]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/e1000e/netdev.c
Linux 6.14-rc3
[linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/prefetch.h>
27 #include <linux/suspend.h>
28
29 #include "e1000.h"
30 #define CREATE_TRACE_POINTS
31 #include "e1000e_trace.h"
32
33 char e1000e_driver_name[] = "e1000e";
34
35 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
36 static int debug = -1;
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 static const struct e1000_info *e1000_info_tbl[] = {
41         [board_82571]           = &e1000_82571_info,
42         [board_82572]           = &e1000_82572_info,
43         [board_82573]           = &e1000_82573_info,
44         [board_82574]           = &e1000_82574_info,
45         [board_82583]           = &e1000_82583_info,
46         [board_80003es2lan]     = &e1000_es2_info,
47         [board_ich8lan]         = &e1000_ich8_info,
48         [board_ich9lan]         = &e1000_ich9_info,
49         [board_ich10lan]        = &e1000_ich10_info,
50         [board_pchlan]          = &e1000_pch_info,
51         [board_pch2lan]         = &e1000_pch2_info,
52         [board_pch_lpt]         = &e1000_pch_lpt_info,
53         [board_pch_spt]         = &e1000_pch_spt_info,
54         [board_pch_cnp]         = &e1000_pch_cnp_info,
55         [board_pch_tgp]         = &e1000_pch_tgp_info,
56         [board_pch_adp]         = &e1000_pch_adp_info,
57         [board_pch_mtp]         = &e1000_pch_mtp_info,
58 };
59
60 struct e1000_reg_info {
61         u32 ofs;
62         char *name;
63 };
64
65 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
66         /* General Registers */
67         {E1000_CTRL, "CTRL"},
68         {E1000_STATUS, "STATUS"},
69         {E1000_CTRL_EXT, "CTRL_EXT"},
70
71         /* Interrupt Registers */
72         {E1000_ICR, "ICR"},
73
74         /* Rx Registers */
75         {E1000_RCTL, "RCTL"},
76         {E1000_RDLEN(0), "RDLEN"},
77         {E1000_RDH(0), "RDH"},
78         {E1000_RDT(0), "RDT"},
79         {E1000_RDTR, "RDTR"},
80         {E1000_RXDCTL(0), "RXDCTL"},
81         {E1000_ERT, "ERT"},
82         {E1000_RDBAL(0), "RDBAL"},
83         {E1000_RDBAH(0), "RDBAH"},
84         {E1000_RDFH, "RDFH"},
85         {E1000_RDFT, "RDFT"},
86         {E1000_RDFHS, "RDFHS"},
87         {E1000_RDFTS, "RDFTS"},
88         {E1000_RDFPC, "RDFPC"},
89
90         /* Tx Registers */
91         {E1000_TCTL, "TCTL"},
92         {E1000_TDBAL(0), "TDBAL"},
93         {E1000_TDBAH(0), "TDBAH"},
94         {E1000_TDLEN(0), "TDLEN"},
95         {E1000_TDH(0), "TDH"},
96         {E1000_TDT(0), "TDT"},
97         {E1000_TIDV, "TIDV"},
98         {E1000_TXDCTL(0), "TXDCTL"},
99         {E1000_TADV, "TADV"},
100         {E1000_TARC(0), "TARC"},
101         {E1000_TDFH, "TDFH"},
102         {E1000_TDFT, "TDFT"},
103         {E1000_TDFHS, "TDFHS"},
104         {E1000_TDFTS, "TDFTS"},
105         {E1000_TDFPC, "TDFPC"},
106
107         /* List Terminator */
108         {0, NULL}
109 };
110
111 /**
112  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
113  * @hw: pointer to the HW structure
114  *
115  * When updating the MAC CSR registers, the Manageability Engine (ME) could
116  * be accessing the registers at the same time.  Normally, this is handled in
117  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
118  * accesses later than it should which could result in the register to have
119  * an incorrect value.  Workaround this by checking the FWSM register which
120  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
121  * and try again a number of times.
122  **/
123 static void __ew32_prepare(struct e1000_hw *hw)
124 {
125         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
126
127         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
128                 udelay(50);
129 }
130
131 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
132 {
133         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
134                 __ew32_prepare(hw);
135
136         writel(val, hw->hw_addr + reg);
137 }
138
139 /**
140  * e1000_regdump - register printout routine
141  * @hw: pointer to the HW structure
142  * @reginfo: pointer to the register info table
143  **/
144 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
145 {
146         int n = 0;
147         char rname[16];
148         u32 regs[8];
149
150         switch (reginfo->ofs) {
151         case E1000_RXDCTL(0):
152                 for (n = 0; n < 2; n++)
153                         regs[n] = __er32(hw, E1000_RXDCTL(n));
154                 break;
155         case E1000_TXDCTL(0):
156                 for (n = 0; n < 2; n++)
157                         regs[n] = __er32(hw, E1000_TXDCTL(n));
158                 break;
159         case E1000_TARC(0):
160                 for (n = 0; n < 2; n++)
161                         regs[n] = __er32(hw, E1000_TARC(n));
162                 break;
163         default:
164                 pr_info("%-15s %08x\n",
165                         reginfo->name, __er32(hw, reginfo->ofs));
166                 return;
167         }
168
169         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
170         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
171 }
172
173 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
174                                  struct e1000_buffer *bi)
175 {
176         int i;
177         struct e1000_ps_page *ps_page;
178
179         for (i = 0; i < adapter->rx_ps_pages; i++) {
180                 ps_page = &bi->ps_pages[i];
181
182                 if (ps_page->page) {
183                         pr_info("packet dump for ps_page %d:\n", i);
184                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
185                                        16, 1, page_address(ps_page->page),
186                                        PAGE_SIZE, true);
187                 }
188         }
189 }
190
191 /**
192  * e1000e_dump - Print registers, Tx-ring and Rx-ring
193  * @adapter: board private structure
194  **/
195 static void e1000e_dump(struct e1000_adapter *adapter)
196 {
197         struct net_device *netdev = adapter->netdev;
198         struct e1000_hw *hw = &adapter->hw;
199         struct e1000_reg_info *reginfo;
200         struct e1000_ring *tx_ring = adapter->tx_ring;
201         struct e1000_tx_desc *tx_desc;
202         struct my_u0 {
203                 __le64 a;
204                 __le64 b;
205         } *u0;
206         struct e1000_buffer *buffer_info;
207         struct e1000_ring *rx_ring = adapter->rx_ring;
208         union e1000_rx_desc_packet_split *rx_desc_ps;
209         union e1000_rx_desc_extended *rx_desc;
210         struct my_u1 {
211                 __le64 a;
212                 __le64 b;
213                 __le64 c;
214                 __le64 d;
215         } *u1;
216         u32 staterr;
217         int i = 0;
218
219         if (!netif_msg_hw(adapter))
220                 return;
221
222         /* Print netdevice Info */
223         if (netdev) {
224                 dev_info(&adapter->pdev->dev, "Net device Info\n");
225                 pr_info("Device Name     state            trans_start\n");
226                 pr_info("%-15s %016lX %016lX\n", netdev->name,
227                         netdev->state, dev_trans_start(netdev));
228         }
229
230         /* Print Registers */
231         dev_info(&adapter->pdev->dev, "Register Dump\n");
232         pr_info(" Register Name   Value\n");
233         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
234              reginfo->name; reginfo++) {
235                 e1000_regdump(hw, reginfo);
236         }
237
238         /* Print Tx Ring Summary */
239         if (!netdev || !netif_running(netdev))
240                 return;
241
242         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
243         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
244         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
245         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
246                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
247                 (unsigned long long)buffer_info->dma,
248                 buffer_info->length,
249                 buffer_info->next_to_watch,
250                 (unsigned long long)buffer_info->time_stamp);
251
252         /* Print Tx Ring */
253         if (!netif_msg_tx_done(adapter))
254                 goto rx_ring_summary;
255
256         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
257
258         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
259          *
260          * Legacy Transmit Descriptor
261          *   +--------------------------------------------------------------+
262          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
263          *   +--------------------------------------------------------------+
264          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
265          *   +--------------------------------------------------------------+
266          *   63       48 47        36 35    32 31     24 23    16 15        0
267          *
268          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
269          *   63      48 47    40 39       32 31             16 15    8 7      0
270          *   +----------------------------------------------------------------+
271          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
272          *   +----------------------------------------------------------------+
273          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
274          *   +----------------------------------------------------------------+
275          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
276          *
277          * Extended Data Descriptor (DTYP=0x1)
278          *   +----------------------------------------------------------------+
279          * 0 |                     Buffer Address [63:0]                      |
280          *   +----------------------------------------------------------------+
281          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
282          *   +----------------------------------------------------------------+
283          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
284          */
285         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
286         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
287         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
288         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
289                 const char *next_desc;
290                 tx_desc = E1000_TX_DESC(*tx_ring, i);
291                 buffer_info = &tx_ring->buffer_info[i];
292                 u0 = (struct my_u0 *)tx_desc;
293                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
294                         next_desc = " NTC/U";
295                 else if (i == tx_ring->next_to_use)
296                         next_desc = " NTU";
297                 else if (i == tx_ring->next_to_clean)
298                         next_desc = " NTC";
299                 else
300                         next_desc = "";
301                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
302                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
303                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
304                         i,
305                         (unsigned long long)le64_to_cpu(u0->a),
306                         (unsigned long long)le64_to_cpu(u0->b),
307                         (unsigned long long)buffer_info->dma,
308                         buffer_info->length, buffer_info->next_to_watch,
309                         (unsigned long long)buffer_info->time_stamp,
310                         buffer_info->skb, next_desc);
311
312                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
313                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
314                                        16, 1, buffer_info->skb->data,
315                                        buffer_info->skb->len, true);
316         }
317
318         /* Print Rx Ring Summary */
319 rx_ring_summary:
320         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
321         pr_info("Queue [NTU] [NTC]\n");
322         pr_info(" %5d %5X %5X\n",
323                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
324
325         /* Print Rx Ring */
326         if (!netif_msg_rx_status(adapter))
327                 return;
328
329         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
330         switch (adapter->rx_ps_pages) {
331         case 1:
332         case 2:
333         case 3:
334                 /* [Extended] Packet Split Receive Descriptor Format
335                  *
336                  *    +-----------------------------------------------------+
337                  *  0 |                Buffer Address 0 [63:0]              |
338                  *    +-----------------------------------------------------+
339                  *  8 |                Buffer Address 1 [63:0]              |
340                  *    +-----------------------------------------------------+
341                  * 16 |                Buffer Address 2 [63:0]              |
342                  *    +-----------------------------------------------------+
343                  * 24 |                Buffer Address 3 [63:0]              |
344                  *    +-----------------------------------------------------+
345                  */
346                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
347                 /* [Extended] Receive Descriptor (Write-Back) Format
348                  *
349                  *   63       48 47    32 31     13 12    8 7    4 3        0
350                  *   +------------------------------------------------------+
351                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
352                  *   | Checksum | Ident  |         | Queue |      |  Type   |
353                  *   +------------------------------------------------------+
354                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
355                  *   +------------------------------------------------------+
356                  *   63       48 47    32 31            20 19               0
357                  */
358                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
359                 for (i = 0; i < rx_ring->count; i++) {
360                         const char *next_desc;
361                         buffer_info = &rx_ring->buffer_info[i];
362                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
363                         u1 = (struct my_u1 *)rx_desc_ps;
364                         staterr =
365                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
366
367                         if (i == rx_ring->next_to_use)
368                                 next_desc = " NTU";
369                         else if (i == rx_ring->next_to_clean)
370                                 next_desc = " NTC";
371                         else
372                                 next_desc = "";
373
374                         if (staterr & E1000_RXD_STAT_DD) {
375                                 /* Descriptor Done */
376                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
377                                         "RWB", i,
378                                         (unsigned long long)le64_to_cpu(u1->a),
379                                         (unsigned long long)le64_to_cpu(u1->b),
380                                         (unsigned long long)le64_to_cpu(u1->c),
381                                         (unsigned long long)le64_to_cpu(u1->d),
382                                         buffer_info->skb, next_desc);
383                         } else {
384                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
385                                         "R  ", i,
386                                         (unsigned long long)le64_to_cpu(u1->a),
387                                         (unsigned long long)le64_to_cpu(u1->b),
388                                         (unsigned long long)le64_to_cpu(u1->c),
389                                         (unsigned long long)le64_to_cpu(u1->d),
390                                         (unsigned long long)buffer_info->dma,
391                                         buffer_info->skb, next_desc);
392
393                                 if (netif_msg_pktdata(adapter))
394                                         e1000e_dump_ps_pages(adapter,
395                                                              buffer_info);
396                         }
397                 }
398                 break;
399         default:
400         case 0:
401                 /* Extended Receive Descriptor (Read) Format
402                  *
403                  *   +-----------------------------------------------------+
404                  * 0 |                Buffer Address [63:0]                |
405                  *   +-----------------------------------------------------+
406                  * 8 |                      Reserved                       |
407                  *   +-----------------------------------------------------+
408                  */
409                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
410                 /* Extended Receive Descriptor (Write-Back) Format
411                  *
412                  *   63       48 47    32 31    24 23            4 3        0
413                  *   +------------------------------------------------------+
414                  *   |     RSS Hash      |        |               |         |
415                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
416                  *   | Packet   | IP     |        |               |  Type   |
417                  *   | Checksum | Ident  |        |               |         |
418                  *   +------------------------------------------------------+
419                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
420                  *   +------------------------------------------------------+
421                  *   63       48 47    32 31            20 19               0
422                  */
423                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
424
425                 for (i = 0; i < rx_ring->count; i++) {
426                         const char *next_desc;
427
428                         buffer_info = &rx_ring->buffer_info[i];
429                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
430                         u1 = (struct my_u1 *)rx_desc;
431                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
432
433                         if (i == rx_ring->next_to_use)
434                                 next_desc = " NTU";
435                         else if (i == rx_ring->next_to_clean)
436                                 next_desc = " NTC";
437                         else
438                                 next_desc = "";
439
440                         if (staterr & E1000_RXD_STAT_DD) {
441                                 /* Descriptor Done */
442                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
443                                         "RWB", i,
444                                         (unsigned long long)le64_to_cpu(u1->a),
445                                         (unsigned long long)le64_to_cpu(u1->b),
446                                         buffer_info->skb, next_desc);
447                         } else {
448                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
449                                         "R  ", i,
450                                         (unsigned long long)le64_to_cpu(u1->a),
451                                         (unsigned long long)le64_to_cpu(u1->b),
452                                         (unsigned long long)buffer_info->dma,
453                                         buffer_info->skb, next_desc);
454
455                                 if (netif_msg_pktdata(adapter) &&
456                                     buffer_info->skb)
457                                         print_hex_dump(KERN_INFO, "",
458                                                        DUMP_PREFIX_ADDRESS, 16,
459                                                        1,
460                                                        buffer_info->skb->data,
461                                                        adapter->rx_buffer_len,
462                                                        true);
463                         }
464                 }
465         }
466 }
467
468 /**
469  * e1000_desc_unused - calculate if we have unused descriptors
470  * @ring: pointer to ring struct to perform calculation on
471  **/
472 static int e1000_desc_unused(struct e1000_ring *ring)
473 {
474         if (ring->next_to_clean > ring->next_to_use)
475                 return ring->next_to_clean - ring->next_to_use - 1;
476
477         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
478 }
479
480 /**
481  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
482  * @adapter: board private structure
483  * @hwtstamps: time stamp structure to update
484  * @systim: unsigned 64bit system time value.
485  *
486  * Convert the system time value stored in the RX/TXSTMP registers into a
487  * hwtstamp which can be used by the upper level time stamping functions.
488  *
489  * The 'systim_lock' spinlock is used to protect the consistency of the
490  * system time value. This is needed because reading the 64 bit time
491  * value involves reading two 32 bit registers. The first read latches the
492  * value.
493  **/
494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
495                                       struct skb_shared_hwtstamps *hwtstamps,
496                                       u64 systim)
497 {
498         u64 ns;
499         unsigned long flags;
500
501         spin_lock_irqsave(&adapter->systim_lock, flags);
502         ns = timecounter_cyc2time(&adapter->tc, systim);
503         spin_unlock_irqrestore(&adapter->systim_lock, flags);
504
505         memset(hwtstamps, 0, sizeof(*hwtstamps));
506         hwtstamps->hwtstamp = ns_to_ktime(ns);
507 }
508
509 /**
510  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
511  * @adapter: board private structure
512  * @status: descriptor extended error and status field
513  * @skb: particular skb to include time stamp
514  *
515  * If the time stamp is valid, convert it into the timecounter ns value
516  * and store that result into the shhwtstamps structure which is passed
517  * up the network stack.
518  **/
519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
520                                struct sk_buff *skb)
521 {
522         struct e1000_hw *hw = &adapter->hw;
523         u64 rxstmp;
524
525         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
526             !(status & E1000_RXDEXT_STATERR_TST) ||
527             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
528                 return;
529
530         /* The Rx time stamp registers contain the time stamp.  No other
531          * received packet will be time stamped until the Rx time stamp
532          * registers are read.  Because only one packet can be time stamped
533          * at a time, the register values must belong to this packet and
534          * therefore none of the other additional attributes need to be
535          * compared.
536          */
537         rxstmp = (u64)er32(RXSTMPL);
538         rxstmp |= (u64)er32(RXSTMPH) << 32;
539         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
540
541         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
542 }
543
544 /**
545  * e1000_receive_skb - helper function to handle Rx indications
546  * @adapter: board private structure
547  * @netdev: pointer to netdev struct
548  * @staterr: descriptor extended error and status field as written by hardware
549  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
550  * @skb: pointer to sk_buff to be indicated to stack
551  **/
552 static void e1000_receive_skb(struct e1000_adapter *adapter,
553                               struct net_device *netdev, struct sk_buff *skb,
554                               u32 staterr, __le16 vlan)
555 {
556         u16 tag = le16_to_cpu(vlan);
557
558         e1000e_rx_hwtstamp(adapter, staterr, skb);
559
560         skb->protocol = eth_type_trans(skb, netdev);
561
562         if (staterr & E1000_RXD_STAT_VP)
563                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
564
565         napi_gro_receive(&adapter->napi, skb);
566 }
567
568 /**
569  * e1000_rx_checksum - Receive Checksum Offload
570  * @adapter: board private structure
571  * @status_err: receive descriptor status and error fields
572  * @skb: socket buffer with received data
573  **/
574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
575                               struct sk_buff *skb)
576 {
577         u16 status = (u16)status_err;
578         u8 errors = (u8)(status_err >> 24);
579
580         skb_checksum_none_assert(skb);
581
582         /* Rx checksum disabled */
583         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
584                 return;
585
586         /* Ignore Checksum bit is set */
587         if (status & E1000_RXD_STAT_IXSM)
588                 return;
589
590         /* TCP/UDP checksum error bit or IP checksum error bit is set */
591         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
592                 /* let the stack verify checksum errors */
593                 adapter->hw_csum_err++;
594                 return;
595         }
596
597         /* TCP/UDP Checksum has not been calculated */
598         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
599                 return;
600
601         /* It must be a TCP or UDP packet with a valid checksum */
602         skb->ip_summed = CHECKSUM_UNNECESSARY;
603         adapter->hw_csum_good++;
604 }
605
606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
607 {
608         struct e1000_adapter *adapter = rx_ring->adapter;
609         struct e1000_hw *hw = &adapter->hw;
610
611         __ew32_prepare(hw);
612         writel(i, rx_ring->tail);
613
614         if (unlikely(i != readl(rx_ring->tail))) {
615                 u32 rctl = er32(RCTL);
616
617                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
618                 e_err("ME firmware caused invalid RDT - resetting\n");
619                 schedule_work(&adapter->reset_task);
620         }
621 }
622
623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
624 {
625         struct e1000_adapter *adapter = tx_ring->adapter;
626         struct e1000_hw *hw = &adapter->hw;
627
628         __ew32_prepare(hw);
629         writel(i, tx_ring->tail);
630
631         if (unlikely(i != readl(tx_ring->tail))) {
632                 u32 tctl = er32(TCTL);
633
634                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
635                 e_err("ME firmware caused invalid TDT - resetting\n");
636                 schedule_work(&adapter->reset_task);
637         }
638 }
639
640 /**
641  * e1000_alloc_rx_buffers - Replace used receive buffers
642  * @rx_ring: Rx descriptor ring
643  * @cleaned_count: number to reallocate
644  * @gfp: flags for allocation
645  **/
646 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
647                                    int cleaned_count, gfp_t gfp)
648 {
649         struct e1000_adapter *adapter = rx_ring->adapter;
650         struct net_device *netdev = adapter->netdev;
651         struct pci_dev *pdev = adapter->pdev;
652         union e1000_rx_desc_extended *rx_desc;
653         struct e1000_buffer *buffer_info;
654         struct sk_buff *skb;
655         unsigned int i;
656         unsigned int bufsz = adapter->rx_buffer_len;
657
658         i = rx_ring->next_to_use;
659         buffer_info = &rx_ring->buffer_info[i];
660
661         while (cleaned_count--) {
662                 skb = buffer_info->skb;
663                 if (skb) {
664                         skb_trim(skb, 0);
665                         goto map_skb;
666                 }
667
668                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
669                 if (!skb) {
670                         /* Better luck next round */
671                         adapter->alloc_rx_buff_failed++;
672                         break;
673                 }
674
675                 buffer_info->skb = skb;
676 map_skb:
677                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
678                                                   adapter->rx_buffer_len,
679                                                   DMA_FROM_DEVICE);
680                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
681                         dev_err(&pdev->dev, "Rx DMA map failed\n");
682                         adapter->rx_dma_failed++;
683                         break;
684                 }
685
686                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
687                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
688
689                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
690                         /* Force memory writes to complete before letting h/w
691                          * know there are new descriptors to fetch.  (Only
692                          * applicable for weak-ordered memory model archs,
693                          * such as IA-64).
694                          */
695                         wmb();
696                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
697                                 e1000e_update_rdt_wa(rx_ring, i);
698                         else
699                                 writel(i, rx_ring->tail);
700                 }
701                 i++;
702                 if (i == rx_ring->count)
703                         i = 0;
704                 buffer_info = &rx_ring->buffer_info[i];
705         }
706
707         rx_ring->next_to_use = i;
708 }
709
710 /**
711  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
712  * @rx_ring: Rx descriptor ring
713  * @cleaned_count: number to reallocate
714  * @gfp: flags for allocation
715  **/
716 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
717                                       int cleaned_count, gfp_t gfp)
718 {
719         struct e1000_adapter *adapter = rx_ring->adapter;
720         struct net_device *netdev = adapter->netdev;
721         struct pci_dev *pdev = adapter->pdev;
722         union e1000_rx_desc_packet_split *rx_desc;
723         struct e1000_buffer *buffer_info;
724         struct e1000_ps_page *ps_page;
725         struct sk_buff *skb;
726         unsigned int i, j;
727
728         i = rx_ring->next_to_use;
729         buffer_info = &rx_ring->buffer_info[i];
730
731         while (cleaned_count--) {
732                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
733
734                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
735                         ps_page = &buffer_info->ps_pages[j];
736                         if (j >= adapter->rx_ps_pages) {
737                                 /* all unused desc entries get hw null ptr */
738                                 rx_desc->read.buffer_addr[j + 1] =
739                                     ~cpu_to_le64(0);
740                                 continue;
741                         }
742                         if (!ps_page->page) {
743                                 ps_page->page = alloc_page(gfp);
744                                 if (!ps_page->page) {
745                                         adapter->alloc_rx_buff_failed++;
746                                         goto no_buffers;
747                                 }
748                                 ps_page->dma = dma_map_page(&pdev->dev,
749                                                             ps_page->page,
750                                                             0, PAGE_SIZE,
751                                                             DMA_FROM_DEVICE);
752                                 if (dma_mapping_error(&pdev->dev,
753                                                       ps_page->dma)) {
754                                         dev_err(&adapter->pdev->dev,
755                                                 "Rx DMA page map failed\n");
756                                         adapter->rx_dma_failed++;
757                                         goto no_buffers;
758                                 }
759                         }
760                         /* Refresh the desc even if buffer_addrs
761                          * didn't change because each write-back
762                          * erases this info.
763                          */
764                         rx_desc->read.buffer_addr[j + 1] =
765                             cpu_to_le64(ps_page->dma);
766                 }
767
768                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
769                                                   gfp);
770
771                 if (!skb) {
772                         adapter->alloc_rx_buff_failed++;
773                         break;
774                 }
775
776                 buffer_info->skb = skb;
777                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
778                                                   adapter->rx_ps_bsize0,
779                                                   DMA_FROM_DEVICE);
780                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
781                         dev_err(&pdev->dev, "Rx DMA map failed\n");
782                         adapter->rx_dma_failed++;
783                         /* cleanup skb */
784                         dev_kfree_skb_any(skb);
785                         buffer_info->skb = NULL;
786                         break;
787                 }
788
789                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
790
791                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
792                         /* Force memory writes to complete before letting h/w
793                          * know there are new descriptors to fetch.  (Only
794                          * applicable for weak-ordered memory model archs,
795                          * such as IA-64).
796                          */
797                         wmb();
798                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
799                                 e1000e_update_rdt_wa(rx_ring, i << 1);
800                         else
801                                 writel(i << 1, rx_ring->tail);
802                 }
803
804                 i++;
805                 if (i == rx_ring->count)
806                         i = 0;
807                 buffer_info = &rx_ring->buffer_info[i];
808         }
809
810 no_buffers:
811         rx_ring->next_to_use = i;
812 }
813
814 /**
815  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
816  * @rx_ring: Rx descriptor ring
817  * @cleaned_count: number of buffers to allocate this pass
818  * @gfp: flags for allocation
819  **/
820
821 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
822                                          int cleaned_count, gfp_t gfp)
823 {
824         struct e1000_adapter *adapter = rx_ring->adapter;
825         struct net_device *netdev = adapter->netdev;
826         struct pci_dev *pdev = adapter->pdev;
827         union e1000_rx_desc_extended *rx_desc;
828         struct e1000_buffer *buffer_info;
829         struct sk_buff *skb;
830         unsigned int i;
831         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
832
833         i = rx_ring->next_to_use;
834         buffer_info = &rx_ring->buffer_info[i];
835
836         while (cleaned_count--) {
837                 skb = buffer_info->skb;
838                 if (skb) {
839                         skb_trim(skb, 0);
840                         goto check_page;
841                 }
842
843                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
844                 if (unlikely(!skb)) {
845                         /* Better luck next round */
846                         adapter->alloc_rx_buff_failed++;
847                         break;
848                 }
849
850                 buffer_info->skb = skb;
851 check_page:
852                 /* allocate a new page if necessary */
853                 if (!buffer_info->page) {
854                         buffer_info->page = alloc_page(gfp);
855                         if (unlikely(!buffer_info->page)) {
856                                 adapter->alloc_rx_buff_failed++;
857                                 break;
858                         }
859                 }
860
861                 if (!buffer_info->dma) {
862                         buffer_info->dma = dma_map_page(&pdev->dev,
863                                                         buffer_info->page, 0,
864                                                         PAGE_SIZE,
865                                                         DMA_FROM_DEVICE);
866                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
867                                 adapter->alloc_rx_buff_failed++;
868                                 break;
869                         }
870                 }
871
872                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
873                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
874
875                 if (unlikely(++i == rx_ring->count))
876                         i = 0;
877                 buffer_info = &rx_ring->buffer_info[i];
878         }
879
880         if (likely(rx_ring->next_to_use != i)) {
881                 rx_ring->next_to_use = i;
882                 if (unlikely(i-- == 0))
883                         i = (rx_ring->count - 1);
884
885                 /* Force memory writes to complete before letting h/w
886                  * know there are new descriptors to fetch.  (Only
887                  * applicable for weak-ordered memory model archs,
888                  * such as IA-64).
889                  */
890                 wmb();
891                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
892                         e1000e_update_rdt_wa(rx_ring, i);
893                 else
894                         writel(i, rx_ring->tail);
895         }
896 }
897
898 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
899                                  struct sk_buff *skb)
900 {
901         if (netdev->features & NETIF_F_RXHASH)
902                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
903 }
904
905 /**
906  * e1000_clean_rx_irq - Send received data up the network stack
907  * @rx_ring: Rx descriptor ring
908  * @work_done: output parameter for indicating completed work
909  * @work_to_do: how many packets we can clean
910  *
911  * the return value indicates whether actual cleaning was done, there
912  * is no guarantee that everything was cleaned
913  **/
914 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
915                                int work_to_do)
916 {
917         struct e1000_adapter *adapter = rx_ring->adapter;
918         struct net_device *netdev = adapter->netdev;
919         struct pci_dev *pdev = adapter->pdev;
920         struct e1000_hw *hw = &adapter->hw;
921         union e1000_rx_desc_extended *rx_desc, *next_rxd;
922         struct e1000_buffer *buffer_info, *next_buffer;
923         u32 length, staterr;
924         unsigned int i;
925         int cleaned_count = 0;
926         bool cleaned = false;
927         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
928
929         i = rx_ring->next_to_clean;
930         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
931         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
932         buffer_info = &rx_ring->buffer_info[i];
933
934         while (staterr & E1000_RXD_STAT_DD) {
935                 struct sk_buff *skb;
936
937                 if (*work_done >= work_to_do)
938                         break;
939                 (*work_done)++;
940                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
941
942                 skb = buffer_info->skb;
943                 buffer_info->skb = NULL;
944
945                 prefetch(skb->data - NET_IP_ALIGN);
946
947                 i++;
948                 if (i == rx_ring->count)
949                         i = 0;
950                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
951                 prefetch(next_rxd);
952
953                 next_buffer = &rx_ring->buffer_info[i];
954
955                 cleaned = true;
956                 cleaned_count++;
957                 dma_unmap_single(&pdev->dev, buffer_info->dma,
958                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
959                 buffer_info->dma = 0;
960
961                 length = le16_to_cpu(rx_desc->wb.upper.length);
962
963                 /* !EOP means multiple descriptors were used to store a single
964                  * packet, if that's the case we need to toss it.  In fact, we
965                  * need to toss every packet with the EOP bit clear and the
966                  * next frame that _does_ have the EOP bit set, as it is by
967                  * definition only a frame fragment
968                  */
969                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
970                         adapter->flags2 |= FLAG2_IS_DISCARDING;
971
972                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
973                         /* All receives must fit into a single buffer */
974                         e_dbg("Receive packet consumed multiple buffers\n");
975                         /* recycle */
976                         buffer_info->skb = skb;
977                         if (staterr & E1000_RXD_STAT_EOP)
978                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
979                         goto next_desc;
980                 }
981
982                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
983                              !(netdev->features & NETIF_F_RXALL))) {
984                         /* recycle */
985                         buffer_info->skb = skb;
986                         goto next_desc;
987                 }
988
989                 /* adjust length to remove Ethernet CRC */
990                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
991                         /* If configured to store CRC, don't subtract FCS,
992                          * but keep the FCS bytes out of the total_rx_bytes
993                          * counter
994                          */
995                         if (netdev->features & NETIF_F_RXFCS)
996                                 total_rx_bytes -= 4;
997                         else
998                                 length -= 4;
999                 }
1000
1001                 total_rx_bytes += length;
1002                 total_rx_packets++;
1003
1004                 /* code added for copybreak, this should improve
1005                  * performance for small packets with large amounts
1006                  * of reassembly being done in the stack
1007                  */
1008                 if (length < copybreak) {
1009                         struct sk_buff *new_skb =
1010                                 napi_alloc_skb(&adapter->napi, length);
1011                         if (new_skb) {
1012                                 skb_copy_to_linear_data_offset(new_skb,
1013                                                                -NET_IP_ALIGN,
1014                                                                (skb->data -
1015                                                                 NET_IP_ALIGN),
1016                                                                (length +
1017                                                                 NET_IP_ALIGN));
1018                                 /* save the skb in buffer_info as good */
1019                                 buffer_info->skb = skb;
1020                                 skb = new_skb;
1021                         }
1022                         /* else just continue with the old one */
1023                 }
1024                 /* end copybreak code */
1025                 skb_put(skb, length);
1026
1027                 /* Receive Checksum Offload */
1028                 e1000_rx_checksum(adapter, staterr, skb);
1029
1030                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1031
1032                 e1000_receive_skb(adapter, netdev, skb, staterr,
1033                                   rx_desc->wb.upper.vlan);
1034
1035 next_desc:
1036                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1037
1038                 /* return some buffers to hardware, one at a time is too slow */
1039                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1040                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1041                                               GFP_ATOMIC);
1042                         cleaned_count = 0;
1043                 }
1044
1045                 /* use prefetched values */
1046                 rx_desc = next_rxd;
1047                 buffer_info = next_buffer;
1048
1049                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1050         }
1051         rx_ring->next_to_clean = i;
1052
1053         cleaned_count = e1000_desc_unused(rx_ring);
1054         if (cleaned_count)
1055                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1056
1057         adapter->total_rx_bytes += total_rx_bytes;
1058         adapter->total_rx_packets += total_rx_packets;
1059         return cleaned;
1060 }
1061
1062 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1063                             struct e1000_buffer *buffer_info,
1064                             bool drop)
1065 {
1066         struct e1000_adapter *adapter = tx_ring->adapter;
1067
1068         if (buffer_info->dma) {
1069                 if (buffer_info->mapped_as_page)
1070                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1071                                        buffer_info->length, DMA_TO_DEVICE);
1072                 else
1073                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1074                                          buffer_info->length, DMA_TO_DEVICE);
1075                 buffer_info->dma = 0;
1076         }
1077         if (buffer_info->skb) {
1078                 if (drop)
1079                         dev_kfree_skb_any(buffer_info->skb);
1080                 else
1081                         dev_consume_skb_any(buffer_info->skb);
1082                 buffer_info->skb = NULL;
1083         }
1084         buffer_info->time_stamp = 0;
1085 }
1086
1087 static void e1000_print_hw_hang(struct work_struct *work)
1088 {
1089         struct e1000_adapter *adapter = container_of(work,
1090                                                      struct e1000_adapter,
1091                                                      print_hang_task);
1092         struct net_device *netdev = adapter->netdev;
1093         struct e1000_ring *tx_ring = adapter->tx_ring;
1094         unsigned int i = tx_ring->next_to_clean;
1095         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1096         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1097         struct e1000_hw *hw = &adapter->hw;
1098         u16 phy_status, phy_1000t_status, phy_ext_status;
1099         u16 pci_status;
1100
1101         if (test_bit(__E1000_DOWN, &adapter->state))
1102                 return;
1103
1104         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1105                 /* May be block on write-back, flush and detect again
1106                  * flush pending descriptor writebacks to memory
1107                  */
1108                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1109                 /* execute the writes immediately */
1110                 e1e_flush();
1111                 /* Due to rare timing issues, write to TIDV again to ensure
1112                  * the write is successful
1113                  */
1114                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115                 /* execute the writes immediately */
1116                 e1e_flush();
1117                 adapter->tx_hang_recheck = true;
1118                 return;
1119         }
1120         adapter->tx_hang_recheck = false;
1121
1122         if (er32(TDH(0)) == er32(TDT(0))) {
1123                 e_dbg("false hang detected, ignoring\n");
1124                 return;
1125         }
1126
1127         /* Real hang detected */
1128         netif_stop_queue(netdev);
1129
1130         e1e_rphy(hw, MII_BMSR, &phy_status);
1131         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1132         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1133
1134         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1135
1136         /* detected Hardware unit hang */
1137         e_err("Detected Hardware Unit Hang:\n"
1138               "  TDH                  <%x>\n"
1139               "  TDT                  <%x>\n"
1140               "  next_to_use          <%x>\n"
1141               "  next_to_clean        <%x>\n"
1142               "buffer_info[next_to_clean]:\n"
1143               "  time_stamp           <%lx>\n"
1144               "  next_to_watch        <%x>\n"
1145               "  jiffies              <%lx>\n"
1146               "  next_to_watch.status <%x>\n"
1147               "MAC Status             <%x>\n"
1148               "PHY Status             <%x>\n"
1149               "PHY 1000BASE-T Status  <%x>\n"
1150               "PHY Extended Status    <%x>\n"
1151               "PCI Status             <%x>\n",
1152               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1153               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1154               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1155               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1156
1157         e1000e_dump(adapter);
1158
1159         /* Suggest workaround for known h/w issue */
1160         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1161                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1162 }
1163
1164 /**
1165  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166  * @work: pointer to work struct
1167  *
1168  * This work function polls the TSYNCTXCTL valid bit to determine when a
1169  * timestamp has been taken for the current stored skb.  The timestamp must
1170  * be for this skb because only one such packet is allowed in the queue.
1171  */
1172 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1173 {
1174         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1175                                                      tx_hwtstamp_work);
1176         struct e1000_hw *hw = &adapter->hw;
1177
1178         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1179                 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1180                 struct skb_shared_hwtstamps shhwtstamps;
1181                 u64 txstmp;
1182
1183                 txstmp = er32(TXSTMPL);
1184                 txstmp |= (u64)er32(TXSTMPH) << 32;
1185
1186                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1187
1188                 /* Clear the global tx_hwtstamp_skb pointer and force writes
1189                  * prior to notifying the stack of a Tx timestamp.
1190                  */
1191                 adapter->tx_hwtstamp_skb = NULL;
1192                 wmb(); /* force write prior to skb_tstamp_tx */
1193
1194                 skb_tstamp_tx(skb, &shhwtstamps);
1195                 dev_consume_skb_any(skb);
1196         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197                               + adapter->tx_timeout_factor * HZ)) {
1198                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199                 adapter->tx_hwtstamp_skb = NULL;
1200                 adapter->tx_hwtstamp_timeouts++;
1201                 e_warn("clearing Tx timestamp hang\n");
1202         } else {
1203                 /* reschedule to check later */
1204                 schedule_work(&adapter->tx_hwtstamp_work);
1205         }
1206 }
1207
1208 /**
1209  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210  * @tx_ring: Tx descriptor ring
1211  *
1212  * the return value indicates whether actual cleaning was done, there
1213  * is no guarantee that everything was cleaned
1214  **/
1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216 {
1217         struct e1000_adapter *adapter = tx_ring->adapter;
1218         struct net_device *netdev = adapter->netdev;
1219         struct e1000_hw *hw = &adapter->hw;
1220         struct e1000_tx_desc *tx_desc, *eop_desc;
1221         struct e1000_buffer *buffer_info;
1222         unsigned int i, eop;
1223         unsigned int count = 0;
1224         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225         unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227         i = tx_ring->next_to_clean;
1228         eop = tx_ring->buffer_info[i].next_to_watch;
1229         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232                (count < tx_ring->count)) {
1233                 bool cleaned = false;
1234
1235                 dma_rmb();              /* read buffer_info after eop_desc */
1236                 for (; !cleaned; count++) {
1237                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1238                         buffer_info = &tx_ring->buffer_info[i];
1239                         cleaned = (i == eop);
1240
1241                         if (cleaned) {
1242                                 total_tx_packets += buffer_info->segs;
1243                                 total_tx_bytes += buffer_info->bytecount;
1244                                 if (buffer_info->skb) {
1245                                         bytes_compl += buffer_info->skb->len;
1246                                         pkts_compl++;
1247                                 }
1248                         }
1249
1250                         e1000_put_txbuf(tx_ring, buffer_info, false);
1251                         tx_desc->upper.data = 0;
1252
1253                         i++;
1254                         if (i == tx_ring->count)
1255                                 i = 0;
1256                 }
1257
1258                 if (i == tx_ring->next_to_use)
1259                         break;
1260                 eop = tx_ring->buffer_info[i].next_to_watch;
1261                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262         }
1263
1264         tx_ring->next_to_clean = i;
1265
1266         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268 #define TX_WAKE_THRESHOLD 32
1269         if (count && netif_carrier_ok(netdev) &&
1270             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271                 /* Make sure that anybody stopping the queue after this
1272                  * sees the new next_to_clean.
1273                  */
1274                 smp_mb();
1275
1276                 if (netif_queue_stopped(netdev) &&
1277                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1278                         netif_wake_queue(netdev);
1279                         ++adapter->restart_queue;
1280                 }
1281         }
1282
1283         if (adapter->detect_tx_hung) {
1284                 /* Detect a transmit hang in hardware, this serializes the
1285                  * check with the clearing of time_stamp and movement of i
1286                  */
1287                 adapter->detect_tx_hung = false;
1288                 if (tx_ring->buffer_info[i].time_stamp &&
1289                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290                                + (adapter->tx_timeout_factor * HZ)) &&
1291                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1292                         schedule_work(&adapter->print_hang_task);
1293                 else
1294                         adapter->tx_hang_recheck = false;
1295         }
1296         adapter->total_tx_bytes += total_tx_bytes;
1297         adapter->total_tx_packets += total_tx_packets;
1298         return count < tx_ring->count;
1299 }
1300
1301 /**
1302  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303  * @rx_ring: Rx descriptor ring
1304  * @work_done: output parameter for indicating completed work
1305  * @work_to_do: how many packets we can clean
1306  *
1307  * the return value indicates whether actual cleaning was done, there
1308  * is no guarantee that everything was cleaned
1309  **/
1310 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1311                                   int work_to_do)
1312 {
1313         struct e1000_adapter *adapter = rx_ring->adapter;
1314         struct e1000_hw *hw = &adapter->hw;
1315         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1316         struct net_device *netdev = adapter->netdev;
1317         struct pci_dev *pdev = adapter->pdev;
1318         struct e1000_buffer *buffer_info, *next_buffer;
1319         struct e1000_ps_page *ps_page;
1320         struct sk_buff *skb;
1321         unsigned int i, j;
1322         u32 length, staterr;
1323         int cleaned_count = 0;
1324         bool cleaned = false;
1325         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1326
1327         i = rx_ring->next_to_clean;
1328         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1329         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1330         buffer_info = &rx_ring->buffer_info[i];
1331
1332         while (staterr & E1000_RXD_STAT_DD) {
1333                 if (*work_done >= work_to_do)
1334                         break;
1335                 (*work_done)++;
1336                 skb = buffer_info->skb;
1337                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1338
1339                 /* in the packet split case this is header only */
1340                 prefetch(skb->data - NET_IP_ALIGN);
1341
1342                 i++;
1343                 if (i == rx_ring->count)
1344                         i = 0;
1345                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1346                 prefetch(next_rxd);
1347
1348                 next_buffer = &rx_ring->buffer_info[i];
1349
1350                 cleaned = true;
1351                 cleaned_count++;
1352                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1353                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1354                 buffer_info->dma = 0;
1355
1356                 /* see !EOP comment in other Rx routine */
1357                 if (!(staterr & E1000_RXD_STAT_EOP))
1358                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1359
1360                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1361                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362                         dev_kfree_skb_irq(skb);
1363                         if (staterr & E1000_RXD_STAT_EOP)
1364                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1365                         goto next_desc;
1366                 }
1367
1368                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1369                              !(netdev->features & NETIF_F_RXALL))) {
1370                         dev_kfree_skb_irq(skb);
1371                         goto next_desc;
1372                 }
1373
1374                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1375
1376                 if (!length) {
1377                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1378                         dev_kfree_skb_irq(skb);
1379                         goto next_desc;
1380                 }
1381
1382                 /* Good Receive */
1383                 skb_put(skb, length);
1384
1385                 {
1386                         /* this looks ugly, but it seems compiler issues make
1387                          * it more efficient than reusing j
1388                          */
1389                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1390
1391                         /* page alloc/put takes too long and effects small
1392                          * packet throughput, so unsplit small packets and
1393                          * save the alloc/put
1394                          */
1395                         if (l1 && (l1 <= copybreak) &&
1396                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1397                                 ps_page = &buffer_info->ps_pages[0];
1398
1399                                 dma_sync_single_for_cpu(&pdev->dev,
1400                                                         ps_page->dma,
1401                                                         PAGE_SIZE,
1402                                                         DMA_FROM_DEVICE);
1403                                 memcpy(skb_tail_pointer(skb),
1404                                        page_address(ps_page->page), l1);
1405                                 dma_sync_single_for_device(&pdev->dev,
1406                                                            ps_page->dma,
1407                                                            PAGE_SIZE,
1408                                                            DMA_FROM_DEVICE);
1409
1410                                 /* remove the CRC */
1411                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1412                                         if (!(netdev->features & NETIF_F_RXFCS))
1413                                                 l1 -= 4;
1414                                 }
1415
1416                                 skb_put(skb, l1);
1417                                 goto copydone;
1418                         }       /* if */
1419                 }
1420
1421                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1422                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1423                         if (!length)
1424                                 break;
1425
1426                         ps_page = &buffer_info->ps_pages[j];
1427                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1428                                        DMA_FROM_DEVICE);
1429                         ps_page->dma = 0;
1430                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1431                         ps_page->page = NULL;
1432                         skb->len += length;
1433                         skb->data_len += length;
1434                         skb->truesize += PAGE_SIZE;
1435                 }
1436
1437                 /* strip the ethernet crc, problem is we're using pages now so
1438                  * this whole operation can get a little cpu intensive
1439                  */
1440                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1441                         if (!(netdev->features & NETIF_F_RXFCS))
1442                                 pskb_trim(skb, skb->len - 4);
1443                 }
1444
1445 copydone:
1446                 total_rx_bytes += skb->len;
1447                 total_rx_packets++;
1448
1449                 e1000_rx_checksum(adapter, staterr, skb);
1450
1451                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1452
1453                 if (rx_desc->wb.upper.header_status &
1454                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1455                         adapter->rx_hdr_split++;
1456
1457                 e1000_receive_skb(adapter, netdev, skb, staterr,
1458                                   rx_desc->wb.middle.vlan);
1459
1460 next_desc:
1461                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1462                 buffer_info->skb = NULL;
1463
1464                 /* return some buffers to hardware, one at a time is too slow */
1465                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1466                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1467                                               GFP_ATOMIC);
1468                         cleaned_count = 0;
1469                 }
1470
1471                 /* use prefetched values */
1472                 rx_desc = next_rxd;
1473                 buffer_info = next_buffer;
1474
1475                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1476         }
1477         rx_ring->next_to_clean = i;
1478
1479         cleaned_count = e1000_desc_unused(rx_ring);
1480         if (cleaned_count)
1481                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1482
1483         adapter->total_rx_bytes += total_rx_bytes;
1484         adapter->total_rx_packets += total_rx_packets;
1485         return cleaned;
1486 }
1487
1488 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489                                u16 length)
1490 {
1491         bi->page = NULL;
1492         skb->len += length;
1493         skb->data_len += length;
1494         skb->truesize += PAGE_SIZE;
1495 }
1496
1497 /**
1498  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499  * @rx_ring: Rx descriptor ring
1500  * @work_done: output parameter for indicating completed work
1501  * @work_to_do: how many packets we can clean
1502  *
1503  * the return value indicates whether actual cleaning was done, there
1504  * is no guarantee that everything was cleaned
1505  **/
1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507                                      int work_to_do)
1508 {
1509         struct e1000_adapter *adapter = rx_ring->adapter;
1510         struct net_device *netdev = adapter->netdev;
1511         struct pci_dev *pdev = adapter->pdev;
1512         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513         struct e1000_buffer *buffer_info, *next_buffer;
1514         u32 length, staterr;
1515         unsigned int i;
1516         int cleaned_count = 0;
1517         bool cleaned = false;
1518         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519         struct skb_shared_info *shinfo;
1520
1521         i = rx_ring->next_to_clean;
1522         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524         buffer_info = &rx_ring->buffer_info[i];
1525
1526         while (staterr & E1000_RXD_STAT_DD) {
1527                 struct sk_buff *skb;
1528
1529                 if (*work_done >= work_to_do)
1530                         break;
1531                 (*work_done)++;
1532                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1533
1534                 skb = buffer_info->skb;
1535                 buffer_info->skb = NULL;
1536
1537                 ++i;
1538                 if (i == rx_ring->count)
1539                         i = 0;
1540                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541                 prefetch(next_rxd);
1542
1543                 next_buffer = &rx_ring->buffer_info[i];
1544
1545                 cleaned = true;
1546                 cleaned_count++;
1547                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548                                DMA_FROM_DEVICE);
1549                 buffer_info->dma = 0;
1550
1551                 length = le16_to_cpu(rx_desc->wb.upper.length);
1552
1553                 /* errors is only valid for DD + EOP descriptors */
1554                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556                               !(netdev->features & NETIF_F_RXALL)))) {
1557                         /* recycle both page and skb */
1558                         buffer_info->skb = skb;
1559                         /* an error means any chain goes out the window too */
1560                         if (rx_ring->rx_skb_top)
1561                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562                         rx_ring->rx_skb_top = NULL;
1563                         goto next_desc;
1564                 }
1565 #define rxtop (rx_ring->rx_skb_top)
1566                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1567                         /* this descriptor is only the beginning (or middle) */
1568                         if (!rxtop) {
1569                                 /* this is the beginning of a chain */
1570                                 rxtop = skb;
1571                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572                                                    0, length);
1573                         } else {
1574                                 /* this is the middle of a chain */
1575                                 shinfo = skb_shinfo(rxtop);
1576                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577                                                    buffer_info->page, 0,
1578                                                    length);
1579                                 /* re-use the skb, only consumed the page */
1580                                 buffer_info->skb = skb;
1581                         }
1582                         e1000_consume_page(buffer_info, rxtop, length);
1583                         goto next_desc;
1584                 } else {
1585                         if (rxtop) {
1586                                 /* end of the chain */
1587                                 shinfo = skb_shinfo(rxtop);
1588                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589                                                    buffer_info->page, 0,
1590                                                    length);
1591                                 /* re-use the current skb, we only consumed the
1592                                  * page
1593                                  */
1594                                 buffer_info->skb = skb;
1595                                 skb = rxtop;
1596                                 rxtop = NULL;
1597                                 e1000_consume_page(buffer_info, skb, length);
1598                         } else {
1599                                 /* no chain, got EOP, this buf is the packet
1600                                  * copybreak to save the put_page/alloc_page
1601                                  */
1602                                 if (length <= copybreak &&
1603                                     skb_tailroom(skb) >= length) {
1604                                         memcpy(skb_tail_pointer(skb),
1605                                                page_address(buffer_info->page),
1606                                                length);
1607                                         /* re-use the page, so don't erase
1608                                          * buffer_info->page
1609                                          */
1610                                         skb_put(skb, length);
1611                                 } else {
1612                                         skb_fill_page_desc(skb, 0,
1613                                                            buffer_info->page, 0,
1614                                                            length);
1615                                         e1000_consume_page(buffer_info, skb,
1616                                                            length);
1617                                 }
1618                         }
1619                 }
1620
1621                 /* Receive Checksum Offload */
1622                 e1000_rx_checksum(adapter, staterr, skb);
1623
1624                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625
1626                 /* probably a little skewed due to removing CRC */
1627                 total_rx_bytes += skb->len;
1628                 total_rx_packets++;
1629
1630                 /* eth type trans needs skb->data to point to something */
1631                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1632                         e_err("pskb_may_pull failed.\n");
1633                         dev_kfree_skb_irq(skb);
1634                         goto next_desc;
1635                 }
1636
1637                 e1000_receive_skb(adapter, netdev, skb, staterr,
1638                                   rx_desc->wb.upper.vlan);
1639
1640 next_desc:
1641                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642
1643                 /* return some buffers to hardware, one at a time is too slow */
1644                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646                                               GFP_ATOMIC);
1647                         cleaned_count = 0;
1648                 }
1649
1650                 /* use prefetched values */
1651                 rx_desc = next_rxd;
1652                 buffer_info = next_buffer;
1653
1654                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655         }
1656         rx_ring->next_to_clean = i;
1657
1658         cleaned_count = e1000_desc_unused(rx_ring);
1659         if (cleaned_count)
1660                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661
1662         adapter->total_rx_bytes += total_rx_bytes;
1663         adapter->total_rx_packets += total_rx_packets;
1664         return cleaned;
1665 }
1666
1667 /**
1668  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669  * @rx_ring: Rx descriptor ring
1670  **/
1671 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672 {
1673         struct e1000_adapter *adapter = rx_ring->adapter;
1674         struct e1000_buffer *buffer_info;
1675         struct e1000_ps_page *ps_page;
1676         struct pci_dev *pdev = adapter->pdev;
1677         unsigned int i, j;
1678
1679         /* Free all the Rx ring sk_buffs */
1680         for (i = 0; i < rx_ring->count; i++) {
1681                 buffer_info = &rx_ring->buffer_info[i];
1682                 if (buffer_info->dma) {
1683                         if (adapter->clean_rx == e1000_clean_rx_irq)
1684                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1685                                                  adapter->rx_buffer_len,
1686                                                  DMA_FROM_DEVICE);
1687                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1689                                                PAGE_SIZE, DMA_FROM_DEVICE);
1690                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1692                                                  adapter->rx_ps_bsize0,
1693                                                  DMA_FROM_DEVICE);
1694                         buffer_info->dma = 0;
1695                 }
1696
1697                 if (buffer_info->page) {
1698                         put_page(buffer_info->page);
1699                         buffer_info->page = NULL;
1700                 }
1701
1702                 if (buffer_info->skb) {
1703                         dev_kfree_skb(buffer_info->skb);
1704                         buffer_info->skb = NULL;
1705                 }
1706
1707                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708                         ps_page = &buffer_info->ps_pages[j];
1709                         if (!ps_page->page)
1710                                 break;
1711                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712                                        DMA_FROM_DEVICE);
1713                         ps_page->dma = 0;
1714                         put_page(ps_page->page);
1715                         ps_page->page = NULL;
1716                 }
1717         }
1718
1719         /* there also may be some cached data from a chained receive */
1720         if (rx_ring->rx_skb_top) {
1721                 dev_kfree_skb(rx_ring->rx_skb_top);
1722                 rx_ring->rx_skb_top = NULL;
1723         }
1724
1725         /* Zero out the descriptor ring */
1726         memset(rx_ring->desc, 0, rx_ring->size);
1727
1728         rx_ring->next_to_clean = 0;
1729         rx_ring->next_to_use = 0;
1730         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1731 }
1732
1733 static void e1000e_downshift_workaround(struct work_struct *work)
1734 {
1735         struct e1000_adapter *adapter = container_of(work,
1736                                                      struct e1000_adapter,
1737                                                      downshift_task);
1738
1739         if (test_bit(__E1000_DOWN, &adapter->state))
1740                 return;
1741
1742         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743 }
1744
1745 /**
1746  * e1000_intr_msi - Interrupt Handler
1747  * @irq: interrupt number
1748  * @data: pointer to a network interface device structure
1749  **/
1750 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751 {
1752         struct net_device *netdev = data;
1753         struct e1000_adapter *adapter = netdev_priv(netdev);
1754         struct e1000_hw *hw = &adapter->hw;
1755         u32 icr = er32(ICR);
1756
1757         /* read ICR disables interrupts using IAM */
1758         if (icr & E1000_ICR_LSC) {
1759                 hw->mac.get_link_status = true;
1760                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1761                  * disconnect (LSC) before accessing any PHY registers
1762                  */
1763                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764                     (!(er32(STATUS) & E1000_STATUS_LU)))
1765                         schedule_work(&adapter->downshift_task);
1766
1767                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1768                  * link down event; disable receives here in the ISR and reset
1769                  * adapter in watchdog
1770                  */
1771                 if (netif_carrier_ok(netdev) &&
1772                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773                         /* disable receives */
1774                         u32 rctl = er32(RCTL);
1775
1776                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777                         adapter->flags |= FLAG_RESTART_NOW;
1778                 }
1779                 /* guard against interrupt when we're going down */
1780                 if (!test_bit(__E1000_DOWN, &adapter->state))
1781                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782         }
1783
1784         /* Reset on uncorrectable ECC error */
1785         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786                 u32 pbeccsts = er32(PBECCSTS);
1787
1788                 adapter->corr_errors +=
1789                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790                 adapter->uncorr_errors +=
1791                     FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
1792
1793                 /* Do the reset outside of interrupt context */
1794                 schedule_work(&adapter->reset_task);
1795
1796                 /* return immediately since reset is imminent */
1797                 return IRQ_HANDLED;
1798         }
1799
1800         if (napi_schedule_prep(&adapter->napi)) {
1801                 adapter->total_tx_bytes = 0;
1802                 adapter->total_tx_packets = 0;
1803                 adapter->total_rx_bytes = 0;
1804                 adapter->total_rx_packets = 0;
1805                 __napi_schedule(&adapter->napi);
1806         }
1807
1808         return IRQ_HANDLED;
1809 }
1810
1811 /**
1812  * e1000_intr - Interrupt Handler
1813  * @irq: interrupt number
1814  * @data: pointer to a network interface device structure
1815  **/
1816 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1817 {
1818         struct net_device *netdev = data;
1819         struct e1000_adapter *adapter = netdev_priv(netdev);
1820         struct e1000_hw *hw = &adapter->hw;
1821         u32 rctl, icr = er32(ICR);
1822
1823         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1824                 return IRQ_NONE;        /* Not our interrupt */
1825
1826         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1827          * not set, then the adapter didn't send an interrupt
1828          */
1829         if (!(icr & E1000_ICR_INT_ASSERTED))
1830                 return IRQ_NONE;
1831
1832         /* Interrupt Auto-Mask...upon reading ICR,
1833          * interrupts are masked.  No need for the
1834          * IMC write
1835          */
1836
1837         if (icr & E1000_ICR_LSC) {
1838                 hw->mac.get_link_status = true;
1839                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1840                  * disconnect (LSC) before accessing any PHY registers
1841                  */
1842                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1843                     (!(er32(STATUS) & E1000_STATUS_LU)))
1844                         schedule_work(&adapter->downshift_task);
1845
1846                 /* 80003ES2LAN workaround--
1847                  * For packet buffer work-around on link down event;
1848                  * disable receives here in the ISR and
1849                  * reset adapter in watchdog
1850                  */
1851                 if (netif_carrier_ok(netdev) &&
1852                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1853                         /* disable receives */
1854                         rctl = er32(RCTL);
1855                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1856                         adapter->flags |= FLAG_RESTART_NOW;
1857                 }
1858                 /* guard against interrupt when we're going down */
1859                 if (!test_bit(__E1000_DOWN, &adapter->state))
1860                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1861         }
1862
1863         /* Reset on uncorrectable ECC error */
1864         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1865                 u32 pbeccsts = er32(PBECCSTS);
1866
1867                 adapter->corr_errors +=
1868                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1869                 adapter->uncorr_errors +=
1870                     FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
1871
1872                 /* Do the reset outside of interrupt context */
1873                 schedule_work(&adapter->reset_task);
1874
1875                 /* return immediately since reset is imminent */
1876                 return IRQ_HANDLED;
1877         }
1878
1879         if (napi_schedule_prep(&adapter->napi)) {
1880                 adapter->total_tx_bytes = 0;
1881                 adapter->total_tx_packets = 0;
1882                 adapter->total_rx_bytes = 0;
1883                 adapter->total_rx_packets = 0;
1884                 __napi_schedule(&adapter->napi);
1885         }
1886
1887         return IRQ_HANDLED;
1888 }
1889
1890 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1891 {
1892         struct net_device *netdev = data;
1893         struct e1000_adapter *adapter = netdev_priv(netdev);
1894         struct e1000_hw *hw = &adapter->hw;
1895         u32 icr = er32(ICR);
1896
1897         if (icr & adapter->eiac_mask)
1898                 ew32(ICS, (icr & adapter->eiac_mask));
1899
1900         if (icr & E1000_ICR_LSC) {
1901                 hw->mac.get_link_status = true;
1902                 /* guard against interrupt when we're going down */
1903                 if (!test_bit(__E1000_DOWN, &adapter->state))
1904                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1905         }
1906
1907         if (!test_bit(__E1000_DOWN, &adapter->state))
1908                 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1909
1910         return IRQ_HANDLED;
1911 }
1912
1913 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1914 {
1915         struct net_device *netdev = data;
1916         struct e1000_adapter *adapter = netdev_priv(netdev);
1917         struct e1000_hw *hw = &adapter->hw;
1918         struct e1000_ring *tx_ring = adapter->tx_ring;
1919
1920         adapter->total_tx_bytes = 0;
1921         adapter->total_tx_packets = 0;
1922
1923         if (!e1000_clean_tx_irq(tx_ring))
1924                 /* Ring was not completely cleaned, so fire another interrupt */
1925                 ew32(ICS, tx_ring->ims_val);
1926
1927         if (!test_bit(__E1000_DOWN, &adapter->state))
1928                 ew32(IMS, adapter->tx_ring->ims_val);
1929
1930         return IRQ_HANDLED;
1931 }
1932
1933 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1934 {
1935         struct net_device *netdev = data;
1936         struct e1000_adapter *adapter = netdev_priv(netdev);
1937         struct e1000_ring *rx_ring = adapter->rx_ring;
1938
1939         /* Write the ITR value calculated at the end of the
1940          * previous interrupt.
1941          */
1942         if (rx_ring->set_itr) {
1943                 u32 itr = rx_ring->itr_val ?
1944                           1000000000 / (rx_ring->itr_val * 256) : 0;
1945
1946                 writel(itr, rx_ring->itr_register);
1947                 rx_ring->set_itr = 0;
1948         }
1949
1950         if (napi_schedule_prep(&adapter->napi)) {
1951                 adapter->total_rx_bytes = 0;
1952                 adapter->total_rx_packets = 0;
1953                 __napi_schedule(&adapter->napi);
1954         }
1955         return IRQ_HANDLED;
1956 }
1957
1958 /**
1959  * e1000_configure_msix - Configure MSI-X hardware
1960  * @adapter: board private structure
1961  *
1962  * e1000_configure_msix sets up the hardware to properly
1963  * generate MSI-X interrupts.
1964  **/
1965 static void e1000_configure_msix(struct e1000_adapter *adapter)
1966 {
1967         struct e1000_hw *hw = &adapter->hw;
1968         struct e1000_ring *rx_ring = adapter->rx_ring;
1969         struct e1000_ring *tx_ring = adapter->tx_ring;
1970         int vector = 0;
1971         u32 ctrl_ext, ivar = 0;
1972
1973         adapter->eiac_mask = 0;
1974
1975         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1976         if (hw->mac.type == e1000_82574) {
1977                 u32 rfctl = er32(RFCTL);
1978
1979                 rfctl |= E1000_RFCTL_ACK_DIS;
1980                 ew32(RFCTL, rfctl);
1981         }
1982
1983         /* Configure Rx vector */
1984         rx_ring->ims_val = E1000_IMS_RXQ0;
1985         adapter->eiac_mask |= rx_ring->ims_val;
1986         if (rx_ring->itr_val)
1987                 writel(1000000000 / (rx_ring->itr_val * 256),
1988                        rx_ring->itr_register);
1989         else
1990                 writel(1, rx_ring->itr_register);
1991         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1992
1993         /* Configure Tx vector */
1994         tx_ring->ims_val = E1000_IMS_TXQ0;
1995         vector++;
1996         if (tx_ring->itr_val)
1997                 writel(1000000000 / (tx_ring->itr_val * 256),
1998                        tx_ring->itr_register);
1999         else
2000                 writel(1, tx_ring->itr_register);
2001         adapter->eiac_mask |= tx_ring->ims_val;
2002         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2003
2004         /* set vector for Other Causes, e.g. link changes */
2005         vector++;
2006         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2007         if (rx_ring->itr_val)
2008                 writel(1000000000 / (rx_ring->itr_val * 256),
2009                        hw->hw_addr + E1000_EITR_82574(vector));
2010         else
2011                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2012
2013         /* Cause Tx interrupts on every write back */
2014         ivar |= BIT(31);
2015
2016         ew32(IVAR, ivar);
2017
2018         /* enable MSI-X PBA support */
2019         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2020         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2021         ew32(CTRL_EXT, ctrl_ext);
2022         e1e_flush();
2023 }
2024
2025 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2026 {
2027         if (adapter->msix_entries) {
2028                 pci_disable_msix(adapter->pdev);
2029                 kfree(adapter->msix_entries);
2030                 adapter->msix_entries = NULL;
2031         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2032                 pci_disable_msi(adapter->pdev);
2033                 adapter->flags &= ~FLAG_MSI_ENABLED;
2034         }
2035 }
2036
2037 /**
2038  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2039  * @adapter: board private structure
2040  *
2041  * Attempt to configure interrupts using the best available
2042  * capabilities of the hardware and kernel.
2043  **/
2044 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045 {
2046         int err;
2047         int i;
2048
2049         switch (adapter->int_mode) {
2050         case E1000E_INT_MODE_MSIX:
2051                 if (adapter->flags & FLAG_HAS_MSIX) {
2052                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2054                                                         sizeof(struct
2055                                                                msix_entry),
2056                                                         GFP_KERNEL);
2057                         if (adapter->msix_entries) {
2058                                 struct e1000_adapter *a = adapter;
2059
2060                                 for (i = 0; i < adapter->num_vectors; i++)
2061                                         adapter->msix_entries[i].entry = i;
2062
2063                                 err = pci_enable_msix_range(a->pdev,
2064                                                             a->msix_entries,
2065                                                             a->num_vectors,
2066                                                             a->num_vectors);
2067                                 if (err > 0)
2068                                         return;
2069                         }
2070                         /* MSI-X failed, so fall through and try MSI */
2071                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2072                         e1000e_reset_interrupt_capability(adapter);
2073                 }
2074                 adapter->int_mode = E1000E_INT_MODE_MSI;
2075                 fallthrough;
2076         case E1000E_INT_MODE_MSI:
2077                 if (!pci_enable_msi(adapter->pdev)) {
2078                         adapter->flags |= FLAG_MSI_ENABLED;
2079                 } else {
2080                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2081                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2082                 }
2083                 fallthrough;
2084         case E1000E_INT_MODE_LEGACY:
2085                 /* Don't do anything; this is the system default */
2086                 break;
2087         }
2088
2089         /* store the number of vectors being used */
2090         adapter->num_vectors = 1;
2091 }
2092
2093 /**
2094  * e1000_request_msix - Initialize MSI-X interrupts
2095  * @adapter: board private structure
2096  *
2097  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2098  * kernel.
2099  **/
2100 static int e1000_request_msix(struct e1000_adapter *adapter)
2101 {
2102         struct net_device *netdev = adapter->netdev;
2103         int err = 0, vector = 0;
2104
2105         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2106                 snprintf(adapter->rx_ring->name,
2107                          sizeof(adapter->rx_ring->name) - 1,
2108                          "%.14s-rx-0", netdev->name);
2109         else
2110                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2111         err = request_irq(adapter->msix_entries[vector].vector,
2112                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2113                           netdev);
2114         if (err)
2115                 return err;
2116         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2117             E1000_EITR_82574(vector);
2118         adapter->rx_ring->itr_val = adapter->itr;
2119         vector++;
2120
2121         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2122                 snprintf(adapter->tx_ring->name,
2123                          sizeof(adapter->tx_ring->name) - 1,
2124                          "%.14s-tx-0", netdev->name);
2125         else
2126                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2127         err = request_irq(adapter->msix_entries[vector].vector,
2128                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2129                           netdev);
2130         if (err)
2131                 return err;
2132         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2133             E1000_EITR_82574(vector);
2134         adapter->tx_ring->itr_val = adapter->itr;
2135         vector++;
2136
2137         err = request_irq(adapter->msix_entries[vector].vector,
2138                           e1000_msix_other, 0, netdev->name, netdev);
2139         if (err)
2140                 return err;
2141
2142         e1000_configure_msix(adapter);
2143
2144         return 0;
2145 }
2146
2147 /**
2148  * e1000_request_irq - initialize interrupts
2149  * @adapter: board private structure
2150  *
2151  * Attempts to configure interrupts using the best available
2152  * capabilities of the hardware and kernel.
2153  **/
2154 static int e1000_request_irq(struct e1000_adapter *adapter)
2155 {
2156         struct net_device *netdev = adapter->netdev;
2157         int err;
2158
2159         if (adapter->msix_entries) {
2160                 err = e1000_request_msix(adapter);
2161                 if (!err)
2162                         return err;
2163                 /* fall back to MSI */
2164                 e1000e_reset_interrupt_capability(adapter);
2165                 adapter->int_mode = E1000E_INT_MODE_MSI;
2166                 e1000e_set_interrupt_capability(adapter);
2167         }
2168         if (adapter->flags & FLAG_MSI_ENABLED) {
2169                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170                                   netdev->name, netdev);
2171                 if (!err)
2172                         return err;
2173
2174                 /* fall back to legacy interrupt */
2175                 e1000e_reset_interrupt_capability(adapter);
2176                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177         }
2178
2179         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180                           netdev->name, netdev);
2181         if (err)
2182                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2183
2184         return err;
2185 }
2186
2187 static void e1000_free_irq(struct e1000_adapter *adapter)
2188 {
2189         struct net_device *netdev = adapter->netdev;
2190
2191         if (adapter->msix_entries) {
2192                 int vector = 0;
2193
2194                 free_irq(adapter->msix_entries[vector].vector, netdev);
2195                 vector++;
2196
2197                 free_irq(adapter->msix_entries[vector].vector, netdev);
2198                 vector++;
2199
2200                 /* Other Causes interrupt vector */
2201                 free_irq(adapter->msix_entries[vector].vector, netdev);
2202                 return;
2203         }
2204
2205         free_irq(adapter->pdev->irq, netdev);
2206 }
2207
2208 /**
2209  * e1000_irq_disable - Mask off interrupt generation on the NIC
2210  * @adapter: board private structure
2211  **/
2212 static void e1000_irq_disable(struct e1000_adapter *adapter)
2213 {
2214         struct e1000_hw *hw = &adapter->hw;
2215
2216         ew32(IMC, ~0);
2217         if (adapter->msix_entries)
2218                 ew32(EIAC_82574, 0);
2219         e1e_flush();
2220
2221         if (adapter->msix_entries) {
2222                 int i;
2223
2224                 for (i = 0; i < adapter->num_vectors; i++)
2225                         synchronize_irq(adapter->msix_entries[i].vector);
2226         } else {
2227                 synchronize_irq(adapter->pdev->irq);
2228         }
2229 }
2230
2231 /**
2232  * e1000_irq_enable - Enable default interrupt generation settings
2233  * @adapter: board private structure
2234  **/
2235 static void e1000_irq_enable(struct e1000_adapter *adapter)
2236 {
2237         struct e1000_hw *hw = &adapter->hw;
2238
2239         if (adapter->msix_entries) {
2240                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2241                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2242                      IMS_OTHER_MASK);
2243         } else if (hw->mac.type >= e1000_pch_lpt) {
2244                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2245         } else {
2246                 ew32(IMS, IMS_ENABLE_MASK);
2247         }
2248         e1e_flush();
2249 }
2250
2251 /**
2252  * e1000e_get_hw_control - get control of the h/w from f/w
2253  * @adapter: address of board private structure
2254  *
2255  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2256  * For ASF and Pass Through versions of f/w this means that
2257  * the driver is loaded. For AMT version (only with 82573)
2258  * of the f/w this means that the network i/f is open.
2259  **/
2260 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2261 {
2262         struct e1000_hw *hw = &adapter->hw;
2263         u32 ctrl_ext;
2264         u32 swsm;
2265
2266         /* Let firmware know the driver has taken over */
2267         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2268                 swsm = er32(SWSM);
2269                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2270         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2271                 ctrl_ext = er32(CTRL_EXT);
2272                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2273         }
2274 }
2275
2276 /**
2277  * e1000e_release_hw_control - release control of the h/w to f/w
2278  * @adapter: address of board private structure
2279  *
2280  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2281  * For ASF and Pass Through versions of f/w this means that the
2282  * driver is no longer loaded. For AMT version (only with 82573) i
2283  * of the f/w this means that the network i/f is closed.
2284  *
2285  **/
2286 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2287 {
2288         struct e1000_hw *hw = &adapter->hw;
2289         u32 ctrl_ext;
2290         u32 swsm;
2291
2292         /* Let firmware taken over control of h/w */
2293         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294                 swsm = er32(SWSM);
2295                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2296         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297                 ctrl_ext = er32(CTRL_EXT);
2298                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2299         }
2300 }
2301
2302 /**
2303  * e1000_alloc_ring_dma - allocate memory for a ring structure
2304  * @adapter: board private structure
2305  * @ring: ring struct for which to allocate dma
2306  **/
2307 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308                                 struct e1000_ring *ring)
2309 {
2310         struct pci_dev *pdev = adapter->pdev;
2311
2312         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313                                         GFP_KERNEL);
2314         if (!ring->desc)
2315                 return -ENOMEM;
2316
2317         return 0;
2318 }
2319
2320 /**
2321  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322  * @tx_ring: Tx descriptor ring
2323  *
2324  * Return 0 on success, negative on failure
2325  **/
2326 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327 {
2328         struct e1000_adapter *adapter = tx_ring->adapter;
2329         int err = -ENOMEM, size;
2330
2331         size = sizeof(struct e1000_buffer) * tx_ring->count;
2332         tx_ring->buffer_info = vzalloc(size);
2333         if (!tx_ring->buffer_info)
2334                 goto err;
2335
2336         /* round up to nearest 4K */
2337         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338         tx_ring->size = ALIGN(tx_ring->size, 4096);
2339
2340         err = e1000_alloc_ring_dma(adapter, tx_ring);
2341         if (err)
2342                 goto err;
2343
2344         tx_ring->next_to_use = 0;
2345         tx_ring->next_to_clean = 0;
2346
2347         return 0;
2348 err:
2349         vfree(tx_ring->buffer_info);
2350         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351         return err;
2352 }
2353
2354 /**
2355  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356  * @rx_ring: Rx descriptor ring
2357  *
2358  * Returns 0 on success, negative on failure
2359  **/
2360 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361 {
2362         struct e1000_adapter *adapter = rx_ring->adapter;
2363         struct e1000_buffer *buffer_info;
2364         int i, size, desc_len, err = -ENOMEM;
2365
2366         size = sizeof(struct e1000_buffer) * rx_ring->count;
2367         rx_ring->buffer_info = vzalloc(size);
2368         if (!rx_ring->buffer_info)
2369                 goto err;
2370
2371         for (i = 0; i < rx_ring->count; i++) {
2372                 buffer_info = &rx_ring->buffer_info[i];
2373                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374                                                 sizeof(struct e1000_ps_page),
2375                                                 GFP_KERNEL);
2376                 if (!buffer_info->ps_pages)
2377                         goto err_pages;
2378         }
2379
2380         desc_len = sizeof(union e1000_rx_desc_packet_split);
2381
2382         /* Round up to nearest 4K */
2383         rx_ring->size = rx_ring->count * desc_len;
2384         rx_ring->size = ALIGN(rx_ring->size, 4096);
2385
2386         err = e1000_alloc_ring_dma(adapter, rx_ring);
2387         if (err)
2388                 goto err_pages;
2389
2390         rx_ring->next_to_clean = 0;
2391         rx_ring->next_to_use = 0;
2392         rx_ring->rx_skb_top = NULL;
2393
2394         return 0;
2395
2396 err_pages:
2397         for (i = 0; i < rx_ring->count; i++) {
2398                 buffer_info = &rx_ring->buffer_info[i];
2399                 kfree(buffer_info->ps_pages);
2400         }
2401 err:
2402         vfree(rx_ring->buffer_info);
2403         e_err("Unable to allocate memory for the receive descriptor ring\n");
2404         return err;
2405 }
2406
2407 /**
2408  * e1000_clean_tx_ring - Free Tx Buffers
2409  * @tx_ring: Tx descriptor ring
2410  **/
2411 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412 {
2413         struct e1000_adapter *adapter = tx_ring->adapter;
2414         struct e1000_buffer *buffer_info;
2415         unsigned long size;
2416         unsigned int i;
2417
2418         for (i = 0; i < tx_ring->count; i++) {
2419                 buffer_info = &tx_ring->buffer_info[i];
2420                 e1000_put_txbuf(tx_ring, buffer_info, false);
2421         }
2422
2423         netdev_reset_queue(adapter->netdev);
2424         size = sizeof(struct e1000_buffer) * tx_ring->count;
2425         memset(tx_ring->buffer_info, 0, size);
2426
2427         memset(tx_ring->desc, 0, tx_ring->size);
2428
2429         tx_ring->next_to_use = 0;
2430         tx_ring->next_to_clean = 0;
2431 }
2432
2433 /**
2434  * e1000e_free_tx_resources - Free Tx Resources per Queue
2435  * @tx_ring: Tx descriptor ring
2436  *
2437  * Free all transmit software resources
2438  **/
2439 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440 {
2441         struct e1000_adapter *adapter = tx_ring->adapter;
2442         struct pci_dev *pdev = adapter->pdev;
2443
2444         e1000_clean_tx_ring(tx_ring);
2445
2446         vfree(tx_ring->buffer_info);
2447         tx_ring->buffer_info = NULL;
2448
2449         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450                           tx_ring->dma);
2451         tx_ring->desc = NULL;
2452 }
2453
2454 /**
2455  * e1000e_free_rx_resources - Free Rx Resources
2456  * @rx_ring: Rx descriptor ring
2457  *
2458  * Free all receive software resources
2459  **/
2460 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461 {
2462         struct e1000_adapter *adapter = rx_ring->adapter;
2463         struct pci_dev *pdev = adapter->pdev;
2464         int i;
2465
2466         e1000_clean_rx_ring(rx_ring);
2467
2468         for (i = 0; i < rx_ring->count; i++)
2469                 kfree(rx_ring->buffer_info[i].ps_pages);
2470
2471         vfree(rx_ring->buffer_info);
2472         rx_ring->buffer_info = NULL;
2473
2474         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475                           rx_ring->dma);
2476         rx_ring->desc = NULL;
2477 }
2478
2479 /**
2480  * e1000_update_itr - update the dynamic ITR value based on statistics
2481  * @itr_setting: current adapter->itr
2482  * @packets: the number of packets during this measurement interval
2483  * @bytes: the number of bytes during this measurement interval
2484  *
2485  *      Stores a new ITR value based on packets and byte
2486  *      counts during the last interrupt.  The advantage of per interrupt
2487  *      computation is faster updates and more accurate ITR for the current
2488  *      traffic pattern.  Constants in this function were computed
2489  *      based on theoretical maximum wire speed and thresholds were set based
2490  *      on testing data as well as attempting to minimize response time
2491  *      while increasing bulk throughput.  This functionality is controlled
2492  *      by the InterruptThrottleRate module parameter.
2493  **/
2494 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2495 {
2496         unsigned int retval = itr_setting;
2497
2498         if (packets == 0)
2499                 return itr_setting;
2500
2501         switch (itr_setting) {
2502         case lowest_latency:
2503                 /* handle TSO and jumbo frames */
2504                 if (bytes / packets > 8000)
2505                         retval = bulk_latency;
2506                 else if ((packets < 5) && (bytes > 512))
2507                         retval = low_latency;
2508                 break;
2509         case low_latency:       /* 50 usec aka 20000 ints/s */
2510                 if (bytes > 10000) {
2511                         /* this if handles the TSO accounting */
2512                         if (bytes / packets > 8000)
2513                                 retval = bulk_latency;
2514                         else if ((packets < 10) || ((bytes / packets) > 1200))
2515                                 retval = bulk_latency;
2516                         else if ((packets > 35))
2517                                 retval = lowest_latency;
2518                 } else if (bytes / packets > 2000) {
2519                         retval = bulk_latency;
2520                 } else if (packets <= 2 && bytes < 512) {
2521                         retval = lowest_latency;
2522                 }
2523                 break;
2524         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2525                 if (bytes > 25000) {
2526                         if (packets > 35)
2527                                 retval = low_latency;
2528                 } else if (bytes < 6000) {
2529                         retval = low_latency;
2530                 }
2531                 break;
2532         }
2533
2534         return retval;
2535 }
2536
2537 static void e1000_set_itr(struct e1000_adapter *adapter)
2538 {
2539         u16 current_itr;
2540         u32 new_itr = adapter->itr;
2541
2542         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2543         if (adapter->link_speed != SPEED_1000) {
2544                 new_itr = 4000;
2545                 goto set_itr_now;
2546         }
2547
2548         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2549                 new_itr = 0;
2550                 goto set_itr_now;
2551         }
2552
2553         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2554                                            adapter->total_tx_packets,
2555                                            adapter->total_tx_bytes);
2556         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2557         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2558                 adapter->tx_itr = low_latency;
2559
2560         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2561                                            adapter->total_rx_packets,
2562                                            adapter->total_rx_bytes);
2563         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2564         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2565                 adapter->rx_itr = low_latency;
2566
2567         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2568
2569         /* counts and packets in update_itr are dependent on these numbers */
2570         switch (current_itr) {
2571         case lowest_latency:
2572                 new_itr = 70000;
2573                 break;
2574         case low_latency:
2575                 new_itr = 20000;        /* aka hwitr = ~200 */
2576                 break;
2577         case bulk_latency:
2578                 new_itr = 4000;
2579                 break;
2580         default:
2581                 break;
2582         }
2583
2584 set_itr_now:
2585         if (new_itr != adapter->itr) {
2586                 /* this attempts to bias the interrupt rate towards Bulk
2587                  * by adding intermediate steps when interrupt rate is
2588                  * increasing
2589                  */
2590                 new_itr = new_itr > adapter->itr ?
2591                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2592                 adapter->itr = new_itr;
2593                 adapter->rx_ring->itr_val = new_itr;
2594                 if (adapter->msix_entries)
2595                         adapter->rx_ring->set_itr = 1;
2596                 else
2597                         e1000e_write_itr(adapter, new_itr);
2598         }
2599 }
2600
2601 /**
2602  * e1000e_write_itr - write the ITR value to the appropriate registers
2603  * @adapter: address of board private structure
2604  * @itr: new ITR value to program
2605  *
2606  * e1000e_write_itr determines if the adapter is in MSI-X mode
2607  * and, if so, writes the EITR registers with the ITR value.
2608  * Otherwise, it writes the ITR value into the ITR register.
2609  **/
2610 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2611 {
2612         struct e1000_hw *hw = &adapter->hw;
2613         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2614
2615         if (adapter->msix_entries) {
2616                 int vector;
2617
2618                 for (vector = 0; vector < adapter->num_vectors; vector++)
2619                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2620         } else {
2621                 ew32(ITR, new_itr);
2622         }
2623 }
2624
2625 /**
2626  * e1000_alloc_queues - Allocate memory for all rings
2627  * @adapter: board private structure to initialize
2628  **/
2629 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2630 {
2631         int size = sizeof(struct e1000_ring);
2632
2633         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2634         if (!adapter->tx_ring)
2635                 goto err;
2636         adapter->tx_ring->count = adapter->tx_ring_count;
2637         adapter->tx_ring->adapter = adapter;
2638
2639         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2640         if (!adapter->rx_ring)
2641                 goto err;
2642         adapter->rx_ring->count = adapter->rx_ring_count;
2643         adapter->rx_ring->adapter = adapter;
2644
2645         return 0;
2646 err:
2647         e_err("Unable to allocate memory for queues\n");
2648         kfree(adapter->rx_ring);
2649         kfree(adapter->tx_ring);
2650         return -ENOMEM;
2651 }
2652
2653 /**
2654  * e1000e_poll - NAPI Rx polling callback
2655  * @napi: struct associated with this polling callback
2656  * @budget: number of packets driver is allowed to process this poll
2657  **/
2658 static int e1000e_poll(struct napi_struct *napi, int budget)
2659 {
2660         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2661                                                      napi);
2662         struct e1000_hw *hw = &adapter->hw;
2663         struct net_device *poll_dev = adapter->netdev;
2664         int tx_cleaned = 1, work_done = 0;
2665
2666         adapter = netdev_priv(poll_dev);
2667
2668         if (!adapter->msix_entries ||
2669             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2670                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2671
2672         adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2673
2674         if (!tx_cleaned || work_done == budget)
2675                 return budget;
2676
2677         /* Exit the polling mode, but don't re-enable interrupts if stack might
2678          * poll us due to busy-polling
2679          */
2680         if (likely(napi_complete_done(napi, work_done))) {
2681                 if (adapter->itr_setting & 3)
2682                         e1000_set_itr(adapter);
2683                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2684                         if (adapter->msix_entries)
2685                                 ew32(IMS, adapter->rx_ring->ims_val);
2686                         else
2687                                 e1000_irq_enable(adapter);
2688                 }
2689         }
2690
2691         return work_done;
2692 }
2693
2694 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2695                                  __always_unused __be16 proto, u16 vid)
2696 {
2697         struct e1000_adapter *adapter = netdev_priv(netdev);
2698         struct e1000_hw *hw = &adapter->hw;
2699         u32 vfta, index;
2700
2701         /* don't update vlan cookie if already programmed */
2702         if ((adapter->hw.mng_cookie.status &
2703              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2704             (vid == adapter->mng_vlan_id))
2705                 return 0;
2706
2707         /* add VID to filter table */
2708         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2709                 index = (vid >> 5) & 0x7F;
2710                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2711                 vfta |= BIT((vid & 0x1F));
2712                 hw->mac.ops.write_vfta(hw, index, vfta);
2713         }
2714
2715         set_bit(vid, adapter->active_vlans);
2716
2717         return 0;
2718 }
2719
2720 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2721                                   __always_unused __be16 proto, u16 vid)
2722 {
2723         struct e1000_adapter *adapter = netdev_priv(netdev);
2724         struct e1000_hw *hw = &adapter->hw;
2725         u32 vfta, index;
2726
2727         if ((adapter->hw.mng_cookie.status &
2728              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2729             (vid == adapter->mng_vlan_id)) {
2730                 /* release control to f/w */
2731                 e1000e_release_hw_control(adapter);
2732                 return 0;
2733         }
2734
2735         /* remove VID from filter table */
2736         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2737                 index = (vid >> 5) & 0x7F;
2738                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2739                 vfta &= ~BIT((vid & 0x1F));
2740                 hw->mac.ops.write_vfta(hw, index, vfta);
2741         }
2742
2743         clear_bit(vid, adapter->active_vlans);
2744
2745         return 0;
2746 }
2747
2748 /**
2749  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2750  * @adapter: board private structure to initialize
2751  **/
2752 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2753 {
2754         struct net_device *netdev = adapter->netdev;
2755         struct e1000_hw *hw = &adapter->hw;
2756         u32 rctl;
2757
2758         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759                 /* disable VLAN receive filtering */
2760                 rctl = er32(RCTL);
2761                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2762                 ew32(RCTL, rctl);
2763
2764                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2765                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2766                                                adapter->mng_vlan_id);
2767                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2768                 }
2769         }
2770 }
2771
2772 /**
2773  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2774  * @adapter: board private structure to initialize
2775  **/
2776 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2777 {
2778         struct e1000_hw *hw = &adapter->hw;
2779         u32 rctl;
2780
2781         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2782                 /* enable VLAN receive filtering */
2783                 rctl = er32(RCTL);
2784                 rctl |= E1000_RCTL_VFE;
2785                 rctl &= ~E1000_RCTL_CFIEN;
2786                 ew32(RCTL, rctl);
2787         }
2788 }
2789
2790 /**
2791  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2792  * @adapter: board private structure to initialize
2793  **/
2794 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2795 {
2796         struct e1000_hw *hw = &adapter->hw;
2797         u32 ctrl;
2798
2799         /* disable VLAN tag insert/strip */
2800         ctrl = er32(CTRL);
2801         ctrl &= ~E1000_CTRL_VME;
2802         ew32(CTRL, ctrl);
2803 }
2804
2805 /**
2806  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2807  * @adapter: board private structure to initialize
2808  **/
2809 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2810 {
2811         struct e1000_hw *hw = &adapter->hw;
2812         u32 ctrl;
2813
2814         /* enable VLAN tag insert/strip */
2815         ctrl = er32(CTRL);
2816         ctrl |= E1000_CTRL_VME;
2817         ew32(CTRL, ctrl);
2818 }
2819
2820 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2821 {
2822         struct net_device *netdev = adapter->netdev;
2823         u16 vid = adapter->hw.mng_cookie.vlan_id;
2824         u16 old_vid = adapter->mng_vlan_id;
2825
2826         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2827                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2828                 adapter->mng_vlan_id = vid;
2829         }
2830
2831         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2832                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2833 }
2834
2835 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2836 {
2837         u16 vid;
2838
2839         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2840
2841         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2842             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2843 }
2844
2845 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2846 {
2847         struct e1000_hw *hw = &adapter->hw;
2848         u32 manc, manc2h, mdef, i, j;
2849
2850         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2851                 return;
2852
2853         manc = er32(MANC);
2854
2855         /* enable receiving management packets to the host. this will probably
2856          * generate destination unreachable messages from the host OS, but
2857          * the packets will be handled on SMBUS
2858          */
2859         manc |= E1000_MANC_EN_MNG2HOST;
2860         manc2h = er32(MANC2H);
2861
2862         switch (hw->mac.type) {
2863         default:
2864                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2865                 break;
2866         case e1000_82574:
2867         case e1000_82583:
2868                 /* Check if IPMI pass-through decision filter already exists;
2869                  * if so, enable it.
2870                  */
2871                 for (i = 0, j = 0; i < 8; i++) {
2872                         mdef = er32(MDEF(i));
2873
2874                         /* Ignore filters with anything other than IPMI ports */
2875                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2876                                 continue;
2877
2878                         /* Enable this decision filter in MANC2H */
2879                         if (mdef)
2880                                 manc2h |= BIT(i);
2881
2882                         j |= mdef;
2883                 }
2884
2885                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886                         break;
2887
2888                 /* Create new decision filter in an empty filter */
2889                 for (i = 0, j = 0; i < 8; i++)
2890                         if (er32(MDEF(i)) == 0) {
2891                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2892                                                E1000_MDEF_PORT_664));
2893                                 manc2h |= BIT(1);
2894                                 j++;
2895                                 break;
2896                         }
2897
2898                 if (!j)
2899                         e_warn("Unable to create IPMI pass-through filter\n");
2900                 break;
2901         }
2902
2903         ew32(MANC2H, manc2h);
2904         ew32(MANC, manc);
2905 }
2906
2907 /**
2908  * e1000_configure_tx - Configure Transmit Unit after Reset
2909  * @adapter: board private structure
2910  *
2911  * Configure the Tx unit of the MAC after a reset.
2912  **/
2913 static void e1000_configure_tx(struct e1000_adapter *adapter)
2914 {
2915         struct e1000_hw *hw = &adapter->hw;
2916         struct e1000_ring *tx_ring = adapter->tx_ring;
2917         u64 tdba;
2918         u32 tdlen, tctl, tarc;
2919
2920         /* Setup the HW Tx Head and Tail descriptor pointers */
2921         tdba = tx_ring->dma;
2922         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2923         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2924         ew32(TDBAH(0), (tdba >> 32));
2925         ew32(TDLEN(0), tdlen);
2926         ew32(TDH(0), 0);
2927         ew32(TDT(0), 0);
2928         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2929         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2930
2931         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2932                 e1000e_update_tdt_wa(tx_ring, 0);
2933
2934         /* Set the Tx Interrupt Delay register */
2935         ew32(TIDV, adapter->tx_int_delay);
2936         /* Tx irq moderation */
2937         ew32(TADV, adapter->tx_abs_int_delay);
2938
2939         if (adapter->flags2 & FLAG2_DMA_BURST) {
2940                 u32 txdctl = er32(TXDCTL(0));
2941
2942                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2943                             E1000_TXDCTL_WTHRESH);
2944                 /* set up some performance related parameters to encourage the
2945                  * hardware to use the bus more efficiently in bursts, depends
2946                  * on the tx_int_delay to be enabled,
2947                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2948                  * hthresh = 1 ==> prefetch when one or more available
2949                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2950                  * BEWARE: this seems to work but should be considered first if
2951                  * there are Tx hangs or other Tx related bugs
2952                  */
2953                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2954                 ew32(TXDCTL(0), txdctl);
2955         }
2956         /* erratum work around: set txdctl the same for both queues */
2957         ew32(TXDCTL(1), er32(TXDCTL(0)));
2958
2959         /* Program the Transmit Control Register */
2960         tctl = er32(TCTL);
2961         tctl &= ~E1000_TCTL_CT;
2962         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2963                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2964
2965         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2966                 tarc = er32(TARC(0));
2967                 /* set the speed mode bit, we'll clear it if we're not at
2968                  * gigabit link later
2969                  */
2970 #define SPEED_MODE_BIT BIT(21)
2971                 tarc |= SPEED_MODE_BIT;
2972                 ew32(TARC(0), tarc);
2973         }
2974
2975         /* errata: program both queues to unweighted RR */
2976         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2977                 tarc = er32(TARC(0));
2978                 tarc |= 1;
2979                 ew32(TARC(0), tarc);
2980                 tarc = er32(TARC(1));
2981                 tarc |= 1;
2982                 ew32(TARC(1), tarc);
2983         }
2984
2985         /* Setup Transmit Descriptor Settings for eop descriptor */
2986         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2987
2988         /* only set IDE if we are delaying interrupts using the timers */
2989         if (adapter->tx_int_delay)
2990                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2991
2992         /* enable Report Status bit */
2993         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2994
2995         ew32(TCTL, tctl);
2996
2997         hw->mac.ops.config_collision_dist(hw);
2998
2999         /* SPT and KBL Si errata workaround to avoid data corruption */
3000         if (hw->mac.type == e1000_pch_spt) {
3001                 u32 reg_val;
3002
3003                 reg_val = er32(IOSFPC);
3004                 reg_val |= E1000_RCTL_RDMTS_HEX;
3005                 ew32(IOSFPC, reg_val);
3006
3007                 reg_val = er32(TARC(0));
3008                 /* SPT and KBL Si errata workaround to avoid Tx hang.
3009                  * Dropping the number of outstanding requests from
3010                  * 3 to 2 in order to avoid a buffer overrun.
3011                  */
3012                 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3013                 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3014                 ew32(TARC(0), reg_val);
3015         }
3016 }
3017
3018 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3019                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3020
3021 /**
3022  * e1000_setup_rctl - configure the receive control registers
3023  * @adapter: Board private structure
3024  **/
3025 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3026 {
3027         struct e1000_hw *hw = &adapter->hw;
3028         u32 rctl, rfctl;
3029         u32 pages = 0;
3030
3031         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3032          * If jumbo frames not set, program related MAC/PHY registers
3033          * to h/w defaults
3034          */
3035         if (hw->mac.type >= e1000_pch2lan) {
3036                 s32 ret_val;
3037
3038                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3039                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3040                 else
3041                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3042
3043                 if (ret_val)
3044                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045         }
3046
3047         /* Program MC offset vector base */
3048         rctl = er32(RCTL);
3049         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3050         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3051             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3052             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3053
3054         /* Do not Store bad packets */
3055         rctl &= ~E1000_RCTL_SBP;
3056
3057         /* Enable Long Packet receive */
3058         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3059                 rctl &= ~E1000_RCTL_LPE;
3060         else
3061                 rctl |= E1000_RCTL_LPE;
3062
3063         /* Some systems expect that the CRC is included in SMBUS traffic. The
3064          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065          * host memory when this is enabled
3066          */
3067         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3068                 rctl |= E1000_RCTL_SECRC;
3069
3070         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3072                 u16 phy_data;
3073
3074                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3075                 phy_data &= 0xfff8;
3076                 phy_data |= BIT(2);
3077                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3078
3079                 e1e_rphy(hw, 22, &phy_data);
3080                 phy_data &= 0x0fff;
3081                 phy_data |= BIT(14);
3082                 e1e_wphy(hw, 0x10, 0x2823);
3083                 e1e_wphy(hw, 0x11, 0x0003);
3084                 e1e_wphy(hw, 22, phy_data);
3085         }
3086
3087         /* Setup buffer sizes */
3088         rctl &= ~E1000_RCTL_SZ_4096;
3089         rctl |= E1000_RCTL_BSEX;
3090         switch (adapter->rx_buffer_len) {
3091         case 2048:
3092         default:
3093                 rctl |= E1000_RCTL_SZ_2048;
3094                 rctl &= ~E1000_RCTL_BSEX;
3095                 break;
3096         case 4096:
3097                 rctl |= E1000_RCTL_SZ_4096;
3098                 break;
3099         case 8192:
3100                 rctl |= E1000_RCTL_SZ_8192;
3101                 break;
3102         case 16384:
3103                 rctl |= E1000_RCTL_SZ_16384;
3104                 break;
3105         }
3106
3107         /* Enable Extended Status in all Receive Descriptors */
3108         rfctl = er32(RFCTL);
3109         rfctl |= E1000_RFCTL_EXTEN;
3110         ew32(RFCTL, rfctl);
3111
3112         /* 82571 and greater support packet-split where the protocol
3113          * header is placed in skb->data and the packet data is
3114          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115          * In the case of a non-split, skb->data is linearly filled,
3116          * followed by the page buffers.  Therefore, skb->data is
3117          * sized to hold the largest protocol header.
3118          *
3119          * allocations using alloc_page take too long for regular MTU
3120          * so only enable packet split for jumbo frames
3121          *
3122          * Using pages when the page size is greater than 16k wastes
3123          * a lot of memory, since we allocate 3 pages at all times
3124          * per packet.
3125          */
3126         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3127         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3128                 adapter->rx_ps_pages = pages;
3129         else
3130                 adapter->rx_ps_pages = 0;
3131
3132         if (adapter->rx_ps_pages) {
3133                 u32 psrctl = 0;
3134
3135                 /* Enable Packet split descriptors */
3136                 rctl |= E1000_RCTL_DTYP_PS;
3137
3138                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3139
3140                 switch (adapter->rx_ps_pages) {
3141                 case 3:
3142                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3143                         fallthrough;
3144                 case 2:
3145                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3146                         fallthrough;
3147                 case 1:
3148                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3149                         break;
3150                 }
3151
3152                 ew32(PSRCTL, psrctl);
3153         }
3154
3155         /* This is useful for sniffing bad packets. */
3156         if (adapter->netdev->features & NETIF_F_RXALL) {
3157                 /* UPE and MPE will be handled by normal PROMISC logic
3158                  * in e1000e_set_rx_mode
3159                  */
3160                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3161                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3162                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3163
3164                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3165                           E1000_RCTL_DPF |      /* Allow filtered pause */
3166                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3167                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168                  * and that breaks VLANs.
3169                  */
3170         }
3171
3172         ew32(RCTL, rctl);
3173         /* just started the receive unit, no need to restart */
3174         adapter->flags &= ~FLAG_RESTART_NOW;
3175 }
3176
3177 /**
3178  * e1000_configure_rx - Configure Receive Unit after Reset
3179  * @adapter: board private structure
3180  *
3181  * Configure the Rx unit of the MAC after a reset.
3182  **/
3183 static void e1000_configure_rx(struct e1000_adapter *adapter)
3184 {
3185         struct e1000_hw *hw = &adapter->hw;
3186         struct e1000_ring *rx_ring = adapter->rx_ring;
3187         u64 rdba;
3188         u32 rdlen, rctl, rxcsum, ctrl_ext;
3189
3190         if (adapter->rx_ps_pages) {
3191                 /* this is a 32 byte descriptor */
3192                 rdlen = rx_ring->count *
3193                     sizeof(union e1000_rx_desc_packet_split);
3194                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3195                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3196         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3197                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3198                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3199                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3200         } else {
3201                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3202                 adapter->clean_rx = e1000_clean_rx_irq;
3203                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3204         }
3205
3206         /* disable receives while setting up the descriptors */
3207         rctl = er32(RCTL);
3208         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3209                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3210         e1e_flush();
3211         usleep_range(10000, 11000);
3212
3213         if (adapter->flags2 & FLAG2_DMA_BURST) {
3214                 /* set the writeback threshold (only takes effect if the RDTR
3215                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3216                  * enable prefetching of 0x20 Rx descriptors
3217                  * granularity = 01
3218                  * wthresh = 04,
3219                  * hthresh = 04,
3220                  * pthresh = 0x20
3221                  */
3222                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3223                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3224         }
3225
3226         /* set the Receive Delay Timer Register */
3227         ew32(RDTR, adapter->rx_int_delay);
3228
3229         /* irq moderation */
3230         ew32(RADV, adapter->rx_abs_int_delay);
3231         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3232                 e1000e_write_itr(adapter, adapter->itr);
3233
3234         ctrl_ext = er32(CTRL_EXT);
3235         /* Auto-Mask interrupts upon ICR access */
3236         ctrl_ext |= E1000_CTRL_EXT_IAME;
3237         ew32(IAM, 0xffffffff);
3238         ew32(CTRL_EXT, ctrl_ext);
3239         e1e_flush();
3240
3241         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3242          * the Base and Length of the Rx Descriptor Ring
3243          */
3244         rdba = rx_ring->dma;
3245         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3246         ew32(RDBAH(0), (rdba >> 32));
3247         ew32(RDLEN(0), rdlen);
3248         ew32(RDH(0), 0);
3249         ew32(RDT(0), 0);
3250         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3251         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3252
3253         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3254                 e1000e_update_rdt_wa(rx_ring, 0);
3255
3256         /* Enable Receive Checksum Offload for TCP and UDP */
3257         rxcsum = er32(RXCSUM);
3258         if (adapter->netdev->features & NETIF_F_RXCSUM)
3259                 rxcsum |= E1000_RXCSUM_TUOFL;
3260         else
3261                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3262         ew32(RXCSUM, rxcsum);
3263
3264         /* With jumbo frames, excessive C-state transition latencies result
3265          * in dropped transactions.
3266          */
3267         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3268                 u32 lat =
3269                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3270                      adapter->max_frame_size) * 8 / 1000;
3271
3272                 if (adapter->flags & FLAG_IS_ICH) {
3273                         u32 rxdctl = er32(RXDCTL(0));
3274
3275                         ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3276                 }
3277
3278                 dev_info(&adapter->pdev->dev,
3279                          "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3280                 cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3281         } else {
3282                 cpu_latency_qos_update_request(&adapter->pm_qos_req,
3283                                                PM_QOS_DEFAULT_VALUE);
3284         }
3285
3286         /* Enable Receives */
3287         ew32(RCTL, rctl);
3288 }
3289
3290 /**
3291  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3292  * @netdev: network interface device structure
3293  *
3294  * Writes multicast address list to the MTA hash table.
3295  * Returns: -ENOMEM on failure
3296  *                0 on no addresses written
3297  *                X on writing X addresses to MTA
3298  */
3299 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3300 {
3301         struct e1000_adapter *adapter = netdev_priv(netdev);
3302         struct e1000_hw *hw = &adapter->hw;
3303         struct netdev_hw_addr *ha;
3304         u8 *mta_list;
3305         int i;
3306
3307         if (netdev_mc_empty(netdev)) {
3308                 /* nothing to program, so clear mc list */
3309                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3310                 return 0;
3311         }
3312
3313         mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3314         if (!mta_list)
3315                 return -ENOMEM;
3316
3317         /* update_mc_addr_list expects a packed array of only addresses. */
3318         i = 0;
3319         netdev_for_each_mc_addr(ha, netdev)
3320             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3321
3322         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3323         kfree(mta_list);
3324
3325         return netdev_mc_count(netdev);
3326 }
3327
3328 /**
3329  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3330  * @netdev: network interface device structure
3331  *
3332  * Writes unicast address list to the RAR table.
3333  * Returns: -ENOMEM on failure/insufficient address space
3334  *                0 on no addresses written
3335  *                X on writing X addresses to the RAR table
3336  **/
3337 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3338 {
3339         struct e1000_adapter *adapter = netdev_priv(netdev);
3340         struct e1000_hw *hw = &adapter->hw;
3341         unsigned int rar_entries;
3342         int count = 0;
3343
3344         rar_entries = hw->mac.ops.rar_get_count(hw);
3345
3346         /* save a rar entry for our hardware address */
3347         rar_entries--;
3348
3349         /* save a rar entry for the LAA workaround */
3350         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3351                 rar_entries--;
3352
3353         /* return ENOMEM indicating insufficient memory for addresses */
3354         if (netdev_uc_count(netdev) > rar_entries)
3355                 return -ENOMEM;
3356
3357         if (!netdev_uc_empty(netdev) && rar_entries) {
3358                 struct netdev_hw_addr *ha;
3359
3360                 /* write the addresses in reverse order to avoid write
3361                  * combining
3362                  */
3363                 netdev_for_each_uc_addr(ha, netdev) {
3364                         int ret_val;
3365
3366                         if (!rar_entries)
3367                                 break;
3368                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3369                         if (ret_val < 0)
3370                                 return -ENOMEM;
3371                         count++;
3372                 }
3373         }
3374
3375         /* zero out the remaining RAR entries not used above */
3376         for (; rar_entries > 0; rar_entries--) {
3377                 ew32(RAH(rar_entries), 0);
3378                 ew32(RAL(rar_entries), 0);
3379         }
3380         e1e_flush();
3381
3382         return count;
3383 }
3384
3385 /**
3386  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3387  * @netdev: network interface device structure
3388  *
3389  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3390  * address list or the network interface flags are updated.  This routine is
3391  * responsible for configuring the hardware for proper unicast, multicast,
3392  * promiscuous mode, and all-multi behavior.
3393  **/
3394 static void e1000e_set_rx_mode(struct net_device *netdev)
3395 {
3396         struct e1000_adapter *adapter = netdev_priv(netdev);
3397         struct e1000_hw *hw = &adapter->hw;
3398         u32 rctl;
3399
3400         if (pm_runtime_suspended(netdev->dev.parent))
3401                 return;
3402
3403         /* Check for Promiscuous and All Multicast modes */
3404         rctl = er32(RCTL);
3405
3406         /* clear the affected bits */
3407         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3408
3409         if (netdev->flags & IFF_PROMISC) {
3410                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3411                 /* Do not hardware filter VLANs in promisc mode */
3412                 e1000e_vlan_filter_disable(adapter);
3413         } else {
3414                 int count;
3415
3416                 if (netdev->flags & IFF_ALLMULTI) {
3417                         rctl |= E1000_RCTL_MPE;
3418                 } else {
3419                         /* Write addresses to the MTA, if the attempt fails
3420                          * then we should just turn on promiscuous mode so
3421                          * that we can at least receive multicast traffic
3422                          */
3423                         count = e1000e_write_mc_addr_list(netdev);
3424                         if (count < 0)
3425                                 rctl |= E1000_RCTL_MPE;
3426                 }
3427                 e1000e_vlan_filter_enable(adapter);
3428                 /* Write addresses to available RAR registers, if there is not
3429                  * sufficient space to store all the addresses then enable
3430                  * unicast promiscuous mode
3431                  */
3432                 count = e1000e_write_uc_addr_list(netdev);
3433                 if (count < 0)
3434                         rctl |= E1000_RCTL_UPE;
3435         }
3436
3437         ew32(RCTL, rctl);
3438
3439         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3440                 e1000e_vlan_strip_enable(adapter);
3441         else
3442                 e1000e_vlan_strip_disable(adapter);
3443 }
3444
3445 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3446 {
3447         struct e1000_hw *hw = &adapter->hw;
3448         u32 mrqc, rxcsum;
3449         u32 rss_key[10];
3450         int i;
3451
3452         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3453         for (i = 0; i < 10; i++)
3454                 ew32(RSSRK(i), rss_key[i]);
3455
3456         /* Direct all traffic to queue 0 */
3457         for (i = 0; i < 32; i++)
3458                 ew32(RETA(i), 0);
3459
3460         /* Disable raw packet checksumming so that RSS hash is placed in
3461          * descriptor on writeback.
3462          */
3463         rxcsum = er32(RXCSUM);
3464         rxcsum |= E1000_RXCSUM_PCSD;
3465
3466         ew32(RXCSUM, rxcsum);
3467
3468         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3469                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3470                 E1000_MRQC_RSS_FIELD_IPV6 |
3471                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3472                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3473
3474         ew32(MRQC, mrqc);
3475 }
3476
3477 /**
3478  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3479  * @adapter: board private structure
3480  * @timinca: pointer to returned time increment attributes
3481  *
3482  * Get attributes for incrementing the System Time Register SYSTIML/H at
3483  * the default base frequency, and set the cyclecounter shift value.
3484  **/
3485 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3486 {
3487         struct e1000_hw *hw = &adapter->hw;
3488         u32 incvalue, incperiod, shift;
3489
3490         /* Make sure clock is enabled on I217/I218/I219  before checking
3491          * the frequency
3492          */
3493         if ((hw->mac.type >= e1000_pch_lpt) &&
3494             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3495             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3496                 u32 fextnvm7 = er32(FEXTNVM7);
3497
3498                 if (!(fextnvm7 & BIT(0))) {
3499                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3500                         e1e_flush();
3501                 }
3502         }
3503
3504         switch (hw->mac.type) {
3505         case e1000_pch2lan:
3506                 /* Stable 96MHz frequency */
3507                 incperiod = INCPERIOD_96MHZ;
3508                 incvalue = INCVALUE_96MHZ;
3509                 shift = INCVALUE_SHIFT_96MHZ;
3510                 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3511                 break;
3512         case e1000_pch_lpt:
3513                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3514                         /* Stable 96MHz frequency */
3515                         incperiod = INCPERIOD_96MHZ;
3516                         incvalue = INCVALUE_96MHZ;
3517                         shift = INCVALUE_SHIFT_96MHZ;
3518                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3519                 } else {
3520                         /* Stable 25MHz frequency */
3521                         incperiod = INCPERIOD_25MHZ;
3522                         incvalue = INCVALUE_25MHZ;
3523                         shift = INCVALUE_SHIFT_25MHZ;
3524                         adapter->cc.shift = shift;
3525                 }
3526                 break;
3527         case e1000_pch_spt:
3528                 /* Stable 24MHz frequency */
3529                 incperiod = INCPERIOD_24MHZ;
3530                 incvalue = INCVALUE_24MHZ;
3531                 shift = INCVALUE_SHIFT_24MHZ;
3532                 adapter->cc.shift = shift;
3533                 break;
3534         case e1000_pch_cnp:
3535         case e1000_pch_tgp:
3536         case e1000_pch_adp:
3537         case e1000_pch_mtp:
3538         case e1000_pch_lnp:
3539         case e1000_pch_ptp:
3540         case e1000_pch_nvp:
3541                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3542                         /* Stable 24MHz frequency */
3543                         incperiod = INCPERIOD_24MHZ;
3544                         incvalue = INCVALUE_24MHZ;
3545                         shift = INCVALUE_SHIFT_24MHZ;
3546                         adapter->cc.shift = shift;
3547                 } else {
3548                         /* Stable 38400KHz frequency */
3549                         incperiod = INCPERIOD_38400KHZ;
3550                         incvalue = INCVALUE_38400KHZ;
3551                         shift = INCVALUE_SHIFT_38400KHZ;
3552                         adapter->cc.shift = shift;
3553                 }
3554                 break;
3555         case e1000_82574:
3556         case e1000_82583:
3557                 /* Stable 25MHz frequency */
3558                 incperiod = INCPERIOD_25MHZ;
3559                 incvalue = INCVALUE_25MHZ;
3560                 shift = INCVALUE_SHIFT_25MHZ;
3561                 adapter->cc.shift = shift;
3562                 break;
3563         default:
3564                 return -EINVAL;
3565         }
3566
3567         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3568                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3569
3570         return 0;
3571 }
3572
3573 /**
3574  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3575  * @adapter: board private structure
3576  * @config: timestamp configuration
3577  *
3578  * Outgoing time stamping can be enabled and disabled. Play nice and
3579  * disable it when requested, although it shouldn't cause any overhead
3580  * when no packet needs it. At most one packet in the queue may be
3581  * marked for time stamping, otherwise it would be impossible to tell
3582  * for sure to which packet the hardware time stamp belongs.
3583  *
3584  * Incoming time stamping has to be configured via the hardware filters.
3585  * Not all combinations are supported, in particular event type has to be
3586  * specified. Matching the kind of event packet is not supported, with the
3587  * exception of "all V2 events regardless of level 2 or 4".
3588  **/
3589 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3590                                   struct hwtstamp_config *config)
3591 {
3592         struct e1000_hw *hw = &adapter->hw;
3593         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3594         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3595         u32 rxmtrl = 0;
3596         u16 rxudp = 0;
3597         bool is_l4 = false;
3598         bool is_l2 = false;
3599         u32 regval;
3600
3601         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3602                 return -EINVAL;
3603
3604         switch (config->tx_type) {
3605         case HWTSTAMP_TX_OFF:
3606                 tsync_tx_ctl = 0;
3607                 break;
3608         case HWTSTAMP_TX_ON:
3609                 break;
3610         default:
3611                 return -ERANGE;
3612         }
3613
3614         switch (config->rx_filter) {
3615         case HWTSTAMP_FILTER_NONE:
3616                 tsync_rx_ctl = 0;
3617                 break;
3618         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3619                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3620                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3621                 is_l4 = true;
3622                 break;
3623         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3624                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3625                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3626                 is_l4 = true;
3627                 break;
3628         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3629                 /* Also time stamps V2 L2 Path Delay Request/Response */
3630                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3631                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3632                 is_l2 = true;
3633                 break;
3634         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3635                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3636                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3637                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3638                 is_l2 = true;
3639                 break;
3640         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3641                 /* Hardware cannot filter just V2 L4 Sync messages */
3642                 fallthrough;
3643         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3644                 /* Also time stamps V2 Path Delay Request/Response. */
3645                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3646                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3647                 is_l2 = true;
3648                 is_l4 = true;
3649                 break;
3650         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3651                 /* Hardware cannot filter just V2 L4 Delay Request messages */
3652                 fallthrough;
3653         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3654                 /* Also time stamps V2 Path Delay Request/Response. */
3655                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3656                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3657                 is_l2 = true;
3658                 is_l4 = true;
3659                 break;
3660         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3661         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3662                 /* Hardware cannot filter just V2 L4 or L2 Event messages */
3663                 fallthrough;
3664         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3665                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3666                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3667                 is_l2 = true;
3668                 is_l4 = true;
3669                 break;
3670         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3671                 /* For V1, the hardware can only filter Sync messages or
3672                  * Delay Request messages but not both so fall-through to
3673                  * time stamp all packets.
3674                  */
3675                 fallthrough;
3676         case HWTSTAMP_FILTER_NTP_ALL:
3677         case HWTSTAMP_FILTER_ALL:
3678                 is_l2 = true;
3679                 is_l4 = true;
3680                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3681                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3682                 break;
3683         default:
3684                 return -ERANGE;
3685         }
3686
3687         adapter->hwtstamp_config = *config;
3688
3689         /* enable/disable Tx h/w time stamping */
3690         regval = er32(TSYNCTXCTL);
3691         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3692         regval |= tsync_tx_ctl;
3693         ew32(TSYNCTXCTL, regval);
3694         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3695             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3696                 e_err("Timesync Tx Control register not set as expected\n");
3697                 return -EAGAIN;
3698         }
3699
3700         /* enable/disable Rx h/w time stamping */
3701         regval = er32(TSYNCRXCTL);
3702         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3703         regval |= tsync_rx_ctl;
3704         ew32(TSYNCRXCTL, regval);
3705         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3706                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3707             (regval & (E1000_TSYNCRXCTL_ENABLED |
3708                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3709                 e_err("Timesync Rx Control register not set as expected\n");
3710                 return -EAGAIN;
3711         }
3712
3713         /* L2: define ethertype filter for time stamped packets */
3714         if (is_l2)
3715                 rxmtrl |= ETH_P_1588;
3716
3717         /* define which PTP packets get time stamped */
3718         ew32(RXMTRL, rxmtrl);
3719
3720         /* Filter by destination port */
3721         if (is_l4) {
3722                 rxudp = PTP_EV_PORT;
3723                 cpu_to_be16s(&rxudp);
3724         }
3725         ew32(RXUDP, rxudp);
3726
3727         e1e_flush();
3728
3729         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3730         er32(RXSTMPH);
3731         er32(TXSTMPH);
3732
3733         return 0;
3734 }
3735
3736 /**
3737  * e1000_configure - configure the hardware for Rx and Tx
3738  * @adapter: private board structure
3739  **/
3740 static void e1000_configure(struct e1000_adapter *adapter)
3741 {
3742         struct e1000_ring *rx_ring = adapter->rx_ring;
3743
3744         e1000e_set_rx_mode(adapter->netdev);
3745
3746         e1000_restore_vlan(adapter);
3747         e1000_init_manageability_pt(adapter);
3748
3749         e1000_configure_tx(adapter);
3750
3751         if (adapter->netdev->features & NETIF_F_RXHASH)
3752                 e1000e_setup_rss_hash(adapter);
3753         e1000_setup_rctl(adapter);
3754         e1000_configure_rx(adapter);
3755         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3756 }
3757
3758 /**
3759  * e1000e_power_up_phy - restore link in case the phy was powered down
3760  * @adapter: address of board private structure
3761  *
3762  * The phy may be powered down to save power and turn off link when the
3763  * driver is unloaded and wake on lan is not enabled (among others)
3764  * *** this routine MUST be followed by a call to e1000e_reset ***
3765  **/
3766 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3767 {
3768         if (adapter->hw.phy.ops.power_up)
3769                 adapter->hw.phy.ops.power_up(&adapter->hw);
3770
3771         adapter->hw.mac.ops.setup_link(&adapter->hw);
3772 }
3773
3774 /**
3775  * e1000_power_down_phy - Power down the PHY
3776  * @adapter: board private structure
3777  *
3778  * Power down the PHY so no link is implied when interface is down.
3779  * The PHY cannot be powered down if management or WoL is active.
3780  */
3781 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3782 {
3783         if (adapter->hw.phy.ops.power_down)
3784                 adapter->hw.phy.ops.power_down(&adapter->hw);
3785 }
3786
3787 /**
3788  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3789  * @adapter: board private structure
3790  *
3791  * We want to clear all pending descriptors from the TX ring.
3792  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3793  * the data of the next descriptor. We don't care about the data we are about
3794  * to reset the HW.
3795  */
3796 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3797 {
3798         struct e1000_hw *hw = &adapter->hw;
3799         struct e1000_ring *tx_ring = adapter->tx_ring;
3800         struct e1000_tx_desc *tx_desc = NULL;
3801         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3802         u16 size = 512;
3803
3804         tctl = er32(TCTL);
3805         ew32(TCTL, tctl | E1000_TCTL_EN);
3806         tdt = er32(TDT(0));
3807         BUG_ON(tdt != tx_ring->next_to_use);
3808         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3809         tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3810
3811         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3812         tx_desc->upper.data = 0;
3813         /* flush descriptors to memory before notifying the HW */
3814         wmb();
3815         tx_ring->next_to_use++;
3816         if (tx_ring->next_to_use == tx_ring->count)
3817                 tx_ring->next_to_use = 0;
3818         ew32(TDT(0), tx_ring->next_to_use);
3819         usleep_range(200, 250);
3820 }
3821
3822 /**
3823  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3824  * @adapter: board private structure
3825  *
3826  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3827  */
3828 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3829 {
3830         u32 rctl, rxdctl;
3831         struct e1000_hw *hw = &adapter->hw;
3832
3833         rctl = er32(RCTL);
3834         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3835         e1e_flush();
3836         usleep_range(100, 150);
3837
3838         rxdctl = er32(RXDCTL(0));
3839         /* zero the lower 14 bits (prefetch and host thresholds) */
3840         rxdctl &= 0xffffc000;
3841
3842         /* update thresholds: prefetch threshold to 31, host threshold to 1
3843          * and make sure the granularity is "descriptors" and not "cache lines"
3844          */
3845         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3846
3847         ew32(RXDCTL(0), rxdctl);
3848         /* momentarily enable the RX ring for the changes to take effect */
3849         ew32(RCTL, rctl | E1000_RCTL_EN);
3850         e1e_flush();
3851         usleep_range(100, 150);
3852         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3853 }
3854
3855 /**
3856  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3857  * @adapter: board private structure
3858  *
3859  * In i219, the descriptor rings must be emptied before resetting the HW
3860  * or before changing the device state to D3 during runtime (runtime PM).
3861  *
3862  * Failure to do this will cause the HW to enter a unit hang state which can
3863  * only be released by PCI reset on the device
3864  *
3865  */
3866
3867 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3868 {
3869         u16 hang_state;
3870         u32 fext_nvm11, tdlen;
3871         struct e1000_hw *hw = &adapter->hw;
3872
3873         /* First, disable MULR fix in FEXTNVM11 */
3874         fext_nvm11 = er32(FEXTNVM11);
3875         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3876         ew32(FEXTNVM11, fext_nvm11);
3877         /* do nothing if we're not in faulty state, or if the queue is empty */
3878         tdlen = er32(TDLEN(0));
3879         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3880                              &hang_state);
3881         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3882                 return;
3883         e1000_flush_tx_ring(adapter);
3884         /* recheck, maybe the fault is caused by the rx ring */
3885         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3886                              &hang_state);
3887         if (hang_state & FLUSH_DESC_REQUIRED)
3888                 e1000_flush_rx_ring(adapter);
3889 }
3890
3891 /**
3892  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3893  * @adapter: board private structure
3894  *
3895  * When the MAC is reset, all hardware bits for timesync will be reset to the
3896  * default values. This function will restore the settings last in place.
3897  * Since the clock SYSTIME registers are reset, we will simply restore the
3898  * cyclecounter to the kernel real clock time.
3899  **/
3900 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3901 {
3902         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3903         struct e1000_hw *hw = &adapter->hw;
3904         unsigned long flags;
3905         u32 timinca;
3906         s32 ret_val;
3907
3908         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3909                 return;
3910
3911         if (info->adjfine) {
3912                 /* restore the previous ptp frequency delta */
3913                 ret_val = info->adjfine(info, adapter->ptp_delta);
3914         } else {
3915                 /* set the default base frequency if no adjustment possible */
3916                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3917                 if (!ret_val)
3918                         ew32(TIMINCA, timinca);
3919         }
3920
3921         if (ret_val) {
3922                 dev_warn(&adapter->pdev->dev,
3923                          "Failed to restore TIMINCA clock rate delta: %d\n",
3924                          ret_val);
3925                 return;
3926         }
3927
3928         /* reset the systim ns time counter */
3929         spin_lock_irqsave(&adapter->systim_lock, flags);
3930         timecounter_init(&adapter->tc, &adapter->cc,
3931                          ktime_to_ns(ktime_get_real()));
3932         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3933
3934         /* restore the previous hwtstamp configuration settings */
3935         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3936 }
3937
3938 /**
3939  * e1000e_reset - bring the hardware into a known good state
3940  * @adapter: board private structure
3941  *
3942  * This function boots the hardware and enables some settings that
3943  * require a configuration cycle of the hardware - those cannot be
3944  * set/changed during runtime. After reset the device needs to be
3945  * properly configured for Rx, Tx etc.
3946  */
3947 void e1000e_reset(struct e1000_adapter *adapter)
3948 {
3949         struct e1000_mac_info *mac = &adapter->hw.mac;
3950         struct e1000_fc_info *fc = &adapter->hw.fc;
3951         struct e1000_hw *hw = &adapter->hw;
3952         u32 tx_space, min_tx_space, min_rx_space;
3953         u32 pba = adapter->pba;
3954         u16 hwm;
3955
3956         /* reset Packet Buffer Allocation to default */
3957         ew32(PBA, pba);
3958
3959         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3960                 /* To maintain wire speed transmits, the Tx FIFO should be
3961                  * large enough to accommodate two full transmit packets,
3962                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3963                  * the Rx FIFO should be large enough to accommodate at least
3964                  * one full receive packet and is similarly rounded up and
3965                  * expressed in KB.
3966                  */
3967                 pba = er32(PBA);
3968                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3969                 tx_space = pba >> 16;
3970                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3971                 pba &= 0xffff;
3972                 /* the Tx fifo also stores 16 bytes of information about the Tx
3973                  * but don't include ethernet FCS because hardware appends it
3974                  */
3975                 min_tx_space = (adapter->max_frame_size +
3976                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3977                 min_tx_space = ALIGN(min_tx_space, 1024);
3978                 min_tx_space >>= 10;
3979                 /* software strips receive CRC, so leave room for it */
3980                 min_rx_space = adapter->max_frame_size;
3981                 min_rx_space = ALIGN(min_rx_space, 1024);
3982                 min_rx_space >>= 10;
3983
3984                 /* If current Tx allocation is less than the min Tx FIFO size,
3985                  * and the min Tx FIFO size is less than the current Rx FIFO
3986                  * allocation, take space away from current Rx allocation
3987                  */
3988                 if ((tx_space < min_tx_space) &&
3989                     ((min_tx_space - tx_space) < pba)) {
3990                         pba -= min_tx_space - tx_space;
3991
3992                         /* if short on Rx space, Rx wins and must trump Tx
3993                          * adjustment
3994                          */
3995                         if (pba < min_rx_space)
3996                                 pba = min_rx_space;
3997                 }
3998
3999                 ew32(PBA, pba);
4000         }
4001
4002         /* flow control settings
4003          *
4004          * The high water mark must be low enough to fit one full frame
4005          * (or the size used for early receive) above it in the Rx FIFO.
4006          * Set it to the lower of:
4007          * - 90% of the Rx FIFO size, and
4008          * - the full Rx FIFO size minus one full frame
4009          */
4010         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4011                 fc->pause_time = 0xFFFF;
4012         else
4013                 fc->pause_time = E1000_FC_PAUSE_TIME;
4014         fc->send_xon = true;
4015         fc->current_mode = fc->requested_mode;
4016
4017         switch (hw->mac.type) {
4018         case e1000_ich9lan:
4019         case e1000_ich10lan:
4020                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4021                         pba = 14;
4022                         ew32(PBA, pba);
4023                         fc->high_water = 0x2800;
4024                         fc->low_water = fc->high_water - 8;
4025                         break;
4026                 }
4027                 fallthrough;
4028         default:
4029                 hwm = min(((pba << 10) * 9 / 10),
4030                           ((pba << 10) - adapter->max_frame_size));
4031
4032                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4033                 fc->low_water = fc->high_water - 8;
4034                 break;
4035         case e1000_pchlan:
4036                 /* Workaround PCH LOM adapter hangs with certain network
4037                  * loads.  If hangs persist, try disabling Tx flow control.
4038                  */
4039                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4040                         fc->high_water = 0x3500;
4041                         fc->low_water = 0x1500;
4042                 } else {
4043                         fc->high_water = 0x5000;
4044                         fc->low_water = 0x3000;
4045                 }
4046                 fc->refresh_time = 0x1000;
4047                 break;
4048         case e1000_pch2lan:
4049         case e1000_pch_lpt:
4050         case e1000_pch_spt:
4051         case e1000_pch_cnp:
4052         case e1000_pch_tgp:
4053         case e1000_pch_adp:
4054         case e1000_pch_mtp:
4055         case e1000_pch_lnp:
4056         case e1000_pch_ptp:
4057         case e1000_pch_nvp:
4058                 fc->refresh_time = 0xFFFF;
4059                 fc->pause_time = 0xFFFF;
4060
4061                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4062                         fc->high_water = 0x05C20;
4063                         fc->low_water = 0x05048;
4064                         break;
4065                 }
4066
4067                 pba = 14;
4068                 ew32(PBA, pba);
4069                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4070                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4071                 break;
4072         }
4073
4074         /* Alignment of Tx data is on an arbitrary byte boundary with the
4075          * maximum size per Tx descriptor limited only to the transmit
4076          * allocation of the packet buffer minus 96 bytes with an upper
4077          * limit of 24KB due to receive synchronization limitations.
4078          */
4079         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4080                                        24 << 10);
4081
4082         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4083          * fit in receive buffer.
4084          */
4085         if (adapter->itr_setting & 0x3) {
4086                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4087                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4088                                 dev_info(&adapter->pdev->dev,
4089                                          "Interrupt Throttle Rate off\n");
4090                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4091                                 e1000e_write_itr(adapter, 0);
4092                         }
4093                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4094                         dev_info(&adapter->pdev->dev,
4095                                  "Interrupt Throttle Rate on\n");
4096                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4097                         adapter->itr = 20000;
4098                         e1000e_write_itr(adapter, adapter->itr);
4099                 }
4100         }
4101
4102         if (hw->mac.type >= e1000_pch_spt)
4103                 e1000_flush_desc_rings(adapter);
4104         /* Allow time for pending master requests to run */
4105         mac->ops.reset_hw(hw);
4106
4107         /* For parts with AMT enabled, let the firmware know
4108          * that the network interface is in control
4109          */
4110         if (adapter->flags & FLAG_HAS_AMT)
4111                 e1000e_get_hw_control(adapter);
4112
4113         ew32(WUC, 0);
4114
4115         if (mac->ops.init_hw(hw))
4116                 e_err("Hardware Error\n");
4117
4118         e1000_update_mng_vlan(adapter);
4119
4120         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4121         ew32(VET, ETH_P_8021Q);
4122
4123         e1000e_reset_adaptive(hw);
4124
4125         /* restore systim and hwtstamp settings */
4126         e1000e_systim_reset(adapter);
4127
4128         /* Set EEE advertisement as appropriate */
4129         if (adapter->flags2 & FLAG2_HAS_EEE) {
4130                 s32 ret_val;
4131                 u16 adv_addr;
4132
4133                 switch (hw->phy.type) {
4134                 case e1000_phy_82579:
4135                         adv_addr = I82579_EEE_ADVERTISEMENT;
4136                         break;
4137                 case e1000_phy_i217:
4138                         adv_addr = I217_EEE_ADVERTISEMENT;
4139                         break;
4140                 default:
4141                         dev_err(&adapter->pdev->dev,
4142                                 "Invalid PHY type setting EEE advertisement\n");
4143                         return;
4144                 }
4145
4146                 ret_val = hw->phy.ops.acquire(hw);
4147                 if (ret_val) {
4148                         dev_err(&adapter->pdev->dev,
4149                                 "EEE advertisement - unable to acquire PHY\n");
4150                         return;
4151                 }
4152
4153                 e1000_write_emi_reg_locked(hw, adv_addr,
4154                                            hw->dev_spec.ich8lan.eee_disable ?
4155                                            0 : adapter->eee_advert);
4156
4157                 hw->phy.ops.release(hw);
4158         }
4159
4160         if (!netif_running(adapter->netdev) &&
4161             !test_bit(__E1000_TESTING, &adapter->state))
4162                 e1000_power_down_phy(adapter);
4163
4164         e1000_get_phy_info(hw);
4165
4166         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4167             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4168                 u16 phy_data = 0;
4169                 /* speed up time to link by disabling smart power down, ignore
4170                  * the return value of this function because there is nothing
4171                  * different we would do if it failed
4172                  */
4173                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4174                 phy_data &= ~IGP02E1000_PM_SPD;
4175                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4176         }
4177         if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4178                 u32 reg;
4179
4180                 /* Fextnvm7 @ 0xe4[2] = 1 */
4181                 reg = er32(FEXTNVM7);
4182                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4183                 ew32(FEXTNVM7, reg);
4184                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4185                 reg = er32(FEXTNVM9);
4186                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4187                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4188                 ew32(FEXTNVM9, reg);
4189         }
4190
4191 }
4192
4193 /**
4194  * e1000e_trigger_lsc - trigger an LSC interrupt
4195  * @adapter: board private structure
4196  *
4197  * Fire a link status change interrupt to start the watchdog.
4198  **/
4199 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4200 {
4201         struct e1000_hw *hw = &adapter->hw;
4202
4203         if (adapter->msix_entries)
4204                 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4205         else
4206                 ew32(ICS, E1000_ICS_LSC);
4207 }
4208
4209 void e1000e_up(struct e1000_adapter *adapter)
4210 {
4211         /* hardware has been reset, we need to reload some things */
4212         e1000_configure(adapter);
4213
4214         clear_bit(__E1000_DOWN, &adapter->state);
4215
4216         if (adapter->msix_entries)
4217                 e1000_configure_msix(adapter);
4218         e1000_irq_enable(adapter);
4219
4220         /* Tx queue started by watchdog timer when link is up */
4221
4222         e1000e_trigger_lsc(adapter);
4223 }
4224
4225 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4226 {
4227         struct e1000_hw *hw = &adapter->hw;
4228
4229         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4230                 return;
4231
4232         /* flush pending descriptor writebacks to memory */
4233         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4234         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4235
4236         /* execute the writes immediately */
4237         e1e_flush();
4238
4239         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4240          * write is successful
4241          */
4242         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4243         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4244
4245         /* execute the writes immediately */
4246         e1e_flush();
4247 }
4248
4249 static void e1000e_update_stats(struct e1000_adapter *adapter);
4250
4251 /**
4252  * e1000e_down - quiesce the device and optionally reset the hardware
4253  * @adapter: board private structure
4254  * @reset: boolean flag to reset the hardware or not
4255  */
4256 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4257 {
4258         struct net_device *netdev = adapter->netdev;
4259         struct e1000_hw *hw = &adapter->hw;
4260         u32 tctl, rctl;
4261
4262         /* signal that we're down so the interrupt handler does not
4263          * reschedule our watchdog timer
4264          */
4265         set_bit(__E1000_DOWN, &adapter->state);
4266
4267         netif_carrier_off(netdev);
4268
4269         /* disable receives in the hardware */
4270         rctl = er32(RCTL);
4271         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4272                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4273         /* flush and sleep below */
4274
4275         netif_stop_queue(netdev);
4276
4277         /* disable transmits in the hardware */
4278         tctl = er32(TCTL);
4279         tctl &= ~E1000_TCTL_EN;
4280         ew32(TCTL, tctl);
4281
4282         /* flush both disables and wait for them to finish */
4283         e1e_flush();
4284         usleep_range(10000, 11000);
4285
4286         e1000_irq_disable(adapter);
4287
4288         napi_synchronize(&adapter->napi);
4289
4290         del_timer_sync(&adapter->watchdog_timer);
4291         del_timer_sync(&adapter->phy_info_timer);
4292
4293         spin_lock(&adapter->stats64_lock);
4294         e1000e_update_stats(adapter);
4295         spin_unlock(&adapter->stats64_lock);
4296
4297         e1000e_flush_descriptors(adapter);
4298
4299         adapter->link_speed = 0;
4300         adapter->link_duplex = 0;
4301
4302         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4303         if ((hw->mac.type >= e1000_pch2lan) &&
4304             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4305             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4306                 e_dbg("failed to disable jumbo frame workaround mode\n");
4307
4308         if (!pci_channel_offline(adapter->pdev)) {
4309                 if (reset)
4310                         e1000e_reset(adapter);
4311                 else if (hw->mac.type >= e1000_pch_spt)
4312                         e1000_flush_desc_rings(adapter);
4313         }
4314         e1000_clean_tx_ring(adapter->tx_ring);
4315         e1000_clean_rx_ring(adapter->rx_ring);
4316 }
4317
4318 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4319 {
4320         might_sleep();
4321         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4322                 usleep_range(1000, 1100);
4323         e1000e_down(adapter, true);
4324         e1000e_up(adapter);
4325         clear_bit(__E1000_RESETTING, &adapter->state);
4326 }
4327
4328 /**
4329  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4330  * @hw: pointer to the HW structure
4331  * @systim: PHC time value read, sanitized and returned
4332  * @sts: structure to hold system time before and after reading SYSTIML,
4333  * may be NULL
4334  *
4335  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4336  * check to see that the time is incrementing at a reasonable
4337  * rate and is a multiple of incvalue.
4338  **/
4339 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4340                                   struct ptp_system_timestamp *sts)
4341 {
4342         u64 time_delta, rem, temp;
4343         u64 systim_next;
4344         u32 incvalue;
4345         int i;
4346
4347         incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4348         for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4349                 /* latch SYSTIMH on read of SYSTIML */
4350                 ptp_read_system_prets(sts);
4351                 systim_next = (u64)er32(SYSTIML);
4352                 ptp_read_system_postts(sts);
4353                 systim_next |= (u64)er32(SYSTIMH) << 32;
4354
4355                 time_delta = systim_next - systim;
4356                 temp = time_delta;
4357                 /* VMWare users have seen incvalue of zero, don't div / 0 */
4358                 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4359
4360                 systim = systim_next;
4361
4362                 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4363                         break;
4364         }
4365
4366         return systim;
4367 }
4368
4369 /**
4370  * e1000e_read_systim - read SYSTIM register
4371  * @adapter: board private structure
4372  * @sts: structure which will contain system time before and after reading
4373  * SYSTIML, may be NULL
4374  **/
4375 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4376                        struct ptp_system_timestamp *sts)
4377 {
4378         struct e1000_hw *hw = &adapter->hw;
4379         u32 systimel, systimel_2, systimeh;
4380         u64 systim;
4381         /* SYSTIMH latching upon SYSTIML read does not work well.
4382          * This means that if SYSTIML overflows after we read it but before
4383          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4384          * will experience a huge non linear increment in the systime value
4385          * to fix that we test for overflow and if true, we re-read systime.
4386          */
4387         ptp_read_system_prets(sts);
4388         systimel = er32(SYSTIML);
4389         ptp_read_system_postts(sts);
4390         systimeh = er32(SYSTIMH);
4391         /* Is systimel is so large that overflow is possible? */
4392         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4393                 ptp_read_system_prets(sts);
4394                 systimel_2 = er32(SYSTIML);
4395                 ptp_read_system_postts(sts);
4396                 if (systimel > systimel_2) {
4397                         /* There was an overflow, read again SYSTIMH, and use
4398                          * systimel_2
4399                          */
4400                         systimeh = er32(SYSTIMH);
4401                         systimel = systimel_2;
4402                 }
4403         }
4404         systim = (u64)systimel;
4405         systim |= (u64)systimeh << 32;
4406
4407         if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4408                 systim = e1000e_sanitize_systim(hw, systim, sts);
4409
4410         return systim;
4411 }
4412
4413 /**
4414  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4415  * @cc: cyclecounter structure
4416  **/
4417 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4418 {
4419         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4420                                                      cc);
4421
4422         return e1000e_read_systim(adapter, NULL);
4423 }
4424
4425 /**
4426  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4427  * @adapter: board private structure to initialize
4428  *
4429  * e1000_sw_init initializes the Adapter private data structure.
4430  * Fields are initialized based on PCI device information and
4431  * OS network device settings (MTU size).
4432  **/
4433 static int e1000_sw_init(struct e1000_adapter *adapter)
4434 {
4435         struct net_device *netdev = adapter->netdev;
4436
4437         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4438         adapter->rx_ps_bsize0 = 128;
4439         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4440         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4441         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4442         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4443
4444         spin_lock_init(&adapter->stats64_lock);
4445
4446         e1000e_set_interrupt_capability(adapter);
4447
4448         if (e1000_alloc_queues(adapter))
4449                 return -ENOMEM;
4450
4451         /* Setup hardware time stamping cyclecounter */
4452         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4453                 adapter->cc.read = e1000e_cyclecounter_read;
4454                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4455                 adapter->cc.mult = 1;
4456                 /* cc.shift set in e1000e_get_base_tininca() */
4457
4458                 spin_lock_init(&adapter->systim_lock);
4459                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4460         }
4461
4462         /* Explicitly disable IRQ since the NIC can be in any state. */
4463         e1000_irq_disable(adapter);
4464
4465         set_bit(__E1000_DOWN, &adapter->state);
4466         return 0;
4467 }
4468
4469 /**
4470  * e1000_intr_msi_test - Interrupt Handler
4471  * @irq: interrupt number
4472  * @data: pointer to a network interface device structure
4473  **/
4474 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4475 {
4476         struct net_device *netdev = data;
4477         struct e1000_adapter *adapter = netdev_priv(netdev);
4478         struct e1000_hw *hw = &adapter->hw;
4479         u32 icr = er32(ICR);
4480
4481         e_dbg("icr is %08X\n", icr);
4482         if (icr & E1000_ICR_RXSEQ) {
4483                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4484                 /* Force memory writes to complete before acknowledging the
4485                  * interrupt is handled.
4486                  */
4487                 wmb();
4488         }
4489
4490         return IRQ_HANDLED;
4491 }
4492
4493 /**
4494  * e1000_test_msi_interrupt - Returns 0 for successful test
4495  * @adapter: board private struct
4496  *
4497  * code flow taken from tg3.c
4498  **/
4499 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4500 {
4501         struct net_device *netdev = adapter->netdev;
4502         struct e1000_hw *hw = &adapter->hw;
4503         int err;
4504
4505         /* poll_enable hasn't been called yet, so don't need disable */
4506         /* clear any pending events */
4507         er32(ICR);
4508
4509         /* free the real vector and request a test handler */
4510         e1000_free_irq(adapter);
4511         e1000e_reset_interrupt_capability(adapter);
4512
4513         /* Assume that the test fails, if it succeeds then the test
4514          * MSI irq handler will unset this flag
4515          */
4516         adapter->flags |= FLAG_MSI_TEST_FAILED;
4517
4518         err = pci_enable_msi(adapter->pdev);
4519         if (err)
4520                 goto msi_test_failed;
4521
4522         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4523                           netdev->name, netdev);
4524         if (err) {
4525                 pci_disable_msi(adapter->pdev);
4526                 goto msi_test_failed;
4527         }
4528
4529         /* Force memory writes to complete before enabling and firing an
4530          * interrupt.
4531          */
4532         wmb();
4533
4534         e1000_irq_enable(adapter);
4535
4536         /* fire an unusual interrupt on the test handler */
4537         ew32(ICS, E1000_ICS_RXSEQ);
4538         e1e_flush();
4539         msleep(100);
4540
4541         e1000_irq_disable(adapter);
4542
4543         rmb();                  /* read flags after interrupt has been fired */
4544
4545         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4546                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4547                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4548         } else {
4549                 e_dbg("MSI interrupt test succeeded!\n");
4550         }
4551
4552         free_irq(adapter->pdev->irq, netdev);
4553         pci_disable_msi(adapter->pdev);
4554
4555 msi_test_failed:
4556         e1000e_set_interrupt_capability(adapter);
4557         return e1000_request_irq(adapter);
4558 }
4559
4560 /**
4561  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4562  * @adapter: board private struct
4563  *
4564  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4565  **/
4566 static int e1000_test_msi(struct e1000_adapter *adapter)
4567 {
4568         int err;
4569         u16 pci_cmd;
4570
4571         if (!(adapter->flags & FLAG_MSI_ENABLED))
4572                 return 0;
4573
4574         /* disable SERR in case the MSI write causes a master abort */
4575         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4576         if (pci_cmd & PCI_COMMAND_SERR)
4577                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4578                                       pci_cmd & ~PCI_COMMAND_SERR);
4579
4580         err = e1000_test_msi_interrupt(adapter);
4581
4582         /* re-enable SERR */
4583         if (pci_cmd & PCI_COMMAND_SERR) {
4584                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4585                 pci_cmd |= PCI_COMMAND_SERR;
4586                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4587         }
4588
4589         return err;
4590 }
4591
4592 /**
4593  * e1000e_open - Called when a network interface is made active
4594  * @netdev: network interface device structure
4595  *
4596  * Returns 0 on success, negative value on failure
4597  *
4598  * The open entry point is called when a network interface is made
4599  * active by the system (IFF_UP).  At this point all resources needed
4600  * for transmit and receive operations are allocated, the interrupt
4601  * handler is registered with the OS, the watchdog timer is started,
4602  * and the stack is notified that the interface is ready.
4603  **/
4604 int e1000e_open(struct net_device *netdev)
4605 {
4606         struct e1000_adapter *adapter = netdev_priv(netdev);
4607         struct e1000_hw *hw = &adapter->hw;
4608         struct pci_dev *pdev = adapter->pdev;
4609         int err;
4610         int irq;
4611
4612         /* disallow open during test */
4613         if (test_bit(__E1000_TESTING, &adapter->state))
4614                 return -EBUSY;
4615
4616         pm_runtime_get_sync(&pdev->dev);
4617
4618         netif_carrier_off(netdev);
4619         netif_stop_queue(netdev);
4620
4621         /* allocate transmit descriptors */
4622         err = e1000e_setup_tx_resources(adapter->tx_ring);
4623         if (err)
4624                 goto err_setup_tx;
4625
4626         /* allocate receive descriptors */
4627         err = e1000e_setup_rx_resources(adapter->rx_ring);
4628         if (err)
4629                 goto err_setup_rx;
4630
4631         /* If AMT is enabled, let the firmware know that the network
4632          * interface is now open and reset the part to a known state.
4633          */
4634         if (adapter->flags & FLAG_HAS_AMT) {
4635                 e1000e_get_hw_control(adapter);
4636                 e1000e_reset(adapter);
4637         }
4638
4639         e1000e_power_up_phy(adapter);
4640
4641         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4642         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4643                 e1000_update_mng_vlan(adapter);
4644
4645         /* DMA latency requirement to workaround jumbo issue */
4646         cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4647
4648         /* before we allocate an interrupt, we must be ready to handle it.
4649          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4650          * as soon as we call pci_request_irq, so we have to setup our
4651          * clean_rx handler before we do so.
4652          */
4653         e1000_configure(adapter);
4654
4655         err = e1000_request_irq(adapter);
4656         if (err)
4657                 goto err_req_irq;
4658
4659         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4660          * ignore e1000e MSI messages, which means we need to test our MSI
4661          * interrupt now
4662          */
4663         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4664                 err = e1000_test_msi(adapter);
4665                 if (err) {
4666                         e_err("Interrupt allocation failed\n");
4667                         goto err_req_irq;
4668                 }
4669         }
4670
4671         /* From here on the code is the same as e1000e_up() */
4672         clear_bit(__E1000_DOWN, &adapter->state);
4673
4674         if (adapter->int_mode == E1000E_INT_MODE_MSIX)
4675                 irq = adapter->msix_entries[0].vector;
4676         else
4677                 irq = adapter->pdev->irq;
4678
4679         netif_napi_set_irq(&adapter->napi, irq);
4680         napi_enable(&adapter->napi);
4681         netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
4682         netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
4683
4684         e1000_irq_enable(adapter);
4685
4686         adapter->tx_hang_recheck = false;
4687
4688         hw->mac.get_link_status = true;
4689         pm_runtime_put(&pdev->dev);
4690
4691         e1000e_trigger_lsc(adapter);
4692
4693         return 0;
4694
4695 err_req_irq:
4696         cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4697         e1000e_release_hw_control(adapter);
4698         e1000_power_down_phy(adapter);
4699         e1000e_free_rx_resources(adapter->rx_ring);
4700 err_setup_rx:
4701         e1000e_free_tx_resources(adapter->tx_ring);
4702 err_setup_tx:
4703         e1000e_reset(adapter);
4704         pm_runtime_put_sync(&pdev->dev);
4705
4706         return err;
4707 }
4708
4709 /**
4710  * e1000e_close - Disables a network interface
4711  * @netdev: network interface device structure
4712  *
4713  * Returns 0, this is not allowed to fail
4714  *
4715  * The close entry point is called when an interface is de-activated
4716  * by the OS.  The hardware is still under the drivers control, but
4717  * needs to be disabled.  A global MAC reset is issued to stop the
4718  * hardware, and all transmit and receive resources are freed.
4719  **/
4720 int e1000e_close(struct net_device *netdev)
4721 {
4722         struct e1000_adapter *adapter = netdev_priv(netdev);
4723         struct pci_dev *pdev = adapter->pdev;
4724         int count = E1000_CHECK_RESET_COUNT;
4725
4726         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4727                 usleep_range(10000, 11000);
4728
4729         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4730
4731         pm_runtime_get_sync(&pdev->dev);
4732
4733         if (netif_device_present(netdev)) {
4734                 e1000e_down(adapter, true);
4735                 e1000_free_irq(adapter);
4736
4737                 /* Link status message must follow this format */
4738                 netdev_info(netdev, "NIC Link is Down\n");
4739         }
4740
4741         netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
4742         netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
4743         napi_disable(&adapter->napi);
4744
4745         e1000e_free_tx_resources(adapter->tx_ring);
4746         e1000e_free_rx_resources(adapter->rx_ring);
4747
4748         /* kill manageability vlan ID if supported, but not if a vlan with
4749          * the same ID is registered on the host OS (let 8021q kill it)
4750          */
4751         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4752                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4753                                        adapter->mng_vlan_id);
4754
4755         /* If AMT is enabled, let the firmware know that the network
4756          * interface is now closed
4757          */
4758         if ((adapter->flags & FLAG_HAS_AMT) &&
4759             !test_bit(__E1000_TESTING, &adapter->state))
4760                 e1000e_release_hw_control(adapter);
4761
4762         cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4763
4764         pm_runtime_put_sync(&pdev->dev);
4765
4766         return 0;
4767 }
4768
4769 /**
4770  * e1000_set_mac - Change the Ethernet Address of the NIC
4771  * @netdev: network interface device structure
4772  * @p: pointer to an address structure
4773  *
4774  * Returns 0 on success, negative on failure
4775  **/
4776 static int e1000_set_mac(struct net_device *netdev, void *p)
4777 {
4778         struct e1000_adapter *adapter = netdev_priv(netdev);
4779         struct e1000_hw *hw = &adapter->hw;
4780         struct sockaddr *addr = p;
4781
4782         if (!is_valid_ether_addr(addr->sa_data))
4783                 return -EADDRNOTAVAIL;
4784
4785         eth_hw_addr_set(netdev, addr->sa_data);
4786         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4787
4788         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4789
4790         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4791                 /* activate the work around */
4792                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4793
4794                 /* Hold a copy of the LAA in RAR[14] This is done so that
4795                  * between the time RAR[0] gets clobbered  and the time it
4796                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4797                  * of the RARs and no incoming packets directed to this port
4798                  * are dropped. Eventually the LAA will be in RAR[0] and
4799                  * RAR[14]
4800                  */
4801                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4802                                     adapter->hw.mac.rar_entry_count - 1);
4803         }
4804
4805         return 0;
4806 }
4807
4808 /**
4809  * e1000e_update_phy_task - work thread to update phy
4810  * @work: pointer to our work struct
4811  *
4812  * this worker thread exists because we must acquire a
4813  * semaphore to read the phy, which we could msleep while
4814  * waiting for it, and we can't msleep in a timer.
4815  **/
4816 static void e1000e_update_phy_task(struct work_struct *work)
4817 {
4818         struct e1000_adapter *adapter = container_of(work,
4819                                                      struct e1000_adapter,
4820                                                      update_phy_task);
4821         struct e1000_hw *hw = &adapter->hw;
4822
4823         if (test_bit(__E1000_DOWN, &adapter->state))
4824                 return;
4825
4826         e1000_get_phy_info(hw);
4827
4828         /* Enable EEE on 82579 after link up */
4829         if (hw->phy.type >= e1000_phy_82579)
4830                 e1000_set_eee_pchlan(hw);
4831 }
4832
4833 /**
4834  * e1000_update_phy_info - timre call-back to update PHY info
4835  * @t: pointer to timer_list containing private info adapter
4836  *
4837  * Need to wait a few seconds after link up to get diagnostic information from
4838  * the phy
4839  **/
4840 static void e1000_update_phy_info(struct timer_list *t)
4841 {
4842         struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4843
4844         if (test_bit(__E1000_DOWN, &adapter->state))
4845                 return;
4846
4847         schedule_work(&adapter->update_phy_task);
4848 }
4849
4850 /**
4851  * e1000e_update_phy_stats - Update the PHY statistics counters
4852  * @adapter: board private structure
4853  *
4854  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4855  **/
4856 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4857 {
4858         struct e1000_hw *hw = &adapter->hw;
4859         s32 ret_val;
4860         u16 phy_data;
4861
4862         ret_val = hw->phy.ops.acquire(hw);
4863         if (ret_val)
4864                 return;
4865
4866         /* A page set is expensive so check if already on desired page.
4867          * If not, set to the page with the PHY status registers.
4868          */
4869         hw->phy.addr = 1;
4870         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4871                                            &phy_data);
4872         if (ret_val)
4873                 goto release;
4874         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4875                 ret_val = hw->phy.ops.set_page(hw,
4876                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4877                 if (ret_val)
4878                         goto release;
4879         }
4880
4881         /* Single Collision Count */
4882         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4883         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4884         if (!ret_val)
4885                 adapter->stats.scc += phy_data;
4886
4887         /* Excessive Collision Count */
4888         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4889         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4890         if (!ret_val)
4891                 adapter->stats.ecol += phy_data;
4892
4893         /* Multiple Collision Count */
4894         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4895         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4896         if (!ret_val)
4897                 adapter->stats.mcc += phy_data;
4898
4899         /* Late Collision Count */
4900         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4901         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4902         if (!ret_val)
4903                 adapter->stats.latecol += phy_data;
4904
4905         /* Collision Count - also used for adaptive IFS */
4906         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4907         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4908         if (!ret_val)
4909                 hw->mac.collision_delta = phy_data;
4910
4911         /* Defer Count */
4912         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4913         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4914         if (!ret_val)
4915                 adapter->stats.dc += phy_data;
4916
4917         /* Transmit with no CRS */
4918         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4919         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4920         if (!ret_val)
4921                 adapter->stats.tncrs += phy_data;
4922
4923 release:
4924         hw->phy.ops.release(hw);
4925 }
4926
4927 /**
4928  * e1000e_update_stats - Update the board statistics counters
4929  * @adapter: board private structure
4930  **/
4931 static void e1000e_update_stats(struct e1000_adapter *adapter)
4932 {
4933         struct net_device *netdev = adapter->netdev;
4934         struct e1000_hw *hw = &adapter->hw;
4935         struct pci_dev *pdev = adapter->pdev;
4936
4937         /* Prevent stats update while adapter is being reset, or if the pci
4938          * connection is down.
4939          */
4940         if (adapter->link_speed == 0)
4941                 return;
4942         if (pci_channel_offline(pdev))
4943                 return;
4944
4945         adapter->stats.crcerrs += er32(CRCERRS);
4946         adapter->stats.gprc += er32(GPRC);
4947         adapter->stats.gorc += er32(GORCL);
4948         er32(GORCH);            /* Clear gorc */
4949         adapter->stats.bprc += er32(BPRC);
4950         adapter->stats.mprc += er32(MPRC);
4951         adapter->stats.roc += er32(ROC);
4952
4953         adapter->stats.mpc += er32(MPC);
4954
4955         /* Half-duplex statistics */
4956         if (adapter->link_duplex == HALF_DUPLEX) {
4957                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4958                         e1000e_update_phy_stats(adapter);
4959                 } else {
4960                         adapter->stats.scc += er32(SCC);
4961                         adapter->stats.ecol += er32(ECOL);
4962                         adapter->stats.mcc += er32(MCC);
4963                         adapter->stats.latecol += er32(LATECOL);
4964                         adapter->stats.dc += er32(DC);
4965
4966                         hw->mac.collision_delta = er32(COLC);
4967
4968                         if ((hw->mac.type != e1000_82574) &&
4969                             (hw->mac.type != e1000_82583))
4970                                 adapter->stats.tncrs += er32(TNCRS);
4971                 }
4972                 adapter->stats.colc += hw->mac.collision_delta;
4973         }
4974
4975         adapter->stats.xonrxc += er32(XONRXC);
4976         adapter->stats.xontxc += er32(XONTXC);
4977         adapter->stats.xoffrxc += er32(XOFFRXC);
4978         adapter->stats.xofftxc += er32(XOFFTXC);
4979         adapter->stats.gptc += er32(GPTC);
4980         adapter->stats.gotc += er32(GOTCL);
4981         er32(GOTCH);            /* Clear gotc */
4982         adapter->stats.rnbc += er32(RNBC);
4983         adapter->stats.ruc += er32(RUC);
4984
4985         adapter->stats.mptc += er32(MPTC);
4986         adapter->stats.bptc += er32(BPTC);
4987
4988         /* used for adaptive IFS */
4989
4990         hw->mac.tx_packet_delta = er32(TPT);
4991         adapter->stats.tpt += hw->mac.tx_packet_delta;
4992
4993         adapter->stats.algnerrc += er32(ALGNERRC);
4994         adapter->stats.rxerrc += er32(RXERRC);
4995         adapter->stats.cexterr += er32(CEXTERR);
4996         adapter->stats.tsctc += er32(TSCTC);
4997         adapter->stats.tsctfc += er32(TSCTFC);
4998
4999         /* Fill out the OS statistics structure */
5000         netdev->stats.multicast = adapter->stats.mprc;
5001         netdev->stats.collisions = adapter->stats.colc;
5002
5003         /* Rx Errors */
5004
5005         /* RLEC on some newer hardware can be incorrect so build
5006          * our own version based on RUC and ROC
5007          */
5008         netdev->stats.rx_errors = adapter->stats.rxerrc +
5009             adapter->stats.crcerrs + adapter->stats.algnerrc +
5010             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5011         netdev->stats.rx_length_errors = adapter->stats.ruc +
5012             adapter->stats.roc;
5013         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5014         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5015         netdev->stats.rx_missed_errors = adapter->stats.mpc;
5016
5017         /* Tx Errors */
5018         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5019         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5020         netdev->stats.tx_window_errors = adapter->stats.latecol;
5021         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5022
5023         /* Tx Dropped needs to be maintained elsewhere */
5024
5025         /* Management Stats */
5026         adapter->stats.mgptc += er32(MGTPTC);
5027         adapter->stats.mgprc += er32(MGTPRC);
5028         adapter->stats.mgpdc += er32(MGTPDC);
5029
5030         /* Correctable ECC Errors */
5031         if (hw->mac.type >= e1000_pch_lpt) {
5032                 u32 pbeccsts = er32(PBECCSTS);
5033
5034                 adapter->corr_errors +=
5035                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5036                 adapter->uncorr_errors +=
5037                     FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
5038         }
5039 }
5040
5041 /**
5042  * e1000_phy_read_status - Update the PHY register status snapshot
5043  * @adapter: board private structure
5044  **/
5045 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5046 {
5047         struct e1000_hw *hw = &adapter->hw;
5048         struct e1000_phy_regs *phy = &adapter->phy_regs;
5049
5050         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5051             (er32(STATUS) & E1000_STATUS_LU) &&
5052             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5053                 int ret_val;
5054
5055                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5056                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5057                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5058                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5059                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5060                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5061                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5062                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5063                 if (ret_val)
5064                         e_warn("Error reading PHY register\n");
5065         } else {
5066                 /* Do not read PHY registers if link is not up
5067                  * Set values to typical power-on defaults
5068                  */
5069                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5070                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5071                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5072                              BMSR_ERCAP);
5073                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5074                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5075                 phy->lpa = 0;
5076                 phy->expansion = EXPANSION_ENABLENPAGE;
5077                 phy->ctrl1000 = ADVERTISE_1000FULL;
5078                 phy->stat1000 = 0;
5079                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5080         }
5081 }
5082
5083 static void e1000_print_link_info(struct e1000_adapter *adapter)
5084 {
5085         struct e1000_hw *hw = &adapter->hw;
5086         u32 ctrl = er32(CTRL);
5087
5088         /* Link status message must follow this format for user tools */
5089         netdev_info(adapter->netdev,
5090                     "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5091                     adapter->link_speed,
5092                     adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5093                     (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5094                     (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5095                     (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5096 }
5097
5098 static bool e1000e_has_link(struct e1000_adapter *adapter)
5099 {
5100         struct e1000_hw *hw = &adapter->hw;
5101         bool link_active = false;
5102         s32 ret_val = 0;
5103
5104         /* get_link_status is set on LSC (link status) interrupt or
5105          * Rx sequence error interrupt.  get_link_status will stay
5106          * true until the check_for_link establishes link
5107          * for copper adapters ONLY
5108          */
5109         switch (hw->phy.media_type) {
5110         case e1000_media_type_copper:
5111                 if (hw->mac.get_link_status) {
5112                         ret_val = hw->mac.ops.check_for_link(hw);
5113                         link_active = !hw->mac.get_link_status;
5114                 } else {
5115                         link_active = true;
5116                 }
5117                 break;
5118         case e1000_media_type_fiber:
5119                 ret_val = hw->mac.ops.check_for_link(hw);
5120                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5121                 break;
5122         case e1000_media_type_internal_serdes:
5123                 ret_val = hw->mac.ops.check_for_link(hw);
5124                 link_active = hw->mac.serdes_has_link;
5125                 break;
5126         default:
5127         case e1000_media_type_unknown:
5128                 break;
5129         }
5130
5131         if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5132             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5133                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5134                 e_info("Gigabit has been disabled, downgrading speed\n");
5135         }
5136
5137         return link_active;
5138 }
5139
5140 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5141 {
5142         /* make sure the receive unit is started */
5143         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5144             (adapter->flags & FLAG_RESTART_NOW)) {
5145                 struct e1000_hw *hw = &adapter->hw;
5146                 u32 rctl = er32(RCTL);
5147
5148                 ew32(RCTL, rctl | E1000_RCTL_EN);
5149                 adapter->flags &= ~FLAG_RESTART_NOW;
5150         }
5151 }
5152
5153 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5154 {
5155         struct e1000_hw *hw = &adapter->hw;
5156
5157         /* With 82574 controllers, PHY needs to be checked periodically
5158          * for hung state and reset, if two calls return true
5159          */
5160         if (e1000_check_phy_82574(hw))
5161                 adapter->phy_hang_count++;
5162         else
5163                 adapter->phy_hang_count = 0;
5164
5165         if (adapter->phy_hang_count > 1) {
5166                 adapter->phy_hang_count = 0;
5167                 e_dbg("PHY appears hung - resetting\n");
5168                 schedule_work(&adapter->reset_task);
5169         }
5170 }
5171
5172 /**
5173  * e1000_watchdog - Timer Call-back
5174  * @t: pointer to timer_list containing private info adapter
5175  **/
5176 static void e1000_watchdog(struct timer_list *t)
5177 {
5178         struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5179
5180         /* Do the rest outside of interrupt context */
5181         schedule_work(&adapter->watchdog_task);
5182
5183         /* TODO: make this use queue_delayed_work() */
5184 }
5185
5186 static void e1000_watchdog_task(struct work_struct *work)
5187 {
5188         struct e1000_adapter *adapter = container_of(work,
5189                                                      struct e1000_adapter,
5190                                                      watchdog_task);
5191         struct net_device *netdev = adapter->netdev;
5192         struct e1000_mac_info *mac = &adapter->hw.mac;
5193         struct e1000_phy_info *phy = &adapter->hw.phy;
5194         struct e1000_ring *tx_ring = adapter->tx_ring;
5195         u32 dmoff_exit_timeout = 100, tries = 0;
5196         struct e1000_hw *hw = &adapter->hw;
5197         u32 link, tctl, pcim_state;
5198
5199         if (test_bit(__E1000_DOWN, &adapter->state))
5200                 return;
5201
5202         link = e1000e_has_link(adapter);
5203         if ((netif_carrier_ok(netdev)) && link) {
5204                 /* Cancel scheduled suspend requests. */
5205                 pm_runtime_resume(netdev->dev.parent);
5206
5207                 e1000e_enable_receives(adapter);
5208                 goto link_up;
5209         }
5210
5211         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5212             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5213                 e1000_update_mng_vlan(adapter);
5214
5215         if (link) {
5216                 if (!netif_carrier_ok(netdev)) {
5217                         bool txb2b = true;
5218
5219                         /* Cancel scheduled suspend requests. */
5220                         pm_runtime_resume(netdev->dev.parent);
5221
5222                         /* Checking if MAC is in DMoff state*/
5223                         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5224                                 pcim_state = er32(STATUS);
5225                                 while (pcim_state & E1000_STATUS_PCIM_STATE) {
5226                                         if (tries++ == dmoff_exit_timeout) {
5227                                                 e_dbg("Error in exiting dmoff\n");
5228                                                 break;
5229                                         }
5230                                         usleep_range(10000, 20000);
5231                                         pcim_state = er32(STATUS);
5232
5233                                         /* Checking if MAC exited DMoff state */
5234                                         if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5235                                                 e1000_phy_hw_reset(&adapter->hw);
5236                                 }
5237                         }
5238
5239                         /* update snapshot of PHY registers on LSC */
5240                         e1000_phy_read_status(adapter);
5241                         mac->ops.get_link_up_info(&adapter->hw,
5242                                                   &adapter->link_speed,
5243                                                   &adapter->link_duplex);
5244                         e1000_print_link_info(adapter);
5245
5246                         /* check if SmartSpeed worked */
5247                         e1000e_check_downshift(hw);
5248                         if (phy->speed_downgraded)
5249                                 netdev_warn(netdev,
5250                                             "Link Speed was downgraded by SmartSpeed\n");
5251
5252                         /* On supported PHYs, check for duplex mismatch only
5253                          * if link has autonegotiated at 10/100 half
5254                          */
5255                         if ((hw->phy.type == e1000_phy_igp_3 ||
5256                              hw->phy.type == e1000_phy_bm) &&
5257                             hw->mac.autoneg &&
5258                             (adapter->link_speed == SPEED_10 ||
5259                              adapter->link_speed == SPEED_100) &&
5260                             (adapter->link_duplex == HALF_DUPLEX)) {
5261                                 u16 autoneg_exp;
5262
5263                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5264
5265                                 if (!(autoneg_exp & EXPANSION_NWAY))
5266                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5267                         }
5268
5269                         /* adjust timeout factor according to speed/duplex */
5270                         adapter->tx_timeout_factor = 1;
5271                         switch (adapter->link_speed) {
5272                         case SPEED_10:
5273                                 txb2b = false;
5274                                 adapter->tx_timeout_factor = 16;
5275                                 break;
5276                         case SPEED_100:
5277                                 txb2b = false;
5278                                 adapter->tx_timeout_factor = 10;
5279                                 break;
5280                         }
5281
5282                         /* workaround: re-program speed mode bit after
5283                          * link-up event
5284                          */
5285                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5286                             !txb2b) {
5287                                 u32 tarc0;
5288
5289                                 tarc0 = er32(TARC(0));
5290                                 tarc0 &= ~SPEED_MODE_BIT;
5291                                 ew32(TARC(0), tarc0);
5292                         }
5293
5294                         /* enable transmits in the hardware, need to do this
5295                          * after setting TARC(0)
5296                          */
5297                         tctl = er32(TCTL);
5298                         tctl |= E1000_TCTL_EN;
5299                         ew32(TCTL, tctl);
5300
5301                         /* Perform any post-link-up configuration before
5302                          * reporting link up.
5303                          */
5304                         if (phy->ops.cfg_on_link_up)
5305                                 phy->ops.cfg_on_link_up(hw);
5306
5307                         netif_wake_queue(netdev);
5308                         netif_carrier_on(netdev);
5309
5310                         if (!test_bit(__E1000_DOWN, &adapter->state))
5311                                 mod_timer(&adapter->phy_info_timer,
5312                                           round_jiffies(jiffies + 2 * HZ));
5313                 }
5314         } else {
5315                 if (netif_carrier_ok(netdev)) {
5316                         adapter->link_speed = 0;
5317                         adapter->link_duplex = 0;
5318                         /* Link status message must follow this format */
5319                         netdev_info(netdev, "NIC Link is Down\n");
5320                         netif_carrier_off(netdev);
5321                         netif_stop_queue(netdev);
5322                         if (!test_bit(__E1000_DOWN, &adapter->state))
5323                                 mod_timer(&adapter->phy_info_timer,
5324                                           round_jiffies(jiffies + 2 * HZ));
5325
5326                         /* 8000ES2LAN requires a Rx packet buffer work-around
5327                          * on link down event; reset the controller to flush
5328                          * the Rx packet buffer.
5329                          */
5330                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5331                                 adapter->flags |= FLAG_RESTART_NOW;
5332                         else
5333                                 pm_schedule_suspend(netdev->dev.parent,
5334                                                     LINK_TIMEOUT);
5335                 }
5336         }
5337
5338 link_up:
5339         spin_lock(&adapter->stats64_lock);
5340         e1000e_update_stats(adapter);
5341
5342         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5343         adapter->tpt_old = adapter->stats.tpt;
5344         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5345         adapter->colc_old = adapter->stats.colc;
5346
5347         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5348         adapter->gorc_old = adapter->stats.gorc;
5349         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5350         adapter->gotc_old = adapter->stats.gotc;
5351         spin_unlock(&adapter->stats64_lock);
5352
5353         /* If the link is lost the controller stops DMA, but
5354          * if there is queued Tx work it cannot be done.  So
5355          * reset the controller to flush the Tx packet buffers.
5356          */
5357         if (!netif_carrier_ok(netdev) &&
5358             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5359                 adapter->flags |= FLAG_RESTART_NOW;
5360
5361         /* If reset is necessary, do it outside of interrupt context. */
5362         if (adapter->flags & FLAG_RESTART_NOW) {
5363                 schedule_work(&adapter->reset_task);
5364                 /* return immediately since reset is imminent */
5365                 return;
5366         }
5367
5368         e1000e_update_adaptive(&adapter->hw);
5369
5370         /* Simple mode for Interrupt Throttle Rate (ITR) */
5371         if (adapter->itr_setting == 4) {
5372                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5373                  * Total asymmetrical Tx or Rx gets ITR=8000;
5374                  * everyone else is between 2000-8000.
5375                  */
5376                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5377                 u32 dif = (adapter->gotc > adapter->gorc ?
5378                            adapter->gotc - adapter->gorc :
5379                            adapter->gorc - adapter->gotc) / 10000;
5380                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5381
5382                 e1000e_write_itr(adapter, itr);
5383         }
5384
5385         /* Cause software interrupt to ensure Rx ring is cleaned */
5386         if (adapter->msix_entries)
5387                 ew32(ICS, adapter->rx_ring->ims_val);
5388         else
5389                 ew32(ICS, E1000_ICS_RXDMT0);
5390
5391         /* flush pending descriptors to memory before detecting Tx hang */
5392         e1000e_flush_descriptors(adapter);
5393
5394         /* Force detection of hung controller every watchdog period */
5395         adapter->detect_tx_hung = true;
5396
5397         /* With 82571 controllers, LAA may be overwritten due to controller
5398          * reset from the other port. Set the appropriate LAA in RAR[0]
5399          */
5400         if (e1000e_get_laa_state_82571(hw))
5401                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5402
5403         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5404                 e1000e_check_82574_phy_workaround(adapter);
5405
5406         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5407         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5408                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5409                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5410                         er32(RXSTMPH);
5411                         adapter->rx_hwtstamp_cleared++;
5412                 } else {
5413                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5414                 }
5415         }
5416
5417         /* Reset the timer */
5418         if (!test_bit(__E1000_DOWN, &adapter->state))
5419                 mod_timer(&adapter->watchdog_timer,
5420                           round_jiffies(jiffies + 2 * HZ));
5421 }
5422
5423 #define E1000_TX_FLAGS_CSUM             0x00000001
5424 #define E1000_TX_FLAGS_VLAN             0x00000002
5425 #define E1000_TX_FLAGS_TSO              0x00000004
5426 #define E1000_TX_FLAGS_IPV4             0x00000008
5427 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5428 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5429 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5430 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5431
5432 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5433                      __be16 protocol)
5434 {
5435         struct e1000_context_desc *context_desc;
5436         struct e1000_buffer *buffer_info;
5437         unsigned int i;
5438         u32 cmd_length = 0;
5439         u16 ipcse = 0, mss;
5440         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5441         int err;
5442
5443         if (!skb_is_gso(skb))
5444                 return 0;
5445
5446         err = skb_cow_head(skb, 0);
5447         if (err < 0)
5448                 return err;
5449
5450         hdr_len = skb_tcp_all_headers(skb);
5451         mss = skb_shinfo(skb)->gso_size;
5452         if (protocol == htons(ETH_P_IP)) {
5453                 struct iphdr *iph = ip_hdr(skb);
5454                 iph->tot_len = 0;
5455                 iph->check = 0;
5456                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5457                                                          0, IPPROTO_TCP, 0);
5458                 cmd_length = E1000_TXD_CMD_IP;
5459                 ipcse = skb_transport_offset(skb) - 1;
5460         } else if (skb_is_gso_v6(skb)) {
5461                 tcp_v6_gso_csum_prep(skb);
5462                 ipcse = 0;
5463         }
5464         ipcss = skb_network_offset(skb);
5465         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5466         tucss = skb_transport_offset(skb);
5467         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5468
5469         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5470                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5471
5472         i = tx_ring->next_to_use;
5473         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5474         buffer_info = &tx_ring->buffer_info[i];
5475
5476         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5477         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5478         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5479         context_desc->upper_setup.tcp_fields.tucss = tucss;
5480         context_desc->upper_setup.tcp_fields.tucso = tucso;
5481         context_desc->upper_setup.tcp_fields.tucse = 0;
5482         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5483         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5484         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5485
5486         buffer_info->time_stamp = jiffies;
5487         buffer_info->next_to_watch = i;
5488
5489         i++;
5490         if (i == tx_ring->count)
5491                 i = 0;
5492         tx_ring->next_to_use = i;
5493
5494         return 1;
5495 }
5496
5497 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5498                           __be16 protocol)
5499 {
5500         struct e1000_adapter *adapter = tx_ring->adapter;
5501         struct e1000_context_desc *context_desc;
5502         struct e1000_buffer *buffer_info;
5503         unsigned int i;
5504         u8 css;
5505         u32 cmd_len = E1000_TXD_CMD_DEXT;
5506
5507         if (skb->ip_summed != CHECKSUM_PARTIAL)
5508                 return false;
5509
5510         switch (protocol) {
5511         case cpu_to_be16(ETH_P_IP):
5512                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5513                         cmd_len |= E1000_TXD_CMD_TCP;
5514                 break;
5515         case cpu_to_be16(ETH_P_IPV6):
5516                 /* XXX not handling all IPV6 headers */
5517                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5518                         cmd_len |= E1000_TXD_CMD_TCP;
5519                 break;
5520         default:
5521                 if (unlikely(net_ratelimit()))
5522                         e_warn("checksum_partial proto=%x!\n",
5523                                be16_to_cpu(protocol));
5524                 break;
5525         }
5526
5527         css = skb_checksum_start_offset(skb);
5528
5529         i = tx_ring->next_to_use;
5530         buffer_info = &tx_ring->buffer_info[i];
5531         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5532
5533         context_desc->lower_setup.ip_config = 0;
5534         context_desc->upper_setup.tcp_fields.tucss = css;
5535         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5536         context_desc->upper_setup.tcp_fields.tucse = 0;
5537         context_desc->tcp_seg_setup.data = 0;
5538         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5539
5540         buffer_info->time_stamp = jiffies;
5541         buffer_info->next_to_watch = i;
5542
5543         i++;
5544         if (i == tx_ring->count)
5545                 i = 0;
5546         tx_ring->next_to_use = i;
5547
5548         return true;
5549 }
5550
5551 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5552                         unsigned int first, unsigned int max_per_txd,
5553                         unsigned int nr_frags)
5554 {
5555         struct e1000_adapter *adapter = tx_ring->adapter;
5556         struct pci_dev *pdev = adapter->pdev;
5557         struct e1000_buffer *buffer_info;
5558         unsigned int len = skb_headlen(skb);
5559         unsigned int offset = 0, size, count = 0, i;
5560         unsigned int f, bytecount, segs;
5561
5562         i = tx_ring->next_to_use;
5563
5564         while (len) {
5565                 buffer_info = &tx_ring->buffer_info[i];
5566                 size = min(len, max_per_txd);
5567
5568                 buffer_info->length = size;
5569                 buffer_info->time_stamp = jiffies;
5570                 buffer_info->next_to_watch = i;
5571                 buffer_info->dma = dma_map_single(&pdev->dev,
5572                                                   skb->data + offset,
5573                                                   size, DMA_TO_DEVICE);
5574                 buffer_info->mapped_as_page = false;
5575                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5576                         goto dma_error;
5577
5578                 len -= size;
5579                 offset += size;
5580                 count++;
5581
5582                 if (len) {
5583                         i++;
5584                         if (i == tx_ring->count)
5585                                 i = 0;
5586                 }
5587         }
5588
5589         for (f = 0; f < nr_frags; f++) {
5590                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5591
5592                 len = skb_frag_size(frag);
5593                 offset = 0;
5594
5595                 while (len) {
5596                         i++;
5597                         if (i == tx_ring->count)
5598                                 i = 0;
5599
5600                         buffer_info = &tx_ring->buffer_info[i];
5601                         size = min(len, max_per_txd);
5602
5603                         buffer_info->length = size;
5604                         buffer_info->time_stamp = jiffies;
5605                         buffer_info->next_to_watch = i;
5606                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5607                                                             offset, size,
5608                                                             DMA_TO_DEVICE);
5609                         buffer_info->mapped_as_page = true;
5610                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5611                                 goto dma_error;
5612
5613                         len -= size;
5614                         offset += size;
5615                         count++;
5616                 }
5617         }
5618
5619         segs = skb_shinfo(skb)->gso_segs ? : 1;
5620         /* multiply data chunks by size of headers */
5621         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5622
5623         tx_ring->buffer_info[i].skb = skb;
5624         tx_ring->buffer_info[i].segs = segs;
5625         tx_ring->buffer_info[i].bytecount = bytecount;
5626         tx_ring->buffer_info[first].next_to_watch = i;
5627
5628         return count;
5629
5630 dma_error:
5631         dev_err(&pdev->dev, "Tx DMA map failed\n");
5632         buffer_info->dma = 0;
5633         if (count)
5634                 count--;
5635
5636         while (count--) {
5637                 if (i == 0)
5638                         i += tx_ring->count;
5639                 i--;
5640                 buffer_info = &tx_ring->buffer_info[i];
5641                 e1000_put_txbuf(tx_ring, buffer_info, true);
5642         }
5643
5644         return 0;
5645 }
5646
5647 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5648 {
5649         struct e1000_adapter *adapter = tx_ring->adapter;
5650         struct e1000_tx_desc *tx_desc = NULL;
5651         struct e1000_buffer *buffer_info;
5652         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5653         unsigned int i;
5654
5655         if (tx_flags & E1000_TX_FLAGS_TSO) {
5656                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5657                     E1000_TXD_CMD_TSE;
5658                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5659
5660                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5661                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5662         }
5663
5664         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5665                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5666                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5667         }
5668
5669         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5670                 txd_lower |= E1000_TXD_CMD_VLE;
5671                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5672         }
5673
5674         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5675                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5676
5677         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5678                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5679                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5680         }
5681
5682         i = tx_ring->next_to_use;
5683
5684         do {
5685                 buffer_info = &tx_ring->buffer_info[i];
5686                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5687                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5688                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5689                                                   buffer_info->length);
5690                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5691
5692                 i++;
5693                 if (i == tx_ring->count)
5694                         i = 0;
5695         } while (--count > 0);
5696
5697         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5698
5699         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5700         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5701                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5702
5703         /* Force memory writes to complete before letting h/w
5704          * know there are new descriptors to fetch.  (Only
5705          * applicable for weak-ordered memory model archs,
5706          * such as IA-64).
5707          */
5708         wmb();
5709
5710         tx_ring->next_to_use = i;
5711 }
5712
5713 #define MINIMUM_DHCP_PACKET_SIZE 282
5714 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5715                                     struct sk_buff *skb)
5716 {
5717         struct e1000_hw *hw = &adapter->hw;
5718         u16 length, offset;
5719
5720         if (skb_vlan_tag_present(skb) &&
5721             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5722               (adapter->hw.mng_cookie.status &
5723                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5724                 return 0;
5725
5726         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5727                 return 0;
5728
5729         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5730                 return 0;
5731
5732         {
5733                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5734                 struct udphdr *udp;
5735
5736                 if (ip->protocol != IPPROTO_UDP)
5737                         return 0;
5738
5739                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5740                 if (ntohs(udp->dest) != 67)
5741                         return 0;
5742
5743                 offset = (u8 *)udp + 8 - skb->data;
5744                 length = skb->len - offset;
5745                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5746         }
5747
5748         return 0;
5749 }
5750
5751 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5752 {
5753         struct e1000_adapter *adapter = tx_ring->adapter;
5754
5755         netif_stop_queue(adapter->netdev);
5756         /* Herbert's original patch had:
5757          *  smp_mb__after_netif_stop_queue();
5758          * but since that doesn't exist yet, just open code it.
5759          */
5760         smp_mb();
5761
5762         /* We need to check again in a case another CPU has just
5763          * made room available.
5764          */
5765         if (e1000_desc_unused(tx_ring) < size)
5766                 return -EBUSY;
5767
5768         /* A reprieve! */
5769         netif_start_queue(adapter->netdev);
5770         ++adapter->restart_queue;
5771         return 0;
5772 }
5773
5774 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5775 {
5776         BUG_ON(size > tx_ring->count);
5777
5778         if (e1000_desc_unused(tx_ring) >= size)
5779                 return 0;
5780         return __e1000_maybe_stop_tx(tx_ring, size);
5781 }
5782
5783 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5784                                     struct net_device *netdev)
5785 {
5786         struct e1000_adapter *adapter = netdev_priv(netdev);
5787         struct e1000_ring *tx_ring = adapter->tx_ring;
5788         unsigned int first;
5789         unsigned int tx_flags = 0;
5790         unsigned int len = skb_headlen(skb);
5791         unsigned int nr_frags;
5792         unsigned int mss;
5793         int count = 0;
5794         int tso;
5795         unsigned int f;
5796         __be16 protocol = vlan_get_protocol(skb);
5797
5798         if (test_bit(__E1000_DOWN, &adapter->state)) {
5799                 dev_kfree_skb_any(skb);
5800                 return NETDEV_TX_OK;
5801         }
5802
5803         if (skb->len <= 0) {
5804                 dev_kfree_skb_any(skb);
5805                 return NETDEV_TX_OK;
5806         }
5807
5808         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5809          * pad skb in order to meet this minimum size requirement
5810          */
5811         if (skb_put_padto(skb, 17))
5812                 return NETDEV_TX_OK;
5813
5814         mss = skb_shinfo(skb)->gso_size;
5815         if (mss) {
5816                 u8 hdr_len;
5817
5818                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5819                  * points to just header, pull a few bytes of payload from
5820                  * frags into skb->data
5821                  */
5822                 hdr_len = skb_tcp_all_headers(skb);
5823                 /* we do this workaround for ES2LAN, but it is un-necessary,
5824                  * avoiding it could save a lot of cycles
5825                  */
5826                 if (skb->data_len && (hdr_len == len)) {
5827                         unsigned int pull_size;
5828
5829                         pull_size = min_t(unsigned int, 4, skb->data_len);
5830                         if (!__pskb_pull_tail(skb, pull_size)) {
5831                                 e_err("__pskb_pull_tail failed.\n");
5832                                 dev_kfree_skb_any(skb);
5833                                 return NETDEV_TX_OK;
5834                         }
5835                         len = skb_headlen(skb);
5836                 }
5837         }
5838
5839         /* reserve a descriptor for the offload context */
5840         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5841                 count++;
5842         count++;
5843
5844         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5845
5846         nr_frags = skb_shinfo(skb)->nr_frags;
5847         for (f = 0; f < nr_frags; f++)
5848                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5849                                       adapter->tx_fifo_limit);
5850
5851         if (adapter->hw.mac.tx_pkt_filtering)
5852                 e1000_transfer_dhcp_info(adapter, skb);
5853
5854         /* need: count + 2 desc gap to keep tail from touching
5855          * head, otherwise try next time
5856          */
5857         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5858                 return NETDEV_TX_BUSY;
5859
5860         if (skb_vlan_tag_present(skb)) {
5861                 tx_flags |= E1000_TX_FLAGS_VLAN;
5862                 tx_flags |= (skb_vlan_tag_get(skb) <<
5863                              E1000_TX_FLAGS_VLAN_SHIFT);
5864         }
5865
5866         first = tx_ring->next_to_use;
5867
5868         tso = e1000_tso(tx_ring, skb, protocol);
5869         if (tso < 0) {
5870                 dev_kfree_skb_any(skb);
5871                 return NETDEV_TX_OK;
5872         }
5873
5874         if (tso)
5875                 tx_flags |= E1000_TX_FLAGS_TSO;
5876         else if (e1000_tx_csum(tx_ring, skb, protocol))
5877                 tx_flags |= E1000_TX_FLAGS_CSUM;
5878
5879         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5880          * 82571 hardware supports TSO capabilities for IPv6 as well...
5881          * no longer assume, we must.
5882          */
5883         if (protocol == htons(ETH_P_IP))
5884                 tx_flags |= E1000_TX_FLAGS_IPV4;
5885
5886         if (unlikely(skb->no_fcs))
5887                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5888
5889         /* if count is 0 then mapping error has occurred */
5890         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5891                              nr_frags);
5892         if (count) {
5893                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5894                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5895                         if (!adapter->tx_hwtstamp_skb) {
5896                                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5897                                 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5898                                 adapter->tx_hwtstamp_skb = skb_get(skb);
5899                                 adapter->tx_hwtstamp_start = jiffies;
5900                                 schedule_work(&adapter->tx_hwtstamp_work);
5901                         } else {
5902                                 adapter->tx_hwtstamp_skipped++;
5903                         }
5904                 }
5905
5906                 skb_tx_timestamp(skb);
5907
5908                 netdev_sent_queue(netdev, skb->len);
5909                 e1000_tx_queue(tx_ring, tx_flags, count);
5910                 /* Make sure there is space in the ring for the next send. */
5911                 e1000_maybe_stop_tx(tx_ring,
5912                                     ((MAX_SKB_FRAGS + 1) *
5913                                      DIV_ROUND_UP(PAGE_SIZE,
5914                                                   adapter->tx_fifo_limit) + 4));
5915
5916                 if (!netdev_xmit_more() ||
5917                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5918                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5919                                 e1000e_update_tdt_wa(tx_ring,
5920                                                      tx_ring->next_to_use);
5921                         else
5922                                 writel(tx_ring->next_to_use, tx_ring->tail);
5923                 }
5924         } else {
5925                 dev_kfree_skb_any(skb);
5926                 tx_ring->buffer_info[first].time_stamp = 0;
5927                 tx_ring->next_to_use = first;
5928         }
5929
5930         return NETDEV_TX_OK;
5931 }
5932
5933 /**
5934  * e1000_tx_timeout - Respond to a Tx Hang
5935  * @netdev: network interface device structure
5936  * @txqueue: index of the hung queue (unused)
5937  **/
5938 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5939 {
5940         struct e1000_adapter *adapter = netdev_priv(netdev);
5941
5942         /* Do the reset outside of interrupt context */
5943         adapter->tx_timeout_count++;
5944         schedule_work(&adapter->reset_task);
5945 }
5946
5947 static void e1000_reset_task(struct work_struct *work)
5948 {
5949         struct e1000_adapter *adapter;
5950         adapter = container_of(work, struct e1000_adapter, reset_task);
5951
5952         rtnl_lock();
5953         /* don't run the task if already down */
5954         if (test_bit(__E1000_DOWN, &adapter->state)) {
5955                 rtnl_unlock();
5956                 return;
5957         }
5958
5959         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5960                 e1000e_dump(adapter);
5961                 e_err("Reset adapter unexpectedly\n");
5962         }
5963         e1000e_reinit_locked(adapter);
5964         rtnl_unlock();
5965 }
5966
5967 /**
5968  * e1000e_get_stats64 - Get System Network Statistics
5969  * @netdev: network interface device structure
5970  * @stats: rtnl_link_stats64 pointer
5971  *
5972  * Returns the address of the device statistics structure.
5973  **/
5974 void e1000e_get_stats64(struct net_device *netdev,
5975                         struct rtnl_link_stats64 *stats)
5976 {
5977         struct e1000_adapter *adapter = netdev_priv(netdev);
5978
5979         spin_lock(&adapter->stats64_lock);
5980         e1000e_update_stats(adapter);
5981         /* Fill out the OS statistics structure */
5982         stats->rx_bytes = adapter->stats.gorc;
5983         stats->rx_packets = adapter->stats.gprc;
5984         stats->tx_bytes = adapter->stats.gotc;
5985         stats->tx_packets = adapter->stats.gptc;
5986         stats->multicast = adapter->stats.mprc;
5987         stats->collisions = adapter->stats.colc;
5988
5989         /* Rx Errors */
5990
5991         /* RLEC on some newer hardware can be incorrect so build
5992          * our own version based on RUC and ROC
5993          */
5994         stats->rx_errors = adapter->stats.rxerrc +
5995             adapter->stats.crcerrs + adapter->stats.algnerrc +
5996             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5997         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5998         stats->rx_crc_errors = adapter->stats.crcerrs;
5999         stats->rx_frame_errors = adapter->stats.algnerrc;
6000         stats->rx_missed_errors = adapter->stats.mpc;
6001
6002         /* Tx Errors */
6003         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6004         stats->tx_aborted_errors = adapter->stats.ecol;
6005         stats->tx_window_errors = adapter->stats.latecol;
6006         stats->tx_carrier_errors = adapter->stats.tncrs;
6007
6008         /* Tx Dropped needs to be maintained elsewhere */
6009
6010         spin_unlock(&adapter->stats64_lock);
6011 }
6012
6013 /**
6014  * e1000_change_mtu - Change the Maximum Transfer Unit
6015  * @netdev: network interface device structure
6016  * @new_mtu: new value for maximum frame size
6017  *
6018  * Returns 0 on success, negative on failure
6019  **/
6020 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6021 {
6022         struct e1000_adapter *adapter = netdev_priv(netdev);
6023         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6024
6025         /* Jumbo frame support */
6026         if ((new_mtu > ETH_DATA_LEN) &&
6027             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6028                 e_err("Jumbo Frames not supported.\n");
6029                 return -EINVAL;
6030         }
6031
6032         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6033         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6034             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6035             (new_mtu > ETH_DATA_LEN)) {
6036                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6037                 return -EINVAL;
6038         }
6039
6040         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6041                 usleep_range(1000, 1100);
6042         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6043         adapter->max_frame_size = max_frame;
6044         netdev_dbg(netdev, "changing MTU from %d to %d\n",
6045                    netdev->mtu, new_mtu);
6046         WRITE_ONCE(netdev->mtu, new_mtu);
6047
6048         pm_runtime_get_sync(netdev->dev.parent);
6049
6050         if (netif_running(netdev))
6051                 e1000e_down(adapter, true);
6052
6053         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6054          * means we reserve 2 more, this pushes us to allocate from the next
6055          * larger slab size.
6056          * i.e. RXBUFFER_2048 --> size-4096 slab
6057          * However with the new *_jumbo_rx* routines, jumbo receives will use
6058          * fragmented skbs
6059          */
6060
6061         if (max_frame <= 2048)
6062                 adapter->rx_buffer_len = 2048;
6063         else
6064                 adapter->rx_buffer_len = 4096;
6065
6066         /* adjust allocation if LPE protects us, and we aren't using SBP */
6067         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6068                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6069
6070         if (netif_running(netdev))
6071                 e1000e_up(adapter);
6072         else
6073                 e1000e_reset(adapter);
6074
6075         pm_runtime_put_sync(netdev->dev.parent);
6076
6077         clear_bit(__E1000_RESETTING, &adapter->state);
6078
6079         return 0;
6080 }
6081
6082 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6083                            int cmd)
6084 {
6085         struct e1000_adapter *adapter = netdev_priv(netdev);
6086         struct mii_ioctl_data *data = if_mii(ifr);
6087
6088         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6089                 return -EOPNOTSUPP;
6090
6091         switch (cmd) {
6092         case SIOCGMIIPHY:
6093                 data->phy_id = adapter->hw.phy.addr;
6094                 break;
6095         case SIOCGMIIREG:
6096                 e1000_phy_read_status(adapter);
6097
6098                 switch (data->reg_num & 0x1F) {
6099                 case MII_BMCR:
6100                         data->val_out = adapter->phy_regs.bmcr;
6101                         break;
6102                 case MII_BMSR:
6103                         data->val_out = adapter->phy_regs.bmsr;
6104                         break;
6105                 case MII_PHYSID1:
6106                         data->val_out = (adapter->hw.phy.id >> 16);
6107                         break;
6108                 case MII_PHYSID2:
6109                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6110                         break;
6111                 case MII_ADVERTISE:
6112                         data->val_out = adapter->phy_regs.advertise;
6113                         break;
6114                 case MII_LPA:
6115                         data->val_out = adapter->phy_regs.lpa;
6116                         break;
6117                 case MII_EXPANSION:
6118                         data->val_out = adapter->phy_regs.expansion;
6119                         break;
6120                 case MII_CTRL1000:
6121                         data->val_out = adapter->phy_regs.ctrl1000;
6122                         break;
6123                 case MII_STAT1000:
6124                         data->val_out = adapter->phy_regs.stat1000;
6125                         break;
6126                 case MII_ESTATUS:
6127                         data->val_out = adapter->phy_regs.estatus;
6128                         break;
6129                 default:
6130                         return -EIO;
6131                 }
6132                 break;
6133         case SIOCSMIIREG:
6134         default:
6135                 return -EOPNOTSUPP;
6136         }
6137         return 0;
6138 }
6139
6140 /**
6141  * e1000e_hwtstamp_set - control hardware time stamping
6142  * @netdev: network interface device structure
6143  * @ifr: interface request
6144  *
6145  * Outgoing time stamping can be enabled and disabled. Play nice and
6146  * disable it when requested, although it shouldn't cause any overhead
6147  * when no packet needs it. At most one packet in the queue may be
6148  * marked for time stamping, otherwise it would be impossible to tell
6149  * for sure to which packet the hardware time stamp belongs.
6150  *
6151  * Incoming time stamping has to be configured via the hardware filters.
6152  * Not all combinations are supported, in particular event type has to be
6153  * specified. Matching the kind of event packet is not supported, with the
6154  * exception of "all V2 events regardless of level 2 or 4".
6155  **/
6156 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6157 {
6158         struct e1000_adapter *adapter = netdev_priv(netdev);
6159         struct hwtstamp_config config;
6160         int ret_val;
6161
6162         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6163                 return -EFAULT;
6164
6165         ret_val = e1000e_config_hwtstamp(adapter, &config);
6166         if (ret_val)
6167                 return ret_val;
6168
6169         switch (config.rx_filter) {
6170         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6171         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6172         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6173         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6174         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6175         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6176                 /* With V2 type filters which specify a Sync or Delay Request,
6177                  * Path Delay Request/Response messages are also time stamped
6178                  * by hardware so notify the caller the requested packets plus
6179                  * some others are time stamped.
6180                  */
6181                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6182                 break;
6183         default:
6184                 break;
6185         }
6186
6187         return copy_to_user(ifr->ifr_data, &config,
6188                             sizeof(config)) ? -EFAULT : 0;
6189 }
6190
6191 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6192 {
6193         struct e1000_adapter *adapter = netdev_priv(netdev);
6194
6195         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6196                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6197 }
6198
6199 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6200 {
6201         switch (cmd) {
6202         case SIOCGMIIPHY:
6203         case SIOCGMIIREG:
6204         case SIOCSMIIREG:
6205                 return e1000_mii_ioctl(netdev, ifr, cmd);
6206         case SIOCSHWTSTAMP:
6207                 return e1000e_hwtstamp_set(netdev, ifr);
6208         case SIOCGHWTSTAMP:
6209                 return e1000e_hwtstamp_get(netdev, ifr);
6210         default:
6211                 return -EOPNOTSUPP;
6212         }
6213 }
6214
6215 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6216 {
6217         struct e1000_hw *hw = &adapter->hw;
6218         u32 i, mac_reg, wuc;
6219         u16 phy_reg, wuc_enable;
6220         int retval;
6221
6222         /* copy MAC RARs to PHY RARs */
6223         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6224
6225         retval = hw->phy.ops.acquire(hw);
6226         if (retval) {
6227                 e_err("Could not acquire PHY\n");
6228                 return retval;
6229         }
6230
6231         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6232         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6233         if (retval)
6234                 goto release;
6235
6236         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6237         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6238                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6239                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6240                                            (u16)(mac_reg & 0xFFFF));
6241                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6242                                            (u16)((mac_reg >> 16) & 0xFFFF));
6243         }
6244
6245         /* configure PHY Rx Control register */
6246         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6247         mac_reg = er32(RCTL);
6248         if (mac_reg & E1000_RCTL_UPE)
6249                 phy_reg |= BM_RCTL_UPE;
6250         if (mac_reg & E1000_RCTL_MPE)
6251                 phy_reg |= BM_RCTL_MPE;
6252         phy_reg &= ~(BM_RCTL_MO_MASK);
6253         if (mac_reg & E1000_RCTL_MO_3)
6254                 phy_reg |= (FIELD_GET(E1000_RCTL_MO_3, mac_reg)
6255                             << BM_RCTL_MO_SHIFT);
6256         if (mac_reg & E1000_RCTL_BAM)
6257                 phy_reg |= BM_RCTL_BAM;
6258         if (mac_reg & E1000_RCTL_PMCF)
6259                 phy_reg |= BM_RCTL_PMCF;
6260         mac_reg = er32(CTRL);
6261         if (mac_reg & E1000_CTRL_RFCE)
6262                 phy_reg |= BM_RCTL_RFCE;
6263         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6264
6265         wuc = E1000_WUC_PME_EN;
6266         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6267                 wuc |= E1000_WUC_APME;
6268
6269         /* enable PHY wakeup in MAC register */
6270         ew32(WUFC, wufc);
6271         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6272                    E1000_WUC_PME_STATUS | wuc));
6273
6274         /* configure and enable PHY wakeup in PHY registers */
6275         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6276         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6277
6278         /* activate PHY wakeup */
6279         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6280         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6281         if (retval)
6282                 e_err("Could not set PHY Host Wakeup bit\n");
6283 release:
6284         hw->phy.ops.release(hw);
6285
6286         return retval;
6287 }
6288
6289 static void e1000e_flush_lpic(struct pci_dev *pdev)
6290 {
6291         struct net_device *netdev = pci_get_drvdata(pdev);
6292         struct e1000_adapter *adapter = netdev_priv(netdev);
6293         struct e1000_hw *hw = &adapter->hw;
6294         u32 ret_val;
6295
6296         pm_runtime_get_sync(netdev->dev.parent);
6297
6298         ret_val = hw->phy.ops.acquire(hw);
6299         if (ret_val)
6300                 goto fl_out;
6301
6302         pr_info("EEE TX LPI TIMER: %08X\n",
6303                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6304
6305         hw->phy.ops.release(hw);
6306
6307 fl_out:
6308         pm_runtime_put_sync(netdev->dev.parent);
6309 }
6310
6311 /* S0ix implementation */
6312 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6313 {
6314         struct e1000_hw *hw = &adapter->hw;
6315         u32 mac_data;
6316         u16 phy_data;
6317
6318         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6319             hw->mac.type >= e1000_pch_adp) {
6320                 /* Request ME configure the device for S0ix */
6321                 mac_data = er32(H2ME);
6322                 mac_data |= E1000_H2ME_START_DPG;
6323                 mac_data &= ~E1000_H2ME_EXIT_DPG;
6324                 trace_e1000e_trace_mac_register(mac_data);
6325                 ew32(H2ME, mac_data);
6326         } else {
6327                 /* Request driver configure the device to S0ix */
6328                 /* Disable the periodic inband message,
6329                  * don't request PCIe clock in K1 page770_17[10:9] = 10b
6330                  */
6331                 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6332                 phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6333                 phy_data |= BIT(10);
6334                 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6335
6336                 /* Make sure we don't exit K1 every time a new packet arrives
6337                  * 772_29[5] = 1 CS_Mode_Stay_In_K1
6338                  */
6339                 e1e_rphy(hw, I217_CGFREG, &phy_data);
6340                 phy_data |= BIT(5);
6341                 e1e_wphy(hw, I217_CGFREG, phy_data);
6342
6343                 /* Change the MAC/PHY interface to SMBus
6344                  * Force the SMBus in PHY page769_23[0] = 1
6345                  * Force the SMBus in MAC CTRL_EXT[11] = 1
6346                  */
6347                 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6348                 phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6349                 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6350                 mac_data = er32(CTRL_EXT);
6351                 mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6352                 ew32(CTRL_EXT, mac_data);
6353
6354                 /* DFT control: PHY bit: page769_20[0] = 1
6355                  * page769_20[7] - PHY PLL stop
6356                  * page769_20[8] - PHY go to the electrical idle
6357                  * page769_20[9] - PHY serdes disable
6358                  * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6359                  */
6360                 e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6361                 phy_data |= BIT(0);
6362                 phy_data |= BIT(7);
6363                 phy_data |= BIT(8);
6364                 phy_data |= BIT(9);
6365                 e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6366
6367                 mac_data = er32(EXTCNF_CTRL);
6368                 mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6369                 ew32(EXTCNF_CTRL, mac_data);
6370
6371                 /* Disable disconnected cable conditioning for Power Gating */
6372                 mac_data = er32(DPGFR);
6373                 mac_data |= BIT(2);
6374                 ew32(DPGFR, mac_data);
6375
6376                 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6377                 mac_data = er32(CTRL_EXT);
6378                 mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6379                 ew32(CTRL_EXT, mac_data);
6380         }
6381
6382         /* Enable the Dynamic Power Gating in the MAC */
6383         mac_data = er32(FEXTNVM7);
6384         mac_data |= BIT(22);
6385         ew32(FEXTNVM7, mac_data);
6386
6387         /* Don't wake from dynamic Power Gating with clock request */
6388         mac_data = er32(FEXTNVM12);
6389         mac_data |= BIT(12);
6390         ew32(FEXTNVM12, mac_data);
6391
6392         /* Ungate PGCB clock */
6393         mac_data = er32(FEXTNVM9);
6394         mac_data &= ~BIT(28);
6395         ew32(FEXTNVM9, mac_data);
6396
6397         /* Enable K1 off to enable mPHY Power Gating */
6398         mac_data = er32(FEXTNVM6);
6399         mac_data |= BIT(31);
6400         ew32(FEXTNVM6, mac_data);
6401
6402         /* Enable mPHY power gating for any link and speed */
6403         mac_data = er32(FEXTNVM8);
6404         mac_data |= BIT(9);
6405         ew32(FEXTNVM8, mac_data);
6406
6407         /* No MAC DPG gating SLP_S0 in modern standby
6408          * Switch the logic of the lanphypc to use PMC counter
6409          */
6410         mac_data = er32(FEXTNVM5);
6411         mac_data |= BIT(7);
6412         ew32(FEXTNVM5, mac_data);
6413
6414         /* Disable the time synchronization clock */
6415         mac_data = er32(FEXTNVM7);
6416         mac_data |= BIT(31);
6417         mac_data &= ~BIT(0);
6418         ew32(FEXTNVM7, mac_data);
6419
6420         /* Dynamic Power Gating Enable */
6421         mac_data = er32(CTRL_EXT);
6422         mac_data |= BIT(3);
6423         ew32(CTRL_EXT, mac_data);
6424
6425         /* Check MAC Tx/Rx packet buffer pointers.
6426          * Reset MAC Tx/Rx packet buffer pointers to suppress any
6427          * pending traffic indication that would prevent power gating.
6428          */
6429         mac_data = er32(TDFH);
6430         if (mac_data)
6431                 ew32(TDFH, 0);
6432         mac_data = er32(TDFT);
6433         if (mac_data)
6434                 ew32(TDFT, 0);
6435         mac_data = er32(TDFHS);
6436         if (mac_data)
6437                 ew32(TDFHS, 0);
6438         mac_data = er32(TDFTS);
6439         if (mac_data)
6440                 ew32(TDFTS, 0);
6441         mac_data = er32(TDFPC);
6442         if (mac_data)
6443                 ew32(TDFPC, 0);
6444         mac_data = er32(RDFH);
6445         if (mac_data)
6446                 ew32(RDFH, 0);
6447         mac_data = er32(RDFT);
6448         if (mac_data)
6449                 ew32(RDFT, 0);
6450         mac_data = er32(RDFHS);
6451         if (mac_data)
6452                 ew32(RDFHS, 0);
6453         mac_data = er32(RDFTS);
6454         if (mac_data)
6455                 ew32(RDFTS, 0);
6456         mac_data = er32(RDFPC);
6457         if (mac_data)
6458                 ew32(RDFPC, 0);
6459 }
6460
6461 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6462 {
6463         struct e1000_hw *hw = &adapter->hw;
6464         bool firmware_bug = false;
6465         u32 mac_data;
6466         u16 phy_data;
6467         u32 i = 0;
6468
6469         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6470             hw->mac.type >= e1000_pch_adp) {
6471                 /* Keep the GPT clock enabled for CSME */
6472                 mac_data = er32(FEXTNVM);
6473                 mac_data |= BIT(3);
6474                 ew32(FEXTNVM, mac_data);
6475                 /* Request ME unconfigure the device from S0ix */
6476                 mac_data = er32(H2ME);
6477                 mac_data &= ~E1000_H2ME_START_DPG;
6478                 mac_data |= E1000_H2ME_EXIT_DPG;
6479                 trace_e1000e_trace_mac_register(mac_data);
6480                 ew32(H2ME, mac_data);
6481
6482                 /* Poll up to 2.5 seconds for ME to unconfigure DPG.
6483                  * If this takes more than 1 second, show a warning indicating a
6484                  * firmware bug
6485                  */
6486                 while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6487                         if (i > 100 && !firmware_bug)
6488                                 firmware_bug = true;
6489
6490                         if (i++ == 250) {
6491                                 e_dbg("Timeout (firmware bug): %d msec\n",
6492                                       i * 10);
6493                                 break;
6494                         }
6495
6496                         usleep_range(10000, 11000);
6497                 }
6498                 if (firmware_bug)
6499                         e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6500                                i * 10);
6501                 else
6502                         e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6503         } else {
6504                 /* Request driver unconfigure the device from S0ix */
6505
6506                 /* Cancel disable disconnected cable conditioning
6507                  * for Power Gating
6508                  */
6509                 mac_data = er32(DPGFR);
6510                 mac_data &= ~BIT(2);
6511                 ew32(DPGFR, mac_data);
6512
6513                 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6514                 mac_data = er32(CTRL_EXT);
6515                 mac_data &= 0xFFF7FFFF;
6516                 ew32(CTRL_EXT, mac_data);
6517
6518                 /* Enable the periodic inband message,
6519                  * Request PCIe clock in K1 page770_17[10:9] =01b
6520                  */
6521                 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6522                 phy_data &= 0xFBFF;
6523                 phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6524                 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6525
6526                 /* Return back configuration
6527                  * 772_29[5] = 0 CS_Mode_Stay_In_K1
6528                  */
6529                 e1e_rphy(hw, I217_CGFREG, &phy_data);
6530                 phy_data &= 0xFFDF;
6531                 e1e_wphy(hw, I217_CGFREG, phy_data);
6532
6533                 /* Change the MAC/PHY interface to Kumeran
6534                  * Unforce the SMBus in PHY page769_23[0] = 0
6535                  * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6536                  */
6537                 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6538                 phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6539                 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6540                 mac_data = er32(CTRL_EXT);
6541                 mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6542                 ew32(CTRL_EXT, mac_data);
6543         }
6544
6545         /* Disable Dynamic Power Gating */
6546         mac_data = er32(CTRL_EXT);
6547         mac_data &= 0xFFFFFFF7;
6548         ew32(CTRL_EXT, mac_data);
6549
6550         /* Enable the time synchronization clock */
6551         mac_data = er32(FEXTNVM7);
6552         mac_data &= ~BIT(31);
6553         mac_data |= BIT(0);
6554         ew32(FEXTNVM7, mac_data);
6555
6556         /* Disable the Dynamic Power Gating in the MAC */
6557         mac_data = er32(FEXTNVM7);
6558         mac_data &= 0xFFBFFFFF;
6559         ew32(FEXTNVM7, mac_data);
6560
6561         /* Disable mPHY power gating for any link and speed */
6562         mac_data = er32(FEXTNVM8);
6563         mac_data &= ~BIT(9);
6564         ew32(FEXTNVM8, mac_data);
6565
6566         /* Disable K1 off */
6567         mac_data = er32(FEXTNVM6);
6568         mac_data &= ~BIT(31);
6569         ew32(FEXTNVM6, mac_data);
6570
6571         /* Disable Ungate PGCB clock */
6572         mac_data = er32(FEXTNVM9);
6573         mac_data |= BIT(28);
6574         ew32(FEXTNVM9, mac_data);
6575
6576         /* Cancel not waking from dynamic
6577          * Power Gating with clock request
6578          */
6579         mac_data = er32(FEXTNVM12);
6580         mac_data &= ~BIT(12);
6581         ew32(FEXTNVM12, mac_data);
6582
6583         /* Revert the lanphypc logic to use the internal Gbe counter
6584          * and not the PMC counter
6585          */
6586         mac_data = er32(FEXTNVM5);
6587         mac_data &= 0xFFFFFF7F;
6588         ew32(FEXTNVM5, mac_data);
6589 }
6590
6591 static int e1000e_pm_freeze(struct device *dev)
6592 {
6593         struct net_device *netdev = dev_get_drvdata(dev);
6594         struct e1000_adapter *adapter = netdev_priv(netdev);
6595         bool present;
6596
6597         rtnl_lock();
6598
6599         present = netif_device_present(netdev);
6600         netif_device_detach(netdev);
6601
6602         if (present && netif_running(netdev)) {
6603                 int count = E1000_CHECK_RESET_COUNT;
6604
6605                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6606                         usleep_range(10000, 11000);
6607
6608                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6609
6610                 /* Quiesce the device without resetting the hardware */
6611                 e1000e_down(adapter, false);
6612                 e1000_free_irq(adapter);
6613         }
6614         rtnl_unlock();
6615
6616         e1000e_reset_interrupt_capability(adapter);
6617
6618         /* Allow time for pending master requests to run */
6619         e1000e_disable_pcie_master(&adapter->hw);
6620
6621         return 0;
6622 }
6623
6624 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6625 {
6626         struct net_device *netdev = pci_get_drvdata(pdev);
6627         struct e1000_adapter *adapter = netdev_priv(netdev);
6628         struct e1000_hw *hw = &adapter->hw;
6629         u32 ctrl, ctrl_ext, rctl, status, wufc;
6630         int retval = 0;
6631
6632         /* Runtime suspend should only enable wakeup for link changes */
6633         if (runtime)
6634                 wufc = E1000_WUFC_LNKC;
6635         else if (device_may_wakeup(&pdev->dev))
6636                 wufc = adapter->wol;
6637         else
6638                 wufc = 0;
6639
6640         status = er32(STATUS);
6641         if (status & E1000_STATUS_LU)
6642                 wufc &= ~E1000_WUFC_LNKC;
6643
6644         if (wufc) {
6645                 e1000_setup_rctl(adapter);
6646                 e1000e_set_rx_mode(netdev);
6647
6648                 /* turn on all-multi mode if wake on multicast is enabled */
6649                 if (wufc & E1000_WUFC_MC) {
6650                         rctl = er32(RCTL);
6651                         rctl |= E1000_RCTL_MPE;
6652                         ew32(RCTL, rctl);
6653                 }
6654
6655                 ctrl = er32(CTRL);
6656                 ctrl |= E1000_CTRL_ADVD3WUC;
6657                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6658                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6659                 ew32(CTRL, ctrl);
6660
6661                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6662                     adapter->hw.phy.media_type ==
6663                     e1000_media_type_internal_serdes) {
6664                         /* keep the laser running in D3 */
6665                         ctrl_ext = er32(CTRL_EXT);
6666                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6667                         ew32(CTRL_EXT, ctrl_ext);
6668                 }
6669
6670                 if (!runtime)
6671                         e1000e_power_up_phy(adapter);
6672
6673                 if (adapter->flags & FLAG_IS_ICH)
6674                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6675
6676                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6677                         /* enable wakeup by the PHY */
6678                         retval = e1000_init_phy_wakeup(adapter, wufc);
6679                         if (retval) {
6680                                 e_err("Failed to enable wakeup\n");
6681                                 goto skip_phy_configurations;
6682                         }
6683                 } else {
6684                         /* enable wakeup by the MAC */
6685                         ew32(WUFC, wufc);
6686                         ew32(WUC, E1000_WUC_PME_EN);
6687                 }
6688         } else {
6689                 ew32(WUC, 0);
6690                 ew32(WUFC, 0);
6691
6692                 e1000_power_down_phy(adapter);
6693         }
6694
6695         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6696                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6697         } else if (hw->mac.type >= e1000_pch_lpt) {
6698                 if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) {
6699                         /* ULP does not support wake from unicast, multicast
6700                          * or broadcast.
6701                          */
6702                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6703                         if (retval) {
6704                                 e_err("Failed to enable ULP\n");
6705                                 goto skip_phy_configurations;
6706                         }
6707                 }
6708         }
6709
6710         /* Ensure that the appropriate bits are set in LPI_CTRL
6711          * for EEE in Sx
6712          */
6713         if ((hw->phy.type >= e1000_phy_i217) &&
6714             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6715                 u16 lpi_ctrl = 0;
6716
6717                 retval = hw->phy.ops.acquire(hw);
6718                 if (!retval) {
6719                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6720                                                  &lpi_ctrl);
6721                         if (!retval) {
6722                                 if (adapter->eee_advert &
6723                                     hw->dev_spec.ich8lan.eee_lp_ability &
6724                                     I82579_EEE_100_SUPPORTED)
6725                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6726                                 if (adapter->eee_advert &
6727                                     hw->dev_spec.ich8lan.eee_lp_ability &
6728                                     I82579_EEE_1000_SUPPORTED)
6729                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6730
6731                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6732                                                          lpi_ctrl);
6733                         }
6734                 }
6735                 hw->phy.ops.release(hw);
6736         }
6737
6738 skip_phy_configurations:
6739         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6740          * would have already happened in close and is redundant.
6741          */
6742         e1000e_release_hw_control(adapter);
6743
6744         pci_clear_master(pdev);
6745
6746         /* The pci-e switch on some quad port adapters will report a
6747          * correctable error when the MAC transitions from D0 to D3.  To
6748          * prevent this we need to mask off the correctable errors on the
6749          * downstream port of the pci-e switch.
6750          *
6751          * We don't have the associated upstream bridge while assigning
6752          * the PCI device into guest. For example, the KVM on power is
6753          * one of the cases.
6754          */
6755         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6756                 struct pci_dev *us_dev = pdev->bus->self;
6757                 u16 devctl;
6758
6759                 if (!us_dev)
6760                         return 0;
6761
6762                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6763                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6764                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6765
6766                 pci_save_state(pdev);
6767                 pci_prepare_to_sleep(pdev);
6768
6769                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6770         }
6771
6772         return 0;
6773 }
6774
6775 /**
6776  * __e1000e_disable_aspm - Disable ASPM states
6777  * @pdev: pointer to PCI device struct
6778  * @state: bit-mask of ASPM states to disable
6779  * @locked: indication if this context holds pci_bus_sem locked.
6780  *
6781  * Some devices *must* have certain ASPM states disabled per hardware errata.
6782  **/
6783 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6784 {
6785         struct pci_dev *parent = pdev->bus->self;
6786         u16 aspm_dis_mask = 0;
6787         u16 pdev_aspmc, parent_aspmc;
6788
6789         switch (state) {
6790         case PCIE_LINK_STATE_L0S:
6791         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6792                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6793                 fallthrough; /* can't have L1 without L0s */
6794         case PCIE_LINK_STATE_L1:
6795                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6796                 break;
6797         default:
6798                 return;
6799         }
6800
6801         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6802         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6803
6804         if (parent) {
6805                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6806                                           &parent_aspmc);
6807                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6808         }
6809
6810         /* Nothing to do if the ASPM states to be disabled already are */
6811         if (!(pdev_aspmc & aspm_dis_mask) &&
6812             (!parent || !(parent_aspmc & aspm_dis_mask)))
6813                 return;
6814
6815         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6816                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6817                  "L0s" : "",
6818                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6819                  "L1" : "");
6820
6821 #ifdef CONFIG_PCIEASPM
6822         if (locked)
6823                 pci_disable_link_state_locked(pdev, state);
6824         else
6825                 pci_disable_link_state(pdev, state);
6826
6827         /* Double-check ASPM control.  If not disabled by the above, the
6828          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6829          * not enabled); override by writing PCI config space directly.
6830          */
6831         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6832         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6833
6834         if (!(aspm_dis_mask & pdev_aspmc))
6835                 return;
6836 #endif
6837
6838         /* Both device and parent should have the same ASPM setting.
6839          * Disable ASPM in downstream component first and then upstream.
6840          */
6841         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6842
6843         if (parent)
6844                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6845                                            aspm_dis_mask);
6846 }
6847
6848 /**
6849  * e1000e_disable_aspm - Disable ASPM states.
6850  * @pdev: pointer to PCI device struct
6851  * @state: bit-mask of ASPM states to disable
6852  *
6853  * This function acquires the pci_bus_sem!
6854  * Some devices *must* have certain ASPM states disabled per hardware errata.
6855  **/
6856 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6857 {
6858         __e1000e_disable_aspm(pdev, state, 0);
6859 }
6860
6861 /**
6862  * e1000e_disable_aspm_locked - Disable ASPM states.
6863  * @pdev: pointer to PCI device struct
6864  * @state: bit-mask of ASPM states to disable
6865  *
6866  * This function must be called with pci_bus_sem acquired!
6867  * Some devices *must* have certain ASPM states disabled per hardware errata.
6868  **/
6869 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6870 {
6871         __e1000e_disable_aspm(pdev, state, 1);
6872 }
6873
6874 static int e1000e_pm_thaw(struct device *dev)
6875 {
6876         struct net_device *netdev = dev_get_drvdata(dev);
6877         struct e1000_adapter *adapter = netdev_priv(netdev);
6878         int rc = 0;
6879
6880         e1000e_set_interrupt_capability(adapter);
6881
6882         rtnl_lock();
6883         if (netif_running(netdev)) {
6884                 rc = e1000_request_irq(adapter);
6885                 if (rc)
6886                         goto err_irq;
6887
6888                 e1000e_up(adapter);
6889         }
6890
6891         netif_device_attach(netdev);
6892 err_irq:
6893         rtnl_unlock();
6894
6895         return rc;
6896 }
6897
6898 static int __e1000_resume(struct pci_dev *pdev)
6899 {
6900         struct net_device *netdev = pci_get_drvdata(pdev);
6901         struct e1000_adapter *adapter = netdev_priv(netdev);
6902         struct e1000_hw *hw = &adapter->hw;
6903         u16 aspm_disable_flag = 0;
6904
6905         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6906                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6907         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6908                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6909         if (aspm_disable_flag)
6910                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6911
6912         pci_set_master(pdev);
6913
6914         if (hw->mac.type >= e1000_pch2lan)
6915                 e1000_resume_workarounds_pchlan(&adapter->hw);
6916
6917         e1000e_power_up_phy(adapter);
6918
6919         /* report the system wakeup cause from S3/S4 */
6920         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6921                 u16 phy_data;
6922
6923                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6924                 if (phy_data) {
6925                         e_info("PHY Wakeup cause - %s\n",
6926                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6927                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6928                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6929                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6930                                phy_data & E1000_WUS_LNKC ?
6931                                "Link Status Change" : "other");
6932                 }
6933                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6934         } else {
6935                 u32 wus = er32(WUS);
6936
6937                 if (wus) {
6938                         e_info("MAC Wakeup cause - %s\n",
6939                                wus & E1000_WUS_EX ? "Unicast Packet" :
6940                                wus & E1000_WUS_MC ? "Multicast Packet" :
6941                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6942                                wus & E1000_WUS_MAG ? "Magic Packet" :
6943                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6944                                "other");
6945                 }
6946                 ew32(WUS, ~0);
6947         }
6948
6949         e1000e_reset(adapter);
6950
6951         e1000_init_manageability_pt(adapter);
6952
6953         /* If the controller has AMT, do not set DRV_LOAD until the interface
6954          * is up.  For all other cases, let the f/w know that the h/w is now
6955          * under the control of the driver.
6956          */
6957         if (!(adapter->flags & FLAG_HAS_AMT))
6958                 e1000e_get_hw_control(adapter);
6959
6960         return 0;
6961 }
6962
6963 static int e1000e_pm_prepare(struct device *dev)
6964 {
6965         return pm_runtime_suspended(dev) &&
6966                 pm_suspend_via_firmware();
6967 }
6968
6969 static int e1000e_pm_suspend(struct device *dev)
6970 {
6971         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6972         struct e1000_adapter *adapter = netdev_priv(netdev);
6973         struct pci_dev *pdev = to_pci_dev(dev);
6974         int rc;
6975
6976         e1000e_flush_lpic(pdev);
6977
6978         e1000e_pm_freeze(dev);
6979
6980         rc = __e1000_shutdown(pdev, false);
6981         if (!rc) {
6982                 /* Introduce S0ix implementation */
6983                 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6984                         e1000e_s0ix_entry_flow(adapter);
6985         }
6986
6987         return 0;
6988 }
6989
6990 static int e1000e_pm_resume(struct device *dev)
6991 {
6992         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6993         struct e1000_adapter *adapter = netdev_priv(netdev);
6994         struct pci_dev *pdev = to_pci_dev(dev);
6995         int rc;
6996
6997         /* Introduce S0ix implementation */
6998         if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6999                 e1000e_s0ix_exit_flow(adapter);
7000
7001         rc = __e1000_resume(pdev);
7002         if (rc)
7003                 return rc;
7004
7005         return e1000e_pm_thaw(dev);
7006 }
7007
7008 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7009 {
7010         struct net_device *netdev = dev_get_drvdata(dev);
7011         struct e1000_adapter *adapter = netdev_priv(netdev);
7012         u16 eee_lp;
7013
7014         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7015
7016         if (!e1000e_has_link(adapter)) {
7017                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7018                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7019         }
7020
7021         return -EBUSY;
7022 }
7023
7024 static int e1000e_pm_runtime_resume(struct device *dev)
7025 {
7026         struct pci_dev *pdev = to_pci_dev(dev);
7027         struct net_device *netdev = pci_get_drvdata(pdev);
7028         struct e1000_adapter *adapter = netdev_priv(netdev);
7029         int rc;
7030
7031         pdev->pme_poll = true;
7032
7033         rc = __e1000_resume(pdev);
7034         if (rc)
7035                 return rc;
7036
7037         if (netdev->flags & IFF_UP)
7038                 e1000e_up(adapter);
7039
7040         return rc;
7041 }
7042
7043 static int e1000e_pm_runtime_suspend(struct device *dev)
7044 {
7045         struct pci_dev *pdev = to_pci_dev(dev);
7046         struct net_device *netdev = pci_get_drvdata(pdev);
7047         struct e1000_adapter *adapter = netdev_priv(netdev);
7048
7049         if (netdev->flags & IFF_UP) {
7050                 int count = E1000_CHECK_RESET_COUNT;
7051
7052                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7053                         usleep_range(10000, 11000);
7054
7055                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7056
7057                 /* Down the device without resetting the hardware */
7058                 e1000e_down(adapter, false);
7059         }
7060
7061         if (__e1000_shutdown(pdev, true)) {
7062                 e1000e_pm_runtime_resume(dev);
7063                 return -EBUSY;
7064         }
7065
7066         return 0;
7067 }
7068
7069 static void e1000_shutdown(struct pci_dev *pdev)
7070 {
7071         e1000e_flush_lpic(pdev);
7072
7073         e1000e_pm_freeze(&pdev->dev);
7074
7075         __e1000_shutdown(pdev, false);
7076 }
7077
7078 #ifdef CONFIG_NET_POLL_CONTROLLER
7079
7080 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7081 {
7082         struct net_device *netdev = data;
7083         struct e1000_adapter *adapter = netdev_priv(netdev);
7084
7085         if (adapter->msix_entries) {
7086                 int vector, msix_irq;
7087
7088                 vector = 0;
7089                 msix_irq = adapter->msix_entries[vector].vector;
7090                 if (disable_hardirq(msix_irq))
7091                         e1000_intr_msix_rx(msix_irq, netdev);
7092                 enable_irq(msix_irq);
7093
7094                 vector++;
7095                 msix_irq = adapter->msix_entries[vector].vector;
7096                 if (disable_hardirq(msix_irq))
7097                         e1000_intr_msix_tx(msix_irq, netdev);
7098                 enable_irq(msix_irq);
7099
7100                 vector++;
7101                 msix_irq = adapter->msix_entries[vector].vector;
7102                 if (disable_hardirq(msix_irq))
7103                         e1000_msix_other(msix_irq, netdev);
7104                 enable_irq(msix_irq);
7105         }
7106
7107         return IRQ_HANDLED;
7108 }
7109
7110 /**
7111  * e1000_netpoll
7112  * @netdev: network interface device structure
7113  *
7114  * Polling 'interrupt' - used by things like netconsole to send skbs
7115  * without having to re-enable interrupts. It's not called while
7116  * the interrupt routine is executing.
7117  */
7118 static void e1000_netpoll(struct net_device *netdev)
7119 {
7120         struct e1000_adapter *adapter = netdev_priv(netdev);
7121
7122         switch (adapter->int_mode) {
7123         case E1000E_INT_MODE_MSIX:
7124                 e1000_intr_msix(adapter->pdev->irq, netdev);
7125                 break;
7126         case E1000E_INT_MODE_MSI:
7127                 if (disable_hardirq(adapter->pdev->irq))
7128                         e1000_intr_msi(adapter->pdev->irq, netdev);
7129                 enable_irq(adapter->pdev->irq);
7130                 break;
7131         default:                /* E1000E_INT_MODE_LEGACY */
7132                 if (disable_hardirq(adapter->pdev->irq))
7133                         e1000_intr(adapter->pdev->irq, netdev);
7134                 enable_irq(adapter->pdev->irq);
7135                 break;
7136         }
7137 }
7138 #endif
7139
7140 /**
7141  * e1000_io_error_detected - called when PCI error is detected
7142  * @pdev: Pointer to PCI device
7143  * @state: The current pci connection state
7144  *
7145  * This function is called after a PCI bus error affecting
7146  * this device has been detected.
7147  */
7148 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7149                                                 pci_channel_state_t state)
7150 {
7151         e1000e_pm_freeze(&pdev->dev);
7152
7153         if (state == pci_channel_io_perm_failure)
7154                 return PCI_ERS_RESULT_DISCONNECT;
7155
7156         pci_disable_device(pdev);
7157
7158         /* Request a slot reset. */
7159         return PCI_ERS_RESULT_NEED_RESET;
7160 }
7161
7162 /**
7163  * e1000_io_slot_reset - called after the pci bus has been reset.
7164  * @pdev: Pointer to PCI device
7165  *
7166  * Restart the card from scratch, as if from a cold-boot. Implementation
7167  * resembles the first-half of the e1000e_pm_resume routine.
7168  */
7169 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7170 {
7171         struct net_device *netdev = pci_get_drvdata(pdev);
7172         struct e1000_adapter *adapter = netdev_priv(netdev);
7173         struct e1000_hw *hw = &adapter->hw;
7174         u16 aspm_disable_flag = 0;
7175         int err;
7176         pci_ers_result_t result;
7177
7178         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7179                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7180         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7181                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7182         if (aspm_disable_flag)
7183                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7184
7185         err = pci_enable_device_mem(pdev);
7186         if (err) {
7187                 dev_err(&pdev->dev,
7188                         "Cannot re-enable PCI device after reset.\n");
7189                 result = PCI_ERS_RESULT_DISCONNECT;
7190         } else {
7191                 pdev->state_saved = true;
7192                 pci_restore_state(pdev);
7193                 pci_set_master(pdev);
7194
7195                 pci_enable_wake(pdev, PCI_D3hot, 0);
7196                 pci_enable_wake(pdev, PCI_D3cold, 0);
7197
7198                 e1000e_reset(adapter);
7199                 ew32(WUS, ~0);
7200                 result = PCI_ERS_RESULT_RECOVERED;
7201         }
7202
7203         return result;
7204 }
7205
7206 /**
7207  * e1000_io_resume - called when traffic can start flowing again.
7208  * @pdev: Pointer to PCI device
7209  *
7210  * This callback is called when the error recovery driver tells us that
7211  * its OK to resume normal operation. Implementation resembles the
7212  * second-half of the e1000e_pm_resume routine.
7213  */
7214 static void e1000_io_resume(struct pci_dev *pdev)
7215 {
7216         struct net_device *netdev = pci_get_drvdata(pdev);
7217         struct e1000_adapter *adapter = netdev_priv(netdev);
7218
7219         e1000_init_manageability_pt(adapter);
7220
7221         e1000e_pm_thaw(&pdev->dev);
7222
7223         /* If the controller has AMT, do not set DRV_LOAD until the interface
7224          * is up.  For all other cases, let the f/w know that the h/w is now
7225          * under the control of the driver.
7226          */
7227         if (!(adapter->flags & FLAG_HAS_AMT))
7228                 e1000e_get_hw_control(adapter);
7229 }
7230
7231 static void e1000_print_device_info(struct e1000_adapter *adapter)
7232 {
7233         struct e1000_hw *hw = &adapter->hw;
7234         struct net_device *netdev = adapter->netdev;
7235         u32 ret_val;
7236         u8 pba_str[E1000_PBANUM_LENGTH];
7237
7238         /* print bus type/speed/width info */
7239         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7240                /* bus width */
7241                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7242                 "Width x1"),
7243                /* MAC address */
7244                netdev->dev_addr);
7245         e_info("Intel(R) PRO/%s Network Connection\n",
7246                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7247         ret_val = e1000_read_pba_string_generic(hw, pba_str,
7248                                                 E1000_PBANUM_LENGTH);
7249         if (ret_val)
7250                 strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7251         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7252                hw->mac.type, hw->phy.type, pba_str);
7253 }
7254
7255 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7256 {
7257         struct e1000_hw *hw = &adapter->hw;
7258         int ret_val;
7259         u16 buf = 0;
7260
7261         if (hw->mac.type != e1000_82573)
7262                 return;
7263
7264         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7265         le16_to_cpus(&buf);
7266         if (!ret_val && (!(buf & BIT(0)))) {
7267                 /* Deep Smart Power Down (DSPD) */
7268                 dev_warn(&adapter->pdev->dev,
7269                          "Warning: detected DSPD enabled in EEPROM\n");
7270         }
7271 }
7272
7273 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7274                                             netdev_features_t features)
7275 {
7276         struct e1000_adapter *adapter = netdev_priv(netdev);
7277         struct e1000_hw *hw = &adapter->hw;
7278
7279         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7280         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7281                 features &= ~NETIF_F_RXFCS;
7282
7283         /* Since there is no support for separate Rx/Tx vlan accel
7284          * enable/disable make sure Tx flag is always in same state as Rx.
7285          */
7286         if (features & NETIF_F_HW_VLAN_CTAG_RX)
7287                 features |= NETIF_F_HW_VLAN_CTAG_TX;
7288         else
7289                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7290
7291         return features;
7292 }
7293
7294 static int e1000_set_features(struct net_device *netdev,
7295                               netdev_features_t features)
7296 {
7297         struct e1000_adapter *adapter = netdev_priv(netdev);
7298         netdev_features_t changed = features ^ netdev->features;
7299
7300         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7301                 adapter->flags |= FLAG_TSO_FORCE;
7302
7303         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7304                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7305                          NETIF_F_RXALL)))
7306                 return 0;
7307
7308         if (changed & NETIF_F_RXFCS) {
7309                 if (features & NETIF_F_RXFCS) {
7310                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7311                 } else {
7312                         /* We need to take it back to defaults, which might mean
7313                          * stripping is still disabled at the adapter level.
7314                          */
7315                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7316                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7317                         else
7318                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7319                 }
7320         }
7321
7322         netdev->features = features;
7323
7324         if (netif_running(netdev))
7325                 e1000e_reinit_locked(adapter);
7326         else
7327                 e1000e_reset(adapter);
7328
7329         return 1;
7330 }
7331
7332 static const struct net_device_ops e1000e_netdev_ops = {
7333         .ndo_open               = e1000e_open,
7334         .ndo_stop               = e1000e_close,
7335         .ndo_start_xmit         = e1000_xmit_frame,
7336         .ndo_get_stats64        = e1000e_get_stats64,
7337         .ndo_set_rx_mode        = e1000e_set_rx_mode,
7338         .ndo_set_mac_address    = e1000_set_mac,
7339         .ndo_change_mtu         = e1000_change_mtu,
7340         .ndo_eth_ioctl          = e1000_ioctl,
7341         .ndo_tx_timeout         = e1000_tx_timeout,
7342         .ndo_validate_addr      = eth_validate_addr,
7343
7344         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
7345         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
7346 #ifdef CONFIG_NET_POLL_CONTROLLER
7347         .ndo_poll_controller    = e1000_netpoll,
7348 #endif
7349         .ndo_set_features = e1000_set_features,
7350         .ndo_fix_features = e1000_fix_features,
7351         .ndo_features_check     = passthru_features_check,
7352 };
7353
7354 /**
7355  * e1000_probe - Device Initialization Routine
7356  * @pdev: PCI device information struct
7357  * @ent: entry in e1000_pci_tbl
7358  *
7359  * Returns 0 on success, negative on failure
7360  *
7361  * e1000_probe initializes an adapter identified by a pci_dev structure.
7362  * The OS initialization, configuring of the adapter private structure,
7363  * and a hardware reset occur.
7364  **/
7365 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7366 {
7367         struct net_device *netdev;
7368         struct e1000_adapter *adapter;
7369         struct e1000_hw *hw;
7370         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7371         resource_size_t mmio_start, mmio_len;
7372         resource_size_t flash_start, flash_len;
7373         static int cards_found;
7374         u16 aspm_disable_flag = 0;
7375         u16 eeprom_data = 0;
7376         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7377         int bars, i, err;
7378         s32 ret_val = 0;
7379
7380         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7381                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7382         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7383                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7384         if (aspm_disable_flag)
7385                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7386
7387         err = pci_enable_device_mem(pdev);
7388         if (err)
7389                 return err;
7390
7391         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7392         if (err) {
7393                 dev_err(&pdev->dev,
7394                         "No usable DMA configuration, aborting\n");
7395                 goto err_dma;
7396         }
7397
7398         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7399         err = pci_request_selected_regions_exclusive(pdev, bars,
7400                                                      e1000e_driver_name);
7401         if (err)
7402                 goto err_pci_reg;
7403
7404         pci_set_master(pdev);
7405         /* PCI config space info */
7406         err = pci_save_state(pdev);
7407         if (err)
7408                 goto err_alloc_etherdev;
7409
7410         err = -ENOMEM;
7411         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7412         if (!netdev)
7413                 goto err_alloc_etherdev;
7414
7415         SET_NETDEV_DEV(netdev, &pdev->dev);
7416
7417         netdev->irq = pdev->irq;
7418
7419         pci_set_drvdata(pdev, netdev);
7420         adapter = netdev_priv(netdev);
7421         hw = &adapter->hw;
7422         adapter->netdev = netdev;
7423         adapter->pdev = pdev;
7424         adapter->ei = ei;
7425         adapter->pba = ei->pba;
7426         adapter->flags = ei->flags;
7427         adapter->flags2 = ei->flags2;
7428         adapter->hw.adapter = adapter;
7429         adapter->hw.mac.type = ei->mac;
7430         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7431         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7432
7433         mmio_start = pci_resource_start(pdev, 0);
7434         mmio_len = pci_resource_len(pdev, 0);
7435
7436         err = -EIO;
7437         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7438         if (!adapter->hw.hw_addr)
7439                 goto err_ioremap;
7440
7441         if ((adapter->flags & FLAG_HAS_FLASH) &&
7442             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7443             (hw->mac.type < e1000_pch_spt)) {
7444                 flash_start = pci_resource_start(pdev, 1);
7445                 flash_len = pci_resource_len(pdev, 1);
7446                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7447                 if (!adapter->hw.flash_address)
7448                         goto err_flashmap;
7449         }
7450
7451         /* Set default EEE advertisement */
7452         if (adapter->flags2 & FLAG2_HAS_EEE)
7453                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7454
7455         /* construct the net_device struct */
7456         netdev->netdev_ops = &e1000e_netdev_ops;
7457         e1000e_set_ethtool_ops(netdev);
7458         netdev->watchdog_timeo = 5 * HZ;
7459         netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7460         strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7461
7462         netdev->mem_start = mmio_start;
7463         netdev->mem_end = mmio_start + mmio_len;
7464
7465         adapter->bd_number = cards_found++;
7466
7467         e1000e_check_options(adapter);
7468
7469         /* setup adapter struct */
7470         err = e1000_sw_init(adapter);
7471         if (err)
7472                 goto err_sw_init;
7473
7474         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7475         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7476         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7477
7478         err = ei->get_variants(adapter);
7479         if (err)
7480                 goto err_hw_init;
7481
7482         if ((adapter->flags & FLAG_IS_ICH) &&
7483             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7484             (hw->mac.type < e1000_pch_spt))
7485                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7486
7487         hw->mac.ops.get_bus_info(&adapter->hw);
7488
7489         adapter->hw.phy.autoneg_wait_to_complete = 0;
7490
7491         /* Copper options */
7492         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7493                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7494                 adapter->hw.phy.disable_polarity_correction = 0;
7495                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7496         }
7497
7498         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7499                 dev_info(&pdev->dev,
7500                          "PHY reset is blocked due to SOL/IDER session.\n");
7501
7502         /* Set initial default active device features */
7503         netdev->features = (NETIF_F_SG |
7504                             NETIF_F_HW_VLAN_CTAG_RX |
7505                             NETIF_F_HW_VLAN_CTAG_TX |
7506                             NETIF_F_TSO |
7507                             NETIF_F_TSO6 |
7508                             NETIF_F_RXHASH |
7509                             NETIF_F_RXCSUM |
7510                             NETIF_F_HW_CSUM);
7511
7512         /* disable TSO for pcie and 10/100 speeds to avoid
7513          * some hardware issues and for i219 to fix transfer
7514          * speed being capped at 60%
7515          */
7516         if (!(adapter->flags & FLAG_TSO_FORCE)) {
7517                 switch (adapter->link_speed) {
7518                 case SPEED_10:
7519                 case SPEED_100:
7520                         e_info("10/100 speed: disabling TSO\n");
7521                         netdev->features &= ~NETIF_F_TSO;
7522                         netdev->features &= ~NETIF_F_TSO6;
7523                         break;
7524                 case SPEED_1000:
7525                         netdev->features |= NETIF_F_TSO;
7526                         netdev->features |= NETIF_F_TSO6;
7527                         break;
7528                 default:
7529                         /* oops */
7530                         break;
7531                 }
7532                 if (hw->mac.type == e1000_pch_spt) {
7533                         netdev->features &= ~NETIF_F_TSO;
7534                         netdev->features &= ~NETIF_F_TSO6;
7535                 }
7536         }
7537
7538         /* Set user-changeable features (subset of all device features) */
7539         netdev->hw_features = netdev->features;
7540         netdev->hw_features |= NETIF_F_RXFCS;
7541         netdev->priv_flags |= IFF_SUPP_NOFCS;
7542         netdev->hw_features |= NETIF_F_RXALL;
7543
7544         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7545                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7546
7547         netdev->vlan_features |= (NETIF_F_SG |
7548                                   NETIF_F_TSO |
7549                                   NETIF_F_TSO6 |
7550                                   NETIF_F_HW_CSUM);
7551
7552         netdev->priv_flags |= IFF_UNICAST_FLT;
7553
7554         netdev->features |= NETIF_F_HIGHDMA;
7555         netdev->vlan_features |= NETIF_F_HIGHDMA;
7556
7557         /* MTU range: 68 - max_hw_frame_size */
7558         netdev->min_mtu = ETH_MIN_MTU;
7559         netdev->max_mtu = adapter->max_hw_frame_size -
7560                           (VLAN_ETH_HLEN + ETH_FCS_LEN);
7561
7562         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7563                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7564
7565         /* before reading the NVM, reset the controller to
7566          * put the device in a known good starting state
7567          */
7568         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7569
7570         /* systems with ASPM and others may see the checksum fail on the first
7571          * attempt. Let's give it a few tries
7572          */
7573         for (i = 0;; i++) {
7574                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7575                         break;
7576                 if (i == 2) {
7577                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7578                         err = -EIO;
7579                         goto err_eeprom;
7580                 }
7581         }
7582
7583         e1000_eeprom_checks(adapter);
7584
7585         /* copy the MAC address */
7586         if (e1000e_read_mac_addr(&adapter->hw))
7587                 dev_err(&pdev->dev,
7588                         "NVM Read Error while reading MAC address\n");
7589
7590         eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7591
7592         if (!is_valid_ether_addr(netdev->dev_addr)) {
7593                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7594                         netdev->dev_addr);
7595                 err = -EIO;
7596                 goto err_eeprom;
7597         }
7598
7599         timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7600         timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7601
7602         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7603         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7604         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7605         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7606         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7607
7608         /* Initialize link parameters. User can change them with ethtool */
7609         adapter->hw.mac.autoneg = 1;
7610         adapter->fc_autoneg = true;
7611         adapter->hw.fc.requested_mode = e1000_fc_default;
7612         adapter->hw.fc.current_mode = e1000_fc_default;
7613         adapter->hw.phy.autoneg_advertised = 0x2f;
7614
7615         /* Initial Wake on LAN setting - If APM wake is enabled in
7616          * the EEPROM, enable the ACPI Magic Packet filter
7617          */
7618         if (adapter->flags & FLAG_APME_IN_WUC) {
7619                 /* APME bit in EEPROM is mapped to WUC.APME */
7620                 eeprom_data = er32(WUC);
7621                 eeprom_apme_mask = E1000_WUC_APME;
7622                 if ((hw->mac.type > e1000_ich10lan) &&
7623                     (eeprom_data & E1000_WUC_PHY_WAKE))
7624                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7625         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7626                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7627                     (adapter->hw.bus.func == 1))
7628                         ret_val = e1000_read_nvm(&adapter->hw,
7629                                               NVM_INIT_CONTROL3_PORT_B,
7630                                               1, &eeprom_data);
7631                 else
7632                         ret_val = e1000_read_nvm(&adapter->hw,
7633                                               NVM_INIT_CONTROL3_PORT_A,
7634                                               1, &eeprom_data);
7635         }
7636
7637         /* fetch WoL from EEPROM */
7638         if (ret_val)
7639                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7640         else if (eeprom_data & eeprom_apme_mask)
7641                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7642
7643         /* now that we have the eeprom settings, apply the special cases
7644          * where the eeprom may be wrong or the board simply won't support
7645          * wake on lan on a particular port
7646          */
7647         if (!(adapter->flags & FLAG_HAS_WOL))
7648                 adapter->eeprom_wol = 0;
7649
7650         /* initialize the wol settings based on the eeprom settings */
7651         adapter->wol = adapter->eeprom_wol;
7652
7653         /* make sure adapter isn't asleep if manageability is enabled */
7654         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7655             (hw->mac.ops.check_mng_mode(hw)))
7656                 device_wakeup_enable(&pdev->dev);
7657
7658         /* save off EEPROM version number */
7659         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7660
7661         if (ret_val) {
7662                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7663                 adapter->eeprom_vers = 0;
7664         }
7665
7666         /* init PTP hardware clock */
7667         e1000e_ptp_init(adapter);
7668
7669         /* reset the hardware with the new settings */
7670         e1000e_reset(adapter);
7671
7672         /* If the controller has AMT, do not set DRV_LOAD until the interface
7673          * is up.  For all other cases, let the f/w know that the h/w is now
7674          * under the control of the driver.
7675          */
7676         if (!(adapter->flags & FLAG_HAS_AMT))
7677                 e1000e_get_hw_control(adapter);
7678
7679         if (hw->mac.type >= e1000_pch_cnp)
7680                 adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7681
7682         strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7683         err = register_netdev(netdev);
7684         if (err)
7685                 goto err_register;
7686
7687         /* carrier off reporting is important to ethtool even BEFORE open */
7688         netif_carrier_off(netdev);
7689
7690         e1000_print_device_info(adapter);
7691
7692         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7693
7694         if (pci_dev_run_wake(pdev))
7695                 pm_runtime_put_noidle(&pdev->dev);
7696
7697         return 0;
7698
7699 err_register:
7700         if (!(adapter->flags & FLAG_HAS_AMT))
7701                 e1000e_release_hw_control(adapter);
7702 err_eeprom:
7703         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7704                 e1000_phy_hw_reset(&adapter->hw);
7705 err_hw_init:
7706         kfree(adapter->tx_ring);
7707         kfree(adapter->rx_ring);
7708 err_sw_init:
7709         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7710                 iounmap(adapter->hw.flash_address);
7711         e1000e_reset_interrupt_capability(adapter);
7712 err_flashmap:
7713         iounmap(adapter->hw.hw_addr);
7714 err_ioremap:
7715         free_netdev(netdev);
7716 err_alloc_etherdev:
7717         pci_release_mem_regions(pdev);
7718 err_pci_reg:
7719 err_dma:
7720         pci_disable_device(pdev);
7721         return err;
7722 }
7723
7724 /**
7725  * e1000_remove - Device Removal Routine
7726  * @pdev: PCI device information struct
7727  *
7728  * e1000_remove is called by the PCI subsystem to alert the driver
7729  * that it should release a PCI device.  This could be caused by a
7730  * Hot-Plug event, or because the driver is going to be removed from
7731  * memory.
7732  **/
7733 static void e1000_remove(struct pci_dev *pdev)
7734 {
7735         struct net_device *netdev = pci_get_drvdata(pdev);
7736         struct e1000_adapter *adapter = netdev_priv(netdev);
7737
7738         e1000e_ptp_remove(adapter);
7739
7740         /* The timers may be rescheduled, so explicitly disable them
7741          * from being rescheduled.
7742          */
7743         set_bit(__E1000_DOWN, &adapter->state);
7744         del_timer_sync(&adapter->watchdog_timer);
7745         del_timer_sync(&adapter->phy_info_timer);
7746
7747         cancel_work_sync(&adapter->reset_task);
7748         cancel_work_sync(&adapter->watchdog_task);
7749         cancel_work_sync(&adapter->downshift_task);
7750         cancel_work_sync(&adapter->update_phy_task);
7751         cancel_work_sync(&adapter->print_hang_task);
7752
7753         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7754                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7755                 if (adapter->tx_hwtstamp_skb) {
7756                         dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7757                         adapter->tx_hwtstamp_skb = NULL;
7758                 }
7759         }
7760
7761         unregister_netdev(netdev);
7762
7763         if (pci_dev_run_wake(pdev))
7764                 pm_runtime_get_noresume(&pdev->dev);
7765
7766         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7767          * would have already happened in close and is redundant.
7768          */
7769         e1000e_release_hw_control(adapter);
7770
7771         e1000e_reset_interrupt_capability(adapter);
7772         kfree(adapter->tx_ring);
7773         kfree(adapter->rx_ring);
7774
7775         iounmap(adapter->hw.hw_addr);
7776         if ((adapter->hw.flash_address) &&
7777             (adapter->hw.mac.type < e1000_pch_spt))
7778                 iounmap(adapter->hw.flash_address);
7779         pci_release_mem_regions(pdev);
7780
7781         free_netdev(netdev);
7782
7783         pci_disable_device(pdev);
7784 }
7785
7786 /* PCI Error Recovery (ERS) */
7787 static const struct pci_error_handlers e1000_err_handler = {
7788         .error_detected = e1000_io_error_detected,
7789         .slot_reset = e1000_io_slot_reset,
7790         .resume = e1000_io_resume,
7791 };
7792
7793 static const struct pci_device_id e1000_pci_tbl[] = {
7794         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7795         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7796         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7797         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7798           board_82571 },
7799         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7800         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7801         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7802         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7803         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7804
7805         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7806         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7807         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7808         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7809
7810         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7811         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7812         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7813
7814         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7815         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7816         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7817
7818         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7819           board_80003es2lan },
7820         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7821           board_80003es2lan },
7822         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7823           board_80003es2lan },
7824         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7825           board_80003es2lan },
7826
7827         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7828         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7829         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7830         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7831         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7832         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7833         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7834         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7835
7836         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7837         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7838         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7839         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7840         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7841         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7842         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7843         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7844         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7845
7846         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7847         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7848         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7849
7850         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7851         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7852         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7853
7854         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7855         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7856         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7857         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7858
7859         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7860         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7861
7862         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7863         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7864         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7865         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7866         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7867         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7868         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7869         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7870         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7871         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7872         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7873         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7874         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7875         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7876         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7877         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7878         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7879         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7880         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7881         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7882         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7883         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7884         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7885         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7886         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7887         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7888         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7889         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7890         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7891         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7892         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7893         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7894         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7895         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7896         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7897         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7898         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7899         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7900         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7901         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7902         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7903         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7904         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7905         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7906         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7907         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM19), board_pch_adp },
7908         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V19), board_pch_adp },
7909         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7910         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7911         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7912         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7913         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7914         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7915         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7916         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7917         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7918         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7919         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7920         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7921         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7922         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7923         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_LM29), board_pch_mtp },
7924         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_V29), board_pch_mtp },
7925
7926         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7927 };
7928 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7929
7930 static const struct dev_pm_ops e1000e_pm_ops = {
7931         .prepare        = e1000e_pm_prepare,
7932         .suspend        = e1000e_pm_suspend,
7933         .resume         = e1000e_pm_resume,
7934         .freeze         = e1000e_pm_freeze,
7935         .thaw           = e1000e_pm_thaw,
7936         .poweroff       = e1000e_pm_suspend,
7937         .restore        = e1000e_pm_resume,
7938         RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7939                        e1000e_pm_runtime_idle)
7940 };
7941
7942 /* PCI Device API Driver */
7943 static struct pci_driver e1000_driver = {
7944         .name     = e1000e_driver_name,
7945         .id_table = e1000_pci_tbl,
7946         .probe    = e1000_probe,
7947         .remove   = e1000_remove,
7948         .driver.pm = pm_ptr(&e1000e_pm_ops),
7949         .shutdown = e1000_shutdown,
7950         .err_handler = &e1000_err_handler
7951 };
7952
7953 /**
7954  * e1000_init_module - Driver Registration Routine
7955  *
7956  * e1000_init_module is the first routine called when the driver is
7957  * loaded. All it does is register with the PCI subsystem.
7958  **/
7959 static int __init e1000_init_module(void)
7960 {
7961         pr_info("Intel(R) PRO/1000 Network Driver\n");
7962         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7963
7964         return pci_register_driver(&e1000_driver);
7965 }
7966 module_init(e1000_init_module);
7967
7968 /**
7969  * e1000_exit_module - Driver Exit Cleanup Routine
7970  *
7971  * e1000_exit_module is called just before the driver is removed
7972  * from memory.
7973  **/
7974 static void __exit e1000_exit_module(void)
7975 {
7976         pci_unregister_driver(&e1000_driver);
7977 }
7978 module_exit(e1000_exit_module);
7979
7980 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7981 MODULE_LICENSE("GPL v2");
7982
7983 /* netdev.c */
This page took 0.505868 seconds and 4 git commands to generate.