2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
43 #include "ext4_jbd2.h"
48 #include <trace/events/ext4.h>
50 #define MPAGE_DA_EXTENT_TAIL 0x01
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 raw->i_checksum_hi = 0;
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
82 __u32 provided, calculated;
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
90 provided = le16_to_cpu(raw->i_checksum_lo);
91 calculated = ext4_inode_csum(inode, raw, ei);
92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 return provided == calculated;
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 struct ext4_inode_info *ei)
106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 cpu_to_le32(EXT4_OS_LINUX) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
112 csum = ext4_inode_csum(inode, raw, ei);
113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 trace_ext4_begin_ordered_truncate(inode, new_size);
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
129 if (!EXT4_I(inode)->jinode)
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 EXT4_I(inode)->jinode,
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 * Test whether an inode is a fast symlink.
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151 if (ext4_has_inline_data(inode))
154 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 jbd_debug(2, "restarting handle %p\n", handle);
175 up_write(&EXT4_I(inode)->i_data_sem);
176 ret = ext4_journal_restart(handle, nblocks);
177 down_write(&EXT4_I(inode)->i_data_sem);
178 ext4_discard_preallocations(inode);
184 * Called at the last iput() if i_nlink is zero.
186 void ext4_evict_inode(struct inode *inode)
191 trace_ext4_evict_inode(inode);
193 if (inode->i_nlink) {
195 * When journalling data dirty buffers are tracked only in the
196 * journal. So although mm thinks everything is clean and
197 * ready for reaping the inode might still have some pages to
198 * write in the running transaction or waiting to be
199 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 * (via truncate_inode_pages()) to discard these buffers can
201 * cause data loss. Also even if we did not discard these
202 * buffers, we would have no way to find them after the inode
203 * is reaped and thus user could see stale data if he tries to
204 * read them before the transaction is checkpointed. So be
205 * careful and force everything to disk here... We use
206 * ei->i_datasync_tid to store the newest transaction
207 * containing inode's data.
209 * Note that directories do not have this problem because they
210 * don't use page cache.
212 if (ext4_should_journal_data(inode) &&
213 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214 inode->i_ino != EXT4_JOURNAL_INO) {
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218 jbd2_complete_transaction(journal, commit_tid);
219 filemap_write_and_wait(&inode->i_data);
221 truncate_inode_pages_final(&inode->i_data);
223 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
227 if (!is_bad_inode(inode))
228 dquot_initialize(inode);
230 if (ext4_should_order_data(inode))
231 ext4_begin_ordered_truncate(inode, 0);
232 truncate_inode_pages_final(&inode->i_data);
234 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
235 if (is_bad_inode(inode))
239 * Protect us against freezing - iput() caller didn't have to have any
240 * protection against it
242 sb_start_intwrite(inode->i_sb);
243 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244 ext4_blocks_for_truncate(inode)+3);
245 if (IS_ERR(handle)) {
246 ext4_std_error(inode->i_sb, PTR_ERR(handle));
248 * If we're going to skip the normal cleanup, we still need to
249 * make sure that the in-core orphan linked list is properly
252 ext4_orphan_del(NULL, inode);
253 sb_end_intwrite(inode->i_sb);
258 ext4_handle_sync(handle);
260 err = ext4_mark_inode_dirty(handle, inode);
262 ext4_warning(inode->i_sb,
263 "couldn't mark inode dirty (err %d)", err);
267 ext4_truncate(inode);
270 * ext4_ext_truncate() doesn't reserve any slop when it
271 * restarts journal transactions; therefore there may not be
272 * enough credits left in the handle to remove the inode from
273 * the orphan list and set the dtime field.
275 if (!ext4_handle_has_enough_credits(handle, 3)) {
276 err = ext4_journal_extend(handle, 3);
278 err = ext4_journal_restart(handle, 3);
280 ext4_warning(inode->i_sb,
281 "couldn't extend journal (err %d)", err);
283 ext4_journal_stop(handle);
284 ext4_orphan_del(NULL, inode);
285 sb_end_intwrite(inode->i_sb);
291 * Kill off the orphan record which ext4_truncate created.
292 * AKPM: I think this can be inside the above `if'.
293 * Note that ext4_orphan_del() has to be able to cope with the
294 * deletion of a non-existent orphan - this is because we don't
295 * know if ext4_truncate() actually created an orphan record.
296 * (Well, we could do this if we need to, but heck - it works)
298 ext4_orphan_del(handle, inode);
299 EXT4_I(inode)->i_dtime = get_seconds();
302 * One subtle ordering requirement: if anything has gone wrong
303 * (transaction abort, IO errors, whatever), then we can still
304 * do these next steps (the fs will already have been marked as
305 * having errors), but we can't free the inode if the mark_dirty
308 if (ext4_mark_inode_dirty(handle, inode))
309 /* If that failed, just do the required in-core inode clear. */
310 ext4_clear_inode(inode);
312 ext4_free_inode(handle, inode);
313 ext4_journal_stop(handle);
314 sb_end_intwrite(inode->i_sb);
317 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
321 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 return &EXT4_I(inode)->i_reserved_quota;
328 * Called with i_data_sem down, which is important since we can call
329 * ext4_discard_preallocations() from here.
331 void ext4_da_update_reserve_space(struct inode *inode,
332 int used, int quota_claim)
334 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
335 struct ext4_inode_info *ei = EXT4_I(inode);
337 spin_lock(&ei->i_block_reservation_lock);
338 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
339 if (unlikely(used > ei->i_reserved_data_blocks)) {
340 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
341 "with only %d reserved data blocks",
342 __func__, inode->i_ino, used,
343 ei->i_reserved_data_blocks);
345 used = ei->i_reserved_data_blocks;
348 /* Update per-inode reservations */
349 ei->i_reserved_data_blocks -= used;
350 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
354 /* Update quota subsystem for data blocks */
356 dquot_claim_block(inode, EXT4_C2B(sbi, used));
359 * We did fallocate with an offset that is already delayed
360 * allocated. So on delayed allocated writeback we should
361 * not re-claim the quota for fallocated blocks.
363 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
367 * If we have done all the pending block allocations and if
368 * there aren't any writers on the inode, we can discard the
369 * inode's preallocations.
371 if ((ei->i_reserved_data_blocks == 0) &&
372 (atomic_read(&inode->i_writecount) == 0))
373 ext4_discard_preallocations(inode);
376 static int __check_block_validity(struct inode *inode, const char *func,
378 struct ext4_map_blocks *map)
380 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
382 ext4_error_inode(inode, func, line, map->m_pblk,
383 "lblock %lu mapped to illegal pblock "
384 "(length %d)", (unsigned long) map->m_lblk,
391 #define check_block_validity(inode, map) \
392 __check_block_validity((inode), __func__, __LINE__, (map))
394 #ifdef ES_AGGRESSIVE_TEST
395 static void ext4_map_blocks_es_recheck(handle_t *handle,
397 struct ext4_map_blocks *es_map,
398 struct ext4_map_blocks *map,
405 * There is a race window that the result is not the same.
406 * e.g. xfstests #223 when dioread_nolock enables. The reason
407 * is that we lookup a block mapping in extent status tree with
408 * out taking i_data_sem. So at the time the unwritten extent
409 * could be converted.
411 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
412 down_read(&EXT4_I(inode)->i_data_sem);
413 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
414 retval = ext4_ext_map_blocks(handle, inode, map, flags &
415 EXT4_GET_BLOCKS_KEEP_SIZE);
417 retval = ext4_ind_map_blocks(handle, inode, map, flags &
418 EXT4_GET_BLOCKS_KEEP_SIZE);
420 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
421 up_read((&EXT4_I(inode)->i_data_sem));
423 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
424 * because it shouldn't be marked in es_map->m_flags.
426 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
429 * We don't check m_len because extent will be collpased in status
430 * tree. So the m_len might not equal.
432 if (es_map->m_lblk != map->m_lblk ||
433 es_map->m_flags != map->m_flags ||
434 es_map->m_pblk != map->m_pblk) {
435 printk("ES cache assertion failed for inode: %lu "
436 "es_cached ex [%d/%d/%llu/%x] != "
437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 inode->i_ino, es_map->m_lblk, es_map->m_len,
439 es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 map->m_len, map->m_pblk, map->m_flags,
444 #endif /* ES_AGGRESSIVE_TEST */
447 * The ext4_map_blocks() function tries to look up the requested blocks,
448 * and returns if the blocks are already mapped.
450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451 * and store the allocated blocks in the result buffer head and mark it
454 * If file type is extents based, it will call ext4_ext_map_blocks(),
455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
458 * On success, it returns the number of blocks being mapped or allocated.
459 * if create==0 and the blocks are pre-allocated and unwritten block,
460 * the result buffer head is unmapped. If the create ==1, it will make sure
461 * the buffer head is mapped.
463 * It returns 0 if plain look up failed (blocks have not been allocated), in
464 * that case, buffer head is unmapped
466 * It returns the error in case of allocation failure.
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 struct ext4_map_blocks *map, int flags)
471 struct extent_status es;
474 #ifdef ES_AGGRESSIVE_TEST
475 struct ext4_map_blocks orig_map;
477 memcpy(&orig_map, map, sizeof(*map));
481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 (unsigned long) map->m_lblk);
486 * ext4_map_blocks returns an int, and m_len is an unsigned int
488 if (unlikely(map->m_len > INT_MAX))
489 map->m_len = INT_MAX;
491 /* We can handle the block number less than EXT_MAX_BLOCKS */
492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
495 /* Lookup extent status tree firstly */
496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497 ext4_es_lru_add(inode);
498 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
499 map->m_pblk = ext4_es_pblock(&es) +
500 map->m_lblk - es.es_lblk;
501 map->m_flags |= ext4_es_is_written(&es) ?
502 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
503 retval = es.es_len - (map->m_lblk - es.es_lblk);
504 if (retval > map->m_len)
507 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
512 #ifdef ES_AGGRESSIVE_TEST
513 ext4_map_blocks_es_recheck(handle, inode, map,
520 * Try to see if we can get the block without requesting a new
523 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
524 down_read(&EXT4_I(inode)->i_data_sem);
525 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
526 retval = ext4_ext_map_blocks(handle, inode, map, flags &
527 EXT4_GET_BLOCKS_KEEP_SIZE);
529 retval = ext4_ind_map_blocks(handle, inode, map, flags &
530 EXT4_GET_BLOCKS_KEEP_SIZE);
535 if (unlikely(retval != map->m_len)) {
536 ext4_warning(inode->i_sb,
537 "ES len assertion failed for inode "
538 "%lu: retval %d != map->m_len %d",
539 inode->i_ino, retval, map->m_len);
543 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
544 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
545 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
546 ext4_find_delalloc_range(inode, map->m_lblk,
547 map->m_lblk + map->m_len - 1))
548 status |= EXTENT_STATUS_DELAYED;
549 ret = ext4_es_insert_extent(inode, map->m_lblk,
550 map->m_len, map->m_pblk, status);
554 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
555 up_read((&EXT4_I(inode)->i_data_sem));
558 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
559 ret = check_block_validity(inode, map);
564 /* If it is only a block(s) look up */
565 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
569 * Returns if the blocks have already allocated
571 * Note that if blocks have been preallocated
572 * ext4_ext_get_block() returns the create = 0
573 * with buffer head unmapped.
575 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
577 * If we need to convert extent to unwritten
578 * we continue and do the actual work in
579 * ext4_ext_map_blocks()
581 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
585 * Here we clear m_flags because after allocating an new extent,
586 * it will be set again.
588 map->m_flags &= ~EXT4_MAP_FLAGS;
591 * New blocks allocate and/or writing to unwritten extent
592 * will possibly result in updating i_data, so we take
593 * the write lock of i_data_sem, and call get_blocks()
594 * with create == 1 flag.
596 down_write(&EXT4_I(inode)->i_data_sem);
599 * if the caller is from delayed allocation writeout path
600 * we have already reserved fs blocks for allocation
601 * let the underlying get_block() function know to
602 * avoid double accounting
604 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
605 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
607 * We need to check for EXT4 here because migrate
608 * could have changed the inode type in between
610 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
611 retval = ext4_ext_map_blocks(handle, inode, map, flags);
613 retval = ext4_ind_map_blocks(handle, inode, map, flags);
615 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
617 * We allocated new blocks which will result in
618 * i_data's format changing. Force the migrate
619 * to fail by clearing migrate flags
621 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
625 * Update reserved blocks/metadata blocks after successful
626 * block allocation which had been deferred till now. We don't
627 * support fallocate for non extent files. So we can update
628 * reserve space here.
631 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
632 ext4_da_update_reserve_space(inode, retval, 1);
634 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
635 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
640 if (unlikely(retval != map->m_len)) {
641 ext4_warning(inode->i_sb,
642 "ES len assertion failed for inode "
643 "%lu: retval %d != map->m_len %d",
644 inode->i_ino, retval, map->m_len);
649 * If the extent has been zeroed out, we don't need to update
650 * extent status tree.
652 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
653 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
654 if (ext4_es_is_written(&es))
657 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
658 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
659 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
660 ext4_find_delalloc_range(inode, map->m_lblk,
661 map->m_lblk + map->m_len - 1))
662 status |= EXTENT_STATUS_DELAYED;
663 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
664 map->m_pblk, status);
670 up_write((&EXT4_I(inode)->i_data_sem));
671 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
672 ret = check_block_validity(inode, map);
679 /* Maximum number of blocks we map for direct IO at once. */
680 #define DIO_MAX_BLOCKS 4096
682 static int _ext4_get_block(struct inode *inode, sector_t iblock,
683 struct buffer_head *bh, int flags)
685 handle_t *handle = ext4_journal_current_handle();
686 struct ext4_map_blocks map;
687 int ret = 0, started = 0;
690 if (ext4_has_inline_data(inode))
694 map.m_len = bh->b_size >> inode->i_blkbits;
696 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
697 /* Direct IO write... */
698 if (map.m_len > DIO_MAX_BLOCKS)
699 map.m_len = DIO_MAX_BLOCKS;
700 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
701 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
703 if (IS_ERR(handle)) {
704 ret = PTR_ERR(handle);
710 ret = ext4_map_blocks(handle, inode, &map, flags);
712 ext4_io_end_t *io_end = ext4_inode_aio(inode);
714 map_bh(bh, inode->i_sb, map.m_pblk);
715 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
716 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
717 set_buffer_defer_completion(bh);
718 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
722 ext4_journal_stop(handle);
726 int ext4_get_block(struct inode *inode, sector_t iblock,
727 struct buffer_head *bh, int create)
729 return _ext4_get_block(inode, iblock, bh,
730 create ? EXT4_GET_BLOCKS_CREATE : 0);
734 * `handle' can be NULL if create is zero
736 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
737 ext4_lblk_t block, int create, int *errp)
739 struct ext4_map_blocks map;
740 struct buffer_head *bh;
743 J_ASSERT(handle != NULL || create == 0);
747 err = ext4_map_blocks(handle, inode, &map,
748 create ? EXT4_GET_BLOCKS_CREATE : 0);
750 /* ensure we send some value back into *errp */
753 if (create && err == 0)
754 err = -ENOSPC; /* should never happen */
760 bh = sb_getblk(inode->i_sb, map.m_pblk);
765 if (map.m_flags & EXT4_MAP_NEW) {
766 J_ASSERT(create != 0);
767 J_ASSERT(handle != NULL);
770 * Now that we do not always journal data, we should
771 * keep in mind whether this should always journal the
772 * new buffer as metadata. For now, regular file
773 * writes use ext4_get_block instead, so it's not a
777 BUFFER_TRACE(bh, "call get_create_access");
778 fatal = ext4_journal_get_create_access(handle, bh);
779 if (!fatal && !buffer_uptodate(bh)) {
780 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
781 set_buffer_uptodate(bh);
784 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
785 err = ext4_handle_dirty_metadata(handle, inode, bh);
789 BUFFER_TRACE(bh, "not a new buffer");
799 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
800 ext4_lblk_t block, int create, int *err)
802 struct buffer_head *bh;
804 bh = ext4_getblk(handle, inode, block, create, err);
807 if (buffer_uptodate(bh))
809 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
811 if (buffer_uptodate(bh))
818 int ext4_walk_page_buffers(handle_t *handle,
819 struct buffer_head *head,
823 int (*fn)(handle_t *handle,
824 struct buffer_head *bh))
826 struct buffer_head *bh;
827 unsigned block_start, block_end;
828 unsigned blocksize = head->b_size;
830 struct buffer_head *next;
832 for (bh = head, block_start = 0;
833 ret == 0 && (bh != head || !block_start);
834 block_start = block_end, bh = next) {
835 next = bh->b_this_page;
836 block_end = block_start + blocksize;
837 if (block_end <= from || block_start >= to) {
838 if (partial && !buffer_uptodate(bh))
842 err = (*fn)(handle, bh);
850 * To preserve ordering, it is essential that the hole instantiation and
851 * the data write be encapsulated in a single transaction. We cannot
852 * close off a transaction and start a new one between the ext4_get_block()
853 * and the commit_write(). So doing the jbd2_journal_start at the start of
854 * prepare_write() is the right place.
856 * Also, this function can nest inside ext4_writepage(). In that case, we
857 * *know* that ext4_writepage() has generated enough buffer credits to do the
858 * whole page. So we won't block on the journal in that case, which is good,
859 * because the caller may be PF_MEMALLOC.
861 * By accident, ext4 can be reentered when a transaction is open via
862 * quota file writes. If we were to commit the transaction while thus
863 * reentered, there can be a deadlock - we would be holding a quota
864 * lock, and the commit would never complete if another thread had a
865 * transaction open and was blocking on the quota lock - a ranking
868 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
869 * will _not_ run commit under these circumstances because handle->h_ref
870 * is elevated. We'll still have enough credits for the tiny quotafile
873 int do_journal_get_write_access(handle_t *handle,
874 struct buffer_head *bh)
876 int dirty = buffer_dirty(bh);
879 if (!buffer_mapped(bh) || buffer_freed(bh))
882 * __block_write_begin() could have dirtied some buffers. Clean
883 * the dirty bit as jbd2_journal_get_write_access() could complain
884 * otherwise about fs integrity issues. Setting of the dirty bit
885 * by __block_write_begin() isn't a real problem here as we clear
886 * the bit before releasing a page lock and thus writeback cannot
887 * ever write the buffer.
890 clear_buffer_dirty(bh);
891 BUFFER_TRACE(bh, "get write access");
892 ret = ext4_journal_get_write_access(handle, bh);
894 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
898 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
899 struct buffer_head *bh_result, int create);
900 static int ext4_write_begin(struct file *file, struct address_space *mapping,
901 loff_t pos, unsigned len, unsigned flags,
902 struct page **pagep, void **fsdata)
904 struct inode *inode = mapping->host;
905 int ret, needed_blocks;
912 trace_ext4_write_begin(inode, pos, len, flags);
914 * Reserve one block more for addition to orphan list in case
915 * we allocate blocks but write fails for some reason
917 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
918 index = pos >> PAGE_CACHE_SHIFT;
919 from = pos & (PAGE_CACHE_SIZE - 1);
922 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
923 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
932 * grab_cache_page_write_begin() can take a long time if the
933 * system is thrashing due to memory pressure, or if the page
934 * is being written back. So grab it first before we start
935 * the transaction handle. This also allows us to allocate
936 * the page (if needed) without using GFP_NOFS.
939 page = grab_cache_page_write_begin(mapping, index, flags);
945 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
946 if (IS_ERR(handle)) {
947 page_cache_release(page);
948 return PTR_ERR(handle);
952 if (page->mapping != mapping) {
953 /* The page got truncated from under us */
955 page_cache_release(page);
956 ext4_journal_stop(handle);
959 /* In case writeback began while the page was unlocked */
960 wait_for_stable_page(page);
962 if (ext4_should_dioread_nolock(inode))
963 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
965 ret = __block_write_begin(page, pos, len, ext4_get_block);
967 if (!ret && ext4_should_journal_data(inode)) {
968 ret = ext4_walk_page_buffers(handle, page_buffers(page),
970 do_journal_get_write_access);
976 * __block_write_begin may have instantiated a few blocks
977 * outside i_size. Trim these off again. Don't need
978 * i_size_read because we hold i_mutex.
980 * Add inode to orphan list in case we crash before
983 if (pos + len > inode->i_size && ext4_can_truncate(inode))
984 ext4_orphan_add(handle, inode);
986 ext4_journal_stop(handle);
987 if (pos + len > inode->i_size) {
988 ext4_truncate_failed_write(inode);
990 * If truncate failed early the inode might
991 * still be on the orphan list; we need to
992 * make sure the inode is removed from the
993 * orphan list in that case.
996 ext4_orphan_del(NULL, inode);
999 if (ret == -ENOSPC &&
1000 ext4_should_retry_alloc(inode->i_sb, &retries))
1002 page_cache_release(page);
1009 /* For write_end() in data=journal mode */
1010 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1013 if (!buffer_mapped(bh) || buffer_freed(bh))
1015 set_buffer_uptodate(bh);
1016 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1017 clear_buffer_meta(bh);
1018 clear_buffer_prio(bh);
1023 * We need to pick up the new inode size which generic_commit_write gave us
1024 * `file' can be NULL - eg, when called from page_symlink().
1026 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1027 * buffers are managed internally.
1029 static int ext4_write_end(struct file *file,
1030 struct address_space *mapping,
1031 loff_t pos, unsigned len, unsigned copied,
1032 struct page *page, void *fsdata)
1034 handle_t *handle = ext4_journal_current_handle();
1035 struct inode *inode = mapping->host;
1037 int i_size_changed = 0;
1039 trace_ext4_write_end(inode, pos, len, copied);
1040 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1041 ret = ext4_jbd2_file_inode(handle, inode);
1044 page_cache_release(page);
1049 if (ext4_has_inline_data(inode)) {
1050 ret = ext4_write_inline_data_end(inode, pos, len,
1056 copied = block_write_end(file, mapping, pos,
1057 len, copied, page, fsdata);
1059 * it's important to update i_size while still holding page lock:
1060 * page writeout could otherwise come in and zero beyond i_size.
1062 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1064 page_cache_release(page);
1067 * Don't mark the inode dirty under page lock. First, it unnecessarily
1068 * makes the holding time of page lock longer. Second, it forces lock
1069 * ordering of page lock and transaction start for journaling
1073 ext4_mark_inode_dirty(handle, inode);
1075 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1076 /* if we have allocated more blocks and copied
1077 * less. We will have blocks allocated outside
1078 * inode->i_size. So truncate them
1080 ext4_orphan_add(handle, inode);
1082 ret2 = ext4_journal_stop(handle);
1086 if (pos + len > inode->i_size) {
1087 ext4_truncate_failed_write(inode);
1089 * If truncate failed early the inode might still be
1090 * on the orphan list; we need to make sure the inode
1091 * is removed from the orphan list in that case.
1094 ext4_orphan_del(NULL, inode);
1097 return ret ? ret : copied;
1100 static int ext4_journalled_write_end(struct file *file,
1101 struct address_space *mapping,
1102 loff_t pos, unsigned len, unsigned copied,
1103 struct page *page, void *fsdata)
1105 handle_t *handle = ext4_journal_current_handle();
1106 struct inode *inode = mapping->host;
1110 int size_changed = 0;
1112 trace_ext4_journalled_write_end(inode, pos, len, copied);
1113 from = pos & (PAGE_CACHE_SIZE - 1);
1116 BUG_ON(!ext4_handle_valid(handle));
1118 if (ext4_has_inline_data(inode))
1119 copied = ext4_write_inline_data_end(inode, pos, len,
1123 if (!PageUptodate(page))
1125 page_zero_new_buffers(page, from+copied, to);
1128 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1129 to, &partial, write_end_fn);
1131 SetPageUptodate(page);
1133 size_changed = ext4_update_inode_size(inode, pos + copied);
1134 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1135 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1137 page_cache_release(page);
1140 ret2 = ext4_mark_inode_dirty(handle, inode);
1145 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1146 /* if we have allocated more blocks and copied
1147 * less. We will have blocks allocated outside
1148 * inode->i_size. So truncate them
1150 ext4_orphan_add(handle, inode);
1152 ret2 = ext4_journal_stop(handle);
1155 if (pos + len > inode->i_size) {
1156 ext4_truncate_failed_write(inode);
1158 * If truncate failed early the inode might still be
1159 * on the orphan list; we need to make sure the inode
1160 * is removed from the orphan list in that case.
1163 ext4_orphan_del(NULL, inode);
1166 return ret ? ret : copied;
1170 * Reserve a single cluster located at lblock
1172 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1174 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1175 struct ext4_inode_info *ei = EXT4_I(inode);
1176 unsigned int md_needed;
1180 * We will charge metadata quota at writeout time; this saves
1181 * us from metadata over-estimation, though we may go over by
1182 * a small amount in the end. Here we just reserve for data.
1184 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1189 * recalculate the amount of metadata blocks to reserve
1190 * in order to allocate nrblocks
1191 * worse case is one extent per block
1193 spin_lock(&ei->i_block_reservation_lock);
1195 * ext4_calc_metadata_amount() has side effects, which we have
1196 * to be prepared undo if we fail to claim space.
1199 trace_ext4_da_reserve_space(inode, 0);
1201 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1202 spin_unlock(&ei->i_block_reservation_lock);
1203 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1206 ei->i_reserved_data_blocks++;
1207 spin_unlock(&ei->i_block_reservation_lock);
1209 return 0; /* success */
1212 static void ext4_da_release_space(struct inode *inode, int to_free)
1214 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1215 struct ext4_inode_info *ei = EXT4_I(inode);
1218 return; /* Nothing to release, exit */
1220 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1222 trace_ext4_da_release_space(inode, to_free);
1223 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1225 * if there aren't enough reserved blocks, then the
1226 * counter is messed up somewhere. Since this
1227 * function is called from invalidate page, it's
1228 * harmless to return without any action.
1230 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1231 "ino %lu, to_free %d with only %d reserved "
1232 "data blocks", inode->i_ino, to_free,
1233 ei->i_reserved_data_blocks);
1235 to_free = ei->i_reserved_data_blocks;
1237 ei->i_reserved_data_blocks -= to_free;
1239 /* update fs dirty data blocks counter */
1240 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1242 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1244 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1247 static void ext4_da_page_release_reservation(struct page *page,
1248 unsigned int offset,
1249 unsigned int length)
1252 struct buffer_head *head, *bh;
1253 unsigned int curr_off = 0;
1254 struct inode *inode = page->mapping->host;
1255 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1256 unsigned int stop = offset + length;
1260 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1262 head = page_buffers(page);
1265 unsigned int next_off = curr_off + bh->b_size;
1267 if (next_off > stop)
1270 if ((offset <= curr_off) && (buffer_delay(bh))) {
1272 clear_buffer_delay(bh);
1274 curr_off = next_off;
1275 } while ((bh = bh->b_this_page) != head);
1278 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1279 ext4_es_remove_extent(inode, lblk, to_release);
1282 /* If we have released all the blocks belonging to a cluster, then we
1283 * need to release the reserved space for that cluster. */
1284 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1285 while (num_clusters > 0) {
1286 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1287 ((num_clusters - 1) << sbi->s_cluster_bits);
1288 if (sbi->s_cluster_ratio == 1 ||
1289 !ext4_find_delalloc_cluster(inode, lblk))
1290 ext4_da_release_space(inode, 1);
1297 * Delayed allocation stuff
1300 struct mpage_da_data {
1301 struct inode *inode;
1302 struct writeback_control *wbc;
1304 pgoff_t first_page; /* The first page to write */
1305 pgoff_t next_page; /* Current page to examine */
1306 pgoff_t last_page; /* Last page to examine */
1308 * Extent to map - this can be after first_page because that can be
1309 * fully mapped. We somewhat abuse m_flags to store whether the extent
1310 * is delalloc or unwritten.
1312 struct ext4_map_blocks map;
1313 struct ext4_io_submit io_submit; /* IO submission data */
1316 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1321 struct pagevec pvec;
1322 struct inode *inode = mpd->inode;
1323 struct address_space *mapping = inode->i_mapping;
1325 /* This is necessary when next_page == 0. */
1326 if (mpd->first_page >= mpd->next_page)
1329 index = mpd->first_page;
1330 end = mpd->next_page - 1;
1332 ext4_lblk_t start, last;
1333 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1334 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1335 ext4_es_remove_extent(inode, start, last - start + 1);
1338 pagevec_init(&pvec, 0);
1339 while (index <= end) {
1340 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1343 for (i = 0; i < nr_pages; i++) {
1344 struct page *page = pvec.pages[i];
1345 if (page->index > end)
1347 BUG_ON(!PageLocked(page));
1348 BUG_ON(PageWriteback(page));
1350 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1351 ClearPageUptodate(page);
1355 index = pvec.pages[nr_pages - 1]->index + 1;
1356 pagevec_release(&pvec);
1360 static void ext4_print_free_blocks(struct inode *inode)
1362 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1363 struct super_block *sb = inode->i_sb;
1364 struct ext4_inode_info *ei = EXT4_I(inode);
1366 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1367 EXT4_C2B(EXT4_SB(inode->i_sb),
1368 ext4_count_free_clusters(sb)));
1369 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1370 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1371 (long long) EXT4_C2B(EXT4_SB(sb),
1372 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1373 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1374 (long long) EXT4_C2B(EXT4_SB(sb),
1375 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1376 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1377 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1378 ei->i_reserved_data_blocks);
1382 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1384 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1388 * This function is grabs code from the very beginning of
1389 * ext4_map_blocks, but assumes that the caller is from delayed write
1390 * time. This function looks up the requested blocks and sets the
1391 * buffer delay bit under the protection of i_data_sem.
1393 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1394 struct ext4_map_blocks *map,
1395 struct buffer_head *bh)
1397 struct extent_status es;
1399 sector_t invalid_block = ~((sector_t) 0xffff);
1400 #ifdef ES_AGGRESSIVE_TEST
1401 struct ext4_map_blocks orig_map;
1403 memcpy(&orig_map, map, sizeof(*map));
1406 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1410 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1411 "logical block %lu\n", inode->i_ino, map->m_len,
1412 (unsigned long) map->m_lblk);
1414 /* Lookup extent status tree firstly */
1415 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1416 ext4_es_lru_add(inode);
1417 if (ext4_es_is_hole(&es)) {
1419 down_read(&EXT4_I(inode)->i_data_sem);
1424 * Delayed extent could be allocated by fallocate.
1425 * So we need to check it.
1427 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1428 map_bh(bh, inode->i_sb, invalid_block);
1430 set_buffer_delay(bh);
1434 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1435 retval = es.es_len - (iblock - es.es_lblk);
1436 if (retval > map->m_len)
1437 retval = map->m_len;
1438 map->m_len = retval;
1439 if (ext4_es_is_written(&es))
1440 map->m_flags |= EXT4_MAP_MAPPED;
1441 else if (ext4_es_is_unwritten(&es))
1442 map->m_flags |= EXT4_MAP_UNWRITTEN;
1446 #ifdef ES_AGGRESSIVE_TEST
1447 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1453 * Try to see if we can get the block without requesting a new
1454 * file system block.
1456 down_read(&EXT4_I(inode)->i_data_sem);
1457 if (ext4_has_inline_data(inode)) {
1459 * We will soon create blocks for this page, and let
1460 * us pretend as if the blocks aren't allocated yet.
1461 * In case of clusters, we have to handle the work
1462 * of mapping from cluster so that the reserved space
1463 * is calculated properly.
1465 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1466 ext4_find_delalloc_cluster(inode, map->m_lblk))
1467 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1469 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1470 retval = ext4_ext_map_blocks(NULL, inode, map,
1471 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1473 retval = ext4_ind_map_blocks(NULL, inode, map,
1474 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1480 * XXX: __block_prepare_write() unmaps passed block,
1484 * If the block was allocated from previously allocated cluster,
1485 * then we don't need to reserve it again. However we still need
1486 * to reserve metadata for every block we're going to write.
1488 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1489 ret = ext4_da_reserve_space(inode, iblock);
1491 /* not enough space to reserve */
1497 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1498 ~0, EXTENT_STATUS_DELAYED);
1504 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1505 * and it should not appear on the bh->b_state.
1507 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1509 map_bh(bh, inode->i_sb, invalid_block);
1511 set_buffer_delay(bh);
1512 } else if (retval > 0) {
1514 unsigned int status;
1516 if (unlikely(retval != map->m_len)) {
1517 ext4_warning(inode->i_sb,
1518 "ES len assertion failed for inode "
1519 "%lu: retval %d != map->m_len %d",
1520 inode->i_ino, retval, map->m_len);
1524 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1525 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1526 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1527 map->m_pblk, status);
1533 up_read((&EXT4_I(inode)->i_data_sem));
1539 * This is a special get_blocks_t callback which is used by
1540 * ext4_da_write_begin(). It will either return mapped block or
1541 * reserve space for a single block.
1543 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1544 * We also have b_blocknr = -1 and b_bdev initialized properly
1546 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1547 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1548 * initialized properly.
1550 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1551 struct buffer_head *bh, int create)
1553 struct ext4_map_blocks map;
1556 BUG_ON(create == 0);
1557 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1559 map.m_lblk = iblock;
1563 * first, we need to know whether the block is allocated already
1564 * preallocated blocks are unmapped but should treated
1565 * the same as allocated blocks.
1567 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1571 map_bh(bh, inode->i_sb, map.m_pblk);
1572 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1574 if (buffer_unwritten(bh)) {
1575 /* A delayed write to unwritten bh should be marked
1576 * new and mapped. Mapped ensures that we don't do
1577 * get_block multiple times when we write to the same
1578 * offset and new ensures that we do proper zero out
1579 * for partial write.
1582 set_buffer_mapped(bh);
1587 static int bget_one(handle_t *handle, struct buffer_head *bh)
1593 static int bput_one(handle_t *handle, struct buffer_head *bh)
1599 static int __ext4_journalled_writepage(struct page *page,
1602 struct address_space *mapping = page->mapping;
1603 struct inode *inode = mapping->host;
1604 struct buffer_head *page_bufs = NULL;
1605 handle_t *handle = NULL;
1606 int ret = 0, err = 0;
1607 int inline_data = ext4_has_inline_data(inode);
1608 struct buffer_head *inode_bh = NULL;
1610 ClearPageChecked(page);
1613 BUG_ON(page->index != 0);
1614 BUG_ON(len > ext4_get_max_inline_size(inode));
1615 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1616 if (inode_bh == NULL)
1619 page_bufs = page_buffers(page);
1624 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1627 /* As soon as we unlock the page, it can go away, but we have
1628 * references to buffers so we are safe */
1631 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1632 ext4_writepage_trans_blocks(inode));
1633 if (IS_ERR(handle)) {
1634 ret = PTR_ERR(handle);
1638 BUG_ON(!ext4_handle_valid(handle));
1641 BUFFER_TRACE(inode_bh, "get write access");
1642 ret = ext4_journal_get_write_access(handle, inode_bh);
1644 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1647 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1648 do_journal_get_write_access);
1650 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1655 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1656 err = ext4_journal_stop(handle);
1660 if (!ext4_has_inline_data(inode))
1661 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1663 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1670 * Note that we don't need to start a transaction unless we're journaling data
1671 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1672 * need to file the inode to the transaction's list in ordered mode because if
1673 * we are writing back data added by write(), the inode is already there and if
1674 * we are writing back data modified via mmap(), no one guarantees in which
1675 * transaction the data will hit the disk. In case we are journaling data, we
1676 * cannot start transaction directly because transaction start ranks above page
1677 * lock so we have to do some magic.
1679 * This function can get called via...
1680 * - ext4_writepages after taking page lock (have journal handle)
1681 * - journal_submit_inode_data_buffers (no journal handle)
1682 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1683 * - grab_page_cache when doing write_begin (have journal handle)
1685 * We don't do any block allocation in this function. If we have page with
1686 * multiple blocks we need to write those buffer_heads that are mapped. This
1687 * is important for mmaped based write. So if we do with blocksize 1K
1688 * truncate(f, 1024);
1689 * a = mmap(f, 0, 4096);
1691 * truncate(f, 4096);
1692 * we have in the page first buffer_head mapped via page_mkwrite call back
1693 * but other buffer_heads would be unmapped but dirty (dirty done via the
1694 * do_wp_page). So writepage should write the first block. If we modify
1695 * the mmap area beyond 1024 we will again get a page_fault and the
1696 * page_mkwrite callback will do the block allocation and mark the
1697 * buffer_heads mapped.
1699 * We redirty the page if we have any buffer_heads that is either delay or
1700 * unwritten in the page.
1702 * We can get recursively called as show below.
1704 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1707 * But since we don't do any block allocation we should not deadlock.
1708 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1710 static int ext4_writepage(struct page *page,
1711 struct writeback_control *wbc)
1716 struct buffer_head *page_bufs = NULL;
1717 struct inode *inode = page->mapping->host;
1718 struct ext4_io_submit io_submit;
1719 bool keep_towrite = false;
1721 trace_ext4_writepage(page);
1722 size = i_size_read(inode);
1723 if (page->index == size >> PAGE_CACHE_SHIFT)
1724 len = size & ~PAGE_CACHE_MASK;
1726 len = PAGE_CACHE_SIZE;
1728 page_bufs = page_buffers(page);
1730 * We cannot do block allocation or other extent handling in this
1731 * function. If there are buffers needing that, we have to redirty
1732 * the page. But we may reach here when we do a journal commit via
1733 * journal_submit_inode_data_buffers() and in that case we must write
1734 * allocated buffers to achieve data=ordered mode guarantees.
1736 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1737 ext4_bh_delay_or_unwritten)) {
1738 redirty_page_for_writepage(wbc, page);
1739 if (current->flags & PF_MEMALLOC) {
1741 * For memory cleaning there's no point in writing only
1742 * some buffers. So just bail out. Warn if we came here
1743 * from direct reclaim.
1745 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1750 keep_towrite = true;
1753 if (PageChecked(page) && ext4_should_journal_data(inode))
1755 * It's mmapped pagecache. Add buffers and journal it. There
1756 * doesn't seem much point in redirtying the page here.
1758 return __ext4_journalled_writepage(page, len);
1760 ext4_io_submit_init(&io_submit, wbc);
1761 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1762 if (!io_submit.io_end) {
1763 redirty_page_for_writepage(wbc, page);
1767 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1768 ext4_io_submit(&io_submit);
1769 /* Drop io_end reference we got from init */
1770 ext4_put_io_end_defer(io_submit.io_end);
1774 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1777 loff_t size = i_size_read(mpd->inode);
1780 BUG_ON(page->index != mpd->first_page);
1781 if (page->index == size >> PAGE_CACHE_SHIFT)
1782 len = size & ~PAGE_CACHE_MASK;
1784 len = PAGE_CACHE_SIZE;
1785 clear_page_dirty_for_io(page);
1786 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1788 mpd->wbc->nr_to_write--;
1794 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1797 * mballoc gives us at most this number of blocks...
1798 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1799 * The rest of mballoc seems to handle chunks up to full group size.
1801 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1804 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1806 * @mpd - extent of blocks
1807 * @lblk - logical number of the block in the file
1808 * @bh - buffer head we want to add to the extent
1810 * The function is used to collect contig. blocks in the same state. If the
1811 * buffer doesn't require mapping for writeback and we haven't started the
1812 * extent of buffers to map yet, the function returns 'true' immediately - the
1813 * caller can write the buffer right away. Otherwise the function returns true
1814 * if the block has been added to the extent, false if the block couldn't be
1817 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1818 struct buffer_head *bh)
1820 struct ext4_map_blocks *map = &mpd->map;
1822 /* Buffer that doesn't need mapping for writeback? */
1823 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1824 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1825 /* So far no extent to map => we write the buffer right away */
1826 if (map->m_len == 0)
1831 /* First block in the extent? */
1832 if (map->m_len == 0) {
1835 map->m_flags = bh->b_state & BH_FLAGS;
1839 /* Don't go larger than mballoc is willing to allocate */
1840 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1843 /* Can we merge the block to our big extent? */
1844 if (lblk == map->m_lblk + map->m_len &&
1845 (bh->b_state & BH_FLAGS) == map->m_flags) {
1853 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1855 * @mpd - extent of blocks for mapping
1856 * @head - the first buffer in the page
1857 * @bh - buffer we should start processing from
1858 * @lblk - logical number of the block in the file corresponding to @bh
1860 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1861 * the page for IO if all buffers in this page were mapped and there's no
1862 * accumulated extent of buffers to map or add buffers in the page to the
1863 * extent of buffers to map. The function returns 1 if the caller can continue
1864 * by processing the next page, 0 if it should stop adding buffers to the
1865 * extent to map because we cannot extend it anymore. It can also return value
1866 * < 0 in case of error during IO submission.
1868 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1869 struct buffer_head *head,
1870 struct buffer_head *bh,
1873 struct inode *inode = mpd->inode;
1875 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1876 >> inode->i_blkbits;
1879 BUG_ON(buffer_locked(bh));
1881 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1882 /* Found extent to map? */
1885 /* Everything mapped so far and we hit EOF */
1888 } while (lblk++, (bh = bh->b_this_page) != head);
1889 /* So far everything mapped? Submit the page for IO. */
1890 if (mpd->map.m_len == 0) {
1891 err = mpage_submit_page(mpd, head->b_page);
1895 return lblk < blocks;
1899 * mpage_map_buffers - update buffers corresponding to changed extent and
1900 * submit fully mapped pages for IO
1902 * @mpd - description of extent to map, on return next extent to map
1904 * Scan buffers corresponding to changed extent (we expect corresponding pages
1905 * to be already locked) and update buffer state according to new extent state.
1906 * We map delalloc buffers to their physical location, clear unwritten bits,
1907 * and mark buffers as uninit when we perform writes to unwritten extents
1908 * and do extent conversion after IO is finished. If the last page is not fully
1909 * mapped, we update @map to the next extent in the last page that needs
1910 * mapping. Otherwise we submit the page for IO.
1912 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1914 struct pagevec pvec;
1916 struct inode *inode = mpd->inode;
1917 struct buffer_head *head, *bh;
1918 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1924 start = mpd->map.m_lblk >> bpp_bits;
1925 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1926 lblk = start << bpp_bits;
1927 pblock = mpd->map.m_pblk;
1929 pagevec_init(&pvec, 0);
1930 while (start <= end) {
1931 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1935 for (i = 0; i < nr_pages; i++) {
1936 struct page *page = pvec.pages[i];
1938 if (page->index > end)
1940 /* Up to 'end' pages must be contiguous */
1941 BUG_ON(page->index != start);
1942 bh = head = page_buffers(page);
1944 if (lblk < mpd->map.m_lblk)
1946 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1948 * Buffer after end of mapped extent.
1949 * Find next buffer in the page to map.
1952 mpd->map.m_flags = 0;
1954 * FIXME: If dioread_nolock supports
1955 * blocksize < pagesize, we need to make
1956 * sure we add size mapped so far to
1957 * io_end->size as the following call
1958 * can submit the page for IO.
1960 err = mpage_process_page_bufs(mpd, head,
1962 pagevec_release(&pvec);
1967 if (buffer_delay(bh)) {
1968 clear_buffer_delay(bh);
1969 bh->b_blocknr = pblock++;
1971 clear_buffer_unwritten(bh);
1972 } while (lblk++, (bh = bh->b_this_page) != head);
1975 * FIXME: This is going to break if dioread_nolock
1976 * supports blocksize < pagesize as we will try to
1977 * convert potentially unmapped parts of inode.
1979 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1980 /* Page fully mapped - let IO run! */
1981 err = mpage_submit_page(mpd, page);
1983 pagevec_release(&pvec);
1988 pagevec_release(&pvec);
1990 /* Extent fully mapped and matches with page boundary. We are done. */
1992 mpd->map.m_flags = 0;
1996 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1998 struct inode *inode = mpd->inode;
1999 struct ext4_map_blocks *map = &mpd->map;
2000 int get_blocks_flags;
2001 int err, dioread_nolock;
2003 trace_ext4_da_write_pages_extent(inode, map);
2005 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2006 * to convert an unwritten extent to be initialized (in the case
2007 * where we have written into one or more preallocated blocks). It is
2008 * possible that we're going to need more metadata blocks than
2009 * previously reserved. However we must not fail because we're in
2010 * writeback and there is nothing we can do about it so it might result
2011 * in data loss. So use reserved blocks to allocate metadata if
2014 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2015 * in question are delalloc blocks. This affects functions in many
2016 * different parts of the allocation call path. This flag exists
2017 * primarily because we don't want to change *many* call functions, so
2018 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2019 * once the inode's allocation semaphore is taken.
2021 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2022 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2023 dioread_nolock = ext4_should_dioread_nolock(inode);
2025 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2026 if (map->m_flags & (1 << BH_Delay))
2027 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2029 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2032 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2033 if (!mpd->io_submit.io_end->handle &&
2034 ext4_handle_valid(handle)) {
2035 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2036 handle->h_rsv_handle = NULL;
2038 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2041 BUG_ON(map->m_len == 0);
2042 if (map->m_flags & EXT4_MAP_NEW) {
2043 struct block_device *bdev = inode->i_sb->s_bdev;
2046 for (i = 0; i < map->m_len; i++)
2047 unmap_underlying_metadata(bdev, map->m_pblk + i);
2053 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2054 * mpd->len and submit pages underlying it for IO
2056 * @handle - handle for journal operations
2057 * @mpd - extent to map
2058 * @give_up_on_write - we set this to true iff there is a fatal error and there
2059 * is no hope of writing the data. The caller should discard
2060 * dirty pages to avoid infinite loops.
2062 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2063 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2064 * them to initialized or split the described range from larger unwritten
2065 * extent. Note that we need not map all the described range since allocation
2066 * can return less blocks or the range is covered by more unwritten extents. We
2067 * cannot map more because we are limited by reserved transaction credits. On
2068 * the other hand we always make sure that the last touched page is fully
2069 * mapped so that it can be written out (and thus forward progress is
2070 * guaranteed). After mapping we submit all mapped pages for IO.
2072 static int mpage_map_and_submit_extent(handle_t *handle,
2073 struct mpage_da_data *mpd,
2074 bool *give_up_on_write)
2076 struct inode *inode = mpd->inode;
2077 struct ext4_map_blocks *map = &mpd->map;
2082 mpd->io_submit.io_end->offset =
2083 ((loff_t)map->m_lblk) << inode->i_blkbits;
2085 err = mpage_map_one_extent(handle, mpd);
2087 struct super_block *sb = inode->i_sb;
2089 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2090 goto invalidate_dirty_pages;
2092 * Let the uper layers retry transient errors.
2093 * In the case of ENOSPC, if ext4_count_free_blocks()
2094 * is non-zero, a commit should free up blocks.
2096 if ((err == -ENOMEM) ||
2097 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2099 goto update_disksize;
2102 ext4_msg(sb, KERN_CRIT,
2103 "Delayed block allocation failed for "
2104 "inode %lu at logical offset %llu with"
2105 " max blocks %u with error %d",
2107 (unsigned long long)map->m_lblk,
2108 (unsigned)map->m_len, -err);
2109 ext4_msg(sb, KERN_CRIT,
2110 "This should not happen!! Data will "
2113 ext4_print_free_blocks(inode);
2114 invalidate_dirty_pages:
2115 *give_up_on_write = true;
2120 * Update buffer state, submit mapped pages, and get us new
2123 err = mpage_map_and_submit_buffers(mpd);
2125 goto update_disksize;
2126 } while (map->m_len);
2130 * Update on-disk size after IO is submitted. Races with
2131 * truncate are avoided by checking i_size under i_data_sem.
2133 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2134 if (disksize > EXT4_I(inode)->i_disksize) {
2138 down_write(&EXT4_I(inode)->i_data_sem);
2139 i_size = i_size_read(inode);
2140 if (disksize > i_size)
2142 if (disksize > EXT4_I(inode)->i_disksize)
2143 EXT4_I(inode)->i_disksize = disksize;
2144 err2 = ext4_mark_inode_dirty(handle, inode);
2145 up_write(&EXT4_I(inode)->i_data_sem);
2147 ext4_error(inode->i_sb,
2148 "Failed to mark inode %lu dirty",
2157 * Calculate the total number of credits to reserve for one writepages
2158 * iteration. This is called from ext4_writepages(). We map an extent of
2159 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2160 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2161 * bpp - 1 blocks in bpp different extents.
2163 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2165 int bpp = ext4_journal_blocks_per_page(inode);
2167 return ext4_meta_trans_blocks(inode,
2168 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2172 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2173 * and underlying extent to map
2175 * @mpd - where to look for pages
2177 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2178 * IO immediately. When we find a page which isn't mapped we start accumulating
2179 * extent of buffers underlying these pages that needs mapping (formed by
2180 * either delayed or unwritten buffers). We also lock the pages containing
2181 * these buffers. The extent found is returned in @mpd structure (starting at
2182 * mpd->lblk with length mpd->len blocks).
2184 * Note that this function can attach bios to one io_end structure which are
2185 * neither logically nor physically contiguous. Although it may seem as an
2186 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2187 * case as we need to track IO to all buffers underlying a page in one io_end.
2189 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2191 struct address_space *mapping = mpd->inode->i_mapping;
2192 struct pagevec pvec;
2193 unsigned int nr_pages;
2194 long left = mpd->wbc->nr_to_write;
2195 pgoff_t index = mpd->first_page;
2196 pgoff_t end = mpd->last_page;
2199 int blkbits = mpd->inode->i_blkbits;
2201 struct buffer_head *head;
2203 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2204 tag = PAGECACHE_TAG_TOWRITE;
2206 tag = PAGECACHE_TAG_DIRTY;
2208 pagevec_init(&pvec, 0);
2210 mpd->next_page = index;
2211 while (index <= end) {
2212 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2213 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2217 for (i = 0; i < nr_pages; i++) {
2218 struct page *page = pvec.pages[i];
2221 * At this point, the page may be truncated or
2222 * invalidated (changing page->mapping to NULL), or
2223 * even swizzled back from swapper_space to tmpfs file
2224 * mapping. However, page->index will not change
2225 * because we have a reference on the page.
2227 if (page->index > end)
2231 * Accumulated enough dirty pages? This doesn't apply
2232 * to WB_SYNC_ALL mode. For integrity sync we have to
2233 * keep going because someone may be concurrently
2234 * dirtying pages, and we might have synced a lot of
2235 * newly appeared dirty pages, but have not synced all
2236 * of the old dirty pages.
2238 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2241 /* If we can't merge this page, we are done. */
2242 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2247 * If the page is no longer dirty, or its mapping no
2248 * longer corresponds to inode we are writing (which
2249 * means it has been truncated or invalidated), or the
2250 * page is already under writeback and we are not doing
2251 * a data integrity writeback, skip the page
2253 if (!PageDirty(page) ||
2254 (PageWriteback(page) &&
2255 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2256 unlikely(page->mapping != mapping)) {
2261 wait_on_page_writeback(page);
2262 BUG_ON(PageWriteback(page));
2264 if (mpd->map.m_len == 0)
2265 mpd->first_page = page->index;
2266 mpd->next_page = page->index + 1;
2267 /* Add all dirty buffers to mpd */
2268 lblk = ((ext4_lblk_t)page->index) <<
2269 (PAGE_CACHE_SHIFT - blkbits);
2270 head = page_buffers(page);
2271 err = mpage_process_page_bufs(mpd, head, head, lblk);
2277 pagevec_release(&pvec);
2282 pagevec_release(&pvec);
2286 static int __writepage(struct page *page, struct writeback_control *wbc,
2289 struct address_space *mapping = data;
2290 int ret = ext4_writepage(page, wbc);
2291 mapping_set_error(mapping, ret);
2295 static int ext4_writepages(struct address_space *mapping,
2296 struct writeback_control *wbc)
2298 pgoff_t writeback_index = 0;
2299 long nr_to_write = wbc->nr_to_write;
2300 int range_whole = 0;
2302 handle_t *handle = NULL;
2303 struct mpage_da_data mpd;
2304 struct inode *inode = mapping->host;
2305 int needed_blocks, rsv_blocks = 0, ret = 0;
2306 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2308 struct blk_plug plug;
2309 bool give_up_on_write = false;
2311 trace_ext4_writepages(inode, wbc);
2314 * No pages to write? This is mainly a kludge to avoid starting
2315 * a transaction for special inodes like journal inode on last iput()
2316 * because that could violate lock ordering on umount
2318 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2319 goto out_writepages;
2321 if (ext4_should_journal_data(inode)) {
2322 struct blk_plug plug;
2324 blk_start_plug(&plug);
2325 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2326 blk_finish_plug(&plug);
2327 goto out_writepages;
2331 * If the filesystem has aborted, it is read-only, so return
2332 * right away instead of dumping stack traces later on that
2333 * will obscure the real source of the problem. We test
2334 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2335 * the latter could be true if the filesystem is mounted
2336 * read-only, and in that case, ext4_writepages should
2337 * *never* be called, so if that ever happens, we would want
2340 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2342 goto out_writepages;
2345 if (ext4_should_dioread_nolock(inode)) {
2347 * We may need to convert up to one extent per block in
2348 * the page and we may dirty the inode.
2350 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2354 * If we have inline data and arrive here, it means that
2355 * we will soon create the block for the 1st page, so
2356 * we'd better clear the inline data here.
2358 if (ext4_has_inline_data(inode)) {
2359 /* Just inode will be modified... */
2360 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2361 if (IS_ERR(handle)) {
2362 ret = PTR_ERR(handle);
2363 goto out_writepages;
2365 BUG_ON(ext4_test_inode_state(inode,
2366 EXT4_STATE_MAY_INLINE_DATA));
2367 ext4_destroy_inline_data(handle, inode);
2368 ext4_journal_stop(handle);
2371 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2374 if (wbc->range_cyclic) {
2375 writeback_index = mapping->writeback_index;
2376 if (writeback_index)
2378 mpd.first_page = writeback_index;
2381 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2382 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2387 ext4_io_submit_init(&mpd.io_submit, wbc);
2389 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2390 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2392 blk_start_plug(&plug);
2393 while (!done && mpd.first_page <= mpd.last_page) {
2394 /* For each extent of pages we use new io_end */
2395 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2396 if (!mpd.io_submit.io_end) {
2402 * We have two constraints: We find one extent to map and we
2403 * must always write out whole page (makes a difference when
2404 * blocksize < pagesize) so that we don't block on IO when we
2405 * try to write out the rest of the page. Journalled mode is
2406 * not supported by delalloc.
2408 BUG_ON(ext4_should_journal_data(inode));
2409 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2411 /* start a new transaction */
2412 handle = ext4_journal_start_with_reserve(inode,
2413 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2414 if (IS_ERR(handle)) {
2415 ret = PTR_ERR(handle);
2416 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2417 "%ld pages, ino %lu; err %d", __func__,
2418 wbc->nr_to_write, inode->i_ino, ret);
2419 /* Release allocated io_end */
2420 ext4_put_io_end(mpd.io_submit.io_end);
2424 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2425 ret = mpage_prepare_extent_to_map(&mpd);
2428 ret = mpage_map_and_submit_extent(handle, &mpd,
2432 * We scanned the whole range (or exhausted
2433 * nr_to_write), submitted what was mapped and
2434 * didn't find anything needing mapping. We are
2440 ext4_journal_stop(handle);
2441 /* Submit prepared bio */
2442 ext4_io_submit(&mpd.io_submit);
2443 /* Unlock pages we didn't use */
2444 mpage_release_unused_pages(&mpd, give_up_on_write);
2445 /* Drop our io_end reference we got from init */
2446 ext4_put_io_end(mpd.io_submit.io_end);
2448 if (ret == -ENOSPC && sbi->s_journal) {
2450 * Commit the transaction which would
2451 * free blocks released in the transaction
2454 jbd2_journal_force_commit_nested(sbi->s_journal);
2458 /* Fatal error - ENOMEM, EIO... */
2462 blk_finish_plug(&plug);
2463 if (!ret && !cycled && wbc->nr_to_write > 0) {
2465 mpd.last_page = writeback_index - 1;
2471 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2473 * Set the writeback_index so that range_cyclic
2474 * mode will write it back later
2476 mapping->writeback_index = mpd.first_page;
2479 trace_ext4_writepages_result(inode, wbc, ret,
2480 nr_to_write - wbc->nr_to_write);
2484 static int ext4_nonda_switch(struct super_block *sb)
2486 s64 free_clusters, dirty_clusters;
2487 struct ext4_sb_info *sbi = EXT4_SB(sb);
2490 * switch to non delalloc mode if we are running low
2491 * on free block. The free block accounting via percpu
2492 * counters can get slightly wrong with percpu_counter_batch getting
2493 * accumulated on each CPU without updating global counters
2494 * Delalloc need an accurate free block accounting. So switch
2495 * to non delalloc when we are near to error range.
2498 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2500 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2502 * Start pushing delalloc when 1/2 of free blocks are dirty.
2504 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2505 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2507 if (2 * free_clusters < 3 * dirty_clusters ||
2508 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2510 * free block count is less than 150% of dirty blocks
2511 * or free blocks is less than watermark
2518 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2519 loff_t pos, unsigned len, unsigned flags,
2520 struct page **pagep, void **fsdata)
2522 int ret, retries = 0;
2525 struct inode *inode = mapping->host;
2528 index = pos >> PAGE_CACHE_SHIFT;
2530 if (ext4_nonda_switch(inode->i_sb)) {
2531 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2532 return ext4_write_begin(file, mapping, pos,
2533 len, flags, pagep, fsdata);
2535 *fsdata = (void *)0;
2536 trace_ext4_da_write_begin(inode, pos, len, flags);
2538 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2539 ret = ext4_da_write_inline_data_begin(mapping, inode,
2549 * grab_cache_page_write_begin() can take a long time if the
2550 * system is thrashing due to memory pressure, or if the page
2551 * is being written back. So grab it first before we start
2552 * the transaction handle. This also allows us to allocate
2553 * the page (if needed) without using GFP_NOFS.
2556 page = grab_cache_page_write_begin(mapping, index, flags);
2562 * With delayed allocation, we don't log the i_disksize update
2563 * if there is delayed block allocation. But we still need
2564 * to journalling the i_disksize update if writes to the end
2565 * of file which has an already mapped buffer.
2568 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2569 if (IS_ERR(handle)) {
2570 page_cache_release(page);
2571 return PTR_ERR(handle);
2575 if (page->mapping != mapping) {
2576 /* The page got truncated from under us */
2578 page_cache_release(page);
2579 ext4_journal_stop(handle);
2582 /* In case writeback began while the page was unlocked */
2583 wait_for_stable_page(page);
2585 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2588 ext4_journal_stop(handle);
2590 * block_write_begin may have instantiated a few blocks
2591 * outside i_size. Trim these off again. Don't need
2592 * i_size_read because we hold i_mutex.
2594 if (pos + len > inode->i_size)
2595 ext4_truncate_failed_write(inode);
2597 if (ret == -ENOSPC &&
2598 ext4_should_retry_alloc(inode->i_sb, &retries))
2601 page_cache_release(page);
2610 * Check if we should update i_disksize
2611 * when write to the end of file but not require block allocation
2613 static int ext4_da_should_update_i_disksize(struct page *page,
2614 unsigned long offset)
2616 struct buffer_head *bh;
2617 struct inode *inode = page->mapping->host;
2621 bh = page_buffers(page);
2622 idx = offset >> inode->i_blkbits;
2624 for (i = 0; i < idx; i++)
2625 bh = bh->b_this_page;
2627 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2632 static int ext4_da_write_end(struct file *file,
2633 struct address_space *mapping,
2634 loff_t pos, unsigned len, unsigned copied,
2635 struct page *page, void *fsdata)
2637 struct inode *inode = mapping->host;
2639 handle_t *handle = ext4_journal_current_handle();
2641 unsigned long start, end;
2642 int write_mode = (int)(unsigned long)fsdata;
2644 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2645 return ext4_write_end(file, mapping, pos,
2646 len, copied, page, fsdata);
2648 trace_ext4_da_write_end(inode, pos, len, copied);
2649 start = pos & (PAGE_CACHE_SIZE - 1);
2650 end = start + copied - 1;
2653 * generic_write_end() will run mark_inode_dirty() if i_size
2654 * changes. So let's piggyback the i_disksize mark_inode_dirty
2657 new_i_size = pos + copied;
2658 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2659 if (ext4_has_inline_data(inode) ||
2660 ext4_da_should_update_i_disksize(page, end)) {
2661 down_write(&EXT4_I(inode)->i_data_sem);
2662 if (new_i_size > EXT4_I(inode)->i_disksize)
2663 EXT4_I(inode)->i_disksize = new_i_size;
2664 up_write(&EXT4_I(inode)->i_data_sem);
2665 /* We need to mark inode dirty even if
2666 * new_i_size is less that inode->i_size
2667 * bu greater than i_disksize.(hint delalloc)
2669 ext4_mark_inode_dirty(handle, inode);
2673 if (write_mode != CONVERT_INLINE_DATA &&
2674 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2675 ext4_has_inline_data(inode))
2676 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2679 ret2 = generic_write_end(file, mapping, pos, len, copied,
2685 ret2 = ext4_journal_stop(handle);
2689 return ret ? ret : copied;
2692 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2693 unsigned int length)
2696 * Drop reserved blocks
2698 BUG_ON(!PageLocked(page));
2699 if (!page_has_buffers(page))
2702 ext4_da_page_release_reservation(page, offset, length);
2705 ext4_invalidatepage(page, offset, length);
2711 * Force all delayed allocation blocks to be allocated for a given inode.
2713 int ext4_alloc_da_blocks(struct inode *inode)
2715 trace_ext4_alloc_da_blocks(inode);
2717 if (!EXT4_I(inode)->i_reserved_data_blocks)
2721 * We do something simple for now. The filemap_flush() will
2722 * also start triggering a write of the data blocks, which is
2723 * not strictly speaking necessary (and for users of
2724 * laptop_mode, not even desirable). However, to do otherwise
2725 * would require replicating code paths in:
2727 * ext4_writepages() ->
2728 * write_cache_pages() ---> (via passed in callback function)
2729 * __mpage_da_writepage() -->
2730 * mpage_add_bh_to_extent()
2731 * mpage_da_map_blocks()
2733 * The problem is that write_cache_pages(), located in
2734 * mm/page-writeback.c, marks pages clean in preparation for
2735 * doing I/O, which is not desirable if we're not planning on
2738 * We could call write_cache_pages(), and then redirty all of
2739 * the pages by calling redirty_page_for_writepage() but that
2740 * would be ugly in the extreme. So instead we would need to
2741 * replicate parts of the code in the above functions,
2742 * simplifying them because we wouldn't actually intend to
2743 * write out the pages, but rather only collect contiguous
2744 * logical block extents, call the multi-block allocator, and
2745 * then update the buffer heads with the block allocations.
2747 * For now, though, we'll cheat by calling filemap_flush(),
2748 * which will map the blocks, and start the I/O, but not
2749 * actually wait for the I/O to complete.
2751 return filemap_flush(inode->i_mapping);
2755 * bmap() is special. It gets used by applications such as lilo and by
2756 * the swapper to find the on-disk block of a specific piece of data.
2758 * Naturally, this is dangerous if the block concerned is still in the
2759 * journal. If somebody makes a swapfile on an ext4 data-journaling
2760 * filesystem and enables swap, then they may get a nasty shock when the
2761 * data getting swapped to that swapfile suddenly gets overwritten by
2762 * the original zero's written out previously to the journal and
2763 * awaiting writeback in the kernel's buffer cache.
2765 * So, if we see any bmap calls here on a modified, data-journaled file,
2766 * take extra steps to flush any blocks which might be in the cache.
2768 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2770 struct inode *inode = mapping->host;
2775 * We can get here for an inline file via the FIBMAP ioctl
2777 if (ext4_has_inline_data(inode))
2780 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2781 test_opt(inode->i_sb, DELALLOC)) {
2783 * With delalloc we want to sync the file
2784 * so that we can make sure we allocate
2787 filemap_write_and_wait(mapping);
2790 if (EXT4_JOURNAL(inode) &&
2791 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2793 * This is a REALLY heavyweight approach, but the use of
2794 * bmap on dirty files is expected to be extremely rare:
2795 * only if we run lilo or swapon on a freshly made file
2796 * do we expect this to happen.
2798 * (bmap requires CAP_SYS_RAWIO so this does not
2799 * represent an unprivileged user DOS attack --- we'd be
2800 * in trouble if mortal users could trigger this path at
2803 * NB. EXT4_STATE_JDATA is not set on files other than
2804 * regular files. If somebody wants to bmap a directory
2805 * or symlink and gets confused because the buffer
2806 * hasn't yet been flushed to disk, they deserve
2807 * everything they get.
2810 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2811 journal = EXT4_JOURNAL(inode);
2812 jbd2_journal_lock_updates(journal);
2813 err = jbd2_journal_flush(journal);
2814 jbd2_journal_unlock_updates(journal);
2820 return generic_block_bmap(mapping, block, ext4_get_block);
2823 static int ext4_readpage(struct file *file, struct page *page)
2826 struct inode *inode = page->mapping->host;
2828 trace_ext4_readpage(page);
2830 if (ext4_has_inline_data(inode))
2831 ret = ext4_readpage_inline(inode, page);
2834 return mpage_readpage(page, ext4_get_block);
2840 ext4_readpages(struct file *file, struct address_space *mapping,
2841 struct list_head *pages, unsigned nr_pages)
2843 struct inode *inode = mapping->host;
2845 /* If the file has inline data, no need to do readpages. */
2846 if (ext4_has_inline_data(inode))
2849 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2852 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2853 unsigned int length)
2855 trace_ext4_invalidatepage(page, offset, length);
2857 /* No journalling happens on data buffers when this function is used */
2858 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2860 block_invalidatepage(page, offset, length);
2863 static int __ext4_journalled_invalidatepage(struct page *page,
2864 unsigned int offset,
2865 unsigned int length)
2867 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2869 trace_ext4_journalled_invalidatepage(page, offset, length);
2872 * If it's a full truncate we just forget about the pending dirtying
2874 if (offset == 0 && length == PAGE_CACHE_SIZE)
2875 ClearPageChecked(page);
2877 return jbd2_journal_invalidatepage(journal, page, offset, length);
2880 /* Wrapper for aops... */
2881 static void ext4_journalled_invalidatepage(struct page *page,
2882 unsigned int offset,
2883 unsigned int length)
2885 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2888 static int ext4_releasepage(struct page *page, gfp_t wait)
2890 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2892 trace_ext4_releasepage(page);
2894 /* Page has dirty journalled data -> cannot release */
2895 if (PageChecked(page))
2898 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2900 return try_to_free_buffers(page);
2904 * ext4_get_block used when preparing for a DIO write or buffer write.
2905 * We allocate an uinitialized extent if blocks haven't been allocated.
2906 * The extent will be converted to initialized after the IO is complete.
2908 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2909 struct buffer_head *bh_result, int create)
2911 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2912 inode->i_ino, create);
2913 return _ext4_get_block(inode, iblock, bh_result,
2914 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2917 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2918 struct buffer_head *bh_result, int create)
2920 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2921 inode->i_ino, create);
2922 return _ext4_get_block(inode, iblock, bh_result,
2923 EXT4_GET_BLOCKS_NO_LOCK);
2926 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2927 ssize_t size, void *private)
2929 ext4_io_end_t *io_end = iocb->private;
2931 /* if not async direct IO just return */
2935 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2936 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2937 iocb->private, io_end->inode->i_ino, iocb, offset,
2940 iocb->private = NULL;
2941 io_end->offset = offset;
2942 io_end->size = size;
2943 ext4_put_io_end(io_end);
2947 * For ext4 extent files, ext4 will do direct-io write to holes,
2948 * preallocated extents, and those write extend the file, no need to
2949 * fall back to buffered IO.
2951 * For holes, we fallocate those blocks, mark them as unwritten
2952 * If those blocks were preallocated, we mark sure they are split, but
2953 * still keep the range to write as unwritten.
2955 * The unwritten extents will be converted to written when DIO is completed.
2956 * For async direct IO, since the IO may still pending when return, we
2957 * set up an end_io call back function, which will do the conversion
2958 * when async direct IO completed.
2960 * If the O_DIRECT write will extend the file then add this inode to the
2961 * orphan list. So recovery will truncate it back to the original size
2962 * if the machine crashes during the write.
2965 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2966 struct iov_iter *iter, loff_t offset)
2968 struct file *file = iocb->ki_filp;
2969 struct inode *inode = file->f_mapping->host;
2971 size_t count = iov_iter_count(iter);
2973 get_block_t *get_block_func = NULL;
2975 loff_t final_size = offset + count;
2976 ext4_io_end_t *io_end = NULL;
2978 /* Use the old path for reads and writes beyond i_size. */
2979 if (rw != WRITE || final_size > inode->i_size)
2980 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2982 BUG_ON(iocb->private == NULL);
2985 * Make all waiters for direct IO properly wait also for extent
2986 * conversion. This also disallows race between truncate() and
2987 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2990 atomic_inc(&inode->i_dio_count);
2992 /* If we do a overwrite dio, i_mutex locking can be released */
2993 overwrite = *((int *)iocb->private);
2996 down_read(&EXT4_I(inode)->i_data_sem);
2997 mutex_unlock(&inode->i_mutex);
3001 * We could direct write to holes and fallocate.
3003 * Allocated blocks to fill the hole are marked as
3004 * unwritten to prevent parallel buffered read to expose
3005 * the stale data before DIO complete the data IO.
3007 * As to previously fallocated extents, ext4 get_block will
3008 * just simply mark the buffer mapped but still keep the
3009 * extents unwritten.
3011 * For non AIO case, we will convert those unwritten extents
3012 * to written after return back from blockdev_direct_IO.
3014 * For async DIO, the conversion needs to be deferred when the
3015 * IO is completed. The ext4 end_io callback function will be
3016 * called to take care of the conversion work. Here for async
3017 * case, we allocate an io_end structure to hook to the iocb.
3019 iocb->private = NULL;
3020 ext4_inode_aio_set(inode, NULL);
3021 if (!is_sync_kiocb(iocb)) {
3022 io_end = ext4_init_io_end(inode, GFP_NOFS);
3028 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3030 iocb->private = ext4_get_io_end(io_end);
3032 * we save the io structure for current async direct
3033 * IO, so that later ext4_map_blocks() could flag the
3034 * io structure whether there is a unwritten extents
3035 * needs to be converted when IO is completed.
3037 ext4_inode_aio_set(inode, io_end);
3041 get_block_func = ext4_get_block_write_nolock;
3043 get_block_func = ext4_get_block_write;
3044 dio_flags = DIO_LOCKING;
3046 ret = __blockdev_direct_IO(rw, iocb, inode,
3047 inode->i_sb->s_bdev, iter,
3055 * Put our reference to io_end. This can free the io_end structure e.g.
3056 * in sync IO case or in case of error. It can even perform extent
3057 * conversion if all bios we submitted finished before we got here.
3058 * Note that in that case iocb->private can be already set to NULL
3062 ext4_inode_aio_set(inode, NULL);
3063 ext4_put_io_end(io_end);
3065 * When no IO was submitted ext4_end_io_dio() was not
3066 * called so we have to put iocb's reference.
3068 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3069 WARN_ON(iocb->private != io_end);
3070 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3071 ext4_put_io_end(io_end);
3072 iocb->private = NULL;
3075 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3076 EXT4_STATE_DIO_UNWRITTEN)) {
3079 * for non AIO case, since the IO is already
3080 * completed, we could do the conversion right here
3082 err = ext4_convert_unwritten_extents(NULL, inode,
3086 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3091 inode_dio_done(inode);
3092 /* take i_mutex locking again if we do a ovewrite dio */
3094 up_read(&EXT4_I(inode)->i_data_sem);
3095 mutex_lock(&inode->i_mutex);
3101 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3102 struct iov_iter *iter, loff_t offset)
3104 struct file *file = iocb->ki_filp;
3105 struct inode *inode = file->f_mapping->host;
3106 size_t count = iov_iter_count(iter);
3110 * If we are doing data journalling we don't support O_DIRECT
3112 if (ext4_should_journal_data(inode))
3115 /* Let buffer I/O handle the inline data case. */
3116 if (ext4_has_inline_data(inode))
3119 trace_ext4_direct_IO_enter(inode, offset, count, rw);
3120 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3121 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3123 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3124 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3129 * Pages can be marked dirty completely asynchronously from ext4's journalling
3130 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3131 * much here because ->set_page_dirty is called under VFS locks. The page is
3132 * not necessarily locked.
3134 * We cannot just dirty the page and leave attached buffers clean, because the
3135 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3136 * or jbddirty because all the journalling code will explode.
3138 * So what we do is to mark the page "pending dirty" and next time writepage
3139 * is called, propagate that into the buffers appropriately.
3141 static int ext4_journalled_set_page_dirty(struct page *page)
3143 SetPageChecked(page);
3144 return __set_page_dirty_nobuffers(page);
3147 static const struct address_space_operations ext4_aops = {
3148 .readpage = ext4_readpage,
3149 .readpages = ext4_readpages,
3150 .writepage = ext4_writepage,
3151 .writepages = ext4_writepages,
3152 .write_begin = ext4_write_begin,
3153 .write_end = ext4_write_end,
3155 .invalidatepage = ext4_invalidatepage,
3156 .releasepage = ext4_releasepage,
3157 .direct_IO = ext4_direct_IO,
3158 .migratepage = buffer_migrate_page,
3159 .is_partially_uptodate = block_is_partially_uptodate,
3160 .error_remove_page = generic_error_remove_page,
3163 static const struct address_space_operations ext4_journalled_aops = {
3164 .readpage = ext4_readpage,
3165 .readpages = ext4_readpages,
3166 .writepage = ext4_writepage,
3167 .writepages = ext4_writepages,
3168 .write_begin = ext4_write_begin,
3169 .write_end = ext4_journalled_write_end,
3170 .set_page_dirty = ext4_journalled_set_page_dirty,
3172 .invalidatepage = ext4_journalled_invalidatepage,
3173 .releasepage = ext4_releasepage,
3174 .direct_IO = ext4_direct_IO,
3175 .is_partially_uptodate = block_is_partially_uptodate,
3176 .error_remove_page = generic_error_remove_page,
3179 static const struct address_space_operations ext4_da_aops = {
3180 .readpage = ext4_readpage,
3181 .readpages = ext4_readpages,
3182 .writepage = ext4_writepage,
3183 .writepages = ext4_writepages,
3184 .write_begin = ext4_da_write_begin,
3185 .write_end = ext4_da_write_end,
3187 .invalidatepage = ext4_da_invalidatepage,
3188 .releasepage = ext4_releasepage,
3189 .direct_IO = ext4_direct_IO,
3190 .migratepage = buffer_migrate_page,
3191 .is_partially_uptodate = block_is_partially_uptodate,
3192 .error_remove_page = generic_error_remove_page,
3195 void ext4_set_aops(struct inode *inode)
3197 switch (ext4_inode_journal_mode(inode)) {
3198 case EXT4_INODE_ORDERED_DATA_MODE:
3199 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3201 case EXT4_INODE_WRITEBACK_DATA_MODE:
3202 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3204 case EXT4_INODE_JOURNAL_DATA_MODE:
3205 inode->i_mapping->a_ops = &ext4_journalled_aops;
3210 if (test_opt(inode->i_sb, DELALLOC))
3211 inode->i_mapping->a_ops = &ext4_da_aops;
3213 inode->i_mapping->a_ops = &ext4_aops;
3217 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3218 * starting from file offset 'from'. The range to be zero'd must
3219 * be contained with in one block. If the specified range exceeds
3220 * the end of the block it will be shortened to end of the block
3221 * that cooresponds to 'from'
3223 static int ext4_block_zero_page_range(handle_t *handle,
3224 struct address_space *mapping, loff_t from, loff_t length)
3226 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3227 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3228 unsigned blocksize, max, pos;
3230 struct inode *inode = mapping->host;
3231 struct buffer_head *bh;
3235 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3236 mapping_gfp_mask(mapping) & ~__GFP_FS);
3240 blocksize = inode->i_sb->s_blocksize;
3241 max = blocksize - (offset & (blocksize - 1));
3244 * correct length if it does not fall between
3245 * 'from' and the end of the block
3247 if (length > max || length < 0)
3250 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3252 if (!page_has_buffers(page))
3253 create_empty_buffers(page, blocksize, 0);
3255 /* Find the buffer that contains "offset" */
3256 bh = page_buffers(page);
3258 while (offset >= pos) {
3259 bh = bh->b_this_page;
3263 if (buffer_freed(bh)) {
3264 BUFFER_TRACE(bh, "freed: skip");
3267 if (!buffer_mapped(bh)) {
3268 BUFFER_TRACE(bh, "unmapped");
3269 ext4_get_block(inode, iblock, bh, 0);
3270 /* unmapped? It's a hole - nothing to do */
3271 if (!buffer_mapped(bh)) {
3272 BUFFER_TRACE(bh, "still unmapped");
3277 /* Ok, it's mapped. Make sure it's up-to-date */
3278 if (PageUptodate(page))
3279 set_buffer_uptodate(bh);
3281 if (!buffer_uptodate(bh)) {
3283 ll_rw_block(READ, 1, &bh);
3285 /* Uhhuh. Read error. Complain and punt. */
3286 if (!buffer_uptodate(bh))
3289 if (ext4_should_journal_data(inode)) {
3290 BUFFER_TRACE(bh, "get write access");
3291 err = ext4_journal_get_write_access(handle, bh);
3295 zero_user(page, offset, length);
3296 BUFFER_TRACE(bh, "zeroed end of block");
3298 if (ext4_should_journal_data(inode)) {
3299 err = ext4_handle_dirty_metadata(handle, inode, bh);
3302 mark_buffer_dirty(bh);
3303 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3304 err = ext4_jbd2_file_inode(handle, inode);
3309 page_cache_release(page);
3314 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3315 * up to the end of the block which corresponds to `from'.
3316 * This required during truncate. We need to physically zero the tail end
3317 * of that block so it doesn't yield old data if the file is later grown.
3319 static int ext4_block_truncate_page(handle_t *handle,
3320 struct address_space *mapping, loff_t from)
3322 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3325 struct inode *inode = mapping->host;
3327 blocksize = inode->i_sb->s_blocksize;
3328 length = blocksize - (offset & (blocksize - 1));
3330 return ext4_block_zero_page_range(handle, mapping, from, length);
3333 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3334 loff_t lstart, loff_t length)
3336 struct super_block *sb = inode->i_sb;
3337 struct address_space *mapping = inode->i_mapping;
3338 unsigned partial_start, partial_end;
3339 ext4_fsblk_t start, end;
3340 loff_t byte_end = (lstart + length - 1);
3343 partial_start = lstart & (sb->s_blocksize - 1);
3344 partial_end = byte_end & (sb->s_blocksize - 1);
3346 start = lstart >> sb->s_blocksize_bits;
3347 end = byte_end >> sb->s_blocksize_bits;
3349 /* Handle partial zero within the single block */
3351 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3352 err = ext4_block_zero_page_range(handle, mapping,
3356 /* Handle partial zero out on the start of the range */
3357 if (partial_start) {
3358 err = ext4_block_zero_page_range(handle, mapping,
3359 lstart, sb->s_blocksize);
3363 /* Handle partial zero out on the end of the range */
3364 if (partial_end != sb->s_blocksize - 1)
3365 err = ext4_block_zero_page_range(handle, mapping,
3366 byte_end - partial_end,
3371 int ext4_can_truncate(struct inode *inode)
3373 if (S_ISREG(inode->i_mode))
3375 if (S_ISDIR(inode->i_mode))
3377 if (S_ISLNK(inode->i_mode))
3378 return !ext4_inode_is_fast_symlink(inode);
3383 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3384 * associated with the given offset and length
3386 * @inode: File inode
3387 * @offset: The offset where the hole will begin
3388 * @len: The length of the hole
3390 * Returns: 0 on success or negative on failure
3393 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3395 struct super_block *sb = inode->i_sb;
3396 ext4_lblk_t first_block, stop_block;
3397 struct address_space *mapping = inode->i_mapping;
3398 loff_t first_block_offset, last_block_offset;
3400 unsigned int credits;
3403 if (!S_ISREG(inode->i_mode))
3406 trace_ext4_punch_hole(inode, offset, length, 0);
3409 * Write out all dirty pages to avoid race conditions
3410 * Then release them.
3412 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3413 ret = filemap_write_and_wait_range(mapping, offset,
3414 offset + length - 1);
3419 mutex_lock(&inode->i_mutex);
3421 /* No need to punch hole beyond i_size */
3422 if (offset >= inode->i_size)
3426 * If the hole extends beyond i_size, set the hole
3427 * to end after the page that contains i_size
3429 if (offset + length > inode->i_size) {
3430 length = inode->i_size +
3431 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3435 if (offset & (sb->s_blocksize - 1) ||
3436 (offset + length) & (sb->s_blocksize - 1)) {
3438 * Attach jinode to inode for jbd2 if we do any zeroing of
3441 ret = ext4_inode_attach_jinode(inode);
3447 first_block_offset = round_up(offset, sb->s_blocksize);
3448 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3450 /* Now release the pages and zero block aligned part of pages*/
3451 if (last_block_offset > first_block_offset)
3452 truncate_pagecache_range(inode, first_block_offset,
3455 /* Wait all existing dio workers, newcomers will block on i_mutex */
3456 ext4_inode_block_unlocked_dio(inode);
3457 inode_dio_wait(inode);
3459 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3460 credits = ext4_writepage_trans_blocks(inode);
3462 credits = ext4_blocks_for_truncate(inode);
3463 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3464 if (IS_ERR(handle)) {
3465 ret = PTR_ERR(handle);
3466 ext4_std_error(sb, ret);
3470 ret = ext4_zero_partial_blocks(handle, inode, offset,
3475 first_block = (offset + sb->s_blocksize - 1) >>
3476 EXT4_BLOCK_SIZE_BITS(sb);
3477 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3479 /* If there are no blocks to remove, return now */
3480 if (first_block >= stop_block)
3483 down_write(&EXT4_I(inode)->i_data_sem);
3484 ext4_discard_preallocations(inode);
3486 ret = ext4_es_remove_extent(inode, first_block,
3487 stop_block - first_block);
3489 up_write(&EXT4_I(inode)->i_data_sem);
3493 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3494 ret = ext4_ext_remove_space(inode, first_block,
3497 ret = ext4_ind_remove_space(handle, inode, first_block,
3500 up_write(&EXT4_I(inode)->i_data_sem);
3502 ext4_handle_sync(handle);
3504 /* Now release the pages again to reduce race window */
3505 if (last_block_offset > first_block_offset)
3506 truncate_pagecache_range(inode, first_block_offset,
3509 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3510 ext4_mark_inode_dirty(handle, inode);
3512 ext4_journal_stop(handle);
3514 ext4_inode_resume_unlocked_dio(inode);
3516 mutex_unlock(&inode->i_mutex);
3520 int ext4_inode_attach_jinode(struct inode *inode)
3522 struct ext4_inode_info *ei = EXT4_I(inode);
3523 struct jbd2_inode *jinode;
3525 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3528 jinode = jbd2_alloc_inode(GFP_KERNEL);
3529 spin_lock(&inode->i_lock);
3532 spin_unlock(&inode->i_lock);
3535 ei->jinode = jinode;
3536 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3539 spin_unlock(&inode->i_lock);
3540 if (unlikely(jinode != NULL))
3541 jbd2_free_inode(jinode);
3548 * We block out ext4_get_block() block instantiations across the entire
3549 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3550 * simultaneously on behalf of the same inode.
3552 * As we work through the truncate and commit bits of it to the journal there
3553 * is one core, guiding principle: the file's tree must always be consistent on
3554 * disk. We must be able to restart the truncate after a crash.
3556 * The file's tree may be transiently inconsistent in memory (although it
3557 * probably isn't), but whenever we close off and commit a journal transaction,
3558 * the contents of (the filesystem + the journal) must be consistent and
3559 * restartable. It's pretty simple, really: bottom up, right to left (although
3560 * left-to-right works OK too).
3562 * Note that at recovery time, journal replay occurs *before* the restart of
3563 * truncate against the orphan inode list.
3565 * The committed inode has the new, desired i_size (which is the same as
3566 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3567 * that this inode's truncate did not complete and it will again call
3568 * ext4_truncate() to have another go. So there will be instantiated blocks
3569 * to the right of the truncation point in a crashed ext4 filesystem. But
3570 * that's fine - as long as they are linked from the inode, the post-crash
3571 * ext4_truncate() run will find them and release them.
3573 void ext4_truncate(struct inode *inode)
3575 struct ext4_inode_info *ei = EXT4_I(inode);
3576 unsigned int credits;
3578 struct address_space *mapping = inode->i_mapping;
3581 * There is a possibility that we're either freeing the inode
3582 * or it's a completely new inode. In those cases we might not
3583 * have i_mutex locked because it's not necessary.
3585 if (!(inode->i_state & (I_NEW|I_FREEING)))
3586 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3587 trace_ext4_truncate_enter(inode);
3589 if (!ext4_can_truncate(inode))
3592 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3594 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3595 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3597 if (ext4_has_inline_data(inode)) {
3600 ext4_inline_data_truncate(inode, &has_inline);
3605 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3606 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3607 if (ext4_inode_attach_jinode(inode) < 0)
3611 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3612 credits = ext4_writepage_trans_blocks(inode);
3614 credits = ext4_blocks_for_truncate(inode);
3616 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3617 if (IS_ERR(handle)) {
3618 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3622 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3623 ext4_block_truncate_page(handle, mapping, inode->i_size);
3626 * We add the inode to the orphan list, so that if this
3627 * truncate spans multiple transactions, and we crash, we will
3628 * resume the truncate when the filesystem recovers. It also
3629 * marks the inode dirty, to catch the new size.
3631 * Implication: the file must always be in a sane, consistent
3632 * truncatable state while each transaction commits.
3634 if (ext4_orphan_add(handle, inode))
3637 down_write(&EXT4_I(inode)->i_data_sem);
3639 ext4_discard_preallocations(inode);
3641 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3642 ext4_ext_truncate(handle, inode);
3644 ext4_ind_truncate(handle, inode);
3646 up_write(&ei->i_data_sem);
3649 ext4_handle_sync(handle);
3653 * If this was a simple ftruncate() and the file will remain alive,
3654 * then we need to clear up the orphan record which we created above.
3655 * However, if this was a real unlink then we were called by
3656 * ext4_delete_inode(), and we allow that function to clean up the
3657 * orphan info for us.
3660 ext4_orphan_del(handle, inode);
3662 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3663 ext4_mark_inode_dirty(handle, inode);
3664 ext4_journal_stop(handle);
3666 trace_ext4_truncate_exit(inode);
3670 * ext4_get_inode_loc returns with an extra refcount against the inode's
3671 * underlying buffer_head on success. If 'in_mem' is true, we have all
3672 * data in memory that is needed to recreate the on-disk version of this
3675 static int __ext4_get_inode_loc(struct inode *inode,
3676 struct ext4_iloc *iloc, int in_mem)
3678 struct ext4_group_desc *gdp;
3679 struct buffer_head *bh;
3680 struct super_block *sb = inode->i_sb;
3682 int inodes_per_block, inode_offset;
3685 if (!ext4_valid_inum(sb, inode->i_ino))
3688 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3689 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3694 * Figure out the offset within the block group inode table
3696 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3697 inode_offset = ((inode->i_ino - 1) %
3698 EXT4_INODES_PER_GROUP(sb));
3699 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3700 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3702 bh = sb_getblk(sb, block);
3705 if (!buffer_uptodate(bh)) {
3709 * If the buffer has the write error flag, we have failed
3710 * to write out another inode in the same block. In this
3711 * case, we don't have to read the block because we may
3712 * read the old inode data successfully.
3714 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3715 set_buffer_uptodate(bh);
3717 if (buffer_uptodate(bh)) {
3718 /* someone brought it uptodate while we waited */
3724 * If we have all information of the inode in memory and this
3725 * is the only valid inode in the block, we need not read the
3729 struct buffer_head *bitmap_bh;
3732 start = inode_offset & ~(inodes_per_block - 1);
3734 /* Is the inode bitmap in cache? */
3735 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3736 if (unlikely(!bitmap_bh))
3740 * If the inode bitmap isn't in cache then the
3741 * optimisation may end up performing two reads instead
3742 * of one, so skip it.
3744 if (!buffer_uptodate(bitmap_bh)) {
3748 for (i = start; i < start + inodes_per_block; i++) {
3749 if (i == inode_offset)
3751 if (ext4_test_bit(i, bitmap_bh->b_data))
3755 if (i == start + inodes_per_block) {
3756 /* all other inodes are free, so skip I/O */
3757 memset(bh->b_data, 0, bh->b_size);
3758 set_buffer_uptodate(bh);
3766 * If we need to do any I/O, try to pre-readahead extra
3767 * blocks from the inode table.
3769 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3770 ext4_fsblk_t b, end, table;
3772 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3774 table = ext4_inode_table(sb, gdp);
3775 /* s_inode_readahead_blks is always a power of 2 */
3776 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3780 num = EXT4_INODES_PER_GROUP(sb);
3781 if (ext4_has_group_desc_csum(sb))
3782 num -= ext4_itable_unused_count(sb, gdp);
3783 table += num / inodes_per_block;
3787 sb_breadahead(sb, b++);
3791 * There are other valid inodes in the buffer, this inode
3792 * has in-inode xattrs, or we don't have this inode in memory.
3793 * Read the block from disk.
3795 trace_ext4_load_inode(inode);
3797 bh->b_end_io = end_buffer_read_sync;
3798 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3800 if (!buffer_uptodate(bh)) {
3801 EXT4_ERROR_INODE_BLOCK(inode, block,
3802 "unable to read itable block");
3812 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3814 /* We have all inode data except xattrs in memory here. */
3815 return __ext4_get_inode_loc(inode, iloc,
3816 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3819 void ext4_set_inode_flags(struct inode *inode)
3821 unsigned int flags = EXT4_I(inode)->i_flags;
3822 unsigned int new_fl = 0;
3824 if (flags & EXT4_SYNC_FL)
3826 if (flags & EXT4_APPEND_FL)
3828 if (flags & EXT4_IMMUTABLE_FL)
3829 new_fl |= S_IMMUTABLE;
3830 if (flags & EXT4_NOATIME_FL)
3831 new_fl |= S_NOATIME;
3832 if (flags & EXT4_DIRSYNC_FL)
3833 new_fl |= S_DIRSYNC;
3834 inode_set_flags(inode, new_fl,
3835 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3838 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3839 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3841 unsigned int vfs_fl;
3842 unsigned long old_fl, new_fl;
3845 vfs_fl = ei->vfs_inode.i_flags;
3846 old_fl = ei->i_flags;
3847 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3848 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3850 if (vfs_fl & S_SYNC)
3851 new_fl |= EXT4_SYNC_FL;
3852 if (vfs_fl & S_APPEND)
3853 new_fl |= EXT4_APPEND_FL;
3854 if (vfs_fl & S_IMMUTABLE)
3855 new_fl |= EXT4_IMMUTABLE_FL;
3856 if (vfs_fl & S_NOATIME)
3857 new_fl |= EXT4_NOATIME_FL;
3858 if (vfs_fl & S_DIRSYNC)
3859 new_fl |= EXT4_DIRSYNC_FL;
3860 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3863 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3864 struct ext4_inode_info *ei)
3867 struct inode *inode = &(ei->vfs_inode);
3868 struct super_block *sb = inode->i_sb;
3870 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3871 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3872 /* we are using combined 48 bit field */
3873 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3874 le32_to_cpu(raw_inode->i_blocks_lo);
3875 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3876 /* i_blocks represent file system block size */
3877 return i_blocks << (inode->i_blkbits - 9);
3882 return le32_to_cpu(raw_inode->i_blocks_lo);
3886 static inline void ext4_iget_extra_inode(struct inode *inode,
3887 struct ext4_inode *raw_inode,
3888 struct ext4_inode_info *ei)
3890 __le32 *magic = (void *)raw_inode +
3891 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3892 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3893 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3894 ext4_find_inline_data_nolock(inode);
3896 EXT4_I(inode)->i_inline_off = 0;
3899 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3901 struct ext4_iloc iloc;
3902 struct ext4_inode *raw_inode;
3903 struct ext4_inode_info *ei;
3904 struct inode *inode;
3905 journal_t *journal = EXT4_SB(sb)->s_journal;
3911 inode = iget_locked(sb, ino);
3913 return ERR_PTR(-ENOMEM);
3914 if (!(inode->i_state & I_NEW))
3920 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3923 raw_inode = ext4_raw_inode(&iloc);
3925 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3926 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3927 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3928 EXT4_INODE_SIZE(inode->i_sb)) {
3929 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3930 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3931 EXT4_INODE_SIZE(inode->i_sb));
3936 ei->i_extra_isize = 0;
3938 /* Precompute checksum seed for inode metadata */
3939 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3940 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3941 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3943 __le32 inum = cpu_to_le32(inode->i_ino);
3944 __le32 gen = raw_inode->i_generation;
3945 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3947 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3951 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3952 EXT4_ERROR_INODE(inode, "checksum invalid");
3957 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3958 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3959 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3960 if (!(test_opt(inode->i_sb, NO_UID32))) {
3961 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3962 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3964 i_uid_write(inode, i_uid);
3965 i_gid_write(inode, i_gid);
3966 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3968 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3969 ei->i_inline_off = 0;
3970 ei->i_dir_start_lookup = 0;
3971 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3972 /* We now have enough fields to check if the inode was active or not.
3973 * This is needed because nfsd might try to access dead inodes
3974 * the test is that same one that e2fsck uses
3975 * NeilBrown 1999oct15
3977 if (inode->i_nlink == 0) {
3978 if ((inode->i_mode == 0 ||
3979 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3980 ino != EXT4_BOOT_LOADER_INO) {
3981 /* this inode is deleted */
3985 /* The only unlinked inodes we let through here have
3986 * valid i_mode and are being read by the orphan
3987 * recovery code: that's fine, we're about to complete
3988 * the process of deleting those.
3989 * OR it is the EXT4_BOOT_LOADER_INO which is
3990 * not initialized on a new filesystem. */
3992 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3993 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3994 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3995 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3997 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3998 inode->i_size = ext4_isize(raw_inode);
3999 ei->i_disksize = inode->i_size;
4001 ei->i_reserved_quota = 0;
4003 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4004 ei->i_block_group = iloc.block_group;
4005 ei->i_last_alloc_group = ~0;
4007 * NOTE! The in-memory inode i_data array is in little-endian order
4008 * even on big-endian machines: we do NOT byteswap the block numbers!
4010 for (block = 0; block < EXT4_N_BLOCKS; block++)
4011 ei->i_data[block] = raw_inode->i_block[block];
4012 INIT_LIST_HEAD(&ei->i_orphan);
4015 * Set transaction id's of transactions that have to be committed
4016 * to finish f[data]sync. We set them to currently running transaction
4017 * as we cannot be sure that the inode or some of its metadata isn't
4018 * part of the transaction - the inode could have been reclaimed and
4019 * now it is reread from disk.
4022 transaction_t *transaction;
4025 read_lock(&journal->j_state_lock);
4026 if (journal->j_running_transaction)
4027 transaction = journal->j_running_transaction;
4029 transaction = journal->j_committing_transaction;
4031 tid = transaction->t_tid;
4033 tid = journal->j_commit_sequence;
4034 read_unlock(&journal->j_state_lock);
4035 ei->i_sync_tid = tid;
4036 ei->i_datasync_tid = tid;
4039 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4040 if (ei->i_extra_isize == 0) {
4041 /* The extra space is currently unused. Use it. */
4042 ei->i_extra_isize = sizeof(struct ext4_inode) -
4043 EXT4_GOOD_OLD_INODE_SIZE;
4045 ext4_iget_extra_inode(inode, raw_inode, ei);
4049 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4050 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4051 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4052 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4054 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4055 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4056 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4057 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4059 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4064 if (ei->i_file_acl &&
4065 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4066 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4070 } else if (!ext4_has_inline_data(inode)) {
4071 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4072 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4073 (S_ISLNK(inode->i_mode) &&
4074 !ext4_inode_is_fast_symlink(inode))))
4075 /* Validate extent which is part of inode */
4076 ret = ext4_ext_check_inode(inode);
4077 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4078 (S_ISLNK(inode->i_mode) &&
4079 !ext4_inode_is_fast_symlink(inode))) {
4080 /* Validate block references which are part of inode */
4081 ret = ext4_ind_check_inode(inode);
4087 if (S_ISREG(inode->i_mode)) {
4088 inode->i_op = &ext4_file_inode_operations;
4089 inode->i_fop = &ext4_file_operations;
4090 ext4_set_aops(inode);
4091 } else if (S_ISDIR(inode->i_mode)) {
4092 inode->i_op = &ext4_dir_inode_operations;
4093 inode->i_fop = &ext4_dir_operations;
4094 } else if (S_ISLNK(inode->i_mode)) {
4095 if (ext4_inode_is_fast_symlink(inode)) {
4096 inode->i_op = &ext4_fast_symlink_inode_operations;
4097 nd_terminate_link(ei->i_data, inode->i_size,
4098 sizeof(ei->i_data) - 1);
4100 inode->i_op = &ext4_symlink_inode_operations;
4101 ext4_set_aops(inode);
4103 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4104 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4105 inode->i_op = &ext4_special_inode_operations;
4106 if (raw_inode->i_block[0])
4107 init_special_inode(inode, inode->i_mode,
4108 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4110 init_special_inode(inode, inode->i_mode,
4111 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4112 } else if (ino == EXT4_BOOT_LOADER_INO) {
4113 make_bad_inode(inode);
4116 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4120 ext4_set_inode_flags(inode);
4121 unlock_new_inode(inode);
4127 return ERR_PTR(ret);
4130 static int ext4_inode_blocks_set(handle_t *handle,
4131 struct ext4_inode *raw_inode,
4132 struct ext4_inode_info *ei)
4134 struct inode *inode = &(ei->vfs_inode);
4135 u64 i_blocks = inode->i_blocks;
4136 struct super_block *sb = inode->i_sb;
4138 if (i_blocks <= ~0U) {
4140 * i_blocks can be represented in a 32 bit variable
4141 * as multiple of 512 bytes
4143 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4144 raw_inode->i_blocks_high = 0;
4145 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4148 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4151 if (i_blocks <= 0xffffffffffffULL) {
4153 * i_blocks can be represented in a 48 bit variable
4154 * as multiple of 512 bytes
4156 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4157 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4158 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4160 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4161 /* i_block is stored in file system block size */
4162 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4163 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4164 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4170 * Post the struct inode info into an on-disk inode location in the
4171 * buffer-cache. This gobbles the caller's reference to the
4172 * buffer_head in the inode location struct.
4174 * The caller must have write access to iloc->bh.
4176 static int ext4_do_update_inode(handle_t *handle,
4177 struct inode *inode,
4178 struct ext4_iloc *iloc)
4180 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4181 struct ext4_inode_info *ei = EXT4_I(inode);
4182 struct buffer_head *bh = iloc->bh;
4183 struct super_block *sb = inode->i_sb;
4184 int err = 0, rc, block;
4185 int need_datasync = 0, set_large_file = 0;
4189 spin_lock(&ei->i_raw_lock);
4191 /* For fields not tracked in the in-memory inode,
4192 * initialise them to zero for new inodes. */
4193 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4194 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4196 ext4_get_inode_flags(ei);
4197 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4198 i_uid = i_uid_read(inode);
4199 i_gid = i_gid_read(inode);
4200 if (!(test_opt(inode->i_sb, NO_UID32))) {
4201 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4202 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4204 * Fix up interoperability with old kernels. Otherwise, old inodes get
4205 * re-used with the upper 16 bits of the uid/gid intact
4208 raw_inode->i_uid_high =
4209 cpu_to_le16(high_16_bits(i_uid));
4210 raw_inode->i_gid_high =
4211 cpu_to_le16(high_16_bits(i_gid));
4213 raw_inode->i_uid_high = 0;
4214 raw_inode->i_gid_high = 0;
4217 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4218 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4219 raw_inode->i_uid_high = 0;
4220 raw_inode->i_gid_high = 0;
4222 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4224 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4225 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4226 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4227 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4229 if (ext4_inode_blocks_set(handle, raw_inode, ei)) {
4230 spin_unlock(&ei->i_raw_lock);
4233 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4234 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4235 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4236 raw_inode->i_file_acl_high =
4237 cpu_to_le16(ei->i_file_acl >> 32);
4238 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4239 if (ei->i_disksize != ext4_isize(raw_inode)) {
4240 ext4_isize_set(raw_inode, ei->i_disksize);
4243 if (ei->i_disksize > 0x7fffffffULL) {
4244 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4245 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4246 EXT4_SB(sb)->s_es->s_rev_level ==
4247 cpu_to_le32(EXT4_GOOD_OLD_REV))
4250 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4251 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4252 if (old_valid_dev(inode->i_rdev)) {
4253 raw_inode->i_block[0] =
4254 cpu_to_le32(old_encode_dev(inode->i_rdev));
4255 raw_inode->i_block[1] = 0;
4257 raw_inode->i_block[0] = 0;
4258 raw_inode->i_block[1] =
4259 cpu_to_le32(new_encode_dev(inode->i_rdev));
4260 raw_inode->i_block[2] = 0;
4262 } else if (!ext4_has_inline_data(inode)) {
4263 for (block = 0; block < EXT4_N_BLOCKS; block++)
4264 raw_inode->i_block[block] = ei->i_data[block];
4267 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4268 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4269 if (ei->i_extra_isize) {
4270 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4271 raw_inode->i_version_hi =
4272 cpu_to_le32(inode->i_version >> 32);
4273 raw_inode->i_extra_isize =
4274 cpu_to_le16(ei->i_extra_isize);
4278 ext4_inode_csum_set(inode, raw_inode, ei);
4280 spin_unlock(&ei->i_raw_lock);
4282 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4283 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4286 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4287 if (set_large_file) {
4288 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4289 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4292 ext4_update_dynamic_rev(sb);
4293 EXT4_SET_RO_COMPAT_FEATURE(sb,
4294 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4295 ext4_handle_sync(handle);
4296 err = ext4_handle_dirty_super(handle, sb);
4298 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4301 ext4_std_error(inode->i_sb, err);
4306 * ext4_write_inode()
4308 * We are called from a few places:
4310 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4311 * Here, there will be no transaction running. We wait for any running
4312 * transaction to commit.
4314 * - Within flush work (sys_sync(), kupdate and such).
4315 * We wait on commit, if told to.
4317 * - Within iput_final() -> write_inode_now()
4318 * We wait on commit, if told to.
4320 * In all cases it is actually safe for us to return without doing anything,
4321 * because the inode has been copied into a raw inode buffer in
4322 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4325 * Note that we are absolutely dependent upon all inode dirtiers doing the
4326 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4327 * which we are interested.
4329 * It would be a bug for them to not do this. The code:
4331 * mark_inode_dirty(inode)
4333 * inode->i_size = expr;
4335 * is in error because write_inode() could occur while `stuff()' is running,
4336 * and the new i_size will be lost. Plus the inode will no longer be on the
4337 * superblock's dirty inode list.
4339 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4343 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4346 if (EXT4_SB(inode->i_sb)->s_journal) {
4347 if (ext4_journal_current_handle()) {
4348 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4354 * No need to force transaction in WB_SYNC_NONE mode. Also
4355 * ext4_sync_fs() will force the commit after everything is
4358 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4361 err = ext4_force_commit(inode->i_sb);
4363 struct ext4_iloc iloc;
4365 err = __ext4_get_inode_loc(inode, &iloc, 0);
4369 * sync(2) will flush the whole buffer cache. No need to do
4370 * it here separately for each inode.
4372 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4373 sync_dirty_buffer(iloc.bh);
4374 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4375 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4376 "IO error syncing inode");
4385 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4386 * buffers that are attached to a page stradding i_size and are undergoing
4387 * commit. In that case we have to wait for commit to finish and try again.
4389 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4393 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4394 tid_t commit_tid = 0;
4397 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4399 * All buffers in the last page remain valid? Then there's nothing to
4400 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4403 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4406 page = find_lock_page(inode->i_mapping,
4407 inode->i_size >> PAGE_CACHE_SHIFT);
4410 ret = __ext4_journalled_invalidatepage(page, offset,
4411 PAGE_CACHE_SIZE - offset);
4413 page_cache_release(page);
4417 read_lock(&journal->j_state_lock);
4418 if (journal->j_committing_transaction)
4419 commit_tid = journal->j_committing_transaction->t_tid;
4420 read_unlock(&journal->j_state_lock);
4422 jbd2_log_wait_commit(journal, commit_tid);
4429 * Called from notify_change.
4431 * We want to trap VFS attempts to truncate the file as soon as
4432 * possible. In particular, we want to make sure that when the VFS
4433 * shrinks i_size, we put the inode on the orphan list and modify
4434 * i_disksize immediately, so that during the subsequent flushing of
4435 * dirty pages and freeing of disk blocks, we can guarantee that any
4436 * commit will leave the blocks being flushed in an unused state on
4437 * disk. (On recovery, the inode will get truncated and the blocks will
4438 * be freed, so we have a strong guarantee that no future commit will
4439 * leave these blocks visible to the user.)
4441 * Another thing we have to assure is that if we are in ordered mode
4442 * and inode is still attached to the committing transaction, we must
4443 * we start writeout of all the dirty pages which are being truncated.
4444 * This way we are sure that all the data written in the previous
4445 * transaction are already on disk (truncate waits for pages under
4448 * Called with inode->i_mutex down.
4450 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4452 struct inode *inode = dentry->d_inode;
4455 const unsigned int ia_valid = attr->ia_valid;
4457 error = inode_change_ok(inode, attr);
4461 if (is_quota_modification(inode, attr))
4462 dquot_initialize(inode);
4463 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4464 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4467 /* (user+group)*(old+new) structure, inode write (sb,
4468 * inode block, ? - but truncate inode update has it) */
4469 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4470 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4471 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4472 if (IS_ERR(handle)) {
4473 error = PTR_ERR(handle);
4476 error = dquot_transfer(inode, attr);
4478 ext4_journal_stop(handle);
4481 /* Update corresponding info in inode so that everything is in
4482 * one transaction */
4483 if (attr->ia_valid & ATTR_UID)
4484 inode->i_uid = attr->ia_uid;
4485 if (attr->ia_valid & ATTR_GID)
4486 inode->i_gid = attr->ia_gid;
4487 error = ext4_mark_inode_dirty(handle, inode);
4488 ext4_journal_stop(handle);
4491 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4494 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4495 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4497 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4501 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4502 inode_inc_iversion(inode);
4504 if (S_ISREG(inode->i_mode) &&
4505 (attr->ia_size < inode->i_size)) {
4506 if (ext4_should_order_data(inode)) {
4507 error = ext4_begin_ordered_truncate(inode,
4512 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4513 if (IS_ERR(handle)) {
4514 error = PTR_ERR(handle);
4517 if (ext4_handle_valid(handle)) {
4518 error = ext4_orphan_add(handle, inode);
4521 down_write(&EXT4_I(inode)->i_data_sem);
4522 EXT4_I(inode)->i_disksize = attr->ia_size;
4523 rc = ext4_mark_inode_dirty(handle, inode);
4527 * We have to update i_size under i_data_sem together
4528 * with i_disksize to avoid races with writeback code
4529 * running ext4_wb_update_i_disksize().
4532 i_size_write(inode, attr->ia_size);
4533 up_write(&EXT4_I(inode)->i_data_sem);
4534 ext4_journal_stop(handle);
4536 ext4_orphan_del(NULL, inode);
4540 i_size_write(inode, attr->ia_size);
4543 * Blocks are going to be removed from the inode. Wait
4544 * for dio in flight. Temporarily disable
4545 * dioread_nolock to prevent livelock.
4548 if (!ext4_should_journal_data(inode)) {
4549 ext4_inode_block_unlocked_dio(inode);
4550 inode_dio_wait(inode);
4551 ext4_inode_resume_unlocked_dio(inode);
4553 ext4_wait_for_tail_page_commit(inode);
4556 * Truncate pagecache after we've waited for commit
4557 * in data=journal mode to make pages freeable.
4559 truncate_pagecache(inode, inode->i_size);
4562 * We want to call ext4_truncate() even if attr->ia_size ==
4563 * inode->i_size for cases like truncation of fallocated space
4565 if (attr->ia_valid & ATTR_SIZE)
4566 ext4_truncate(inode);
4569 setattr_copy(inode, attr);
4570 mark_inode_dirty(inode);
4574 * If the call to ext4_truncate failed to get a transaction handle at
4575 * all, we need to clean up the in-core orphan list manually.
4577 if (orphan && inode->i_nlink)
4578 ext4_orphan_del(NULL, inode);
4580 if (!rc && (ia_valid & ATTR_MODE))
4581 rc = posix_acl_chmod(inode, inode->i_mode);
4584 ext4_std_error(inode->i_sb, error);
4590 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4593 struct inode *inode;
4594 unsigned long long delalloc_blocks;
4596 inode = dentry->d_inode;
4597 generic_fillattr(inode, stat);
4600 * If there is inline data in the inode, the inode will normally not
4601 * have data blocks allocated (it may have an external xattr block).
4602 * Report at least one sector for such files, so tools like tar, rsync,
4603 * others doen't incorrectly think the file is completely sparse.
4605 if (unlikely(ext4_has_inline_data(inode)))
4606 stat->blocks += (stat->size + 511) >> 9;
4609 * We can't update i_blocks if the block allocation is delayed
4610 * otherwise in the case of system crash before the real block
4611 * allocation is done, we will have i_blocks inconsistent with
4612 * on-disk file blocks.
4613 * We always keep i_blocks updated together with real
4614 * allocation. But to not confuse with user, stat
4615 * will return the blocks that include the delayed allocation
4616 * blocks for this file.
4618 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4619 EXT4_I(inode)->i_reserved_data_blocks);
4620 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4624 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4627 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4628 return ext4_ind_trans_blocks(inode, lblocks);
4629 return ext4_ext_index_trans_blocks(inode, pextents);
4633 * Account for index blocks, block groups bitmaps and block group
4634 * descriptor blocks if modify datablocks and index blocks
4635 * worse case, the indexs blocks spread over different block groups
4637 * If datablocks are discontiguous, they are possible to spread over
4638 * different block groups too. If they are contiguous, with flexbg,
4639 * they could still across block group boundary.
4641 * Also account for superblock, inode, quota and xattr blocks
4643 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4646 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4652 * How many index blocks need to touch to map @lblocks logical blocks
4653 * to @pextents physical extents?
4655 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4660 * Now let's see how many group bitmaps and group descriptors need
4663 groups = idxblocks + pextents;
4665 if (groups > ngroups)
4667 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4668 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4670 /* bitmaps and block group descriptor blocks */
4671 ret += groups + gdpblocks;
4673 /* Blocks for super block, inode, quota and xattr blocks */
4674 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4680 * Calculate the total number of credits to reserve to fit
4681 * the modification of a single pages into a single transaction,
4682 * which may include multiple chunks of block allocations.
4684 * This could be called via ext4_write_begin()
4686 * We need to consider the worse case, when
4687 * one new block per extent.
4689 int ext4_writepage_trans_blocks(struct inode *inode)
4691 int bpp = ext4_journal_blocks_per_page(inode);
4694 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4696 /* Account for data blocks for journalled mode */
4697 if (ext4_should_journal_data(inode))
4703 * Calculate the journal credits for a chunk of data modification.
4705 * This is called from DIO, fallocate or whoever calling
4706 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4708 * journal buffers for data blocks are not included here, as DIO
4709 * and fallocate do no need to journal data buffers.
4711 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4713 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4717 * The caller must have previously called ext4_reserve_inode_write().
4718 * Give this, we know that the caller already has write access to iloc->bh.
4720 int ext4_mark_iloc_dirty(handle_t *handle,
4721 struct inode *inode, struct ext4_iloc *iloc)
4725 if (IS_I_VERSION(inode))
4726 inode_inc_iversion(inode);
4728 /* the do_update_inode consumes one bh->b_count */
4731 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4732 err = ext4_do_update_inode(handle, inode, iloc);
4738 * On success, We end up with an outstanding reference count against
4739 * iloc->bh. This _must_ be cleaned up later.
4743 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4744 struct ext4_iloc *iloc)
4748 err = ext4_get_inode_loc(inode, iloc);
4750 BUFFER_TRACE(iloc->bh, "get_write_access");
4751 err = ext4_journal_get_write_access(handle, iloc->bh);
4757 ext4_std_error(inode->i_sb, err);
4762 * Expand an inode by new_extra_isize bytes.
4763 * Returns 0 on success or negative error number on failure.
4765 static int ext4_expand_extra_isize(struct inode *inode,
4766 unsigned int new_extra_isize,
4767 struct ext4_iloc iloc,
4770 struct ext4_inode *raw_inode;
4771 struct ext4_xattr_ibody_header *header;
4773 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4776 raw_inode = ext4_raw_inode(&iloc);
4778 header = IHDR(inode, raw_inode);
4780 /* No extended attributes present */
4781 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4782 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4783 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4785 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4789 /* try to expand with EAs present */
4790 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4795 * What we do here is to mark the in-core inode as clean with respect to inode
4796 * dirtiness (it may still be data-dirty).
4797 * This means that the in-core inode may be reaped by prune_icache
4798 * without having to perform any I/O. This is a very good thing,
4799 * because *any* task may call prune_icache - even ones which
4800 * have a transaction open against a different journal.
4802 * Is this cheating? Not really. Sure, we haven't written the
4803 * inode out, but prune_icache isn't a user-visible syncing function.
4804 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4805 * we start and wait on commits.
4807 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4809 struct ext4_iloc iloc;
4810 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4811 static unsigned int mnt_count;
4815 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4816 err = ext4_reserve_inode_write(handle, inode, &iloc);
4817 if (ext4_handle_valid(handle) &&
4818 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4819 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4821 * We need extra buffer credits since we may write into EA block
4822 * with this same handle. If journal_extend fails, then it will
4823 * only result in a minor loss of functionality for that inode.
4824 * If this is felt to be critical, then e2fsck should be run to
4825 * force a large enough s_min_extra_isize.
4827 if ((jbd2_journal_extend(handle,
4828 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4829 ret = ext4_expand_extra_isize(inode,
4830 sbi->s_want_extra_isize,
4833 ext4_set_inode_state(inode,
4834 EXT4_STATE_NO_EXPAND);
4836 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4837 ext4_warning(inode->i_sb,
4838 "Unable to expand inode %lu. Delete"
4839 " some EAs or run e2fsck.",
4842 le16_to_cpu(sbi->s_es->s_mnt_count);
4848 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4853 * ext4_dirty_inode() is called from __mark_inode_dirty()
4855 * We're really interested in the case where a file is being extended.
4856 * i_size has been changed by generic_commit_write() and we thus need
4857 * to include the updated inode in the current transaction.
4859 * Also, dquot_alloc_block() will always dirty the inode when blocks
4860 * are allocated to the file.
4862 * If the inode is marked synchronous, we don't honour that here - doing
4863 * so would cause a commit on atime updates, which we don't bother doing.
4864 * We handle synchronous inodes at the highest possible level.
4866 void ext4_dirty_inode(struct inode *inode, int flags)
4870 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4874 ext4_mark_inode_dirty(handle, inode);
4876 ext4_journal_stop(handle);
4883 * Bind an inode's backing buffer_head into this transaction, to prevent
4884 * it from being flushed to disk early. Unlike
4885 * ext4_reserve_inode_write, this leaves behind no bh reference and
4886 * returns no iloc structure, so the caller needs to repeat the iloc
4887 * lookup to mark the inode dirty later.
4889 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4891 struct ext4_iloc iloc;
4895 err = ext4_get_inode_loc(inode, &iloc);
4897 BUFFER_TRACE(iloc.bh, "get_write_access");
4898 err = jbd2_journal_get_write_access(handle, iloc.bh);
4900 err = ext4_handle_dirty_metadata(handle,
4906 ext4_std_error(inode->i_sb, err);
4911 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4918 * We have to be very careful here: changing a data block's
4919 * journaling status dynamically is dangerous. If we write a
4920 * data block to the journal, change the status and then delete
4921 * that block, we risk forgetting to revoke the old log record
4922 * from the journal and so a subsequent replay can corrupt data.
4923 * So, first we make sure that the journal is empty and that
4924 * nobody is changing anything.
4927 journal = EXT4_JOURNAL(inode);
4930 if (is_journal_aborted(journal))
4932 /* We have to allocate physical blocks for delalloc blocks
4933 * before flushing journal. otherwise delalloc blocks can not
4934 * be allocated any more. even more truncate on delalloc blocks
4935 * could trigger BUG by flushing delalloc blocks in journal.
4936 * There is no delalloc block in non-journal data mode.
4938 if (val && test_opt(inode->i_sb, DELALLOC)) {
4939 err = ext4_alloc_da_blocks(inode);
4944 /* Wait for all existing dio workers */
4945 ext4_inode_block_unlocked_dio(inode);
4946 inode_dio_wait(inode);
4948 jbd2_journal_lock_updates(journal);
4951 * OK, there are no updates running now, and all cached data is
4952 * synced to disk. We are now in a completely consistent state
4953 * which doesn't have anything in the journal, and we know that
4954 * no filesystem updates are running, so it is safe to modify
4955 * the inode's in-core data-journaling state flag now.
4959 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4961 jbd2_journal_flush(journal);
4962 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4964 ext4_set_aops(inode);
4966 jbd2_journal_unlock_updates(journal);
4967 ext4_inode_resume_unlocked_dio(inode);
4969 /* Finally we can mark the inode as dirty. */
4971 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4973 return PTR_ERR(handle);
4975 err = ext4_mark_inode_dirty(handle, inode);
4976 ext4_handle_sync(handle);
4977 ext4_journal_stop(handle);
4978 ext4_std_error(inode->i_sb, err);
4983 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4985 return !buffer_mapped(bh);
4988 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4990 struct page *page = vmf->page;
4994 struct file *file = vma->vm_file;
4995 struct inode *inode = file_inode(file);
4996 struct address_space *mapping = inode->i_mapping;
4998 get_block_t *get_block;
5001 sb_start_pagefault(inode->i_sb);
5002 file_update_time(vma->vm_file);
5003 /* Delalloc case is easy... */
5004 if (test_opt(inode->i_sb, DELALLOC) &&
5005 !ext4_should_journal_data(inode) &&
5006 !ext4_nonda_switch(inode->i_sb)) {
5008 ret = __block_page_mkwrite(vma, vmf,
5009 ext4_da_get_block_prep);
5010 } while (ret == -ENOSPC &&
5011 ext4_should_retry_alloc(inode->i_sb, &retries));
5016 size = i_size_read(inode);
5017 /* Page got truncated from under us? */
5018 if (page->mapping != mapping || page_offset(page) > size) {
5020 ret = VM_FAULT_NOPAGE;
5024 if (page->index == size >> PAGE_CACHE_SHIFT)
5025 len = size & ~PAGE_CACHE_MASK;
5027 len = PAGE_CACHE_SIZE;
5029 * Return if we have all the buffers mapped. This avoids the need to do
5030 * journal_start/journal_stop which can block and take a long time
5032 if (page_has_buffers(page)) {
5033 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5035 ext4_bh_unmapped)) {
5036 /* Wait so that we don't change page under IO */
5037 wait_for_stable_page(page);
5038 ret = VM_FAULT_LOCKED;
5043 /* OK, we need to fill the hole... */
5044 if (ext4_should_dioread_nolock(inode))
5045 get_block = ext4_get_block_write;
5047 get_block = ext4_get_block;
5049 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5050 ext4_writepage_trans_blocks(inode));
5051 if (IS_ERR(handle)) {
5052 ret = VM_FAULT_SIGBUS;
5055 ret = __block_page_mkwrite(vma, vmf, get_block);
5056 if (!ret && ext4_should_journal_data(inode)) {
5057 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5058 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5060 ret = VM_FAULT_SIGBUS;
5061 ext4_journal_stop(handle);
5064 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5066 ext4_journal_stop(handle);
5067 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5070 ret = block_page_mkwrite_return(ret);
5072 sb_end_pagefault(inode->i_sb);