1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
41 #include <asm/pgalloc.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
50 #include "hugetlb_vmemmap.h"
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
61 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
70 static unsigned long hugetlb_cma_size __initdata;
72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
74 /* for command line parsing */
75 static struct hstate * __initdata parsed_hstate;
76 static unsigned long __initdata default_hstate_max_huge_pages;
77 static bool __initdata parsed_valid_hugepagesz = true;
78 static bool __initdata parsed_default_hugepagesz;
79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83 * free_huge_pages, and surplus_huge_pages.
85 DEFINE_SPINLOCK(hugetlb_lock);
88 * Serializes faults on the same logical page. This is used to
89 * prevent spurious OOMs when the hugepage pool is fully utilized.
91 static int num_fault_mutexes;
92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
94 /* Forward declaration */
95 static int hugetlb_acct_memory(struct hstate *h, long delta);
96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100 unsigned long start, unsigned long end);
101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
103 static inline bool subpool_is_free(struct hugepage_subpool *spool)
107 if (spool->max_hpages != -1)
108 return spool->used_hpages == 0;
109 if (spool->min_hpages != -1)
110 return spool->rsv_hpages == spool->min_hpages;
115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116 unsigned long irq_flags)
118 spin_unlock_irqrestore(&spool->lock, irq_flags);
120 /* If no pages are used, and no other handles to the subpool
121 * remain, give up any reservations based on minimum size and
122 * free the subpool */
123 if (subpool_is_free(spool)) {
124 if (spool->min_hpages != -1)
125 hugetlb_acct_memory(spool->hstate,
131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
134 struct hugepage_subpool *spool;
136 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
140 spin_lock_init(&spool->lock);
142 spool->max_hpages = max_hpages;
144 spool->min_hpages = min_hpages;
146 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
150 spool->rsv_hpages = min_hpages;
155 void hugepage_put_subpool(struct hugepage_subpool *spool)
159 spin_lock_irqsave(&spool->lock, flags);
160 BUG_ON(!spool->count);
162 unlock_or_release_subpool(spool, flags);
166 * Subpool accounting for allocating and reserving pages.
167 * Return -ENOMEM if there are not enough resources to satisfy the
168 * request. Otherwise, return the number of pages by which the
169 * global pools must be adjusted (upward). The returned value may
170 * only be different than the passed value (delta) in the case where
171 * a subpool minimum size must be maintained.
173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
181 spin_lock_irq(&spool->lock);
183 if (spool->max_hpages != -1) { /* maximum size accounting */
184 if ((spool->used_hpages + delta) <= spool->max_hpages)
185 spool->used_hpages += delta;
192 /* minimum size accounting */
193 if (spool->min_hpages != -1 && spool->rsv_hpages) {
194 if (delta > spool->rsv_hpages) {
196 * Asking for more reserves than those already taken on
197 * behalf of subpool. Return difference.
199 ret = delta - spool->rsv_hpages;
200 spool->rsv_hpages = 0;
202 ret = 0; /* reserves already accounted for */
203 spool->rsv_hpages -= delta;
208 spin_unlock_irq(&spool->lock);
213 * Subpool accounting for freeing and unreserving pages.
214 * Return the number of global page reservations that must be dropped.
215 * The return value may only be different than the passed value (delta)
216 * in the case where a subpool minimum size must be maintained.
218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
227 spin_lock_irqsave(&spool->lock, flags);
229 if (spool->max_hpages != -1) /* maximum size accounting */
230 spool->used_hpages -= delta;
232 /* minimum size accounting */
233 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234 if (spool->rsv_hpages + delta <= spool->min_hpages)
237 ret = spool->rsv_hpages + delta - spool->min_hpages;
239 spool->rsv_hpages += delta;
240 if (spool->rsv_hpages > spool->min_hpages)
241 spool->rsv_hpages = spool->min_hpages;
245 * If hugetlbfs_put_super couldn't free spool due to an outstanding
246 * quota reference, free it now.
248 unlock_or_release_subpool(spool, flags);
253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
255 return HUGETLBFS_SB(inode->i_sb)->spool;
258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
260 return subpool_inode(file_inode(vma->vm_file));
264 * hugetlb vma_lock helper routines
266 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
268 if (__vma_shareable_lock(vma)) {
269 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
271 down_read(&vma_lock->rw_sema);
272 } else if (__vma_private_lock(vma)) {
273 struct resv_map *resv_map = vma_resv_map(vma);
275 down_read(&resv_map->rw_sema);
279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
281 if (__vma_shareable_lock(vma)) {
282 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
284 up_read(&vma_lock->rw_sema);
285 } else if (__vma_private_lock(vma)) {
286 struct resv_map *resv_map = vma_resv_map(vma);
288 up_read(&resv_map->rw_sema);
292 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
294 if (__vma_shareable_lock(vma)) {
295 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
297 down_write(&vma_lock->rw_sema);
298 } else if (__vma_private_lock(vma)) {
299 struct resv_map *resv_map = vma_resv_map(vma);
301 down_write(&resv_map->rw_sema);
305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
307 if (__vma_shareable_lock(vma)) {
308 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
310 up_write(&vma_lock->rw_sema);
311 } else if (__vma_private_lock(vma)) {
312 struct resv_map *resv_map = vma_resv_map(vma);
314 up_write(&resv_map->rw_sema);
318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
321 if (__vma_shareable_lock(vma)) {
322 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
324 return down_write_trylock(&vma_lock->rw_sema);
325 } else if (__vma_private_lock(vma)) {
326 struct resv_map *resv_map = vma_resv_map(vma);
328 return down_write_trylock(&resv_map->rw_sema);
334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
336 if (__vma_shareable_lock(vma)) {
337 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
339 lockdep_assert_held(&vma_lock->rw_sema);
340 } else if (__vma_private_lock(vma)) {
341 struct resv_map *resv_map = vma_resv_map(vma);
343 lockdep_assert_held(&resv_map->rw_sema);
347 void hugetlb_vma_lock_release(struct kref *kref)
349 struct hugetlb_vma_lock *vma_lock = container_of(kref,
350 struct hugetlb_vma_lock, refs);
355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
357 struct vm_area_struct *vma = vma_lock->vma;
360 * vma_lock structure may or not be released as a result of put,
361 * it certainly will no longer be attached to vma so clear pointer.
362 * Semaphore synchronizes access to vma_lock->vma field.
364 vma_lock->vma = NULL;
365 vma->vm_private_data = NULL;
366 up_write(&vma_lock->rw_sema);
367 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
372 if (__vma_shareable_lock(vma)) {
373 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
375 __hugetlb_vma_unlock_write_put(vma_lock);
376 } else if (__vma_private_lock(vma)) {
377 struct resv_map *resv_map = vma_resv_map(vma);
379 /* no free for anon vmas, but still need to unlock */
380 up_write(&resv_map->rw_sema);
384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
387 * Only present in sharable vmas.
389 if (!vma || !__vma_shareable_lock(vma))
392 if (vma->vm_private_data) {
393 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
395 down_write(&vma_lock->rw_sema);
396 __hugetlb_vma_unlock_write_put(vma_lock);
400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
402 struct hugetlb_vma_lock *vma_lock;
404 /* Only establish in (flags) sharable vmas */
405 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
408 /* Should never get here with non-NULL vm_private_data */
409 if (vma->vm_private_data)
412 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
415 * If we can not allocate structure, then vma can not
416 * participate in pmd sharing. This is only a possible
417 * performance enhancement and memory saving issue.
418 * However, the lock is also used to synchronize page
419 * faults with truncation. If the lock is not present,
420 * unlikely races could leave pages in a file past i_size
421 * until the file is removed. Warn in the unlikely case of
422 * allocation failure.
424 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
428 kref_init(&vma_lock->refs);
429 init_rwsem(&vma_lock->rw_sema);
431 vma->vm_private_data = vma_lock;
434 /* Helper that removes a struct file_region from the resv_map cache and returns
437 static struct file_region *
438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
440 struct file_region *nrg;
442 VM_BUG_ON(resv->region_cache_count <= 0);
444 resv->region_cache_count--;
445 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446 list_del(&nrg->link);
454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455 struct file_region *rg)
457 #ifdef CONFIG_CGROUP_HUGETLB
458 nrg->reservation_counter = rg->reservation_counter;
465 /* Helper that records hugetlb_cgroup uncharge info. */
466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
468 struct resv_map *resv,
469 struct file_region *nrg)
471 #ifdef CONFIG_CGROUP_HUGETLB
473 nrg->reservation_counter =
474 &h_cg->rsvd_hugepage[hstate_index(h)];
475 nrg->css = &h_cg->css;
477 * The caller will hold exactly one h_cg->css reference for the
478 * whole contiguous reservation region. But this area might be
479 * scattered when there are already some file_regions reside in
480 * it. As a result, many file_regions may share only one css
481 * reference. In order to ensure that one file_region must hold
482 * exactly one h_cg->css reference, we should do css_get for
483 * each file_region and leave the reference held by caller
487 if (!resv->pages_per_hpage)
488 resv->pages_per_hpage = pages_per_huge_page(h);
489 /* pages_per_hpage should be the same for all entries in
492 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
494 nrg->reservation_counter = NULL;
500 static void put_uncharge_info(struct file_region *rg)
502 #ifdef CONFIG_CGROUP_HUGETLB
508 static bool has_same_uncharge_info(struct file_region *rg,
509 struct file_region *org)
511 #ifdef CONFIG_CGROUP_HUGETLB
512 return rg->reservation_counter == org->reservation_counter &&
520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
522 struct file_region *nrg, *prg;
524 prg = list_prev_entry(rg, link);
525 if (&prg->link != &resv->regions && prg->to == rg->from &&
526 has_same_uncharge_info(prg, rg)) {
530 put_uncharge_info(rg);
536 nrg = list_next_entry(rg, link);
537 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538 has_same_uncharge_info(nrg, rg)) {
539 nrg->from = rg->from;
542 put_uncharge_info(rg);
548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549 long to, struct hstate *h, struct hugetlb_cgroup *cg,
550 long *regions_needed)
552 struct file_region *nrg;
554 if (!regions_needed) {
555 nrg = get_file_region_entry_from_cache(map, from, to);
556 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557 list_add(&nrg->link, rg);
558 coalesce_file_region(map, nrg);
560 *regions_needed += 1;
566 * Must be called with resv->lock held.
568 * Calling this with regions_needed != NULL will count the number of pages
569 * to be added but will not modify the linked list. And regions_needed will
570 * indicate the number of file_regions needed in the cache to carry out to add
571 * the regions for this range.
573 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574 struct hugetlb_cgroup *h_cg,
575 struct hstate *h, long *regions_needed)
578 struct list_head *head = &resv->regions;
579 long last_accounted_offset = f;
580 struct file_region *iter, *trg = NULL;
581 struct list_head *rg = NULL;
586 /* In this loop, we essentially handle an entry for the range
587 * [last_accounted_offset, iter->from), at every iteration, with some
590 list_for_each_entry_safe(iter, trg, head, link) {
591 /* Skip irrelevant regions that start before our range. */
592 if (iter->from < f) {
593 /* If this region ends after the last accounted offset,
594 * then we need to update last_accounted_offset.
596 if (iter->to > last_accounted_offset)
597 last_accounted_offset = iter->to;
601 /* When we find a region that starts beyond our range, we've
604 if (iter->from >= t) {
605 rg = iter->link.prev;
609 /* Add an entry for last_accounted_offset -> iter->from, and
610 * update last_accounted_offset.
612 if (iter->from > last_accounted_offset)
613 add += hugetlb_resv_map_add(resv, iter->link.prev,
614 last_accounted_offset,
618 last_accounted_offset = iter->to;
621 /* Handle the case where our range extends beyond
622 * last_accounted_offset.
626 if (last_accounted_offset < t)
627 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628 t, h, h_cg, regions_needed);
633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
635 static int allocate_file_region_entries(struct resv_map *resv,
637 __must_hold(&resv->lock)
639 LIST_HEAD(allocated_regions);
640 int to_allocate = 0, i = 0;
641 struct file_region *trg = NULL, *rg = NULL;
643 VM_BUG_ON(regions_needed < 0);
646 * Check for sufficient descriptors in the cache to accommodate
647 * the number of in progress add operations plus regions_needed.
649 * This is a while loop because when we drop the lock, some other call
650 * to region_add or region_del may have consumed some region_entries,
651 * so we keep looping here until we finally have enough entries for
652 * (adds_in_progress + regions_needed).
654 while (resv->region_cache_count <
655 (resv->adds_in_progress + regions_needed)) {
656 to_allocate = resv->adds_in_progress + regions_needed -
657 resv->region_cache_count;
659 /* At this point, we should have enough entries in the cache
660 * for all the existing adds_in_progress. We should only be
661 * needing to allocate for regions_needed.
663 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
665 spin_unlock(&resv->lock);
666 for (i = 0; i < to_allocate; i++) {
667 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
670 list_add(&trg->link, &allocated_regions);
673 spin_lock(&resv->lock);
675 list_splice(&allocated_regions, &resv->region_cache);
676 resv->region_cache_count += to_allocate;
682 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
690 * Add the huge page range represented by [f, t) to the reserve
691 * map. Regions will be taken from the cache to fill in this range.
692 * Sufficient regions should exist in the cache due to the previous
693 * call to region_chg with the same range, but in some cases the cache will not
694 * have sufficient entries due to races with other code doing region_add or
695 * region_del. The extra needed entries will be allocated.
697 * regions_needed is the out value provided by a previous call to region_chg.
699 * Return the number of new huge pages added to the map. This number is greater
700 * than or equal to zero. If file_region entries needed to be allocated for
701 * this operation and we were not able to allocate, it returns -ENOMEM.
702 * region_add of regions of length 1 never allocate file_regions and cannot
703 * fail; region_chg will always allocate at least 1 entry and a region_add for
704 * 1 page will only require at most 1 entry.
706 static long region_add(struct resv_map *resv, long f, long t,
707 long in_regions_needed, struct hstate *h,
708 struct hugetlb_cgroup *h_cg)
710 long add = 0, actual_regions_needed = 0;
712 spin_lock(&resv->lock);
715 /* Count how many regions are actually needed to execute this add. */
716 add_reservation_in_range(resv, f, t, NULL, NULL,
717 &actual_regions_needed);
720 * Check for sufficient descriptors in the cache to accommodate
721 * this add operation. Note that actual_regions_needed may be greater
722 * than in_regions_needed, as the resv_map may have been modified since
723 * the region_chg call. In this case, we need to make sure that we
724 * allocate extra entries, such that we have enough for all the
725 * existing adds_in_progress, plus the excess needed for this
728 if (actual_regions_needed > in_regions_needed &&
729 resv->region_cache_count <
730 resv->adds_in_progress +
731 (actual_regions_needed - in_regions_needed)) {
732 /* region_add operation of range 1 should never need to
733 * allocate file_region entries.
735 VM_BUG_ON(t - f <= 1);
737 if (allocate_file_region_entries(
738 resv, actual_regions_needed - in_regions_needed)) {
745 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
747 resv->adds_in_progress -= in_regions_needed;
749 spin_unlock(&resv->lock);
754 * Examine the existing reserve map and determine how many
755 * huge pages in the specified range [f, t) are NOT currently
756 * represented. This routine is called before a subsequent
757 * call to region_add that will actually modify the reserve
758 * map to add the specified range [f, t). region_chg does
759 * not change the number of huge pages represented by the
760 * map. A number of new file_region structures is added to the cache as a
761 * placeholder, for the subsequent region_add call to use. At least 1
762 * file_region structure is added.
764 * out_regions_needed is the number of regions added to the
765 * resv->adds_in_progress. This value needs to be provided to a follow up call
766 * to region_add or region_abort for proper accounting.
768 * Returns the number of huge pages that need to be added to the existing
769 * reservation map for the range [f, t). This number is greater or equal to
770 * zero. -ENOMEM is returned if a new file_region structure or cache entry
771 * is needed and can not be allocated.
773 static long region_chg(struct resv_map *resv, long f, long t,
774 long *out_regions_needed)
778 spin_lock(&resv->lock);
780 /* Count how many hugepages in this range are NOT represented. */
781 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
784 if (*out_regions_needed == 0)
785 *out_regions_needed = 1;
787 if (allocate_file_region_entries(resv, *out_regions_needed))
790 resv->adds_in_progress += *out_regions_needed;
792 spin_unlock(&resv->lock);
797 * Abort the in progress add operation. The adds_in_progress field
798 * of the resv_map keeps track of the operations in progress between
799 * calls to region_chg and region_add. Operations are sometimes
800 * aborted after the call to region_chg. In such cases, region_abort
801 * is called to decrement the adds_in_progress counter. regions_needed
802 * is the value returned by the region_chg call, it is used to decrement
803 * the adds_in_progress counter.
805 * NOTE: The range arguments [f, t) are not needed or used in this
806 * routine. They are kept to make reading the calling code easier as
807 * arguments will match the associated region_chg call.
809 static void region_abort(struct resv_map *resv, long f, long t,
812 spin_lock(&resv->lock);
813 VM_BUG_ON(!resv->region_cache_count);
814 resv->adds_in_progress -= regions_needed;
815 spin_unlock(&resv->lock);
819 * Delete the specified range [f, t) from the reserve map. If the
820 * t parameter is LONG_MAX, this indicates that ALL regions after f
821 * should be deleted. Locate the regions which intersect [f, t)
822 * and either trim, delete or split the existing regions.
824 * Returns the number of huge pages deleted from the reserve map.
825 * In the normal case, the return value is zero or more. In the
826 * case where a region must be split, a new region descriptor must
827 * be allocated. If the allocation fails, -ENOMEM will be returned.
828 * NOTE: If the parameter t == LONG_MAX, then we will never split
829 * a region and possibly return -ENOMEM. Callers specifying
830 * t == LONG_MAX do not need to check for -ENOMEM error.
832 static long region_del(struct resv_map *resv, long f, long t)
834 struct list_head *head = &resv->regions;
835 struct file_region *rg, *trg;
836 struct file_region *nrg = NULL;
840 spin_lock(&resv->lock);
841 list_for_each_entry_safe(rg, trg, head, link) {
843 * Skip regions before the range to be deleted. file_region
844 * ranges are normally of the form [from, to). However, there
845 * may be a "placeholder" entry in the map which is of the form
846 * (from, to) with from == to. Check for placeholder entries
847 * at the beginning of the range to be deleted.
849 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
855 if (f > rg->from && t < rg->to) { /* Must split region */
857 * Check for an entry in the cache before dropping
858 * lock and attempting allocation.
861 resv->region_cache_count > resv->adds_in_progress) {
862 nrg = list_first_entry(&resv->region_cache,
865 list_del(&nrg->link);
866 resv->region_cache_count--;
870 spin_unlock(&resv->lock);
871 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
878 hugetlb_cgroup_uncharge_file_region(
879 resv, rg, t - f, false);
881 /* New entry for end of split region */
885 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
887 INIT_LIST_HEAD(&nrg->link);
889 /* Original entry is trimmed */
892 list_add(&nrg->link, &rg->link);
897 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898 del += rg->to - rg->from;
899 hugetlb_cgroup_uncharge_file_region(resv, rg,
900 rg->to - rg->from, true);
906 if (f <= rg->from) { /* Trim beginning of region */
907 hugetlb_cgroup_uncharge_file_region(resv, rg,
908 t - rg->from, false);
912 } else { /* Trim end of region */
913 hugetlb_cgroup_uncharge_file_region(resv, rg,
921 spin_unlock(&resv->lock);
927 * A rare out of memory error was encountered which prevented removal of
928 * the reserve map region for a page. The huge page itself was free'ed
929 * and removed from the page cache. This routine will adjust the subpool
930 * usage count, and the global reserve count if needed. By incrementing
931 * these counts, the reserve map entry which could not be deleted will
932 * appear as a "reserved" entry instead of simply dangling with incorrect
935 void hugetlb_fix_reserve_counts(struct inode *inode)
937 struct hugepage_subpool *spool = subpool_inode(inode);
939 bool reserved = false;
941 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942 if (rsv_adjust > 0) {
943 struct hstate *h = hstate_inode(inode);
945 if (!hugetlb_acct_memory(h, 1))
947 } else if (!rsv_adjust) {
952 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
956 * Count and return the number of huge pages in the reserve map
957 * that intersect with the range [f, t).
959 static long region_count(struct resv_map *resv, long f, long t)
961 struct list_head *head = &resv->regions;
962 struct file_region *rg;
965 spin_lock(&resv->lock);
966 /* Locate each segment we overlap with, and count that overlap. */
967 list_for_each_entry(rg, head, link) {
976 seg_from = max(rg->from, f);
977 seg_to = min(rg->to, t);
979 chg += seg_to - seg_from;
981 spin_unlock(&resv->lock);
987 * Convert the address within this vma to the page offset within
988 * the mapping, huge page units here.
990 static pgoff_t vma_hugecache_offset(struct hstate *h,
991 struct vm_area_struct *vma, unsigned long address)
993 return ((address - vma->vm_start) >> huge_page_shift(h)) +
994 (vma->vm_pgoff >> huge_page_order(h));
998 * vma_kernel_pagesize - Page size granularity for this VMA.
999 * @vma: The user mapping.
1001 * Folios in this VMA will be aligned to, and at least the size of the
1002 * number of bytes returned by this function.
1004 * Return: The default size of the folios allocated when backing a VMA.
1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1008 if (vma->vm_ops && vma->vm_ops->pagesize)
1009 return vma->vm_ops->pagesize(vma);
1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1015 * Return the page size being used by the MMU to back a VMA. In the majority
1016 * of cases, the page size used by the kernel matches the MMU size. On
1017 * architectures where it differs, an architecture-specific 'strong'
1018 * version of this symbol is required.
1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1022 return vma_kernel_pagesize(vma);
1026 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1027 * bits of the reservation map pointer, which are always clear due to
1030 #define HPAGE_RESV_OWNER (1UL << 0)
1031 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1035 * These helpers are used to track how many pages are reserved for
1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037 * is guaranteed to have their future faults succeed.
1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040 * the reserve counters are updated with the hugetlb_lock held. It is safe
1041 * to reset the VMA at fork() time as it is not in use yet and there is no
1042 * chance of the global counters getting corrupted as a result of the values.
1044 * The private mapping reservation is represented in a subtly different
1045 * manner to a shared mapping. A shared mapping has a region map associated
1046 * with the underlying file, this region map represents the backing file
1047 * pages which have ever had a reservation assigned which this persists even
1048 * after the page is instantiated. A private mapping has a region map
1049 * associated with the original mmap which is attached to all VMAs which
1050 * reference it, this region map represents those offsets which have consumed
1051 * reservation ie. where pages have been instantiated.
1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1055 return (unsigned long)vma->vm_private_data;
1058 static void set_vma_private_data(struct vm_area_struct *vma,
1059 unsigned long value)
1061 vma->vm_private_data = (void *)value;
1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066 struct hugetlb_cgroup *h_cg,
1069 #ifdef CONFIG_CGROUP_HUGETLB
1071 resv_map->reservation_counter = NULL;
1072 resv_map->pages_per_hpage = 0;
1073 resv_map->css = NULL;
1075 resv_map->reservation_counter =
1076 &h_cg->rsvd_hugepage[hstate_index(h)];
1077 resv_map->pages_per_hpage = pages_per_huge_page(h);
1078 resv_map->css = &h_cg->css;
1083 struct resv_map *resv_map_alloc(void)
1085 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1088 if (!resv_map || !rg) {
1094 kref_init(&resv_map->refs);
1095 spin_lock_init(&resv_map->lock);
1096 INIT_LIST_HEAD(&resv_map->regions);
1097 init_rwsem(&resv_map->rw_sema);
1099 resv_map->adds_in_progress = 0;
1101 * Initialize these to 0. On shared mappings, 0's here indicate these
1102 * fields don't do cgroup accounting. On private mappings, these will be
1103 * re-initialized to the proper values, to indicate that hugetlb cgroup
1104 * reservations are to be un-charged from here.
1106 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1108 INIT_LIST_HEAD(&resv_map->region_cache);
1109 list_add(&rg->link, &resv_map->region_cache);
1110 resv_map->region_cache_count = 1;
1115 void resv_map_release(struct kref *ref)
1117 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118 struct list_head *head = &resv_map->region_cache;
1119 struct file_region *rg, *trg;
1121 /* Clear out any active regions before we release the map. */
1122 region_del(resv_map, 0, LONG_MAX);
1124 /* ... and any entries left in the cache */
1125 list_for_each_entry_safe(rg, trg, head, link) {
1126 list_del(&rg->link);
1130 VM_BUG_ON(resv_map->adds_in_progress);
1135 static inline struct resv_map *inode_resv_map(struct inode *inode)
1138 * At inode evict time, i_mapping may not point to the original
1139 * address space within the inode. This original address space
1140 * contains the pointer to the resv_map. So, always use the
1141 * address space embedded within the inode.
1142 * The VERY common case is inode->mapping == &inode->i_data but,
1143 * this may not be true for device special inodes.
1145 return (struct resv_map *)(&inode->i_data)->i_private_data;
1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 if (vma->vm_flags & VM_MAYSHARE) {
1152 struct address_space *mapping = vma->vm_file->f_mapping;
1153 struct inode *inode = mapping->host;
1155 return inode_resv_map(inode);
1158 return (struct resv_map *)(get_vma_private_data(vma) &
1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1165 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1168 set_vma_private_data(vma, (unsigned long)map);
1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1176 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1181 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1183 return (get_vma_private_data(vma) & flag) != 0;
1186 bool __vma_private_lock(struct vm_area_struct *vma)
1188 return !(vma->vm_flags & VM_MAYSHARE) &&
1189 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1197 * Clear vm_private_data
1198 * - For shared mappings this is a per-vma semaphore that may be
1199 * allocated in a subsequent call to hugetlb_vm_op_open.
1200 * Before clearing, make sure pointer is not associated with vma
1201 * as this will leak the structure. This is the case when called
1202 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203 * been called to allocate a new structure.
1204 * - For MAP_PRIVATE mappings, this is the reserve map which does
1205 * not apply to children. Faults generated by the children are
1206 * not guaranteed to succeed, even if read-only.
1208 if (vma->vm_flags & VM_MAYSHARE) {
1209 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1211 if (vma_lock && vma_lock->vma != vma)
1212 vma->vm_private_data = NULL;
1214 vma->vm_private_data = NULL;
1218 * Reset and decrement one ref on hugepage private reservation.
1219 * Called with mm->mmap_lock writer semaphore held.
1220 * This function should be only used by move_vma() and operate on
1221 * same sized vma. It should never come here with last ref on the
1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1227 * Clear the old hugetlb private page reservation.
1228 * It has already been transferred to new_vma.
1230 * During a mremap() operation of a hugetlb vma we call move_vma()
1231 * which copies vma into new_vma and unmaps vma. After the copy
1232 * operation both new_vma and vma share a reference to the resv_map
1233 * struct, and at that point vma is about to be unmapped. We don't
1234 * want to return the reservation to the pool at unmap of vma because
1235 * the reservation still lives on in new_vma, so simply decrement the
1236 * ref here and remove the resv_map reference from this vma.
1238 struct resv_map *reservations = vma_resv_map(vma);
1240 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242 kref_put(&reservations->refs, resv_map_release);
1245 hugetlb_dup_vma_private(vma);
1248 /* Returns true if the VMA has associated reserve pages */
1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1251 if (vma->vm_flags & VM_NORESERVE) {
1253 * This address is already reserved by other process(chg == 0),
1254 * so, we should decrement reserved count. Without decrementing,
1255 * reserve count remains after releasing inode, because this
1256 * allocated page will go into page cache and is regarded as
1257 * coming from reserved pool in releasing step. Currently, we
1258 * don't have any other solution to deal with this situation
1259 * properly, so add work-around here.
1261 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1267 /* Shared mappings always use reserves */
1268 if (vma->vm_flags & VM_MAYSHARE) {
1270 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1271 * be a region map for all pages. The only situation where
1272 * there is no region map is if a hole was punched via
1273 * fallocate. In this case, there really are no reserves to
1274 * use. This situation is indicated if chg != 0.
1283 * Only the process that called mmap() has reserves for
1286 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1288 * Like the shared case above, a hole punch or truncate
1289 * could have been performed on the private mapping.
1290 * Examine the value of chg to determine if reserves
1291 * actually exist or were previously consumed.
1292 * Very Subtle - The value of chg comes from a previous
1293 * call to vma_needs_reserves(). The reserve map for
1294 * private mappings has different (opposite) semantics
1295 * than that of shared mappings. vma_needs_reserves()
1296 * has already taken this difference in semantics into
1297 * account. Therefore, the meaning of chg is the same
1298 * as in the shared case above. Code could easily be
1299 * combined, but keeping it separate draws attention to
1300 * subtle differences.
1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1313 int nid = folio_nid(folio);
1315 lockdep_assert_held(&hugetlb_lock);
1316 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1318 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319 h->free_huge_pages++;
1320 h->free_huge_pages_node[nid]++;
1321 folio_set_hugetlb_freed(folio);
1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1327 struct folio *folio;
1328 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1330 lockdep_assert_held(&hugetlb_lock);
1331 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332 if (pin && !folio_is_longterm_pinnable(folio))
1335 if (folio_test_hwpoison(folio))
1338 list_move(&folio->lru, &h->hugepage_activelist);
1339 folio_ref_unfreeze(folio, 1);
1340 folio_clear_hugetlb_freed(folio);
1341 h->free_huge_pages--;
1342 h->free_huge_pages_node[nid]--;
1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350 int nid, nodemask_t *nmask)
1352 unsigned int cpuset_mems_cookie;
1353 struct zonelist *zonelist;
1356 int node = NUMA_NO_NODE;
1358 zonelist = node_zonelist(nid, gfp_mask);
1361 cpuset_mems_cookie = read_mems_allowed_begin();
1362 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1363 struct folio *folio;
1365 if (!cpuset_zone_allowed(zone, gfp_mask))
1368 * no need to ask again on the same node. Pool is node rather than
1371 if (zone_to_nid(zone) == node)
1373 node = zone_to_nid(zone);
1375 folio = dequeue_hugetlb_folio_node_exact(h, node);
1379 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1385 static unsigned long available_huge_pages(struct hstate *h)
1387 return h->free_huge_pages - h->resv_huge_pages;
1390 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1391 struct vm_area_struct *vma,
1392 unsigned long address, int avoid_reserve,
1395 struct folio *folio = NULL;
1396 struct mempolicy *mpol;
1398 nodemask_t *nodemask;
1402 * A child process with MAP_PRIVATE mappings created by their parent
1403 * have no page reserves. This check ensures that reservations are
1404 * not "stolen". The child may still get SIGKILLed
1406 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1409 /* If reserves cannot be used, ensure enough pages are in the pool */
1410 if (avoid_reserve && !available_huge_pages(h))
1413 gfp_mask = htlb_alloc_mask(h);
1414 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1416 if (mpol_is_preferred_many(mpol)) {
1417 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1420 /* Fallback to all nodes if page==NULL */
1425 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1428 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1429 folio_set_hugetlb_restore_reserve(folio);
1430 h->resv_huge_pages--;
1433 mpol_cond_put(mpol);
1441 * common helper functions for hstate_next_node_to_{alloc|free}.
1442 * We may have allocated or freed a huge page based on a different
1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444 * be outside of *nodes_allowed. Ensure that we use an allowed
1445 * node for alloc or free.
1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1449 nid = next_node_in(nid, *nodes_allowed);
1450 VM_BUG_ON(nid >= MAX_NUMNODES);
1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1457 if (!node_isset(nid, *nodes_allowed))
1458 nid = next_node_allowed(nid, nodes_allowed);
1463 * returns the previously saved node ["this node"] from which to
1464 * allocate a persistent huge page for the pool and advance the
1465 * next node from which to allocate, handling wrap at end of node
1468 static int hstate_next_node_to_alloc(int *next_node,
1469 nodemask_t *nodes_allowed)
1473 VM_BUG_ON(!nodes_allowed);
1475 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476 *next_node = next_node_allowed(nid, nodes_allowed);
1482 * helper for remove_pool_hugetlb_folio() - return the previously saved
1483 * node ["this node"] from which to free a huge page. Advance the
1484 * next node id whether or not we find a free huge page to free so
1485 * that the next attempt to free addresses the next node.
1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1491 VM_BUG_ON(!nodes_allowed);
1493 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1500 for (nr_nodes = nodes_weight(*mask); \
1502 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1506 for (nr_nodes = nodes_weight(*mask); \
1508 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1511 /* used to demote non-gigantic_huge pages as well */
1512 static void __destroy_compound_gigantic_folio(struct folio *folio,
1513 unsigned int order, bool demote)
1516 int nr_pages = 1 << order;
1519 atomic_set(&folio->_entire_mapcount, 0);
1520 atomic_set(&folio->_nr_pages_mapped, 0);
1521 atomic_set(&folio->_pincount, 0);
1523 for (i = 1; i < nr_pages; i++) {
1524 p = folio_page(folio, i);
1525 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1527 clear_compound_head(p);
1529 set_page_refcounted(p);
1532 __folio_clear_head(folio);
1535 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1538 __destroy_compound_gigantic_folio(folio, order, true);
1541 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1542 static void destroy_compound_gigantic_folio(struct folio *folio,
1545 __destroy_compound_gigantic_folio(folio, order, false);
1548 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1551 * If the page isn't allocated using the cma allocator,
1552 * cma_release() returns false.
1555 int nid = folio_nid(folio);
1557 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1561 free_contig_range(folio_pfn(folio), 1 << order);
1564 #ifdef CONFIG_CONTIG_ALLOC
1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566 int nid, nodemask_t *nodemask)
1569 unsigned long nr_pages = pages_per_huge_page(h);
1570 if (nid == NUMA_NO_NODE)
1571 nid = numa_mem_id();
1577 if (hugetlb_cma[nid]) {
1578 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1579 huge_page_order(h), true);
1581 return page_folio(page);
1584 if (!(gfp_mask & __GFP_THISNODE)) {
1585 for_each_node_mask(node, *nodemask) {
1586 if (node == nid || !hugetlb_cma[node])
1589 page = cma_alloc(hugetlb_cma[node], nr_pages,
1590 huge_page_order(h), true);
1592 return page_folio(page);
1598 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1599 return page ? page_folio(page) : NULL;
1602 #else /* !CONFIG_CONTIG_ALLOC */
1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604 int nid, nodemask_t *nodemask)
1608 #endif /* CONFIG_CONTIG_ALLOC */
1610 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1611 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1612 int nid, nodemask_t *nodemask)
1616 static inline void free_gigantic_folio(struct folio *folio,
1617 unsigned int order) { }
1618 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1619 unsigned int order) { }
1622 static inline void __clear_hugetlb_destructor(struct hstate *h,
1623 struct folio *folio)
1625 lockdep_assert_held(&hugetlb_lock);
1627 folio_clear_hugetlb(folio);
1631 * Remove hugetlb folio from lists.
1632 * If vmemmap exists for the folio, update dtor so that the folio appears
1633 * as just a compound page. Otherwise, wait until after allocating vmemmap
1636 * A reference is held on the folio, except in the case of demote.
1638 * Must be called with hugetlb lock held.
1640 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1641 bool adjust_surplus,
1644 int nid = folio_nid(folio);
1646 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1647 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1649 lockdep_assert_held(&hugetlb_lock);
1650 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1653 list_del(&folio->lru);
1655 if (folio_test_hugetlb_freed(folio)) {
1656 h->free_huge_pages--;
1657 h->free_huge_pages_node[nid]--;
1659 if (adjust_surplus) {
1660 h->surplus_huge_pages--;
1661 h->surplus_huge_pages_node[nid]--;
1665 * We can only clear the hugetlb destructor after allocating vmemmap
1666 * pages. Otherwise, someone (memory error handling) may try to write
1667 * to tail struct pages.
1669 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1670 __clear_hugetlb_destructor(h, folio);
1673 * In the case of demote we do not ref count the page as it will soon
1674 * be turned into a page of smaller size.
1677 folio_ref_unfreeze(folio, 1);
1680 h->nr_huge_pages_node[nid]--;
1683 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1684 bool adjust_surplus)
1686 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1689 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1690 bool adjust_surplus)
1692 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1695 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1696 bool adjust_surplus)
1699 int nid = folio_nid(folio);
1701 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1703 lockdep_assert_held(&hugetlb_lock);
1705 INIT_LIST_HEAD(&folio->lru);
1707 h->nr_huge_pages_node[nid]++;
1709 if (adjust_surplus) {
1710 h->surplus_huge_pages++;
1711 h->surplus_huge_pages_node[nid]++;
1714 folio_set_hugetlb(folio);
1715 folio_change_private(folio, NULL);
1717 * We have to set hugetlb_vmemmap_optimized again as above
1718 * folio_change_private(folio, NULL) cleared it.
1720 folio_set_hugetlb_vmemmap_optimized(folio);
1723 * This folio is about to be managed by the hugetlb allocator and
1724 * should have no users. Drop our reference, and check for others
1727 zeroed = folio_put_testzero(folio);
1728 if (unlikely(!zeroed))
1730 * It is VERY unlikely soneone else has taken a ref
1731 * on the folio. In this case, we simply return as
1732 * free_huge_folio() will be called when this other ref
1737 arch_clear_hugepage_flags(&folio->page);
1738 enqueue_hugetlb_folio(h, folio);
1741 static void __update_and_free_hugetlb_folio(struct hstate *h,
1742 struct folio *folio)
1744 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1746 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1750 * If we don't know which subpages are hwpoisoned, we can't free
1751 * the hugepage, so it's leaked intentionally.
1753 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1757 * If folio is not vmemmap optimized (!clear_dtor), then the folio
1758 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1759 * can only be passed hugetlb pages and will BUG otherwise.
1761 if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) {
1762 spin_lock_irq(&hugetlb_lock);
1764 * If we cannot allocate vmemmap pages, just refuse to free the
1765 * page and put the page back on the hugetlb free list and treat
1766 * as a surplus page.
1768 add_hugetlb_folio(h, folio, true);
1769 spin_unlock_irq(&hugetlb_lock);
1774 * Move PageHWPoison flag from head page to the raw error pages,
1775 * which makes any healthy subpages reusable.
1777 if (unlikely(folio_test_hwpoison(folio)))
1778 folio_clear_hugetlb_hwpoison(folio);
1781 * If vmemmap pages were allocated above, then we need to clear the
1782 * hugetlb destructor under the hugetlb lock.
1785 spin_lock_irq(&hugetlb_lock);
1786 __clear_hugetlb_destructor(h, folio);
1787 spin_unlock_irq(&hugetlb_lock);
1791 * Non-gigantic pages demoted from CMA allocated gigantic pages
1792 * need to be given back to CMA in free_gigantic_folio.
1794 if (hstate_is_gigantic(h) ||
1795 hugetlb_cma_folio(folio, huge_page_order(h))) {
1796 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1797 free_gigantic_folio(folio, huge_page_order(h));
1799 __free_pages(&folio->page, huge_page_order(h));
1804 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1805 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1806 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1807 * the vmemmap pages.
1809 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1810 * freed and frees them one-by-one. As the page->mapping pointer is going
1811 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1812 * structure of a lockless linked list of huge pages to be freed.
1814 static LLIST_HEAD(hpage_freelist);
1816 static void free_hpage_workfn(struct work_struct *work)
1818 struct llist_node *node;
1820 node = llist_del_all(&hpage_freelist);
1823 struct folio *folio;
1826 folio = container_of((struct address_space **)node,
1827 struct folio, mapping);
1829 folio->mapping = NULL;
1831 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1832 * folio_hstate() is going to trigger because a previous call to
1833 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1834 * not use folio_hstate() directly.
1836 h = size_to_hstate(folio_size(folio));
1838 __update_and_free_hugetlb_folio(h, folio);
1843 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1845 static inline void flush_free_hpage_work(struct hstate *h)
1847 if (hugetlb_vmemmap_optimizable(h))
1848 flush_work(&free_hpage_work);
1851 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1854 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1855 __update_and_free_hugetlb_folio(h, folio);
1860 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1862 * Only call schedule_work() if hpage_freelist is previously
1863 * empty. Otherwise, schedule_work() had been called but the workfn
1864 * hasn't retrieved the list yet.
1866 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1867 schedule_work(&free_hpage_work);
1870 static void bulk_vmemmap_restore_error(struct hstate *h,
1871 struct list_head *folio_list,
1872 struct list_head *non_hvo_folios)
1874 struct folio *folio, *t_folio;
1876 if (!list_empty(non_hvo_folios)) {
1878 * Free any restored hugetlb pages so that restore of the
1879 * entire list can be retried.
1880 * The idea is that in the common case of ENOMEM errors freeing
1881 * hugetlb pages with vmemmap we will free up memory so that we
1882 * can allocate vmemmap for more hugetlb pages.
1884 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1885 list_del(&folio->lru);
1886 spin_lock_irq(&hugetlb_lock);
1887 __clear_hugetlb_destructor(h, folio);
1888 spin_unlock_irq(&hugetlb_lock);
1889 update_and_free_hugetlb_folio(h, folio, false);
1894 * In the case where there are no folios which can be
1895 * immediately freed, we loop through the list trying to restore
1896 * vmemmap individually in the hope that someone elsewhere may
1897 * have done something to cause success (such as freeing some
1898 * memory). If unable to restore a hugetlb page, the hugetlb
1899 * page is made a surplus page and removed from the list.
1900 * If are able to restore vmemmap and free one hugetlb page, we
1901 * quit processing the list to retry the bulk operation.
1903 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1904 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1905 list_del(&folio->lru);
1906 spin_lock_irq(&hugetlb_lock);
1907 add_hugetlb_folio(h, folio, true);
1908 spin_unlock_irq(&hugetlb_lock);
1910 list_del(&folio->lru);
1911 spin_lock_irq(&hugetlb_lock);
1912 __clear_hugetlb_destructor(h, folio);
1913 spin_unlock_irq(&hugetlb_lock);
1914 update_and_free_hugetlb_folio(h, folio, false);
1921 static void update_and_free_pages_bulk(struct hstate *h,
1922 struct list_head *folio_list)
1925 struct folio *folio, *t_folio;
1926 LIST_HEAD(non_hvo_folios);
1929 * First allocate required vmemmmap (if necessary) for all folios.
1930 * Carefully handle errors and free up any available hugetlb pages
1931 * in an effort to make forward progress.
1934 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1936 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1941 * At this point, list should be empty, ret should be >= 0 and there
1942 * should only be pages on the non_hvo_folios list.
1943 * Do note that the non_hvo_folios list could be empty.
1944 * Without HVO enabled, ret will be 0 and there is no need to call
1945 * __clear_hugetlb_destructor as this was done previously.
1947 VM_WARN_ON(!list_empty(folio_list));
1948 VM_WARN_ON(ret < 0);
1949 if (!list_empty(&non_hvo_folios) && ret) {
1950 spin_lock_irq(&hugetlb_lock);
1951 list_for_each_entry(folio, &non_hvo_folios, lru)
1952 __clear_hugetlb_destructor(h, folio);
1953 spin_unlock_irq(&hugetlb_lock);
1956 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1957 update_and_free_hugetlb_folio(h, folio, false);
1962 struct hstate *size_to_hstate(unsigned long size)
1966 for_each_hstate(h) {
1967 if (huge_page_size(h) == size)
1973 void free_huge_folio(struct folio *folio)
1976 * Can't pass hstate in here because it is called from the
1977 * compound page destructor.
1979 struct hstate *h = folio_hstate(folio);
1980 int nid = folio_nid(folio);
1981 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1982 bool restore_reserve;
1983 unsigned long flags;
1985 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1986 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1988 hugetlb_set_folio_subpool(folio, NULL);
1989 if (folio_test_anon(folio))
1990 __ClearPageAnonExclusive(&folio->page);
1991 folio->mapping = NULL;
1992 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1993 folio_clear_hugetlb_restore_reserve(folio);
1996 * If HPageRestoreReserve was set on page, page allocation consumed a
1997 * reservation. If the page was associated with a subpool, there
1998 * would have been a page reserved in the subpool before allocation
1999 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
2000 * reservation, do not call hugepage_subpool_put_pages() as this will
2001 * remove the reserved page from the subpool.
2003 if (!restore_reserve) {
2005 * A return code of zero implies that the subpool will be
2006 * under its minimum size if the reservation is not restored
2007 * after page is free. Therefore, force restore_reserve
2010 if (hugepage_subpool_put_pages(spool, 1) == 0)
2011 restore_reserve = true;
2014 spin_lock_irqsave(&hugetlb_lock, flags);
2015 folio_clear_hugetlb_migratable(folio);
2016 hugetlb_cgroup_uncharge_folio(hstate_index(h),
2017 pages_per_huge_page(h), folio);
2018 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2019 pages_per_huge_page(h), folio);
2020 mem_cgroup_uncharge(folio);
2021 if (restore_reserve)
2022 h->resv_huge_pages++;
2024 if (folio_test_hugetlb_temporary(folio)) {
2025 remove_hugetlb_folio(h, folio, false);
2026 spin_unlock_irqrestore(&hugetlb_lock, flags);
2027 update_and_free_hugetlb_folio(h, folio, true);
2028 } else if (h->surplus_huge_pages_node[nid]) {
2029 /* remove the page from active list */
2030 remove_hugetlb_folio(h, folio, true);
2031 spin_unlock_irqrestore(&hugetlb_lock, flags);
2032 update_and_free_hugetlb_folio(h, folio, true);
2034 arch_clear_hugepage_flags(&folio->page);
2035 enqueue_hugetlb_folio(h, folio);
2036 spin_unlock_irqrestore(&hugetlb_lock, flags);
2041 * Must be called with the hugetlb lock held
2043 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2045 lockdep_assert_held(&hugetlb_lock);
2047 h->nr_huge_pages_node[nid]++;
2050 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2052 folio_set_hugetlb(folio);
2053 INIT_LIST_HEAD(&folio->lru);
2054 hugetlb_set_folio_subpool(folio, NULL);
2055 set_hugetlb_cgroup(folio, NULL);
2056 set_hugetlb_cgroup_rsvd(folio, NULL);
2059 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2061 init_new_hugetlb_folio(h, folio);
2062 hugetlb_vmemmap_optimize_folio(h, folio);
2065 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2067 __prep_new_hugetlb_folio(h, folio);
2068 spin_lock_irq(&hugetlb_lock);
2069 __prep_account_new_huge_page(h, nid);
2070 spin_unlock_irq(&hugetlb_lock);
2073 static bool __prep_compound_gigantic_folio(struct folio *folio,
2074 unsigned int order, bool demote)
2077 int nr_pages = 1 << order;
2080 __folio_clear_reserved(folio);
2081 for (i = 0; i < nr_pages; i++) {
2082 p = folio_page(folio, i);
2085 * For gigantic hugepages allocated through bootmem at
2086 * boot, it's safer to be consistent with the not-gigantic
2087 * hugepages and clear the PG_reserved bit from all tail pages
2088 * too. Otherwise drivers using get_user_pages() to access tail
2089 * pages may get the reference counting wrong if they see
2090 * PG_reserved set on a tail page (despite the head page not
2091 * having PG_reserved set). Enforcing this consistency between
2092 * head and tail pages allows drivers to optimize away a check
2093 * on the head page when they need know if put_page() is needed
2094 * after get_user_pages().
2096 if (i != 0) /* head page cleared above */
2097 __ClearPageReserved(p);
2099 * Subtle and very unlikely
2101 * Gigantic 'page allocators' such as memblock or cma will
2102 * return a set of pages with each page ref counted. We need
2103 * to turn this set of pages into a compound page with tail
2104 * page ref counts set to zero. Code such as speculative page
2105 * cache adding could take a ref on a 'to be' tail page.
2106 * We need to respect any increased ref count, and only set
2107 * the ref count to zero if count is currently 1. If count
2108 * is not 1, we return an error. An error return indicates
2109 * the set of pages can not be converted to a gigantic page.
2110 * The caller who allocated the pages should then discard the
2111 * pages using the appropriate free interface.
2113 * In the case of demote, the ref count will be zero.
2116 if (!page_ref_freeze(p, 1)) {
2117 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2121 VM_BUG_ON_PAGE(page_count(p), p);
2124 set_compound_head(p, &folio->page);
2126 __folio_set_head(folio);
2127 /* we rely on prep_new_hugetlb_folio to set the destructor */
2128 folio_set_order(folio, order);
2129 atomic_set(&folio->_entire_mapcount, -1);
2130 atomic_set(&folio->_nr_pages_mapped, 0);
2131 atomic_set(&folio->_pincount, 0);
2135 /* undo page modifications made above */
2136 for (j = 0; j < i; j++) {
2137 p = folio_page(folio, j);
2139 clear_compound_head(p);
2140 set_page_refcounted(p);
2142 /* need to clear PG_reserved on remaining tail pages */
2143 for (; j < nr_pages; j++) {
2144 p = folio_page(folio, j);
2145 __ClearPageReserved(p);
2150 static bool prep_compound_gigantic_folio(struct folio *folio,
2153 return __prep_compound_gigantic_folio(folio, order, false);
2156 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2159 return __prep_compound_gigantic_folio(folio, order, true);
2163 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2164 * transparent huge pages. See the PageTransHuge() documentation for more
2167 int PageHuge(const struct page *page)
2169 const struct folio *folio;
2171 if (!PageCompound(page))
2173 folio = page_folio(page);
2174 return folio_test_hugetlb(folio);
2176 EXPORT_SYMBOL_GPL(PageHuge);
2179 * Find and lock address space (mapping) in write mode.
2181 * Upon entry, the page is locked which means that page_mapping() is
2182 * stable. Due to locking order, we can only trylock_write. If we can
2183 * not get the lock, simply return NULL to caller.
2185 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2187 struct address_space *mapping = page_mapping(hpage);
2192 if (i_mmap_trylock_write(mapping))
2198 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2199 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2200 nodemask_t *node_alloc_noretry)
2202 int order = huge_page_order(h);
2204 bool alloc_try_hard = true;
2208 * By default we always try hard to allocate the page with
2209 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2210 * a loop (to adjust global huge page counts) and previous allocation
2211 * failed, do not continue to try hard on the same node. Use the
2212 * node_alloc_noretry bitmap to manage this state information.
2214 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2215 alloc_try_hard = false;
2216 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2218 gfp_mask |= __GFP_RETRY_MAYFAIL;
2219 if (nid == NUMA_NO_NODE)
2220 nid = numa_mem_id();
2222 page = __alloc_pages(gfp_mask, order, nid, nmask);
2224 /* Freeze head page */
2225 if (page && !page_ref_freeze(page, 1)) {
2226 __free_pages(page, order);
2227 if (retry) { /* retry once */
2231 /* WOW! twice in a row. */
2232 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2237 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2238 * indicates an overall state change. Clear bit so that we resume
2239 * normal 'try hard' allocations.
2241 if (node_alloc_noretry && page && !alloc_try_hard)
2242 node_clear(nid, *node_alloc_noretry);
2245 * If we tried hard to get a page but failed, set bit so that
2246 * subsequent attempts will not try as hard until there is an
2247 * overall state change.
2249 if (node_alloc_noretry && !page && alloc_try_hard)
2250 node_set(nid, *node_alloc_noretry);
2253 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2257 __count_vm_event(HTLB_BUDDY_PGALLOC);
2258 return page_folio(page);
2261 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2262 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2263 nodemask_t *node_alloc_noretry)
2265 struct folio *folio;
2269 if (hstate_is_gigantic(h))
2270 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2272 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2273 nid, nmask, node_alloc_noretry);
2277 if (hstate_is_gigantic(h)) {
2278 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2280 * Rare failure to convert pages to compound page.
2281 * Free pages and try again - ONCE!
2283 free_gigantic_folio(folio, huge_page_order(h));
2295 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2296 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2297 nodemask_t *node_alloc_noretry)
2299 struct folio *folio;
2301 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2302 node_alloc_noretry);
2304 init_new_hugetlb_folio(h, folio);
2309 * Common helper to allocate a fresh hugetlb page. All specific allocators
2310 * should use this function to get new hugetlb pages
2312 * Note that returned page is 'frozen': ref count of head page and all tail
2315 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2316 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2317 nodemask_t *node_alloc_noretry)
2319 struct folio *folio;
2321 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2322 node_alloc_noretry);
2326 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2330 static void prep_and_add_allocated_folios(struct hstate *h,
2331 struct list_head *folio_list)
2333 unsigned long flags;
2334 struct folio *folio, *tmp_f;
2336 /* Send list for bulk vmemmap optimization processing */
2337 hugetlb_vmemmap_optimize_folios(h, folio_list);
2339 /* Add all new pool pages to free lists in one lock cycle */
2340 spin_lock_irqsave(&hugetlb_lock, flags);
2341 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2342 __prep_account_new_huge_page(h, folio_nid(folio));
2343 enqueue_hugetlb_folio(h, folio);
2345 spin_unlock_irqrestore(&hugetlb_lock, flags);
2349 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2350 * will later be added to the appropriate hugetlb pool.
2352 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2353 nodemask_t *nodes_allowed,
2354 nodemask_t *node_alloc_noretry,
2357 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2360 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2361 struct folio *folio;
2363 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2364 nodes_allowed, node_alloc_noretry);
2373 * Remove huge page from pool from next node to free. Attempt to keep
2374 * persistent huge pages more or less balanced over allowed nodes.
2375 * This routine only 'removes' the hugetlb page. The caller must make
2376 * an additional call to free the page to low level allocators.
2377 * Called with hugetlb_lock locked.
2379 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2380 nodemask_t *nodes_allowed, bool acct_surplus)
2383 struct folio *folio = NULL;
2385 lockdep_assert_held(&hugetlb_lock);
2386 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2388 * If we're returning unused surplus pages, only examine
2389 * nodes with surplus pages.
2391 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2392 !list_empty(&h->hugepage_freelists[node])) {
2393 folio = list_entry(h->hugepage_freelists[node].next,
2395 remove_hugetlb_folio(h, folio, acct_surplus);
2404 * Dissolve a given free hugepage into free buddy pages. This function does
2405 * nothing for in-use hugepages and non-hugepages.
2406 * This function returns values like below:
2408 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2409 * when the system is under memory pressure and the feature of
2410 * freeing unused vmemmap pages associated with each hugetlb page
2412 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2413 * (allocated or reserved.)
2414 * 0: successfully dissolved free hugepages or the page is not a
2415 * hugepage (considered as already dissolved)
2417 int dissolve_free_huge_page(struct page *page)
2420 struct folio *folio = page_folio(page);
2423 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2424 if (!folio_test_hugetlb(folio))
2427 spin_lock_irq(&hugetlb_lock);
2428 if (!folio_test_hugetlb(folio)) {
2433 if (!folio_ref_count(folio)) {
2434 struct hstate *h = folio_hstate(folio);
2435 if (!available_huge_pages(h))
2439 * We should make sure that the page is already on the free list
2440 * when it is dissolved.
2442 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2443 spin_unlock_irq(&hugetlb_lock);
2447 * Theoretically, we should return -EBUSY when we
2448 * encounter this race. In fact, we have a chance
2449 * to successfully dissolve the page if we do a
2450 * retry. Because the race window is quite small.
2451 * If we seize this opportunity, it is an optimization
2452 * for increasing the success rate of dissolving page.
2457 remove_hugetlb_folio(h, folio, false);
2458 h->max_huge_pages--;
2459 spin_unlock_irq(&hugetlb_lock);
2462 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2463 * before freeing the page. update_and_free_hugtlb_folio will fail to
2464 * free the page if it can not allocate required vmemmap. We
2465 * need to adjust max_huge_pages if the page is not freed.
2466 * Attempt to allocate vmemmmap here so that we can take
2467 * appropriate action on failure.
2469 * The folio_test_hugetlb check here is because
2470 * remove_hugetlb_folio will clear hugetlb folio flag for
2471 * non-vmemmap optimized hugetlb folios.
2473 if (folio_test_hugetlb(folio)) {
2474 rc = hugetlb_vmemmap_restore_folio(h, folio);
2476 spin_lock_irq(&hugetlb_lock);
2477 add_hugetlb_folio(h, folio, false);
2478 h->max_huge_pages++;
2484 update_and_free_hugetlb_folio(h, folio, false);
2488 spin_unlock_irq(&hugetlb_lock);
2493 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2494 * make specified memory blocks removable from the system.
2495 * Note that this will dissolve a free gigantic hugepage completely, if any
2496 * part of it lies within the given range.
2497 * Also note that if dissolve_free_huge_page() returns with an error, all
2498 * free hugepages that were dissolved before that error are lost.
2500 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2508 if (!hugepages_supported())
2511 order = huge_page_order(&default_hstate);
2513 order = min(order, huge_page_order(h));
2515 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2516 page = pfn_to_page(pfn);
2517 rc = dissolve_free_huge_page(page);
2526 * Allocates a fresh surplus page from the page allocator.
2528 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2529 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2531 struct folio *folio = NULL;
2533 if (hstate_is_gigantic(h))
2536 spin_lock_irq(&hugetlb_lock);
2537 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2539 spin_unlock_irq(&hugetlb_lock);
2541 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2545 spin_lock_irq(&hugetlb_lock);
2547 * We could have raced with the pool size change.
2548 * Double check that and simply deallocate the new page
2549 * if we would end up overcommiting the surpluses. Abuse
2550 * temporary page to workaround the nasty free_huge_folio
2553 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2554 folio_set_hugetlb_temporary(folio);
2555 spin_unlock_irq(&hugetlb_lock);
2556 free_huge_folio(folio);
2560 h->surplus_huge_pages++;
2561 h->surplus_huge_pages_node[folio_nid(folio)]++;
2564 spin_unlock_irq(&hugetlb_lock);
2569 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2570 int nid, nodemask_t *nmask)
2572 struct folio *folio;
2574 if (hstate_is_gigantic(h))
2577 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2581 /* fresh huge pages are frozen */
2582 folio_ref_unfreeze(folio, 1);
2584 * We do not account these pages as surplus because they are only
2585 * temporary and will be released properly on the last reference
2587 folio_set_hugetlb_temporary(folio);
2593 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2596 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2597 struct vm_area_struct *vma, unsigned long addr)
2599 struct folio *folio = NULL;
2600 struct mempolicy *mpol;
2601 gfp_t gfp_mask = htlb_alloc_mask(h);
2603 nodemask_t *nodemask;
2605 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2606 if (mpol_is_preferred_many(mpol)) {
2607 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2609 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2610 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2612 /* Fallback to all nodes if page==NULL */
2617 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2618 mpol_cond_put(mpol);
2622 /* folio migration callback function */
2623 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2624 nodemask_t *nmask, gfp_t gfp_mask)
2626 spin_lock_irq(&hugetlb_lock);
2627 if (available_huge_pages(h)) {
2628 struct folio *folio;
2630 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2631 preferred_nid, nmask);
2633 spin_unlock_irq(&hugetlb_lock);
2637 spin_unlock_irq(&hugetlb_lock);
2639 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2643 * Increase the hugetlb pool such that it can accommodate a reservation
2646 static int gather_surplus_pages(struct hstate *h, long delta)
2647 __must_hold(&hugetlb_lock)
2649 LIST_HEAD(surplus_list);
2650 struct folio *folio, *tmp;
2653 long needed, allocated;
2654 bool alloc_ok = true;
2656 lockdep_assert_held(&hugetlb_lock);
2657 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2659 h->resv_huge_pages += delta;
2667 spin_unlock_irq(&hugetlb_lock);
2668 for (i = 0; i < needed; i++) {
2669 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2670 NUMA_NO_NODE, NULL);
2675 list_add(&folio->lru, &surplus_list);
2681 * After retaking hugetlb_lock, we need to recalculate 'needed'
2682 * because either resv_huge_pages or free_huge_pages may have changed.
2684 spin_lock_irq(&hugetlb_lock);
2685 needed = (h->resv_huge_pages + delta) -
2686 (h->free_huge_pages + allocated);
2691 * We were not able to allocate enough pages to
2692 * satisfy the entire reservation so we free what
2693 * we've allocated so far.
2698 * The surplus_list now contains _at_least_ the number of extra pages
2699 * needed to accommodate the reservation. Add the appropriate number
2700 * of pages to the hugetlb pool and free the extras back to the buddy
2701 * allocator. Commit the entire reservation here to prevent another
2702 * process from stealing the pages as they are added to the pool but
2703 * before they are reserved.
2705 needed += allocated;
2706 h->resv_huge_pages += delta;
2709 /* Free the needed pages to the hugetlb pool */
2710 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2713 /* Add the page to the hugetlb allocator */
2714 enqueue_hugetlb_folio(h, folio);
2717 spin_unlock_irq(&hugetlb_lock);
2720 * Free unnecessary surplus pages to the buddy allocator.
2721 * Pages have no ref count, call free_huge_folio directly.
2723 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2724 free_huge_folio(folio);
2725 spin_lock_irq(&hugetlb_lock);
2731 * This routine has two main purposes:
2732 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2733 * in unused_resv_pages. This corresponds to the prior adjustments made
2734 * to the associated reservation map.
2735 * 2) Free any unused surplus pages that may have been allocated to satisfy
2736 * the reservation. As many as unused_resv_pages may be freed.
2738 static void return_unused_surplus_pages(struct hstate *h,
2739 unsigned long unused_resv_pages)
2741 unsigned long nr_pages;
2742 LIST_HEAD(page_list);
2744 lockdep_assert_held(&hugetlb_lock);
2745 /* Uncommit the reservation */
2746 h->resv_huge_pages -= unused_resv_pages;
2748 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2752 * Part (or even all) of the reservation could have been backed
2753 * by pre-allocated pages. Only free surplus pages.
2755 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2758 * We want to release as many surplus pages as possible, spread
2759 * evenly across all nodes with memory. Iterate across these nodes
2760 * until we can no longer free unreserved surplus pages. This occurs
2761 * when the nodes with surplus pages have no free pages.
2762 * remove_pool_hugetlb_folio() will balance the freed pages across the
2763 * on-line nodes with memory and will handle the hstate accounting.
2765 while (nr_pages--) {
2766 struct folio *folio;
2768 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2772 list_add(&folio->lru, &page_list);
2776 spin_unlock_irq(&hugetlb_lock);
2777 update_and_free_pages_bulk(h, &page_list);
2778 spin_lock_irq(&hugetlb_lock);
2783 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2784 * are used by the huge page allocation routines to manage reservations.
2786 * vma_needs_reservation is called to determine if the huge page at addr
2787 * within the vma has an associated reservation. If a reservation is
2788 * needed, the value 1 is returned. The caller is then responsible for
2789 * managing the global reservation and subpool usage counts. After
2790 * the huge page has been allocated, vma_commit_reservation is called
2791 * to add the page to the reservation map. If the page allocation fails,
2792 * the reservation must be ended instead of committed. vma_end_reservation
2793 * is called in such cases.
2795 * In the normal case, vma_commit_reservation returns the same value
2796 * as the preceding vma_needs_reservation call. The only time this
2797 * is not the case is if a reserve map was changed between calls. It
2798 * is the responsibility of the caller to notice the difference and
2799 * take appropriate action.
2801 * vma_add_reservation is used in error paths where a reservation must
2802 * be restored when a newly allocated huge page must be freed. It is
2803 * to be called after calling vma_needs_reservation to determine if a
2804 * reservation exists.
2806 * vma_del_reservation is used in error paths where an entry in the reserve
2807 * map was created during huge page allocation and must be removed. It is to
2808 * be called after calling vma_needs_reservation to determine if a reservation
2811 enum vma_resv_mode {
2818 static long __vma_reservation_common(struct hstate *h,
2819 struct vm_area_struct *vma, unsigned long addr,
2820 enum vma_resv_mode mode)
2822 struct resv_map *resv;
2825 long dummy_out_regions_needed;
2827 resv = vma_resv_map(vma);
2831 idx = vma_hugecache_offset(h, vma, addr);
2833 case VMA_NEEDS_RESV:
2834 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2835 /* We assume that vma_reservation_* routines always operate on
2836 * 1 page, and that adding to resv map a 1 page entry can only
2837 * ever require 1 region.
2839 VM_BUG_ON(dummy_out_regions_needed != 1);
2841 case VMA_COMMIT_RESV:
2842 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2843 /* region_add calls of range 1 should never fail. */
2847 region_abort(resv, idx, idx + 1, 1);
2851 if (vma->vm_flags & VM_MAYSHARE) {
2852 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2853 /* region_add calls of range 1 should never fail. */
2856 region_abort(resv, idx, idx + 1, 1);
2857 ret = region_del(resv, idx, idx + 1);
2861 if (vma->vm_flags & VM_MAYSHARE) {
2862 region_abort(resv, idx, idx + 1, 1);
2863 ret = region_del(resv, idx, idx + 1);
2865 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2866 /* region_add calls of range 1 should never fail. */
2874 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2877 * We know private mapping must have HPAGE_RESV_OWNER set.
2879 * In most cases, reserves always exist for private mappings.
2880 * However, a file associated with mapping could have been
2881 * hole punched or truncated after reserves were consumed.
2882 * As subsequent fault on such a range will not use reserves.
2883 * Subtle - The reserve map for private mappings has the
2884 * opposite meaning than that of shared mappings. If NO
2885 * entry is in the reserve map, it means a reservation exists.
2886 * If an entry exists in the reserve map, it means the
2887 * reservation has already been consumed. As a result, the
2888 * return value of this routine is the opposite of the
2889 * value returned from reserve map manipulation routines above.
2898 static long vma_needs_reservation(struct hstate *h,
2899 struct vm_area_struct *vma, unsigned long addr)
2901 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2904 static long vma_commit_reservation(struct hstate *h,
2905 struct vm_area_struct *vma, unsigned long addr)
2907 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2910 static void vma_end_reservation(struct hstate *h,
2911 struct vm_area_struct *vma, unsigned long addr)
2913 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2916 static long vma_add_reservation(struct hstate *h,
2917 struct vm_area_struct *vma, unsigned long addr)
2919 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2922 static long vma_del_reservation(struct hstate *h,
2923 struct vm_area_struct *vma, unsigned long addr)
2925 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2929 * This routine is called to restore reservation information on error paths.
2930 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2931 * and the hugetlb mutex should remain held when calling this routine.
2933 * It handles two specific cases:
2934 * 1) A reservation was in place and the folio consumed the reservation.
2935 * hugetlb_restore_reserve is set in the folio.
2936 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2937 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2939 * In case 1, free_huge_folio later in the error path will increment the
2940 * global reserve count. But, free_huge_folio does not have enough context
2941 * to adjust the reservation map. This case deals primarily with private
2942 * mappings. Adjust the reserve map here to be consistent with global
2943 * reserve count adjustments to be made by free_huge_folio. Make sure the
2944 * reserve map indicates there is a reservation present.
2946 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2948 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2949 unsigned long address, struct folio *folio)
2951 long rc = vma_needs_reservation(h, vma, address);
2953 if (folio_test_hugetlb_restore_reserve(folio)) {
2954 if (unlikely(rc < 0))
2956 * Rare out of memory condition in reserve map
2957 * manipulation. Clear hugetlb_restore_reserve so
2958 * that global reserve count will not be incremented
2959 * by free_huge_folio. This will make it appear
2960 * as though the reservation for this folio was
2961 * consumed. This may prevent the task from
2962 * faulting in the folio at a later time. This
2963 * is better than inconsistent global huge page
2964 * accounting of reserve counts.
2966 folio_clear_hugetlb_restore_reserve(folio);
2968 (void)vma_add_reservation(h, vma, address);
2970 vma_end_reservation(h, vma, address);
2974 * This indicates there is an entry in the reserve map
2975 * not added by alloc_hugetlb_folio. We know it was added
2976 * before the alloc_hugetlb_folio call, otherwise
2977 * hugetlb_restore_reserve would be set on the folio.
2978 * Remove the entry so that a subsequent allocation
2979 * does not consume a reservation.
2981 rc = vma_del_reservation(h, vma, address);
2984 * VERY rare out of memory condition. Since
2985 * we can not delete the entry, set
2986 * hugetlb_restore_reserve so that the reserve
2987 * count will be incremented when the folio
2988 * is freed. This reserve will be consumed
2989 * on a subsequent allocation.
2991 folio_set_hugetlb_restore_reserve(folio);
2992 } else if (rc < 0) {
2994 * Rare out of memory condition from
2995 * vma_needs_reservation call. Memory allocation is
2996 * only attempted if a new entry is needed. Therefore,
2997 * this implies there is not an entry in the
3000 * For shared mappings, no entry in the map indicates
3001 * no reservation. We are done.
3003 if (!(vma->vm_flags & VM_MAYSHARE))
3005 * For private mappings, no entry indicates
3006 * a reservation is present. Since we can
3007 * not add an entry, set hugetlb_restore_reserve
3008 * on the folio so reserve count will be
3009 * incremented when freed. This reserve will
3010 * be consumed on a subsequent allocation.
3012 folio_set_hugetlb_restore_reserve(folio);
3015 * No reservation present, do nothing
3017 vma_end_reservation(h, vma, address);
3022 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3024 * @h: struct hstate old page belongs to
3025 * @old_folio: Old folio to dissolve
3026 * @list: List to isolate the page in case we need to
3027 * Returns 0 on success, otherwise negated error.
3029 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3030 struct folio *old_folio, struct list_head *list)
3032 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3033 int nid = folio_nid(old_folio);
3034 struct folio *new_folio = NULL;
3038 spin_lock_irq(&hugetlb_lock);
3039 if (!folio_test_hugetlb(old_folio)) {
3041 * Freed from under us. Drop new_folio too.
3044 } else if (folio_ref_count(old_folio)) {
3048 * Someone has grabbed the folio, try to isolate it here.
3049 * Fail with -EBUSY if not possible.
3051 spin_unlock_irq(&hugetlb_lock);
3052 isolated = isolate_hugetlb(old_folio, list);
3053 ret = isolated ? 0 : -EBUSY;
3054 spin_lock_irq(&hugetlb_lock);
3056 } else if (!folio_test_hugetlb_freed(old_folio)) {
3058 * Folio's refcount is 0 but it has not been enqueued in the
3059 * freelist yet. Race window is small, so we can succeed here if
3062 spin_unlock_irq(&hugetlb_lock);
3067 spin_unlock_irq(&hugetlb_lock);
3068 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3072 __prep_new_hugetlb_folio(h, new_folio);
3077 * Ok, old_folio is still a genuine free hugepage. Remove it from
3078 * the freelist and decrease the counters. These will be
3079 * incremented again when calling __prep_account_new_huge_page()
3080 * and enqueue_hugetlb_folio() for new_folio. The counters will
3081 * remain stable since this happens under the lock.
3083 remove_hugetlb_folio(h, old_folio, false);
3086 * Ref count on new_folio is already zero as it was dropped
3087 * earlier. It can be directly added to the pool free list.
3089 __prep_account_new_huge_page(h, nid);
3090 enqueue_hugetlb_folio(h, new_folio);
3093 * Folio has been replaced, we can safely free the old one.
3095 spin_unlock_irq(&hugetlb_lock);
3096 update_and_free_hugetlb_folio(h, old_folio, false);
3102 spin_unlock_irq(&hugetlb_lock);
3104 /* Folio has a zero ref count, but needs a ref to be freed */
3105 folio_ref_unfreeze(new_folio, 1);
3106 update_and_free_hugetlb_folio(h, new_folio, false);
3112 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3115 struct folio *folio = page_folio(page);
3119 * The page might have been dissolved from under our feet, so make sure
3120 * to carefully check the state under the lock.
3121 * Return success when racing as if we dissolved the page ourselves.
3123 spin_lock_irq(&hugetlb_lock);
3124 if (folio_test_hugetlb(folio)) {
3125 h = folio_hstate(folio);
3127 spin_unlock_irq(&hugetlb_lock);
3130 spin_unlock_irq(&hugetlb_lock);
3133 * Fence off gigantic pages as there is a cyclic dependency between
3134 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3135 * of bailing out right away without further retrying.
3137 if (hstate_is_gigantic(h))
3140 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3142 else if (!folio_ref_count(folio))
3143 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3148 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3149 unsigned long addr, int avoid_reserve)
3151 struct hugepage_subpool *spool = subpool_vma(vma);
3152 struct hstate *h = hstate_vma(vma);
3153 struct folio *folio;
3154 long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3156 int memcg_charge_ret, ret, idx;
3157 struct hugetlb_cgroup *h_cg = NULL;
3158 struct mem_cgroup *memcg;
3159 bool deferred_reserve;
3160 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3162 memcg = get_mem_cgroup_from_current();
3163 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3164 if (memcg_charge_ret == -ENOMEM) {
3165 mem_cgroup_put(memcg);
3166 return ERR_PTR(-ENOMEM);
3169 idx = hstate_index(h);
3171 * Examine the region/reserve map to determine if the process
3172 * has a reservation for the page to be allocated. A return
3173 * code of zero indicates a reservation exists (no change).
3175 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3177 if (!memcg_charge_ret)
3178 mem_cgroup_cancel_charge(memcg, nr_pages);
3179 mem_cgroup_put(memcg);
3180 return ERR_PTR(-ENOMEM);
3184 * Processes that did not create the mapping will have no
3185 * reserves as indicated by the region/reserve map. Check
3186 * that the allocation will not exceed the subpool limit.
3187 * Allocations for MAP_NORESERVE mappings also need to be
3188 * checked against any subpool limit.
3190 if (map_chg || avoid_reserve) {
3191 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3193 goto out_end_reservation;
3196 * Even though there was no reservation in the region/reserve
3197 * map, there could be reservations associated with the
3198 * subpool that can be used. This would be indicated if the
3199 * return value of hugepage_subpool_get_pages() is zero.
3200 * However, if avoid_reserve is specified we still avoid even
3201 * the subpool reservations.
3207 /* If this allocation is not consuming a reservation, charge it now.
3209 deferred_reserve = map_chg || avoid_reserve;
3210 if (deferred_reserve) {
3211 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3212 idx, pages_per_huge_page(h), &h_cg);
3214 goto out_subpool_put;
3217 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3219 goto out_uncharge_cgroup_reservation;
3221 spin_lock_irq(&hugetlb_lock);
3223 * glb_chg is passed to indicate whether or not a page must be taken
3224 * from the global free pool (global change). gbl_chg == 0 indicates
3225 * a reservation exists for the allocation.
3227 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3229 spin_unlock_irq(&hugetlb_lock);
3230 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3232 goto out_uncharge_cgroup;
3233 spin_lock_irq(&hugetlb_lock);
3234 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3235 folio_set_hugetlb_restore_reserve(folio);
3236 h->resv_huge_pages--;
3238 list_add(&folio->lru, &h->hugepage_activelist);
3239 folio_ref_unfreeze(folio, 1);
3243 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3244 /* If allocation is not consuming a reservation, also store the
3245 * hugetlb_cgroup pointer on the page.
3247 if (deferred_reserve) {
3248 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3252 spin_unlock_irq(&hugetlb_lock);
3254 hugetlb_set_folio_subpool(folio, spool);
3256 map_commit = vma_commit_reservation(h, vma, addr);
3257 if (unlikely(map_chg > map_commit)) {
3259 * The page was added to the reservation map between
3260 * vma_needs_reservation and vma_commit_reservation.
3261 * This indicates a race with hugetlb_reserve_pages.
3262 * Adjust for the subpool count incremented above AND
3263 * in hugetlb_reserve_pages for the same page. Also,
3264 * the reservation count added in hugetlb_reserve_pages
3265 * no longer applies.
3269 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3270 hugetlb_acct_memory(h, -rsv_adjust);
3271 if (deferred_reserve)
3272 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3273 pages_per_huge_page(h), folio);
3276 if (!memcg_charge_ret)
3277 mem_cgroup_commit_charge(folio, memcg);
3278 mem_cgroup_put(memcg);
3282 out_uncharge_cgroup:
3283 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3284 out_uncharge_cgroup_reservation:
3285 if (deferred_reserve)
3286 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3289 if (map_chg || avoid_reserve)
3290 hugepage_subpool_put_pages(spool, 1);
3291 out_end_reservation:
3292 vma_end_reservation(h, vma, addr);
3293 if (!memcg_charge_ret)
3294 mem_cgroup_cancel_charge(memcg, nr_pages);
3295 mem_cgroup_put(memcg);
3296 return ERR_PTR(-ENOSPC);
3299 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3300 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3301 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3303 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3304 int nr_nodes, node = nid;
3306 /* do node specific alloc */
3307 if (nid != NUMA_NO_NODE) {
3308 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3309 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3314 /* allocate from next node when distributing huge pages */
3315 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3316 m = memblock_alloc_try_nid_raw(
3317 huge_page_size(h), huge_page_size(h),
3318 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3320 * Use the beginning of the huge page to store the
3321 * huge_bootmem_page struct (until gather_bootmem
3322 * puts them into the mem_map).
3332 * Only initialize the head struct page in memmap_init_reserved_pages,
3333 * rest of the struct pages will be initialized by the HugeTLB
3335 * The head struct page is used to get folio information by the HugeTLB
3336 * subsystem like zone id and node id.
3338 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3339 huge_page_size(h) - PAGE_SIZE);
3340 /* Put them into a private list first because mem_map is not up yet */
3341 INIT_LIST_HEAD(&m->list);
3342 list_add(&m->list, &huge_boot_pages[node]);
3347 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3348 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3349 unsigned long start_page_number,
3350 unsigned long end_page_number)
3352 enum zone_type zone = zone_idx(folio_zone(folio));
3353 int nid = folio_nid(folio);
3354 unsigned long head_pfn = folio_pfn(folio);
3355 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3358 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3359 struct page *page = pfn_to_page(pfn);
3361 __init_single_page(page, pfn, zone, nid);
3362 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3363 ret = page_ref_freeze(page, 1);
3368 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3370 unsigned long nr_pages)
3374 /* Prepare folio head */
3375 __folio_clear_reserved(folio);
3376 __folio_set_head(folio);
3377 ret = folio_ref_freeze(folio, 1);
3379 /* Initialize the necessary tail struct pages */
3380 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3381 prep_compound_head((struct page *)folio, huge_page_order(h));
3384 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3385 struct list_head *folio_list)
3387 unsigned long flags;
3388 struct folio *folio, *tmp_f;
3390 /* Send list for bulk vmemmap optimization processing */
3391 hugetlb_vmemmap_optimize_folios(h, folio_list);
3393 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3394 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3396 * If HVO fails, initialize all tail struct pages
3397 * We do not worry about potential long lock hold
3398 * time as this is early in boot and there should
3401 hugetlb_folio_init_tail_vmemmap(folio,
3402 HUGETLB_VMEMMAP_RESERVE_PAGES,
3403 pages_per_huge_page(h));
3405 /* Subdivide locks to achieve better parallel performance */
3406 spin_lock_irqsave(&hugetlb_lock, flags);
3407 __prep_account_new_huge_page(h, folio_nid(folio));
3408 enqueue_hugetlb_folio(h, folio);
3409 spin_unlock_irqrestore(&hugetlb_lock, flags);
3414 * Put bootmem huge pages into the standard lists after mem_map is up.
3415 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3417 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3419 LIST_HEAD(folio_list);
3420 struct huge_bootmem_page *m;
3421 struct hstate *h = NULL, *prev_h = NULL;
3423 list_for_each_entry(m, &huge_boot_pages[nid], list) {
3424 struct page *page = virt_to_page(m);
3425 struct folio *folio = (void *)page;
3429 * It is possible to have multiple huge page sizes (hstates)
3430 * in this list. If so, process each size separately.
3432 if (h != prev_h && prev_h != NULL)
3433 prep_and_add_bootmem_folios(prev_h, &folio_list);
3436 VM_BUG_ON(!hstate_is_gigantic(h));
3437 WARN_ON(folio_ref_count(folio) != 1);
3439 hugetlb_folio_init_vmemmap(folio, h,
3440 HUGETLB_VMEMMAP_RESERVE_PAGES);
3441 init_new_hugetlb_folio(h, folio);
3442 list_add(&folio->lru, &folio_list);
3445 * We need to restore the 'stolen' pages to totalram_pages
3446 * in order to fix confusing memory reports from free(1) and
3447 * other side-effects, like CommitLimit going negative.
3449 adjust_managed_page_count(page, pages_per_huge_page(h));
3453 prep_and_add_bootmem_folios(h, &folio_list);
3456 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3457 unsigned long end, void *arg)
3461 for (nid = start; nid < end; nid++)
3462 gather_bootmem_prealloc_node(nid);
3465 static void __init gather_bootmem_prealloc(void)
3467 struct padata_mt_job job = {
3468 .thread_fn = gather_bootmem_prealloc_parallel,
3471 .size = num_node_state(N_MEMORY),
3474 .max_threads = num_node_state(N_MEMORY),
3478 padata_do_multithreaded(&job);
3481 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3486 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3487 if (hstate_is_gigantic(h)) {
3488 if (!alloc_bootmem_huge_page(h, nid))
3491 struct folio *folio;
3492 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3494 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3495 &node_states[N_MEMORY], NULL);
3498 free_huge_folio(folio); /* free it into the hugepage allocator */
3502 if (i == h->max_huge_pages_node[nid])
3505 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3506 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3507 h->max_huge_pages_node[nid], buf, nid, i);
3508 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3509 h->max_huge_pages_node[nid] = i;
3512 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3515 bool node_specific_alloc = false;
3517 for_each_online_node(i) {
3518 if (h->max_huge_pages_node[i] > 0) {
3519 hugetlb_hstate_alloc_pages_onenode(h, i);
3520 node_specific_alloc = true;
3524 return node_specific_alloc;
3527 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3529 if (allocated < h->max_huge_pages) {
3532 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3533 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3534 h->max_huge_pages, buf, allocated);
3535 h->max_huge_pages = allocated;
3539 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3541 struct hstate *h = (struct hstate *)arg;
3542 int i, num = end - start;
3543 nodemask_t node_alloc_noretry;
3544 LIST_HEAD(folio_list);
3545 int next_node = first_online_node;
3547 /* Bit mask controlling how hard we retry per-node allocations.*/
3548 nodes_clear(node_alloc_noretry);
3550 for (i = 0; i < num; ++i) {
3551 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3552 &node_alloc_noretry, &next_node);
3556 list_move(&folio->lru, &folio_list);
3560 prep_and_add_allocated_folios(h, &folio_list);
3563 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3567 for (i = 0; i < h->max_huge_pages; ++i) {
3568 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3576 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3578 struct padata_mt_job job = {
3584 job.thread_fn = hugetlb_pages_alloc_boot_node;
3586 job.size = h->max_huge_pages;
3589 * job.max_threads is twice the num_node_state(N_MEMORY),
3591 * Tests below indicate that a multiplier of 2 significantly improves
3592 * performance, and although larger values also provide improvements,
3593 * the gains are marginal.
3595 * Therefore, choosing 2 as the multiplier strikes a good balance between
3596 * enhancing parallel processing capabilities and maintaining efficient
3597 * resource management.
3599 * +------------+-------+-------+-------+-------+-------+
3600 * | multiplier | 1 | 2 | 3 | 4 | 5 |
3601 * +------------+-------+-------+-------+-------+-------+
3602 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3603 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3604 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms |
3605 * +------------+-------+-------+-------+-------+-------+
3607 job.max_threads = num_node_state(N_MEMORY) * 2;
3608 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3609 padata_do_multithreaded(&job);
3611 return h->nr_huge_pages;
3615 * NOTE: this routine is called in different contexts for gigantic and
3616 * non-gigantic pages.
3617 * - For gigantic pages, this is called early in the boot process and
3618 * pages are allocated from memblock allocated or something similar.
3619 * Gigantic pages are actually added to pools later with the routine
3620 * gather_bootmem_prealloc.
3621 * - For non-gigantic pages, this is called later in the boot process after
3622 * all of mm is up and functional. Pages are allocated from buddy and
3623 * then added to hugetlb pools.
3625 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3627 unsigned long allocated;
3628 static bool initialized __initdata;
3630 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3631 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3632 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3636 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3640 for (i = 0; i < MAX_NUMNODES; i++)
3641 INIT_LIST_HEAD(&huge_boot_pages[i]);
3645 /* do node specific alloc */
3646 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3649 /* below will do all node balanced alloc */
3650 if (hstate_is_gigantic(h))
3651 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3653 allocated = hugetlb_pages_alloc_boot(h);
3655 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3658 static void __init hugetlb_init_hstates(void)
3660 struct hstate *h, *h2;
3662 for_each_hstate(h) {
3663 /* oversize hugepages were init'ed in early boot */
3664 if (!hstate_is_gigantic(h))
3665 hugetlb_hstate_alloc_pages(h);
3668 * Set demote order for each hstate. Note that
3669 * h->demote_order is initially 0.
3670 * - We can not demote gigantic pages if runtime freeing
3671 * is not supported, so skip this.
3672 * - If CMA allocation is possible, we can not demote
3673 * HUGETLB_PAGE_ORDER or smaller size pages.
3675 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3677 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3679 for_each_hstate(h2) {
3682 if (h2->order < h->order &&
3683 h2->order > h->demote_order)
3684 h->demote_order = h2->order;
3689 static void __init report_hugepages(void)
3693 for_each_hstate(h) {
3696 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3697 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3698 buf, h->free_huge_pages);
3699 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3700 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3704 #ifdef CONFIG_HIGHMEM
3705 static void try_to_free_low(struct hstate *h, unsigned long count,
3706 nodemask_t *nodes_allowed)
3709 LIST_HEAD(page_list);
3711 lockdep_assert_held(&hugetlb_lock);
3712 if (hstate_is_gigantic(h))
3716 * Collect pages to be freed on a list, and free after dropping lock
3718 for_each_node_mask(i, *nodes_allowed) {
3719 struct folio *folio, *next;
3720 struct list_head *freel = &h->hugepage_freelists[i];
3721 list_for_each_entry_safe(folio, next, freel, lru) {
3722 if (count >= h->nr_huge_pages)
3724 if (folio_test_highmem(folio))
3726 remove_hugetlb_folio(h, folio, false);
3727 list_add(&folio->lru, &page_list);
3732 spin_unlock_irq(&hugetlb_lock);
3733 update_and_free_pages_bulk(h, &page_list);
3734 spin_lock_irq(&hugetlb_lock);
3737 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3738 nodemask_t *nodes_allowed)
3744 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3745 * balanced by operating on them in a round-robin fashion.
3746 * Returns 1 if an adjustment was made.
3748 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3753 lockdep_assert_held(&hugetlb_lock);
3754 VM_BUG_ON(delta != -1 && delta != 1);
3757 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3758 if (h->surplus_huge_pages_node[node])
3762 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3763 if (h->surplus_huge_pages_node[node] <
3764 h->nr_huge_pages_node[node])
3771 h->surplus_huge_pages += delta;
3772 h->surplus_huge_pages_node[node] += delta;
3776 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3777 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3778 nodemask_t *nodes_allowed)
3780 unsigned long min_count;
3781 unsigned long allocated;
3782 struct folio *folio;
3783 LIST_HEAD(page_list);
3784 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3787 * Bit mask controlling how hard we retry per-node allocations.
3788 * If we can not allocate the bit mask, do not attempt to allocate
3789 * the requested huge pages.
3791 if (node_alloc_noretry)
3792 nodes_clear(*node_alloc_noretry);
3797 * resize_lock mutex prevents concurrent adjustments to number of
3798 * pages in hstate via the proc/sysfs interfaces.
3800 mutex_lock(&h->resize_lock);
3801 flush_free_hpage_work(h);
3802 spin_lock_irq(&hugetlb_lock);
3805 * Check for a node specific request.
3806 * Changing node specific huge page count may require a corresponding
3807 * change to the global count. In any case, the passed node mask
3808 * (nodes_allowed) will restrict alloc/free to the specified node.
3810 if (nid != NUMA_NO_NODE) {
3811 unsigned long old_count = count;
3813 count += persistent_huge_pages(h) -
3814 (h->nr_huge_pages_node[nid] -
3815 h->surplus_huge_pages_node[nid]);
3817 * User may have specified a large count value which caused the
3818 * above calculation to overflow. In this case, they wanted
3819 * to allocate as many huge pages as possible. Set count to
3820 * largest possible value to align with their intention.
3822 if (count < old_count)
3827 * Gigantic pages runtime allocation depend on the capability for large
3828 * page range allocation.
3829 * If the system does not provide this feature, return an error when
3830 * the user tries to allocate gigantic pages but let the user free the
3831 * boottime allocated gigantic pages.
3833 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3834 if (count > persistent_huge_pages(h)) {
3835 spin_unlock_irq(&hugetlb_lock);
3836 mutex_unlock(&h->resize_lock);
3837 NODEMASK_FREE(node_alloc_noretry);
3840 /* Fall through to decrease pool */
3844 * Increase the pool size
3845 * First take pages out of surplus state. Then make up the
3846 * remaining difference by allocating fresh huge pages.
3848 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3849 * to convert a surplus huge page to a normal huge page. That is
3850 * not critical, though, it just means the overall size of the
3851 * pool might be one hugepage larger than it needs to be, but
3852 * within all the constraints specified by the sysctls.
3854 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3855 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3860 while (count > (persistent_huge_pages(h) + allocated)) {
3862 * If this allocation races such that we no longer need the
3863 * page, free_huge_folio will handle it by freeing the page
3864 * and reducing the surplus.
3866 spin_unlock_irq(&hugetlb_lock);
3868 /* yield cpu to avoid soft lockup */
3871 folio = alloc_pool_huge_folio(h, nodes_allowed,
3873 &h->next_nid_to_alloc);
3875 prep_and_add_allocated_folios(h, &page_list);
3876 spin_lock_irq(&hugetlb_lock);
3880 list_add(&folio->lru, &page_list);
3883 /* Bail for signals. Probably ctrl-c from user */
3884 if (signal_pending(current)) {
3885 prep_and_add_allocated_folios(h, &page_list);
3886 spin_lock_irq(&hugetlb_lock);
3890 spin_lock_irq(&hugetlb_lock);
3893 /* Add allocated pages to the pool */
3894 if (!list_empty(&page_list)) {
3895 spin_unlock_irq(&hugetlb_lock);
3896 prep_and_add_allocated_folios(h, &page_list);
3897 spin_lock_irq(&hugetlb_lock);
3901 * Decrease the pool size
3902 * First return free pages to the buddy allocator (being careful
3903 * to keep enough around to satisfy reservations). Then place
3904 * pages into surplus state as needed so the pool will shrink
3905 * to the desired size as pages become free.
3907 * By placing pages into the surplus state independent of the
3908 * overcommit value, we are allowing the surplus pool size to
3909 * exceed overcommit. There are few sane options here. Since
3910 * alloc_surplus_hugetlb_folio() is checking the global counter,
3911 * though, we'll note that we're not allowed to exceed surplus
3912 * and won't grow the pool anywhere else. Not until one of the
3913 * sysctls are changed, or the surplus pages go out of use.
3915 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3916 min_count = max(count, min_count);
3917 try_to_free_low(h, min_count, nodes_allowed);
3920 * Collect pages to be removed on list without dropping lock
3922 while (min_count < persistent_huge_pages(h)) {
3923 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3927 list_add(&folio->lru, &page_list);
3929 /* free the pages after dropping lock */
3930 spin_unlock_irq(&hugetlb_lock);
3931 update_and_free_pages_bulk(h, &page_list);
3932 flush_free_hpage_work(h);
3933 spin_lock_irq(&hugetlb_lock);
3935 while (count < persistent_huge_pages(h)) {
3936 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3940 h->max_huge_pages = persistent_huge_pages(h);
3941 spin_unlock_irq(&hugetlb_lock);
3942 mutex_unlock(&h->resize_lock);
3944 NODEMASK_FREE(node_alloc_noretry);
3949 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3951 int i, nid = folio_nid(folio);
3952 struct hstate *target_hstate;
3953 struct page *subpage;
3954 struct folio *inner_folio;
3957 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3959 remove_hugetlb_folio_for_demote(h, folio, false);
3960 spin_unlock_irq(&hugetlb_lock);
3963 * If vmemmap already existed for folio, the remove routine above would
3964 * have cleared the hugetlb folio flag. Hence the folio is technically
3965 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be
3966 * passed hugetlb folios and will BUG otherwise.
3968 if (folio_test_hugetlb(folio)) {
3969 rc = hugetlb_vmemmap_restore_folio(h, folio);
3971 /* Allocation of vmemmmap failed, we can not demote folio */
3972 spin_lock_irq(&hugetlb_lock);
3973 folio_ref_unfreeze(folio, 1);
3974 add_hugetlb_folio(h, folio, false);
3980 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3981 * sizes as it will not ref count folios.
3983 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3986 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3987 * Without the mutex, pages added to target hstate could be marked
3990 * Note that we already hold h->resize_lock. To prevent deadlock,
3991 * use the convention of always taking larger size hstate mutex first.
3993 mutex_lock(&target_hstate->resize_lock);
3994 for (i = 0; i < pages_per_huge_page(h);
3995 i += pages_per_huge_page(target_hstate)) {
3996 subpage = folio_page(folio, i);
3997 inner_folio = page_folio(subpage);
3998 if (hstate_is_gigantic(target_hstate))
3999 prep_compound_gigantic_folio_for_demote(inner_folio,
4000 target_hstate->order);
4002 prep_compound_page(subpage, target_hstate->order);
4003 folio_change_private(inner_folio, NULL);
4004 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
4005 free_huge_folio(inner_folio);
4007 mutex_unlock(&target_hstate->resize_lock);
4009 spin_lock_irq(&hugetlb_lock);
4012 * Not absolutely necessary, but for consistency update max_huge_pages
4013 * based on pool changes for the demoted page.
4015 h->max_huge_pages--;
4016 target_hstate->max_huge_pages +=
4017 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
4022 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
4023 __must_hold(&hugetlb_lock)
4026 struct folio *folio;
4028 lockdep_assert_held(&hugetlb_lock);
4030 /* We should never get here if no demote order */
4031 if (!h->demote_order) {
4032 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4033 return -EINVAL; /* internal error */
4036 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
4037 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
4038 if (folio_test_hwpoison(folio))
4040 return demote_free_hugetlb_folio(h, folio);
4045 * Only way to get here is if all pages on free lists are poisoned.
4046 * Return -EBUSY so that caller will not retry.
4051 #define HSTATE_ATTR_RO(_name) \
4052 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4054 #define HSTATE_ATTR_WO(_name) \
4055 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4057 #define HSTATE_ATTR(_name) \
4058 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4060 static struct kobject *hugepages_kobj;
4061 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4063 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4065 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4069 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4070 if (hstate_kobjs[i] == kobj) {
4072 *nidp = NUMA_NO_NODE;
4076 return kobj_to_node_hstate(kobj, nidp);
4079 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4080 struct kobj_attribute *attr, char *buf)
4083 unsigned long nr_huge_pages;
4086 h = kobj_to_hstate(kobj, &nid);
4087 if (nid == NUMA_NO_NODE)
4088 nr_huge_pages = h->nr_huge_pages;
4090 nr_huge_pages = h->nr_huge_pages_node[nid];
4092 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4095 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4096 struct hstate *h, int nid,
4097 unsigned long count, size_t len)
4100 nodemask_t nodes_allowed, *n_mask;
4102 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4105 if (nid == NUMA_NO_NODE) {
4107 * global hstate attribute
4109 if (!(obey_mempolicy &&
4110 init_nodemask_of_mempolicy(&nodes_allowed)))
4111 n_mask = &node_states[N_MEMORY];
4113 n_mask = &nodes_allowed;
4116 * Node specific request. count adjustment happens in
4117 * set_max_huge_pages() after acquiring hugetlb_lock.
4119 init_nodemask_of_node(&nodes_allowed, nid);
4120 n_mask = &nodes_allowed;
4123 err = set_max_huge_pages(h, count, nid, n_mask);
4125 return err ? err : len;
4128 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4129 struct kobject *kobj, const char *buf,
4133 unsigned long count;
4137 err = kstrtoul(buf, 10, &count);
4141 h = kobj_to_hstate(kobj, &nid);
4142 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4145 static ssize_t nr_hugepages_show(struct kobject *kobj,
4146 struct kobj_attribute *attr, char *buf)
4148 return nr_hugepages_show_common(kobj, attr, buf);
4151 static ssize_t nr_hugepages_store(struct kobject *kobj,
4152 struct kobj_attribute *attr, const char *buf, size_t len)
4154 return nr_hugepages_store_common(false, kobj, buf, len);
4156 HSTATE_ATTR(nr_hugepages);
4161 * hstate attribute for optionally mempolicy-based constraint on persistent
4162 * huge page alloc/free.
4164 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4165 struct kobj_attribute *attr,
4168 return nr_hugepages_show_common(kobj, attr, buf);
4171 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4172 struct kobj_attribute *attr, const char *buf, size_t len)
4174 return nr_hugepages_store_common(true, kobj, buf, len);
4176 HSTATE_ATTR(nr_hugepages_mempolicy);
4180 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4181 struct kobj_attribute *attr, char *buf)
4183 struct hstate *h = kobj_to_hstate(kobj, NULL);
4184 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4187 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4188 struct kobj_attribute *attr, const char *buf, size_t count)
4191 unsigned long input;
4192 struct hstate *h = kobj_to_hstate(kobj, NULL);
4194 if (hstate_is_gigantic(h))
4197 err = kstrtoul(buf, 10, &input);
4201 spin_lock_irq(&hugetlb_lock);
4202 h->nr_overcommit_huge_pages = input;
4203 spin_unlock_irq(&hugetlb_lock);
4207 HSTATE_ATTR(nr_overcommit_hugepages);
4209 static ssize_t free_hugepages_show(struct kobject *kobj,
4210 struct kobj_attribute *attr, char *buf)
4213 unsigned long free_huge_pages;
4216 h = kobj_to_hstate(kobj, &nid);
4217 if (nid == NUMA_NO_NODE)
4218 free_huge_pages = h->free_huge_pages;
4220 free_huge_pages = h->free_huge_pages_node[nid];
4222 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4224 HSTATE_ATTR_RO(free_hugepages);
4226 static ssize_t resv_hugepages_show(struct kobject *kobj,
4227 struct kobj_attribute *attr, char *buf)
4229 struct hstate *h = kobj_to_hstate(kobj, NULL);
4230 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4232 HSTATE_ATTR_RO(resv_hugepages);
4234 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4235 struct kobj_attribute *attr, char *buf)
4238 unsigned long surplus_huge_pages;
4241 h = kobj_to_hstate(kobj, &nid);
4242 if (nid == NUMA_NO_NODE)
4243 surplus_huge_pages = h->surplus_huge_pages;
4245 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4247 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4249 HSTATE_ATTR_RO(surplus_hugepages);
4251 static ssize_t demote_store(struct kobject *kobj,
4252 struct kobj_attribute *attr, const char *buf, size_t len)
4254 unsigned long nr_demote;
4255 unsigned long nr_available;
4256 nodemask_t nodes_allowed, *n_mask;
4261 err = kstrtoul(buf, 10, &nr_demote);
4264 h = kobj_to_hstate(kobj, &nid);
4266 if (nid != NUMA_NO_NODE) {
4267 init_nodemask_of_node(&nodes_allowed, nid);
4268 n_mask = &nodes_allowed;
4270 n_mask = &node_states[N_MEMORY];
4273 /* Synchronize with other sysfs operations modifying huge pages */
4274 mutex_lock(&h->resize_lock);
4275 spin_lock_irq(&hugetlb_lock);
4279 * Check for available pages to demote each time thorough the
4280 * loop as demote_pool_huge_page will drop hugetlb_lock.
4282 if (nid != NUMA_NO_NODE)
4283 nr_available = h->free_huge_pages_node[nid];
4285 nr_available = h->free_huge_pages;
4286 nr_available -= h->resv_huge_pages;
4290 err = demote_pool_huge_page(h, n_mask);
4297 spin_unlock_irq(&hugetlb_lock);
4298 mutex_unlock(&h->resize_lock);
4304 HSTATE_ATTR_WO(demote);
4306 static ssize_t demote_size_show(struct kobject *kobj,
4307 struct kobj_attribute *attr, char *buf)
4309 struct hstate *h = kobj_to_hstate(kobj, NULL);
4310 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4312 return sysfs_emit(buf, "%lukB\n", demote_size);
4315 static ssize_t demote_size_store(struct kobject *kobj,
4316 struct kobj_attribute *attr,
4317 const char *buf, size_t count)
4319 struct hstate *h, *demote_hstate;
4320 unsigned long demote_size;
4321 unsigned int demote_order;
4323 demote_size = (unsigned long)memparse(buf, NULL);
4325 demote_hstate = size_to_hstate(demote_size);
4328 demote_order = demote_hstate->order;
4329 if (demote_order < HUGETLB_PAGE_ORDER)
4332 /* demote order must be smaller than hstate order */
4333 h = kobj_to_hstate(kobj, NULL);
4334 if (demote_order >= h->order)
4337 /* resize_lock synchronizes access to demote size and writes */
4338 mutex_lock(&h->resize_lock);
4339 h->demote_order = demote_order;
4340 mutex_unlock(&h->resize_lock);
4344 HSTATE_ATTR(demote_size);
4346 static struct attribute *hstate_attrs[] = {
4347 &nr_hugepages_attr.attr,
4348 &nr_overcommit_hugepages_attr.attr,
4349 &free_hugepages_attr.attr,
4350 &resv_hugepages_attr.attr,
4351 &surplus_hugepages_attr.attr,
4353 &nr_hugepages_mempolicy_attr.attr,
4358 static const struct attribute_group hstate_attr_group = {
4359 .attrs = hstate_attrs,
4362 static struct attribute *hstate_demote_attrs[] = {
4363 &demote_size_attr.attr,
4368 static const struct attribute_group hstate_demote_attr_group = {
4369 .attrs = hstate_demote_attrs,
4372 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4373 struct kobject **hstate_kobjs,
4374 const struct attribute_group *hstate_attr_group)
4377 int hi = hstate_index(h);
4379 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4380 if (!hstate_kobjs[hi])
4383 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4385 kobject_put(hstate_kobjs[hi]);
4386 hstate_kobjs[hi] = NULL;
4390 if (h->demote_order) {
4391 retval = sysfs_create_group(hstate_kobjs[hi],
4392 &hstate_demote_attr_group);
4394 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4395 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4396 kobject_put(hstate_kobjs[hi]);
4397 hstate_kobjs[hi] = NULL;
4406 static bool hugetlb_sysfs_initialized __ro_after_init;
4409 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4410 * with node devices in node_devices[] using a parallel array. The array
4411 * index of a node device or _hstate == node id.
4412 * This is here to avoid any static dependency of the node device driver, in
4413 * the base kernel, on the hugetlb module.
4415 struct node_hstate {
4416 struct kobject *hugepages_kobj;
4417 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4419 static struct node_hstate node_hstates[MAX_NUMNODES];
4422 * A subset of global hstate attributes for node devices
4424 static struct attribute *per_node_hstate_attrs[] = {
4425 &nr_hugepages_attr.attr,
4426 &free_hugepages_attr.attr,
4427 &surplus_hugepages_attr.attr,
4431 static const struct attribute_group per_node_hstate_attr_group = {
4432 .attrs = per_node_hstate_attrs,
4436 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4437 * Returns node id via non-NULL nidp.
4439 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4443 for (nid = 0; nid < nr_node_ids; nid++) {
4444 struct node_hstate *nhs = &node_hstates[nid];
4446 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4447 if (nhs->hstate_kobjs[i] == kobj) {
4459 * Unregister hstate attributes from a single node device.
4460 * No-op if no hstate attributes attached.
4462 void hugetlb_unregister_node(struct node *node)
4465 struct node_hstate *nhs = &node_hstates[node->dev.id];
4467 if (!nhs->hugepages_kobj)
4468 return; /* no hstate attributes */
4470 for_each_hstate(h) {
4471 int idx = hstate_index(h);
4472 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4476 if (h->demote_order)
4477 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4478 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4479 kobject_put(hstate_kobj);
4480 nhs->hstate_kobjs[idx] = NULL;
4483 kobject_put(nhs->hugepages_kobj);
4484 nhs->hugepages_kobj = NULL;
4489 * Register hstate attributes for a single node device.
4490 * No-op if attributes already registered.
4492 void hugetlb_register_node(struct node *node)
4495 struct node_hstate *nhs = &node_hstates[node->dev.id];
4498 if (!hugetlb_sysfs_initialized)
4501 if (nhs->hugepages_kobj)
4502 return; /* already allocated */
4504 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4506 if (!nhs->hugepages_kobj)
4509 for_each_hstate(h) {
4510 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4512 &per_node_hstate_attr_group);
4514 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4515 h->name, node->dev.id);
4516 hugetlb_unregister_node(node);
4523 * hugetlb init time: register hstate attributes for all registered node
4524 * devices of nodes that have memory. All on-line nodes should have
4525 * registered their associated device by this time.
4527 static void __init hugetlb_register_all_nodes(void)
4531 for_each_online_node(nid)
4532 hugetlb_register_node(node_devices[nid]);
4534 #else /* !CONFIG_NUMA */
4536 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4544 static void hugetlb_register_all_nodes(void) { }
4549 static void __init hugetlb_cma_check(void);
4551 static inline __init void hugetlb_cma_check(void)
4556 static void __init hugetlb_sysfs_init(void)
4561 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4562 if (!hugepages_kobj)
4565 for_each_hstate(h) {
4566 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4567 hstate_kobjs, &hstate_attr_group);
4569 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4573 hugetlb_sysfs_initialized = true;
4575 hugetlb_register_all_nodes();
4578 #ifdef CONFIG_SYSCTL
4579 static void hugetlb_sysctl_init(void);
4581 static inline void hugetlb_sysctl_init(void) { }
4584 static int __init hugetlb_init(void)
4588 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4591 if (!hugepages_supported()) {
4592 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4593 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4598 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4599 * architectures depend on setup being done here.
4601 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4602 if (!parsed_default_hugepagesz) {
4604 * If we did not parse a default huge page size, set
4605 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4606 * number of huge pages for this default size was implicitly
4607 * specified, set that here as well.
4608 * Note that the implicit setting will overwrite an explicit
4609 * setting. A warning will be printed in this case.
4611 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4612 if (default_hstate_max_huge_pages) {
4613 if (default_hstate.max_huge_pages) {
4616 string_get_size(huge_page_size(&default_hstate),
4617 1, STRING_UNITS_2, buf, 32);
4618 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4619 default_hstate.max_huge_pages, buf);
4620 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4621 default_hstate_max_huge_pages);
4623 default_hstate.max_huge_pages =
4624 default_hstate_max_huge_pages;
4626 for_each_online_node(i)
4627 default_hstate.max_huge_pages_node[i] =
4628 default_hugepages_in_node[i];
4632 hugetlb_cma_check();
4633 hugetlb_init_hstates();
4634 gather_bootmem_prealloc();
4637 hugetlb_sysfs_init();
4638 hugetlb_cgroup_file_init();
4639 hugetlb_sysctl_init();
4642 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4644 num_fault_mutexes = 1;
4646 hugetlb_fault_mutex_table =
4647 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4649 BUG_ON(!hugetlb_fault_mutex_table);
4651 for (i = 0; i < num_fault_mutexes; i++)
4652 mutex_init(&hugetlb_fault_mutex_table[i]);
4655 subsys_initcall(hugetlb_init);
4657 /* Overwritten by architectures with more huge page sizes */
4658 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4660 return size == HPAGE_SIZE;
4663 void __init hugetlb_add_hstate(unsigned int order)
4668 if (size_to_hstate(PAGE_SIZE << order)) {
4671 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4672 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4673 h = &hstates[hugetlb_max_hstate++];
4674 mutex_init(&h->resize_lock);
4676 h->mask = ~(huge_page_size(h) - 1);
4677 for (i = 0; i < MAX_NUMNODES; ++i)
4678 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4679 INIT_LIST_HEAD(&h->hugepage_activelist);
4680 h->next_nid_to_alloc = first_memory_node;
4681 h->next_nid_to_free = first_memory_node;
4682 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4683 huge_page_size(h)/SZ_1K);
4688 bool __init __weak hugetlb_node_alloc_supported(void)
4693 static void __init hugepages_clear_pages_in_node(void)
4695 if (!hugetlb_max_hstate) {
4696 default_hstate_max_huge_pages = 0;
4697 memset(default_hugepages_in_node, 0,
4698 sizeof(default_hugepages_in_node));
4700 parsed_hstate->max_huge_pages = 0;
4701 memset(parsed_hstate->max_huge_pages_node, 0,
4702 sizeof(parsed_hstate->max_huge_pages_node));
4707 * hugepages command line processing
4708 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4709 * specification. If not, ignore the hugepages value. hugepages can also
4710 * be the first huge page command line option in which case it implicitly
4711 * specifies the number of huge pages for the default size.
4713 static int __init hugepages_setup(char *s)
4716 static unsigned long *last_mhp;
4717 int node = NUMA_NO_NODE;
4722 if (!parsed_valid_hugepagesz) {
4723 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4724 parsed_valid_hugepagesz = true;
4729 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4730 * yet, so this hugepages= parameter goes to the "default hstate".
4731 * Otherwise, it goes with the previously parsed hugepagesz or
4732 * default_hugepagesz.
4734 else if (!hugetlb_max_hstate)
4735 mhp = &default_hstate_max_huge_pages;
4737 mhp = &parsed_hstate->max_huge_pages;
4739 if (mhp == last_mhp) {
4740 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4746 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4748 /* Parameter is node format */
4749 if (p[count] == ':') {
4750 if (!hugetlb_node_alloc_supported()) {
4751 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4754 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4756 node = array_index_nospec(tmp, MAX_NUMNODES);
4758 /* Parse hugepages */
4759 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4761 if (!hugetlb_max_hstate)
4762 default_hugepages_in_node[node] = tmp;
4764 parsed_hstate->max_huge_pages_node[node] = tmp;
4766 /* Go to parse next node*/
4767 if (p[count] == ',')
4780 * Global state is always initialized later in hugetlb_init.
4781 * But we need to allocate gigantic hstates here early to still
4782 * use the bootmem allocator.
4784 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4785 hugetlb_hstate_alloc_pages(parsed_hstate);
4792 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4793 hugepages_clear_pages_in_node();
4796 __setup("hugepages=", hugepages_setup);
4799 * hugepagesz command line processing
4800 * A specific huge page size can only be specified once with hugepagesz.
4801 * hugepagesz is followed by hugepages on the command line. The global
4802 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4803 * hugepagesz argument was valid.
4805 static int __init hugepagesz_setup(char *s)
4810 parsed_valid_hugepagesz = false;
4811 size = (unsigned long)memparse(s, NULL);
4813 if (!arch_hugetlb_valid_size(size)) {
4814 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4818 h = size_to_hstate(size);
4821 * hstate for this size already exists. This is normally
4822 * an error, but is allowed if the existing hstate is the
4823 * default hstate. More specifically, it is only allowed if
4824 * the number of huge pages for the default hstate was not
4825 * previously specified.
4827 if (!parsed_default_hugepagesz || h != &default_hstate ||
4828 default_hstate.max_huge_pages) {
4829 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4834 * No need to call hugetlb_add_hstate() as hstate already
4835 * exists. But, do set parsed_hstate so that a following
4836 * hugepages= parameter will be applied to this hstate.
4839 parsed_valid_hugepagesz = true;
4843 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4844 parsed_valid_hugepagesz = true;
4847 __setup("hugepagesz=", hugepagesz_setup);
4850 * default_hugepagesz command line input
4851 * Only one instance of default_hugepagesz allowed on command line.
4853 static int __init default_hugepagesz_setup(char *s)
4858 parsed_valid_hugepagesz = false;
4859 if (parsed_default_hugepagesz) {
4860 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4864 size = (unsigned long)memparse(s, NULL);
4866 if (!arch_hugetlb_valid_size(size)) {
4867 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4871 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4872 parsed_valid_hugepagesz = true;
4873 parsed_default_hugepagesz = true;
4874 default_hstate_idx = hstate_index(size_to_hstate(size));
4877 * The number of default huge pages (for this size) could have been
4878 * specified as the first hugetlb parameter: hugepages=X. If so,
4879 * then default_hstate_max_huge_pages is set. If the default huge
4880 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4881 * allocated here from bootmem allocator.
4883 if (default_hstate_max_huge_pages) {
4884 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4885 for_each_online_node(i)
4886 default_hstate.max_huge_pages_node[i] =
4887 default_hugepages_in_node[i];
4888 if (hstate_is_gigantic(&default_hstate))
4889 hugetlb_hstate_alloc_pages(&default_hstate);
4890 default_hstate_max_huge_pages = 0;
4895 __setup("default_hugepagesz=", default_hugepagesz_setup);
4897 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4900 struct mempolicy *mpol = get_task_policy(current);
4903 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4904 * (from policy_nodemask) specifically for hugetlb case
4906 if (mpol->mode == MPOL_BIND &&
4907 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4908 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4909 return &mpol->nodes;
4914 static unsigned int allowed_mems_nr(struct hstate *h)
4917 unsigned int nr = 0;
4918 nodemask_t *mbind_nodemask;
4919 unsigned int *array = h->free_huge_pages_node;
4920 gfp_t gfp_mask = htlb_alloc_mask(h);
4922 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4923 for_each_node_mask(node, cpuset_current_mems_allowed) {
4924 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4931 #ifdef CONFIG_SYSCTL
4932 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4933 void *buffer, size_t *length,
4934 loff_t *ppos, unsigned long *out)
4936 struct ctl_table dup_table;
4939 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4940 * can duplicate the @table and alter the duplicate of it.
4943 dup_table.data = out;
4945 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4948 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4949 struct ctl_table *table, int write,
4950 void *buffer, size_t *length, loff_t *ppos)
4952 struct hstate *h = &default_hstate;
4953 unsigned long tmp = h->max_huge_pages;
4956 if (!hugepages_supported())
4959 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4965 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4966 NUMA_NO_NODE, tmp, *length);
4971 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4972 void *buffer, size_t *length, loff_t *ppos)
4975 return hugetlb_sysctl_handler_common(false, table, write,
4976 buffer, length, ppos);
4980 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4981 void *buffer, size_t *length, loff_t *ppos)
4983 return hugetlb_sysctl_handler_common(true, table, write,
4984 buffer, length, ppos);
4986 #endif /* CONFIG_NUMA */
4988 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4989 void *buffer, size_t *length, loff_t *ppos)
4991 struct hstate *h = &default_hstate;
4995 if (!hugepages_supported())
4998 tmp = h->nr_overcommit_huge_pages;
5000 if (write && hstate_is_gigantic(h))
5003 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5009 spin_lock_irq(&hugetlb_lock);
5010 h->nr_overcommit_huge_pages = tmp;
5011 spin_unlock_irq(&hugetlb_lock);
5017 static struct ctl_table hugetlb_table[] = {
5019 .procname = "nr_hugepages",
5021 .maxlen = sizeof(unsigned long),
5023 .proc_handler = hugetlb_sysctl_handler,
5027 .procname = "nr_hugepages_mempolicy",
5029 .maxlen = sizeof(unsigned long),
5031 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
5035 .procname = "hugetlb_shm_group",
5036 .data = &sysctl_hugetlb_shm_group,
5037 .maxlen = sizeof(gid_t),
5039 .proc_handler = proc_dointvec,
5042 .procname = "nr_overcommit_hugepages",
5044 .maxlen = sizeof(unsigned long),
5046 .proc_handler = hugetlb_overcommit_handler,
5051 static void hugetlb_sysctl_init(void)
5053 register_sysctl_init("vm", hugetlb_table);
5055 #endif /* CONFIG_SYSCTL */
5057 void hugetlb_report_meminfo(struct seq_file *m)
5060 unsigned long total = 0;
5062 if (!hugepages_supported())
5065 for_each_hstate(h) {
5066 unsigned long count = h->nr_huge_pages;
5068 total += huge_page_size(h) * count;
5070 if (h == &default_hstate)
5072 "HugePages_Total: %5lu\n"
5073 "HugePages_Free: %5lu\n"
5074 "HugePages_Rsvd: %5lu\n"
5075 "HugePages_Surp: %5lu\n"
5076 "Hugepagesize: %8lu kB\n",
5080 h->surplus_huge_pages,
5081 huge_page_size(h) / SZ_1K);
5084 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
5087 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5089 struct hstate *h = &default_hstate;
5091 if (!hugepages_supported())
5094 return sysfs_emit_at(buf, len,
5095 "Node %d HugePages_Total: %5u\n"
5096 "Node %d HugePages_Free: %5u\n"
5097 "Node %d HugePages_Surp: %5u\n",
5098 nid, h->nr_huge_pages_node[nid],
5099 nid, h->free_huge_pages_node[nid],
5100 nid, h->surplus_huge_pages_node[nid]);
5103 void hugetlb_show_meminfo_node(int nid)
5107 if (!hugepages_supported())
5111 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5113 h->nr_huge_pages_node[nid],
5114 h->free_huge_pages_node[nid],
5115 h->surplus_huge_pages_node[nid],
5116 huge_page_size(h) / SZ_1K);
5119 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5121 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5122 K(atomic_long_read(&mm->hugetlb_usage)));
5125 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5126 unsigned long hugetlb_total_pages(void)
5129 unsigned long nr_total_pages = 0;
5132 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5133 return nr_total_pages;
5136 static int hugetlb_acct_memory(struct hstate *h, long delta)
5143 spin_lock_irq(&hugetlb_lock);
5145 * When cpuset is configured, it breaks the strict hugetlb page
5146 * reservation as the accounting is done on a global variable. Such
5147 * reservation is completely rubbish in the presence of cpuset because
5148 * the reservation is not checked against page availability for the
5149 * current cpuset. Application can still potentially OOM'ed by kernel
5150 * with lack of free htlb page in cpuset that the task is in.
5151 * Attempt to enforce strict accounting with cpuset is almost
5152 * impossible (or too ugly) because cpuset is too fluid that
5153 * task or memory node can be dynamically moved between cpusets.
5155 * The change of semantics for shared hugetlb mapping with cpuset is
5156 * undesirable. However, in order to preserve some of the semantics,
5157 * we fall back to check against current free page availability as
5158 * a best attempt and hopefully to minimize the impact of changing
5159 * semantics that cpuset has.
5161 * Apart from cpuset, we also have memory policy mechanism that
5162 * also determines from which node the kernel will allocate memory
5163 * in a NUMA system. So similar to cpuset, we also should consider
5164 * the memory policy of the current task. Similar to the description
5168 if (gather_surplus_pages(h, delta) < 0)
5171 if (delta > allowed_mems_nr(h)) {
5172 return_unused_surplus_pages(h, delta);
5179 return_unused_surplus_pages(h, (unsigned long) -delta);
5182 spin_unlock_irq(&hugetlb_lock);
5186 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5188 struct resv_map *resv = vma_resv_map(vma);
5191 * HPAGE_RESV_OWNER indicates a private mapping.
5192 * This new VMA should share its siblings reservation map if present.
5193 * The VMA will only ever have a valid reservation map pointer where
5194 * it is being copied for another still existing VMA. As that VMA
5195 * has a reference to the reservation map it cannot disappear until
5196 * after this open call completes. It is therefore safe to take a
5197 * new reference here without additional locking.
5199 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5200 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5201 kref_get(&resv->refs);
5205 * vma_lock structure for sharable mappings is vma specific.
5206 * Clear old pointer (if copied via vm_area_dup) and allocate
5207 * new structure. Before clearing, make sure vma_lock is not
5210 if (vma->vm_flags & VM_MAYSHARE) {
5211 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5214 if (vma_lock->vma != vma) {
5215 vma->vm_private_data = NULL;
5216 hugetlb_vma_lock_alloc(vma);
5218 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5220 hugetlb_vma_lock_alloc(vma);
5224 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5226 struct hstate *h = hstate_vma(vma);
5227 struct resv_map *resv;
5228 struct hugepage_subpool *spool = subpool_vma(vma);
5229 unsigned long reserve, start, end;
5232 hugetlb_vma_lock_free(vma);
5234 resv = vma_resv_map(vma);
5235 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5238 start = vma_hugecache_offset(h, vma, vma->vm_start);
5239 end = vma_hugecache_offset(h, vma, vma->vm_end);
5241 reserve = (end - start) - region_count(resv, start, end);
5242 hugetlb_cgroup_uncharge_counter(resv, start, end);
5245 * Decrement reserve counts. The global reserve count may be
5246 * adjusted if the subpool has a minimum size.
5248 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5249 hugetlb_acct_memory(h, -gbl_reserve);
5252 kref_put(&resv->refs, resv_map_release);
5255 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5257 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5261 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5262 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5263 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5265 if (addr & ~PUD_MASK) {
5267 * hugetlb_vm_op_split is called right before we attempt to
5268 * split the VMA. We will need to unshare PMDs in the old and
5269 * new VMAs, so let's unshare before we split.
5271 unsigned long floor = addr & PUD_MASK;
5272 unsigned long ceil = floor + PUD_SIZE;
5274 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5275 hugetlb_unshare_pmds(vma, floor, ceil);
5281 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5283 return huge_page_size(hstate_vma(vma));
5287 * We cannot handle pagefaults against hugetlb pages at all. They cause
5288 * handle_mm_fault() to try to instantiate regular-sized pages in the
5289 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5292 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5299 * When a new function is introduced to vm_operations_struct and added
5300 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5301 * This is because under System V memory model, mappings created via
5302 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5303 * their original vm_ops are overwritten with shm_vm_ops.
5305 const struct vm_operations_struct hugetlb_vm_ops = {
5306 .fault = hugetlb_vm_op_fault,
5307 .open = hugetlb_vm_op_open,
5308 .close = hugetlb_vm_op_close,
5309 .may_split = hugetlb_vm_op_split,
5310 .pagesize = hugetlb_vm_op_pagesize,
5313 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5317 unsigned int shift = huge_page_shift(hstate_vma(vma));
5320 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5321 vma->vm_page_prot)));
5323 entry = huge_pte_wrprotect(mk_huge_pte(page,
5324 vma->vm_page_prot));
5326 entry = pte_mkyoung(entry);
5327 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5332 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5333 unsigned long address, pte_t *ptep)
5337 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5338 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5339 update_mmu_cache(vma, address, ptep);
5342 bool is_hugetlb_entry_migration(pte_t pte)
5346 if (huge_pte_none(pte) || pte_present(pte))
5348 swp = pte_to_swp_entry(pte);
5349 if (is_migration_entry(swp))
5355 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5359 if (huge_pte_none(pte) || pte_present(pte))
5361 swp = pte_to_swp_entry(pte);
5362 if (is_hwpoison_entry(swp))
5369 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5370 struct folio *new_folio, pte_t old, unsigned long sz)
5372 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5374 __folio_mark_uptodate(new_folio);
5375 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5376 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5377 newpte = huge_pte_mkuffd_wp(newpte);
5378 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5379 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5380 folio_set_hugetlb_migratable(new_folio);
5383 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5384 struct vm_area_struct *dst_vma,
5385 struct vm_area_struct *src_vma)
5387 pte_t *src_pte, *dst_pte, entry;
5388 struct folio *pte_folio;
5390 bool cow = is_cow_mapping(src_vma->vm_flags);
5391 struct hstate *h = hstate_vma(src_vma);
5392 unsigned long sz = huge_page_size(h);
5393 unsigned long npages = pages_per_huge_page(h);
5394 struct mmu_notifier_range range;
5395 unsigned long last_addr_mask;
5399 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5402 mmu_notifier_invalidate_range_start(&range);
5403 vma_assert_write_locked(src_vma);
5404 raw_write_seqcount_begin(&src->write_protect_seq);
5407 * For shared mappings the vma lock must be held before
5408 * calling hugetlb_walk() in the src vma. Otherwise, the
5409 * returned ptep could go away if part of a shared pmd and
5410 * another thread calls huge_pmd_unshare.
5412 hugetlb_vma_lock_read(src_vma);
5415 last_addr_mask = hugetlb_mask_last_page(h);
5416 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5417 spinlock_t *src_ptl, *dst_ptl;
5418 src_pte = hugetlb_walk(src_vma, addr, sz);
5420 addr |= last_addr_mask;
5423 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5430 * If the pagetables are shared don't copy or take references.
5432 * dst_pte == src_pte is the common case of src/dest sharing.
5433 * However, src could have 'unshared' and dst shares with
5434 * another vma. So page_count of ptep page is checked instead
5435 * to reliably determine whether pte is shared.
5437 if (page_count(virt_to_page(dst_pte)) > 1) {
5438 addr |= last_addr_mask;
5442 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5443 src_ptl = huge_pte_lockptr(h, src, src_pte);
5444 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5445 entry = huge_ptep_get(src_pte);
5447 if (huge_pte_none(entry)) {
5449 * Skip if src entry none.
5452 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5453 if (!userfaultfd_wp(dst_vma))
5454 entry = huge_pte_clear_uffd_wp(entry);
5455 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5456 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5457 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5458 bool uffd_wp = pte_swp_uffd_wp(entry);
5460 if (!is_readable_migration_entry(swp_entry) && cow) {
5462 * COW mappings require pages in both
5463 * parent and child to be set to read.
5465 swp_entry = make_readable_migration_entry(
5466 swp_offset(swp_entry));
5467 entry = swp_entry_to_pte(swp_entry);
5468 if (userfaultfd_wp(src_vma) && uffd_wp)
5469 entry = pte_swp_mkuffd_wp(entry);
5470 set_huge_pte_at(src, addr, src_pte, entry, sz);
5472 if (!userfaultfd_wp(dst_vma))
5473 entry = huge_pte_clear_uffd_wp(entry);
5474 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5475 } else if (unlikely(is_pte_marker(entry))) {
5476 pte_marker marker = copy_pte_marker(
5477 pte_to_swp_entry(entry), dst_vma);
5480 set_huge_pte_at(dst, addr, dst_pte,
5481 make_pte_marker(marker), sz);
5483 entry = huge_ptep_get(src_pte);
5484 pte_folio = page_folio(pte_page(entry));
5485 folio_get(pte_folio);
5488 * Failing to duplicate the anon rmap is a rare case
5489 * where we see pinned hugetlb pages while they're
5490 * prone to COW. We need to do the COW earlier during
5493 * When pre-allocating the page or copying data, we
5494 * need to be without the pgtable locks since we could
5495 * sleep during the process.
5497 if (!folio_test_anon(pte_folio)) {
5498 hugetlb_add_file_rmap(pte_folio);
5499 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5500 pte_t src_pte_old = entry;
5501 struct folio *new_folio;
5503 spin_unlock(src_ptl);
5504 spin_unlock(dst_ptl);
5505 /* Do not use reserve as it's private owned */
5506 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5507 if (IS_ERR(new_folio)) {
5508 folio_put(pte_folio);
5509 ret = PTR_ERR(new_folio);
5512 ret = copy_user_large_folio(new_folio,
5515 folio_put(pte_folio);
5517 folio_put(new_folio);
5521 /* Install the new hugetlb folio if src pte stable */
5522 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5523 src_ptl = huge_pte_lockptr(h, src, src_pte);
5524 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5525 entry = huge_ptep_get(src_pte);
5526 if (!pte_same(src_pte_old, entry)) {
5527 restore_reserve_on_error(h, dst_vma, addr,
5529 folio_put(new_folio);
5530 /* huge_ptep of dst_pte won't change as in child */
5533 hugetlb_install_folio(dst_vma, dst_pte, addr,
5534 new_folio, src_pte_old, sz);
5535 spin_unlock(src_ptl);
5536 spin_unlock(dst_ptl);
5542 * No need to notify as we are downgrading page
5543 * table protection not changing it to point
5546 * See Documentation/mm/mmu_notifier.rst
5548 huge_ptep_set_wrprotect(src, addr, src_pte);
5549 entry = huge_pte_wrprotect(entry);
5552 if (!userfaultfd_wp(dst_vma))
5553 entry = huge_pte_clear_uffd_wp(entry);
5555 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5556 hugetlb_count_add(npages, dst);
5558 spin_unlock(src_ptl);
5559 spin_unlock(dst_ptl);
5563 raw_write_seqcount_end(&src->write_protect_seq);
5564 mmu_notifier_invalidate_range_end(&range);
5566 hugetlb_vma_unlock_read(src_vma);
5572 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5573 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5576 struct hstate *h = hstate_vma(vma);
5577 struct mm_struct *mm = vma->vm_mm;
5578 spinlock_t *src_ptl, *dst_ptl;
5581 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5582 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5585 * We don't have to worry about the ordering of src and dst ptlocks
5586 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5588 if (src_ptl != dst_ptl)
5589 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5591 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5592 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5594 if (src_ptl != dst_ptl)
5595 spin_unlock(src_ptl);
5596 spin_unlock(dst_ptl);
5599 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5600 struct vm_area_struct *new_vma,
5601 unsigned long old_addr, unsigned long new_addr,
5604 struct hstate *h = hstate_vma(vma);
5605 struct address_space *mapping = vma->vm_file->f_mapping;
5606 unsigned long sz = huge_page_size(h);
5607 struct mm_struct *mm = vma->vm_mm;
5608 unsigned long old_end = old_addr + len;
5609 unsigned long last_addr_mask;
5610 pte_t *src_pte, *dst_pte;
5611 struct mmu_notifier_range range;
5612 bool shared_pmd = false;
5614 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5616 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5618 * In case of shared PMDs, we should cover the maximum possible
5621 flush_cache_range(vma, range.start, range.end);
5623 mmu_notifier_invalidate_range_start(&range);
5624 last_addr_mask = hugetlb_mask_last_page(h);
5625 /* Prevent race with file truncation */
5626 hugetlb_vma_lock_write(vma);
5627 i_mmap_lock_write(mapping);
5628 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5629 src_pte = hugetlb_walk(vma, old_addr, sz);
5631 old_addr |= last_addr_mask;
5632 new_addr |= last_addr_mask;
5635 if (huge_pte_none(huge_ptep_get(src_pte)))
5638 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5640 old_addr |= last_addr_mask;
5641 new_addr |= last_addr_mask;
5645 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5649 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5653 flush_hugetlb_tlb_range(vma, range.start, range.end);
5655 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5656 mmu_notifier_invalidate_range_end(&range);
5657 i_mmap_unlock_write(mapping);
5658 hugetlb_vma_unlock_write(vma);
5660 return len + old_addr - old_end;
5663 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5664 unsigned long start, unsigned long end,
5665 struct page *ref_page, zap_flags_t zap_flags)
5667 struct mm_struct *mm = vma->vm_mm;
5668 unsigned long address;
5673 struct hstate *h = hstate_vma(vma);
5674 unsigned long sz = huge_page_size(h);
5675 bool adjust_reservation = false;
5676 unsigned long last_addr_mask;
5677 bool force_flush = false;
5679 WARN_ON(!is_vm_hugetlb_page(vma));
5680 BUG_ON(start & ~huge_page_mask(h));
5681 BUG_ON(end & ~huge_page_mask(h));
5684 * This is a hugetlb vma, all the pte entries should point
5687 tlb_change_page_size(tlb, sz);
5688 tlb_start_vma(tlb, vma);
5690 last_addr_mask = hugetlb_mask_last_page(h);
5692 for (; address < end; address += sz) {
5693 ptep = hugetlb_walk(vma, address, sz);
5695 address |= last_addr_mask;
5699 ptl = huge_pte_lock(h, mm, ptep);
5700 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5702 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5704 address |= last_addr_mask;
5708 pte = huge_ptep_get(ptep);
5709 if (huge_pte_none(pte)) {
5715 * Migrating hugepage or HWPoisoned hugepage is already
5716 * unmapped and its refcount is dropped, so just clear pte here.
5718 if (unlikely(!pte_present(pte))) {
5720 * If the pte was wr-protected by uffd-wp in any of the
5721 * swap forms, meanwhile the caller does not want to
5722 * drop the uffd-wp bit in this zap, then replace the
5723 * pte with a marker.
5725 if (pte_swp_uffd_wp_any(pte) &&
5726 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5727 set_huge_pte_at(mm, address, ptep,
5728 make_pte_marker(PTE_MARKER_UFFD_WP),
5731 huge_pte_clear(mm, address, ptep, sz);
5736 page = pte_page(pte);
5738 * If a reference page is supplied, it is because a specific
5739 * page is being unmapped, not a range. Ensure the page we
5740 * are about to unmap is the actual page of interest.
5743 if (page != ref_page) {
5748 * Mark the VMA as having unmapped its page so that
5749 * future faults in this VMA will fail rather than
5750 * looking like data was lost
5752 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5755 pte = huge_ptep_get_and_clear(mm, address, ptep);
5756 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5757 if (huge_pte_dirty(pte))
5758 set_page_dirty(page);
5759 /* Leave a uffd-wp pte marker if needed */
5760 if (huge_pte_uffd_wp(pte) &&
5761 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5762 set_huge_pte_at(mm, address, ptep,
5763 make_pte_marker(PTE_MARKER_UFFD_WP),
5765 hugetlb_count_sub(pages_per_huge_page(h), mm);
5766 hugetlb_remove_rmap(page_folio(page));
5769 * Restore the reservation for anonymous page, otherwise the
5770 * backing page could be stolen by someone.
5771 * If there we are freeing a surplus, do not set the restore
5774 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5775 folio_test_anon(page_folio(page))) {
5776 folio_set_hugetlb_restore_reserve(page_folio(page));
5777 /* Reservation to be adjusted after the spin lock */
5778 adjust_reservation = true;
5784 * Adjust the reservation for the region that will have the
5785 * reserve restored. Keep in mind that vma_needs_reservation() changes
5786 * resv->adds_in_progress if it succeeds. If this is not done,
5787 * do_exit() will not see it, and will keep the reservation
5790 if (adjust_reservation && vma_needs_reservation(h, vma, address))
5791 vma_add_reservation(h, vma, address);
5793 tlb_remove_page_size(tlb, page, huge_page_size(h));
5795 * Bail out after unmapping reference page if supplied
5800 tlb_end_vma(tlb, vma);
5803 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5804 * could defer the flush until now, since by holding i_mmap_rwsem we
5805 * guaranteed that the last refernece would not be dropped. But we must
5806 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5807 * dropped and the last reference to the shared PMDs page might be
5810 * In theory we could defer the freeing of the PMD pages as well, but
5811 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5812 * detect sharing, so we cannot defer the release of the page either.
5813 * Instead, do flush now.
5816 tlb_flush_mmu_tlbonly(tlb);
5819 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5820 unsigned long *start, unsigned long *end)
5822 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5825 adjust_range_if_pmd_sharing_possible(vma, start, end);
5826 hugetlb_vma_lock_write(vma);
5828 i_mmap_lock_write(vma->vm_file->f_mapping);
5831 void __hugetlb_zap_end(struct vm_area_struct *vma,
5832 struct zap_details *details)
5834 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5836 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5839 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5841 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5842 * When the vma_lock is freed, this makes the vma ineligible
5843 * for pmd sharing. And, i_mmap_rwsem is required to set up
5844 * pmd sharing. This is important as page tables for this
5845 * unmapped range will be asynchrously deleted. If the page
5846 * tables are shared, there will be issues when accessed by
5849 __hugetlb_vma_unlock_write_free(vma);
5851 hugetlb_vma_unlock_write(vma);
5855 i_mmap_unlock_write(vma->vm_file->f_mapping);
5858 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5859 unsigned long end, struct page *ref_page,
5860 zap_flags_t zap_flags)
5862 struct mmu_notifier_range range;
5863 struct mmu_gather tlb;
5865 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5867 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5868 mmu_notifier_invalidate_range_start(&range);
5869 tlb_gather_mmu(&tlb, vma->vm_mm);
5871 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5873 mmu_notifier_invalidate_range_end(&range);
5874 tlb_finish_mmu(&tlb);
5878 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5879 * mapping it owns the reserve page for. The intention is to unmap the page
5880 * from other VMAs and let the children be SIGKILLed if they are faulting the
5883 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5884 struct page *page, unsigned long address)
5886 struct hstate *h = hstate_vma(vma);
5887 struct vm_area_struct *iter_vma;
5888 struct address_space *mapping;
5892 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5893 * from page cache lookup which is in HPAGE_SIZE units.
5895 address = address & huge_page_mask(h);
5896 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5898 mapping = vma->vm_file->f_mapping;
5901 * Take the mapping lock for the duration of the table walk. As
5902 * this mapping should be shared between all the VMAs,
5903 * __unmap_hugepage_range() is called as the lock is already held
5905 i_mmap_lock_write(mapping);
5906 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5907 /* Do not unmap the current VMA */
5908 if (iter_vma == vma)
5912 * Shared VMAs have their own reserves and do not affect
5913 * MAP_PRIVATE accounting but it is possible that a shared
5914 * VMA is using the same page so check and skip such VMAs.
5916 if (iter_vma->vm_flags & VM_MAYSHARE)
5920 * Unmap the page from other VMAs without their own reserves.
5921 * They get marked to be SIGKILLed if they fault in these
5922 * areas. This is because a future no-page fault on this VMA
5923 * could insert a zeroed page instead of the data existing
5924 * from the time of fork. This would look like data corruption
5926 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5927 unmap_hugepage_range(iter_vma, address,
5928 address + huge_page_size(h), page, 0);
5930 i_mmap_unlock_write(mapping);
5934 * hugetlb_wp() should be called with page lock of the original hugepage held.
5935 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5936 * cannot race with other handlers or page migration.
5937 * Keep the pte_same checks anyway to make transition from the mutex easier.
5939 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5940 unsigned long address, pte_t *ptep, unsigned int flags,
5941 struct folio *pagecache_folio, spinlock_t *ptl,
5942 struct vm_fault *vmf)
5944 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5945 pte_t pte = huge_ptep_get(ptep);
5946 struct hstate *h = hstate_vma(vma);
5947 struct folio *old_folio;
5948 struct folio *new_folio;
5949 int outside_reserve = 0;
5951 unsigned long haddr = address & huge_page_mask(h);
5952 struct mmu_notifier_range range;
5955 * Never handle CoW for uffd-wp protected pages. It should be only
5956 * handled when the uffd-wp protection is removed.
5958 * Note that only the CoW optimization path (in hugetlb_no_page())
5959 * can trigger this, because hugetlb_fault() will always resolve
5960 * uffd-wp bit first.
5962 if (!unshare && huge_pte_uffd_wp(pte))
5966 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5967 * PTE mapped R/O such as maybe_mkwrite() would do.
5969 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5970 return VM_FAULT_SIGSEGV;
5972 /* Let's take out MAP_SHARED mappings first. */
5973 if (vma->vm_flags & VM_MAYSHARE) {
5974 set_huge_ptep_writable(vma, haddr, ptep);
5978 old_folio = page_folio(pte_page(pte));
5980 delayacct_wpcopy_start();
5984 * If no-one else is actually using this page, we're the exclusive
5985 * owner and can reuse this page.
5987 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5988 if (!PageAnonExclusive(&old_folio->page)) {
5989 folio_move_anon_rmap(old_folio, vma);
5990 SetPageAnonExclusive(&old_folio->page);
5992 if (likely(!unshare))
5993 set_huge_ptep_writable(vma, haddr, ptep);
5995 delayacct_wpcopy_end();
5998 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5999 PageAnonExclusive(&old_folio->page), &old_folio->page);
6002 * If the process that created a MAP_PRIVATE mapping is about to
6003 * perform a COW due to a shared page count, attempt to satisfy
6004 * the allocation without using the existing reserves. The pagecache
6005 * page is used to determine if the reserve at this address was
6006 * consumed or not. If reserves were used, a partial faulted mapping
6007 * at the time of fork() could consume its reserves on COW instead
6008 * of the full address range.
6010 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
6011 old_folio != pagecache_folio)
6012 outside_reserve = 1;
6014 folio_get(old_folio);
6017 * Drop page table lock as buddy allocator may be called. It will
6018 * be acquired again before returning to the caller, as expected.
6021 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
6023 if (IS_ERR(new_folio)) {
6025 * If a process owning a MAP_PRIVATE mapping fails to COW,
6026 * it is due to references held by a child and an insufficient
6027 * huge page pool. To guarantee the original mappers
6028 * reliability, unmap the page from child processes. The child
6029 * may get SIGKILLed if it later faults.
6031 if (outside_reserve) {
6032 struct address_space *mapping = vma->vm_file->f_mapping;
6036 folio_put(old_folio);
6038 * Drop hugetlb_fault_mutex and vma_lock before
6039 * unmapping. unmapping needs to hold vma_lock
6040 * in write mode. Dropping vma_lock in read mode
6041 * here is OK as COW mappings do not interact with
6044 * Reacquire both after unmap operation.
6046 idx = vma_hugecache_offset(h, vma, haddr);
6047 hash = hugetlb_fault_mutex_hash(mapping, idx);
6048 hugetlb_vma_unlock_read(vma);
6049 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6051 unmap_ref_private(mm, vma, &old_folio->page, haddr);
6053 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6054 hugetlb_vma_lock_read(vma);
6056 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6058 pte_same(huge_ptep_get(ptep), pte)))
6059 goto retry_avoidcopy;
6061 * race occurs while re-acquiring page table
6062 * lock, and our job is done.
6064 delayacct_wpcopy_end();
6068 ret = vmf_error(PTR_ERR(new_folio));
6069 goto out_release_old;
6073 * When the original hugepage is shared one, it does not have
6074 * anon_vma prepared.
6076 ret = vmf_anon_prepare(vmf);
6078 goto out_release_all;
6080 if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
6081 ret = VM_FAULT_HWPOISON_LARGE;
6082 goto out_release_all;
6084 __folio_mark_uptodate(new_folio);
6086 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
6087 haddr + huge_page_size(h));
6088 mmu_notifier_invalidate_range_start(&range);
6091 * Retake the page table lock to check for racing updates
6092 * before the page tables are altered
6095 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6096 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
6097 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6099 /* Break COW or unshare */
6100 huge_ptep_clear_flush(vma, haddr, ptep);
6101 hugetlb_remove_rmap(old_folio);
6102 hugetlb_add_new_anon_rmap(new_folio, vma, haddr);
6103 if (huge_pte_uffd_wp(pte))
6104 newpte = huge_pte_mkuffd_wp(newpte);
6105 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
6106 folio_set_hugetlb_migratable(new_folio);
6107 /* Make the old page be freed below */
6108 new_folio = old_folio;
6111 mmu_notifier_invalidate_range_end(&range);
6114 * No restore in case of successful pagetable update (Break COW or
6117 if (new_folio != old_folio)
6118 restore_reserve_on_error(h, vma, haddr, new_folio);
6119 folio_put(new_folio);
6121 folio_put(old_folio);
6123 spin_lock(ptl); /* Caller expects lock to be held */
6125 delayacct_wpcopy_end();
6130 * Return whether there is a pagecache page to back given address within VMA.
6132 static bool hugetlbfs_pagecache_present(struct hstate *h,
6133 struct vm_area_struct *vma, unsigned long address)
6135 struct address_space *mapping = vma->vm_file->f_mapping;
6136 pgoff_t idx = linear_page_index(vma, address);
6137 struct folio *folio;
6139 folio = filemap_get_folio(mapping, idx);
6146 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6149 struct inode *inode = mapping->host;
6150 struct hstate *h = hstate_inode(inode);
6153 idx <<= huge_page_order(h);
6154 __folio_set_locked(folio);
6155 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6157 if (unlikely(err)) {
6158 __folio_clear_locked(folio);
6161 folio_clear_hugetlb_restore_reserve(folio);
6164 * mark folio dirty so that it will not be removed from cache/file
6165 * by non-hugetlbfs specific code paths.
6167 folio_mark_dirty(folio);
6169 spin_lock(&inode->i_lock);
6170 inode->i_blocks += blocks_per_huge_page(h);
6171 spin_unlock(&inode->i_lock);
6175 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6176 struct address_space *mapping,
6177 unsigned long reason)
6182 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6183 * userfault. Also mmap_lock could be dropped due to handling
6184 * userfault, any vma operation should be careful from here.
6186 hugetlb_vma_unlock_read(vmf->vma);
6187 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6188 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6189 return handle_userfault(vmf, reason);
6193 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6194 * false if pte changed or is changing.
6196 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6197 pte_t *ptep, pte_t old_pte)
6202 ptl = huge_pte_lock(h, mm, ptep);
6203 same = pte_same(huge_ptep_get(ptep), old_pte);
6209 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
6210 struct vm_area_struct *vma,
6211 struct address_space *mapping, pgoff_t idx,
6212 unsigned long address, pte_t *ptep,
6213 pte_t old_pte, unsigned int flags,
6214 struct vm_fault *vmf)
6216 struct hstate *h = hstate_vma(vma);
6217 vm_fault_t ret = VM_FAULT_SIGBUS;
6220 struct folio *folio;
6223 unsigned long haddr = address & huge_page_mask(h);
6224 bool new_folio, new_pagecache_folio = false;
6225 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
6228 * Currently, we are forced to kill the process in the event the
6229 * original mapper has unmapped pages from the child due to a failed
6230 * COW/unsharing. Warn that such a situation has occurred as it may not
6233 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6234 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6240 * Use page lock to guard against racing truncation
6241 * before we get page_table_lock.
6244 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6245 if (IS_ERR(folio)) {
6246 size = i_size_read(mapping->host) >> huge_page_shift(h);
6249 /* Check for page in userfault range */
6250 if (userfaultfd_missing(vma)) {
6252 * Since hugetlb_no_page() was examining pte
6253 * without pgtable lock, we need to re-test under
6254 * lock because the pte may not be stable and could
6255 * have changed from under us. Try to detect
6256 * either changed or during-changing ptes and retry
6257 * properly when needed.
6259 * Note that userfaultfd is actually fine with
6260 * false positives (e.g. caused by pte changed),
6261 * but not wrong logical events (e.g. caused by
6262 * reading a pte during changing). The latter can
6263 * confuse the userspace, so the strictness is very
6264 * much preferred. E.g., MISSING event should
6265 * never happen on the page after UFFDIO_COPY has
6266 * correctly installed the page and returned.
6268 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6273 return hugetlb_handle_userfault(vmf, mapping,
6277 folio = alloc_hugetlb_folio(vma, haddr, 0);
6278 if (IS_ERR(folio)) {
6280 * Returning error will result in faulting task being
6281 * sent SIGBUS. The hugetlb fault mutex prevents two
6282 * tasks from racing to fault in the same page which
6283 * could result in false unable to allocate errors.
6284 * Page migration does not take the fault mutex, but
6285 * does a clear then write of pte's under page table
6286 * lock. Page fault code could race with migration,
6287 * notice the clear pte and try to allocate a page
6288 * here. Before returning error, get ptl and make
6289 * sure there really is no pte entry.
6291 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
6292 ret = vmf_error(PTR_ERR(folio));
6297 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
6298 __folio_mark_uptodate(folio);
6301 if (vma->vm_flags & VM_MAYSHARE) {
6302 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
6305 * err can't be -EEXIST which implies someone
6306 * else consumed the reservation since hugetlb
6307 * fault mutex is held when add a hugetlb page
6308 * to the page cache. So it's safe to call
6309 * restore_reserve_on_error() here.
6311 restore_reserve_on_error(h, vma, haddr, folio);
6315 new_pagecache_folio = true;
6319 ret = vmf_anon_prepare(vmf);
6321 goto backout_unlocked;
6326 * If memory error occurs between mmap() and fault, some process
6327 * don't have hwpoisoned swap entry for errored virtual address.
6328 * So we need to block hugepage fault by PG_hwpoison bit check.
6330 if (unlikely(folio_test_hwpoison(folio))) {
6331 ret = VM_FAULT_HWPOISON_LARGE |
6332 VM_FAULT_SET_HINDEX(hstate_index(h));
6333 goto backout_unlocked;
6336 /* Check for page in userfault range. */
6337 if (userfaultfd_minor(vma)) {
6338 folio_unlock(folio);
6340 /* See comment in userfaultfd_missing() block above */
6341 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6345 return hugetlb_handle_userfault(vmf, mapping,
6351 * If we are going to COW a private mapping later, we examine the
6352 * pending reservations for this page now. This will ensure that
6353 * any allocations necessary to record that reservation occur outside
6356 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6357 if (vma_needs_reservation(h, vma, haddr) < 0) {
6359 goto backout_unlocked;
6361 /* Just decrements count, does not deallocate */
6362 vma_end_reservation(h, vma, haddr);
6365 ptl = huge_pte_lock(h, mm, ptep);
6367 /* If pte changed from under us, retry */
6368 if (!pte_same(huge_ptep_get(ptep), old_pte))
6372 hugetlb_add_new_anon_rmap(folio, vma, haddr);
6374 hugetlb_add_file_rmap(folio);
6375 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6376 && (vma->vm_flags & VM_SHARED)));
6378 * If this pte was previously wr-protected, keep it wr-protected even
6381 if (unlikely(pte_marker_uffd_wp(old_pte)))
6382 new_pte = huge_pte_mkuffd_wp(new_pte);
6383 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6385 hugetlb_count_add(pages_per_huge_page(h), mm);
6386 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6387 /* Optimization, do the COW without a second fault */
6388 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl, vmf);
6394 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6395 * found in the pagecache may not have hugetlb_migratable if they have
6396 * been isolated for migration.
6399 folio_set_hugetlb_migratable(folio);
6401 folio_unlock(folio);
6403 hugetlb_vma_unlock_read(vma);
6404 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6410 if (new_folio && !new_pagecache_folio)
6411 restore_reserve_on_error(h, vma, haddr, folio);
6413 folio_unlock(folio);
6419 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6421 unsigned long key[2];
6424 key[0] = (unsigned long) mapping;
6427 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6429 return hash & (num_fault_mutexes - 1);
6433 * For uniprocessor systems we always use a single mutex, so just
6434 * return 0 and avoid the hashing overhead.
6436 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6442 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6443 unsigned long address, unsigned int flags)
6449 struct folio *folio = NULL;
6450 struct folio *pagecache_folio = NULL;
6451 struct hstate *h = hstate_vma(vma);
6452 struct address_space *mapping;
6453 int need_wait_lock = 0;
6454 unsigned long haddr = address & huge_page_mask(h);
6455 struct vm_fault vmf = {
6458 .real_address = address,
6460 .pgoff = vma_hugecache_offset(h, vma, haddr),
6461 /* TODO: Track hugetlb faults using vm_fault */
6464 * Some fields may not be initialized, be careful as it may
6465 * be hard to debug if called functions make assumptions
6470 * Serialize hugepage allocation and instantiation, so that we don't
6471 * get spurious allocation failures if two CPUs race to instantiate
6472 * the same page in the page cache.
6474 mapping = vma->vm_file->f_mapping;
6475 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6476 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6479 * Acquire vma lock before calling huge_pte_alloc and hold
6480 * until finished with ptep. This prevents huge_pmd_unshare from
6481 * being called elsewhere and making the ptep no longer valid.
6483 hugetlb_vma_lock_read(vma);
6484 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6486 hugetlb_vma_unlock_read(vma);
6487 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6488 return VM_FAULT_OOM;
6491 entry = huge_ptep_get(ptep);
6492 if (huge_pte_none_mostly(entry)) {
6493 if (is_pte_marker(entry)) {
6495 pte_marker_get(pte_to_swp_entry(entry));
6497 if (marker & PTE_MARKER_POISONED) {
6498 ret = VM_FAULT_HWPOISON_LARGE;
6504 * Other PTE markers should be handled the same way as none PTE.
6506 * hugetlb_no_page will drop vma lock and hugetlb fault
6507 * mutex internally, which make us return immediately.
6509 return hugetlb_no_page(mm, vma, mapping, vmf.pgoff, address,
6510 ptep, entry, flags, &vmf);
6516 * entry could be a migration/hwpoison entry at this point, so this
6517 * check prevents the kernel from going below assuming that we have
6518 * an active hugepage in pagecache. This goto expects the 2nd page
6519 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6520 * properly handle it.
6522 if (!pte_present(entry)) {
6523 if (unlikely(is_hugetlb_entry_migration(entry))) {
6525 * Release the hugetlb fault lock now, but retain
6526 * the vma lock, because it is needed to guard the
6527 * huge_pte_lockptr() later in
6528 * migration_entry_wait_huge(). The vma lock will
6529 * be released there.
6531 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6532 migration_entry_wait_huge(vma, ptep);
6534 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6535 ret = VM_FAULT_HWPOISON_LARGE |
6536 VM_FAULT_SET_HINDEX(hstate_index(h));
6541 * If we are going to COW/unshare the mapping later, we examine the
6542 * pending reservations for this page now. This will ensure that any
6543 * allocations necessary to record that reservation occur outside the
6544 * spinlock. Also lookup the pagecache page now as it is used to
6545 * determine if a reservation has been consumed.
6547 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6548 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6549 if (vma_needs_reservation(h, vma, haddr) < 0) {
6553 /* Just decrements count, does not deallocate */
6554 vma_end_reservation(h, vma, haddr);
6556 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6558 if (IS_ERR(pagecache_folio))
6559 pagecache_folio = NULL;
6562 ptl = huge_pte_lock(h, mm, ptep);
6564 /* Check for a racing update before calling hugetlb_wp() */
6565 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6568 /* Handle userfault-wp first, before trying to lock more pages */
6569 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6570 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6571 if (!userfaultfd_wp_async(vma)) {
6573 if (pagecache_folio) {
6574 folio_unlock(pagecache_folio);
6575 folio_put(pagecache_folio);
6577 hugetlb_vma_unlock_read(vma);
6578 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6579 return handle_userfault(&vmf, VM_UFFD_WP);
6582 entry = huge_pte_clear_uffd_wp(entry);
6583 set_huge_pte_at(mm, haddr, ptep, entry,
6584 huge_page_size(hstate_vma(vma)));
6585 /* Fallthrough to CoW */
6589 * hugetlb_wp() requires page locks of pte_page(entry) and
6590 * pagecache_folio, so here we need take the former one
6591 * when folio != pagecache_folio or !pagecache_folio.
6593 folio = page_folio(pte_page(entry));
6594 if (folio != pagecache_folio)
6595 if (!folio_trylock(folio)) {
6602 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6603 if (!huge_pte_write(entry)) {
6604 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6605 pagecache_folio, ptl, &vmf);
6607 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6608 entry = huge_pte_mkdirty(entry);
6611 entry = pte_mkyoung(entry);
6612 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6613 flags & FAULT_FLAG_WRITE))
6614 update_mmu_cache(vma, haddr, ptep);
6616 if (folio != pagecache_folio)
6617 folio_unlock(folio);
6622 if (pagecache_folio) {
6623 folio_unlock(pagecache_folio);
6624 folio_put(pagecache_folio);
6627 hugetlb_vma_unlock_read(vma);
6628 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6630 * Generally it's safe to hold refcount during waiting page lock. But
6631 * here we just wait to defer the next page fault to avoid busy loop and
6632 * the page is not used after unlocked before returning from the current
6633 * page fault. So we are safe from accessing freed page, even if we wait
6634 * here without taking refcount.
6637 folio_wait_locked(folio);
6641 #ifdef CONFIG_USERFAULTFD
6643 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6645 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6646 struct vm_area_struct *vma, unsigned long address)
6648 struct mempolicy *mpol;
6649 nodemask_t *nodemask;
6650 struct folio *folio;
6654 gfp_mask = htlb_alloc_mask(h);
6655 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6656 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
6657 mpol_cond_put(mpol);
6663 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6664 * with modifications for hugetlb pages.
6666 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6667 struct vm_area_struct *dst_vma,
6668 unsigned long dst_addr,
6669 unsigned long src_addr,
6671 struct folio **foliop)
6673 struct mm_struct *dst_mm = dst_vma->vm_mm;
6674 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6675 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6676 struct hstate *h = hstate_vma(dst_vma);
6677 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6678 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6680 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6684 struct folio *folio;
6686 bool folio_in_pagecache = false;
6688 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6689 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6691 /* Don't overwrite any existing PTEs (even markers) */
6692 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6697 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6698 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6701 /* No need to invalidate - it was non-present before */
6702 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6710 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6713 folio_in_pagecache = true;
6714 } else if (!*foliop) {
6715 /* If a folio already exists, then it's UFFDIO_COPY for
6716 * a non-missing case. Return -EEXIST.
6719 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6724 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6725 if (IS_ERR(folio)) {
6730 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6733 /* fallback to copy_from_user outside mmap_lock */
6734 if (unlikely(ret)) {
6736 /* Free the allocated folio which may have
6737 * consumed a reservation.
6739 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6742 /* Allocate a temporary folio to hold the copied
6745 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6751 /* Set the outparam foliop and return to the caller to
6752 * copy the contents outside the lock. Don't free the
6759 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6766 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6767 if (IS_ERR(folio)) {
6773 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6783 * If we just allocated a new page, we need a memory barrier to ensure
6784 * that preceding stores to the page become visible before the
6785 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6788 * In the case where we have not allocated a new page (is_continue),
6789 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6790 * an earlier smp_wmb() to ensure that prior stores will be visible
6791 * before the set_pte_at() write.
6794 __folio_mark_uptodate(folio);
6796 WARN_ON_ONCE(!folio_test_uptodate(folio));
6798 /* Add shared, newly allocated pages to the page cache. */
6799 if (vm_shared && !is_continue) {
6800 size = i_size_read(mapping->host) >> huge_page_shift(h);
6803 goto out_release_nounlock;
6806 * Serialization between remove_inode_hugepages() and
6807 * hugetlb_add_to_page_cache() below happens through the
6808 * hugetlb_fault_mutex_table that here must be hold by
6811 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6813 goto out_release_nounlock;
6814 folio_in_pagecache = true;
6817 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6820 if (folio_test_hwpoison(folio))
6821 goto out_release_unlock;
6824 * We allow to overwrite a pte marker: consider when both MISSING|WP
6825 * registered, we firstly wr-protect a none pte which has no page cache
6826 * page backing it, then access the page.
6829 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6830 goto out_release_unlock;
6832 if (folio_in_pagecache)
6833 hugetlb_add_file_rmap(folio);
6835 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6838 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6839 * with wp flag set, don't set pte write bit.
6841 if (wp_enabled || (is_continue && !vm_shared))
6844 writable = dst_vma->vm_flags & VM_WRITE;
6846 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6848 * Always mark UFFDIO_COPY page dirty; note that this may not be
6849 * extremely important for hugetlbfs for now since swapping is not
6850 * supported, but we should still be clear in that this page cannot be
6851 * thrown away at will, even if write bit not set.
6853 _dst_pte = huge_pte_mkdirty(_dst_pte);
6854 _dst_pte = pte_mkyoung(_dst_pte);
6857 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6859 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6861 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6863 /* No need to invalidate - it was non-present before */
6864 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6868 folio_set_hugetlb_migratable(folio);
6869 if (vm_shared || is_continue)
6870 folio_unlock(folio);
6876 if (vm_shared || is_continue)
6877 folio_unlock(folio);
6878 out_release_nounlock:
6879 if (!folio_in_pagecache)
6880 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6884 #endif /* CONFIG_USERFAULTFD */
6886 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6887 unsigned long address, unsigned int flags,
6888 unsigned int *page_mask)
6890 struct hstate *h = hstate_vma(vma);
6891 struct mm_struct *mm = vma->vm_mm;
6892 unsigned long haddr = address & huge_page_mask(h);
6893 struct page *page = NULL;
6898 hugetlb_vma_lock_read(vma);
6899 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6903 ptl = huge_pte_lock(h, mm, pte);
6904 entry = huge_ptep_get(pte);
6905 if (pte_present(entry)) {
6906 page = pte_page(entry);
6908 if (!huge_pte_write(entry)) {
6909 if (flags & FOLL_WRITE) {
6914 if (gup_must_unshare(vma, flags, page)) {
6915 /* Tell the caller to do unsharing */
6916 page = ERR_PTR(-EMLINK);
6921 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6924 * Note that page may be a sub-page, and with vmemmap
6925 * optimizations the page struct may be read only.
6926 * try_grab_page() will increase the ref count on the
6927 * head page, so this will be OK.
6929 * try_grab_page() should always be able to get the page here,
6930 * because we hold the ptl lock and have verified pte_present().
6932 ret = try_grab_page(page, flags);
6934 if (WARN_ON_ONCE(ret)) {
6935 page = ERR_PTR(ret);
6939 *page_mask = (1U << huge_page_order(h)) - 1;
6944 hugetlb_vma_unlock_read(vma);
6947 * Fixup retval for dump requests: if pagecache doesn't exist,
6948 * don't try to allocate a new page but just skip it.
6950 if (!page && (flags & FOLL_DUMP) &&
6951 !hugetlbfs_pagecache_present(h, vma, address))
6952 page = ERR_PTR(-EFAULT);
6957 long hugetlb_change_protection(struct vm_area_struct *vma,
6958 unsigned long address, unsigned long end,
6959 pgprot_t newprot, unsigned long cp_flags)
6961 struct mm_struct *mm = vma->vm_mm;
6962 unsigned long start = address;
6965 struct hstate *h = hstate_vma(vma);
6966 long pages = 0, psize = huge_page_size(h);
6967 bool shared_pmd = false;
6968 struct mmu_notifier_range range;
6969 unsigned long last_addr_mask;
6970 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6971 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6974 * In the case of shared PMDs, the area to flush could be beyond
6975 * start/end. Set range.start/range.end to cover the maximum possible
6976 * range if PMD sharing is possible.
6978 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6980 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6982 BUG_ON(address >= end);
6983 flush_cache_range(vma, range.start, range.end);
6985 mmu_notifier_invalidate_range_start(&range);
6986 hugetlb_vma_lock_write(vma);
6987 i_mmap_lock_write(vma->vm_file->f_mapping);
6988 last_addr_mask = hugetlb_mask_last_page(h);
6989 for (; address < end; address += psize) {
6991 ptep = hugetlb_walk(vma, address, psize);
6994 address |= last_addr_mask;
6998 * Userfaultfd wr-protect requires pgtable
6999 * pre-allocations to install pte markers.
7001 ptep = huge_pte_alloc(mm, vma, address, psize);
7007 ptl = huge_pte_lock(h, mm, ptep);
7008 if (huge_pmd_unshare(mm, vma, address, ptep)) {
7010 * When uffd-wp is enabled on the vma, unshare
7011 * shouldn't happen at all. Warn about it if it
7012 * happened due to some reason.
7014 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7018 address |= last_addr_mask;
7021 pte = huge_ptep_get(ptep);
7022 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7023 /* Nothing to do. */
7024 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
7025 swp_entry_t entry = pte_to_swp_entry(pte);
7026 struct page *page = pfn_swap_entry_to_page(entry);
7029 if (is_writable_migration_entry(entry)) {
7031 entry = make_readable_exclusive_migration_entry(
7034 entry = make_readable_migration_entry(
7036 newpte = swp_entry_to_pte(entry);
7041 newpte = pte_swp_mkuffd_wp(newpte);
7042 else if (uffd_wp_resolve)
7043 newpte = pte_swp_clear_uffd_wp(newpte);
7044 if (!pte_same(pte, newpte))
7045 set_huge_pte_at(mm, address, ptep, newpte, psize);
7046 } else if (unlikely(is_pte_marker(pte))) {
7047 /* No other markers apply for now. */
7048 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
7049 if (uffd_wp_resolve)
7050 /* Safe to modify directly (non-present->none). */
7051 huge_pte_clear(mm, address, ptep, psize);
7052 } else if (!huge_pte_none(pte)) {
7054 unsigned int shift = huge_page_shift(hstate_vma(vma));
7056 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7057 pte = huge_pte_modify(old_pte, newprot);
7058 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7060 pte = huge_pte_mkuffd_wp(pte);
7061 else if (uffd_wp_resolve)
7062 pte = huge_pte_clear_uffd_wp(pte);
7063 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7067 if (unlikely(uffd_wp))
7068 /* Safe to modify directly (none->non-present). */
7069 set_huge_pte_at(mm, address, ptep,
7070 make_pte_marker(PTE_MARKER_UFFD_WP),
7076 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7077 * may have cleared our pud entry and done put_page on the page table:
7078 * once we release i_mmap_rwsem, another task can do the final put_page
7079 * and that page table be reused and filled with junk. If we actually
7080 * did unshare a page of pmds, flush the range corresponding to the pud.
7083 flush_hugetlb_tlb_range(vma, range.start, range.end);
7085 flush_hugetlb_tlb_range(vma, start, end);
7087 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7088 * downgrading page table protection not changing it to point to a new
7091 * See Documentation/mm/mmu_notifier.rst
7093 i_mmap_unlock_write(vma->vm_file->f_mapping);
7094 hugetlb_vma_unlock_write(vma);
7095 mmu_notifier_invalidate_range_end(&range);
7097 return pages > 0 ? (pages << h->order) : pages;
7100 /* Return true if reservation was successful, false otherwise. */
7101 bool hugetlb_reserve_pages(struct inode *inode,
7103 struct vm_area_struct *vma,
7104 vm_flags_t vm_flags)
7106 long chg = -1, add = -1;
7107 struct hstate *h = hstate_inode(inode);
7108 struct hugepage_subpool *spool = subpool_inode(inode);
7109 struct resv_map *resv_map;
7110 struct hugetlb_cgroup *h_cg = NULL;
7111 long gbl_reserve, regions_needed = 0;
7113 /* This should never happen */
7115 VM_WARN(1, "%s called with a negative range\n", __func__);
7120 * vma specific semaphore used for pmd sharing and fault/truncation
7123 hugetlb_vma_lock_alloc(vma);
7126 * Only apply hugepage reservation if asked. At fault time, an
7127 * attempt will be made for VM_NORESERVE to allocate a page
7128 * without using reserves
7130 if (vm_flags & VM_NORESERVE)
7134 * Shared mappings base their reservation on the number of pages that
7135 * are already allocated on behalf of the file. Private mappings need
7136 * to reserve the full area even if read-only as mprotect() may be
7137 * called to make the mapping read-write. Assume !vma is a shm mapping
7139 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7141 * resv_map can not be NULL as hugetlb_reserve_pages is only
7142 * called for inodes for which resv_maps were created (see
7143 * hugetlbfs_get_inode).
7145 resv_map = inode_resv_map(inode);
7147 chg = region_chg(resv_map, from, to, ®ions_needed);
7149 /* Private mapping. */
7150 resv_map = resv_map_alloc();
7156 set_vma_resv_map(vma, resv_map);
7157 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7163 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7164 chg * pages_per_huge_page(h), &h_cg) < 0)
7167 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7168 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7171 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7175 * There must be enough pages in the subpool for the mapping. If
7176 * the subpool has a minimum size, there may be some global
7177 * reservations already in place (gbl_reserve).
7179 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7180 if (gbl_reserve < 0)
7181 goto out_uncharge_cgroup;
7184 * Check enough hugepages are available for the reservation.
7185 * Hand the pages back to the subpool if there are not
7187 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7191 * Account for the reservations made. Shared mappings record regions
7192 * that have reservations as they are shared by multiple VMAs.
7193 * When the last VMA disappears, the region map says how much
7194 * the reservation was and the page cache tells how much of
7195 * the reservation was consumed. Private mappings are per-VMA and
7196 * only the consumed reservations are tracked. When the VMA
7197 * disappears, the original reservation is the VMA size and the
7198 * consumed reservations are stored in the map. Hence, nothing
7199 * else has to be done for private mappings here
7201 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7202 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7204 if (unlikely(add < 0)) {
7205 hugetlb_acct_memory(h, -gbl_reserve);
7207 } else if (unlikely(chg > add)) {
7209 * pages in this range were added to the reserve
7210 * map between region_chg and region_add. This
7211 * indicates a race with alloc_hugetlb_folio. Adjust
7212 * the subpool and reserve counts modified above
7213 * based on the difference.
7218 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7219 * reference to h_cg->css. See comment below for detail.
7221 hugetlb_cgroup_uncharge_cgroup_rsvd(
7223 (chg - add) * pages_per_huge_page(h), h_cg);
7225 rsv_adjust = hugepage_subpool_put_pages(spool,
7227 hugetlb_acct_memory(h, -rsv_adjust);
7230 * The file_regions will hold their own reference to
7231 * h_cg->css. So we should release the reference held
7232 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7235 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7241 /* put back original number of pages, chg */
7242 (void)hugepage_subpool_put_pages(spool, chg);
7243 out_uncharge_cgroup:
7244 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7245 chg * pages_per_huge_page(h), h_cg);
7247 hugetlb_vma_lock_free(vma);
7248 if (!vma || vma->vm_flags & VM_MAYSHARE)
7249 /* Only call region_abort if the region_chg succeeded but the
7250 * region_add failed or didn't run.
7252 if (chg >= 0 && add < 0)
7253 region_abort(resv_map, from, to, regions_needed);
7254 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7255 kref_put(&resv_map->refs, resv_map_release);
7256 set_vma_resv_map(vma, NULL);
7261 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7264 struct hstate *h = hstate_inode(inode);
7265 struct resv_map *resv_map = inode_resv_map(inode);
7267 struct hugepage_subpool *spool = subpool_inode(inode);
7271 * Since this routine can be called in the evict inode path for all
7272 * hugetlbfs inodes, resv_map could be NULL.
7275 chg = region_del(resv_map, start, end);
7277 * region_del() can fail in the rare case where a region
7278 * must be split and another region descriptor can not be
7279 * allocated. If end == LONG_MAX, it will not fail.
7285 spin_lock(&inode->i_lock);
7286 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7287 spin_unlock(&inode->i_lock);
7290 * If the subpool has a minimum size, the number of global
7291 * reservations to be released may be adjusted.
7293 * Note that !resv_map implies freed == 0. So (chg - freed)
7294 * won't go negative.
7296 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7297 hugetlb_acct_memory(h, -gbl_reserve);
7302 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7303 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7304 struct vm_area_struct *vma,
7305 unsigned long addr, pgoff_t idx)
7307 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7309 unsigned long sbase = saddr & PUD_MASK;
7310 unsigned long s_end = sbase + PUD_SIZE;
7312 /* Allow segments to share if only one is marked locked */
7313 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7314 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7317 * match the virtual addresses, permission and the alignment of the
7320 * Also, vma_lock (vm_private_data) is required for sharing.
7322 if (pmd_index(addr) != pmd_index(saddr) ||
7323 vm_flags != svm_flags ||
7324 !range_in_vma(svma, sbase, s_end) ||
7325 !svma->vm_private_data)
7331 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7333 unsigned long start = addr & PUD_MASK;
7334 unsigned long end = start + PUD_SIZE;
7336 #ifdef CONFIG_USERFAULTFD
7337 if (uffd_disable_huge_pmd_share(vma))
7341 * check on proper vm_flags and page table alignment
7343 if (!(vma->vm_flags & VM_MAYSHARE))
7345 if (!vma->vm_private_data) /* vma lock required for sharing */
7347 if (!range_in_vma(vma, start, end))
7353 * Determine if start,end range within vma could be mapped by shared pmd.
7354 * If yes, adjust start and end to cover range associated with possible
7355 * shared pmd mappings.
7357 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7358 unsigned long *start, unsigned long *end)
7360 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7361 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7364 * vma needs to span at least one aligned PUD size, and the range
7365 * must be at least partially within in.
7367 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7368 (*end <= v_start) || (*start >= v_end))
7371 /* Extend the range to be PUD aligned for a worst case scenario */
7372 if (*start > v_start)
7373 *start = ALIGN_DOWN(*start, PUD_SIZE);
7376 *end = ALIGN(*end, PUD_SIZE);
7380 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7381 * and returns the corresponding pte. While this is not necessary for the
7382 * !shared pmd case because we can allocate the pmd later as well, it makes the
7383 * code much cleaner. pmd allocation is essential for the shared case because
7384 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7385 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7386 * bad pmd for sharing.
7388 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7389 unsigned long addr, pud_t *pud)
7391 struct address_space *mapping = vma->vm_file->f_mapping;
7392 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7394 struct vm_area_struct *svma;
7395 unsigned long saddr;
7399 i_mmap_lock_read(mapping);
7400 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7404 saddr = page_table_shareable(svma, vma, addr, idx);
7406 spte = hugetlb_walk(svma, saddr,
7407 vma_mmu_pagesize(svma));
7409 get_page(virt_to_page(spte));
7418 spin_lock(&mm->page_table_lock);
7419 if (pud_none(*pud)) {
7420 pud_populate(mm, pud,
7421 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7424 put_page(virt_to_page(spte));
7426 spin_unlock(&mm->page_table_lock);
7428 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7429 i_mmap_unlock_read(mapping);
7434 * unmap huge page backed by shared pte.
7436 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7437 * indicated by page_count > 1, unmap is achieved by clearing pud and
7438 * decrementing the ref count. If count == 1, the pte page is not shared.
7440 * Called with page table lock held.
7442 * returns: 1 successfully unmapped a shared pte page
7443 * 0 the underlying pte page is not shared, or it is the last user
7445 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7446 unsigned long addr, pte_t *ptep)
7448 pgd_t *pgd = pgd_offset(mm, addr);
7449 p4d_t *p4d = p4d_offset(pgd, addr);
7450 pud_t *pud = pud_offset(p4d, addr);
7452 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7453 hugetlb_vma_assert_locked(vma);
7454 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7455 if (page_count(virt_to_page(ptep)) == 1)
7459 put_page(virt_to_page(ptep));
7464 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7466 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7467 unsigned long addr, pud_t *pud)
7472 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7473 unsigned long addr, pte_t *ptep)
7478 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7479 unsigned long *start, unsigned long *end)
7483 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7487 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7489 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7490 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7491 unsigned long addr, unsigned long sz)
7498 pgd = pgd_offset(mm, addr);
7499 p4d = p4d_alloc(mm, pgd, addr);
7502 pud = pud_alloc(mm, p4d, addr);
7504 if (sz == PUD_SIZE) {
7507 BUG_ON(sz != PMD_SIZE);
7508 if (want_pmd_share(vma, addr) && pud_none(*pud))
7509 pte = huge_pmd_share(mm, vma, addr, pud);
7511 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7516 pte_t pteval = ptep_get_lockless(pte);
7518 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7525 * huge_pte_offset() - Walk the page table to resolve the hugepage
7526 * entry at address @addr
7528 * Return: Pointer to page table entry (PUD or PMD) for
7529 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7530 * size @sz doesn't match the hugepage size at this level of the page
7533 pte_t *huge_pte_offset(struct mm_struct *mm,
7534 unsigned long addr, unsigned long sz)
7541 pgd = pgd_offset(mm, addr);
7542 if (!pgd_present(*pgd))
7544 p4d = p4d_offset(pgd, addr);
7545 if (!p4d_present(*p4d))
7548 pud = pud_offset(p4d, addr);
7550 /* must be pud huge, non-present or none */
7551 return (pte_t *)pud;
7552 if (!pud_present(*pud))
7554 /* must have a valid entry and size to go further */
7556 pmd = pmd_offset(pud, addr);
7557 /* must be pmd huge, non-present or none */
7558 return (pte_t *)pmd;
7562 * Return a mask that can be used to update an address to the last huge
7563 * page in a page table page mapping size. Used to skip non-present
7564 * page table entries when linearly scanning address ranges. Architectures
7565 * with unique huge page to page table relationships can define their own
7566 * version of this routine.
7568 unsigned long hugetlb_mask_last_page(struct hstate *h)
7570 unsigned long hp_size = huge_page_size(h);
7572 if (hp_size == PUD_SIZE)
7573 return P4D_SIZE - PUD_SIZE;
7574 else if (hp_size == PMD_SIZE)
7575 return PUD_SIZE - PMD_SIZE;
7582 /* See description above. Architectures can provide their own version. */
7583 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7585 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7586 if (huge_page_size(h) == PMD_SIZE)
7587 return PUD_SIZE - PMD_SIZE;
7592 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7595 * These functions are overwritable if your architecture needs its own
7598 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7602 spin_lock_irq(&hugetlb_lock);
7603 if (!folio_test_hugetlb(folio) ||
7604 !folio_test_hugetlb_migratable(folio) ||
7605 !folio_try_get(folio)) {
7609 folio_clear_hugetlb_migratable(folio);
7610 list_move_tail(&folio->lru, list);
7612 spin_unlock_irq(&hugetlb_lock);
7616 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7621 spin_lock_irq(&hugetlb_lock);
7622 if (folio_test_hugetlb(folio)) {
7624 if (folio_test_hugetlb_freed(folio))
7626 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7627 ret = folio_try_get(folio);
7631 spin_unlock_irq(&hugetlb_lock);
7635 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7636 bool *migratable_cleared)
7640 spin_lock_irq(&hugetlb_lock);
7641 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7642 spin_unlock_irq(&hugetlb_lock);
7646 void folio_putback_active_hugetlb(struct folio *folio)
7648 spin_lock_irq(&hugetlb_lock);
7649 folio_set_hugetlb_migratable(folio);
7650 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7651 spin_unlock_irq(&hugetlb_lock);
7655 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7657 struct hstate *h = folio_hstate(old_folio);
7659 hugetlb_cgroup_migrate(old_folio, new_folio);
7660 set_page_owner_migrate_reason(&new_folio->page, reason);
7663 * transfer temporary state of the new hugetlb folio. This is
7664 * reverse to other transitions because the newpage is going to
7665 * be final while the old one will be freed so it takes over
7666 * the temporary status.
7668 * Also note that we have to transfer the per-node surplus state
7669 * here as well otherwise the global surplus count will not match
7672 if (folio_test_hugetlb_temporary(new_folio)) {
7673 int old_nid = folio_nid(old_folio);
7674 int new_nid = folio_nid(new_folio);
7676 folio_set_hugetlb_temporary(old_folio);
7677 folio_clear_hugetlb_temporary(new_folio);
7681 * There is no need to transfer the per-node surplus state
7682 * when we do not cross the node.
7684 if (new_nid == old_nid)
7686 spin_lock_irq(&hugetlb_lock);
7687 if (h->surplus_huge_pages_node[old_nid]) {
7688 h->surplus_huge_pages_node[old_nid]--;
7689 h->surplus_huge_pages_node[new_nid]++;
7691 spin_unlock_irq(&hugetlb_lock);
7695 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7696 unsigned long start,
7699 struct hstate *h = hstate_vma(vma);
7700 unsigned long sz = huge_page_size(h);
7701 struct mm_struct *mm = vma->vm_mm;
7702 struct mmu_notifier_range range;
7703 unsigned long address;
7707 if (!(vma->vm_flags & VM_MAYSHARE))
7713 flush_cache_range(vma, start, end);
7715 * No need to call adjust_range_if_pmd_sharing_possible(), because
7716 * we have already done the PUD_SIZE alignment.
7718 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7720 mmu_notifier_invalidate_range_start(&range);
7721 hugetlb_vma_lock_write(vma);
7722 i_mmap_lock_write(vma->vm_file->f_mapping);
7723 for (address = start; address < end; address += PUD_SIZE) {
7724 ptep = hugetlb_walk(vma, address, sz);
7727 ptl = huge_pte_lock(h, mm, ptep);
7728 huge_pmd_unshare(mm, vma, address, ptep);
7731 flush_hugetlb_tlb_range(vma, start, end);
7732 i_mmap_unlock_write(vma->vm_file->f_mapping);
7733 hugetlb_vma_unlock_write(vma);
7735 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7736 * Documentation/mm/mmu_notifier.rst.
7738 mmu_notifier_invalidate_range_end(&range);
7742 * This function will unconditionally remove all the shared pmd pgtable entries
7743 * within the specific vma for a hugetlbfs memory range.
7745 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7747 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7748 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7752 static bool cma_reserve_called __initdata;
7754 static int __init cmdline_parse_hugetlb_cma(char *p)
7761 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7764 if (s[count] == ':') {
7765 if (tmp >= MAX_NUMNODES)
7767 nid = array_index_nospec(tmp, MAX_NUMNODES);
7770 tmp = memparse(s, &s);
7771 hugetlb_cma_size_in_node[nid] = tmp;
7772 hugetlb_cma_size += tmp;
7775 * Skip the separator if have one, otherwise
7776 * break the parsing.
7783 hugetlb_cma_size = memparse(p, &p);
7791 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7793 void __init hugetlb_cma_reserve(int order)
7795 unsigned long size, reserved, per_node;
7796 bool node_specific_cma_alloc = false;
7800 * HugeTLB CMA reservation is required for gigantic
7801 * huge pages which could not be allocated via the
7802 * page allocator. Just warn if there is any change
7803 * breaking this assumption.
7805 VM_WARN_ON(order <= MAX_PAGE_ORDER);
7806 cma_reserve_called = true;
7808 if (!hugetlb_cma_size)
7811 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7812 if (hugetlb_cma_size_in_node[nid] == 0)
7815 if (!node_online(nid)) {
7816 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7817 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7818 hugetlb_cma_size_in_node[nid] = 0;
7822 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7823 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7824 nid, (PAGE_SIZE << order) / SZ_1M);
7825 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7826 hugetlb_cma_size_in_node[nid] = 0;
7828 node_specific_cma_alloc = true;
7832 /* Validate the CMA size again in case some invalid nodes specified. */
7833 if (!hugetlb_cma_size)
7836 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7837 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7838 (PAGE_SIZE << order) / SZ_1M);
7839 hugetlb_cma_size = 0;
7843 if (!node_specific_cma_alloc) {
7845 * If 3 GB area is requested on a machine with 4 numa nodes,
7846 * let's allocate 1 GB on first three nodes and ignore the last one.
7848 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7849 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7850 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7854 for_each_online_node(nid) {
7856 char name[CMA_MAX_NAME];
7858 if (node_specific_cma_alloc) {
7859 if (hugetlb_cma_size_in_node[nid] == 0)
7862 size = hugetlb_cma_size_in_node[nid];
7864 size = min(per_node, hugetlb_cma_size - reserved);
7867 size = round_up(size, PAGE_SIZE << order);
7869 snprintf(name, sizeof(name), "hugetlb%d", nid);
7871 * Note that 'order per bit' is based on smallest size that
7872 * may be returned to CMA allocator in the case of
7873 * huge page demotion.
7875 res = cma_declare_contiguous_nid(0, size, 0,
7876 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7878 &hugetlb_cma[nid], nid);
7880 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7886 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7889 if (reserved >= hugetlb_cma_size)
7895 * hugetlb_cma_size is used to determine if allocations from
7896 * cma are possible. Set to zero if no cma regions are set up.
7898 hugetlb_cma_size = 0;
7901 static void __init hugetlb_cma_check(void)
7903 if (!hugetlb_cma_size || cma_reserve_called)
7906 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7909 #endif /* CONFIG_CMA */