1 // SPDX-License-Identifier: GPL-2.0
3 * KFENCE guarded object allocator and fault handling.
5 * Copyright (C) 2020, Google LLC.
8 #define pr_fmt(fmt) "kfence: " fmt
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/nodemask.h>
25 #include <linux/notifier.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/random.h>
28 #include <linux/rcupdate.h>
29 #include <linux/sched/clock.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
35 #include <asm/kfence.h>
39 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
40 #define KFENCE_WARN_ON(cond) \
42 const bool __cond = WARN_ON(cond); \
43 if (unlikely(__cond)) { \
44 WRITE_ONCE(kfence_enabled, false); \
45 disabled_by_warn = true; \
50 /* === Data ================================================================= */
52 static bool kfence_enabled __read_mostly;
53 static bool disabled_by_warn __read_mostly;
55 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
56 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
61 #define MODULE_PARAM_PREFIX "kfence."
63 static int kfence_enable_late(void);
64 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
67 int ret = kstrtoul(val, 0, &num);
72 /* Using 0 to indicate KFENCE is disabled. */
73 if (!num && READ_ONCE(kfence_enabled)) {
74 pr_info("disabled\n");
75 WRITE_ONCE(kfence_enabled, false);
78 *((unsigned long *)kp->arg) = num;
80 if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
81 return disabled_by_warn ? -EINVAL : kfence_enable_late();
85 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
87 if (!READ_ONCE(kfence_enabled))
88 return sprintf(buffer, "0\n");
90 return param_get_ulong(buffer, kp);
93 static const struct kernel_param_ops sample_interval_param_ops = {
94 .set = param_set_sample_interval,
95 .get = param_get_sample_interval,
97 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
99 /* Pool usage% threshold when currently covered allocations are skipped. */
100 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
101 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
103 /* Allocation burst count: number of excess KFENCE allocations per sample. */
104 static unsigned int kfence_burst __read_mostly;
105 module_param_named(burst, kfence_burst, uint, 0644);
107 /* If true, use a deferrable timer. */
108 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
109 module_param_named(deferrable, kfence_deferrable, bool, 0444);
111 /* If true, check all canary bytes on panic. */
112 static bool kfence_check_on_panic __read_mostly;
113 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
115 /* The pool of pages used for guard pages and objects. */
116 char *__kfence_pool __read_mostly;
117 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
120 * Per-object metadata, with one-to-one mapping of object metadata to
121 * backing pages (in __kfence_pool).
123 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
124 struct kfence_metadata *kfence_metadata __read_mostly;
127 * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
128 * So introduce kfence_metadata_init to initialize metadata, and then make
129 * kfence_metadata visible after initialization is successful. This prevents
130 * potential UAF or access to uninitialized metadata.
132 static struct kfence_metadata *kfence_metadata_init __read_mostly;
134 /* Freelist with available objects. */
135 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
136 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
139 * The static key to set up a KFENCE allocation; or if static keys are not used
140 * to gate allocations, to avoid a load and compare if KFENCE is disabled.
142 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
144 /* Gates the allocation, ensuring only one succeeds in a given period. */
145 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
148 * A Counting Bloom filter of allocation coverage: limits currently covered
149 * allocations of the same source filling up the pool.
151 * Assuming a range of 15%-85% unique allocations in the pool at any point in
152 * time, the below parameters provide a probablity of 0.02-0.33 for false
153 * positive hits respectively:
155 * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
157 #define ALLOC_COVERED_HNUM 2
158 #define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
159 #define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER)
160 #define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER)
161 #define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1)
162 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
164 /* Stack depth used to determine uniqueness of an allocation. */
165 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
168 * Randomness for stack hashes, making the same collisions across reboots and
169 * different machines less likely.
171 static u32 stack_hash_seed __ro_after_init;
173 /* Statistics counters for debugfs. */
174 enum kfence_counter_id {
175 KFENCE_COUNTER_ALLOCATED,
176 KFENCE_COUNTER_ALLOCS,
177 KFENCE_COUNTER_FREES,
178 KFENCE_COUNTER_ZOMBIES,
180 KFENCE_COUNTER_SKIP_INCOMPAT,
181 KFENCE_COUNTER_SKIP_CAPACITY,
182 KFENCE_COUNTER_SKIP_COVERED,
183 KFENCE_COUNTER_COUNT,
185 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
186 static const char *const counter_names[] = {
187 [KFENCE_COUNTER_ALLOCATED] = "currently allocated",
188 [KFENCE_COUNTER_ALLOCS] = "total allocations",
189 [KFENCE_COUNTER_FREES] = "total frees",
190 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations",
191 [KFENCE_COUNTER_BUGS] = "total bugs",
192 [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)",
193 [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)",
194 [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)",
196 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
198 /* === Internals ============================================================ */
200 static inline bool should_skip_covered(void)
202 unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
204 return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
207 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
209 num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
210 num_entries = filter_irq_stacks(stack_entries, num_entries);
211 return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
215 * Adds (or subtracts) count @val for allocation stack trace hash
216 * @alloc_stack_hash from Counting Bloom filter.
218 static void alloc_covered_add(u32 alloc_stack_hash, int val)
222 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
223 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
224 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
229 * Returns true if the allocation stack trace hash @alloc_stack_hash is
230 * currently contained (non-zero count) in Counting Bloom filter.
232 static bool alloc_covered_contains(u32 alloc_stack_hash)
236 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
237 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
239 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
245 static bool kfence_protect(unsigned long addr)
247 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
250 static bool kfence_unprotect(unsigned long addr)
252 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
255 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
257 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
258 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
260 /* The checks do not affect performance; only called from slow-paths. */
262 /* Only call with a pointer into kfence_metadata. */
263 if (KFENCE_WARN_ON(meta < kfence_metadata ||
264 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
268 * This metadata object only ever maps to 1 page; verify that the stored
269 * address is in the expected range.
271 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
277 static inline bool kfence_obj_allocated(const struct kfence_metadata *meta)
279 enum kfence_object_state state = READ_ONCE(meta->state);
281 return state == KFENCE_OBJECT_ALLOCATED || state == KFENCE_OBJECT_RCU_FREEING;
285 * Update the object's metadata state, including updating the alloc/free stacks
286 * depending on the state transition.
289 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
290 unsigned long *stack_entries, size_t num_stack_entries)
292 struct kfence_track *track =
293 next == KFENCE_OBJECT_ALLOCATED ? &meta->alloc_track : &meta->free_track;
295 lockdep_assert_held(&meta->lock);
297 /* Stack has been saved when calling rcu, skip. */
298 if (READ_ONCE(meta->state) == KFENCE_OBJECT_RCU_FREEING)
302 memcpy(track->stack_entries, stack_entries,
303 num_stack_entries * sizeof(stack_entries[0]));
306 * Skip over 1 (this) functions; noinline ensures we do not
307 * accidentally skip over the caller by never inlining.
309 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
311 track->num_stack_entries = num_stack_entries;
312 track->pid = task_pid_nr(current);
313 track->cpu = raw_smp_processor_id();
314 track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
318 * Pairs with READ_ONCE() in
319 * kfence_shutdown_cache(),
320 * kfence_handle_page_fault().
322 WRITE_ONCE(meta->state, next);
326 #define check_canary_attributes noinline __no_kmsan_checks
328 #define check_canary_attributes inline
331 /* Check canary byte at @addr. */
332 static check_canary_attributes bool check_canary_byte(u8 *addr)
334 struct kfence_metadata *meta;
337 if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
340 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
342 meta = addr_to_metadata((unsigned long)addr);
343 raw_spin_lock_irqsave(&meta->lock, flags);
344 kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
345 raw_spin_unlock_irqrestore(&meta->lock, flags);
350 static inline void set_canary(const struct kfence_metadata *meta)
352 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
353 unsigned long addr = pageaddr;
356 * The canary may be written to part of the object memory, but it does
357 * not affect it. The user should initialize the object before using it.
359 for (; addr < meta->addr; addr += sizeof(u64))
360 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
362 addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
363 for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
364 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
367 static check_canary_attributes void
368 check_canary(const struct kfence_metadata *meta)
370 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
371 unsigned long addr = pageaddr;
374 * We'll iterate over each canary byte per-side until a corrupted byte
375 * is found. However, we'll still iterate over the canary bytes to the
376 * right of the object even if there was an error in the canary bytes to
377 * the left of the object. Specifically, if check_canary_byte()
378 * generates an error, showing both sides might give more clues as to
379 * what the error is about when displaying which bytes were corrupted.
382 /* Apply to left of object. */
383 for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
384 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
389 * If the canary is corrupted in a certain 64 bytes, or the canary
390 * memory cannot be completely covered by multiple consecutive 64 bytes,
391 * it needs to be checked one by one.
393 for (; addr < meta->addr; addr++) {
394 if (unlikely(!check_canary_byte((u8 *)addr)))
398 /* Apply to right of object. */
399 for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
400 if (unlikely(!check_canary_byte((u8 *)addr)))
403 for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
404 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
406 for (; addr - pageaddr < PAGE_SIZE; addr++) {
407 if (!check_canary_byte((u8 *)addr))
414 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
415 unsigned long *stack_entries, size_t num_stack_entries,
416 u32 alloc_stack_hash)
418 struct kfence_metadata *meta = NULL;
422 const bool random_right_allocate = get_random_u32_below(2);
423 const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
424 !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
426 /* Try to obtain a free object. */
427 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
428 if (!list_empty(&kfence_freelist)) {
429 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
430 list_del_init(&meta->list);
432 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
434 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
438 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
440 * This is extremely unlikely -- we are reporting on a
441 * use-after-free, which locked meta->lock, and the reporting
442 * code via printk calls kmalloc() which ends up in
443 * kfence_alloc() and tries to grab the same object that we're
444 * reporting on. While it has never been observed, lockdep does
445 * report that there is a possibility of deadlock. Fix it by
446 * using trylock and bailing out gracefully.
448 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
449 /* Put the object back on the freelist. */
450 list_add_tail(&meta->list, &kfence_freelist);
451 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
456 meta->addr = metadata_to_pageaddr(meta);
457 /* Unprotect if we're reusing this page. */
458 if (meta->state == KFENCE_OBJECT_FREED)
459 kfence_unprotect(meta->addr);
462 * Note: for allocations made before RNG initialization, will always
463 * return zero. We still benefit from enabling KFENCE as early as
464 * possible, even when the RNG is not yet available, as this will allow
465 * KFENCE to detect bugs due to earlier allocations. The only downside
466 * is that the out-of-bounds accesses detected are deterministic for
469 if (random_right_allocate) {
470 /* Allocate on the "right" side, re-calculate address. */
471 meta->addr += PAGE_SIZE - size;
472 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
475 addr = (void *)meta->addr;
477 /* Update remaining metadata. */
478 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
479 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
480 WRITE_ONCE(meta->cache, cache);
482 meta->alloc_stack_hash = alloc_stack_hash;
483 raw_spin_unlock_irqrestore(&meta->lock, flags);
485 alloc_covered_add(alloc_stack_hash, 1);
487 /* Set required slab fields. */
488 slab = virt_to_slab((void *)meta->addr);
489 slab->slab_cache = cache;
492 /* Memory initialization. */
496 * We check slab_want_init_on_alloc() ourselves, rather than letting
497 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
500 if (unlikely(slab_want_init_on_alloc(gfp, cache)))
501 memzero_explicit(addr, size);
506 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
508 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
509 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
514 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
516 struct kcsan_scoped_access assert_page_exclusive;
520 raw_spin_lock_irqsave(&meta->lock, flags);
522 if (!kfence_obj_allocated(meta) || meta->addr != (unsigned long)addr) {
523 /* Invalid or double-free, bail out. */
524 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
525 kfence_report_error((unsigned long)addr, false, NULL, meta,
526 KFENCE_ERROR_INVALID_FREE);
527 raw_spin_unlock_irqrestore(&meta->lock, flags);
531 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
532 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
533 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
534 &assert_page_exclusive);
536 if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
537 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
539 /* Restore page protection if there was an OOB access. */
540 if (meta->unprotected_page) {
541 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
542 kfence_protect(meta->unprotected_page);
543 meta->unprotected_page = 0;
546 /* Mark the object as freed. */
547 metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
548 init = slab_want_init_on_free(meta->cache);
549 raw_spin_unlock_irqrestore(&meta->lock, flags);
551 alloc_covered_add(meta->alloc_stack_hash, -1);
553 /* Check canary bytes for memory corruption. */
557 * Clear memory if init-on-free is set. While we protect the page, the
558 * data is still there, and after a use-after-free is detected, we
559 * unprotect the page, so the data is still accessible.
561 if (!zombie && unlikely(init))
562 memzero_explicit(addr, meta->size);
564 /* Protect to detect use-after-frees. */
565 kfence_protect((unsigned long)addr);
567 kcsan_end_scoped_access(&assert_page_exclusive);
569 /* Add it to the tail of the freelist for reuse. */
570 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
571 KFENCE_WARN_ON(!list_empty(&meta->list));
572 list_add_tail(&meta->list, &kfence_freelist);
573 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
575 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
576 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
578 /* See kfence_shutdown_cache(). */
579 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
583 static void rcu_guarded_free(struct rcu_head *h)
585 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
587 kfence_guarded_free((void *)meta->addr, meta, false);
591 * Initialization of the KFENCE pool after its allocation.
592 * Returns 0 on success; otherwise returns the address up to
593 * which partial initialization succeeded.
595 static unsigned long kfence_init_pool(void)
601 if (!arch_kfence_init_pool())
602 return (unsigned long)__kfence_pool;
604 addr = (unsigned long)__kfence_pool;
605 pages = virt_to_page(__kfence_pool);
608 * Set up object pages: they must have PG_slab set, to avoid freeing
609 * these as real pages.
611 * We also want to avoid inserting kfence_free() in the kfree()
612 * fast-path in SLUB, and therefore need to ensure kfree() correctly
613 * enters __slab_free() slow-path.
615 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
616 struct slab *slab = page_slab(nth_page(pages, i));
621 __folio_set_slab(slab_folio(slab));
623 slab->obj_exts = (unsigned long)&kfence_metadata_init[i / 2 - 1].obj_exts |
629 * Protect the first 2 pages. The first page is mostly unnecessary, and
630 * merely serves as an extended guard page. However, adding one
631 * additional page in the beginning gives us an even number of pages,
632 * which simplifies the mapping of address to metadata index.
634 for (i = 0; i < 2; i++) {
635 if (unlikely(!kfence_protect(addr)))
641 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
642 struct kfence_metadata *meta = &kfence_metadata_init[i];
644 /* Initialize metadata. */
645 INIT_LIST_HEAD(&meta->list);
646 raw_spin_lock_init(&meta->lock);
647 meta->state = KFENCE_OBJECT_UNUSED;
648 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
649 list_add_tail(&meta->list, &kfence_freelist);
651 /* Protect the right redzone. */
652 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
655 addr += 2 * PAGE_SIZE;
659 * Make kfence_metadata visible only when initialization is successful.
660 * Otherwise, if the initialization fails and kfence_metadata is freed,
661 * it may cause UAF in kfence_shutdown_cache().
663 smp_store_release(&kfence_metadata, kfence_metadata_init);
667 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
668 struct slab *slab = page_slab(nth_page(pages, i));
675 __folio_clear_slab(slab_folio(slab));
681 static bool __init kfence_init_pool_early(void)
688 addr = kfence_init_pool();
692 * The pool is live and will never be deallocated from this point on.
693 * Ignore the pool object from the kmemleak phys object tree, as it would
694 * otherwise overlap with allocations returned by kfence_alloc(), which
695 * are registered with kmemleak through the slab post-alloc hook.
697 kmemleak_ignore_phys(__pa(__kfence_pool));
702 * Only release unprotected pages, and do not try to go back and change
703 * page attributes due to risk of failing to do so as well. If changing
704 * page attributes for some pages fails, it is very likely that it also
705 * fails for the first page, and therefore expect addr==__kfence_pool in
706 * most failure cases.
708 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
709 __kfence_pool = NULL;
711 memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
712 kfence_metadata_init = NULL;
717 /* === DebugFS Interface ==================================================== */
719 static int stats_show(struct seq_file *seq, void *v)
723 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
724 for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
725 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
729 DEFINE_SHOW_ATTRIBUTE(stats);
732 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
733 * start_object() and next_object() return the object index + 1, because NULL is used
736 static void *start_object(struct seq_file *seq, loff_t *pos)
738 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
739 return (void *)((long)*pos + 1);
743 static void stop_object(struct seq_file *seq, void *v)
747 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
750 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
751 return (void *)((long)*pos + 1);
755 static int show_object(struct seq_file *seq, void *v)
757 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
760 raw_spin_lock_irqsave(&meta->lock, flags);
761 kfence_print_object(seq, meta);
762 raw_spin_unlock_irqrestore(&meta->lock, flags);
763 seq_puts(seq, "---------------------------------\n");
768 static const struct seq_operations objects_sops = {
769 .start = start_object,
774 DEFINE_SEQ_ATTRIBUTE(objects);
776 static int kfence_debugfs_init(void)
778 struct dentry *kfence_dir;
780 if (!READ_ONCE(kfence_enabled))
783 kfence_dir = debugfs_create_dir("kfence", NULL);
784 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
785 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
789 late_initcall(kfence_debugfs_init);
791 /* === Panic Notifier ====================================================== */
793 static void kfence_check_all_canary(void)
797 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
798 struct kfence_metadata *meta = &kfence_metadata[i];
800 if (kfence_obj_allocated(meta))
805 static int kfence_check_canary_callback(struct notifier_block *nb,
806 unsigned long reason, void *arg)
808 kfence_check_all_canary();
812 static struct notifier_block kfence_check_canary_notifier = {
813 .notifier_call = kfence_check_canary_callback,
816 /* === Allocation Gate Timer ================================================ */
818 static struct delayed_work kfence_timer;
820 #ifdef CONFIG_KFENCE_STATIC_KEYS
821 /* Wait queue to wake up allocation-gate timer task. */
822 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
824 static void wake_up_kfence_timer(struct irq_work *work)
826 wake_up(&allocation_wait);
828 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
832 * Set up delayed work, which will enable and disable the static key. We need to
833 * use a work queue (rather than a simple timer), since enabling and disabling a
834 * static key cannot be done from an interrupt.
836 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
837 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
838 * more aggressive sampling intervals), we could get away with a variant that
839 * avoids IPIs, at the cost of not immediately capturing allocations if the
840 * instructions remain cached.
842 static void toggle_allocation_gate(struct work_struct *work)
844 if (!READ_ONCE(kfence_enabled))
847 atomic_set(&kfence_allocation_gate, -kfence_burst);
848 #ifdef CONFIG_KFENCE_STATIC_KEYS
849 /* Enable static key, and await allocation to happen. */
850 static_branch_enable(&kfence_allocation_key);
852 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate) > 0);
854 /* Disable static key and reset timer. */
855 static_branch_disable(&kfence_allocation_key);
857 queue_delayed_work(system_unbound_wq, &kfence_timer,
858 msecs_to_jiffies(kfence_sample_interval));
861 /* === Public interface ===================================================== */
863 void __init kfence_alloc_pool_and_metadata(void)
865 if (!kfence_sample_interval)
869 * If the pool has already been initialized by arch, there is no need to
870 * re-allocate the memory pool.
873 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
875 if (!__kfence_pool) {
876 pr_err("failed to allocate pool\n");
880 /* The memory allocated by memblock has been zeroed out. */
881 kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
882 if (!kfence_metadata_init) {
883 pr_err("failed to allocate metadata\n");
884 memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
885 __kfence_pool = NULL;
889 static void kfence_init_enable(void)
891 if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
892 static_branch_enable(&kfence_allocation_key);
894 if (kfence_deferrable)
895 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
897 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
899 if (kfence_check_on_panic)
900 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
902 WRITE_ONCE(kfence_enabled, true);
903 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
905 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
906 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
907 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
910 void __init kfence_init(void)
912 stack_hash_seed = get_random_u32();
914 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
915 if (!kfence_sample_interval)
918 if (!kfence_init_pool_early()) {
919 pr_err("%s failed\n", __func__);
923 kfence_init_enable();
926 static int kfence_init_late(void)
928 const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
929 const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
930 unsigned long addr = (unsigned long)__kfence_pool;
931 unsigned long free_size = KFENCE_POOL_SIZE;
934 #ifdef CONFIG_CONTIG_ALLOC
937 pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
942 __kfence_pool = page_to_virt(pages);
943 pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
946 kfence_metadata_init = page_to_virt(pages);
948 if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
949 nr_pages_meta > MAX_ORDER_NR_PAGES) {
950 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
954 __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
958 kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
961 if (!kfence_metadata_init)
964 memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
965 addr = kfence_init_pool();
967 kfence_init_enable();
968 kfence_debugfs_init();
972 pr_err("%s failed\n", __func__);
973 free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
976 #ifdef CONFIG_CONTIG_ALLOC
977 free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
980 free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
981 free_size / PAGE_SIZE);
983 free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
985 free_pages_exact((void *)addr, free_size);
988 kfence_metadata_init = NULL;
989 __kfence_pool = NULL;
993 static int kfence_enable_late(void)
996 return kfence_init_late();
998 WRITE_ONCE(kfence_enabled, true);
999 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
1000 pr_info("re-enabled\n");
1004 void kfence_shutdown_cache(struct kmem_cache *s)
1006 unsigned long flags;
1007 struct kfence_metadata *meta;
1010 /* Pairs with release in kfence_init_pool(). */
1011 if (!smp_load_acquire(&kfence_metadata))
1014 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1017 meta = &kfence_metadata[i];
1020 * If we observe some inconsistent cache and state pair where we
1021 * should have returned false here, cache destruction is racing
1022 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
1023 * the lock will not help, as different critical section
1024 * serialization will have the same outcome.
1026 if (READ_ONCE(meta->cache) != s || !kfence_obj_allocated(meta))
1029 raw_spin_lock_irqsave(&meta->lock, flags);
1030 in_use = meta->cache == s && kfence_obj_allocated(meta);
1031 raw_spin_unlock_irqrestore(&meta->lock, flags);
1035 * This cache still has allocations, and we should not
1036 * release them back into the freelist so they can still
1037 * safely be used and retain the kernel's default
1038 * behaviour of keeping the allocations alive (leak the
1039 * cache); however, they effectively become "zombie
1040 * allocations" as the KFENCE objects are the only ones
1041 * still in use and the owning cache is being destroyed.
1043 * We mark them freed, so that any subsequent use shows
1044 * more useful error messages that will include stack
1045 * traces of the user of the object, the original
1046 * allocation, and caller to shutdown_cache().
1048 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
1052 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1053 meta = &kfence_metadata[i];
1056 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
1059 raw_spin_lock_irqsave(&meta->lock, flags);
1060 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
1062 raw_spin_unlock_irqrestore(&meta->lock, flags);
1066 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
1068 unsigned long stack_entries[KFENCE_STACK_DEPTH];
1069 size_t num_stack_entries;
1070 u32 alloc_stack_hash;
1071 int allocation_gate;
1074 * Perform size check before switching kfence_allocation_gate, so that
1075 * we don't disable KFENCE without making an allocation.
1077 if (size > PAGE_SIZE) {
1078 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1083 * Skip allocations from non-default zones, including DMA. We cannot
1084 * guarantee that pages in the KFENCE pool will have the requested
1085 * properties (e.g. reside in DMAable memory).
1087 if ((flags & GFP_ZONEMASK) ||
1088 ((flags & __GFP_THISNODE) && num_online_nodes() > 1) ||
1089 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1090 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1095 * Skip allocations for this slab, if KFENCE has been disabled for
1098 if (s->flags & SLAB_SKIP_KFENCE)
1101 allocation_gate = atomic_inc_return(&kfence_allocation_gate);
1102 if (allocation_gate > 1)
1104 #ifdef CONFIG_KFENCE_STATIC_KEYS
1106 * waitqueue_active() is fully ordered after the update of
1107 * kfence_allocation_gate per atomic_inc_return().
1109 if (allocation_gate == 1 && waitqueue_active(&allocation_wait)) {
1111 * Calling wake_up() here may deadlock when allocations happen
1112 * from within timer code. Use an irq_work to defer it.
1114 irq_work_queue(&wake_up_kfence_timer_work);
1118 if (!READ_ONCE(kfence_enabled))
1121 num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1124 * Do expensive check for coverage of allocation in slow-path after
1125 * allocation_gate has already become non-zero, even though it might
1126 * mean not making any allocation within a given sample interval.
1128 * This ensures reasonable allocation coverage when the pool is almost
1129 * full, including avoiding long-lived allocations of the same source
1130 * filling up the pool (e.g. pagecache allocations).
1132 alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1133 if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1134 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1138 return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1142 size_t kfence_ksize(const void *addr)
1144 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1147 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1148 * either a use-after-free or invalid access.
1150 return meta ? meta->size : 0;
1153 void *kfence_object_start(const void *addr)
1155 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1158 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1159 * either a use-after-free or invalid access.
1161 return meta ? (void *)meta->addr : NULL;
1164 void __kfence_free(void *addr)
1166 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1169 KFENCE_WARN_ON(meta->obj_exts.objcg);
1172 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1173 * the object, as the object page may be recycled for other-typed
1174 * objects once it has been freed. meta->cache may be NULL if the cache
1176 * Save the stack trace here so that reports show where the user freed
1179 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) {
1180 unsigned long flags;
1182 raw_spin_lock_irqsave(&meta->lock, flags);
1183 metadata_update_state(meta, KFENCE_OBJECT_RCU_FREEING, NULL, 0);
1184 raw_spin_unlock_irqrestore(&meta->lock, flags);
1185 call_rcu(&meta->rcu_head, rcu_guarded_free);
1187 kfence_guarded_free(addr, meta, false);
1191 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1193 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1194 struct kfence_metadata *to_report = NULL;
1195 enum kfence_error_type error_type;
1196 unsigned long flags;
1198 if (!is_kfence_address((void *)addr))
1201 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1202 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1204 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1206 if (page_index % 2) {
1207 /* This is a redzone, report a buffer overflow. */
1208 struct kfence_metadata *meta;
1211 meta = addr_to_metadata(addr - PAGE_SIZE);
1212 if (meta && kfence_obj_allocated(meta)) {
1214 /* Data race ok; distance calculation approximate. */
1215 distance = addr - data_race(meta->addr + meta->size);
1218 meta = addr_to_metadata(addr + PAGE_SIZE);
1219 if (meta && kfence_obj_allocated(meta)) {
1220 /* Data race ok; distance calculation approximate. */
1221 if (!to_report || distance > data_race(meta->addr) - addr)
1228 raw_spin_lock_irqsave(&to_report->lock, flags);
1229 to_report->unprotected_page = addr;
1230 error_type = KFENCE_ERROR_OOB;
1233 * If the object was freed before we took the look we can still
1234 * report this as an OOB -- the report will simply show the
1235 * stacktrace of the free as well.
1238 to_report = addr_to_metadata(addr);
1242 raw_spin_lock_irqsave(&to_report->lock, flags);
1243 error_type = KFENCE_ERROR_UAF;
1245 * We may race with __kfence_alloc(), and it is possible that a
1246 * freed object may be reallocated. We simply report this as a
1247 * use-after-free, with the stack trace showing the place where
1248 * the object was re-allocated.
1254 kfence_report_error(addr, is_write, regs, to_report, error_type);
1255 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1257 /* This may be a UAF or OOB access, but we can't be sure. */
1258 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1261 return kfence_unprotect(addr); /* Unprotect and let access proceed. */