1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Copyright (C) 2013 Red Hat
10 #include <linux/clk.h>
11 #include <linux/interconnect.h>
12 #include <linux/pm_opp.h>
13 #include <linux/regulator/consumer.h>
16 #include "msm_fence.h"
17 #include "msm_ringbuffer.h"
19 struct msm_gem_submit;
20 struct msm_gpu_perfcntr;
23 struct msm_gpu_config {
25 unsigned int nr_rings;
28 /* So far, with hardware that I've seen to date, we can have:
29 * + zero, one, or two z180 2d cores
30 * + a3xx or a2xx 3d core, which share a common CP (the firmware
31 * for the CP seems to implement some different PM4 packet types
32 * but the basics of cmdstream submission are the same)
34 * Which means that the eventual complete "class" hierarchy, once
35 * support for all past and present hw is in place, becomes:
42 struct msm_gpu_funcs {
43 int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
44 int (*hw_init)(struct msm_gpu *gpu);
45 int (*pm_suspend)(struct msm_gpu *gpu);
46 int (*pm_resume)(struct msm_gpu *gpu);
47 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit,
48 struct msm_file_private *ctx);
49 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
50 irqreturn_t (*irq)(struct msm_gpu *irq);
51 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
52 void (*recover)(struct msm_gpu *gpu);
53 void (*destroy)(struct msm_gpu *gpu);
54 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
55 /* show GPU status in debugfs: */
56 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
57 struct drm_printer *p);
58 /* for generation specific debugfs: */
59 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
61 unsigned long (*gpu_busy)(struct msm_gpu *gpu);
62 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
63 int (*gpu_state_put)(struct msm_gpu_state *state);
64 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
65 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp);
66 struct msm_gem_address_space *(*create_address_space)
67 (struct msm_gpu *gpu, struct platform_device *pdev);
72 struct drm_device *dev;
73 struct platform_device *pdev;
74 const struct msm_gpu_funcs *funcs;
76 /* performance counters (hw & sw): */
83 uint32_t totaltime, activetime; /* sw counters */
84 uint32_t last_cntrs[5]; /* hw counters */
85 const struct msm_gpu_perfcntr *perfcntrs;
86 uint32_t num_perfcntrs;
88 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
91 /* list of GEM active objects: */
92 struct list_head active_list;
94 /* does gpu need hw_init? */
97 /* number of GPU hangs (for all contexts) */
100 /* worker for handling active-list retiring: */
101 struct work_struct retire_work;
106 struct msm_gem_address_space *aspace;
109 struct regulator *gpu_reg, *gpu_cx;
110 struct clk_bulk_data *grp_clks;
112 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
115 /* The gfx-mem interconnect path that's used by all GPU types. */
116 struct icc_path *icc_path;
119 * Second interconnect path for some A3xx and all A4xx GPUs to the
120 * On Chip MEMory (OCMEM).
122 struct icc_path *ocmem_icc_path;
124 /* Hang and Inactivity Detection:
126 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */
128 #define DRM_MSM_HANGCHECK_PERIOD 500 /* in ms */
129 #define DRM_MSM_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_MSM_HANGCHECK_PERIOD)
130 struct timer_list hangcheck_timer;
131 struct work_struct recover_work;
133 struct drm_gem_object *memptrs_bo;
136 struct devfreq *devfreq;
141 struct msm_gpu_state *crashstate;
144 /* It turns out that all targets use the same ringbuffer size */
145 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
146 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
148 #define MSM_GPU_RB_CNTL_DEFAULT \
149 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
150 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
152 static inline bool msm_gpu_active(struct msm_gpu *gpu)
156 for (i = 0; i < gpu->nr_rings; i++) {
157 struct msm_ringbuffer *ring = gpu->rb[i];
159 if (ring->seqno > ring->memptrs->fence)
167 * The select_reg and select_val are just there for the benefit of the child
168 * class that actually enables the perf counter.. but msm_gpu base class
169 * will handle sampling/displaying the counters.
172 struct msm_gpu_perfcntr {
179 struct msm_gpu_submitqueue {
184 struct list_head node;
188 struct msm_gpu_state_bo {
195 struct msm_gpu_state {
197 struct timespec64 time;
208 } ring[MSM_GPU_MAX_RINGS];
219 struct msm_gpu_state_bo *bos;
222 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
224 msm_writel(data, gpu->mmio + (reg << 2));
227 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
229 return msm_readl(gpu->mmio + (reg << 2));
232 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
234 uint32_t val = gpu_read(gpu, reg);
237 gpu_write(gpu, reg, val | or);
240 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
245 * Why not a readq here? Two reasons: 1) many of the LO registers are
246 * not quad word aligned and 2) the GPU hardware designers have a bit
247 * of a history of putting registers where they fit, especially in
248 * spins. The longer a GPU family goes the higher the chance that
249 * we'll get burned. We could do a series of validity checks if we
250 * wanted to, but really is a readq() that much better? Nah.
254 * For some lo/hi registers (like perfcounters), the hi value is latched
255 * when the lo is read, so make sure to read the lo first to trigger
258 val = (u64) msm_readl(gpu->mmio + (lo << 2));
259 val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
264 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
266 /* Why not a writeq here? Read the screed above */
267 msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
268 msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
271 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
272 int msm_gpu_pm_resume(struct msm_gpu *gpu);
273 void msm_gpu_resume_devfreq(struct msm_gpu *gpu);
275 int msm_gpu_hw_init(struct msm_gpu *gpu);
277 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
278 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
279 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
280 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
282 void msm_gpu_retire(struct msm_gpu *gpu);
283 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
284 struct msm_file_private *ctx);
286 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
287 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
288 const char *name, struct msm_gpu_config *config);
290 void msm_gpu_cleanup(struct msm_gpu *gpu);
292 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
293 void __init adreno_register(void);
294 void __exit adreno_unregister(void);
296 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
299 kref_put(&queue->ref, msm_submitqueue_destroy);
302 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
304 struct msm_gpu_state *state = NULL;
306 mutex_lock(&gpu->dev->struct_mutex);
308 if (gpu->crashstate) {
309 kref_get(&gpu->crashstate->ref);
310 state = gpu->crashstate;
313 mutex_unlock(&gpu->dev->struct_mutex);
318 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
320 mutex_lock(&gpu->dev->struct_mutex);
322 if (gpu->crashstate) {
323 if (gpu->funcs->gpu_state_put(gpu->crashstate))
324 gpu->crashstate = NULL;
327 mutex_unlock(&gpu->dev->struct_mutex);
330 #endif /* __MSM_GPU_H__ */