1 // SPDX-License-Identifier: GPL-2.0
3 * KFENCE guarded object allocator and fault handling.
5 * Copyright (C) 2020, Google LLC.
8 #define pr_fmt(fmt) "kfence: " fmt
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/notifier.h>
25 #include <linux/panic_notifier.h>
26 #include <linux/random.h>
27 #include <linux/rcupdate.h>
28 #include <linux/sched/clock.h>
29 #include <linux/seq_file.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/string.h>
34 #include <asm/kfence.h>
38 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
39 #define KFENCE_WARN_ON(cond) \
41 const bool __cond = WARN_ON(cond); \
42 if (unlikely(__cond)) { \
43 WRITE_ONCE(kfence_enabled, false); \
44 disabled_by_warn = true; \
49 /* === Data ================================================================= */
51 static bool kfence_enabled __read_mostly;
52 static bool disabled_by_warn __read_mostly;
54 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
55 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
57 #ifdef MODULE_PARAM_PREFIX
58 #undef MODULE_PARAM_PREFIX
60 #define MODULE_PARAM_PREFIX "kfence."
62 static int kfence_enable_late(void);
63 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
66 int ret = kstrtoul(val, 0, &num);
71 /* Using 0 to indicate KFENCE is disabled. */
72 if (!num && READ_ONCE(kfence_enabled)) {
73 pr_info("disabled\n");
74 WRITE_ONCE(kfence_enabled, false);
77 *((unsigned long *)kp->arg) = num;
79 if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
80 return disabled_by_warn ? -EINVAL : kfence_enable_late();
84 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
86 if (!READ_ONCE(kfence_enabled))
87 return sprintf(buffer, "0\n");
89 return param_get_ulong(buffer, kp);
92 static const struct kernel_param_ops sample_interval_param_ops = {
93 .set = param_set_sample_interval,
94 .get = param_get_sample_interval,
96 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
98 /* Pool usage% threshold when currently covered allocations are skipped. */
99 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
100 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
102 /* If true, use a deferrable timer. */
103 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
104 module_param_named(deferrable, kfence_deferrable, bool, 0444);
106 /* If true, check all canary bytes on panic. */
107 static bool kfence_check_on_panic __read_mostly;
108 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
110 /* The pool of pages used for guard pages and objects. */
111 char *__kfence_pool __read_mostly;
112 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
115 * Per-object metadata, with one-to-one mapping of object metadata to
116 * backing pages (in __kfence_pool).
118 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
119 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
121 /* Freelist with available objects. */
122 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
123 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
126 * The static key to set up a KFENCE allocation; or if static keys are not used
127 * to gate allocations, to avoid a load and compare if KFENCE is disabled.
129 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
131 /* Gates the allocation, ensuring only one succeeds in a given period. */
132 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
135 * A Counting Bloom filter of allocation coverage: limits currently covered
136 * allocations of the same source filling up the pool.
138 * Assuming a range of 15%-85% unique allocations in the pool at any point in
139 * time, the below parameters provide a probablity of 0.02-0.33 for false
140 * positive hits respectively:
142 * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
144 #define ALLOC_COVERED_HNUM 2
145 #define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
146 #define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER)
147 #define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER)
148 #define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1)
149 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
151 /* Stack depth used to determine uniqueness of an allocation. */
152 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
155 * Randomness for stack hashes, making the same collisions across reboots and
156 * different machines less likely.
158 static u32 stack_hash_seed __ro_after_init;
160 /* Statistics counters for debugfs. */
161 enum kfence_counter_id {
162 KFENCE_COUNTER_ALLOCATED,
163 KFENCE_COUNTER_ALLOCS,
164 KFENCE_COUNTER_FREES,
165 KFENCE_COUNTER_ZOMBIES,
167 KFENCE_COUNTER_SKIP_INCOMPAT,
168 KFENCE_COUNTER_SKIP_CAPACITY,
169 KFENCE_COUNTER_SKIP_COVERED,
170 KFENCE_COUNTER_COUNT,
172 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
173 static const char *const counter_names[] = {
174 [KFENCE_COUNTER_ALLOCATED] = "currently allocated",
175 [KFENCE_COUNTER_ALLOCS] = "total allocations",
176 [KFENCE_COUNTER_FREES] = "total frees",
177 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations",
178 [KFENCE_COUNTER_BUGS] = "total bugs",
179 [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)",
180 [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)",
181 [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)",
183 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
185 /* === Internals ============================================================ */
187 static inline bool should_skip_covered(void)
189 unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
191 return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
194 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
196 num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
197 num_entries = filter_irq_stacks(stack_entries, num_entries);
198 return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
202 * Adds (or subtracts) count @val for allocation stack trace hash
203 * @alloc_stack_hash from Counting Bloom filter.
205 static void alloc_covered_add(u32 alloc_stack_hash, int val)
209 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
210 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
211 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
216 * Returns true if the allocation stack trace hash @alloc_stack_hash is
217 * currently contained (non-zero count) in Counting Bloom filter.
219 static bool alloc_covered_contains(u32 alloc_stack_hash)
223 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
224 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
226 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
232 static bool kfence_protect(unsigned long addr)
234 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
237 static bool kfence_unprotect(unsigned long addr)
239 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
242 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
244 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
245 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
247 /* The checks do not affect performance; only called from slow-paths. */
249 /* Only call with a pointer into kfence_metadata. */
250 if (KFENCE_WARN_ON(meta < kfence_metadata ||
251 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
255 * This metadata object only ever maps to 1 page; verify that the stored
256 * address is in the expected range.
258 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
265 * Update the object's metadata state, including updating the alloc/free stacks
266 * depending on the state transition.
269 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
270 unsigned long *stack_entries, size_t num_stack_entries)
272 struct kfence_track *track =
273 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
275 lockdep_assert_held(&meta->lock);
278 memcpy(track->stack_entries, stack_entries,
279 num_stack_entries * sizeof(stack_entries[0]));
282 * Skip over 1 (this) functions; noinline ensures we do not
283 * accidentally skip over the caller by never inlining.
285 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
287 track->num_stack_entries = num_stack_entries;
288 track->pid = task_pid_nr(current);
289 track->cpu = raw_smp_processor_id();
290 track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
293 * Pairs with READ_ONCE() in
294 * kfence_shutdown_cache(),
295 * kfence_handle_page_fault().
297 WRITE_ONCE(meta->state, next);
300 /* Write canary byte to @addr. */
301 static inline bool set_canary_byte(u8 *addr)
303 *addr = KFENCE_CANARY_PATTERN(addr);
307 /* Check canary byte at @addr. */
308 static inline bool check_canary_byte(u8 *addr)
310 struct kfence_metadata *meta;
313 if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
316 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
318 meta = addr_to_metadata((unsigned long)addr);
319 raw_spin_lock_irqsave(&meta->lock, flags);
320 kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
321 raw_spin_unlock_irqrestore(&meta->lock, flags);
326 /* __always_inline this to ensure we won't do an indirect call to fn. */
327 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
329 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
333 * We'll iterate over each canary byte per-side until fn() returns
334 * false. However, we'll still iterate over the canary bytes to the
335 * right of the object even if there was an error in the canary bytes to
336 * the left of the object. Specifically, if check_canary_byte()
337 * generates an error, showing both sides might give more clues as to
338 * what the error is about when displaying which bytes were corrupted.
341 /* Apply to left of object. */
342 for (addr = pageaddr; addr < meta->addr; addr++) {
347 /* Apply to right of object. */
348 for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
354 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
355 unsigned long *stack_entries, size_t num_stack_entries,
356 u32 alloc_stack_hash)
358 struct kfence_metadata *meta = NULL;
362 const bool random_right_allocate = get_random_u32_below(2);
363 const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
364 !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
366 /* Try to obtain a free object. */
367 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
368 if (!list_empty(&kfence_freelist)) {
369 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
370 list_del_init(&meta->list);
372 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
374 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
378 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
380 * This is extremely unlikely -- we are reporting on a
381 * use-after-free, which locked meta->lock, and the reporting
382 * code via printk calls kmalloc() which ends up in
383 * kfence_alloc() and tries to grab the same object that we're
384 * reporting on. While it has never been observed, lockdep does
385 * report that there is a possibility of deadlock. Fix it by
386 * using trylock and bailing out gracefully.
388 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
389 /* Put the object back on the freelist. */
390 list_add_tail(&meta->list, &kfence_freelist);
391 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
396 meta->addr = metadata_to_pageaddr(meta);
397 /* Unprotect if we're reusing this page. */
398 if (meta->state == KFENCE_OBJECT_FREED)
399 kfence_unprotect(meta->addr);
402 * Note: for allocations made before RNG initialization, will always
403 * return zero. We still benefit from enabling KFENCE as early as
404 * possible, even when the RNG is not yet available, as this will allow
405 * KFENCE to detect bugs due to earlier allocations. The only downside
406 * is that the out-of-bounds accesses detected are deterministic for
409 if (random_right_allocate) {
410 /* Allocate on the "right" side, re-calculate address. */
411 meta->addr += PAGE_SIZE - size;
412 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
415 addr = (void *)meta->addr;
417 /* Update remaining metadata. */
418 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
419 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
420 WRITE_ONCE(meta->cache, cache);
422 meta->alloc_stack_hash = alloc_stack_hash;
423 raw_spin_unlock_irqrestore(&meta->lock, flags);
425 alloc_covered_add(alloc_stack_hash, 1);
427 /* Set required slab fields. */
428 slab = virt_to_slab((void *)meta->addr);
429 slab->slab_cache = cache;
430 #if defined(CONFIG_SLUB)
432 #elif defined(CONFIG_SLAB)
436 /* Memory initialization. */
437 for_each_canary(meta, set_canary_byte);
440 * We check slab_want_init_on_alloc() ourselves, rather than letting
441 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
444 if (unlikely(slab_want_init_on_alloc(gfp, cache)))
445 memzero_explicit(addr, size);
450 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
452 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
453 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
458 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
460 struct kcsan_scoped_access assert_page_exclusive;
464 raw_spin_lock_irqsave(&meta->lock, flags);
466 if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
467 /* Invalid or double-free, bail out. */
468 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
469 kfence_report_error((unsigned long)addr, false, NULL, meta,
470 KFENCE_ERROR_INVALID_FREE);
471 raw_spin_unlock_irqrestore(&meta->lock, flags);
475 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
476 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
477 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
478 &assert_page_exclusive);
480 if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
481 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
483 /* Restore page protection if there was an OOB access. */
484 if (meta->unprotected_page) {
485 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
486 kfence_protect(meta->unprotected_page);
487 meta->unprotected_page = 0;
490 /* Mark the object as freed. */
491 metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
492 init = slab_want_init_on_free(meta->cache);
493 raw_spin_unlock_irqrestore(&meta->lock, flags);
495 alloc_covered_add(meta->alloc_stack_hash, -1);
497 /* Check canary bytes for memory corruption. */
498 for_each_canary(meta, check_canary_byte);
501 * Clear memory if init-on-free is set. While we protect the page, the
502 * data is still there, and after a use-after-free is detected, we
503 * unprotect the page, so the data is still accessible.
505 if (!zombie && unlikely(init))
506 memzero_explicit(addr, meta->size);
508 /* Protect to detect use-after-frees. */
509 kfence_protect((unsigned long)addr);
511 kcsan_end_scoped_access(&assert_page_exclusive);
513 /* Add it to the tail of the freelist for reuse. */
514 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
515 KFENCE_WARN_ON(!list_empty(&meta->list));
516 list_add_tail(&meta->list, &kfence_freelist);
517 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
519 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
520 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
522 /* See kfence_shutdown_cache(). */
523 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
527 static void rcu_guarded_free(struct rcu_head *h)
529 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
531 kfence_guarded_free((void *)meta->addr, meta, false);
535 * Initialization of the KFENCE pool after its allocation.
536 * Returns 0 on success; otherwise returns the address up to
537 * which partial initialization succeeded.
539 static unsigned long kfence_init_pool(void)
541 unsigned long addr = (unsigned long)__kfence_pool;
545 if (!arch_kfence_init_pool())
548 pages = virt_to_page(__kfence_pool);
551 * Set up object pages: they must have PG_slab set, to avoid freeing
552 * these as real pages.
554 * We also want to avoid inserting kfence_free() in the kfree()
555 * fast-path in SLUB, and therefore need to ensure kfree() correctly
556 * enters __slab_free() slow-path.
558 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
559 struct slab *slab = page_slab(nth_page(pages, i));
564 __folio_set_slab(slab_folio(slab));
566 slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
572 * Protect the first 2 pages. The first page is mostly unnecessary, and
573 * merely serves as an extended guard page. However, adding one
574 * additional page in the beginning gives us an even number of pages,
575 * which simplifies the mapping of address to metadata index.
577 for (i = 0; i < 2; i++) {
578 if (unlikely(!kfence_protect(addr)))
584 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
585 struct kfence_metadata *meta = &kfence_metadata[i];
587 /* Initialize metadata. */
588 INIT_LIST_HEAD(&meta->list);
589 raw_spin_lock_init(&meta->lock);
590 meta->state = KFENCE_OBJECT_UNUSED;
591 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
592 list_add_tail(&meta->list, &kfence_freelist);
594 /* Protect the right redzone. */
595 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
598 addr += 2 * PAGE_SIZE;
604 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
605 struct slab *slab = page_slab(nth_page(pages, i));
610 slab->memcg_data = 0;
612 __folio_clear_slab(slab_folio(slab));
618 static bool __init kfence_init_pool_early(void)
625 addr = kfence_init_pool();
629 * The pool is live and will never be deallocated from this point on.
630 * Ignore the pool object from the kmemleak phys object tree, as it would
631 * otherwise overlap with allocations returned by kfence_alloc(), which
632 * are registered with kmemleak through the slab post-alloc hook.
634 kmemleak_ignore_phys(__pa(__kfence_pool));
639 * Only release unprotected pages, and do not try to go back and change
640 * page attributes due to risk of failing to do so as well. If changing
641 * page attributes for some pages fails, it is very likely that it also
642 * fails for the first page, and therefore expect addr==__kfence_pool in
643 * most failure cases.
645 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
646 __kfence_pool = NULL;
650 static bool kfence_init_pool_late(void)
652 unsigned long addr, free_size;
654 addr = kfence_init_pool();
660 free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
661 #ifdef CONFIG_CONTIG_ALLOC
662 free_contig_range(page_to_pfn(virt_to_page((void *)addr)), free_size / PAGE_SIZE);
664 free_pages_exact((void *)addr, free_size);
666 __kfence_pool = NULL;
670 /* === DebugFS Interface ==================================================== */
672 static int stats_show(struct seq_file *seq, void *v)
676 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
677 for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
678 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
682 DEFINE_SHOW_ATTRIBUTE(stats);
685 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
686 * start_object() and next_object() return the object index + 1, because NULL is used
689 static void *start_object(struct seq_file *seq, loff_t *pos)
691 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
692 return (void *)((long)*pos + 1);
696 static void stop_object(struct seq_file *seq, void *v)
700 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
703 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
704 return (void *)((long)*pos + 1);
708 static int show_object(struct seq_file *seq, void *v)
710 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
713 raw_spin_lock_irqsave(&meta->lock, flags);
714 kfence_print_object(seq, meta);
715 raw_spin_unlock_irqrestore(&meta->lock, flags);
716 seq_puts(seq, "---------------------------------\n");
721 static const struct seq_operations objects_sops = {
722 .start = start_object,
727 DEFINE_SEQ_ATTRIBUTE(objects);
729 static int kfence_debugfs_init(void)
731 struct dentry *kfence_dir;
733 if (!READ_ONCE(kfence_enabled))
736 kfence_dir = debugfs_create_dir("kfence", NULL);
737 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
738 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
742 late_initcall(kfence_debugfs_init);
744 /* === Panic Notifier ====================================================== */
746 static void kfence_check_all_canary(void)
750 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
751 struct kfence_metadata *meta = &kfence_metadata[i];
753 if (meta->state == KFENCE_OBJECT_ALLOCATED)
754 for_each_canary(meta, check_canary_byte);
758 static int kfence_check_canary_callback(struct notifier_block *nb,
759 unsigned long reason, void *arg)
761 kfence_check_all_canary();
765 static struct notifier_block kfence_check_canary_notifier = {
766 .notifier_call = kfence_check_canary_callback,
769 /* === Allocation Gate Timer ================================================ */
771 static struct delayed_work kfence_timer;
773 #ifdef CONFIG_KFENCE_STATIC_KEYS
774 /* Wait queue to wake up allocation-gate timer task. */
775 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
777 static void wake_up_kfence_timer(struct irq_work *work)
779 wake_up(&allocation_wait);
781 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
785 * Set up delayed work, which will enable and disable the static key. We need to
786 * use a work queue (rather than a simple timer), since enabling and disabling a
787 * static key cannot be done from an interrupt.
789 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
790 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
791 * more aggressive sampling intervals), we could get away with a variant that
792 * avoids IPIs, at the cost of not immediately capturing allocations if the
793 * instructions remain cached.
795 static void toggle_allocation_gate(struct work_struct *work)
797 if (!READ_ONCE(kfence_enabled))
800 atomic_set(&kfence_allocation_gate, 0);
801 #ifdef CONFIG_KFENCE_STATIC_KEYS
802 /* Enable static key, and await allocation to happen. */
803 static_branch_enable(&kfence_allocation_key);
805 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
807 /* Disable static key and reset timer. */
808 static_branch_disable(&kfence_allocation_key);
810 queue_delayed_work(system_unbound_wq, &kfence_timer,
811 msecs_to_jiffies(kfence_sample_interval));
814 /* === Public interface ===================================================== */
816 void __init kfence_alloc_pool(void)
818 if (!kfence_sample_interval)
821 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
824 pr_err("failed to allocate pool\n");
827 static void kfence_init_enable(void)
829 if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
830 static_branch_enable(&kfence_allocation_key);
832 if (kfence_deferrable)
833 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
835 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
837 if (kfence_check_on_panic)
838 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
840 WRITE_ONCE(kfence_enabled, true);
841 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
843 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
844 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
845 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
848 void __init kfence_init(void)
850 stack_hash_seed = get_random_u32();
852 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
853 if (!kfence_sample_interval)
856 if (!kfence_init_pool_early()) {
857 pr_err("%s failed\n", __func__);
861 kfence_init_enable();
864 static int kfence_init_late(void)
866 const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
867 #ifdef CONFIG_CONTIG_ALLOC
870 pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
873 __kfence_pool = page_to_virt(pages);
875 if (nr_pages > MAX_ORDER_NR_PAGES) {
876 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
879 __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
884 if (!kfence_init_pool_late()) {
885 pr_err("%s failed\n", __func__);
889 kfence_init_enable();
890 kfence_debugfs_init();
895 static int kfence_enable_late(void)
898 return kfence_init_late();
900 WRITE_ONCE(kfence_enabled, true);
901 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
902 pr_info("re-enabled\n");
906 void kfence_shutdown_cache(struct kmem_cache *s)
909 struct kfence_metadata *meta;
912 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
915 meta = &kfence_metadata[i];
918 * If we observe some inconsistent cache and state pair where we
919 * should have returned false here, cache destruction is racing
920 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
921 * the lock will not help, as different critical section
922 * serialization will have the same outcome.
924 if (READ_ONCE(meta->cache) != s ||
925 READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
928 raw_spin_lock_irqsave(&meta->lock, flags);
929 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
930 raw_spin_unlock_irqrestore(&meta->lock, flags);
934 * This cache still has allocations, and we should not
935 * release them back into the freelist so they can still
936 * safely be used and retain the kernel's default
937 * behaviour of keeping the allocations alive (leak the
938 * cache); however, they effectively become "zombie
939 * allocations" as the KFENCE objects are the only ones
940 * still in use and the owning cache is being destroyed.
942 * We mark them freed, so that any subsequent use shows
943 * more useful error messages that will include stack
944 * traces of the user of the object, the original
945 * allocation, and caller to shutdown_cache().
947 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
951 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
952 meta = &kfence_metadata[i];
955 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
958 raw_spin_lock_irqsave(&meta->lock, flags);
959 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
961 raw_spin_unlock_irqrestore(&meta->lock, flags);
965 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
967 unsigned long stack_entries[KFENCE_STACK_DEPTH];
968 size_t num_stack_entries;
969 u32 alloc_stack_hash;
972 * Perform size check before switching kfence_allocation_gate, so that
973 * we don't disable KFENCE without making an allocation.
975 if (size > PAGE_SIZE) {
976 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
981 * Skip allocations from non-default zones, including DMA. We cannot
982 * guarantee that pages in the KFENCE pool will have the requested
983 * properties (e.g. reside in DMAable memory).
985 if ((flags & GFP_ZONEMASK) ||
986 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
987 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
992 * Skip allocations for this slab, if KFENCE has been disabled for
995 if (s->flags & SLAB_SKIP_KFENCE)
998 if (atomic_inc_return(&kfence_allocation_gate) > 1)
1000 #ifdef CONFIG_KFENCE_STATIC_KEYS
1002 * waitqueue_active() is fully ordered after the update of
1003 * kfence_allocation_gate per atomic_inc_return().
1005 if (waitqueue_active(&allocation_wait)) {
1007 * Calling wake_up() here may deadlock when allocations happen
1008 * from within timer code. Use an irq_work to defer it.
1010 irq_work_queue(&wake_up_kfence_timer_work);
1014 if (!READ_ONCE(kfence_enabled))
1017 num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1020 * Do expensive check for coverage of allocation in slow-path after
1021 * allocation_gate has already become non-zero, even though it might
1022 * mean not making any allocation within a given sample interval.
1024 * This ensures reasonable allocation coverage when the pool is almost
1025 * full, including avoiding long-lived allocations of the same source
1026 * filling up the pool (e.g. pagecache allocations).
1028 alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1029 if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1030 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1034 return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1038 size_t kfence_ksize(const void *addr)
1040 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1043 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1044 * either a use-after-free or invalid access.
1046 return meta ? meta->size : 0;
1049 void *kfence_object_start(const void *addr)
1051 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1054 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1055 * either a use-after-free or invalid access.
1057 return meta ? (void *)meta->addr : NULL;
1060 void __kfence_free(void *addr)
1062 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1065 KFENCE_WARN_ON(meta->objcg);
1068 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1069 * the object, as the object page may be recycled for other-typed
1070 * objects once it has been freed. meta->cache may be NULL if the cache
1073 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1074 call_rcu(&meta->rcu_head, rcu_guarded_free);
1076 kfence_guarded_free(addr, meta, false);
1079 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1081 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1082 struct kfence_metadata *to_report = NULL;
1083 enum kfence_error_type error_type;
1084 unsigned long flags;
1086 if (!is_kfence_address((void *)addr))
1089 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1090 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1092 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1094 if (page_index % 2) {
1095 /* This is a redzone, report a buffer overflow. */
1096 struct kfence_metadata *meta;
1099 meta = addr_to_metadata(addr - PAGE_SIZE);
1100 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1102 /* Data race ok; distance calculation approximate. */
1103 distance = addr - data_race(meta->addr + meta->size);
1106 meta = addr_to_metadata(addr + PAGE_SIZE);
1107 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1108 /* Data race ok; distance calculation approximate. */
1109 if (!to_report || distance > data_race(meta->addr) - addr)
1116 raw_spin_lock_irqsave(&to_report->lock, flags);
1117 to_report->unprotected_page = addr;
1118 error_type = KFENCE_ERROR_OOB;
1121 * If the object was freed before we took the look we can still
1122 * report this as an OOB -- the report will simply show the
1123 * stacktrace of the free as well.
1126 to_report = addr_to_metadata(addr);
1130 raw_spin_lock_irqsave(&to_report->lock, flags);
1131 error_type = KFENCE_ERROR_UAF;
1133 * We may race with __kfence_alloc(), and it is possible that a
1134 * freed object may be reallocated. We simply report this as a
1135 * use-after-free, with the stack trace showing the place where
1136 * the object was re-allocated.
1142 kfence_report_error(addr, is_write, regs, to_report, error_type);
1143 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1145 /* This may be a UAF or OOB access, but we can't be sure. */
1146 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1149 return kfence_unprotect(addr); /* Unprotect and let access proceed. */