNBC);
4978         adapter->stats.ruc += er32(RUC);
4979
4980         adapter->stats.mptc += er32(MPTC);
4981         adapter->stats.bptc += er32(BPTC);
4982
4983         /* used for adaptive IFS */
4984
4985         hw->mac.tx_packet_delta = er32(TPT);
4986         adapter->stats.tpt += hw->mac.tx_packet_delta;
4987
4988         adapter->stats.algnerrc += er32(ALGNERRC);
4989         adapter->stats.rxerrc += er32(RXERRC);
4990         adapter->stats.cexterr += er32(CEXTERR);
4991         adapter->stats.tsctc += er32(TSCTC);
4992         adapter->stats.tsctfc += er32(TSCTFC);
4993
4994         /* Fill out the OS statistics structure */
4995         netdev->stats.multicast = adapter->stats.mprc;
4996         netdev->stats.collisions = adapter->stats.colc;
4997
4998         /* Rx Errors */
4999
5000         /* RLEC on some newer hardware can be incorrect so build
5001          * our own version based on RUC and ROC
5002          */
5003         netdev->stats.rx_errors = adapter->stats.rxerrc +
5004             adapter->stats.crcerrs + adapter->stats.algnerrc +
5005             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5006         netdev->stats.rx_length_errors = adapter->stats.ruc +
5007             adapter->stats.roc;
5008         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5009         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5010         netdev->stats.rx_missed_errors = adapter->stats.mpc;
5011
5012         /* Tx Errors */
5013         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5014         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5015         netdev->stats.tx_window_errors = adapter->stats.latecol;
5016         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5017
5018         /* Tx Dropped needs to be maintained elsewhere */
5019
5020         /* Management Stats */
5021         adapter->stats.mgptc += er32(MGTPTC);
5022         adapter->stats.mgprc += er32(MGTPRC);
5023         adapter->stats.mgpdc += er32(MGTPDC);
5024
5025         /* Correctable ECC Errors */
5026         if (hw->mac.type >= e1000_pch_lpt) {
5027                 u32 pbeccsts = er32(PBECCSTS);
5028
5029                 adapter->corr_errors +=
5030                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5031                 adapter->uncorr_errors +=
5032                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5033                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5034         }
5035 }
5036
5037 /**
5038  * e1000_phy_read_status - Update the PHY register status snapshot
5039  * @adapter: board private structure
5040  **/
5041 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5042 {
5043         struct e1000_hw *hw = &adapter->hw;
5044         struct e1000_phy_regs *phy = &adapter->phy_regs;
5045
5046         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5047             (er32(STATUS) & E1000_STATUS_LU) &&
5048             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5049                 int ret_val;
5050
5051                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5052                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5053                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5054                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5055                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5056                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5057                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5058                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5059                 if (ret_val)
5060                         e_warn("Error reading PHY register\n");
5061         } else {
5062                 /* Do not read PHY registers if link is not up
5063                  * Set values to typical power-on defaults
5064                  */
5065                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5066                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5067                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5068                              BMSR_ERCAP);
5069                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5070                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5071                 phy->lpa = 0;
5072                 phy->expansion = EXPANSION_ENABLENPAGE;
5073                 phy->ctrl1000 = ADVERTISE_1000FULL;
5074                 phy->stat1000 = 0;
5075                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5076         }
5077 }
5078
5079 static void e1000_print_link_info(struct e1000_adapter *adapter)
5080 {
5081         struct e1000_hw *hw = &adapter->hw;
5082         u32 ctrl = er32(CTRL);
5083
5084         /* Link status message must follow this format for user tools */
5085         netdev_info(adapter->netdev,
5086                     "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5087                     adapter->link_speed,
5088                     adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5089                     (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5090                     (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5091                     (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5092 }
5093
5094 static bool e1000e_has_link(struct e1000_adapter *adapter)
5095 {
5096         struct e1000_hw *hw = &adapter->hw;
5097         bool link_active = false;
5098         s32 ret_val = 0;
5099
5100         /* get_link_status is set on LSC (link status) interrupt or
5101          * Rx sequence error interrupt.  get_link_status will stay
5102          * true until the check_for_link establishes link
5103          * for copper adapters ONLY
5104          */
5105         switch (hw->phy.media_type) {
5106         case e1000_media_type_copper:
5107                 if (hw->mac.get_link_status) {
5108                         ret_val = hw->mac.ops.check_for_link(hw);
5109                         link_active = !hw->mac.get_link_status;
5110                 } else {
5111                         link_active = true;
5112                 }
5113                 break;
5114         case e1000_media_type_fiber:
5115                 ret_val = hw->mac.ops.check_for_link(hw);
5116                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5117                 break;
5118         case e1000_media_type_internal_serdes:
5119                 ret_val = hw->mac.ops.check_for_link(hw);
5120                 link_active = hw->mac.serdes_has_link;
5121                 break;
5122         default:
5123         case e1000_media_type_unknown:
5124                 break;
5125         }
5126
5127         if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5128             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5129                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5130                 e_info("Gigabit has been disabled, downgrading speed\n");
5131         }
5132
5133         return link_active;
5134 }
5135
5136 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5137 {
5138         /* make sure the receive unit is started */
5139         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5140             (adapter->flags & FLAG_RESTART_NOW)) {
5141                 struct e1000_hw *hw = &adapter->hw;
5142                 u32 rctl = er32(RCTL);
5143
5144                 ew32(RCTL, rctl | E1000_RCTL_EN);
5145                 adapter->flags &= ~FLAG_RESTART_NOW;
5146         }
5147 }
5148
5149 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5150 {
5151         struct e1000_hw *hw = &adapter->hw;
5152
5153         /* With 82574 controllers, PHY needs to be checked periodically
5154          * for hung state and reset, if two calls return true
5155          */
5156         if (e1000_check_phy_82574(hw))
5157                 adapter->phy_hang_count++;
5158         else
5159                 adapter->phy_hang_count = 0;
5160
5161         if (adapter->phy_hang_count > 1) {
5162                 adapter->phy_hang_count = 0;
5163                 e_dbg("PHY appears hung - resetting\n");
5164                 schedule_work(&adapter->reset_task);
5165         }
5166 }
5167
5168 /**
5169  * e1000_watchdog - Timer Call-back
5170  * @t: pointer to timer_list containing private info adapter
5171  **/
5172 static void e1000_watchdog(struct timer_list *t)
5173 {
5174         struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5175
5176         /* Do the rest outside of interrupt context */
5177         schedule_work(&adapter->watchdog_task);
5178
5179         /* TODO: make this use queue_delayed_work() */
5180 }
5181
5182 static void e1000_watchdog_task(struct work_struct *work)
5183 {
5184         struct e1000_adapter *adapter = container_of(work,
5185                                                      struct e1000_adapter,
5186                                                      watchdog_task);
5187         struct net_device *netdev = adapter->netdev;
5188         struct e1000_mac_info *mac = &adapter->hw.mac;
5189         struct e1000_phy_info *phy = &adapter->hw.phy;
5190         struct e1000_ring *tx_ring = adapter->tx_ring;
5191         u32 dmoff_exit_timeout = 100, tries = 0;
5192         struct e1000_hw *hw = &adapter->hw;
5193         u32 link, tctl, pcim_state;
5194
5195         if (test_bit(__E1000_DOWN, &adapter->state))
5196                 return;
5197
5198         link = e1000e_has_link(adapter);
5199         if ((netif_carrier_ok(netdev)) && link) {
5200                 /* Cancel scheduled suspend requests. */
5201                 pm_runtime_resume(netdev->dev.parent);
5202
5203                 e1000e_enable_receives(adapter);
5204                 goto link_up;
5205         }
5206
5207         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5208             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5209                 e1000_update_mng_vlan(adapter);
5210
5211         if (link) {
5212                 if (!netif_carrier_ok(netdev)) {
5213                         bool txb2b = true;
5214
5215                         /* Cancel scheduled suspend requests. */
5216                         pm_runtime_resume(netdev->dev.parent);
5217
5218                         /* Checking if MAC is in DMoff state*/
5219                         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5220                                 pcim_state = er32(STATUS);
5221                                 while (pcim_state & E1000_STATUS_PCIM_STATE) {
5222                                         if (tries++ == dmoff_exit_timeout) {
5223                                                 e_dbg("Error in exiting dmoff\n");
5224                                                 break;
5225                                         }
5226                                         usleep_range(10000, 20000);
5227                                         pcim_state = er32(STATUS);
5228
5229                                         /* Checking if MAC exited DMoff state */
5230                                         if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5231                                                 e1000_phy_hw_reset(&adapter->hw);
5232                                 }
5233                         }
5234
5235                         /* update snapshot of PHY registers on LSC */
5236                         e1000_phy_read_status(adapter);
5237                         mac->ops.get_link_up_info(&adapter->hw,
5238                                                   &adapter->link_speed,
5239                                                   &adapter->link_duplex);
5240                         e1000_print_link_info(adapter);
5241
5242                         /* check if SmartSpeed worked */
5243                         e1000e_check_downshift(hw);
5244                         if (phy->speed_downgraded)
5245                                 netdev_warn(netdev,
5246                                             "Link Speed was downgraded by SmartSpeed\n");
5247
5248                         /* On supported PHYs, check for duplex mismatch only
5249                          * if link has autonegotiated at 10/100 half
5250                          */
5251                         if ((hw->phy.type == e1000_phy_igp_3 ||
5252                              hw->phy.type == e1000_phy_bm) &&
5253                             hw->mac.autoneg &&
5254                             (adapter->link_speed == SPEED_10 ||
5255                              adapter->link_speed == SPEED_100) &&
5256                             (adapter->link_duplex == HALF_DUPLEX)) {
5257                                 u16 autoneg_exp;
5258
5259                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5260
5261                                 if (!(autoneg_exp & EXPANSION_NWAY))
5262                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5263                         }
5264
5265                         /* adjust timeout factor according to speed/duplex */
5266                         adapter->tx_timeout_factor = 1;
5267                         switch (adapter->link_speed) {
5268                         case SPEED_10:
5269                                 txb2b = false;
5270                                 adapter->tx_timeout_factor = 16;
5271                                 break;
5272                         case SPEED_100:
5273                                 txb2b = false;
5274                                 adapter->tx_timeout_factor = 10;
5275                                 break;
5276                         }
5277
5278                         /* workaround: re-program speed mode bit after
5279                          * link-up event
5280                          */
5281                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5282                             !txb2b) {
5283                                 u32 tarc0;
5284
5285                                 tarc0 = er32(TARC(0));
5286                                 tarc0 &= ~SPEED_MODE_BIT;
5287                                 ew32(TARC(0), tarc0);
5288                         }
5289
5290                         /* enable transmits in the hardware, need to do this
5291                          * after setting TARC(0)
5292                          */
5293                         tctl = er32(TCTL);
5294                         tctl |= E1000_TCTL_EN;
5295                         ew32(TCTL, tctl);
5296
5297                         /* Perform any post-link-up configuration before
5298                          * reporting link up.
5299                          */
5300                         if (phy->ops.cfg_on_link_up)
5301                                 phy->ops.cfg_on_link_up(hw);
5302
5303                         netif_wake_queue(netdev);
5304                         netif_carrier_on(netdev);
5305
5306                         if (!test_bit(__E1000_DOWN, &adapter->state))
5307                                 mod_timer(&adapter->phy_info_timer,
5308                                           round_jiffies(jiffies + 2 * HZ));
5309                 }
5310         } else {
5311                 if (netif_carrier_ok(netdev)) {
5312                         adapter->link_speed = 0;
5313                         adapter->link_duplex = 0;
5314                         /* Link status message must follow this format */
5315                         netdev_info(netdev, "NIC Link is Down\n");
5316                         netif_carrier_off(netdev);
5317                         netif_stop_queue(netdev);
5318                         if (!test_bit(__E1000_DOWN, &adapter->state))
5319                                 mod_timer(&adapter->phy_info_timer,
5320                                           round_jiffies(jiffies + 2 * HZ));
5321
5322                         /* 8000ES2LAN requires a Rx packet buffer work-around
5323                          * on link down event; reset the controller to flush
5324                          * the Rx packet buffer.
5325                          */
5326                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5327                                 adapter->flags |= FLAG_RESTART_NOW;
5328                         else
5329                                 pm_schedule_suspend(netdev->dev.parent,
5330                                                     LINK_TIMEOUT);
5331                 }
5332         }
5333
5334 link_up:
5335         spin_lock(&adapter->stats64_lock);
5336         e1000e_update_stats(adapter);
5337
5338         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5339         adapter->tpt_old = adapter->stats.tpt;
5340         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5341         adapter->colc_old = adapter->stats.colc;
5342
5343         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5344         adapter->gorc_old = adapter->stats.gorc;
5345         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5346         adapter->gotc_old = adapter->stats.gotc;
5347         spin_unlock(&adapter->stats64_lock);
5348
5349         /* If the link is lost the controller stops DMA, but
5350          * if there is queued Tx work it cannot be done.  So
5351          * reset the controller to flush the Tx packet buffers.
5352          */
5353         if (!netif_carrier_ok(netdev) &&
5354             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5355                 adapter->flags |= FLAG_RESTART_NOW;
5356
5357         /* If reset is necessary, do it outside of interrupt context. */
5358         if (adapter->flags & FLAG_RESTART_NOW) {
5359                 schedule_work(&adapter->reset_task);
5360                 /* return immediately since reset is imminent */
5361                 return;
5362         }
5363
5364         e1000e_update_adaptive(&adapter->hw);
5365
5366         /* Simple mode for Interrupt Throttle Rate (ITR) */
5367         if (adapter->itr_setting == 4) {
5368                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5369                  * Total asymmetrical Tx or Rx gets ITR=8000;
5370                  * everyone else is between 2000-8000.
5371                  */
5372                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5373                 u32 dif = (adapter->gotc > adapter->gorc ?
5374                            adapter->gotc - adapter->gorc :
5375                            adapter->gorc - adapter->gotc) / 10000;
5376                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5377
5378                 e1000e_write_itr(adapter, itr);
5379         }
5380
5381         /* Cause software interrupt to ensure Rx ring is cleaned */
5382         if (adapter->msix_entries)
5383                 ew32(ICS, adapter->rx_ring->ims_val);
5384         else
5385                 ew32(ICS, E1000_ICS_RXDMT0);
5386
5387         /* flush pending descriptors to memory before detecting Tx hang */
5388         e1000e_flush_descriptors(adapter);
5389
5390         /* Force detection of hung controller every watchdog period */
5391         adapter->detect_tx_hung = true;
5392
5393         /* With 82571 controllers, LAA may be overwritten due to controller
5394          * reset from the other port. Set the appropriate LAA in RAR[0]
5395          */
5396         if (e1000e_get_laa_state_82571(hw))
5397                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5398
5399         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5400                 e1000e_check_82574_phy_workaround(adapter);
5401
5402         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5403         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5404                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5405                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5406                         er32(RXSTMPH);
5407                         adapter->rx_hwtstamp_cleared++;
5408                 } else {
5409                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5410                 }
5411         }
5412
5413         /* Reset the timer */
5414         if (!test_bit(__E1000_DOWN, &adapter->state))
5415                 mod_timer(&adapter->watchdog_timer,
5416                           round_jiffies(jiffies + 2 * HZ));
5417 }
5418
5419 #define E1000_TX_FLAGS_CSUM             0x00000001
5420 #define E1000_TX_FLAGS_VLAN             0x00000002
5421 #define E1000_TX_FLAGS_TSO              0x00000004
5422 #define E1000_TX_FLAGS_IPV4             0x00000008
5423 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5424 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5425 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5426 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5427
5428 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5429                      __be16 protocol)
5430 {
5431         struct e1000_context_desc *context_desc;
5432         struct e1000_buffer *buffer_info;
5433         unsigned int i;
5434         u32 cmd_length = 0;
5435         u16 ipcse = 0, mss;
5436         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5437         int err;
5438
5439         if (!skb_is_gso(skb))
5440                 return 0;
5441
5442         err = skb_cow_head(skb, 0);
5443         if (err < 0)
5444                 return err;
5445
5446         hdr_len = skb_tcp_all_headers(skb);
5447         mss = skb_shinfo(skb)->gso_size;
5448         if (protocol == htons(ETH_P_IP)) {
5449                 struct iphdr *iph = ip_hdr(skb);
5450                 iph->tot_len = 0;
5451                 iph->check = 0;
5452                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5453                                                          0, IPPROTO_TCP, 0);
5454                 cmd_length = E1000_TXD_CMD_IP;
5455                 ipcse = skb_transport_offset(skb) - 1;
5456         } else if (skb_is_gso_v6(skb)) {
5457                 tcp_v6_gso_csum_prep(skb);
5458                 ipcse = 0;
5459         }
5460         ipcss = skb_network_offset(skb);
5461         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5462         tucss = skb_transport_offset(skb);
5463         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5464
5465         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5466                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5467
5468         i = tx_ring->next_to_use;
5469         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5470         buffer_info = &tx_ring->buffer_info[i];
5471
5472         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5473         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5474         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5475         context_desc->upper_setup.tcp_fields.tucss = tucss;
5476         context_desc->upper_setup.tcp_fields.tucso = tucso;
5477         context_desc->upper_setup.tcp_fields.tucse = 0;
5478         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5479         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5480         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5481
5482         buffer_info->time_stamp = jiffies;
5483         buffer_info->next_to_watch = i;
5484
5485         i++;
5486         if (i == tx_ring->count)
5487                 i = 0;
5488         tx_ring->next_to_use = i;
5489
5490         return 1;
5491 }
5492
5493 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5494                           __be16 protocol)
5495 {
5496         struct e1000_adapter *adapter = tx_ring->adapter;
5497         struct e1000_context_desc *context_desc;
5498         struct e1000_buffer *buffer_info;
5499         unsigned int i;
5500         u8 css;
5501         u32 cmd_len = E1000_TXD_CMD_DEXT;
5502
5503         if (skb->ip_summed != CHECKSUM_PARTIAL)
5504                 return false;
5505
5506         switch (protocol) {
5507         case cpu_to_be16(ETH_P_IP):
5508                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5509                         cmd_len |= E1000_TXD_CMD_TCP;
5510                 break;
5511         case cpu_to_be16(ETH_P_IPV6):
5512                 /* XXX not handling all IPV6 headers */
5513                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5514                         cmd_len |= E1000_TXD_CMD_TCP;
5515                 break;
5516         default:
5517                 if (unlikely(net_ratelimit()))
5518                         e_warn("checksum_partial proto=%x!\n",
5519                                be16_to_cpu(protocol));
5520                 break;
5521         }
5522
5523         css = skb_checksum_start_offset(skb);
5524
5525         i = tx_ring->next_to_use;
5526         buffer_info = &tx_ring->buffer_info[i];
5527         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5528
5529         context_desc->lower_setup.ip_config = 0;
5530         context_desc->upper_setup.tcp_fields.tucss = css;
5531         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5532         context_desc->upper_setup.tcp_fields.tucse = 0;
5533         context_desc->tcp_seg_setup.data = 0;
5534         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5535
5536         buffer_info->time_stamp = jiffies;
5537         buffer_info->next_to_watch = i;
5538
5539         i++;
5540         if (i == tx_ring->count)
5541                 i = 0;
5542         tx_ring->next_to_use = i;
5543
5544         return true;
5545 }
5546
5547 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5548                         unsigned int first, unsigned int max_per_txd,
5549                         unsigned int nr_frags)
5550 {
5551         struct e1000_adapter *adapter = tx_ring->adapter;
5552         struct pci_dev *pdev = adapter->pdev;
5553         struct e1000_buffer *buffer_info;
5554         unsigned int len = skb_headlen(skb);
5555         unsigned int offset = 0, size, count = 0, i;
5556         unsigned int f, bytecount, segs;
5557
5558         i = tx_ring->next_to_use;
5559
5560         while (len) {
5561                 buffer_info = &tx_ring->buffer_info[i];
5562                 size = min(len, max_per_txd);
5563
5564                 buffer_info->length = size;
5565                 buffer_info->time_stamp = jiffies;
5566                 buffer_info->next_to_watch = i;
5567                 buffer_info->dma = dma_map_single(&pdev->dev,
5568                                                   skb->data + offset,
5569                                                   size, DMA_TO_DEVICE);
5570                 buffer_info->mapped_as_page = false;
5571                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5572                         goto dma_error;
5573
5574                 len -= size;
5575                 offset += size;
5576                 count++;
5577
5578                 if (len) {
5579                         i++;
5580                         if (i == tx_ring->count)
5581                                 i = 0;
5582                 }
5583         }
5584
5585         for (f = 0; f < nr_frags; f++) {
5586                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5587
5588                 len = skb_frag_size(frag);
5589                 offset = 0;
5590
5591                 while (len) {
5592                         i++;
5593                         if (i == tx_ring->count)
5594                                 i = 0;
5595
5596                         buffer_info = &tx_ring->buffer_info[i];
5597                         size = min(len, max_per_txd);
5598
5599                         buffer_info->length = size;
5600                         buffer_info->time_stamp = jiffies;
5601                         buffer_info->next_to_watch = i;
5602                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5603                                                             offset, size,
5604                                                             DMA_TO_DEVICE);
5605                         buffer_info->mapped_as_page = true;
5606                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5607                                 goto dma_error;
5608
5609                         len -= size;
5610                         offset += size;
5611                         count++;
5612                 }
5613         }
5614
5615         segs = skb_shinfo(skb)->gso_segs ? : 1;
5616         /* multiply data chunks by size of headers */
5617         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5618
5619         tx_ring->buffer_info[i].skb = skb;
5620         tx_ring->buffer_info[i].segs = segs;
5621         tx_ring->buffer_info[i].bytecount = bytecount;
5622         tx_ring->buffer_info[first].next_to_watch = i;
5623
5624         return count;
5625
5626 dma_error:
5627         dev_err(&pdev->dev, "Tx DMA map failed\n");
5628         buffer_info->dma = 0;
5629         if (count)
5630                 count--;
5631
5632         while (count--) {
5633                 if (i == 0)
5634                         i += tx_ring->count;
5635                 i--;
5636                 buffer_info = &tx_ring->buffer_info[i];
5637                 e1000_put_txbuf(tx_ring, buffer_info, true);
5638         }
5639
5640         return 0;
5641 }
5642
5643 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5644 {
5645         struct e1000_adapter *adapter = tx_ring->adapter;
5646         struct e1000_tx_desc *tx_desc = NULL;
5647         struct e1000_buffer *buffer_info;
5648         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5649         unsigned int i;
5650
5651         if (tx_flags & E1000_TX_FLAGS_TSO) {
5652                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5653                     E1000_TXD_CMD_TSE;
5654                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5655
5656                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5657                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5658         }
5659
5660         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5661                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5662                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5663         }
5664
5665         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5666                 txd_lower |= E1000_TXD_CMD_VLE;
5667                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5668         }
5669
5670         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5671                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5672
5673         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5674                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5675                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5676         }
5677
5678         i = tx_ring->next_to_use;
5679
5680         do {
5681                 buffer_info = &tx_ring->buffer_info[i];
5682                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5683                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5684                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5685                                                   buffer_info->length);
5686                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5687
5688                 i++;
5689                 if (i == tx_ring->count)
5690                         i = 0;
5691         } while (--count > 0);
5692
5693         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5694
5695         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5696         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5697                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5698
5699         /* Force memory writes to complete before letting h/w
5700          * know there are new descriptors to fetch.  (Only
5701          * applicable for weak-ordered memory model archs,
5702          * such as IA-64).
5703          */
5704         wmb();
5705
5706         tx_ring->next_to_use = i;
5707 }
5708
5709 #define MINIMUM_DHCP_PACKET_SIZE 282
5710 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5711                                     struct sk_buff *skb)
5712 {
5713         struct e1000_hw *hw = &adapter->hw;
5714         u16 length, offset;
5715
5716         if (skb_vlan_tag_present(skb) &&
5717             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5718               (adapter->hw.mng_cookie.status &
5719                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5720                 return 0;
5721
5722         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5723                 return 0;
5724
5725         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5726                 return 0;
5727
5728         {
5729                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5730                 struct udphdr *udp;
5731
5732                 if (ip->protocol != IPPROTO_UDP)
5733                         return 0;
5734
5735                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5736                 if (ntohs(udp->dest) != 67)
5737                         return 0;
5738
5739                 offset = (u8 *)udp + 8 - skb->data;
5740                 length = skb->len - offset;
5741                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5742         }
5743
5744         return 0;
5745 }
5746
5747 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5748 {
5749         struct e1000_adapter *adapter = tx_ring->adapter;
5750
5751         netif_stop_queue(adapter->netdev);
5752         /* Herbert's original patch had:
5753          *  smp_mb__after_netif_stop_queue();
5754          * but since that doesn't exist yet, just open code it.
5755          */
5756         smp_mb();
5757
5758         /* We need to check again in a case another CPU has just
5759          * made room available.
5760          */
5761         if (e1000_desc_unused(tx_ring) < size)
5762                 return -EBUSY;
5763
5764         /* A reprieve! */
5765         netif_start_queue(adapter->netdev);
5766         ++adapter->restart_queue;
5767         return 0;
5768 }
5769
5770 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5771 {
5772         BUG_ON(size > tx_ring->count);
5773
5774         if (e1000_desc_unused(tx_ring) >= size)
5775                 return 0;
5776         return __e1000_maybe_stop_tx(tx_ring, size);
5777 }
5778
5779 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5780                                     struct net_device *netdev)
5781 {
5782         struct e1000_adapter *adapter = netdev_priv(netdev);
5783         struct e1000_ring *tx_ring = adapter->tx_ring;
5784         unsigned int first;
5785         unsigned int tx_flags = 0;
5786         unsigned int len = skb_headlen(skb);
5787         unsigned int nr_frags;
5788         unsigned int mss;
5789         int count = 0;
5790         int tso;
5791         unsigned int f;
5792         __be16 protocol = vlan_get_protocol(skb);
5793
5794         if (test_bit(__E1000_DOWN, &adapter->state)) {
5795                 dev_kfree_skb_any(skb);
5796                 return NETDEV_TX_OK;
5797         }
5798
5799         if (skb->len <= 0) {
5800                 dev_kfree_skb_any(skb);
5801                 return NETDEV_TX_OK;
5802         }
5803
5804         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5805          * pad skb in order to meet this minimum size requirement
5806          */
5807         if (skb_put_padto(skb, 17))
5808                 return NETDEV_TX_OK;
5809
5810         mss = skb_shinfo(skb)->gso_size;
5811         if (mss) {
5812                 u8 hdr_len;
5813
5814                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5815                  * points to just header, pull a few bytes of payload from
5816                  * frags into skb->data
5817                  */
5818                 hdr_len = skb_tcp_all_headers(skb);
5819                 /* we do this workaround for ES2LAN, but it is un-necessary,
5820                  * avoiding it could save a lot of cycles
5821                  */
5822                 if (skb->data_len && (hdr_len == len)) {
5823                         unsigned int pull_size;
5824
5825                         pull_size = min_t(unsigned int, 4, skb->data_len);
5826                         if (!__pskb_pull_tail(skb, pull_size)) {
5827                                 e_err("__pskb_pull_tail failed.\n");
5828                                 dev_kfree_skb_any(skb);
5829                                 return NETDEV_TX_OK;
5830                         }
5831                         len = skb_headlen(skb);
5832                 }
5833         }
5834
5835         /* reserve a descriptor for the offload context */
5836         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5837                 count++;
5838         count++;
5839
5840         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5841
5842         nr_frags = skb_shinfo(skb)->nr_frags;
5843         for (f = 0; f < nr_frags; f++)
5844                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5845                                       adapter->tx_fifo_limit);
5846
5847         if (adapter->hw.mac.tx_pkt_filtering)
5848                 e1000_transfer_dhcp_info(adapter, skb);
5849
5850         /* need: count + 2 desc gap to keep tail from touching
5851          * head, otherwise try next time
5852          */
5853         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5854                 return NETDEV_TX_BUSY;
5855
5856         if (skb_vlan_tag_present(skb)) {
5857                 tx_flags |= E1000_TX_FLAGS_VLAN;
5858                 tx_flags |= (skb_vlan_tag_get(skb) <<
5859                              E1000_TX_FLAGS_VLAN_SHIFT);
5860         }
5861
5862         first = tx_ring->next_to_use;
5863
5864         tso = e1000_tso(tx_ring, skb, protocol);
5865         if (tso < 0) {
5866                 dev_kfree_skb_any(skb);
5867                 return NETDEV_TX_OK;
5868         }
5869
5870         if (tso)
5871                 tx_flags |= E1000_TX_FLAGS_TSO;
5872         else if (e1000_tx_csum(tx_ring, skb, protocol))
5873                 tx_flags |= E1000_TX_FLAGS_CSUM;
5874
5875         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5876          * 82571 hardware supports TSO capabilities for IPv6 as well...
5877          * no longer assume, we must.
5878          */
5879         if (protocol == htons(ETH_P_IP))
5880                 tx_flags |= E1000_TX_FLAGS_IPV4;
5881
5882         if (unlikely(skb->no_fcs))
5883                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5884
5885         /* if count is 0 then mapping error has occurred */
5886         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5887                              nr_frags);
5888         if (count) {
5889                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5890                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5891                         if (!adapter->tx_hwtstamp_skb) {
5892                                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5893                                 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5894                                 adapter->tx_hwtstamp_skb = skb_get(skb);
5895                                 adapter->tx_hwtstamp_start = jiffies;
5896                                 schedule_work(&adapter->tx_hwtstamp_work);
5897                         } else {
5898                                 adapter->tx_hwtstamp_skipped++;
5899                         }
5900                 }
5901
5902                 skb_tx_timestamp(skb);
5903
5904                 netdev_sent_queue(netdev, skb->len);
5905                 e1000_tx_queue(tx_ring, tx_flags, count);
5906                 /* Make sure there is space in the ring for the next send. */
5907                 e1000_maybe_stop_tx(tx_ring,
5908                                     ((MAX_SKB_FRAGS + 1) *
5909                                      DIV_ROUND_UP(PAGE_SIZE,
5910                                                   adapter->tx_fifo_limit) + 4));
5911
5912                 if (!netdev_xmit_more() ||
5913                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5914                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5915                                 e1000e_update_tdt_wa(tx_ring,
5916                                                      tx_ring->next_to_use);
5917                         else
5918                                 writel(tx_ring->next_to_use, tx_ring->tail);
5919                 }
5920         } else {
5921                 dev_kfree_skb_any(skb);
5922                 tx_ring->buffer_info[first].time_stamp = 0;
5923                 tx_ring->next_to_use = first;
5924         }
5925
5926         return NETDEV_TX_OK;
5927 }
5928
5929 /**
5930  * e1000_tx_timeout - Respond to a Tx Hang
5931  * @netdev: network interface device structure
5932  * @txqueue: index of the hung queue (unused)
5933  **/
5934 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5935 {
5936         struct e1000_adapter *adapter = netdev_priv(netdev);
5937
5938         /* Do the reset outside of interrupt context */
5939         adapter->tx_timeout_count++;
5940         schedule_work(&adapter->reset_task);
5941 }
5942
5943 static void e1000_reset_task(struct work_struct *work)
5944 {
5945         struct e1000_adapter *adapter;
5946         adapter = container_of(work, struct e1000_adapter, reset_task);
5947
5948         rtnl_lock();
5949         /* don't run the task if already down */
5950         if (test_bit(__E1000_DOWN, &adapter->state)) {
5951                 rtnl_unlock();
5952                 return;
5953         }
5954
5955         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5956                 e1000e_dump(adapter);
5957                 e_err("Reset adapter unexpectedly\n");
5958         }
5959         e1000e_reinit_locked(adapter);
5960         rtnl_unlock();
5961 }
5962
5963 /**
5964  * e1000e_get_stats64 - Get System Network Statistics
5965  * @netdev: network interface device structure
5966  * @stats: rtnl_link_stats64 pointer
5967  *
5968  * Returns the address of the device statistics structure.
5969  **/
5970 void e1000e_get_stats64(struct net_device *netdev,
5971                         struct rtnl_link_stats64 *stats)
5972 {
5973         struct e1000_adapter *adapter = netdev_priv(netdev);
5974
5975         spin_lock(&adapter->stats64_lock);
5976         e1000e_update_stats(adapter);
5977         /* Fill out the OS statistics structure */
5978         stats->rx_bytes = adapter->stats.gorc;
5979         stats->rx_packets = adapter->stats.gprc;
5980         stats->tx_bytes = adapter->stats.gotc;
5981         stats->tx_packets = adapter->stats.gptc;
5982         stats->multicast = adapter->stats.mprc;
5983         stats->collisions = adapter->stats.colc;
5984
5985         /* Rx Errors */
5986
5987         /* RLEC on some newer hardware can be incorrect so build
5988          * our own version based on RUC and ROC
5989          */
5990         stats->rx_errors = adapter->stats.rxerrc +
5991             adapter->stats.crcerrs + adapter->stats.algnerrc +
5992             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5993         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5994         stats->rx_crc_errors = adapter->stats.crcerrs;
5995         stats->rx_frame_errors = adapter->stats.algnerrc;
5996         stats->rx_missed_errors = adapter->stats.mpc;
5997
5998         /* Tx Errors */
5999         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6000         stats->tx_aborted_errors = adapter->stats.ecol;
6001         stats->tx_window_errors = adapter->stats.latecol;
6002         stats->tx_carrier_errors = adapter->stats.tncrs;
6003
6004         /* Tx Dropped needs to be maintained elsewhere */
6005
6006         spin_unlock(&adapter->stats64_lock);
6007 }
6008
6009 /**
6010  * e1000_change_mtu - Change the Maximum Transfer Unit
6011  * @netdev: network interface device structure
6012  * @new_mtu: new value for maximum frame size
6013  *
6014  * Returns 0 on success, negative on failure
6015  **/
6016 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6017 {
6018         struct e1000_adapter *adapter = netdev_priv(netdev);
6019         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6020
6021         /* Jumbo frame support */
6022         if ((new_mtu > ETH_DATA_LEN) &&
6023             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6024                 e_err("Jumbo Frames not supported.\n");
6025                 return -EINVAL;
6026         }
6027
6028         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6029         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6030             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6031             (new_mtu > ETH_DATA_LEN)) {
6032                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6033                 return -EINVAL;
6034         }
6035
6036         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6037                 usleep_range(1000, 1100);
6038         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6039         adapter->max_frame_size = max_frame;
6040         netdev_dbg(netdev, "changing MTU from %d to %d\n",
6041                    netdev->mtu, new_mtu);
6042         netdev->mtu = new_mtu;
6043
6044         pm_runtime_get_sync(netdev->dev.parent);
6045
6046         if (netif_running(netdev))
6047                 e1000e_down(adapter, true);
6048
6049         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6050          * means we reserve 2 more, this pushes us to allocate from the next
6051          * larger slab size.
6052          * i.e. RXBUFFER_2048 --> size-4096 slab
6053          * However with the new *_jumbo_rx* routines, jumbo receives will use
6054          * fragmented skbs
6055          */
6056
6057         if (max_frame <= 2048)
6058                 adapter->rx_buffer_len = 2048;
6059         else
6060                 adapter->rx_buffer_len = 4096;
6061
6062         /* adjust allocation if LPE protects us, and we aren't using SBP */
6063         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6064                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6065
6066         if (netif_running(netdev))
6067                 e1000e_up(adapter);
6068         else
6069                 e1000e_reset(adapter);
6070
6071         pm_runtime_put_sync(netdev->dev.parent);
6072
6073         clear_bit(__E1000_RESETTING, &adapter->state);
6074
6075         return 0;
6076 }
6077
6078 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6079                            int cmd)
6080 {
6081         struct e1000_adapter *adapter = netdev_priv(netdev);
6082         struct mii_ioctl_data *data = if_mii(ifr);
6083
6084         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6085                 return -EOPNOTSUPP;
6086
6087         switch (cmd) {
6088         case SIOCGMIIPHY:
6089                 data->phy_id = adapter->hw.phy.addr;
6090                 break;
6091         case SIOCGMIIREG:
6092                 e1000_phy_read_status(adapter);
6093
6094                 switch (data->reg_num & 0x1F) {
6095                 case MII_BMCR:
6096                         data->val_out = adapter->phy_regs.bmcr;
6097                         break;
6098                 case MII_BMSR:
6099                         data->val_out = adapter->phy_regs.bmsr;
6100                         break;
6101                 case MII_PHYSID1:
6102                         data->val_out = (adapter->hw.phy.id >> 16);
6103                         break;
6104                 case MII_PHYSID2:
6105                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6106                         break;
6107                 case MII_ADVERTISE:
6108                         data->val_out = adapter->phy_regs.advertise;
6109                         break;
6110                 case MII_LPA:
6111                         data->val_out = adapter->phy_regs.lpa;
6112                         break;
6113                 case MII_EXPANSION:
6114                         data->val_out = adapter->phy_regs.expansion;
6115                         break;
6116                 case MII_CTRL1000:
6117                         data->val_out = adapter->phy_regs.ctrl1000;
6118                         break;
6119                 case MII_STAT1000:
6120                         data->val_out = adapter->phy_regs.stat1000;
6121                         break;
6122                 case MII_ESTATUS:
6123                         data->val_out = adapter->phy_regs.estatus;
6124                         break;
6125                 default:
6126                         return -EIO;
6127                 }
6128                 break;
6129         case SIOCSMIIREG:
6130         default:
6131                 return -EOPNOTSUPP;
6132         }
6133         return 0;
6134 }
6135
6136 /**
6137  * e1000e_hwtstamp_set - control hardware time stamping
6138  * @netdev: network interface device structure
6139  * @ifr: interface request
6140  *
6141  * Outgoing time stamping can be enabled and disabled. Play nice and
6142  * disable it when requested, although it shouldn't cause any overhead
6143  * when no packet needs it. At most one packet in the queue may be
6144  * marked for time stamping, otherwise it would be impossible to tell
6145  * for sure to which packet the hardware time stamp belongs.
6146  *
6147  * Incoming time stamping has to be configured via the hardware filters.
6148  * Not all combinations are supported, in particular event type has to be
6149  * specified. Matching the kind of event packet is not supported, with the
6150  * exception of "all V2 events regardless of level 2 or 4".
6151  **/
6152 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6153 {
6154         struct e1000_adapter *adapter = netdev_priv(netdev);
6155         struct hwtstamp_config config;
6156         int ret_val;
6157
6158         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6159                 return -EFAULT;
6160
6161         ret_val = e1000e_config_hwtstamp(adapter, &config);
6162         if (ret_val)
6163                 return ret_val;
6164
6165         switch (config.rx_filter) {
6166         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6167         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6168         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6169         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6170         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6171         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6172                 /* With V2 type filters which specify a Sync or Delay Request,
6173                  * Path Delay Request/Response messages are also time stamped
6174                  * by hardware so notify the caller the requested packets plus
6175                  * some others are time stamped.
6176                  */
6177                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6178                 break;
6179         default:
6180                 break;
6181         }
6182
6183         return copy_to_user(ifr->ifr_data, &config,
6184                             sizeof(config)) ? -EFAULT : 0;
6185 }
6186
6187 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6188 {
6189         struct e1000_adapter *adapter = netdev_priv(netdev);
6190
6191         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6192                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6193 }
6194
6195 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6196 {
6197         switch (cmd) {
6198         case SIOCGMIIPHY:
6199         case SIOCGMIIREG:
6200         case SIOCSMIIREG:
6201                 return e1000_mii_ioctl(netdev, ifr, cmd);
6202         case SIOCSHWTSTAMP:
6203                 return e1000e_hwtstamp_set(netdev, ifr);
6204         case SIOCGHWTSTAMP:
6205                 return e1000e_hwtstamp_get(netdev, ifr);
6206         default:
6207                 return -EOPNOTSUPP;
6208         }
6209 }
6210
6211 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6212 {
6213         struct e1000_hw *hw = &adapter->hw;
6214         u32 i, mac_reg, wuc;
6215         u16 phy_reg, wuc_enable;
6216         int retval;
6217
6218         /* copy MAC RARs to PHY RARs */
6219         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6220
6221         retval = hw->phy.ops.acquire(hw);
6222         if (retval) {
6223                 e_err("Could not acquire PHY\n");
6224                 return retval;
6225         }
6226
6227         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6228         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6229         if (retval)
6230                 goto release;
6231
6232         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6233         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6234                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6235                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6236                                            (u16)(mac_reg & 0xFFFF));
6237                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6238                                            (u16)((mac_reg >> 16) & 0xFFFF));
6239         }
6240
6241         /* configure PHY Rx Control register */
6242         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6243         mac_reg = er32(RCTL);
6244         if (mac_reg & E1000_RCTL_UPE)
6245                 phy_reg |= BM_RCTL_UPE;
6246         if (mac_reg & E1000_RCTL_MPE)
6247                 phy_reg |= BM_RCTL_MPE;
6248         phy_reg &= ~(BM_RCTL_MO_MASK);
6249         if (mac_reg & E1000_RCTL_MO_3)
6250                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6251                             << BM_RCTL_MO_SHIFT);
6252         if (mac_reg & E1000_RCTL_BAM)
6253                 phy_reg |= BM_RCTL_BAM;
6254         if (mac_reg & E1000_RCTL_PMCF)
6255                 phy_reg |= BM_RCTL_PMCF;
6256         mac_reg = er32(CTRL);
6257         if (mac_reg & E1000_CTRL_RFCE)
6258                 phy_reg |= BM_RCTL_RFCE;
6259         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6260
6261         wuc = E1000_WUC_PME_EN;
6262         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6263                 wuc |= E1000_WUC_APME;
6264
6265         /* enable PHY wakeup in MAC register */
6266         ew32(WUFC, wufc);
6267         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6268                    E1000_WUC_PME_STATUS | wuc));
6269
6270         /* configure and enable PHY wakeup in PHY registers */
6271         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6272         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6273
6274         /* activate PHY wakeup */
6275         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6276         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6277         if (retval)
6278                 e_err("Could not set PHY Host Wakeup bit\n");
6279 release:
6280         hw->phy.ops.release(hw);
6281
6282         return retval;
6283 }
6284
6285 static void e1000e_flush_lpic(struct pci_dev *pdev)
6286 {
6287         struct net_device *netdev = pci_get_drvdata(pdev);
6288         struct e1000_adapter *adapter = netdev_priv(netdev);
6289         struct e1000_hw *hw = &adapter->hw;
6290         u32 ret_val;
6291
6292         pm_runtime_get_sync(netdev->dev.parent);
6293
6294         ret_val = hw->phy.ops.acquire(hw);
6295         if (ret_val)
6296                 goto fl_out;
6297
6298         pr_info("EEE TX LPI TIMER: %08X\n",
6299                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6300
6301         hw->phy.ops.release(hw);
6302
6303 fl_out:
6304         pm_runtime_put_sync(netdev->dev.parent);
6305 }
6306
6307 /* S0ix implementation */
6308 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6309 {
6310         struct e1000_hw *hw = &adapter->hw;
6311         u32 mac_data;
6312         u16 phy_data;
6313
6314         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6315             hw->mac.type >= e1000_pch_adp) {
6316                 /* Request ME configure the device for S0ix */
6317                 mac_data = er32(H2ME);
6318                 mac_data |= E1000_H2ME_START_DPG;
6319                 mac_data &= ~E1000_H2ME_EXIT_DPG;
6320                 trace_e1000e_trace_mac_register(mac_data);
6321                 ew32(H2ME, mac_data);
6322         } else {
6323                 /* Request driver configure the device to S0ix */
6324                 /* Disable the periodic inband message,
6325                  * don't request PCIe clock in K1 page770_17[10:9] = 10b
6326                  */
6327                 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6328                 phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6329                 phy_data |= BIT(10);
6330                 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6331
6332                 /* Make sure we don't exit K1 every time a new packet arrives
6333                  * 772_29[5] = 1 CS_Mode_Stay_In_K1
6334                  */
6335                 e1e_rphy(hw, I217_CGFREG, &phy_data);
6336                 phy_data |= BIT(5);
6337                 e1e_wphy(hw, I217_CGFREG, phy_data);
6338
6339                 /* Change the MAC/PHY interface to SMBus
6340                  * Force the SMBus in PHY page769_23[0] = 1
6341                  * Force the SMBus in MAC CTRL_EXT[11] = 1
6342                  */
6343                 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6344                 phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6345                 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6346                 mac_data = er32(CTRL_EXT);
6347                 mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6348                 ew32(CTRL_EXT, mac_data);
6349
6350                 /* DFT control: PHY bit: page769_20[0] = 1
6351                  * page769_20[7] - PHY PLL stop
6352                  * page769_20[8] - PHY go to the electrical idle
6353                  * page769_20[9] - PHY serdes disable
6354                  * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6355                  */
6356                 e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6357                 phy_data |= BIT(0);
6358                 phy_data |= BIT(7);
6359                 phy_data |= BIT(8);
6360                 phy_data |= BIT(9);
6361                 e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6362
6363                 mac_data = er32(EXTCNF_CTRL);
6364                 mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6365                 ew32(EXTCNF_CTRL, mac_data);
6366
6367                 /* Enable the Dynamic Power Gating in the MAC */
6368                 mac_data = er32(FEXTNVM7);
6369                 mac_data |= BIT(22);
6370                 ew32(FEXTNVM7, mac_data);
6371
6372                 /* Disable disconnected cable conditioning for Power Gating */
6373                 mac_data = er32(DPGFR);
6374                 mac_data |= BIT(2);
6375                 ew32(DPGFR, mac_data);
6376
6377                 /* Don't wake from dynamic Power Gating with clock request */
6378                 mac_data = er32(FEXTNVM12);
6379                 mac_data |= BIT(12);
6380                 ew32(FEXTNVM12, mac_data);
6381
6382                 /* Ungate PGCB clock */
6383                 mac_data = er32(FEXTNVM9);
6384                 mac_data &= ~BIT(28);
6385                 ew32(FEXTNVM9, mac_data);
6386
6387                 /* Enable K1 off to enable mPHY Power Gating */
6388                 mac_data = er32(FEXTNVM6);
6389                 mac_data |= BIT(31);
6390                 ew32(FEXTNVM6, mac_data);
6391
6392                 /* Enable mPHY power gating for any link and speed */
6393                 mac_data = er32(FEXTNVM8);
6394                 mac_data |= BIT(9);
6395                 ew32(FEXTNVM8, mac_data);
6396
6397                 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6398                 mac_data = er32(CTRL_EXT);
6399                 mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6400                 ew32(CTRL_EXT, mac_data);
6401
6402                 /* No MAC DPG gating SLP_S0 in modern standby
6403                  * Switch the logic of the lanphypc to use PMC counter
6404                  */
6405                 mac_data = er32(FEXTNVM5);
6406                 mac_data |= BIT(7);
6407                 ew32(FEXTNVM5, mac_data);
6408         }
6409
6410         /* Disable the time synchronization clock */
6411         mac_data = er32(FEXTNVM7);
6412         mac_data |= BIT(31);
6413         mac_data &= ~BIT(0);
6414         ew32(FEXTNVM7, mac_data);
6415
6416         /* Dynamic Power Gating Enable */
6417         mac_data = er32(CTRL_EXT);
6418         mac_data |= BIT(3);
6419         ew32(CTRL_EXT, mac_data);
6420
6421         /* Check MAC Tx/Rx packet buffer pointers.
6422          * Reset MAC Tx/Rx packet buffer pointers to suppress any
6423          * pending traffic indication that would prevent power gating.
6424          */
6425         mac_data = er32(TDFH);
6426         if (mac_data)
6427                 ew32(TDFH, 0);
6428         mac_data = er32(TDFT);
6429         if (mac_data)
6430                 ew32(TDFT, 0);
6431         mac_data = er32(TDFHS);
6432         if (mac_data)
6433                 ew32(TDFHS, 0);
6434         mac_data = er32(TDFTS);
6435         if (mac_data)
6436                 ew32(TDFTS, 0);
6437         mac_data = er32(TDFPC);
6438         if (mac_data)
6439                 ew32(TDFPC, 0);
6440         mac_data = er32(RDFH);
6441         if (mac_data)
6442                 ew32(RDFH, 0);
6443         mac_data = er32(RDFT);
6444         if (mac_data)
6445                 ew32(RDFT, 0);
6446         mac_data = er32(RDFHS);
6447         if (mac_data)
6448                 ew32(RDFHS, 0);
6449         mac_data = er32(RDFTS);
6450         if (mac_data)
6451                 ew32(RDFTS, 0);
6452         mac_data = er32(RDFPC);
6453         if (mac_data)
6454                 ew32(RDFPC, 0);
6455 }
6456
6457 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6458 {
6459         struct e1000_hw *hw = &adapter->hw;
6460         bool firmware_bug = false;
6461         u32 mac_data;
6462         u16 phy_data;
6463         u32 i = 0;
6464
6465         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6466             hw->mac.type >= e1000_pch_adp) {
6467                 /* Keep the GPT clock enabled for CSME */
6468                 mac_data = er32(FEXTNVM);
6469                 mac_data |= BIT(3);
6470                 ew32(FEXTNVM, mac_data);
6471                 /* Request ME unconfigure the device from S0ix */
6472                 mac_data = er32(H2ME);
6473                 mac_data &= ~E1000_H2ME_START_DPG;
6474                 mac_data |= E1000_H2ME_EXIT_DPG;
6475                 trace_e1000e_trace_mac_register(mac_data);
6476                 ew32(H2ME, mac_data);
6477
6478                 /* Poll up to 2.5 seconds for ME to unconfigure DPG.
6479                  * If this takes more than 1 second, show a warning indicating a
6480                  * firmware bug
6481                  */
6482                 while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6483                         if (i > 100 && !firmware_bug)
6484                                 firmware_bug = true;
6485
6486                         if (i++ == 250) {
6487                                 e_dbg("Timeout (firmware bug): %d msec\n",
6488                                       i * 10);
6489                                 break;
6490                         }
6491
6492                         usleep_range(10000, 11000);
6493                 }
6494                 if (firmware_bug)
6495                         e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6496                                i * 10);
6497                 else
6498                         e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6499         } else {
6500                 /* Request driver unconfigure the device from S0ix */
6501
6502                 /* Disable the Dynamic Power Gating in the MAC */
6503                 mac_data = er32(FEXTNVM7);
6504                 mac_data &= 0xFFBFFFFF;
6505                 ew32(FEXTNVM7, mac_data);
6506
6507                 /* Disable mPHY power gating for any link and speed */
6508                 mac_data = er32(FEXTNVM8);
6509                 mac_data &= ~BIT(9);
6510                 ew32(FEXTNVM8, mac_data);
6511
6512                 /* Disable K1 off */
6513                 mac_data = er32(FEXTNVM6);
6514                 mac_data &= ~BIT(31);
6515                 ew32(FEXTNVM6, mac_data);
6516
6517                 /* Disable Ungate PGCB clock */
6518                 mac_data = er32(FEXTNVM9);
6519                 mac_data |= BIT(28);
6520                 ew32(FEXTNVM9, mac_data);
6521
6522                 /* Cancel not waking from dynamic
6523                  * Power Gating with clock request
6524                  */
6525                 mac_data = er32(FEXTNVM12);
6526                 mac_data &= ~BIT(12);
6527                 ew32(FEXTNVM12, mac_data);
6528
6529                 /* Cancel disable disconnected cable conditioning
6530                  * for Power Gating
6531                  */
6532                 mac_data = er32(DPGFR);
6533                 mac_data &= ~BIT(2);
6534                 ew32(DPGFR, mac_data);
6535
6536                 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6537                 mac_data = er32(CTRL_EXT);
6538                 mac_data &= 0xFFF7FFFF;
6539                 ew32(CTRL_EXT, mac_data);
6540
6541                 /* Revert the lanphypc logic to use the internal Gbe counter
6542                  * and not the PMC counter
6543                  */
6544                 mac_data = er32(FEXTNVM5);
6545                 mac_data &= 0xFFFFFF7F;
6546                 ew32(FEXTNVM5, mac_data);
6547
6548                 /* Enable the periodic inband message,
6549                  * Request PCIe clock in K1 page770_17[10:9] =01b
6550                  */
6551                 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6552                 phy_data &= 0xFBFF;
6553                 phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6554                 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6555
6556                 /* Return back configuration
6557                  * 772_29[5] = 0 CS_Mode_Stay_In_K1
6558                  */
6559                 e1e_rphy(hw, I217_CGFREG, &phy_data);
6560                 phy_data &= 0xFFDF;
6561                 e1e_wphy(hw, I217_CGFREG, phy_data);
6562
6563                 /* Change the MAC/PHY interface to Kumeran
6564                  * Unforce the SMBus in PHY page769_23[0] = 0
6565                  * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6566                  */
6567                 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6568                 phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6569                 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6570                 mac_data = er32(CTRL_EXT);
6571                 mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6572                 ew32(CTRL_EXT, mac_data);
6573         }
6574
6575         /* Disable Dynamic Power Gating */
6576         mac_data = er32(CTRL_EXT);
6577         mac_data &= 0xFFFFFFF7;
6578         ew32(CTRL_EXT, mac_data);
6579
6580         /* Enable the time synchronization clock */
6581         mac_data = er32(FEXTNVM7);
6582         mac_data &= ~BIT(31);
6583         mac_data |= BIT(0);
6584         ew32(FEXTNVM7, mac_data);
6585 }
6586
6587 static int e1000e_pm_freeze(struct device *dev)
6588 {
6589         struct net_device *netdev = dev_get_drvdata(dev);
6590         struct e1000_adapter *adapter = netdev_priv(netdev);
6591         bool present;
6592
6593         rtnl_lock();
6594
6595         present = netif_device_present(netdev);
6596         netif_device_detach(netdev);
6597
6598         if (present && netif_running(netdev)) {
6599                 int count = E1000_CHECK_RESET_COUNT;
6600
6601                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6602                         usleep_range(10000, 11000);
6603
6604                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6605
6606                 /* Quiesce the device without resetting the hardware */
6607                 e1000e_down(adapter, false);
6608                 e1000_free_irq(adapter);
6609         }
6610         rtnl_unlock();
6611
6612         e1000e_reset_interrupt_capability(adapter);
6613
6614         /* Allow time for pending master requests to run */
6615         e1000e_disable_pcie_master(&adapter->hw);
6616
6617         return 0;
6618 }
6619
6620 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6621 {
6622         struct net_device *netdev = pci_get_drvdata(pdev);
6623         struct e1000_adapter *adapter = netdev_priv(netdev);
6624         struct e1000_hw *hw = &adapter->hw;
6625         u32 ctrl, ctrl_ext, rctl, status, wufc;
6626         int retval = 0;
6627
6628         /* Runtime suspend should only enable wakeup for link changes */
6629         if (runtime)
6630                 wufc = E1000_WUFC_LNKC;
6631         else if (device_may_wakeup(&pdev->dev))
6632                 wufc = adapter->wol;
6633         else
6634                 wufc = 0;
6635
6636         status = er32(STATUS);
6637         if (status & E1000_STATUS_LU)
6638                 wufc &= ~E1000_WUFC_LNKC;
6639
6640         if (wufc) {
6641                 e1000_setup_rctl(adapter);
6642                 e1000e_set_rx_mode(netdev);
6643
6644                 /* turn on all-multi mode if wake on multicast is enabled */
6645                 if (wufc & E1000_WUFC_MC) {
6646                         rctl = er32(RCTL);
6647                         rctl |= E1000_RCTL_MPE;
6648                         ew32(RCTL, rctl);
6649                 }
6650
6651                 ctrl = er32(CTRL);
6652                 ctrl |= E1000_CTRL_ADVD3WUC;
6653                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6654                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6655                 ew32(CTRL, ctrl);
6656
6657                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6658                     adapter->hw.phy.media_type ==
6659                     e1000_media_type_internal_serdes) {
6660                         /* keep the laser running in D3 */
6661                         ctrl_ext = er32(CTRL_EXT);
6662                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6663                         ew32(CTRL_EXT, ctrl_ext);
6664                 }
6665
6666                 if (!runtime)
6667                         e1000e_power_up_phy(adapter);
6668
6669                 if (adapter->flags & FLAG_IS_ICH)
6670                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6671
6672                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6673                         /* enable wakeup by the PHY */
6674                         retval = e1000_init_phy_wakeup(adapter, wufc);
6675                         if (retval)
6676                                 return retval;
6677                 } else {
6678                         /* enable wakeup by the MAC */
6679                         ew32(WUFC, wufc);
6680                         ew32(WUC, E1000_WUC_PME_EN);
6681                 }
6682         } else {
6683                 ew32(WUC, 0);
6684                 ew32(WUFC, 0);
6685
6686                 e1000_power_down_phy(adapter);
6687         }
6688
6689         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6690                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6691         } else if (hw->mac.type >= e1000_pch_lpt) {
6692                 if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6693                         /* ULP does not support wake from unicast, multicast
6694                          * or broadcast.
6695                          */
6696                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6697
6698                 if (retval)
6699                         return retval;
6700         }
6701
6702         /* Ensure that the appropriate bits are set in LPI_CTRL
6703          * for EEE in Sx
6704          */
6705         if ((hw->phy.type >= e1000_phy_i217) &&
6706             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6707                 u16 lpi_ctrl = 0;
6708
6709                 retval = hw->phy.ops.acquire(hw);
6710                 if (!retval) {
6711                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6712                                                  &lpi_ctrl);
6713                         if (!retval) {
6714                                 if (adapter->eee_advert &
6715                                     hw->dev_spec.ich8lan.eee_lp_ability &
6716                                     I82579_EEE_100_SUPPORTED)
6717                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6718                                 if (adapter->eee_advert &
6719                                     hw->dev_spec.ich8lan.eee_lp_ability &
6720                                     I82579_EEE_1000_SUPPORTED)
6721                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6722
6723                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6724                                                          lpi_ctrl);
6725                         }
6726                 }
6727                 hw->phy.ops.release(hw);
6728         }
6729
6730         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6731          * would have already happened in close and is redundant.
6732          */
6733         e1000e_release_hw_control(adapter);
6734
6735         pci_clear_master(pdev);
6736
6737         /* The pci-e switch on some quad port adapters will report a
6738          * correctable error when the MAC transitions from D0 to D3.  To
6739          * prevent this we need to mask off the correctable errors on the
6740          * downstream port of the pci-e switch.
6741          *
6742          * We don't have the associated upstream bridge while assigning
6743          * the PCI device into guest. For example, the KVM on power is
6744          * one of the cases.
6745          */
6746         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6747                 struct pci_dev *us_dev = pdev->bus->self;
6748                 u16 devctl;
6749
6750                 if (!us_dev)
6751                         return 0;
6752
6753                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6754                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6755                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6756
6757                 pci_save_state(pdev);
6758                 pci_prepare_to_sleep(pdev);
6759
6760                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6761         }
6762
6763         return 0;
6764 }
6765
6766 /**
6767  * __e1000e_disable_aspm - Disable ASPM states
6768  * @pdev: pointer to PCI device struct
6769  * @state: bit-mask of ASPM states to disable
6770  * @locked: indication if this context holds pci_bus_sem locked.
6771  *
6772  * Some devices *must* have certain ASPM states disabled per hardware errata.
6773  **/
6774 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6775 {
6776         struct pci_dev *parent = pdev->bus->self;
6777         u16 aspm_dis_mask = 0;
6778         u16 pdev_aspmc, parent_aspmc;
6779
6780         switch (state) {
6781         case PCIE_LINK_STATE_L0S:
6782         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6783                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6784                 fallthrough; /* can't have L1 without L0s */
6785         case PCIE_LINK_STATE_L1:
6786                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6787                 break;
6788         default:
6789                 return;
6790         }
6791
6792         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6793         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6794
6795         if (parent) {
6796                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6797                                           &parent_aspmc);
6798                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6799         }
6800
6801         /* Nothing to do if the ASPM states to be disabled already are */
6802         if (!(pdev_aspmc & aspm_dis_mask) &&
6803             (!parent || !(parent_aspmc & aspm_dis_mask)))
6804                 return;
6805
6806         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6807                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6808                  "L0s" : "",
6809                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6810                  "L1" : "");
6811
6812 #ifdef CONFIG_PCIEASPM
6813         if (locked)
6814                 pci_disable_link_state_locked(pdev, state);
6815         else
6816                 pci_disable_link_state(pdev, state);
6817
6818         /* Double-check ASPM control.  If not disabled by the above, the
6819          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6820          * not enabled); override by writing PCI config space directly.
6821          */
6822         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6823         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6824
6825         if (!(aspm_dis_mask & pdev_aspmc))
6826                 return;
6827 #endif
6828
6829         /* Both device and parent should have the same ASPM setting.
6830          * Disable ASPM in downstream component first and then upstream.
6831          */
6832         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6833
6834         if (parent)
6835                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6836                                            aspm_dis_mask);
6837 }
6838
6839 /**
6840  * e1000e_disable_aspm - Disable ASPM states.
6841  * @pdev: pointer to PCI device struct
6842  * @state: bit-mask of ASPM states to disable
6843  *
6844  * This function acquires the pci_bus_sem!
6845  * Some devices *must* have certain ASPM states disabled per hardware errata.
6846  **/
6847 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6848 {
6849         __e1000e_disable_aspm(pdev, state, 0);
6850 }
6851
6852 /**
6853  * e1000e_disable_aspm_locked - Disable ASPM states.
6854  * @pdev: pointer to PCI device struct
6855  * @state: bit-mask of ASPM states to disable
6856  *
6857  * This function must be called with pci_bus_sem acquired!
6858  * Some devices *must* have certain ASPM states disabled per hardware errata.
6859  **/
6860 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6861 {
6862         __e1000e_disable_aspm(pdev, state, 1);
6863 }
6864
6865 static int e1000e_pm_thaw(struct device *dev)
6866 {
6867         struct net_device *netdev = dev_get_drvdata(dev);
6868         struct e1000_adapter *adapter = netdev_priv(netdev);
6869         int rc = 0;
6870
6871         e1000e_set_interrupt_capability(adapter);
6872
6873         rtnl_lock();
6874         if (netif_running(netdev)) {
6875                 rc = e1000_request_irq(adapter);
6876                 if (rc)
6877                         goto err_irq;
6878
6879                 e1000e_up(adapter);
6880         }
6881
6882         netif_device_attach(netdev);
6883 err_irq:
6884         rtnl_unlock();
6885
6886         return rc;
6887 }
6888
6889 static int __e1000_resume(struct pci_dev *pdev)
6890 {
6891         struct net_device *netdev = pci_get_drvdata(pdev);
6892         struct e1000_adapter *adapter = netdev_priv(netdev);
6893         struct e1000_hw *hw = &adapter->hw;
6894         u16 aspm_disable_flag = 0;
6895
6896         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6897                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6898         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6899                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6900         if (aspm_disable_flag)
6901                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6902
6903         pci_set_master(pdev);
6904
6905         if (hw->mac.type >= e1000_pch2lan)
6906                 e1000_resume_workarounds_pchlan(&adapter->hw);
6907
6908         e1000e_power_up_phy(adapter);
6909
6910         /* report the system wakeup cause from S3/S4 */
6911         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6912                 u16 phy_data;
6913
6914                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6915                 if (phy_data) {
6916                         e_info("PHY Wakeup cause - %s\n",
6917                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6918                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6919                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6920                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6921                                phy_data & E1000_WUS_LNKC ?
6922                                "Link Status Change" : "other");
6923                 }
6924                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6925         } else {
6926                 u32 wus = er32(WUS);
6927
6928                 if (wus) {
6929                         e_info("MAC Wakeup cause - %s\n",
6930                                wus & E1000_WUS_EX ? "Unicast Packet" :
6931                                wus & E1000_WUS_MC ? "Multicast Packet" :
6932                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6933                                wus & E1000_WUS_MAG ? "Magic Packet" :
6934                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6935                                "other");
6936                 }
6937                 ew32(WUS, ~0);
6938         }
6939
6940         e1000e_reset(adapter);
6941
6942         e1000_init_manageability_pt(adapter);
6943
6944         /* If the controller has AMT, do not set DRV_LOAD until the interface
6945          * is up.  For all other cases, let the f/w know that the h/w is now
6946          * under the control of the driver.
6947          */
6948         if (!(adapter->flags & FLAG_HAS_AMT))
6949                 e1000e_get_hw_control(adapter);
6950
6951         return 0;
6952 }
6953
6954 static __maybe_unused int e1000e_pm_prepare(struct device *dev)
6955 {
6956         return pm_runtime_suspended(dev) &&
6957                 pm_suspend_via_firmware();
6958 }
6959
6960 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6961 {
6962         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6963         struct e1000_adapter *adapter = netdev_priv(netdev);
6964         struct pci_dev *pdev = to_pci_dev(dev);
6965         int rc;
6966
6967         e1000e_flush_lpic(pdev);
6968
6969         e1000e_pm_freeze(dev);
6970
6971         rc = __e1000_shutdown(pdev, false);
6972         if (rc) {
6973                 e1000e_pm_thaw(dev);
6974         } else {
6975                 /* Introduce S0ix implementation */
6976                 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6977                         e1000e_s0ix_entry_flow(adapter);
6978         }
6979
6980         return rc;
6981 }
6982
6983 static __maybe_unused int e1000e_pm_resume(struct device *dev)
6984 {
6985         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6986         struct e1000_adapter *adapter = netdev_priv(netdev);
6987         struct pci_dev *pdev = to_pci_dev(dev);
6988         int rc;
6989
6990         /* Introduce S0ix implementation */
6991         if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6992                 e1000e_s0ix_exit_flow(adapter);
6993
6994         rc = __e1000_resume(pdev);
6995         if (rc)
6996                 return rc;
6997
6998         return e1000e_pm_thaw(dev);
6999 }
7000
7001 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7002 {
7003         struct net_device *netdev = dev_get_drvdata(dev);
7004         struct e1000_adapter *adapter = netdev_priv(netdev);
7005         u16 eee_lp;
7006
7007         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7008
7009         if (!e1000e_has_link(adapter)) {
7010                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7011                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7012         }
7013
7014         return -EBUSY;
7015 }
7016
7017 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
7018 {
7019         struct pci_dev *pdev = to_pci_dev(dev);
7020         struct net_device *netdev = pci_get_drvdata(pdev);
7021         struct e1000_adapter *adapter = netdev_priv(netdev);
7022         int rc;
7023
7024         rc = __e1000_resume(pdev);
7025         if (rc)
7026                 return rc;
7027
7028         if (netdev->flags & IFF_UP)
7029                 e1000e_up(adapter);
7030
7031         return rc;
7032 }
7033
7034 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7035 {
7036         struct pci_dev *pdev = to_pci_dev(dev);
7037         struct net_device *netdev = pci_get_drvdata(pdev);
7038         struct e1000_adapter *adapter = netdev_priv(netdev);
7039
7040         if (netdev->flags & IFF_UP) {
7041                 int count = E1000_CHECK_RESET_COUNT;
7042
7043                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7044                         usleep_range(10000, 11000);
7045
7046                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7047
7048                 /* Down the device without resetting the hardware */
7049                 e1000e_down(adapter, false);
7050         }
7051
7052         if (__e1000_shutdown(pdev, true)) {
7053                 e1000e_pm_runtime_resume(dev);
7054                 return -EBUSY;
7055         }
7056
7057         return 0;
7058 }
7059
7060 static void e1000_shutdown(struct pci_dev *pdev)
7061 {
7062         e1000e_flush_lpic(pdev);
7063
7064         e1000e_pm_freeze(&pdev->dev);
7065
7066         __e1000_shutdown(pdev, false);
7067 }
7068
7069 #ifdef CONFIG_NET_POLL_CONTROLLER
7070
7071 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7072 {
7073         struct net_device *netdev = data;
7074         struct e1000_adapter *adapter = netdev_priv(netdev);
7075
7076         if (adapter->msix_entries) {
7077                 int vector, msix_irq;
7078
7079                 vector = 0;
7080                 msix_irq = adapter->msix_entries[vector].vector;
7081                 if (disable_hardirq(msix_irq))
7082                         e1000_intr_msix_rx(msix_irq, netdev);
7083                 enable_irq(msix_irq);
7084
7085                 vector++;
7086                 msix_irq = adapter->msix_entries[vector].vector;
7087                 if (disable_hardirq(msix_irq))
7088                         e1000_intr_msix_tx(msix_irq, netdev);
7089                 enable_irq(msix_irq);
7090
7091                 vector++;
7092                 msix_irq = adapter->msix_entries[vector].vector;
7093                 if (disable_hardirq(msix_irq))
7094                         e1000_msix_other(msix_irq, netdev);
7095                 enable_irq(msix_irq);
7096         }
7097
7098         return IRQ_HANDLED;
7099 }
7100
7101 /**
7102  * e1000_netpoll
7103  * @netdev: network interface device structure
7104  *
7105  * Polling 'interrupt' - used by things like netconsole to send skbs
7106  * without having to re-enable interrupts. It's not called while
7107  * the interrupt routine is executing.
7108  */
7109 static void e1000_netpoll(struct net_device *netdev)
7110 {
7111         struct e1000_adapter *adapter = netdev_priv(netdev);
7112
7113         switch (adapter->int_mode) {
7114         case E1000E_INT_MODE_MSIX:
7115                 e1000_intr_msix(adapter->pdev->irq, netdev);
7116                 break;
7117         case E1000E_INT_MODE_MSI:
7118                 if (disable_hardirq(adapter->pdev->irq))
7119                         e1000_intr_msi(adapter->pdev->irq, netdev);
7120                 enable_irq(adapter->pdev->irq);
7121                 break;
7122         default:                /* E1000E_INT_MODE_LEGACY */
7123                 if (disable_hardirq(adapter->pdev->irq))
7124                         e1000_intr(adapter->pdev->irq, netdev);
7125                 enable_irq(adapter->pdev->irq);
7126                 break;
7127         }
7128 }
7129 #endif
7130
7131 /**
7132  * e1000_io_error_detected - called when PCI error is detected
7133  * @pdev: Pointer to PCI device
7134  * @state: The current pci connection state
7135  *
7136  * This function is called after a PCI bus error affecting
7137  * this device has been detected.
7138  */
7139 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7140                                                 pci_channel_state_t state)
7141 {
7142         e1000e_pm_freeze(&pdev->dev);
7143
7144         if (state == pci_channel_io_perm_failure)
7145                 return PCI_ERS_RESULT_DISCONNECT;
7146
7147         pci_disable_device(pdev);
7148
7149         /* Request a slot reset. */
7150         return PCI_ERS_RESULT_NEED_RESET;
7151 }
7152
7153 /**
7154  * e1000_io_slot_reset - called after the pci bus has been reset.
7155  * @pdev: Pointer to PCI device
7156  *
7157  * Restart the card from scratch, as if from a cold-boot. Implementation
7158  * resembles the first-half of the e1000e_pm_resume routine.
7159  */
7160 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7161 {
7162         struct net_device *netdev = pci_get_drvdata(pdev);
7163         struct e1000_adapter *adapter = netdev_priv(netdev);
7164         struct e1000_hw *hw = &adapter->hw;
7165         u16 aspm_disable_flag = 0;
7166         int err;
7167         pci_ers_result_t result;
7168
7169         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7170                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7171         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7172                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7173         if (aspm_disable_flag)
7174                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7175
7176         err = pci_enable_device_mem(pdev);
7177         if (err) {
7178                 dev_err(&pdev->dev,
7179                         "Cannot re-enable PCI device after reset.\n");
7180                 result = PCI_ERS_RESULT_DISCONNECT;
7181         } else {
7182                 pdev->state_saved = true;
7183                 pci_restore_state(pdev);
7184                 pci_set_master(pdev);
7185
7186                 pci_enable_wake(pdev, PCI_D3hot, 0);
7187                 pci_enable_wake(pdev, PCI_D3cold, 0);
7188
7189                 e1000e_reset(adapter);
7190                 ew32(WUS, ~0);
7191                 result = PCI_ERS_RESULT_RECOVERED;
7192         }
7193
7194         return result;
7195 }
7196
7197 /**
7198  * e1000_io_resume - called when traffic can start flowing again.
7199  * @pdev: Pointer to PCI device
7200  *
7201  * This callback is called when the error recovery driver tells us that
7202  * its OK to resume normal operation. Implementation resembles the
7203  * second-half of the e1000e_pm_resume routine.
7204  */
7205 static void e1000_io_resume(struct pci_dev *pdev)
7206 {
7207         struct net_device *netdev = pci_get_drvdata(pdev);
7208         struct e1000_adapter *adapter = netdev_priv(netdev);
7209
7210         e1000_init_manageability_pt(adapter);
7211
7212         e1000e_pm_thaw(&pdev->dev);
7213
7214         /* If the controller has AMT, do not set DRV_LOAD until the interface
7215          * is up.  For all other cases, let the f/w know that the h/w is now
7216          * under the control of the driver.
7217          */
7218         if (!(adapter->flags & FLAG_HAS_AMT))
7219                 e1000e_get_hw_control(adapter);
7220 }
7221
7222 static void e1000_print_device_info(struct e1000_adapter *adapter)
7223 {
7224         struct e1000_hw *hw = &adapter->hw;
7225         struct net_device *netdev = adapter->netdev;
7226         u32 ret_val;
7227         u8 pba_str[E1000_PBANUM_LENGTH];
7228
7229         /* print bus type/speed/width info */
7230         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7231                /* bus width */
7232                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7233                 "Width x1"),
7234                /* MAC address */
7235                netdev->dev_addr);
7236         e_info("Intel(R) PRO/%s Network Connection\n",
7237                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7238         ret_val = e1000_read_pba_string_generic(hw, pba_str,
7239                                                 E1000_PBANUM_LENGTH);
7240         if (ret_val)
7241                 strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7242         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7243                hw->mac.type, hw->phy.type, pba_str);
7244 }
7245
7246 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7247 {
7248         struct e1000_hw *hw = &adapter->hw;
7249         int ret_val;
7250         u16 buf = 0;
7251
7252         if (hw->mac.type != e1000_82573)
7253                 return;
7254
7255         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7256         le16_to_cpus(&buf);
7257         if (!ret_val && (!(buf & BIT(0)))) {
7258                 /* Deep Smart Power Down (DSPD) */
7259                 dev_warn(&adapter->pdev->dev,
7260                          "Warning: detected DSPD enabled in EEPROM\n");
7261         }
7262 }
7263
7264 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7265                                             netdev_features_t features)
7266 {
7267         struct e1000_adapter *adapter = netdev_priv(netdev);
7268         struct e1000_hw *hw = &adapter->hw;
7269
7270         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7271         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7272                 features &= ~NETIF_F_RXFCS;
7273
7274         /* Since there is no support for separate Rx/Tx vlan accel
7275          * enable/disable make sure Tx flag is always in same state as Rx.
7276          */
7277         if (features & NETIF_F_HW_VLAN_CTAG_RX)
7278                 features |= NETIF_F_HW_VLAN_CTAG_TX;
7279         else
7280                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7281
7282         return features;
7283 }
7284
7285 static int e1000_set_features(struct net_device *netdev,
7286                               netdev_features_t features)
7287 {
7288         struct e1000_adapter *adapter = netdev_priv(netdev);
7289         netdev_features_t changed = features ^ netdev->features;
7290
7291         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7292                 adapter->flags |= FLAG_TSO_FORCE;
7293
7294         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7295                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7296                          NETIF_F_RXALL)))
7297                 return 0;
7298
7299         if (changed & NETIF_F_RXFCS) {
7300                 if (features & NETIF_F_RXFCS) {
7301                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7302                 } else {
7303                         /* We need to take it back to defaults, which might mean
7304                          * stripping is still disabled at the adapter level.
7305                          */
7306                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7307                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7308                         else
7309                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7310                 }
7311         }
7312
7313         netdev->features = features;
7314
7315         if (netif_running(netdev))
7316                 e1000e_reinit_locked(adapter);
7317         else
7318                 e1000e_reset(adapter);
7319
7320         return 1;
7321 }
7322
7323 static const struct net_device_ops e1000e_netdev_ops = {
7324         .ndo_open               = e1000e_open,
7325         .ndo_stop               = e1000e_close,
7326         .ndo_start_xmit         = e1000_xmit_frame,
7327         .ndo_get_stats64        = e1000e_get_stats64,
7328         .ndo_set_rx_mode        = e1000e_set_rx_mode,
7329         .ndo_set_mac_address    = e1000_set_mac,
7330         .ndo_change_mtu         = e1000_change_mtu,
7331         .ndo_eth_ioctl          = e1000_ioctl,
7332         .ndo_tx_timeout         = e1000_tx_timeout,
7333         .ndo_validate_addr      = eth_validate_addr,
7334
7335         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
7336         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
7337 #ifdef CONFIG_NET_POLL_CONTROLLER
7338         .ndo_poll_controller    = e1000_netpoll,
7339 #endif
7340         .ndo_set_features = e1000_set_features,
7341         .ndo_fix_features = e1000_fix_features,
7342         .ndo_features_check     = passthru_features_check,
7343 };
7344
7345 /**
7346  * e1000_probe - Device Initialization Routine
7347  * @pdev: PCI device information struct
7348  * @ent: entry in e1000_pci_tbl
7349  *
7350  * Returns 0 on success, negative on failure
7351  *
7352  * e1000_probe initializes an adapter identified by a pci_dev structure.
7353  * The OS initialization, configuring of the adapter private structure,
7354  * and a hardware reset occur.
7355  **/
7356 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7357 {
7358         struct net_device *netdev;
7359         struct e1000_adapter *adapter;
7360         struct e1000_hw *hw;
7361         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7362         resource_size_t mmio_start, mmio_len;
7363         resource_size_t flash_start, flash_len;
7364         static int cards_found;
7365         u16 aspm_disable_flag = 0;
7366         u16 eeprom_data = 0;
7367         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7368         int bars, i, err;
7369         s32 ret_val = 0;
7370
7371         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7372                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7373         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7374                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7375         if (aspm_disable_flag)
7376                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7377
7378         err = pci_enable_device_mem(pdev);
7379         if (err)
7380                 return err;
7381
7382         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7383         if (err) {
7384                 dev_err(&pdev->dev,
7385                         "No usable DMA configuration, aborting\n");
7386                 goto err_dma;
7387         }
7388
7389         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7390         err = pci_request_selected_regions_exclusive(pdev, bars,
7391                                                      e1000e_driver_name);
7392         if (err)
7393                 goto err_pci_reg;
7394
7395         pci_set_master(pdev);
7396         /* PCI config space info */
7397         err = pci_save_state(pdev);
7398         if (err)
7399                 goto err_alloc_etherdev;
7400
7401         err = -ENOMEM;
7402         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7403         if (!netdev)
7404                 goto err_alloc_etherdev;
7405
7406         SET_NETDEV_DEV(netdev, &pdev->dev);
7407
7408         netdev->irq = pdev->irq;
7409
7410         pci_set_drvdata(pdev, netdev);
7411         adapter = netdev_priv(netdev);
7412         hw = &adapter->hw;
7413         adapter->netdev = netdev;
7414         adapter->pdev = pdev;
7415         adapter->ei = ei;
7416         adapter->pba = ei->pba;
7417         adapter->flags = ei->flags;
7418         adapter->flags2 = ei->flags2;
7419         adapter->hw.adapter = adapter;
7420         adapter->hw.mac.type = ei->mac;
7421         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7422         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7423
7424         mmio_start = pci_resource_start(pdev, 0);
7425         mmio_len = pci_resource_len(pdev, 0);
7426
7427         err = -EIO;
7428         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7429         if (!adapter->hw.hw_addr)
7430                 goto err_ioremap;
7431
7432         if ((adapter->flags & FLAG_HAS_FLASH) &&
7433             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7434             (hw->mac.type < e1000_pch_spt)) {
7435                 flash_start = pci_resource_start(pdev, 1);
7436                 flash_len = pci_resource_len(pdev, 1);
7437                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7438                 if (!adapter->hw.flash_address)
7439                         goto err_flashmap;
7440         }
7441
7442         /* Set default EEE advertisement */
7443         if (adapter->flags2 & FLAG2_HAS_EEE)
7444                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7445
7446         /* construct the net_device struct */
7447         netdev->netdev_ops = &e1000e_netdev_ops;
7448         e1000e_set_ethtool_ops(netdev);
7449         netdev->watchdog_timeo = 5 * HZ;
7450         netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7451         strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7452
7453         netdev->mem_start = mmio_start;
7454         netdev->mem_end = mmio_start + mmio_len;
7455
7456         adapter->bd_number = cards_found++;
7457
7458         e1000e_check_options(adapter);
7459
7460         /* setup adapter struct */
7461         err = e1000_sw_init(adapter);
7462         if (err)
7463                 goto err_sw_init;
7464
7465         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7466         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7467         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7468
7469         err = ei->get_variants(adapter);
7470         if (err)
7471                 goto err_hw_init;
7472
7473         if ((adapter->flags & FLAG_IS_ICH) &&
7474             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7475             (hw->mac.type < e1000_pch_spt))
7476                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7477
7478         hw->mac.ops.get_bus_info(&adapter->hw);
7479
7480         adapter->hw.phy.autoneg_wait_to_complete = 0;
7481
7482         /* Copper options */
7483         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7484                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7485                 adapter->hw.phy.disable_polarity_correction = 0;
7486                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7487         }
7488
7489         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7490                 dev_info(&pdev->dev,
7491                          "PHY reset is blocked due to SOL/IDER session.\n");
7492
7493         /* Set initial default active device features */
7494         netdev->features = (NETIF_F_SG |
7495                             NETIF_F_HW_VLAN_CTAG_RX |
7496                             NETIF_F_HW_VLAN_CTAG_TX |
7497                             NETIF_F_TSO |
7498                             NETIF_F_TSO6 |
7499                             NETIF_F_RXHASH |
7500                             NETIF_F_RXCSUM |
7501                             NETIF_F_HW_CSUM);
7502
7503         /* disable TSO for pcie and 10/100 speeds to avoid
7504          * some hardware issues and for i219 to fix transfer
7505          * speed being capped at 60%
7506          */
7507         if (!(adapter->flags & FLAG_TSO_FORCE)) {
7508                 switch (adapter->link_speed) {
7509                 case SPEED_10:
7510                 case SPEED_100:
7511                         e_info("10/100 speed: disabling TSO\n");
7512                         netdev->features &= ~NETIF_F_TSO;
7513                         netdev->features &= ~NETIF_F_TSO6;
7514                         break;
7515                 case SPEED_1000:
7516                         netdev->features |= NETIF_F_TSO;
7517                         netdev->features |= NETIF_F_TSO6;
7518                         break;
7519                 default:
7520                         /* oops */
7521                         break;
7522                 }
7523                 if (hw->mac.type == e1000_pch_spt) {
7524                         netdev->features &= ~NETIF_F_TSO;
7525                         netdev->features &= ~NETIF_F_TSO6;
7526                 }
7527         }
7528
7529         /* Set user-changeable features (subset of all device features) */
7530         netdev->hw_features = netdev->features;
7531         netdev->hw_features |= NETIF_F_RXFCS;
7532         netdev->priv_flags |= IFF_SUPP_NOFCS;
7533         netdev->hw_features |= NETIF_F_RXALL;
7534
7535         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7536                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7537
7538         netdev->vlan_features |= (NETIF_F_SG |
7539                                   NETIF_F_TSO |
7540                                   NETIF_F_TSO6 |
7541                                   NETIF_F_HW_CSUM);
7542
7543         netdev->priv_flags |= IFF_UNICAST_FLT;
7544
7545         netdev->features |= NETIF_F_HIGHDMA;
7546         netdev->vlan_features |= NETIF_F_HIGHDMA;
7547
7548         /* MTU range: 68 - max_hw_frame_size */
7549         netdev->min_mtu = ETH_MIN_MTU;
7550         netdev->max_mtu = adapter->max_hw_frame_size -
7551                           (VLAN_ETH_HLEN + ETH_FCS_LEN);
7552
7553         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7554                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7555
7556         /* before reading the NVM, reset the controller to
7557          * put the device in a known good starting state
7558          */
7559         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7560
7561         /* systems with ASPM and others may see the checksum fail on the first
7562          * attempt. Let's give it a few tries
7563          */
7564         for (i = 0;; i++) {
7565                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7566                         break;
7567                 if (i == 2) {
7568                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7569                         err = -EIO;
7570                         goto err_eeprom;
7571                 }
7572         }
7573
7574         e1000_eeprom_checks(adapter);
7575
7576         /* copy the MAC address */
7577         if (e1000e_read_mac_addr(&adapter->hw))
7578                 dev_err(&pdev->dev,
7579                         "NVM Read Error while reading MAC address\n");
7580
7581         eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7582
7583         if (!is_valid_ether_addr(netdev->dev_addr)) {
7584                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7585                         netdev->dev_addr);
7586                 err = -EIO;
7587                 goto err_eeprom;
7588         }
7589
7590         timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7591         timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7592
7593         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7594         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7595         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7596         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7597         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7598
7599         /* Initialize link parameters. User can change them with ethtool */
7600         adapter->hw.mac.autoneg = 1;
7601         adapter->fc_autoneg = true;
7602         adapter->hw.fc.requested_mode = e1000_fc_default;
7603         adapter->hw.fc.current_mode = e1000_fc_default;
7604         adapter->hw.phy.autoneg_advertised = 0x2f;
7605
7606         /* Initial Wake on LAN setting - If APM wake is enabled in
7607          * the EEPROM, enable the ACPI Magic Packet filter
7608          */
7609         if (adapter->flags & FLAG_APME_IN_WUC) {
7610                 /* APME bit in EEPROM is mapped to WUC.APME */
7611                 eeprom_data = er32(WUC);
7612                 eeprom_apme_mask = E1000_WUC_APME;
7613                 if ((hw->mac.type > e1000_ich10lan) &&
7614                     (eeprom_data & E1000_WUC_PHY_WAKE))
7615                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7616         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7617                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7618                     (adapter->hw.bus.func == 1))
7619                         ret_val = e1000_read_nvm(&adapter->hw,
7620                                               NVM_INIT_CONTROL3_PORT_B,
7621                                               1, &eeprom_data);
7622                 else
7623                         ret_val = e1000_read_nvm(&adapter->hw,
7624                                               NVM_INIT_CONTROL3_PORT_A,
7625                                               1, &eeprom_data);
7626         }
7627
7628         /* fetch WoL from EEPROM */
7629         if (ret_val)
7630                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7631         else if (eeprom_data & eeprom_apme_mask)
7632                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7633
7634         /* now that we have the eeprom settings, apply the special cases
7635          * where the eeprom may be wrong or the board simply won't support
7636          * wake on lan on a particular port
7637          */
7638         if (!(adapter->flags & FLAG_HAS_WOL))
7639                 adapter->eeprom_wol = 0;
7640
7641         /* initialize the wol settings based on the eeprom settings */
7642         adapter->wol = adapter->eeprom_wol;
7643
7644         /* make sure adapter isn't asleep if manageability is enabled */
7645         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7646             (hw->mac.ops.check_mng_mode(hw)))
7647                 device_wakeup_enable(&pdev->dev);
7648
7649         /* save off EEPROM version number */
7650         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7651
7652         if (ret_val) {
7653                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7654                 adapter->eeprom_vers = 0;
7655         }
7656
7657         /* init PTP hardware clock */
7658         e1000e_ptp_init(adapter);
7659
7660         /* reset the hardware with the new settings */
7661         e1000e_reset(adapter);
7662
7663         /* If the controller has AMT, do not set DRV_LOAD until the interface
7664          * is up.  For all other cases, let the f/w know that the h/w is now
7665          * under the control of the driver.
7666          */
7667         if (!(adapter->flags & FLAG_HAS_AMT))
7668                 e1000e_get_hw_control(adapter);
7669
7670         if (hw->mac.type >= e1000_pch_cnp)
7671                 adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7672
7673         strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7674         err = register_netdev(netdev);
7675         if (err)
7676                 goto err_register;
7677
7678         /* carrier off reporting is important to ethtool even BEFORE open */
7679         netif_carrier_off(netdev);
7680
7681         e1000_print_device_info(adapter);
7682
7683         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7684
7685         if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
7686                 pm_runtime_put_noidle(&pdev->dev);
7687
7688         return 0;
7689
7690 err_register:
7691         if (!(adapter->flags & FLAG_HAS_AMT))
7692                 e1000e_release_hw_control(adapter);
7693 err_eeprom:
7694         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7695                 e1000_phy_hw_reset(&adapter->hw);
7696 err_hw_init:
7697         kfree(adapter->tx_ring);
7698         kfree(adapter->rx_ring);
7699 err_sw_init:
7700         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7701                 iounmap(adapter->hw.flash_address);
7702         e1000e_reset_interrupt_capability(adapter);
7703 err_flashmap:
7704         iounmap(adapter->hw.hw_addr);
7705 err_ioremap:
7706         free_netdev(netdev);
7707 err_alloc_etherdev:
7708         pci_release_mem_regions(pdev);
7709 err_pci_reg:
7710 err_dma:
7711         pci_disable_device(pdev);
7712         return err;
7713 }
7714
7715 /**
7716  * e1000_remove - Device Removal Routine
7717  * @pdev: PCI device information struct
7718  *
7719  * e1000_remove is called by the PCI subsystem to alert the driver
7720  * that it should release a PCI device.  This could be caused by a
7721  * Hot-Plug event, or because the driver is going to be removed from
7722  * memory.
7723  **/
7724 static void e1000_remove(struct pci_dev *pdev)
7725 {
7726         struct net_device *netdev = pci_get_drvdata(pdev);
7727         struct e1000_adapter *adapter = netdev_priv(netdev);
7728
7729         e1000e_ptp_remove(adapter);
7730
7731         /* The timers may be rescheduled, so explicitly disable them
7732          * from being rescheduled.
7733          */
7734         set_bit(__E1000_DOWN, &adapter->state);
7735         del_timer_sync(&adapter->watchdog_timer);
7736         del_timer_sync(&adapter->phy_info_timer);
7737
7738         cancel_work_sync(&adapter->reset_task);
7739         cancel_work_sync(&adapter->watchdog_task);
7740         cancel_work_sync(&adapter->downshift_task);
7741         cancel_work_sync(&adapter->update_phy_task);
7742         cancel_work_sync(&adapter->print_hang_task);
7743
7744         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7745                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7746                 if (adapter->tx_hwtstamp_skb) {
7747                         dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7748                         adapter->tx_hwtstamp_skb = NULL;
7749                 }
7750         }
7751
7752         unregister_netdev(netdev);
7753
7754         if (pci_dev_run_wake(pdev))
7755                 pm_runtime_get_noresume(&pdev->dev);
7756
7757         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7758          * would have already happened in close and is redundant.
7759          */
7760         e1000e_release_hw_control(adapter);
7761
7762         e1000e_reset_interrupt_capability(adapter);
7763         kfree(adapter->tx_ring);
7764         kfree(adapter->rx_ring);
7765
7766         iounmap(adapter->hw.hw_addr);
7767         if ((adapter->hw.flash_address) &&
7768             (adapter->hw.mac.type < e1000_pch_spt))
7769                 iounmap(adapter->hw.flash_address);
7770         pci_release_mem_regions(pdev);
7771
7772         free_netdev(netdev);
7773
7774         pci_disable_device(pdev);
7775 }
7776
7777 /* PCI Error Recovery (ERS) */
7778 static const struct pci_error_handlers e1000_err_handler = {
7779         .error_detected = e1000_io_error_detected,
7780         .slot_reset = e1000_io_slot_reset,
7781         .resume = e1000_io_resume,
7782 };
7783
7784 static const struct pci_device_id e1000_pci_tbl[] = {
7785         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7786         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7787         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7788         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7789           board_82571 },
7790         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7791         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7792         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7793         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7794         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7795
7796         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7797         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7798         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7799         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7800
7801         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7802         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7803         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7804
7805         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7806         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7807         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7808
7809         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7810           board_80003es2lan },
7811         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7812           board_80003es2lan },
7813         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7814           board_80003es2lan },
7815         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7816           board_80003es2lan },
7817
7818         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7819         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7820         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7821         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7822         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7823         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7824         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7825         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7826
7827         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7828         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7829         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7830         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7831         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7832         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7833         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7834         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7835         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7836
7837         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7838         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7839         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7840
7841         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7842         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7843         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7844
7845         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7846         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7847         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7848         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7849
7850         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7851         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7852
7853         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7854         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7855         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7856         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7857         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7858         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7859         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7860         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7861         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7862         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7863         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7864         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7865         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7866         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7867         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7868         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7869         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7870         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7871         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7872         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7873         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7874         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7875         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7876         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7877         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7878         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7879         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7880         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7881         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7882         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7883         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7884         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7885         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7886         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7887         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7888         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7889         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7890         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7891         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7892         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7893         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7894         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7895         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7896         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7897         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7898         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7899         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7900         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_mtp },
7901         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_mtp },
7902         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7903         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7904         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7905         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7906         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7907         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7908         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7909         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7910         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7911         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7912         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7913         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7914
7915         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7916 };
7917 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7918
7919 static const struct dev_pm_ops e1000_pm_ops = {
7920 #ifdef CONFIG_PM_SLEEP
7921         .prepare        = e1000e_pm_prepare,
7922         .suspend        = e1000e_pm_suspend,
7923         .resume         = e1000e_pm_resume,
7924         .freeze         = e1000e_pm_freeze,
7925         .thaw           = e1000e_pm_thaw,
7926         .poweroff       = e1000e_pm_suspend,
7927         .restore        = e1000e_pm_resume,
7928 #endif
7929         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7930                            e1000e_pm_runtime_idle)
7931 };
7932
7933 /* PCI Device API Driver */
7934 static struct pci_driver e1000_driver = {
7935         .name     = e1000e_driver_name,
7936         .id_table = e1000_pci_tbl,
7937         .probe    = e1000_probe,
7938         .remove   = e1000_remove,
7939         .driver   = {
7940                 .pm = &e1000_pm_ops,
7941         },
7942         .shutdown = e1000_shutdown,
7943         .err_handler = &e1000_err_handler
7944 };
7945
7946 /**
7947  * e1000_init_module - Driver Registration Routine
7948  *
7949  * e1000_init_module is the first routine called when the driver is
7950  * loaded. All it does is register with the PCI subsystem.
7951  **/
7952 static int __init e1000_init_module(void)
7953 {
7954         pr_info("Intel(R) PRO/1000 Network Driver\n");
7955         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7956
7957         return pci_register_driver(&e1000_driver);
7958 }
7959 module_init(e1000_init_module);
7960
7961 /**
7962  * e1000_exit_module - Driver Exit Cleanup Routine
7963  *
7964  * e1000_exit_module is called just before the driver is removed
7965  * from memory.
7966  **/
7967 static void __exit e1000_exit_module(void)
7968 {
7969         pci_unregister_driver(&e1000_driver);
7970 }
7971 module_exit(e1000_exit_module);
7972
7973 MODULE_AUTHOR("Intel Corporation, <[email protected]>");
7974 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7975 MODULE_LICENSE("GPL v2");
7976
7977 /* netdev.c */
This page took 0.500502 seconds and 4 git commands to generate.