]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/uc/intel_guc.c
Merge tag 'amd-drm-next-6.5-2023-06-09' of https://gitlab.freedesktop.org/agd5f/linux...
[linux.git] / drivers / gpu / drm / i915 / gt / uc / intel_guc.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2019 Intel Corporation
4  */
5
6 #include "gem/i915_gem_lmem.h"
7 #include "gt/intel_gt.h"
8 #include "gt/intel_gt_irq.h"
9 #include "gt/intel_gt_pm_irq.h"
10 #include "gt/intel_gt_regs.h"
11 #include "intel_guc.h"
12 #include "intel_guc_ads.h"
13 #include "intel_guc_capture.h"
14 #include "intel_guc_print.h"
15 #include "intel_guc_slpc.h"
16 #include "intel_guc_submission.h"
17 #include "i915_drv.h"
18 #include "i915_irq.h"
19 #include "i915_reg.h"
20
21 /**
22  * DOC: GuC
23  *
24  * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
25  * designed to offload some of the functionality usually performed by the host
26  * driver; currently the main operations it can take care of are:
27  *
28  * - Authentication of the HuC, which is required to fully enable HuC usage.
29  * - Low latency graphics context scheduling (a.k.a. GuC submission).
30  * - GT Power management.
31  *
32  * The enable_guc module parameter can be used to select which of those
33  * operations to enable within GuC. Note that not all the operations are
34  * supported on all gen9+ platforms.
35  *
36  * Enabling the GuC is not mandatory and therefore the firmware is only loaded
37  * if at least one of the operations is selected. However, not loading the GuC
38  * might result in the loss of some features that do require the GuC (currently
39  * just the HuC, but more are expected to land in the future).
40  */
41
42 void intel_guc_notify(struct intel_guc *guc)
43 {
44         struct intel_gt *gt = guc_to_gt(guc);
45
46         /*
47          * On Gen11+, the value written to the register is passes as a payload
48          * to the FW. However, the FW currently treats all values the same way
49          * (H2G interrupt), so we can just write the value that the HW expects
50          * on older gens.
51          */
52         intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
53 }
54
55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
56 {
57         GEM_BUG_ON(!guc->send_regs.base);
58         GEM_BUG_ON(!guc->send_regs.count);
59         GEM_BUG_ON(i >= guc->send_regs.count);
60
61         return _MMIO(guc->send_regs.base + 4 * i);
62 }
63
64 void intel_guc_init_send_regs(struct intel_guc *guc)
65 {
66         struct intel_gt *gt = guc_to_gt(guc);
67         enum forcewake_domains fw_domains = 0;
68         unsigned int i;
69
70         GEM_BUG_ON(!guc->send_regs.base);
71         GEM_BUG_ON(!guc->send_regs.count);
72
73         for (i = 0; i < guc->send_regs.count; i++) {
74                 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
75                                         guc_send_reg(guc, i),
76                                         FW_REG_READ | FW_REG_WRITE);
77         }
78         guc->send_regs.fw_domains = fw_domains;
79 }
80
81 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
82 {
83         struct intel_gt *gt = guc_to_gt(guc);
84
85         assert_rpm_wakelock_held(&gt->i915->runtime_pm);
86
87         spin_lock_irq(gt->irq_lock);
88         gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
89         spin_unlock_irq(gt->irq_lock);
90 }
91
92 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
93 {
94         struct intel_gt *gt = guc_to_gt(guc);
95
96         assert_rpm_wakelock_held(&gt->i915->runtime_pm);
97
98         spin_lock_irq(gt->irq_lock);
99         guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
100                          gt->pm_guc_events);
101         gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
102         spin_unlock_irq(gt->irq_lock);
103
104         guc->interrupts.enabled = true;
105 }
106
107 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
108 {
109         struct intel_gt *gt = guc_to_gt(guc);
110
111         assert_rpm_wakelock_held(&gt->i915->runtime_pm);
112         guc->interrupts.enabled = false;
113
114         spin_lock_irq(gt->irq_lock);
115
116         gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
117
118         spin_unlock_irq(gt->irq_lock);
119         intel_synchronize_irq(gt->i915);
120
121         gen9_reset_guc_interrupts(guc);
122 }
123
124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt)
125 {
126         u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC;
127
128         lockdep_assert_held(gt->irq_lock);
129         return gen11_gt_reset_one_iir(gt, 0, irq);
130 }
131
132 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
133 {
134         struct intel_gt *gt = guc_to_gt(guc);
135
136         spin_lock_irq(gt->irq_lock);
137         __gen11_reset_guc_interrupts(gt);
138         spin_unlock_irq(gt->irq_lock);
139 }
140
141 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
142 {
143         struct intel_gt *gt = guc_to_gt(guc);
144
145         spin_lock_irq(gt->irq_lock);
146         __gen11_reset_guc_interrupts(gt);
147         spin_unlock_irq(gt->irq_lock);
148
149         guc->interrupts.enabled = true;
150 }
151
152 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
153 {
154         struct intel_gt *gt = guc_to_gt(guc);
155
156         guc->interrupts.enabled = false;
157         intel_synchronize_irq(gt->i915);
158
159         gen11_reset_guc_interrupts(guc);
160 }
161
162 void intel_guc_init_early(struct intel_guc *guc)
163 {
164         struct intel_gt *gt = guc_to_gt(guc);
165         struct drm_i915_private *i915 = gt->i915;
166
167         intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true);
168         intel_guc_ct_init_early(&guc->ct);
169         intel_guc_log_init_early(&guc->log);
170         intel_guc_submission_init_early(guc);
171         intel_guc_slpc_init_early(&guc->slpc);
172         intel_guc_rc_init_early(guc);
173
174         mutex_init(&guc->send_mutex);
175         spin_lock_init(&guc->irq_lock);
176         if (GRAPHICS_VER(i915) >= 11) {
177                 guc->interrupts.reset = gen11_reset_guc_interrupts;
178                 guc->interrupts.enable = gen11_enable_guc_interrupts;
179                 guc->interrupts.disable = gen11_disable_guc_interrupts;
180                 if (gt->type == GT_MEDIA) {
181                         guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT;
182                         guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0));
183                 } else {
184                         guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
185                         guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
186                 }
187
188                 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
189
190         } else {
191                 guc->notify_reg = GUC_SEND_INTERRUPT;
192                 guc->interrupts.reset = gen9_reset_guc_interrupts;
193                 guc->interrupts.enable = gen9_enable_guc_interrupts;
194                 guc->interrupts.disable = gen9_disable_guc_interrupts;
195                 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
196                 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
197                 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
198         }
199
200         intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
201                                   INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
202 }
203
204 void intel_guc_init_late(struct intel_guc *guc)
205 {
206         intel_guc_ads_init_late(guc);
207 }
208
209 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
210 {
211         u32 level = intel_guc_log_get_level(&guc->log);
212         u32 flags = 0;
213
214         if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
215                 flags |= GUC_LOG_DISABLED;
216         else
217                 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
218                          GUC_LOG_VERBOSITY_SHIFT;
219
220         return flags;
221 }
222
223 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
224 {
225         u32 flags = 0;
226
227         if (!intel_guc_submission_is_used(guc))
228                 flags |= GUC_CTL_DISABLE_SCHEDULER;
229
230         if (intel_guc_slpc_is_used(guc))
231                 flags |= GUC_CTL_ENABLE_SLPC;
232
233         return flags;
234 }
235
236 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
237 {
238         struct intel_guc_log *log = &guc->log;
239         u32 offset, flags;
240
241         GEM_BUG_ON(!log->sizes_initialised);
242
243         offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
244
245         flags = GUC_LOG_VALID |
246                 GUC_LOG_NOTIFY_ON_HALF_FULL |
247                 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
248                 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
249                 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
250                 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
251                 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
252                 (offset << GUC_LOG_BUF_ADDR_SHIFT);
253
254         return flags;
255 }
256
257 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
258 {
259         u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
260         u32 flags = ads << GUC_ADS_ADDR_SHIFT;
261
262         return flags;
263 }
264
265 static u32 guc_ctl_wa_flags(struct intel_guc *guc)
266 {
267         struct intel_gt *gt = guc_to_gt(guc);
268         u32 flags = 0;
269
270         /* Wa_22012773006:gen11,gen12 < XeHP */
271         if (GRAPHICS_VER(gt->i915) >= 11 &&
272             GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50))
273                 flags |= GUC_WA_POLLCS;
274
275         /* Wa_16011759253:dg2_g10:a0 */
276         if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
277                 flags |= GUC_WA_GAM_CREDITS;
278
279         /* Wa_14014475959 */
280         if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
281             IS_DG2(gt->i915))
282                 flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
283
284         /*
285          * Wa_14012197797:dg2_g10:a0,dg2_g11:a0
286          * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12
287          *
288          * The same WA bit is used for both and 22011391025 is applicable to
289          * all DG2.
290          */
291         if (IS_DG2(gt->i915))
292                 flags |= GUC_WA_DUAL_QUEUE;
293
294         /* Wa_22011802037: graphics version 11/12 */
295         if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
296             (GRAPHICS_VER(gt->i915) >= 11 &&
297             GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70)))
298                 flags |= GUC_WA_PRE_PARSER;
299
300         /* Wa_16011777198:dg2 */
301         if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
302             IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))
303                 flags |= GUC_WA_RCS_RESET_BEFORE_RC6;
304
305         /*
306          * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..)
307          * Wa_22012727685:dg2_g11[a0..)
308          */
309         if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
310             IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER))
311                 flags |= GUC_WA_CONTEXT_ISOLATION;
312
313         /* Wa_16015675438 */
314         if (!RCS_MASK(gt))
315                 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
316
317         return flags;
318 }
319
320 static u32 guc_ctl_devid(struct intel_guc *guc)
321 {
322         struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
323
324         return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
325 }
326
327 /*
328  * Initialise the GuC parameter block before starting the firmware
329  * transfer. These parameters are read by the firmware on startup
330  * and cannot be changed thereafter.
331  */
332 static void guc_init_params(struct intel_guc *guc)
333 {
334         u32 *params = guc->params;
335         int i;
336
337         BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
338
339         params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
340         params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
341         params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
342         params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
343         params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
344         params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
345
346         for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
347                 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]);
348 }
349
350 /*
351  * Initialise the GuC parameter block before starting the firmware
352  * transfer. These parameters are read by the firmware on startup
353  * and cannot be changed thereafter.
354  */
355 void intel_guc_write_params(struct intel_guc *guc)
356 {
357         struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
358         int i;
359
360         /*
361          * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
362          * they are power context saved so it's ok to release forcewake
363          * when we are done here and take it again at xfer time.
364          */
365         intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
366
367         intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
368
369         for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
370                 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
371
372         intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
373 }
374
375 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
376 {
377         struct intel_gt *gt = guc_to_gt(guc);
378         intel_wakeref_t wakeref;
379         u32 stamp = 0;
380         u64 ktime;
381
382         with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
383                 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
384         ktime = ktime_get_boottime_ns();
385
386         drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
387         drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
388         drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
389                    gt->clock_frequency, gt->clock_period_ns);
390 }
391
392 int intel_guc_init(struct intel_guc *guc)
393 {
394         int ret;
395
396         ret = intel_uc_fw_init(&guc->fw);
397         if (ret)
398                 goto out;
399
400         ret = intel_guc_log_create(&guc->log);
401         if (ret)
402                 goto err_fw;
403
404         ret = intel_guc_capture_init(guc);
405         if (ret)
406                 goto err_log;
407
408         ret = intel_guc_ads_create(guc);
409         if (ret)
410                 goto err_capture;
411
412         GEM_BUG_ON(!guc->ads_vma);
413
414         ret = intel_guc_ct_init(&guc->ct);
415         if (ret)
416                 goto err_ads;
417
418         if (intel_guc_submission_is_used(guc)) {
419                 /*
420                  * This is stuff we need to have available at fw load time
421                  * if we are planning to enable submission later
422                  */
423                 ret = intel_guc_submission_init(guc);
424                 if (ret)
425                         goto err_ct;
426         }
427
428         if (intel_guc_slpc_is_used(guc)) {
429                 ret = intel_guc_slpc_init(&guc->slpc);
430                 if (ret)
431                         goto err_submission;
432         }
433
434         /* now that everything is perma-pinned, initialize the parameters */
435         guc_init_params(guc);
436
437         intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
438
439         return 0;
440
441 err_submission:
442         intel_guc_submission_fini(guc);
443 err_ct:
444         intel_guc_ct_fini(&guc->ct);
445 err_ads:
446         intel_guc_ads_destroy(guc);
447 err_capture:
448         intel_guc_capture_destroy(guc);
449 err_log:
450         intel_guc_log_destroy(&guc->log);
451 err_fw:
452         intel_uc_fw_fini(&guc->fw);
453 out:
454         intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
455         guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret));
456         return ret;
457 }
458
459 void intel_guc_fini(struct intel_guc *guc)
460 {
461         if (!intel_uc_fw_is_loadable(&guc->fw))
462                 return;
463
464         if (intel_guc_slpc_is_used(guc))
465                 intel_guc_slpc_fini(&guc->slpc);
466
467         if (intel_guc_submission_is_used(guc))
468                 intel_guc_submission_fini(guc);
469
470         intel_guc_ct_fini(&guc->ct);
471
472         intel_guc_ads_destroy(guc);
473         intel_guc_capture_destroy(guc);
474         intel_guc_log_destroy(&guc->log);
475         intel_uc_fw_fini(&guc->fw);
476 }
477
478 /*
479  * This function implements the MMIO based host to GuC interface.
480  */
481 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
482                         u32 *response_buf, u32 response_buf_size)
483 {
484         struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
485         u32 header;
486         int i;
487         int ret;
488
489         GEM_BUG_ON(!len);
490         GEM_BUG_ON(len > guc->send_regs.count);
491
492         GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
493         GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
494
495         mutex_lock(&guc->send_mutex);
496         intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
497
498 retry:
499         for (i = 0; i < len; i++)
500                 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
501
502         intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
503
504         intel_guc_notify(guc);
505
506         /*
507          * No GuC command should ever take longer than 10ms.
508          * Fast commands should still complete in 10us.
509          */
510         ret = __intel_wait_for_register_fw(uncore,
511                                            guc_send_reg(guc, 0),
512                                            GUC_HXG_MSG_0_ORIGIN,
513                                            FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
514                                                       GUC_HXG_ORIGIN_GUC),
515                                            10, 10, &header);
516         if (unlikely(ret)) {
517 timeout:
518                 guc_err(guc, "mmio request %#x: no reply %x\n",
519                         request[0], header);
520                 goto out;
521         }
522
523         if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
524 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
525                 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
526                 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
527
528                 ret = wait_for(done, 1000);
529                 if (unlikely(ret))
530                         goto timeout;
531                 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
532                                        GUC_HXG_ORIGIN_GUC))
533                         goto proto;
534 #undef done
535         }
536
537         if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
538                 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
539
540                 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n",
541                         request[0], reason);
542                 goto retry;
543         }
544
545         if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
546                 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
547                 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
548
549                 guc_err(guc, "mmio request %#x: failure %x/%u\n",
550                         request[0], error, hint);
551                 ret = -ENXIO;
552                 goto out;
553         }
554
555         if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
556 proto:
557                 guc_err(guc, "mmio request %#x: unexpected reply %#x\n",
558                         request[0], header);
559                 ret = -EPROTO;
560                 goto out;
561         }
562
563         if (response_buf) {
564                 int count = min(response_buf_size, guc->send_regs.count);
565
566                 GEM_BUG_ON(!count);
567
568                 response_buf[0] = header;
569
570                 for (i = 1; i < count; i++)
571                         response_buf[i] = intel_uncore_read(uncore,
572                                                             guc_send_reg(guc, i));
573
574                 /* Use number of copied dwords as our return value */
575                 ret = count;
576         } else {
577                 /* Use data from the GuC response as our return value */
578                 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
579         }
580
581 out:
582         intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
583         mutex_unlock(&guc->send_mutex);
584
585         return ret;
586 }
587
588 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
589                                        const u32 *payload, u32 len)
590 {
591         u32 msg;
592
593         if (unlikely(!len))
594                 return -EPROTO;
595
596         /* Make sure to handle only enabled messages */
597         msg = payload[0] & guc->msg_enabled_mask;
598
599         if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
600                 guc_err(guc, "Received early crash dump notification!\n");
601         if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
602                 guc_err(guc, "Received early exception notification!\n");
603
604         return 0;
605 }
606
607 /**
608  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
609  * @guc: intel_guc structure
610  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
611  *
612  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
613  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
614  * intel_huc_auth().
615  *
616  * Return:      non-zero code on error
617  */
618 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
619 {
620         u32 action[] = {
621                 INTEL_GUC_ACTION_AUTHENTICATE_HUC,
622                 rsa_offset
623         };
624
625         return intel_guc_send(guc, action, ARRAY_SIZE(action));
626 }
627
628 /**
629  * intel_guc_suspend() - notify GuC entering suspend state
630  * @guc:        the guc
631  */
632 int intel_guc_suspend(struct intel_guc *guc)
633 {
634         int ret;
635         u32 action[] = {
636                 INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
637         };
638
639         if (!intel_guc_is_ready(guc))
640                 return 0;
641
642         if (intel_guc_submission_is_used(guc)) {
643                 /*
644                  * This H2G MMIO command tears down the GuC in two steps. First it will
645                  * generate a G2H CTB for every active context indicating a reset. In
646                  * practice the i915 shouldn't ever get a G2H as suspend should only be
647                  * called when the GPU is idle. Next, it tears down the CTBs and this
648                  * H2G MMIO command completes.
649                  *
650                  * Don't abort on a failure code from the GuC. Keep going and do the
651                  * clean up in santize() and re-initialisation on resume and hopefully
652                  * the error here won't be problematic.
653                  */
654                 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
655                 if (ret)
656                         guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n",
657                                 ERR_PTR(ret));
658         }
659
660         /* Signal that the GuC isn't running. */
661         intel_guc_sanitize(guc);
662
663         return 0;
664 }
665
666 /**
667  * intel_guc_resume() - notify GuC resuming from suspend state
668  * @guc:        the guc
669  */
670 int intel_guc_resume(struct intel_guc *guc)
671 {
672         /*
673          * NB: This function can still be called even if GuC submission is
674          * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
675          * if any code is later added here, it must be support doing nothing
676          * if submission is disabled (as per intel_guc_suspend).
677          */
678         return 0;
679 }
680
681 /**
682  * DOC: GuC Memory Management
683  *
684  * GuC can't allocate any memory for its own usage, so all the allocations must
685  * be handled by the host driver. GuC accesses the memory via the GGTT, with the
686  * exception of the top and bottom parts of the 4GB address space, which are
687  * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
688  * or other parts of the HW. The driver must take care not to place objects that
689  * the GuC is going to access in these reserved ranges. The layout of the GuC
690  * address space is shown below:
691  *
692  * ::
693  *
694  *     +===========> +====================+ <== FFFF_FFFF
695  *     ^             |      Reserved      |
696  *     |             +====================+ <== GUC_GGTT_TOP
697  *     |             |                    |
698  *     |             |        DRAM        |
699  *    GuC            |                    |
700  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
701  *   Space     ^     |                    |
702  *     |       |     |                    |
703  *     |      GuC    |        GuC         |
704  *     |     WOPCM   |       WOPCM        |
705  *     |      Size   |                    |
706  *     |       |     |                    |
707  *     v       v     |                    |
708  *     +=======+===> +====================+ <== 0000_0000
709  *
710  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
711  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
712  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
713  */
714
715 /**
716  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
717  * @guc:        the guc
718  * @size:       size of area to allocate (both virtual space and memory)
719  *
720  * This is a wrapper to create an object for use with the GuC. In order to
721  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
722  * both some backing storage and a range inside the Global GTT. We must pin
723  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
724  * range is reserved inside GuC.
725  *
726  * Return:      A i915_vma if successful, otherwise an ERR_PTR.
727  */
728 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
729 {
730         struct intel_gt *gt = guc_to_gt(guc);
731         struct drm_i915_gem_object *obj;
732         struct i915_vma *vma;
733         u64 flags;
734         int ret;
735
736         if (HAS_LMEM(gt->i915))
737                 obj = i915_gem_object_create_lmem(gt->i915, size,
738                                                   I915_BO_ALLOC_CPU_CLEAR |
739                                                   I915_BO_ALLOC_CONTIGUOUS |
740                                                   I915_BO_ALLOC_PM_EARLY);
741         else
742                 obj = i915_gem_object_create_shmem(gt->i915, size);
743
744         if (IS_ERR(obj))
745                 return ERR_CAST(obj);
746
747         /*
748          * Wa_22016122933: For MTL the shared memory needs to be mapped
749          * as WC on CPU side and UC (PAT index 2) on GPU side
750          */
751         if (IS_METEORLAKE(gt->i915))
752                 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
753
754         vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
755         if (IS_ERR(vma))
756                 goto err;
757
758         flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
759         ret = i915_ggtt_pin(vma, NULL, 0, flags);
760         if (ret) {
761                 vma = ERR_PTR(ret);
762                 goto err;
763         }
764
765         return i915_vma_make_unshrinkable(vma);
766
767 err:
768         i915_gem_object_put(obj);
769         return vma;
770 }
771
772 /**
773  * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
774  * @guc:        the guc
775  * @size:       size of area to allocate (both virtual space and memory)
776  * @out_vma:    return variable for the allocated vma pointer
777  * @out_vaddr:  return variable for the obj mapping
778  *
779  * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
780  * object with I915_MAP_WB.
781  *
782  * Return:      0 if successful, a negative errno code otherwise.
783  */
784 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
785                                    struct i915_vma **out_vma, void **out_vaddr)
786 {
787         struct i915_vma *vma;
788         void *vaddr;
789
790         vma = intel_guc_allocate_vma(guc, size);
791         if (IS_ERR(vma))
792                 return PTR_ERR(vma);
793
794         vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
795                                                  i915_coherent_map_type(guc_to_gt(guc)->i915,
796                                                                         vma->obj, true));
797         if (IS_ERR(vaddr)) {
798                 i915_vma_unpin_and_release(&vma, 0);
799                 return PTR_ERR(vaddr);
800         }
801
802         *out_vma = vma;
803         *out_vaddr = vaddr;
804
805         return 0;
806 }
807
808 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
809 {
810         u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
811                 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
812                 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
813                 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
814                 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
815                 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
816                 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
817                 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
818         };
819         int ret;
820
821         GEM_BUG_ON(len > 2);
822         GEM_BUG_ON(len == 1 && upper_32_bits(value));
823
824         /* Self config must go over MMIO */
825         ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
826
827         if (unlikely(ret < 0))
828                 return ret;
829         if (unlikely(ret > 1))
830                 return -EPROTO;
831         if (unlikely(!ret))
832                 return -ENOKEY;
833
834         return 0;
835 }
836
837 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
838 {
839         int err = __guc_action_self_cfg(guc, key, len, value);
840
841         if (unlikely(err))
842                 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
843                                 ERR_PTR(err), key, value);
844         return err;
845 }
846
847 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
848 {
849         return __guc_self_cfg(guc, key, 1, value);
850 }
851
852 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
853 {
854         return __guc_self_cfg(guc, key, 2, value);
855 }
856
857 /**
858  * intel_guc_load_status - dump information about GuC load status
859  * @guc: the GuC
860  * @p: the &drm_printer
861  *
862  * Pretty printer for GuC load status.
863  */
864 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
865 {
866         struct intel_gt *gt = guc_to_gt(guc);
867         struct intel_uncore *uncore = gt->uncore;
868         intel_wakeref_t wakeref;
869
870         if (!intel_guc_is_supported(guc)) {
871                 drm_printf(p, "GuC not supported\n");
872                 return;
873         }
874
875         if (!intel_guc_is_wanted(guc)) {
876                 drm_printf(p, "GuC disabled\n");
877                 return;
878         }
879
880         intel_uc_fw_dump(&guc->fw, p);
881
882         with_intel_runtime_pm(uncore->rpm, wakeref) {
883                 u32 status = intel_uncore_read(uncore, GUC_STATUS);
884                 u32 i;
885
886                 drm_printf(p, "GuC status 0x%08x:\n", status);
887                 drm_printf(p, "\tBootrom status = 0x%x\n",
888                            (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
889                 drm_printf(p, "\tuKernel status = 0x%x\n",
890                            (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
891                 drm_printf(p, "\tMIA Core status = 0x%x\n",
892                            (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
893                 drm_puts(p, "Scratch registers:\n");
894                 for (i = 0; i < 16; i++) {
895                         drm_printf(p, "\t%2d: \t0x%x\n",
896                                    i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
897                 }
898         }
899 }
900
901 void intel_guc_write_barrier(struct intel_guc *guc)
902 {
903         struct intel_gt *gt = guc_to_gt(guc);
904
905         if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
906                 /*
907                  * Ensure intel_uncore_write_fw can be used rather than
908                  * intel_uncore_write.
909                  */
910                 GEM_BUG_ON(guc->send_regs.fw_domains);
911
912                 /*
913                  * This register is used by the i915 and GuC for MMIO based
914                  * communication. Once we are in this code CTBs are the only
915                  * method the i915 uses to communicate with the GuC so it is
916                  * safe to write to this register (a value of 0 is NOP for MMIO
917                  * communication). If we ever start mixing CTBs and MMIOs a new
918                  * register will have to be chosen. This function is also used
919                  * to enforce ordering of a work queue item write and an update
920                  * to the process descriptor. When a work queue is being used,
921                  * CTBs are also the only mechanism of communication.
922                  */
923                 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
924         } else {
925                 /* wmb() sufficient for a barrier if in smem */
926                 wmb();
927         }
928 }
This page took 0.097713 seconds and 4 git commands to generate.