2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
40 #include "ext4_jbd2.h"
45 #include <trace/events/ext4.h>
47 #define MPAGE_DA_EXTENT_TAIL 0x01
49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50 struct ext4_inode_info *ei)
52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 csum_lo = le16_to_cpu(raw->i_checksum_lo);
58 raw->i_checksum_lo = 0;
59 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
61 csum_hi = le16_to_cpu(raw->i_checksum_hi);
62 raw->i_checksum_hi = 0;
65 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66 EXT4_INODE_SIZE(inode->i_sb));
68 raw->i_checksum_lo = cpu_to_le16(csum_lo);
69 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
71 raw->i_checksum_hi = cpu_to_le16(csum_hi);
76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77 struct ext4_inode_info *ei)
79 __u32 provided, calculated;
81 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82 cpu_to_le32(EXT4_OS_LINUX) ||
83 !ext4_has_metadata_csum(inode->i_sb))
86 provided = le16_to_cpu(raw->i_checksum_lo);
87 calculated = ext4_inode_csum(inode, raw, ei);
88 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 return provided == calculated;
97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98 struct ext4_inode_info *ei)
102 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103 cpu_to_le32(EXT4_OS_LINUX) ||
104 !ext4_has_metadata_csum(inode->i_sb))
107 csum = ext4_inode_csum(inode, raw, ei);
108 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
114 static inline int ext4_begin_ordered_truncate(struct inode *inode,
117 trace_ext4_begin_ordered_truncate(inode, new_size);
119 * If jinode is zero, then we never opened the file for
120 * writing, so there's no need to call
121 * jbd2_journal_begin_ordered_truncate() since there's no
122 * outstanding writes we need to flush.
124 if (!EXT4_I(inode)->jinode)
126 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127 EXT4_I(inode)->jinode,
131 static void ext4_invalidatepage(struct page *page, unsigned int offset,
132 unsigned int length);
133 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
139 * Test whether an inode is a fast symlink.
141 int ext4_inode_is_fast_symlink(struct inode *inode)
143 int ea_blocks = EXT4_I(inode)->i_file_acl ?
144 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146 if (ext4_has_inline_data(inode))
149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
168 BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 jbd_debug(2, "restarting handle %p\n", handle);
170 up_write(&EXT4_I(inode)->i_data_sem);
171 ret = ext4_journal_restart(handle, nblocks);
172 down_write(&EXT4_I(inode)->i_data_sem);
173 ext4_discard_preallocations(inode);
179 * Called at the last iput() if i_nlink is zero.
181 void ext4_evict_inode(struct inode *inode)
186 trace_ext4_evict_inode(inode);
188 if (inode->i_nlink) {
190 * When journalling data dirty buffers are tracked only in the
191 * journal. So although mm thinks everything is clean and
192 * ready for reaping the inode might still have some pages to
193 * write in the running transaction or waiting to be
194 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 * (via truncate_inode_pages()) to discard these buffers can
196 * cause data loss. Also even if we did not discard these
197 * buffers, we would have no way to find them after the inode
198 * is reaped and thus user could see stale data if he tries to
199 * read them before the transaction is checkpointed. So be
200 * careful and force everything to disk here... We use
201 * ei->i_datasync_tid to store the newest transaction
202 * containing inode's data.
204 * Note that directories do not have this problem because they
205 * don't use page cache.
207 if (ext4_should_journal_data(inode) &&
208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 inode->i_ino != EXT4_JOURNAL_INO) {
210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 jbd2_complete_transaction(journal, commit_tid);
214 filemap_write_and_wait(&inode->i_data);
216 truncate_inode_pages_final(&inode->i_data);
218 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
222 if (is_bad_inode(inode))
224 dquot_initialize(inode);
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages_final(&inode->i_data);
230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
236 sb_start_intwrite(inode->i_sb);
237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 ext4_blocks_for_truncate(inode)+3);
239 if (IS_ERR(handle)) {
240 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
246 ext4_orphan_del(NULL, inode);
247 sb_end_intwrite(inode->i_sb);
252 ext4_handle_sync(handle);
254 err = ext4_mark_inode_dirty(handle, inode);
256 ext4_warning(inode->i_sb,
257 "couldn't mark inode dirty (err %d)", err);
261 ext4_truncate(inode);
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
269 if (!ext4_handle_has_enough_credits(handle, 3)) {
270 err = ext4_journal_extend(handle, 3);
272 err = ext4_journal_restart(handle, 3);
274 ext4_warning(inode->i_sb,
275 "couldn't extend journal (err %d)", err);
277 ext4_journal_stop(handle);
278 ext4_orphan_del(NULL, inode);
279 sb_end_intwrite(inode->i_sb);
285 * Kill off the orphan record which ext4_truncate created.
286 * AKPM: I think this can be inside the above `if'.
287 * Note that ext4_orphan_del() has to be able to cope with the
288 * deletion of a non-existent orphan - this is because we don't
289 * know if ext4_truncate() actually created an orphan record.
290 * (Well, we could do this if we need to, but heck - it works)
292 ext4_orphan_del(handle, inode);
293 EXT4_I(inode)->i_dtime = get_seconds();
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
302 if (ext4_mark_inode_dirty(handle, inode))
303 /* If that failed, just do the required in-core inode clear. */
304 ext4_clear_inode(inode);
306 ext4_free_inode(handle, inode);
307 ext4_journal_stop(handle);
308 sb_end_intwrite(inode->i_sb);
311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 return &EXT4_I(inode)->i_reserved_quota;
322 * Called with i_data_sem down, which is important since we can call
323 * ext4_discard_preallocations() from here.
325 void ext4_da_update_reserve_space(struct inode *inode,
326 int used, int quota_claim)
328 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
329 struct ext4_inode_info *ei = EXT4_I(inode);
331 spin_lock(&ei->i_block_reservation_lock);
332 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
333 if (unlikely(used > ei->i_reserved_data_blocks)) {
334 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
335 "with only %d reserved data blocks",
336 __func__, inode->i_ino, used,
337 ei->i_reserved_data_blocks);
339 used = ei->i_reserved_data_blocks;
342 /* Update per-inode reservations */
343 ei->i_reserved_data_blocks -= used;
344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348 /* Update quota subsystem for data blocks */
350 dquot_claim_block(inode, EXT4_C2B(sbi, used));
353 * We did fallocate with an offset that is already delayed
354 * allocated. So on delayed allocated writeback we should
355 * not re-claim the quota for fallocated blocks.
357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361 * If we have done all the pending block allocations and if
362 * there aren't any writers on the inode, we can discard the
363 * inode's preallocations.
365 if ((ei->i_reserved_data_blocks == 0) &&
366 (atomic_read(&inode->i_writecount) == 0))
367 ext4_discard_preallocations(inode);
370 static int __check_block_validity(struct inode *inode, const char *func,
372 struct ext4_map_blocks *map)
374 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 ext4_error_inode(inode, func, line, map->m_pblk,
377 "lblock %lu mapped to illegal pblock "
378 "(length %d)", (unsigned long) map->m_lblk,
385 #define check_block_validity(inode, map) \
386 __check_block_validity((inode), __func__, __LINE__, (map))
388 #ifdef ES_AGGRESSIVE_TEST
389 static void ext4_map_blocks_es_recheck(handle_t *handle,
391 struct ext4_map_blocks *es_map,
392 struct ext4_map_blocks *map,
399 * There is a race window that the result is not the same.
400 * e.g. xfstests #223 when dioread_nolock enables. The reason
401 * is that we lookup a block mapping in extent status tree with
402 * out taking i_data_sem. So at the time the unwritten extent
403 * could be converted.
405 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
406 down_read(&EXT4_I(inode)->i_data_sem);
407 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408 retval = ext4_ext_map_blocks(handle, inode, map, flags &
409 EXT4_GET_BLOCKS_KEEP_SIZE);
411 retval = ext4_ind_map_blocks(handle, inode, map, flags &
412 EXT4_GET_BLOCKS_KEEP_SIZE);
414 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415 up_read((&EXT4_I(inode)->i_data_sem));
418 * We don't check m_len because extent will be collpased in status
419 * tree. So the m_len might not equal.
421 if (es_map->m_lblk != map->m_lblk ||
422 es_map->m_flags != map->m_flags ||
423 es_map->m_pblk != map->m_pblk) {
424 printk("ES cache assertion failed for inode: %lu "
425 "es_cached ex [%d/%d/%llu/%x] != "
426 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427 inode->i_ino, es_map->m_lblk, es_map->m_len,
428 es_map->m_pblk, es_map->m_flags, map->m_lblk,
429 map->m_len, map->m_pblk, map->m_flags,
433 #endif /* ES_AGGRESSIVE_TEST */
436 * The ext4_map_blocks() function tries to look up the requested blocks,
437 * and returns if the blocks are already mapped.
439 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440 * and store the allocated blocks in the result buffer head and mark it
443 * If file type is extents based, it will call ext4_ext_map_blocks(),
444 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
447 * On success, it returns the number of blocks being mapped or allocated.
448 * if create==0 and the blocks are pre-allocated and unwritten block,
449 * the result buffer head is unmapped. If the create ==1, it will make sure
450 * the buffer head is mapped.
452 * It returns 0 if plain look up failed (blocks have not been allocated), in
453 * that case, buffer head is unmapped
455 * It returns the error in case of allocation failure.
457 int ext4_map_blocks(handle_t *handle, struct inode *inode,
458 struct ext4_map_blocks *map, int flags)
460 struct extent_status es;
463 #ifdef ES_AGGRESSIVE_TEST
464 struct ext4_map_blocks orig_map;
466 memcpy(&orig_map, map, sizeof(*map));
470 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471 "logical block %lu\n", inode->i_ino, flags, map->m_len,
472 (unsigned long) map->m_lblk);
475 * ext4_map_blocks returns an int, and m_len is an unsigned int
477 if (unlikely(map->m_len > INT_MAX))
478 map->m_len = INT_MAX;
480 /* We can handle the block number less than EXT_MAX_BLOCKS */
481 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
484 /* Lookup extent status tree firstly */
485 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487 map->m_pblk = ext4_es_pblock(&es) +
488 map->m_lblk - es.es_lblk;
489 map->m_flags |= ext4_es_is_written(&es) ?
490 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491 retval = es.es_len - (map->m_lblk - es.es_lblk);
492 if (retval > map->m_len)
495 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
500 #ifdef ES_AGGRESSIVE_TEST
501 ext4_map_blocks_es_recheck(handle, inode, map,
508 * Try to see if we can get the block without requesting a new
511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512 down_read(&EXT4_I(inode)->i_data_sem);
513 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
514 retval = ext4_ext_map_blocks(handle, inode, map, flags &
515 EXT4_GET_BLOCKS_KEEP_SIZE);
517 retval = ext4_ind_map_blocks(handle, inode, map, flags &
518 EXT4_GET_BLOCKS_KEEP_SIZE);
523 if (unlikely(retval != map->m_len)) {
524 ext4_warning(inode->i_sb,
525 "ES len assertion failed for inode "
526 "%lu: retval %d != map->m_len %d",
527 inode->i_ino, retval, map->m_len);
531 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
534 !(status & EXTENT_STATUS_WRITTEN) &&
535 ext4_find_delalloc_range(inode, map->m_lblk,
536 map->m_lblk + map->m_len - 1))
537 status |= EXTENT_STATUS_DELAYED;
538 ret = ext4_es_insert_extent(inode, map->m_lblk,
539 map->m_len, map->m_pblk, status);
543 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544 up_read((&EXT4_I(inode)->i_data_sem));
547 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548 ret = check_block_validity(inode, map);
553 /* If it is only a block(s) look up */
554 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
558 * Returns if the blocks have already allocated
560 * Note that if blocks have been preallocated
561 * ext4_ext_get_block() returns the create = 0
562 * with buffer head unmapped.
564 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
566 * If we need to convert extent to unwritten
567 * we continue and do the actual work in
568 * ext4_ext_map_blocks()
570 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
574 * Here we clear m_flags because after allocating an new extent,
575 * it will be set again.
577 map->m_flags &= ~EXT4_MAP_FLAGS;
580 * New blocks allocate and/or writing to unwritten extent
581 * will possibly result in updating i_data, so we take
582 * the write lock of i_data_sem, and call get_block()
583 * with create == 1 flag.
585 down_write(&EXT4_I(inode)->i_data_sem);
588 * We need to check for EXT4 here because migrate
589 * could have changed the inode type in between
591 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592 retval = ext4_ext_map_blocks(handle, inode, map, flags);
594 retval = ext4_ind_map_blocks(handle, inode, map, flags);
596 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
598 * We allocated new blocks which will result in
599 * i_data's format changing. Force the migrate
600 * to fail by clearing migrate flags
602 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
606 * Update reserved blocks/metadata blocks after successful
607 * block allocation which had been deferred till now. We don't
608 * support fallocate for non extent files. So we can update
609 * reserve space here.
612 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613 ext4_da_update_reserve_space(inode, retval, 1);
619 if (unlikely(retval != map->m_len)) {
620 ext4_warning(inode->i_sb,
621 "ES len assertion failed for inode "
622 "%lu: retval %d != map->m_len %d",
623 inode->i_ino, retval, map->m_len);
628 * If the extent has been zeroed out, we don't need to update
629 * extent status tree.
631 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633 if (ext4_es_is_written(&es))
636 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639 !(status & EXTENT_STATUS_WRITTEN) &&
640 ext4_find_delalloc_range(inode, map->m_lblk,
641 map->m_lblk + map->m_len - 1))
642 status |= EXTENT_STATUS_DELAYED;
643 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644 map->m_pblk, status);
650 up_write((&EXT4_I(inode)->i_data_sem));
651 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652 ret = check_block_validity(inode, map);
659 /* Maximum number of blocks we map for direct IO at once. */
660 #define DIO_MAX_BLOCKS 4096
662 static int _ext4_get_block(struct inode *inode, sector_t iblock,
663 struct buffer_head *bh, int flags)
665 handle_t *handle = ext4_journal_current_handle();
666 struct ext4_map_blocks map;
667 int ret = 0, started = 0;
670 if (ext4_has_inline_data(inode))
674 map.m_len = bh->b_size >> inode->i_blkbits;
676 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
677 /* Direct IO write... */
678 if (map.m_len > DIO_MAX_BLOCKS)
679 map.m_len = DIO_MAX_BLOCKS;
680 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
681 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
683 if (IS_ERR(handle)) {
684 ret = PTR_ERR(handle);
690 ret = ext4_map_blocks(handle, inode, &map, flags);
692 ext4_io_end_t *io_end = ext4_inode_aio(inode);
694 map_bh(bh, inode->i_sb, map.m_pblk);
695 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
696 if (IS_DAX(inode) && buffer_unwritten(bh)) {
698 * dgc: I suspect unwritten conversion on ext4+DAX is
699 * fundamentally broken here when there are concurrent
700 * read/write in progress on this inode.
702 WARN_ON_ONCE(io_end);
703 bh->b_assoc_map = inode->i_mapping;
704 bh->b_private = (void *)(unsigned long)iblock;
706 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
707 set_buffer_defer_completion(bh);
708 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
712 ext4_journal_stop(handle);
716 int ext4_get_block(struct inode *inode, sector_t iblock,
717 struct buffer_head *bh, int create)
719 return _ext4_get_block(inode, iblock, bh,
720 create ? EXT4_GET_BLOCKS_CREATE : 0);
724 * `handle' can be NULL if create is zero
726 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
727 ext4_lblk_t block, int map_flags)
729 struct ext4_map_blocks map;
730 struct buffer_head *bh;
731 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
734 J_ASSERT(handle != NULL || create == 0);
738 err = ext4_map_blocks(handle, inode, &map, map_flags);
741 return create ? ERR_PTR(-ENOSPC) : NULL;
745 bh = sb_getblk(inode->i_sb, map.m_pblk);
747 return ERR_PTR(-ENOMEM);
748 if (map.m_flags & EXT4_MAP_NEW) {
749 J_ASSERT(create != 0);
750 J_ASSERT(handle != NULL);
753 * Now that we do not always journal data, we should
754 * keep in mind whether this should always journal the
755 * new buffer as metadata. For now, regular file
756 * writes use ext4_get_block instead, so it's not a
760 BUFFER_TRACE(bh, "call get_create_access");
761 err = ext4_journal_get_create_access(handle, bh);
766 if (!buffer_uptodate(bh)) {
767 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
768 set_buffer_uptodate(bh);
771 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
772 err = ext4_handle_dirty_metadata(handle, inode, bh);
776 BUFFER_TRACE(bh, "not a new buffer");
783 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
784 ext4_lblk_t block, int map_flags)
786 struct buffer_head *bh;
788 bh = ext4_getblk(handle, inode, block, map_flags);
791 if (!bh || buffer_uptodate(bh))
793 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
795 if (buffer_uptodate(bh))
798 return ERR_PTR(-EIO);
801 int ext4_walk_page_buffers(handle_t *handle,
802 struct buffer_head *head,
806 int (*fn)(handle_t *handle,
807 struct buffer_head *bh))
809 struct buffer_head *bh;
810 unsigned block_start, block_end;
811 unsigned blocksize = head->b_size;
813 struct buffer_head *next;
815 for (bh = head, block_start = 0;
816 ret == 0 && (bh != head || !block_start);
817 block_start = block_end, bh = next) {
818 next = bh->b_this_page;
819 block_end = block_start + blocksize;
820 if (block_end <= from || block_start >= to) {
821 if (partial && !buffer_uptodate(bh))
825 err = (*fn)(handle, bh);
833 * To preserve ordering, it is essential that the hole instantiation and
834 * the data write be encapsulated in a single transaction. We cannot
835 * close off a transaction and start a new one between the ext4_get_block()
836 * and the commit_write(). So doing the jbd2_journal_start at the start of
837 * prepare_write() is the right place.
839 * Also, this function can nest inside ext4_writepage(). In that case, we
840 * *know* that ext4_writepage() has generated enough buffer credits to do the
841 * whole page. So we won't block on the journal in that case, which is good,
842 * because the caller may be PF_MEMALLOC.
844 * By accident, ext4 can be reentered when a transaction is open via
845 * quota file writes. If we were to commit the transaction while thus
846 * reentered, there can be a deadlock - we would be holding a quota
847 * lock, and the commit would never complete if another thread had a
848 * transaction open and was blocking on the quota lock - a ranking
851 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
852 * will _not_ run commit under these circumstances because handle->h_ref
853 * is elevated. We'll still have enough credits for the tiny quotafile
856 int do_journal_get_write_access(handle_t *handle,
857 struct buffer_head *bh)
859 int dirty = buffer_dirty(bh);
862 if (!buffer_mapped(bh) || buffer_freed(bh))
865 * __block_write_begin() could have dirtied some buffers. Clean
866 * the dirty bit as jbd2_journal_get_write_access() could complain
867 * otherwise about fs integrity issues. Setting of the dirty bit
868 * by __block_write_begin() isn't a real problem here as we clear
869 * the bit before releasing a page lock and thus writeback cannot
870 * ever write the buffer.
873 clear_buffer_dirty(bh);
874 BUFFER_TRACE(bh, "get write access");
875 ret = ext4_journal_get_write_access(handle, bh);
877 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
881 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
882 struct buffer_head *bh_result, int create);
884 #ifdef CONFIG_EXT4_FS_ENCRYPTION
885 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
886 get_block_t *get_block)
888 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
889 unsigned to = from + len;
890 struct inode *inode = page->mapping->host;
891 unsigned block_start, block_end;
894 unsigned blocksize = inode->i_sb->s_blocksize;
896 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
897 bool decrypt = false;
899 BUG_ON(!PageLocked(page));
900 BUG_ON(from > PAGE_CACHE_SIZE);
901 BUG_ON(to > PAGE_CACHE_SIZE);
904 if (!page_has_buffers(page))
905 create_empty_buffers(page, blocksize, 0);
906 head = page_buffers(page);
907 bbits = ilog2(blocksize);
908 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
910 for (bh = head, block_start = 0; bh != head || !block_start;
911 block++, block_start = block_end, bh = bh->b_this_page) {
912 block_end = block_start + blocksize;
913 if (block_end <= from || block_start >= to) {
914 if (PageUptodate(page)) {
915 if (!buffer_uptodate(bh))
916 set_buffer_uptodate(bh);
921 clear_buffer_new(bh);
922 if (!buffer_mapped(bh)) {
923 WARN_ON(bh->b_size != blocksize);
924 err = get_block(inode, block, bh, 1);
927 if (buffer_new(bh)) {
928 unmap_underlying_metadata(bh->b_bdev,
930 if (PageUptodate(page)) {
931 clear_buffer_new(bh);
932 set_buffer_uptodate(bh);
933 mark_buffer_dirty(bh);
936 if (block_end > to || block_start < from)
937 zero_user_segments(page, to, block_end,
942 if (PageUptodate(page)) {
943 if (!buffer_uptodate(bh))
944 set_buffer_uptodate(bh);
947 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
948 !buffer_unwritten(bh) &&
949 (block_start < from || block_end > to)) {
950 ll_rw_block(READ, 1, &bh);
952 decrypt = ext4_encrypted_inode(inode) &&
953 S_ISREG(inode->i_mode);
957 * If we issued read requests, let them complete.
959 while (wait_bh > wait) {
960 wait_on_buffer(*--wait_bh);
961 if (!buffer_uptodate(*wait_bh))
965 page_zero_new_buffers(page, from, to);
967 err = ext4_decrypt_one(inode, page);
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973 loff_t pos, unsigned len, unsigned flags,
974 struct page **pagep, void **fsdata)
976 struct inode *inode = mapping->host;
977 int ret, needed_blocks;
984 trace_ext4_write_begin(inode, pos, len, flags);
986 * Reserve one block more for addition to orphan list in case
987 * we allocate blocks but write fails for some reason
989 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990 index = pos >> PAGE_CACHE_SHIFT;
991 from = pos & (PAGE_CACHE_SIZE - 1);
994 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1004 * grab_cache_page_write_begin() can take a long time if the
1005 * system is thrashing due to memory pressure, or if the page
1006 * is being written back. So grab it first before we start
1007 * the transaction handle. This also allows us to allocate
1008 * the page (if needed) without using GFP_NOFS.
1011 page = grab_cache_page_write_begin(mapping, index, flags);
1017 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018 if (IS_ERR(handle)) {
1019 page_cache_release(page);
1020 return PTR_ERR(handle);
1024 if (page->mapping != mapping) {
1025 /* The page got truncated from under us */
1027 page_cache_release(page);
1028 ext4_journal_stop(handle);
1031 /* In case writeback began while the page was unlocked */
1032 wait_for_stable_page(page);
1034 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1035 if (ext4_should_dioread_nolock(inode))
1036 ret = ext4_block_write_begin(page, pos, len,
1037 ext4_get_block_write);
1039 ret = ext4_block_write_begin(page, pos, len,
1042 if (ext4_should_dioread_nolock(inode))
1043 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1045 ret = __block_write_begin(page, pos, len, ext4_get_block);
1047 if (!ret && ext4_should_journal_data(inode)) {
1048 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1050 do_journal_get_write_access);
1056 * __block_write_begin may have instantiated a few blocks
1057 * outside i_size. Trim these off again. Don't need
1058 * i_size_read because we hold i_mutex.
1060 * Add inode to orphan list in case we crash before
1063 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1064 ext4_orphan_add(handle, inode);
1066 ext4_journal_stop(handle);
1067 if (pos + len > inode->i_size) {
1068 ext4_truncate_failed_write(inode);
1070 * If truncate failed early the inode might
1071 * still be on the orphan list; we need to
1072 * make sure the inode is removed from the
1073 * orphan list in that case.
1076 ext4_orphan_del(NULL, inode);
1079 if (ret == -ENOSPC &&
1080 ext4_should_retry_alloc(inode->i_sb, &retries))
1082 page_cache_release(page);
1089 /* For write_end() in data=journal mode */
1090 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1093 if (!buffer_mapped(bh) || buffer_freed(bh))
1095 set_buffer_uptodate(bh);
1096 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1097 clear_buffer_meta(bh);
1098 clear_buffer_prio(bh);
1103 * We need to pick up the new inode size which generic_commit_write gave us
1104 * `file' can be NULL - eg, when called from page_symlink().
1106 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1107 * buffers are managed internally.
1109 static int ext4_write_end(struct file *file,
1110 struct address_space *mapping,
1111 loff_t pos, unsigned len, unsigned copied,
1112 struct page *page, void *fsdata)
1114 handle_t *handle = ext4_journal_current_handle();
1115 struct inode *inode = mapping->host;
1116 loff_t old_size = inode->i_size;
1118 int i_size_changed = 0;
1120 trace_ext4_write_end(inode, pos, len, copied);
1121 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1122 ret = ext4_jbd2_file_inode(handle, inode);
1125 page_cache_release(page);
1130 if (ext4_has_inline_data(inode)) {
1131 ret = ext4_write_inline_data_end(inode, pos, len,
1137 copied = block_write_end(file, mapping, pos,
1138 len, copied, page, fsdata);
1140 * it's important to update i_size while still holding page lock:
1141 * page writeout could otherwise come in and zero beyond i_size.
1143 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1145 page_cache_release(page);
1148 pagecache_isize_extended(inode, old_size, pos);
1150 * Don't mark the inode dirty under page lock. First, it unnecessarily
1151 * makes the holding time of page lock longer. Second, it forces lock
1152 * ordering of page lock and transaction start for journaling
1156 ext4_mark_inode_dirty(handle, inode);
1158 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1159 /* if we have allocated more blocks and copied
1160 * less. We will have blocks allocated outside
1161 * inode->i_size. So truncate them
1163 ext4_orphan_add(handle, inode);
1165 ret2 = ext4_journal_stop(handle);
1169 if (pos + len > inode->i_size) {
1170 ext4_truncate_failed_write(inode);
1172 * If truncate failed early the inode might still be
1173 * on the orphan list; we need to make sure the inode
1174 * is removed from the orphan list in that case.
1177 ext4_orphan_del(NULL, inode);
1180 return ret ? ret : copied;
1183 static int ext4_journalled_write_end(struct file *file,
1184 struct address_space *mapping,
1185 loff_t pos, unsigned len, unsigned copied,
1186 struct page *page, void *fsdata)
1188 handle_t *handle = ext4_journal_current_handle();
1189 struct inode *inode = mapping->host;
1190 loff_t old_size = inode->i_size;
1194 int size_changed = 0;
1196 trace_ext4_journalled_write_end(inode, pos, len, copied);
1197 from = pos & (PAGE_CACHE_SIZE - 1);
1200 BUG_ON(!ext4_handle_valid(handle));
1202 if (ext4_has_inline_data(inode))
1203 copied = ext4_write_inline_data_end(inode, pos, len,
1207 if (!PageUptodate(page))
1209 page_zero_new_buffers(page, from+copied, to);
1212 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1213 to, &partial, write_end_fn);
1215 SetPageUptodate(page);
1217 size_changed = ext4_update_inode_size(inode, pos + copied);
1218 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1219 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1221 page_cache_release(page);
1224 pagecache_isize_extended(inode, old_size, pos);
1227 ret2 = ext4_mark_inode_dirty(handle, inode);
1232 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1233 /* if we have allocated more blocks and copied
1234 * less. We will have blocks allocated outside
1235 * inode->i_size. So truncate them
1237 ext4_orphan_add(handle, inode);
1239 ret2 = ext4_journal_stop(handle);
1242 if (pos + len > inode->i_size) {
1243 ext4_truncate_failed_write(inode);
1245 * If truncate failed early the inode might still be
1246 * on the orphan list; we need to make sure the inode
1247 * is removed from the orphan list in that case.
1250 ext4_orphan_del(NULL, inode);
1253 return ret ? ret : copied;
1257 * Reserve space for a single cluster
1259 static int ext4_da_reserve_space(struct inode *inode)
1261 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1262 struct ext4_inode_info *ei = EXT4_I(inode);
1266 * We will charge metadata quota at writeout time; this saves
1267 * us from metadata over-estimation, though we may go over by
1268 * a small amount in the end. Here we just reserve for data.
1270 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1274 spin_lock(&ei->i_block_reservation_lock);
1275 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1276 spin_unlock(&ei->i_block_reservation_lock);
1277 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1280 ei->i_reserved_data_blocks++;
1281 trace_ext4_da_reserve_space(inode);
1282 spin_unlock(&ei->i_block_reservation_lock);
1284 return 0; /* success */
1287 static void ext4_da_release_space(struct inode *inode, int to_free)
1289 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1290 struct ext4_inode_info *ei = EXT4_I(inode);
1293 return; /* Nothing to release, exit */
1295 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1297 trace_ext4_da_release_space(inode, to_free);
1298 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1300 * if there aren't enough reserved blocks, then the
1301 * counter is messed up somewhere. Since this
1302 * function is called from invalidate page, it's
1303 * harmless to return without any action.
1305 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1306 "ino %lu, to_free %d with only %d reserved "
1307 "data blocks", inode->i_ino, to_free,
1308 ei->i_reserved_data_blocks);
1310 to_free = ei->i_reserved_data_blocks;
1312 ei->i_reserved_data_blocks -= to_free;
1314 /* update fs dirty data blocks counter */
1315 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1317 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1319 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1322 static void ext4_da_page_release_reservation(struct page *page,
1323 unsigned int offset,
1324 unsigned int length)
1327 struct buffer_head *head, *bh;
1328 unsigned int curr_off = 0;
1329 struct inode *inode = page->mapping->host;
1330 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1331 unsigned int stop = offset + length;
1335 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1337 head = page_buffers(page);
1340 unsigned int next_off = curr_off + bh->b_size;
1342 if (next_off > stop)
1345 if ((offset <= curr_off) && (buffer_delay(bh))) {
1347 clear_buffer_delay(bh);
1349 curr_off = next_off;
1350 } while ((bh = bh->b_this_page) != head);
1353 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1354 ext4_es_remove_extent(inode, lblk, to_release);
1357 /* If we have released all the blocks belonging to a cluster, then we
1358 * need to release the reserved space for that cluster. */
1359 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1360 while (num_clusters > 0) {
1361 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1362 ((num_clusters - 1) << sbi->s_cluster_bits);
1363 if (sbi->s_cluster_ratio == 1 ||
1364 !ext4_find_delalloc_cluster(inode, lblk))
1365 ext4_da_release_space(inode, 1);
1372 * Delayed allocation stuff
1375 struct mpage_da_data {
1376 struct inode *inode;
1377 struct writeback_control *wbc;
1379 pgoff_t first_page; /* The first page to write */
1380 pgoff_t next_page; /* Current page to examine */
1381 pgoff_t last_page; /* Last page to examine */
1383 * Extent to map - this can be after first_page because that can be
1384 * fully mapped. We somewhat abuse m_flags to store whether the extent
1385 * is delalloc or unwritten.
1387 struct ext4_map_blocks map;
1388 struct ext4_io_submit io_submit; /* IO submission data */
1391 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1396 struct pagevec pvec;
1397 struct inode *inode = mpd->inode;
1398 struct address_space *mapping = inode->i_mapping;
1400 /* This is necessary when next_page == 0. */
1401 if (mpd->first_page >= mpd->next_page)
1404 index = mpd->first_page;
1405 end = mpd->next_page - 1;
1407 ext4_lblk_t start, last;
1408 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1409 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1410 ext4_es_remove_extent(inode, start, last - start + 1);
1413 pagevec_init(&pvec, 0);
1414 while (index <= end) {
1415 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1418 for (i = 0; i < nr_pages; i++) {
1419 struct page *page = pvec.pages[i];
1420 if (page->index > end)
1422 BUG_ON(!PageLocked(page));
1423 BUG_ON(PageWriteback(page));
1425 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1426 ClearPageUptodate(page);
1430 index = pvec.pages[nr_pages - 1]->index + 1;
1431 pagevec_release(&pvec);
1435 static void ext4_print_free_blocks(struct inode *inode)
1437 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1438 struct super_block *sb = inode->i_sb;
1439 struct ext4_inode_info *ei = EXT4_I(inode);
1441 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1442 EXT4_C2B(EXT4_SB(inode->i_sb),
1443 ext4_count_free_clusters(sb)));
1444 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1445 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1446 (long long) EXT4_C2B(EXT4_SB(sb),
1447 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1448 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1449 (long long) EXT4_C2B(EXT4_SB(sb),
1450 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1451 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1452 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1453 ei->i_reserved_data_blocks);
1457 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1459 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1463 * This function is grabs code from the very beginning of
1464 * ext4_map_blocks, but assumes that the caller is from delayed write
1465 * time. This function looks up the requested blocks and sets the
1466 * buffer delay bit under the protection of i_data_sem.
1468 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1469 struct ext4_map_blocks *map,
1470 struct buffer_head *bh)
1472 struct extent_status es;
1474 sector_t invalid_block = ~((sector_t) 0xffff);
1475 #ifdef ES_AGGRESSIVE_TEST
1476 struct ext4_map_blocks orig_map;
1478 memcpy(&orig_map, map, sizeof(*map));
1481 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1485 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1486 "logical block %lu\n", inode->i_ino, map->m_len,
1487 (unsigned long) map->m_lblk);
1489 /* Lookup extent status tree firstly */
1490 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1491 if (ext4_es_is_hole(&es)) {
1493 down_read(&EXT4_I(inode)->i_data_sem);
1498 * Delayed extent could be allocated by fallocate.
1499 * So we need to check it.
1501 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1502 map_bh(bh, inode->i_sb, invalid_block);
1504 set_buffer_delay(bh);
1508 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1509 retval = es.es_len - (iblock - es.es_lblk);
1510 if (retval > map->m_len)
1511 retval = map->m_len;
1512 map->m_len = retval;
1513 if (ext4_es_is_written(&es))
1514 map->m_flags |= EXT4_MAP_MAPPED;
1515 else if (ext4_es_is_unwritten(&es))
1516 map->m_flags |= EXT4_MAP_UNWRITTEN;
1520 #ifdef ES_AGGRESSIVE_TEST
1521 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1527 * Try to see if we can get the block without requesting a new
1528 * file system block.
1530 down_read(&EXT4_I(inode)->i_data_sem);
1531 if (ext4_has_inline_data(inode))
1533 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1534 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1536 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1542 * XXX: __block_prepare_write() unmaps passed block,
1546 * If the block was allocated from previously allocated cluster,
1547 * then we don't need to reserve it again. However we still need
1548 * to reserve metadata for every block we're going to write.
1550 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1551 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1552 ret = ext4_da_reserve_space(inode);
1554 /* not enough space to reserve */
1560 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1561 ~0, EXTENT_STATUS_DELAYED);
1567 map_bh(bh, inode->i_sb, invalid_block);
1569 set_buffer_delay(bh);
1570 } else if (retval > 0) {
1572 unsigned int status;
1574 if (unlikely(retval != map->m_len)) {
1575 ext4_warning(inode->i_sb,
1576 "ES len assertion failed for inode "
1577 "%lu: retval %d != map->m_len %d",
1578 inode->i_ino, retval, map->m_len);
1582 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1583 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1584 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1585 map->m_pblk, status);
1591 up_read((&EXT4_I(inode)->i_data_sem));
1597 * This is a special get_block_t callback which is used by
1598 * ext4_da_write_begin(). It will either return mapped block or
1599 * reserve space for a single block.
1601 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1602 * We also have b_blocknr = -1 and b_bdev initialized properly
1604 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1605 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1606 * initialized properly.
1608 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1609 struct buffer_head *bh, int create)
1611 struct ext4_map_blocks map;
1614 BUG_ON(create == 0);
1615 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1617 map.m_lblk = iblock;
1621 * first, we need to know whether the block is allocated already
1622 * preallocated blocks are unmapped but should treated
1623 * the same as allocated blocks.
1625 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1629 map_bh(bh, inode->i_sb, map.m_pblk);
1630 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1632 if (buffer_unwritten(bh)) {
1633 /* A delayed write to unwritten bh should be marked
1634 * new and mapped. Mapped ensures that we don't do
1635 * get_block multiple times when we write to the same
1636 * offset and new ensures that we do proper zero out
1637 * for partial write.
1640 set_buffer_mapped(bh);
1645 static int bget_one(handle_t *handle, struct buffer_head *bh)
1651 static int bput_one(handle_t *handle, struct buffer_head *bh)
1657 static int __ext4_journalled_writepage(struct page *page,
1660 struct address_space *mapping = page->mapping;
1661 struct inode *inode = mapping->host;
1662 struct buffer_head *page_bufs = NULL;
1663 handle_t *handle = NULL;
1664 int ret = 0, err = 0;
1665 int inline_data = ext4_has_inline_data(inode);
1666 struct buffer_head *inode_bh = NULL;
1668 ClearPageChecked(page);
1671 BUG_ON(page->index != 0);
1672 BUG_ON(len > ext4_get_max_inline_size(inode));
1673 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1674 if (inode_bh == NULL)
1677 page_bufs = page_buffers(page);
1682 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1686 * We need to release the page lock before we start the
1687 * journal, so grab a reference so the page won't disappear
1688 * out from under us.
1693 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1694 ext4_writepage_trans_blocks(inode));
1695 if (IS_ERR(handle)) {
1696 ret = PTR_ERR(handle);
1698 goto out_no_pagelock;
1700 BUG_ON(!ext4_handle_valid(handle));
1704 if (page->mapping != mapping) {
1705 /* The page got truncated from under us */
1706 ext4_journal_stop(handle);
1712 BUFFER_TRACE(inode_bh, "get write access");
1713 ret = ext4_journal_get_write_access(handle, inode_bh);
1715 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1718 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1719 do_journal_get_write_access);
1721 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1726 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1727 err = ext4_journal_stop(handle);
1731 if (!ext4_has_inline_data(inode))
1732 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1734 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1743 * Note that we don't need to start a transaction unless we're journaling data
1744 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1745 * need to file the inode to the transaction's list in ordered mode because if
1746 * we are writing back data added by write(), the inode is already there and if
1747 * we are writing back data modified via mmap(), no one guarantees in which
1748 * transaction the data will hit the disk. In case we are journaling data, we
1749 * cannot start transaction directly because transaction start ranks above page
1750 * lock so we have to do some magic.
1752 * This function can get called via...
1753 * - ext4_writepages after taking page lock (have journal handle)
1754 * - journal_submit_inode_data_buffers (no journal handle)
1755 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1756 * - grab_page_cache when doing write_begin (have journal handle)
1758 * We don't do any block allocation in this function. If we have page with
1759 * multiple blocks we need to write those buffer_heads that are mapped. This
1760 * is important for mmaped based write. So if we do with blocksize 1K
1761 * truncate(f, 1024);
1762 * a = mmap(f, 0, 4096);
1764 * truncate(f, 4096);
1765 * we have in the page first buffer_head mapped via page_mkwrite call back
1766 * but other buffer_heads would be unmapped but dirty (dirty done via the
1767 * do_wp_page). So writepage should write the first block. If we modify
1768 * the mmap area beyond 1024 we will again get a page_fault and the
1769 * page_mkwrite callback will do the block allocation and mark the
1770 * buffer_heads mapped.
1772 * We redirty the page if we have any buffer_heads that is either delay or
1773 * unwritten in the page.
1775 * We can get recursively called as show below.
1777 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1780 * But since we don't do any block allocation we should not deadlock.
1781 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1783 static int ext4_writepage(struct page *page,
1784 struct writeback_control *wbc)
1789 struct buffer_head *page_bufs = NULL;
1790 struct inode *inode = page->mapping->host;
1791 struct ext4_io_submit io_submit;
1792 bool keep_towrite = false;
1794 trace_ext4_writepage(page);
1795 size = i_size_read(inode);
1796 if (page->index == size >> PAGE_CACHE_SHIFT)
1797 len = size & ~PAGE_CACHE_MASK;
1799 len = PAGE_CACHE_SIZE;
1801 page_bufs = page_buffers(page);
1803 * We cannot do block allocation or other extent handling in this
1804 * function. If there are buffers needing that, we have to redirty
1805 * the page. But we may reach here when we do a journal commit via
1806 * journal_submit_inode_data_buffers() and in that case we must write
1807 * allocated buffers to achieve data=ordered mode guarantees.
1809 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1810 ext4_bh_delay_or_unwritten)) {
1811 redirty_page_for_writepage(wbc, page);
1812 if (current->flags & PF_MEMALLOC) {
1814 * For memory cleaning there's no point in writing only
1815 * some buffers. So just bail out. Warn if we came here
1816 * from direct reclaim.
1818 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1823 keep_towrite = true;
1826 if (PageChecked(page) && ext4_should_journal_data(inode))
1828 * It's mmapped pagecache. Add buffers and journal it. There
1829 * doesn't seem much point in redirtying the page here.
1831 return __ext4_journalled_writepage(page, len);
1833 ext4_io_submit_init(&io_submit, wbc);
1834 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1835 if (!io_submit.io_end) {
1836 redirty_page_for_writepage(wbc, page);
1840 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1841 ext4_io_submit(&io_submit);
1842 /* Drop io_end reference we got from init */
1843 ext4_put_io_end_defer(io_submit.io_end);
1847 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1850 loff_t size = i_size_read(mpd->inode);
1853 BUG_ON(page->index != mpd->first_page);
1854 if (page->index == size >> PAGE_CACHE_SHIFT)
1855 len = size & ~PAGE_CACHE_MASK;
1857 len = PAGE_CACHE_SIZE;
1858 clear_page_dirty_for_io(page);
1859 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1861 mpd->wbc->nr_to_write--;
1867 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1870 * mballoc gives us at most this number of blocks...
1871 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1872 * The rest of mballoc seems to handle chunks up to full group size.
1874 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1877 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1879 * @mpd - extent of blocks
1880 * @lblk - logical number of the block in the file
1881 * @bh - buffer head we want to add to the extent
1883 * The function is used to collect contig. blocks in the same state. If the
1884 * buffer doesn't require mapping for writeback and we haven't started the
1885 * extent of buffers to map yet, the function returns 'true' immediately - the
1886 * caller can write the buffer right away. Otherwise the function returns true
1887 * if the block has been added to the extent, false if the block couldn't be
1890 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1891 struct buffer_head *bh)
1893 struct ext4_map_blocks *map = &mpd->map;
1895 /* Buffer that doesn't need mapping for writeback? */
1896 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1897 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1898 /* So far no extent to map => we write the buffer right away */
1899 if (map->m_len == 0)
1904 /* First block in the extent? */
1905 if (map->m_len == 0) {
1908 map->m_flags = bh->b_state & BH_FLAGS;
1912 /* Don't go larger than mballoc is willing to allocate */
1913 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1916 /* Can we merge the block to our big extent? */
1917 if (lblk == map->m_lblk + map->m_len &&
1918 (bh->b_state & BH_FLAGS) == map->m_flags) {
1926 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1928 * @mpd - extent of blocks for mapping
1929 * @head - the first buffer in the page
1930 * @bh - buffer we should start processing from
1931 * @lblk - logical number of the block in the file corresponding to @bh
1933 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1934 * the page for IO if all buffers in this page were mapped and there's no
1935 * accumulated extent of buffers to map or add buffers in the page to the
1936 * extent of buffers to map. The function returns 1 if the caller can continue
1937 * by processing the next page, 0 if it should stop adding buffers to the
1938 * extent to map because we cannot extend it anymore. It can also return value
1939 * < 0 in case of error during IO submission.
1941 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1942 struct buffer_head *head,
1943 struct buffer_head *bh,
1946 struct inode *inode = mpd->inode;
1948 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1949 >> inode->i_blkbits;
1952 BUG_ON(buffer_locked(bh));
1954 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1955 /* Found extent to map? */
1958 /* Everything mapped so far and we hit EOF */
1961 } while (lblk++, (bh = bh->b_this_page) != head);
1962 /* So far everything mapped? Submit the page for IO. */
1963 if (mpd->map.m_len == 0) {
1964 err = mpage_submit_page(mpd, head->b_page);
1968 return lblk < blocks;
1972 * mpage_map_buffers - update buffers corresponding to changed extent and
1973 * submit fully mapped pages for IO
1975 * @mpd - description of extent to map, on return next extent to map
1977 * Scan buffers corresponding to changed extent (we expect corresponding pages
1978 * to be already locked) and update buffer state according to new extent state.
1979 * We map delalloc buffers to their physical location, clear unwritten bits,
1980 * and mark buffers as uninit when we perform writes to unwritten extents
1981 * and do extent conversion after IO is finished. If the last page is not fully
1982 * mapped, we update @map to the next extent in the last page that needs
1983 * mapping. Otherwise we submit the page for IO.
1985 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1987 struct pagevec pvec;
1989 struct inode *inode = mpd->inode;
1990 struct buffer_head *head, *bh;
1991 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1997 start = mpd->map.m_lblk >> bpp_bits;
1998 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1999 lblk = start << bpp_bits;
2000 pblock = mpd->map.m_pblk;
2002 pagevec_init(&pvec, 0);
2003 while (start <= end) {
2004 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2008 for (i = 0; i < nr_pages; i++) {
2009 struct page *page = pvec.pages[i];
2011 if (page->index > end)
2013 /* Up to 'end' pages must be contiguous */
2014 BUG_ON(page->index != start);
2015 bh = head = page_buffers(page);
2017 if (lblk < mpd->map.m_lblk)
2019 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2021 * Buffer after end of mapped extent.
2022 * Find next buffer in the page to map.
2025 mpd->map.m_flags = 0;
2027 * FIXME: If dioread_nolock supports
2028 * blocksize < pagesize, we need to make
2029 * sure we add size mapped so far to
2030 * io_end->size as the following call
2031 * can submit the page for IO.
2033 err = mpage_process_page_bufs(mpd, head,
2035 pagevec_release(&pvec);
2040 if (buffer_delay(bh)) {
2041 clear_buffer_delay(bh);
2042 bh->b_blocknr = pblock++;
2044 clear_buffer_unwritten(bh);
2045 } while (lblk++, (bh = bh->b_this_page) != head);
2048 * FIXME: This is going to break if dioread_nolock
2049 * supports blocksize < pagesize as we will try to
2050 * convert potentially unmapped parts of inode.
2052 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2053 /* Page fully mapped - let IO run! */
2054 err = mpage_submit_page(mpd, page);
2056 pagevec_release(&pvec);
2061 pagevec_release(&pvec);
2063 /* Extent fully mapped and matches with page boundary. We are done. */
2065 mpd->map.m_flags = 0;
2069 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2071 struct inode *inode = mpd->inode;
2072 struct ext4_map_blocks *map = &mpd->map;
2073 int get_blocks_flags;
2074 int err, dioread_nolock;
2076 trace_ext4_da_write_pages_extent(inode, map);
2078 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2079 * to convert an unwritten extent to be initialized (in the case
2080 * where we have written into one or more preallocated blocks). It is
2081 * possible that we're going to need more metadata blocks than
2082 * previously reserved. However we must not fail because we're in
2083 * writeback and there is nothing we can do about it so it might result
2084 * in data loss. So use reserved blocks to allocate metadata if
2087 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2088 * the blocks in question are delalloc blocks. This indicates
2089 * that the blocks and quotas has already been checked when
2090 * the data was copied into the page cache.
2092 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2093 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2094 dioread_nolock = ext4_should_dioread_nolock(inode);
2096 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2097 if (map->m_flags & (1 << BH_Delay))
2098 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2100 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2103 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2104 if (!mpd->io_submit.io_end->handle &&
2105 ext4_handle_valid(handle)) {
2106 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2107 handle->h_rsv_handle = NULL;
2109 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2112 BUG_ON(map->m_len == 0);
2113 if (map->m_flags & EXT4_MAP_NEW) {
2114 struct block_device *bdev = inode->i_sb->s_bdev;
2117 for (i = 0; i < map->m_len; i++)
2118 unmap_underlying_metadata(bdev, map->m_pblk + i);
2124 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2125 * mpd->len and submit pages underlying it for IO
2127 * @handle - handle for journal operations
2128 * @mpd - extent to map
2129 * @give_up_on_write - we set this to true iff there is a fatal error and there
2130 * is no hope of writing the data. The caller should discard
2131 * dirty pages to avoid infinite loops.
2133 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2134 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2135 * them to initialized or split the described range from larger unwritten
2136 * extent. Note that we need not map all the described range since allocation
2137 * can return less blocks or the range is covered by more unwritten extents. We
2138 * cannot map more because we are limited by reserved transaction credits. On
2139 * the other hand we always make sure that the last touched page is fully
2140 * mapped so that it can be written out (and thus forward progress is
2141 * guaranteed). After mapping we submit all mapped pages for IO.
2143 static int mpage_map_and_submit_extent(handle_t *handle,
2144 struct mpage_da_data *mpd,
2145 bool *give_up_on_write)
2147 struct inode *inode = mpd->inode;
2148 struct ext4_map_blocks *map = &mpd->map;
2153 mpd->io_submit.io_end->offset =
2154 ((loff_t)map->m_lblk) << inode->i_blkbits;
2156 err = mpage_map_one_extent(handle, mpd);
2158 struct super_block *sb = inode->i_sb;
2160 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2161 goto invalidate_dirty_pages;
2163 * Let the uper layers retry transient errors.
2164 * In the case of ENOSPC, if ext4_count_free_blocks()
2165 * is non-zero, a commit should free up blocks.
2167 if ((err == -ENOMEM) ||
2168 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2170 goto update_disksize;
2173 ext4_msg(sb, KERN_CRIT,
2174 "Delayed block allocation failed for "
2175 "inode %lu at logical offset %llu with"
2176 " max blocks %u with error %d",
2178 (unsigned long long)map->m_lblk,
2179 (unsigned)map->m_len, -err);
2180 ext4_msg(sb, KERN_CRIT,
2181 "This should not happen!! Data will "
2184 ext4_print_free_blocks(inode);
2185 invalidate_dirty_pages:
2186 *give_up_on_write = true;
2191 * Update buffer state, submit mapped pages, and get us new
2194 err = mpage_map_and_submit_buffers(mpd);
2196 goto update_disksize;
2197 } while (map->m_len);
2201 * Update on-disk size after IO is submitted. Races with
2202 * truncate are avoided by checking i_size under i_data_sem.
2204 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2205 if (disksize > EXT4_I(inode)->i_disksize) {
2209 down_write(&EXT4_I(inode)->i_data_sem);
2210 i_size = i_size_read(inode);
2211 if (disksize > i_size)
2213 if (disksize > EXT4_I(inode)->i_disksize)
2214 EXT4_I(inode)->i_disksize = disksize;
2215 err2 = ext4_mark_inode_dirty(handle, inode);
2216 up_write(&EXT4_I(inode)->i_data_sem);
2218 ext4_error(inode->i_sb,
2219 "Failed to mark inode %lu dirty",
2228 * Calculate the total number of credits to reserve for one writepages
2229 * iteration. This is called from ext4_writepages(). We map an extent of
2230 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2231 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2232 * bpp - 1 blocks in bpp different extents.
2234 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2236 int bpp = ext4_journal_blocks_per_page(inode);
2238 return ext4_meta_trans_blocks(inode,
2239 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2243 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2244 * and underlying extent to map
2246 * @mpd - where to look for pages
2248 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2249 * IO immediately. When we find a page which isn't mapped we start accumulating
2250 * extent of buffers underlying these pages that needs mapping (formed by
2251 * either delayed or unwritten buffers). We also lock the pages containing
2252 * these buffers. The extent found is returned in @mpd structure (starting at
2253 * mpd->lblk with length mpd->len blocks).
2255 * Note that this function can attach bios to one io_end structure which are
2256 * neither logically nor physically contiguous. Although it may seem as an
2257 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2258 * case as we need to track IO to all buffers underlying a page in one io_end.
2260 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2262 struct address_space *mapping = mpd->inode->i_mapping;
2263 struct pagevec pvec;
2264 unsigned int nr_pages;
2265 long left = mpd->wbc->nr_to_write;
2266 pgoff_t index = mpd->first_page;
2267 pgoff_t end = mpd->last_page;
2270 int blkbits = mpd->inode->i_blkbits;
2272 struct buffer_head *head;
2274 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2275 tag = PAGECACHE_TAG_TOWRITE;
2277 tag = PAGECACHE_TAG_DIRTY;
2279 pagevec_init(&pvec, 0);
2281 mpd->next_page = index;
2282 while (index <= end) {
2283 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2284 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2288 for (i = 0; i < nr_pages; i++) {
2289 struct page *page = pvec.pages[i];
2292 * At this point, the page may be truncated or
2293 * invalidated (changing page->mapping to NULL), or
2294 * even swizzled back from swapper_space to tmpfs file
2295 * mapping. However, page->index will not change
2296 * because we have a reference on the page.
2298 if (page->index > end)
2302 * Accumulated enough dirty pages? This doesn't apply
2303 * to WB_SYNC_ALL mode. For integrity sync we have to
2304 * keep going because someone may be concurrently
2305 * dirtying pages, and we might have synced a lot of
2306 * newly appeared dirty pages, but have not synced all
2307 * of the old dirty pages.
2309 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2312 /* If we can't merge this page, we are done. */
2313 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2318 * If the page is no longer dirty, or its mapping no
2319 * longer corresponds to inode we are writing (which
2320 * means it has been truncated or invalidated), or the
2321 * page is already under writeback and we are not doing
2322 * a data integrity writeback, skip the page
2324 if (!PageDirty(page) ||
2325 (PageWriteback(page) &&
2326 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2327 unlikely(page->mapping != mapping)) {
2332 wait_on_page_writeback(page);
2333 BUG_ON(PageWriteback(page));
2335 if (mpd->map.m_len == 0)
2336 mpd->first_page = page->index;
2337 mpd->next_page = page->index + 1;
2338 /* Add all dirty buffers to mpd */
2339 lblk = ((ext4_lblk_t)page->index) <<
2340 (PAGE_CACHE_SHIFT - blkbits);
2341 head = page_buffers(page);
2342 err = mpage_process_page_bufs(mpd, head, head, lblk);
2348 pagevec_release(&pvec);
2353 pagevec_release(&pvec);
2357 static int __writepage(struct page *page, struct writeback_control *wbc,
2360 struct address_space *mapping = data;
2361 int ret = ext4_writepage(page, wbc);
2362 mapping_set_error(mapping, ret);
2366 static int ext4_writepages(struct address_space *mapping,
2367 struct writeback_control *wbc)
2369 pgoff_t writeback_index = 0;
2370 long nr_to_write = wbc->nr_to_write;
2371 int range_whole = 0;
2373 handle_t *handle = NULL;
2374 struct mpage_da_data mpd;
2375 struct inode *inode = mapping->host;
2376 int needed_blocks, rsv_blocks = 0, ret = 0;
2377 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2379 struct blk_plug plug;
2380 bool give_up_on_write = false;
2382 trace_ext4_writepages(inode, wbc);
2385 * No pages to write? This is mainly a kludge to avoid starting
2386 * a transaction for special inodes like journal inode on last iput()
2387 * because that could violate lock ordering on umount
2389 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2390 goto out_writepages;
2392 if (ext4_should_journal_data(inode)) {
2393 struct blk_plug plug;
2395 blk_start_plug(&plug);
2396 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2397 blk_finish_plug(&plug);
2398 goto out_writepages;
2402 * If the filesystem has aborted, it is read-only, so return
2403 * right away instead of dumping stack traces later on that
2404 * will obscure the real source of the problem. We test
2405 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2406 * the latter could be true if the filesystem is mounted
2407 * read-only, and in that case, ext4_writepages should
2408 * *never* be called, so if that ever happens, we would want
2411 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2413 goto out_writepages;
2416 if (ext4_should_dioread_nolock(inode)) {
2418 * We may need to convert up to one extent per block in
2419 * the page and we may dirty the inode.
2421 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2425 * If we have inline data and arrive here, it means that
2426 * we will soon create the block for the 1st page, so
2427 * we'd better clear the inline data here.
2429 if (ext4_has_inline_data(inode)) {
2430 /* Just inode will be modified... */
2431 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2432 if (IS_ERR(handle)) {
2433 ret = PTR_ERR(handle);
2434 goto out_writepages;
2436 BUG_ON(ext4_test_inode_state(inode,
2437 EXT4_STATE_MAY_INLINE_DATA));
2438 ext4_destroy_inline_data(handle, inode);
2439 ext4_journal_stop(handle);
2442 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2445 if (wbc->range_cyclic) {
2446 writeback_index = mapping->writeback_index;
2447 if (writeback_index)
2449 mpd.first_page = writeback_index;
2452 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2453 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2458 ext4_io_submit_init(&mpd.io_submit, wbc);
2460 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2461 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2463 blk_start_plug(&plug);
2464 while (!done && mpd.first_page <= mpd.last_page) {
2465 /* For each extent of pages we use new io_end */
2466 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2467 if (!mpd.io_submit.io_end) {
2473 * We have two constraints: We find one extent to map and we
2474 * must always write out whole page (makes a difference when
2475 * blocksize < pagesize) so that we don't block on IO when we
2476 * try to write out the rest of the page. Journalled mode is
2477 * not supported by delalloc.
2479 BUG_ON(ext4_should_journal_data(inode));
2480 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2482 /* start a new transaction */
2483 handle = ext4_journal_start_with_reserve(inode,
2484 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2485 if (IS_ERR(handle)) {
2486 ret = PTR_ERR(handle);
2487 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2488 "%ld pages, ino %lu; err %d", __func__,
2489 wbc->nr_to_write, inode->i_ino, ret);
2490 /* Release allocated io_end */
2491 ext4_put_io_end(mpd.io_submit.io_end);
2495 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2496 ret = mpage_prepare_extent_to_map(&mpd);
2499 ret = mpage_map_and_submit_extent(handle, &mpd,
2503 * We scanned the whole range (or exhausted
2504 * nr_to_write), submitted what was mapped and
2505 * didn't find anything needing mapping. We are
2511 ext4_journal_stop(handle);
2512 /* Submit prepared bio */
2513 ext4_io_submit(&mpd.io_submit);
2514 /* Unlock pages we didn't use */
2515 mpage_release_unused_pages(&mpd, give_up_on_write);
2516 /* Drop our io_end reference we got from init */
2517 ext4_put_io_end(mpd.io_submit.io_end);
2519 if (ret == -ENOSPC && sbi->s_journal) {
2521 * Commit the transaction which would
2522 * free blocks released in the transaction
2525 jbd2_journal_force_commit_nested(sbi->s_journal);
2529 /* Fatal error - ENOMEM, EIO... */
2533 blk_finish_plug(&plug);
2534 if (!ret && !cycled && wbc->nr_to_write > 0) {
2536 mpd.last_page = writeback_index - 1;
2542 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2544 * Set the writeback_index so that range_cyclic
2545 * mode will write it back later
2547 mapping->writeback_index = mpd.first_page;
2550 trace_ext4_writepages_result(inode, wbc, ret,
2551 nr_to_write - wbc->nr_to_write);
2555 static int ext4_nonda_switch(struct super_block *sb)
2557 s64 free_clusters, dirty_clusters;
2558 struct ext4_sb_info *sbi = EXT4_SB(sb);
2561 * switch to non delalloc mode if we are running low
2562 * on free block. The free block accounting via percpu
2563 * counters can get slightly wrong with percpu_counter_batch getting
2564 * accumulated on each CPU without updating global counters
2565 * Delalloc need an accurate free block accounting. So switch
2566 * to non delalloc when we are near to error range.
2569 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2571 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2573 * Start pushing delalloc when 1/2 of free blocks are dirty.
2575 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2576 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2578 if (2 * free_clusters < 3 * dirty_clusters ||
2579 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2581 * free block count is less than 150% of dirty blocks
2582 * or free blocks is less than watermark
2589 /* We always reserve for an inode update; the superblock could be there too */
2590 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2592 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2593 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2596 if (pos + len <= 0x7fffffffULL)
2599 /* We might need to update the superblock to set LARGE_FILE */
2603 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2604 loff_t pos, unsigned len, unsigned flags,
2605 struct page **pagep, void **fsdata)
2607 int ret, retries = 0;
2610 struct inode *inode = mapping->host;
2613 index = pos >> PAGE_CACHE_SHIFT;
2615 if (ext4_nonda_switch(inode->i_sb)) {
2616 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2617 return ext4_write_begin(file, mapping, pos,
2618 len, flags, pagep, fsdata);
2620 *fsdata = (void *)0;
2621 trace_ext4_da_write_begin(inode, pos, len, flags);
2623 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2624 ret = ext4_da_write_inline_data_begin(mapping, inode,
2634 * grab_cache_page_write_begin() can take a long time if the
2635 * system is thrashing due to memory pressure, or if the page
2636 * is being written back. So grab it first before we start
2637 * the transaction handle. This also allows us to allocate
2638 * the page (if needed) without using GFP_NOFS.
2641 page = grab_cache_page_write_begin(mapping, index, flags);
2647 * With delayed allocation, we don't log the i_disksize update
2648 * if there is delayed block allocation. But we still need
2649 * to journalling the i_disksize update if writes to the end
2650 * of file which has an already mapped buffer.
2653 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2654 ext4_da_write_credits(inode, pos, len));
2655 if (IS_ERR(handle)) {
2656 page_cache_release(page);
2657 return PTR_ERR(handle);
2661 if (page->mapping != mapping) {
2662 /* The page got truncated from under us */
2664 page_cache_release(page);
2665 ext4_journal_stop(handle);
2668 /* In case writeback began while the page was unlocked */
2669 wait_for_stable_page(page);
2671 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2672 ret = ext4_block_write_begin(page, pos, len,
2673 ext4_da_get_block_prep);
2675 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2679 ext4_journal_stop(handle);
2681 * block_write_begin may have instantiated a few blocks
2682 * outside i_size. Trim these off again. Don't need
2683 * i_size_read because we hold i_mutex.
2685 if (pos + len > inode->i_size)
2686 ext4_truncate_failed_write(inode);
2688 if (ret == -ENOSPC &&
2689 ext4_should_retry_alloc(inode->i_sb, &retries))
2692 page_cache_release(page);
2701 * Check if we should update i_disksize
2702 * when write to the end of file but not require block allocation
2704 static int ext4_da_should_update_i_disksize(struct page *page,
2705 unsigned long offset)
2707 struct buffer_head *bh;
2708 struct inode *inode = page->mapping->host;
2712 bh = page_buffers(page);
2713 idx = offset >> inode->i_blkbits;
2715 for (i = 0; i < idx; i++)
2716 bh = bh->b_this_page;
2718 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2723 static int ext4_da_write_end(struct file *file,
2724 struct address_space *mapping,
2725 loff_t pos, unsigned len, unsigned copied,
2726 struct page *page, void *fsdata)
2728 struct inode *inode = mapping->host;
2730 handle_t *handle = ext4_journal_current_handle();
2732 unsigned long start, end;
2733 int write_mode = (int)(unsigned long)fsdata;
2735 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2736 return ext4_write_end(file, mapping, pos,
2737 len, copied, page, fsdata);
2739 trace_ext4_da_write_end(inode, pos, len, copied);
2740 start = pos & (PAGE_CACHE_SIZE - 1);
2741 end = start + copied - 1;
2744 * generic_write_end() will run mark_inode_dirty() if i_size
2745 * changes. So let's piggyback the i_disksize mark_inode_dirty
2748 new_i_size = pos + copied;
2749 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2750 if (ext4_has_inline_data(inode) ||
2751 ext4_da_should_update_i_disksize(page, end)) {
2752 ext4_update_i_disksize(inode, new_i_size);
2753 /* We need to mark inode dirty even if
2754 * new_i_size is less that inode->i_size
2755 * bu greater than i_disksize.(hint delalloc)
2757 ext4_mark_inode_dirty(handle, inode);
2761 if (write_mode != CONVERT_INLINE_DATA &&
2762 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2763 ext4_has_inline_data(inode))
2764 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2767 ret2 = generic_write_end(file, mapping, pos, len, copied,
2773 ret2 = ext4_journal_stop(handle);
2777 return ret ? ret : copied;
2780 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2781 unsigned int length)
2784 * Drop reserved blocks
2786 BUG_ON(!PageLocked(page));
2787 if (!page_has_buffers(page))
2790 ext4_da_page_release_reservation(page, offset, length);
2793 ext4_invalidatepage(page, offset, length);
2799 * Force all delayed allocation blocks to be allocated for a given inode.
2801 int ext4_alloc_da_blocks(struct inode *inode)
2803 trace_ext4_alloc_da_blocks(inode);
2805 if (!EXT4_I(inode)->i_reserved_data_blocks)
2809 * We do something simple for now. The filemap_flush() will
2810 * also start triggering a write of the data blocks, which is
2811 * not strictly speaking necessary (and for users of
2812 * laptop_mode, not even desirable). However, to do otherwise
2813 * would require replicating code paths in:
2815 * ext4_writepages() ->
2816 * write_cache_pages() ---> (via passed in callback function)
2817 * __mpage_da_writepage() -->
2818 * mpage_add_bh_to_extent()
2819 * mpage_da_map_blocks()
2821 * The problem is that write_cache_pages(), located in
2822 * mm/page-writeback.c, marks pages clean in preparation for
2823 * doing I/O, which is not desirable if we're not planning on
2826 * We could call write_cache_pages(), and then redirty all of
2827 * the pages by calling redirty_page_for_writepage() but that
2828 * would be ugly in the extreme. So instead we would need to
2829 * replicate parts of the code in the above functions,
2830 * simplifying them because we wouldn't actually intend to
2831 * write out the pages, but rather only collect contiguous
2832 * logical block extents, call the multi-block allocator, and
2833 * then update the buffer heads with the block allocations.
2835 * For now, though, we'll cheat by calling filemap_flush(),
2836 * which will map the blocks, and start the I/O, but not
2837 * actually wait for the I/O to complete.
2839 return filemap_flush(inode->i_mapping);
2843 * bmap() is special. It gets used by applications such as lilo and by
2844 * the swapper to find the on-disk block of a specific piece of data.
2846 * Naturally, this is dangerous if the block concerned is still in the
2847 * journal. If somebody makes a swapfile on an ext4 data-journaling
2848 * filesystem and enables swap, then they may get a nasty shock when the
2849 * data getting swapped to that swapfile suddenly gets overwritten by
2850 * the original zero's written out previously to the journal and
2851 * awaiting writeback in the kernel's buffer cache.
2853 * So, if we see any bmap calls here on a modified, data-journaled file,
2854 * take extra steps to flush any blocks which might be in the cache.
2856 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2858 struct inode *inode = mapping->host;
2863 * We can get here for an inline file via the FIBMAP ioctl
2865 if (ext4_has_inline_data(inode))
2868 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2869 test_opt(inode->i_sb, DELALLOC)) {
2871 * With delalloc we want to sync the file
2872 * so that we can make sure we allocate
2875 filemap_write_and_wait(mapping);
2878 if (EXT4_JOURNAL(inode) &&
2879 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2881 * This is a REALLY heavyweight approach, but the use of
2882 * bmap on dirty files is expected to be extremely rare:
2883 * only if we run lilo or swapon on a freshly made file
2884 * do we expect this to happen.
2886 * (bmap requires CAP_SYS_RAWIO so this does not
2887 * represent an unprivileged user DOS attack --- we'd be
2888 * in trouble if mortal users could trigger this path at
2891 * NB. EXT4_STATE_JDATA is not set on files other than
2892 * regular files. If somebody wants to bmap a directory
2893 * or symlink and gets confused because the buffer
2894 * hasn't yet been flushed to disk, they deserve
2895 * everything they get.
2898 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2899 journal = EXT4_JOURNAL(inode);
2900 jbd2_journal_lock_updates(journal);
2901 err = jbd2_journal_flush(journal);
2902 jbd2_journal_unlock_updates(journal);
2908 return generic_block_bmap(mapping, block, ext4_get_block);
2911 static int ext4_readpage(struct file *file, struct page *page)
2914 struct inode *inode = page->mapping->host;
2916 trace_ext4_readpage(page);
2918 if (ext4_has_inline_data(inode))
2919 ret = ext4_readpage_inline(inode, page);
2922 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2928 ext4_readpages(struct file *file, struct address_space *mapping,
2929 struct list_head *pages, unsigned nr_pages)
2931 struct inode *inode = mapping->host;
2933 /* If the file has inline data, no need to do readpages. */
2934 if (ext4_has_inline_data(inode))
2937 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2940 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2941 unsigned int length)
2943 trace_ext4_invalidatepage(page, offset, length);
2945 /* No journalling happens on data buffers when this function is used */
2946 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2948 block_invalidatepage(page, offset, length);
2951 static int __ext4_journalled_invalidatepage(struct page *page,
2952 unsigned int offset,
2953 unsigned int length)
2955 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2957 trace_ext4_journalled_invalidatepage(page, offset, length);
2960 * If it's a full truncate we just forget about the pending dirtying
2962 if (offset == 0 && length == PAGE_CACHE_SIZE)
2963 ClearPageChecked(page);
2965 return jbd2_journal_invalidatepage(journal, page, offset, length);
2968 /* Wrapper for aops... */
2969 static void ext4_journalled_invalidatepage(struct page *page,
2970 unsigned int offset,
2971 unsigned int length)
2973 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2976 static int ext4_releasepage(struct page *page, gfp_t wait)
2978 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2980 trace_ext4_releasepage(page);
2982 /* Page has dirty journalled data -> cannot release */
2983 if (PageChecked(page))
2986 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2988 return try_to_free_buffers(page);
2992 * ext4_get_block used when preparing for a DIO write or buffer write.
2993 * We allocate an uinitialized extent if blocks haven't been allocated.
2994 * The extent will be converted to initialized after the IO is complete.
2996 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2997 struct buffer_head *bh_result, int create)
2999 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3000 inode->i_ino, create);
3001 return _ext4_get_block(inode, iblock, bh_result,
3002 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3005 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3006 struct buffer_head *bh_result, int create)
3008 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3009 inode->i_ino, create);
3010 return _ext4_get_block(inode, iblock, bh_result,
3011 EXT4_GET_BLOCKS_NO_LOCK);
3014 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3015 ssize_t size, void *private)
3017 ext4_io_end_t *io_end = iocb->private;
3019 /* if not async direct IO just return */
3023 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3024 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3025 iocb->private, io_end->inode->i_ino, iocb, offset,
3028 iocb->private = NULL;
3029 io_end->offset = offset;
3030 io_end->size = size;
3031 ext4_put_io_end(io_end);
3035 * For ext4 extent files, ext4 will do direct-io write to holes,
3036 * preallocated extents, and those write extend the file, no need to
3037 * fall back to buffered IO.
3039 * For holes, we fallocate those blocks, mark them as unwritten
3040 * If those blocks were preallocated, we mark sure they are split, but
3041 * still keep the range to write as unwritten.
3043 * The unwritten extents will be converted to written when DIO is completed.
3044 * For async direct IO, since the IO may still pending when return, we
3045 * set up an end_io call back function, which will do the conversion
3046 * when async direct IO completed.
3048 * If the O_DIRECT write will extend the file then add this inode to the
3049 * orphan list. So recovery will truncate it back to the original size
3050 * if the machine crashes during the write.
3053 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3056 struct file *file = iocb->ki_filp;
3057 struct inode *inode = file->f_mapping->host;
3059 size_t count = iov_iter_count(iter);
3061 get_block_t *get_block_func = NULL;
3063 loff_t final_size = offset + count;
3064 ext4_io_end_t *io_end = NULL;
3066 /* Use the old path for reads and writes beyond i_size. */
3067 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3068 return ext4_ind_direct_IO(iocb, iter, offset);
3070 BUG_ON(iocb->private == NULL);
3073 * Make all waiters for direct IO properly wait also for extent
3074 * conversion. This also disallows race between truncate() and
3075 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3077 if (iov_iter_rw(iter) == WRITE)
3078 inode_dio_begin(inode);
3080 /* If we do a overwrite dio, i_mutex locking can be released */
3081 overwrite = *((int *)iocb->private);
3084 down_read(&EXT4_I(inode)->i_data_sem);
3085 mutex_unlock(&inode->i_mutex);
3089 * We could direct write to holes and fallocate.
3091 * Allocated blocks to fill the hole are marked as
3092 * unwritten to prevent parallel buffered read to expose
3093 * the stale data before DIO complete the data IO.
3095 * As to previously fallocated extents, ext4 get_block will
3096 * just simply mark the buffer mapped but still keep the
3097 * extents unwritten.
3099 * For non AIO case, we will convert those unwritten extents
3100 * to written after return back from blockdev_direct_IO.
3102 * For async DIO, the conversion needs to be deferred when the
3103 * IO is completed. The ext4 end_io callback function will be
3104 * called to take care of the conversion work. Here for async
3105 * case, we allocate an io_end structure to hook to the iocb.
3107 iocb->private = NULL;
3108 ext4_inode_aio_set(inode, NULL);
3109 if (!is_sync_kiocb(iocb)) {
3110 io_end = ext4_init_io_end(inode, GFP_NOFS);
3116 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3118 iocb->private = ext4_get_io_end(io_end);
3120 * we save the io structure for current async direct
3121 * IO, so that later ext4_map_blocks() could flag the
3122 * io structure whether there is a unwritten extents
3123 * needs to be converted when IO is completed.
3125 ext4_inode_aio_set(inode, io_end);
3129 get_block_func = ext4_get_block_write_nolock;
3131 get_block_func = ext4_get_block_write;
3132 dio_flags = DIO_LOCKING;
3134 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3135 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3138 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3139 ext4_end_io_dio, dio_flags);
3141 ret = __blockdev_direct_IO(iocb, inode,
3142 inode->i_sb->s_bdev, iter, offset,
3144 ext4_end_io_dio, NULL, dio_flags);
3147 * Put our reference to io_end. This can free the io_end structure e.g.
3148 * in sync IO case or in case of error. It can even perform extent
3149 * conversion if all bios we submitted finished before we got here.
3150 * Note that in that case iocb->private can be already set to NULL
3154 ext4_inode_aio_set(inode, NULL);
3155 ext4_put_io_end(io_end);
3157 * When no IO was submitted ext4_end_io_dio() was not
3158 * called so we have to put iocb's reference.
3160 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3161 WARN_ON(iocb->private != io_end);
3162 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3163 ext4_put_io_end(io_end);
3164 iocb->private = NULL;
3167 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3168 EXT4_STATE_DIO_UNWRITTEN)) {
3171 * for non AIO case, since the IO is already
3172 * completed, we could do the conversion right here
3174 err = ext4_convert_unwritten_extents(NULL, inode,
3178 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3182 if (iov_iter_rw(iter) == WRITE)
3183 inode_dio_end(inode);
3184 /* take i_mutex locking again if we do a ovewrite dio */
3186 up_read(&EXT4_I(inode)->i_data_sem);
3187 mutex_lock(&inode->i_mutex);
3193 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3196 struct file *file = iocb->ki_filp;
3197 struct inode *inode = file->f_mapping->host;
3198 size_t count = iov_iter_count(iter);
3201 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3202 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3207 * If we are doing data journalling we don't support O_DIRECT
3209 if (ext4_should_journal_data(inode))
3212 /* Let buffer I/O handle the inline data case. */
3213 if (ext4_has_inline_data(inode))
3216 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3217 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3218 ret = ext4_ext_direct_IO(iocb, iter, offset);
3220 ret = ext4_ind_direct_IO(iocb, iter, offset);
3221 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3226 * Pages can be marked dirty completely asynchronously from ext4's journalling
3227 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3228 * much here because ->set_page_dirty is called under VFS locks. The page is
3229 * not necessarily locked.
3231 * We cannot just dirty the page and leave attached buffers clean, because the
3232 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3233 * or jbddirty because all the journalling code will explode.
3235 * So what we do is to mark the page "pending dirty" and next time writepage
3236 * is called, propagate that into the buffers appropriately.
3238 static int ext4_journalled_set_page_dirty(struct page *page)
3240 SetPageChecked(page);
3241 return __set_page_dirty_nobuffers(page);
3244 static const struct address_space_operations ext4_aops = {
3245 .readpage = ext4_readpage,
3246 .readpages = ext4_readpages,
3247 .writepage = ext4_writepage,
3248 .writepages = ext4_writepages,
3249 .write_begin = ext4_write_begin,
3250 .write_end = ext4_write_end,
3252 .invalidatepage = ext4_invalidatepage,
3253 .releasepage = ext4_releasepage,
3254 .direct_IO = ext4_direct_IO,
3255 .migratepage = buffer_migrate_page,
3256 .is_partially_uptodate = block_is_partially_uptodate,
3257 .error_remove_page = generic_error_remove_page,
3260 static const struct address_space_operations ext4_journalled_aops = {
3261 .readpage = ext4_readpage,
3262 .readpages = ext4_readpages,
3263 .writepage = ext4_writepage,
3264 .writepages = ext4_writepages,
3265 .write_begin = ext4_write_begin,
3266 .write_end = ext4_journalled_write_end,
3267 .set_page_dirty = ext4_journalled_set_page_dirty,
3269 .invalidatepage = ext4_journalled_invalidatepage,
3270 .releasepage = ext4_releasepage,
3271 .direct_IO = ext4_direct_IO,
3272 .is_partially_uptodate = block_is_partially_uptodate,
3273 .error_remove_page = generic_error_remove_page,
3276 static const struct address_space_operations ext4_da_aops = {
3277 .readpage = ext4_readpage,
3278 .readpages = ext4_readpages,
3279 .writepage = ext4_writepage,
3280 .writepages = ext4_writepages,
3281 .write_begin = ext4_da_write_begin,
3282 .write_end = ext4_da_write_end,
3284 .invalidatepage = ext4_da_invalidatepage,
3285 .releasepage = ext4_releasepage,
3286 .direct_IO = ext4_direct_IO,
3287 .migratepage = buffer_migrate_page,
3288 .is_partially_uptodate = block_is_partially_uptodate,
3289 .error_remove_page = generic_error_remove_page,
3292 void ext4_set_aops(struct inode *inode)
3294 switch (ext4_inode_journal_mode(inode)) {
3295 case EXT4_INODE_ORDERED_DATA_MODE:
3296 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3298 case EXT4_INODE_WRITEBACK_DATA_MODE:
3299 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3301 case EXT4_INODE_JOURNAL_DATA_MODE:
3302 inode->i_mapping->a_ops = &ext4_journalled_aops;
3307 if (test_opt(inode->i_sb, DELALLOC))
3308 inode->i_mapping->a_ops = &ext4_da_aops;
3310 inode->i_mapping->a_ops = &ext4_aops;
3313 static int __ext4_block_zero_page_range(handle_t *handle,
3314 struct address_space *mapping, loff_t from, loff_t length)
3316 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3317 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3318 unsigned blocksize, pos;
3320 struct inode *inode = mapping->host;
3321 struct buffer_head *bh;
3325 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3326 mapping_gfp_mask(mapping) & ~__GFP_FS);
3330 blocksize = inode->i_sb->s_blocksize;
3332 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3334 if (!page_has_buffers(page))
3335 create_empty_buffers(page, blocksize, 0);
3337 /* Find the buffer that contains "offset" */
3338 bh = page_buffers(page);
3340 while (offset >= pos) {
3341 bh = bh->b_this_page;
3345 if (buffer_freed(bh)) {
3346 BUFFER_TRACE(bh, "freed: skip");
3349 if (!buffer_mapped(bh)) {
3350 BUFFER_TRACE(bh, "unmapped");
3351 ext4_get_block(inode, iblock, bh, 0);
3352 /* unmapped? It's a hole - nothing to do */
3353 if (!buffer_mapped(bh)) {
3354 BUFFER_TRACE(bh, "still unmapped");
3359 /* Ok, it's mapped. Make sure it's up-to-date */
3360 if (PageUptodate(page))
3361 set_buffer_uptodate(bh);
3363 if (!buffer_uptodate(bh)) {
3365 ll_rw_block(READ, 1, &bh);
3367 /* Uhhuh. Read error. Complain and punt. */
3368 if (!buffer_uptodate(bh))
3370 if (S_ISREG(inode->i_mode) &&
3371 ext4_encrypted_inode(inode)) {
3372 /* We expect the key to be set. */
3373 BUG_ON(!ext4_has_encryption_key(inode));
3374 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3375 WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3378 if (ext4_should_journal_data(inode)) {
3379 BUFFER_TRACE(bh, "get write access");
3380 err = ext4_journal_get_write_access(handle, bh);
3384 zero_user(page, offset, length);
3385 BUFFER_TRACE(bh, "zeroed end of block");
3387 if (ext4_should_journal_data(inode)) {
3388 err = ext4_handle_dirty_metadata(handle, inode, bh);
3391 mark_buffer_dirty(bh);
3392 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3393 err = ext4_jbd2_file_inode(handle, inode);
3398 page_cache_release(page);
3403 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3404 * starting from file offset 'from'. The range to be zero'd must
3405 * be contained with in one block. If the specified range exceeds
3406 * the end of the block it will be shortened to end of the block
3407 * that cooresponds to 'from'
3409 static int ext4_block_zero_page_range(handle_t *handle,
3410 struct address_space *mapping, loff_t from, loff_t length)
3412 struct inode *inode = mapping->host;
3413 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3414 unsigned blocksize = inode->i_sb->s_blocksize;
3415 unsigned max = blocksize - (offset & (blocksize - 1));
3418 * correct length if it does not fall between
3419 * 'from' and the end of the block
3421 if (length > max || length < 0)
3425 return dax_zero_page_range(inode, from, length, ext4_get_block);
3426 return __ext4_block_zero_page_range(handle, mapping, from, length);
3430 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3431 * up to the end of the block which corresponds to `from'.
3432 * This required during truncate. We need to physically zero the tail end
3433 * of that block so it doesn't yield old data if the file is later grown.
3435 static int ext4_block_truncate_page(handle_t *handle,
3436 struct address_space *mapping, loff_t from)
3438 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3441 struct inode *inode = mapping->host;
3443 blocksize = inode->i_sb->s_blocksize;
3444 length = blocksize - (offset & (blocksize - 1));
3446 return ext4_block_zero_page_range(handle, mapping, from, length);
3449 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3450 loff_t lstart, loff_t length)
3452 struct super_block *sb = inode->i_sb;
3453 struct address_space *mapping = inode->i_mapping;
3454 unsigned partial_start, partial_end;
3455 ext4_fsblk_t start, end;
3456 loff_t byte_end = (lstart + length - 1);
3459 partial_start = lstart & (sb->s_blocksize - 1);
3460 partial_end = byte_end & (sb->s_blocksize - 1);
3462 start = lstart >> sb->s_blocksize_bits;
3463 end = byte_end >> sb->s_blocksize_bits;
3465 /* Handle partial zero within the single block */
3467 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3468 err = ext4_block_zero_page_range(handle, mapping,
3472 /* Handle partial zero out on the start of the range */
3473 if (partial_start) {
3474 err = ext4_block_zero_page_range(handle, mapping,
3475 lstart, sb->s_blocksize);
3479 /* Handle partial zero out on the end of the range */
3480 if (partial_end != sb->s_blocksize - 1)
3481 err = ext4_block_zero_page_range(handle, mapping,
3482 byte_end - partial_end,
3487 int ext4_can_truncate(struct inode *inode)
3489 if (S_ISREG(inode->i_mode))
3491 if (S_ISDIR(inode->i_mode))
3493 if (S_ISLNK(inode->i_mode))
3494 return !ext4_inode_is_fast_symlink(inode);
3499 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3500 * associated with the given offset and length
3502 * @inode: File inode
3503 * @offset: The offset where the hole will begin
3504 * @len: The length of the hole
3506 * Returns: 0 on success or negative on failure
3509 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3511 struct super_block *sb = inode->i_sb;
3512 ext4_lblk_t first_block, stop_block;
3513 struct address_space *mapping = inode->i_mapping;
3514 loff_t first_block_offset, last_block_offset;
3516 unsigned int credits;
3519 if (!S_ISREG(inode->i_mode))
3522 trace_ext4_punch_hole(inode, offset, length, 0);
3525 * Write out all dirty pages to avoid race conditions
3526 * Then release them.
3528 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3529 ret = filemap_write_and_wait_range(mapping, offset,
3530 offset + length - 1);
3535 mutex_lock(&inode->i_mutex);
3537 /* No need to punch hole beyond i_size */
3538 if (offset >= inode->i_size)
3542 * If the hole extends beyond i_size, set the hole
3543 * to end after the page that contains i_size
3545 if (offset + length > inode->i_size) {
3546 length = inode->i_size +
3547 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3551 if (offset & (sb->s_blocksize - 1) ||
3552 (offset + length) & (sb->s_blocksize - 1)) {
3554 * Attach jinode to inode for jbd2 if we do any zeroing of
3557 ret = ext4_inode_attach_jinode(inode);
3563 first_block_offset = round_up(offset, sb->s_blocksize);
3564 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3566 /* Now release the pages and zero block aligned part of pages*/
3567 if (last_block_offset > first_block_offset)
3568 truncate_pagecache_range(inode, first_block_offset,
3571 /* Wait all existing dio workers, newcomers will block on i_mutex */
3572 ext4_inode_block_unlocked_dio(inode);
3573 inode_dio_wait(inode);
3575 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3576 credits = ext4_writepage_trans_blocks(inode);
3578 credits = ext4_blocks_for_truncate(inode);
3579 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3580 if (IS_ERR(handle)) {
3581 ret = PTR_ERR(handle);
3582 ext4_std_error(sb, ret);
3586 ret = ext4_zero_partial_blocks(handle, inode, offset,
3591 first_block = (offset + sb->s_blocksize - 1) >>
3592 EXT4_BLOCK_SIZE_BITS(sb);
3593 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3595 /* If there are no blocks to remove, return now */
3596 if (first_block >= stop_block)
3599 down_write(&EXT4_I(inode)->i_data_sem);
3600 ext4_discard_preallocations(inode);
3602 ret = ext4_es_remove_extent(inode, first_block,
3603 stop_block - first_block);
3605 up_write(&EXT4_I(inode)->i_data_sem);
3609 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3610 ret = ext4_ext_remove_space(inode, first_block,
3613 ret = ext4_ind_remove_space(handle, inode, first_block,
3616 up_write(&EXT4_I(inode)->i_data_sem);
3618 ext4_handle_sync(handle);
3620 /* Now release the pages again to reduce race window */
3621 if (last_block_offset > first_block_offset)
3622 truncate_pagecache_range(inode, first_block_offset,
3625 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3626 ext4_mark_inode_dirty(handle, inode);
3628 ext4_journal_stop(handle);
3630 ext4_inode_resume_unlocked_dio(inode);
3632 mutex_unlock(&inode->i_mutex);
3636 int ext4_inode_attach_jinode(struct inode *inode)
3638 struct ext4_inode_info *ei = EXT4_I(inode);
3639 struct jbd2_inode *jinode;
3641 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3644 jinode = jbd2_alloc_inode(GFP_KERNEL);
3645 spin_lock(&inode->i_lock);
3648 spin_unlock(&inode->i_lock);
3651 ei->jinode = jinode;
3652 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3655 spin_unlock(&inode->i_lock);
3656 if (unlikely(jinode != NULL))
3657 jbd2_free_inode(jinode);
3664 * We block out ext4_get_block() block instantiations across the entire
3665 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3666 * simultaneously on behalf of the same inode.
3668 * As we work through the truncate and commit bits of it to the journal there
3669 * is one core, guiding principle: the file's tree must always be consistent on
3670 * disk. We must be able to restart the truncate after a crash.
3672 * The file's tree may be transiently inconsistent in memory (although it
3673 * probably isn't), but whenever we close off and commit a journal transaction,
3674 * the contents of (the filesystem + the journal) must be consistent and
3675 * restartable. It's pretty simple, really: bottom up, right to left (although
3676 * left-to-right works OK too).
3678 * Note that at recovery time, journal replay occurs *before* the restart of
3679 * truncate against the orphan inode list.
3681 * The committed inode has the new, desired i_size (which is the same as
3682 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3683 * that this inode's truncate did not complete and it will again call
3684 * ext4_truncate() to have another go. So there will be instantiated blocks
3685 * to the right of the truncation point in a crashed ext4 filesystem. But
3686 * that's fine - as long as they are linked from the inode, the post-crash
3687 * ext4_truncate() run will find them and release them.
3689 void ext4_truncate(struct inode *inode)
3691 struct ext4_inode_info *ei = EXT4_I(inode);
3692 unsigned int credits;
3694 struct address_space *mapping = inode->i_mapping;
3697 * There is a possibility that we're either freeing the inode
3698 * or it's a completely new inode. In those cases we might not
3699 * have i_mutex locked because it's not necessary.
3701 if (!(inode->i_state & (I_NEW|I_FREEING)))
3702 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3703 trace_ext4_truncate_enter(inode);
3705 if (!ext4_can_truncate(inode))
3708 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3710 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3711 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3713 if (ext4_has_inline_data(inode)) {
3716 ext4_inline_data_truncate(inode, &has_inline);
3721 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3722 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3723 if (ext4_inode_attach_jinode(inode) < 0)
3727 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3728 credits = ext4_writepage_trans_blocks(inode);
3730 credits = ext4_blocks_for_truncate(inode);
3732 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3733 if (IS_ERR(handle)) {
3734 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3738 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3739 ext4_block_truncate_page(handle, mapping, inode->i_size);
3742 * We add the inode to the orphan list, so that if this
3743 * truncate spans multiple transactions, and we crash, we will
3744 * resume the truncate when the filesystem recovers. It also
3745 * marks the inode dirty, to catch the new size.
3747 * Implication: the file must always be in a sane, consistent
3748 * truncatable state while each transaction commits.
3750 if (ext4_orphan_add(handle, inode))
3753 down_write(&EXT4_I(inode)->i_data_sem);
3755 ext4_discard_preallocations(inode);
3757 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3758 ext4_ext_truncate(handle, inode);
3760 ext4_ind_truncate(handle, inode);
3762 up_write(&ei->i_data_sem);
3765 ext4_handle_sync(handle);
3769 * If this was a simple ftruncate() and the file will remain alive,
3770 * then we need to clear up the orphan record which we created above.
3771 * However, if this was a real unlink then we were called by
3772 * ext4_evict_inode(), and we allow that function to clean up the
3773 * orphan info for us.
3776 ext4_orphan_del(handle, inode);
3778 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3779 ext4_mark_inode_dirty(handle, inode);
3780 ext4_journal_stop(handle);
3782 trace_ext4_truncate_exit(inode);
3786 * ext4_get_inode_loc returns with an extra refcount against the inode's
3787 * underlying buffer_head on success. If 'in_mem' is true, we have all
3788 * data in memory that is needed to recreate the on-disk version of this
3791 static int __ext4_get_inode_loc(struct inode *inode,
3792 struct ext4_iloc *iloc, int in_mem)
3794 struct ext4_group_desc *gdp;
3795 struct buffer_head *bh;
3796 struct super_block *sb = inode->i_sb;
3798 int inodes_per_block, inode_offset;
3801 if (!ext4_valid_inum(sb, inode->i_ino))
3804 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3805 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3810 * Figure out the offset within the block group inode table
3812 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3813 inode_offset = ((inode->i_ino - 1) %
3814 EXT4_INODES_PER_GROUP(sb));
3815 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3816 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3818 bh = sb_getblk(sb, block);
3821 if (!buffer_uptodate(bh)) {
3825 * If the buffer has the write error flag, we have failed
3826 * to write out another inode in the same block. In this
3827 * case, we don't have to read the block because we may
3828 * read the old inode data successfully.
3830 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3831 set_buffer_uptodate(bh);
3833 if (buffer_uptodate(bh)) {
3834 /* someone brought it uptodate while we waited */
3840 * If we have all information of the inode in memory and this
3841 * is the only valid inode in the block, we need not read the
3845 struct buffer_head *bitmap_bh;
3848 start = inode_offset & ~(inodes_per_block - 1);
3850 /* Is the inode bitmap in cache? */
3851 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3852 if (unlikely(!bitmap_bh))
3856 * If the inode bitmap isn't in cache then the
3857 * optimisation may end up performing two reads instead
3858 * of one, so skip it.
3860 if (!buffer_uptodate(bitmap_bh)) {
3864 for (i = start; i < start + inodes_per_block; i++) {
3865 if (i == inode_offset)
3867 if (ext4_test_bit(i, bitmap_bh->b_data))
3871 if (i == start + inodes_per_block) {
3872 /* all other inodes are free, so skip I/O */
3873 memset(bh->b_data, 0, bh->b_size);
3874 set_buffer_uptodate(bh);
3882 * If we need to do any I/O, try to pre-readahead extra
3883 * blocks from the inode table.
3885 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3886 ext4_fsblk_t b, end, table;
3888 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3890 table = ext4_inode_table(sb, gdp);
3891 /* s_inode_readahead_blks is always a power of 2 */
3892 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3896 num = EXT4_INODES_PER_GROUP(sb);
3897 if (ext4_has_group_desc_csum(sb))
3898 num -= ext4_itable_unused_count(sb, gdp);
3899 table += num / inodes_per_block;
3903 sb_breadahead(sb, b++);
3907 * There are other valid inodes in the buffer, this inode
3908 * has in-inode xattrs, or we don't have this inode in memory.
3909 * Read the block from disk.
3911 trace_ext4_load_inode(inode);
3913 bh->b_end_io = end_buffer_read_sync;
3914 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3916 if (!buffer_uptodate(bh)) {
3917 EXT4_ERROR_INODE_BLOCK(inode, block,
3918 "unable to read itable block");
3928 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3930 /* We have all inode data except xattrs in memory here. */
3931 return __ext4_get_inode_loc(inode, iloc,
3932 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3935 void ext4_set_inode_flags(struct inode *inode)
3937 unsigned int flags = EXT4_I(inode)->i_flags;
3938 unsigned int new_fl = 0;
3940 if (flags & EXT4_SYNC_FL)
3942 if (flags & EXT4_APPEND_FL)
3944 if (flags & EXT4_IMMUTABLE_FL)
3945 new_fl |= S_IMMUTABLE;
3946 if (flags & EXT4_NOATIME_FL)
3947 new_fl |= S_NOATIME;
3948 if (flags & EXT4_DIRSYNC_FL)
3949 new_fl |= S_DIRSYNC;
3950 if (test_opt(inode->i_sb, DAX))
3952 inode_set_flags(inode, new_fl,
3953 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3956 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3957 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3959 unsigned int vfs_fl;
3960 unsigned long old_fl, new_fl;
3963 vfs_fl = ei->vfs_inode.i_flags;
3964 old_fl = ei->i_flags;
3965 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3966 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3968 if (vfs_fl & S_SYNC)
3969 new_fl |= EXT4_SYNC_FL;
3970 if (vfs_fl & S_APPEND)
3971 new_fl |= EXT4_APPEND_FL;
3972 if (vfs_fl & S_IMMUTABLE)
3973 new_fl |= EXT4_IMMUTABLE_FL;
3974 if (vfs_fl & S_NOATIME)
3975 new_fl |= EXT4_NOATIME_FL;
3976 if (vfs_fl & S_DIRSYNC)
3977 new_fl |= EXT4_DIRSYNC_FL;
3978 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3981 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3982 struct ext4_inode_info *ei)
3985 struct inode *inode = &(ei->vfs_inode);
3986 struct super_block *sb = inode->i_sb;
3988 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3989 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3990 /* we are using combined 48 bit field */
3991 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3992 le32_to_cpu(raw_inode->i_blocks_lo);
3993 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3994 /* i_blocks represent file system block size */
3995 return i_blocks << (inode->i_blkbits - 9);
4000 return le32_to_cpu(raw_inode->i_blocks_lo);
4004 static inline void ext4_iget_extra_inode(struct inode *inode,
4005 struct ext4_inode *raw_inode,
4006 struct ext4_inode_info *ei)
4008 __le32 *magic = (void *)raw_inode +
4009 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4010 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4011 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4012 ext4_find_inline_data_nolock(inode);
4014 EXT4_I(inode)->i_inline_off = 0;
4017 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4019 struct ext4_iloc iloc;
4020 struct ext4_inode *raw_inode;
4021 struct ext4_inode_info *ei;
4022 struct inode *inode;
4023 journal_t *journal = EXT4_SB(sb)->s_journal;
4029 inode = iget_locked(sb, ino);
4031 return ERR_PTR(-ENOMEM);
4032 if (!(inode->i_state & I_NEW))
4038 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4041 raw_inode = ext4_raw_inode(&iloc);
4043 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4044 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4045 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4046 EXT4_INODE_SIZE(inode->i_sb)) {
4047 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4048 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4049 EXT4_INODE_SIZE(inode->i_sb));
4054 ei->i_extra_isize = 0;
4056 /* Precompute checksum seed for inode metadata */
4057 if (ext4_has_metadata_csum(sb)) {
4058 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4060 __le32 inum = cpu_to_le32(inode->i_ino);
4061 __le32 gen = raw_inode->i_generation;
4062 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4064 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4068 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4069 EXT4_ERROR_INODE(inode, "checksum invalid");
4074 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4075 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4076 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4077 if (!(test_opt(inode->i_sb, NO_UID32))) {
4078 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4079 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4081 i_uid_write(inode, i_uid);
4082 i_gid_write(inode, i_gid);
4083 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4085 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4086 ei->i_inline_off = 0;
4087 ei->i_dir_start_lookup = 0;
4088 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4089 /* We now have enough fields to check if the inode was active or not.
4090 * This is needed because nfsd might try to access dead inodes
4091 * the test is that same one that e2fsck uses
4092 * NeilBrown 1999oct15
4094 if (inode->i_nlink == 0) {
4095 if ((inode->i_mode == 0 ||
4096 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4097 ino != EXT4_BOOT_LOADER_INO) {
4098 /* this inode is deleted */
4102 /* The only unlinked inodes we let through here have
4103 * valid i_mode and are being read by the orphan
4104 * recovery code: that's fine, we're about to complete
4105 * the process of deleting those.
4106 * OR it is the EXT4_BOOT_LOADER_INO which is
4107 * not initialized on a new filesystem. */
4109 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4110 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4111 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4112 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4114 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4115 inode->i_size = ext4_isize(raw_inode);
4116 ei->i_disksize = inode->i_size;
4118 ei->i_reserved_quota = 0;
4120 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4121 ei->i_block_group = iloc.block_group;
4122 ei->i_last_alloc_group = ~0;
4124 * NOTE! The in-memory inode i_data array is in little-endian order
4125 * even on big-endian machines: we do NOT byteswap the block numbers!
4127 for (block = 0; block < EXT4_N_BLOCKS; block++)
4128 ei->i_data[block] = raw_inode->i_block[block];
4129 INIT_LIST_HEAD(&ei->i_orphan);
4132 * Set transaction id's of transactions that have to be committed
4133 * to finish f[data]sync. We set them to currently running transaction
4134 * as we cannot be sure that the inode or some of its metadata isn't
4135 * part of the transaction - the inode could have been reclaimed and
4136 * now it is reread from disk.
4139 transaction_t *transaction;
4142 read_lock(&journal->j_state_lock);
4143 if (journal->j_running_transaction)
4144 transaction = journal->j_running_transaction;
4146 transaction = journal->j_committing_transaction;
4148 tid = transaction->t_tid;
4150 tid = journal->j_commit_sequence;
4151 read_unlock(&journal->j_state_lock);
4152 ei->i_sync_tid = tid;
4153 ei->i_datasync_tid = tid;
4156 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4157 if (ei->i_extra_isize == 0) {
4158 /* The extra space is currently unused. Use it. */
4159 ei->i_extra_isize = sizeof(struct ext4_inode) -
4160 EXT4_GOOD_OLD_INODE_SIZE;
4162 ext4_iget_extra_inode(inode, raw_inode, ei);
4166 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4167 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4168 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4169 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4171 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4172 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4173 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4174 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4176 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4181 if (ei->i_file_acl &&
4182 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4183 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4187 } else if (!ext4_has_inline_data(inode)) {
4188 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4189 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4190 (S_ISLNK(inode->i_mode) &&
4191 !ext4_inode_is_fast_symlink(inode))))
4192 /* Validate extent which is part of inode */
4193 ret = ext4_ext_check_inode(inode);
4194 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4195 (S_ISLNK(inode->i_mode) &&
4196 !ext4_inode_is_fast_symlink(inode))) {
4197 /* Validate block references which are part of inode */
4198 ret = ext4_ind_check_inode(inode);
4204 if (S_ISREG(inode->i_mode)) {
4205 inode->i_op = &ext4_file_inode_operations;
4206 inode->i_fop = &ext4_file_operations;
4207 ext4_set_aops(inode);
4208 } else if (S_ISDIR(inode->i_mode)) {
4209 inode->i_op = &ext4_dir_inode_operations;
4210 inode->i_fop = &ext4_dir_operations;
4211 } else if (S_ISLNK(inode->i_mode)) {
4212 if (ext4_encrypted_inode(inode)) {
4213 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4214 ext4_set_aops(inode);
4215 } else if (ext4_inode_is_fast_symlink(inode)) {
4216 inode->i_link = (char *)ei->i_data;
4217 inode->i_op = &ext4_fast_symlink_inode_operations;
4218 nd_terminate_link(ei->i_data, inode->i_size,
4219 sizeof(ei->i_data) - 1);
4221 inode->i_op = &ext4_symlink_inode_operations;
4222 ext4_set_aops(inode);
4224 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4225 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4226 inode->i_op = &ext4_special_inode_operations;
4227 if (raw_inode->i_block[0])
4228 init_special_inode(inode, inode->i_mode,
4229 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4231 init_special_inode(inode, inode->i_mode,
4232 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4233 } else if (ino == EXT4_BOOT_LOADER_INO) {
4234 make_bad_inode(inode);
4237 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4241 ext4_set_inode_flags(inode);
4242 unlock_new_inode(inode);
4248 return ERR_PTR(ret);
4251 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4253 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4254 return ERR_PTR(-EIO);
4255 return ext4_iget(sb, ino);
4258 static int ext4_inode_blocks_set(handle_t *handle,
4259 struct ext4_inode *raw_inode,
4260 struct ext4_inode_info *ei)
4262 struct inode *inode = &(ei->vfs_inode);
4263 u64 i_blocks = inode->i_blocks;
4264 struct super_block *sb = inode->i_sb;
4266 if (i_blocks <= ~0U) {
4268 * i_blocks can be represented in a 32 bit variable
4269 * as multiple of 512 bytes
4271 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4272 raw_inode->i_blocks_high = 0;
4273 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4276 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4279 if (i_blocks <= 0xffffffffffffULL) {
4281 * i_blocks can be represented in a 48 bit variable
4282 * as multiple of 512 bytes
4284 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4285 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4286 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4288 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4289 /* i_block is stored in file system block size */
4290 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4291 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4292 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4297 struct other_inode {
4298 unsigned long orig_ino;
4299 struct ext4_inode *raw_inode;
4302 static int other_inode_match(struct inode * inode, unsigned long ino,
4305 struct other_inode *oi = (struct other_inode *) data;
4307 if ((inode->i_ino != ino) ||
4308 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4309 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4310 ((inode->i_state & I_DIRTY_TIME) == 0))
4312 spin_lock(&inode->i_lock);
4313 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4314 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4315 (inode->i_state & I_DIRTY_TIME)) {
4316 struct ext4_inode_info *ei = EXT4_I(inode);
4318 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4319 spin_unlock(&inode->i_lock);
4321 spin_lock(&ei->i_raw_lock);
4322 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4323 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4324 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4325 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4326 spin_unlock(&ei->i_raw_lock);
4327 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4330 spin_unlock(&inode->i_lock);
4335 * Opportunistically update the other time fields for other inodes in
4336 * the same inode table block.
4338 static void ext4_update_other_inodes_time(struct super_block *sb,
4339 unsigned long orig_ino, char *buf)
4341 struct other_inode oi;
4343 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4344 int inode_size = EXT4_INODE_SIZE(sb);
4346 oi.orig_ino = orig_ino;
4347 ino = (orig_ino & ~(inodes_per_block - 1)) + 1;
4348 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4349 if (ino == orig_ino)
4351 oi.raw_inode = (struct ext4_inode *) buf;
4352 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4357 * Post the struct inode info into an on-disk inode location in the
4358 * buffer-cache. This gobbles the caller's reference to the
4359 * buffer_head in the inode location struct.
4361 * The caller must have write access to iloc->bh.
4363 static int ext4_do_update_inode(handle_t *handle,
4364 struct inode *inode,
4365 struct ext4_iloc *iloc)
4367 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4368 struct ext4_inode_info *ei = EXT4_I(inode);
4369 struct buffer_head *bh = iloc->bh;
4370 struct super_block *sb = inode->i_sb;
4371 int err = 0, rc, block;
4372 int need_datasync = 0, set_large_file = 0;
4376 spin_lock(&ei->i_raw_lock);
4378 /* For fields not tracked in the in-memory inode,
4379 * initialise them to zero for new inodes. */
4380 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4381 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4383 ext4_get_inode_flags(ei);
4384 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4385 i_uid = i_uid_read(inode);
4386 i_gid = i_gid_read(inode);
4387 if (!(test_opt(inode->i_sb, NO_UID32))) {
4388 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4389 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4391 * Fix up interoperability with old kernels. Otherwise, old inodes get
4392 * re-used with the upper 16 bits of the uid/gid intact
4395 raw_inode->i_uid_high =
4396 cpu_to_le16(high_16_bits(i_uid));
4397 raw_inode->i_gid_high =
4398 cpu_to_le16(high_16_bits(i_gid));
4400 raw_inode->i_uid_high = 0;
4401 raw_inode->i_gid_high = 0;
4404 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4405 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4406 raw_inode->i_uid_high = 0;
4407 raw_inode->i_gid_high = 0;
4409 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4411 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4412 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4413 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4414 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4416 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4418 spin_unlock(&ei->i_raw_lock);
4421 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4422 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4423 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4424 raw_inode->i_file_acl_high =
4425 cpu_to_le16(ei->i_file_acl >> 32);
4426 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4427 if (ei->i_disksize != ext4_isize(raw_inode)) {
4428 ext4_isize_set(raw_inode, ei->i_disksize);
4431 if (ei->i_disksize > 0x7fffffffULL) {
4432 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4433 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4434 EXT4_SB(sb)->s_es->s_rev_level ==
4435 cpu_to_le32(EXT4_GOOD_OLD_REV))
4438 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4439 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4440 if (old_valid_dev(inode->i_rdev)) {
4441 raw_inode->i_block[0] =
4442 cpu_to_le32(old_encode_dev(inode->i_rdev));
4443 raw_inode->i_block[1] = 0;
4445 raw_inode->i_block[0] = 0;
4446 raw_inode->i_block[1] =
4447 cpu_to_le32(new_encode_dev(inode->i_rdev));
4448 raw_inode->i_block[2] = 0;
4450 } else if (!ext4_has_inline_data(inode)) {
4451 for (block = 0; block < EXT4_N_BLOCKS; block++)
4452 raw_inode->i_block[block] = ei->i_data[block];
4455 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4456 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4457 if (ei->i_extra_isize) {
4458 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4459 raw_inode->i_version_hi =
4460 cpu_to_le32(inode->i_version >> 32);
4461 raw_inode->i_extra_isize =
4462 cpu_to_le16(ei->i_extra_isize);
4465 ext4_inode_csum_set(inode, raw_inode, ei);
4466 spin_unlock(&ei->i_raw_lock);
4467 if (inode->i_sb->s_flags & MS_LAZYTIME)
4468 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4471 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4472 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4475 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4476 if (set_large_file) {
4477 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4478 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4481 ext4_update_dynamic_rev(sb);
4482 EXT4_SET_RO_COMPAT_FEATURE(sb,
4483 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4484 ext4_handle_sync(handle);
4485 err = ext4_handle_dirty_super(handle, sb);
4487 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4490 ext4_std_error(inode->i_sb, err);
4495 * ext4_write_inode()
4497 * We are called from a few places:
4499 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4500 * Here, there will be no transaction running. We wait for any running
4501 * transaction to commit.
4503 * - Within flush work (sys_sync(), kupdate and such).
4504 * We wait on commit, if told to.
4506 * - Within iput_final() -> write_inode_now()
4507 * We wait on commit, if told to.
4509 * In all cases it is actually safe for us to return without doing anything,
4510 * because the inode has been copied into a raw inode buffer in
4511 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4514 * Note that we are absolutely dependent upon all inode dirtiers doing the
4515 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4516 * which we are interested.
4518 * It would be a bug for them to not do this. The code:
4520 * mark_inode_dirty(inode)
4522 * inode->i_size = expr;
4524 * is in error because write_inode() could occur while `stuff()' is running,
4525 * and the new i_size will be lost. Plus the inode will no longer be on the
4526 * superblock's dirty inode list.
4528 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4532 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4535 if (EXT4_SB(inode->i_sb)->s_journal) {
4536 if (ext4_journal_current_handle()) {
4537 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4543 * No need to force transaction in WB_SYNC_NONE mode. Also
4544 * ext4_sync_fs() will force the commit after everything is
4547 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4550 err = ext4_force_commit(inode->i_sb);
4552 struct ext4_iloc iloc;
4554 err = __ext4_get_inode_loc(inode, &iloc, 0);
4558 * sync(2) will flush the whole buffer cache. No need to do
4559 * it here separately for each inode.
4561 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4562 sync_dirty_buffer(iloc.bh);
4563 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4564 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4565 "IO error syncing inode");
4574 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4575 * buffers that are attached to a page stradding i_size and are undergoing
4576 * commit. In that case we have to wait for commit to finish and try again.
4578 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4582 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4583 tid_t commit_tid = 0;
4586 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4588 * All buffers in the last page remain valid? Then there's nothing to
4589 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4592 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4595 page = find_lock_page(inode->i_mapping,
4596 inode->i_size >> PAGE_CACHE_SHIFT);
4599 ret = __ext4_journalled_invalidatepage(page, offset,
4600 PAGE_CACHE_SIZE - offset);
4602 page_cache_release(page);
4606 read_lock(&journal->j_state_lock);
4607 if (journal->j_committing_transaction)
4608 commit_tid = journal->j_committing_transaction->t_tid;
4609 read_unlock(&journal->j_state_lock);
4611 jbd2_log_wait_commit(journal, commit_tid);
4618 * Called from notify_change.
4620 * We want to trap VFS attempts to truncate the file as soon as
4621 * possible. In particular, we want to make sure that when the VFS
4622 * shrinks i_size, we put the inode on the orphan list and modify
4623 * i_disksize immediately, so that during the subsequent flushing of
4624 * dirty pages and freeing of disk blocks, we can guarantee that any
4625 * commit will leave the blocks being flushed in an unused state on
4626 * disk. (On recovery, the inode will get truncated and the blocks will
4627 * be freed, so we have a strong guarantee that no future commit will
4628 * leave these blocks visible to the user.)
4630 * Another thing we have to assure is that if we are in ordered mode
4631 * and inode is still attached to the committing transaction, we must
4632 * we start writeout of all the dirty pages which are being truncated.
4633 * This way we are sure that all the data written in the previous
4634 * transaction are already on disk (truncate waits for pages under
4637 * Called with inode->i_mutex down.
4639 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4641 struct inode *inode = d_inode(dentry);
4644 const unsigned int ia_valid = attr->ia_valid;
4646 error = inode_change_ok(inode, attr);
4650 if (is_quota_modification(inode, attr))
4651 dquot_initialize(inode);
4652 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4653 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4656 /* (user+group)*(old+new) structure, inode write (sb,
4657 * inode block, ? - but truncate inode update has it) */
4658 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4659 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4660 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4661 if (IS_ERR(handle)) {
4662 error = PTR_ERR(handle);
4665 error = dquot_transfer(inode, attr);
4667 ext4_journal_stop(handle);
4670 /* Update corresponding info in inode so that everything is in
4671 * one transaction */
4672 if (attr->ia_valid & ATTR_UID)
4673 inode->i_uid = attr->ia_uid;
4674 if (attr->ia_valid & ATTR_GID)
4675 inode->i_gid = attr->ia_gid;
4676 error = ext4_mark_inode_dirty(handle, inode);
4677 ext4_journal_stop(handle);
4680 if (attr->ia_valid & ATTR_SIZE) {
4682 loff_t oldsize = inode->i_size;
4683 int shrink = (attr->ia_size <= inode->i_size);
4685 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4686 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4688 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4691 if (!S_ISREG(inode->i_mode))
4694 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4695 inode_inc_iversion(inode);
4697 if (ext4_should_order_data(inode) &&
4698 (attr->ia_size < inode->i_size)) {
4699 error = ext4_begin_ordered_truncate(inode,
4704 if (attr->ia_size != inode->i_size) {
4705 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4706 if (IS_ERR(handle)) {
4707 error = PTR_ERR(handle);
4710 if (ext4_handle_valid(handle) && shrink) {
4711 error = ext4_orphan_add(handle, inode);
4714 down_write(&EXT4_I(inode)->i_data_sem);
4715 EXT4_I(inode)->i_disksize = attr->ia_size;
4716 rc = ext4_mark_inode_dirty(handle, inode);
4720 * We have to update i_size under i_data_sem together
4721 * with i_disksize to avoid races with writeback code
4722 * running ext4_wb_update_i_disksize().
4725 i_size_write(inode, attr->ia_size);
4726 up_write(&EXT4_I(inode)->i_data_sem);
4727 ext4_journal_stop(handle);
4730 ext4_orphan_del(NULL, inode);
4735 pagecache_isize_extended(inode, oldsize, inode->i_size);
4738 * Blocks are going to be removed from the inode. Wait
4739 * for dio in flight. Temporarily disable
4740 * dioread_nolock to prevent livelock.
4743 if (!ext4_should_journal_data(inode)) {
4744 ext4_inode_block_unlocked_dio(inode);
4745 inode_dio_wait(inode);
4746 ext4_inode_resume_unlocked_dio(inode);
4748 ext4_wait_for_tail_page_commit(inode);
4751 * Truncate pagecache after we've waited for commit
4752 * in data=journal mode to make pages freeable.
4754 truncate_pagecache(inode, inode->i_size);
4756 ext4_truncate(inode);
4760 setattr_copy(inode, attr);
4761 mark_inode_dirty(inode);
4765 * If the call to ext4_truncate failed to get a transaction handle at
4766 * all, we need to clean up the in-core orphan list manually.
4768 if (orphan && inode->i_nlink)
4769 ext4_orphan_del(NULL, inode);
4771 if (!rc && (ia_valid & ATTR_MODE))
4772 rc = posix_acl_chmod(inode, inode->i_mode);
4775 ext4_std_error(inode->i_sb, error);
4781 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4784 struct inode *inode;
4785 unsigned long long delalloc_blocks;
4787 inode = d_inode(dentry);
4788 generic_fillattr(inode, stat);
4791 * If there is inline data in the inode, the inode will normally not
4792 * have data blocks allocated (it may have an external xattr block).
4793 * Report at least one sector for such files, so tools like tar, rsync,
4794 * others doen't incorrectly think the file is completely sparse.
4796 if (unlikely(ext4_has_inline_data(inode)))
4797 stat->blocks += (stat->size + 511) >> 9;
4800 * We can't update i_blocks if the block allocation is delayed
4801 * otherwise in the case of system crash before the real block
4802 * allocation is done, we will have i_blocks inconsistent with
4803 * on-disk file blocks.
4804 * We always keep i_blocks updated together with real
4805 * allocation. But to not confuse with user, stat
4806 * will return the blocks that include the delayed allocation
4807 * blocks for this file.
4809 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4810 EXT4_I(inode)->i_reserved_data_blocks);
4811 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4815 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4818 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4819 return ext4_ind_trans_blocks(inode, lblocks);
4820 return ext4_ext_index_trans_blocks(inode, pextents);
4824 * Account for index blocks, block groups bitmaps and block group
4825 * descriptor blocks if modify datablocks and index blocks
4826 * worse case, the indexs blocks spread over different block groups
4828 * If datablocks are discontiguous, they are possible to spread over
4829 * different block groups too. If they are contiguous, with flexbg,
4830 * they could still across block group boundary.
4832 * Also account for superblock, inode, quota and xattr blocks
4834 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4837 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4843 * How many index blocks need to touch to map @lblocks logical blocks
4844 * to @pextents physical extents?
4846 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4851 * Now let's see how many group bitmaps and group descriptors need
4854 groups = idxblocks + pextents;
4856 if (groups > ngroups)
4858 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4859 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4861 /* bitmaps and block group descriptor blocks */
4862 ret += groups + gdpblocks;
4864 /* Blocks for super block, inode, quota and xattr blocks */
4865 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4871 * Calculate the total number of credits to reserve to fit
4872 * the modification of a single pages into a single transaction,
4873 * which may include multiple chunks of block allocations.
4875 * This could be called via ext4_write_begin()
4877 * We need to consider the worse case, when
4878 * one new block per extent.
4880 int ext4_writepage_trans_blocks(struct inode *inode)
4882 int bpp = ext4_journal_blocks_per_page(inode);
4885 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4887 /* Account for data blocks for journalled mode */
4888 if (ext4_should_journal_data(inode))
4894 * Calculate the journal credits for a chunk of data modification.
4896 * This is called from DIO, fallocate or whoever calling
4897 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4899 * journal buffers for data blocks are not included here, as DIO
4900 * and fallocate do no need to journal data buffers.
4902 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4904 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4908 * The caller must have previously called ext4_reserve_inode_write().
4909 * Give this, we know that the caller already has write access to iloc->bh.
4911 int ext4_mark_iloc_dirty(handle_t *handle,
4912 struct inode *inode, struct ext4_iloc *iloc)
4916 if (IS_I_VERSION(inode))
4917 inode_inc_iversion(inode);
4919 /* the do_update_inode consumes one bh->b_count */
4922 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4923 err = ext4_do_update_inode(handle, inode, iloc);
4929 * On success, We end up with an outstanding reference count against
4930 * iloc->bh. This _must_ be cleaned up later.
4934 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4935 struct ext4_iloc *iloc)
4939 err = ext4_get_inode_loc(inode, iloc);
4941 BUFFER_TRACE(iloc->bh, "get_write_access");
4942 err = ext4_journal_get_write_access(handle, iloc->bh);
4948 ext4_std_error(inode->i_sb, err);
4953 * Expand an inode by new_extra_isize bytes.
4954 * Returns 0 on success or negative error number on failure.
4956 static int ext4_expand_extra_isize(struct inode *inode,
4957 unsigned int new_extra_isize,
4958 struct ext4_iloc iloc,
4961 struct ext4_inode *raw_inode;
4962 struct ext4_xattr_ibody_header *header;
4964 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4967 raw_inode = ext4_raw_inode(&iloc);
4969 header = IHDR(inode, raw_inode);
4971 /* No extended attributes present */
4972 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4973 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4974 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4976 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4980 /* try to expand with EAs present */
4981 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4986 * What we do here is to mark the in-core inode as clean with respect to inode
4987 * dirtiness (it may still be data-dirty).
4988 * This means that the in-core inode may be reaped by prune_icache
4989 * without having to perform any I/O. This is a very good thing,
4990 * because *any* task may call prune_icache - even ones which
4991 * have a transaction open against a different journal.
4993 * Is this cheating? Not really. Sure, we haven't written the
4994 * inode out, but prune_icache isn't a user-visible syncing function.
4995 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4996 * we start and wait on commits.
4998 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5000 struct ext4_iloc iloc;
5001 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5002 static unsigned int mnt_count;
5006 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5007 err = ext4_reserve_inode_write(handle, inode, &iloc);
5008 if (ext4_handle_valid(handle) &&
5009 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5010 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5012 * We need extra buffer credits since we may write into EA block
5013 * with this same handle. If journal_extend fails, then it will
5014 * only result in a minor loss of functionality for that inode.
5015 * If this is felt to be critical, then e2fsck should be run to
5016 * force a large enough s_min_extra_isize.
5018 if ((jbd2_journal_extend(handle,
5019 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5020 ret = ext4_expand_extra_isize(inode,
5021 sbi->s_want_extra_isize,
5024 ext4_set_inode_state(inode,
5025 EXT4_STATE_NO_EXPAND);
5027 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5028 ext4_warning(inode->i_sb,
5029 "Unable to expand inode %lu. Delete"
5030 " some EAs or run e2fsck.",
5033 le16_to_cpu(sbi->s_es->s_mnt_count);
5039 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5044 * ext4_dirty_inode() is called from __mark_inode_dirty()
5046 * We're really interested in the case where a file is being extended.
5047 * i_size has been changed by generic_commit_write() and we thus need
5048 * to include the updated inode in the current transaction.
5050 * Also, dquot_alloc_block() will always dirty the inode when blocks
5051 * are allocated to the file.
5053 * If the inode is marked synchronous, we don't honour that here - doing
5054 * so would cause a commit on atime updates, which we don't bother doing.
5055 * We handle synchronous inodes at the highest possible level.
5057 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5058 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5059 * to copy into the on-disk inode structure are the timestamp files.
5061 void ext4_dirty_inode(struct inode *inode, int flags)
5065 if (flags == I_DIRTY_TIME)
5067 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5071 ext4_mark_inode_dirty(handle, inode);
5073 ext4_journal_stop(handle);
5080 * Bind an inode's backing buffer_head into this transaction, to prevent
5081 * it from being flushed to disk early. Unlike
5082 * ext4_reserve_inode_write, this leaves behind no bh reference and
5083 * returns no iloc structure, so the caller needs to repeat the iloc
5084 * lookup to mark the inode dirty later.
5086 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5088 struct ext4_iloc iloc;
5092 err = ext4_get_inode_loc(inode, &iloc);
5094 BUFFER_TRACE(iloc.bh, "get_write_access");
5095 err = jbd2_journal_get_write_access(handle, iloc.bh);
5097 err = ext4_handle_dirty_metadata(handle,
5103 ext4_std_error(inode->i_sb, err);
5108 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5115 * We have to be very careful here: changing a data block's
5116 * journaling status dynamically is dangerous. If we write a
5117 * data block to the journal, change the status and then delete
5118 * that block, we risk forgetting to revoke the old log record
5119 * from the journal and so a subsequent replay can corrupt data.
5120 * So, first we make sure that the journal is empty and that
5121 * nobody is changing anything.
5124 journal = EXT4_JOURNAL(inode);
5127 if (is_journal_aborted(journal))
5129 /* We have to allocate physical blocks for delalloc blocks
5130 * before flushing journal. otherwise delalloc blocks can not
5131 * be allocated any more. even more truncate on delalloc blocks
5132 * could trigger BUG by flushing delalloc blocks in journal.
5133 * There is no delalloc block in non-journal data mode.
5135 if (val && test_opt(inode->i_sb, DELALLOC)) {
5136 err = ext4_alloc_da_blocks(inode);
5141 /* Wait for all existing dio workers */
5142 ext4_inode_block_unlocked_dio(inode);
5143 inode_dio_wait(inode);
5145 jbd2_journal_lock_updates(journal);
5148 * OK, there are no updates running now, and all cached data is
5149 * synced to disk. We are now in a completely consistent state
5150 * which doesn't have anything in the journal, and we know that
5151 * no filesystem updates are running, so it is safe to modify
5152 * the inode's in-core data-journaling state flag now.
5156 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5158 err = jbd2_journal_flush(journal);
5160 jbd2_journal_unlock_updates(journal);
5161 ext4_inode_resume_unlocked_dio(inode);
5164 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5166 ext4_set_aops(inode);
5168 jbd2_journal_unlock_updates(journal);
5169 ext4_inode_resume_unlocked_dio(inode);
5171 /* Finally we can mark the inode as dirty. */
5173 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5175 return PTR_ERR(handle);
5177 err = ext4_mark_inode_dirty(handle, inode);
5178 ext4_handle_sync(handle);
5179 ext4_journal_stop(handle);
5180 ext4_std_error(inode->i_sb, err);
5185 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5187 return !buffer_mapped(bh);
5190 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5192 struct page *page = vmf->page;
5196 struct file *file = vma->vm_file;
5197 struct inode *inode = file_inode(file);
5198 struct address_space *mapping = inode->i_mapping;
5200 get_block_t *get_block;
5203 sb_start_pagefault(inode->i_sb);
5204 file_update_time(vma->vm_file);
5205 /* Delalloc case is easy... */
5206 if (test_opt(inode->i_sb, DELALLOC) &&
5207 !ext4_should_journal_data(inode) &&
5208 !ext4_nonda_switch(inode->i_sb)) {
5210 ret = __block_page_mkwrite(vma, vmf,
5211 ext4_da_get_block_prep);
5212 } while (ret == -ENOSPC &&
5213 ext4_should_retry_alloc(inode->i_sb, &retries));
5218 size = i_size_read(inode);
5219 /* Page got truncated from under us? */
5220 if (page->mapping != mapping || page_offset(page) > size) {
5222 ret = VM_FAULT_NOPAGE;
5226 if (page->index == size >> PAGE_CACHE_SHIFT)
5227 len = size & ~PAGE_CACHE_MASK;
5229 len = PAGE_CACHE_SIZE;
5231 * Return if we have all the buffers mapped. This avoids the need to do
5232 * journal_start/journal_stop which can block and take a long time
5234 if (page_has_buffers(page)) {
5235 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5237 ext4_bh_unmapped)) {
5238 /* Wait so that we don't change page under IO */
5239 wait_for_stable_page(page);
5240 ret = VM_FAULT_LOCKED;
5245 /* OK, we need to fill the hole... */
5246 if (ext4_should_dioread_nolock(inode))
5247 get_block = ext4_get_block_write;
5249 get_block = ext4_get_block;
5251 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5252 ext4_writepage_trans_blocks(inode));
5253 if (IS_ERR(handle)) {
5254 ret = VM_FAULT_SIGBUS;
5257 ret = __block_page_mkwrite(vma, vmf, get_block);
5258 if (!ret && ext4_should_journal_data(inode)) {
5259 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5260 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5262 ret = VM_FAULT_SIGBUS;
5263 ext4_journal_stop(handle);
5266 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5268 ext4_journal_stop(handle);
5269 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5272 ret = block_page_mkwrite_return(ret);
5274 sb_end_pagefault(inode->i_sb);