]> Git Repo - linux.git/blob - fs/ext4/inode.c
fs: Turn block_invalidatepage into block_invalidate_folio
[linux.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card ([email protected])
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      ([email protected])
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 #include <linux/dax.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50
51 #include <trace/events/ext4.h>
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                          struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
142                                   int pextents);
143
144 /*
145  * Test whether an inode is a fast symlink.
146  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
151                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
152                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
153
154                 if (ext4_has_inline_data(inode))
155                         return 0;
156
157                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
158         }
159         return S_ISLNK(inode->i_mode) && inode->i_size &&
160                (inode->i_size < EXT4_N_BLOCKS * 4);
161 }
162
163 /*
164  * Called at the last iput() if i_nlink is zero.
165  */
166 void ext4_evict_inode(struct inode *inode)
167 {
168         handle_t *handle;
169         int err;
170         /*
171          * Credits for final inode cleanup and freeing:
172          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
173          * (xattr block freeing), bitmap, group descriptor (inode freeing)
174          */
175         int extra_credits = 6;
176         struct ext4_xattr_inode_array *ea_inode_array = NULL;
177         bool freeze_protected = false;
178
179         trace_ext4_evict_inode(inode);
180
181         if (inode->i_nlink) {
182                 /*
183                  * When journalling data dirty buffers are tracked only in the
184                  * journal. So although mm thinks everything is clean and
185                  * ready for reaping the inode might still have some pages to
186                  * write in the running transaction or waiting to be
187                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
188                  * (via truncate_inode_pages()) to discard these buffers can
189                  * cause data loss. Also even if we did not discard these
190                  * buffers, we would have no way to find them after the inode
191                  * is reaped and thus user could see stale data if he tries to
192                  * read them before the transaction is checkpointed. So be
193                  * careful and force everything to disk here... We use
194                  * ei->i_datasync_tid to store the newest transaction
195                  * containing inode's data.
196                  *
197                  * Note that directories do not have this problem because they
198                  * don't use page cache.
199                  */
200                 if (inode->i_ino != EXT4_JOURNAL_INO &&
201                     ext4_should_journal_data(inode) &&
202                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203                     inode->i_data.nrpages) {
204                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207                         jbd2_complete_transaction(journal, commit_tid);
208                         filemap_write_and_wait(&inode->i_data);
209                 }
210                 truncate_inode_pages_final(&inode->i_data);
211
212                 goto no_delete;
213         }
214
215         if (is_bad_inode(inode))
216                 goto no_delete;
217         dquot_initialize(inode);
218
219         if (ext4_should_order_data(inode))
220                 ext4_begin_ordered_truncate(inode, 0);
221         truncate_inode_pages_final(&inode->i_data);
222
223         /*
224          * For inodes with journalled data, transaction commit could have
225          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226          * flag but we still need to remove the inode from the writeback lists.
227          */
228         if (!list_empty_careful(&inode->i_io_list)) {
229                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
230                 inode_io_list_del(inode);
231         }
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it. When we are in a running transaction though,
236          * we are already protected against freezing and we cannot grab further
237          * protection due to lock ordering constraints.
238          */
239         if (!ext4_journal_current_handle()) {
240                 sb_start_intwrite(inode->i_sb);
241                 freeze_protected = true;
242         }
243
244         if (!IS_NOQUOTA(inode))
245                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246
247         /*
248          * Block bitmap, group descriptor, and inode are accounted in both
249          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250          */
251         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
253         if (IS_ERR(handle)) {
254                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
255                 /*
256                  * If we're going to skip the normal cleanup, we still need to
257                  * make sure that the in-core orphan linked list is properly
258                  * cleaned up.
259                  */
260                 ext4_orphan_del(NULL, inode);
261                 if (freeze_protected)
262                         sb_end_intwrite(inode->i_sb);
263                 goto no_delete;
264         }
265
266         if (IS_SYNC(inode))
267                 ext4_handle_sync(handle);
268
269         /*
270          * Set inode->i_size to 0 before calling ext4_truncate(). We need
271          * special handling of symlinks here because i_size is used to
272          * determine whether ext4_inode_info->i_data contains symlink data or
273          * block mappings. Setting i_size to 0 will remove its fast symlink
274          * status. Erase i_data so that it becomes a valid empty block map.
275          */
276         if (ext4_inode_is_fast_symlink(inode))
277                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278         inode->i_size = 0;
279         err = ext4_mark_inode_dirty(handle, inode);
280         if (err) {
281                 ext4_warning(inode->i_sb,
282                              "couldn't mark inode dirty (err %d)", err);
283                 goto stop_handle;
284         }
285         if (inode->i_blocks) {
286                 err = ext4_truncate(inode);
287                 if (err) {
288                         ext4_error_err(inode->i_sb, -err,
289                                        "couldn't truncate inode %lu (err %d)",
290                                        inode->i_ino, err);
291                         goto stop_handle;
292                 }
293         }
294
295         /* Remove xattr references. */
296         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297                                       extra_credits);
298         if (err) {
299                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300 stop_handle:
301                 ext4_journal_stop(handle);
302                 ext4_orphan_del(NULL, inode);
303                 if (freeze_protected)
304                         sb_end_intwrite(inode->i_sb);
305                 ext4_xattr_inode_array_free(ea_inode_array);
306                 goto no_delete;
307         }
308
309         /*
310          * Kill off the orphan record which ext4_truncate created.
311          * AKPM: I think this can be inside the above `if'.
312          * Note that ext4_orphan_del() has to be able to cope with the
313          * deletion of a non-existent orphan - this is because we don't
314          * know if ext4_truncate() actually created an orphan record.
315          * (Well, we could do this if we need to, but heck - it works)
316          */
317         ext4_orphan_del(handle, inode);
318         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
319
320         /*
321          * One subtle ordering requirement: if anything has gone wrong
322          * (transaction abort, IO errors, whatever), then we can still
323          * do these next steps (the fs will already have been marked as
324          * having errors), but we can't free the inode if the mark_dirty
325          * fails.
326          */
327         if (ext4_mark_inode_dirty(handle, inode))
328                 /* If that failed, just do the required in-core inode clear. */
329                 ext4_clear_inode(inode);
330         else
331                 ext4_free_inode(handle, inode);
332         ext4_journal_stop(handle);
333         if (freeze_protected)
334                 sb_end_intwrite(inode->i_sb);
335         ext4_xattr_inode_array_free(ea_inode_array);
336         return;
337 no_delete:
338         if (!list_empty(&EXT4_I(inode)->i_fc_list))
339                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
340         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
341 }
342
343 #ifdef CONFIG_QUOTA
344 qsize_t *ext4_get_reserved_space(struct inode *inode)
345 {
346         return &EXT4_I(inode)->i_reserved_quota;
347 }
348 #endif
349
350 /*
351  * Called with i_data_sem down, which is important since we can call
352  * ext4_discard_preallocations() from here.
353  */
354 void ext4_da_update_reserve_space(struct inode *inode,
355                                         int used, int quota_claim)
356 {
357         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
358         struct ext4_inode_info *ei = EXT4_I(inode);
359
360         spin_lock(&ei->i_block_reservation_lock);
361         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
362         if (unlikely(used > ei->i_reserved_data_blocks)) {
363                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
364                          "with only %d reserved data blocks",
365                          __func__, inode->i_ino, used,
366                          ei->i_reserved_data_blocks);
367                 WARN_ON(1);
368                 used = ei->i_reserved_data_blocks;
369         }
370
371         /* Update per-inode reservations */
372         ei->i_reserved_data_blocks -= used;
373         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
374
375         spin_unlock(&ei->i_block_reservation_lock);
376
377         /* Update quota subsystem for data blocks */
378         if (quota_claim)
379                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
380         else {
381                 /*
382                  * We did fallocate with an offset that is already delayed
383                  * allocated. So on delayed allocated writeback we should
384                  * not re-claim the quota for fallocated blocks.
385                  */
386                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
387         }
388
389         /*
390          * If we have done all the pending block allocations and if
391          * there aren't any writers on the inode, we can discard the
392          * inode's preallocations.
393          */
394         if ((ei->i_reserved_data_blocks == 0) &&
395             !inode_is_open_for_write(inode))
396                 ext4_discard_preallocations(inode, 0);
397 }
398
399 static int __check_block_validity(struct inode *inode, const char *func,
400                                 unsigned int line,
401                                 struct ext4_map_blocks *map)
402 {
403         if (ext4_has_feature_journal(inode->i_sb) &&
404             (inode->i_ino ==
405              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
406                 return 0;
407         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
408                 ext4_error_inode(inode, func, line, map->m_pblk,
409                                  "lblock %lu mapped to illegal pblock %llu "
410                                  "(length %d)", (unsigned long) map->m_lblk,
411                                  map->m_pblk, map->m_len);
412                 return -EFSCORRUPTED;
413         }
414         return 0;
415 }
416
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418                        ext4_lblk_t len)
419 {
420         int ret;
421
422         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
423                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
424
425         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426         if (ret > 0)
427                 ret = 0;
428
429         return ret;
430 }
431
432 #define check_block_validity(inode, map)        \
433         __check_block_validity((inode), __func__, __LINE__, (map))
434
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437                                        struct inode *inode,
438                                        struct ext4_map_blocks *es_map,
439                                        struct ext4_map_blocks *map,
440                                        int flags)
441 {
442         int retval;
443
444         map->m_flags = 0;
445         /*
446          * There is a race window that the result is not the same.
447          * e.g. xfstests #223 when dioread_nolock enables.  The reason
448          * is that we lookup a block mapping in extent status tree with
449          * out taking i_data_sem.  So at the time the unwritten extent
450          * could be converted.
451          */
452         down_read(&EXT4_I(inode)->i_data_sem);
453         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
455         } else {
456                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
457         }
458         up_read((&EXT4_I(inode)->i_data_sem));
459
460         /*
461          * We don't check m_len because extent will be collpased in status
462          * tree.  So the m_len might not equal.
463          */
464         if (es_map->m_lblk != map->m_lblk ||
465             es_map->m_flags != map->m_flags ||
466             es_map->m_pblk != map->m_pblk) {
467                 printk("ES cache assertion failed for inode: %lu "
468                        "es_cached ex [%d/%d/%llu/%x] != "
469                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
470                        inode->i_ino, es_map->m_lblk, es_map->m_len,
471                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
472                        map->m_len, map->m_pblk, map->m_flags,
473                        retval, flags);
474         }
475 }
476 #endif /* ES_AGGRESSIVE_TEST */
477
478 /*
479  * The ext4_map_blocks() function tries to look up the requested blocks,
480  * and returns if the blocks are already mapped.
481  *
482  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
483  * and store the allocated blocks in the result buffer head and mark it
484  * mapped.
485  *
486  * If file type is extents based, it will call ext4_ext_map_blocks(),
487  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
488  * based files
489  *
490  * On success, it returns the number of blocks being mapped or allocated.  if
491  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
492  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
493  *
494  * It returns 0 if plain look up failed (blocks have not been allocated), in
495  * that case, @map is returned as unmapped but we still do fill map->m_len to
496  * indicate the length of a hole starting at map->m_lblk.
497  *
498  * It returns the error in case of allocation failure.
499  */
500 int ext4_map_blocks(handle_t *handle, struct inode *inode,
501                     struct ext4_map_blocks *map, int flags)
502 {
503         struct extent_status es;
504         int retval;
505         int ret = 0;
506 #ifdef ES_AGGRESSIVE_TEST
507         struct ext4_map_blocks orig_map;
508
509         memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512         map->m_flags = 0;
513         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
514                   flags, map->m_len, (unsigned long) map->m_lblk);
515
516         /*
517          * ext4_map_blocks returns an int, and m_len is an unsigned int
518          */
519         if (unlikely(map->m_len > INT_MAX))
520                 map->m_len = INT_MAX;
521
522         /* We can handle the block number less than EXT_MAX_BLOCKS */
523         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
524                 return -EFSCORRUPTED;
525
526         /* Lookup extent status tree firstly */
527         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
528             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
529                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
530                         map->m_pblk = ext4_es_pblock(&es) +
531                                         map->m_lblk - es.es_lblk;
532                         map->m_flags |= ext4_es_is_written(&es) ?
533                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
534                         retval = es.es_len - (map->m_lblk - es.es_lblk);
535                         if (retval > map->m_len)
536                                 retval = map->m_len;
537                         map->m_len = retval;
538                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
539                         map->m_pblk = 0;
540                         retval = es.es_len - (map->m_lblk - es.es_lblk);
541                         if (retval > map->m_len)
542                                 retval = map->m_len;
543                         map->m_len = retval;
544                         retval = 0;
545                 } else {
546                         BUG();
547                 }
548 #ifdef ES_AGGRESSIVE_TEST
549                 ext4_map_blocks_es_recheck(handle, inode, map,
550                                            &orig_map, flags);
551 #endif
552                 goto found;
553         }
554
555         /*
556          * Try to see if we can get the block without requesting a new
557          * file system block.
558          */
559         down_read(&EXT4_I(inode)->i_data_sem);
560         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
561                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
562         } else {
563                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
564         }
565         if (retval > 0) {
566                 unsigned int status;
567
568                 if (unlikely(retval != map->m_len)) {
569                         ext4_warning(inode->i_sb,
570                                      "ES len assertion failed for inode "
571                                      "%lu: retval %d != map->m_len %d",
572                                      inode->i_ino, retval, map->m_len);
573                         WARN_ON(1);
574                 }
575
576                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579                     !(status & EXTENT_STATUS_WRITTEN) &&
580                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581                                        map->m_lblk + map->m_len - 1))
582                         status |= EXTENT_STATUS_DELAYED;
583                 ret = ext4_es_insert_extent(inode, map->m_lblk,
584                                             map->m_len, map->m_pblk, status);
585                 if (ret < 0)
586                         retval = ret;
587         }
588         up_read((&EXT4_I(inode)->i_data_sem));
589
590 found:
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592                 ret = check_block_validity(inode, map);
593                 if (ret != 0)
594                         return ret;
595         }
596
597         /* If it is only a block(s) look up */
598         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599                 return retval;
600
601         /*
602          * Returns if the blocks have already allocated
603          *
604          * Note that if blocks have been preallocated
605          * ext4_ext_get_block() returns the create = 0
606          * with buffer head unmapped.
607          */
608         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609                 /*
610                  * If we need to convert extent to unwritten
611                  * we continue and do the actual work in
612                  * ext4_ext_map_blocks()
613                  */
614                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615                         return retval;
616
617         /*
618          * Here we clear m_flags because after allocating an new extent,
619          * it will be set again.
620          */
621         map->m_flags &= ~EXT4_MAP_FLAGS;
622
623         /*
624          * New blocks allocate and/or writing to unwritten extent
625          * will possibly result in updating i_data, so we take
626          * the write lock of i_data_sem, and call get_block()
627          * with create == 1 flag.
628          */
629         down_write(&EXT4_I(inode)->i_data_sem);
630
631         /*
632          * We need to check for EXT4 here because migrate
633          * could have changed the inode type in between
634          */
635         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637         } else {
638                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
639
640                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641                         /*
642                          * We allocated new blocks which will result in
643                          * i_data's format changing.  Force the migrate
644                          * to fail by clearing migrate flags
645                          */
646                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647                 }
648
649                 /*
650                  * Update reserved blocks/metadata blocks after successful
651                  * block allocation which had been deferred till now. We don't
652                  * support fallocate for non extent files. So we can update
653                  * reserve space here.
654                  */
655                 if ((retval > 0) &&
656                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657                         ext4_da_update_reserve_space(inode, retval, 1);
658         }
659
660         if (retval > 0) {
661                 unsigned int status;
662
663                 if (unlikely(retval != map->m_len)) {
664                         ext4_warning(inode->i_sb,
665                                      "ES len assertion failed for inode "
666                                      "%lu: retval %d != map->m_len %d",
667                                      inode->i_ino, retval, map->m_len);
668                         WARN_ON(1);
669                 }
670
671                 /*
672                  * We have to zeroout blocks before inserting them into extent
673                  * status tree. Otherwise someone could look them up there and
674                  * use them before they are really zeroed. We also have to
675                  * unmap metadata before zeroing as otherwise writeback can
676                  * overwrite zeros with stale data from block device.
677                  */
678                 if (flags & EXT4_GET_BLOCKS_ZERO &&
679                     map->m_flags & EXT4_MAP_MAPPED &&
680                     map->m_flags & EXT4_MAP_NEW) {
681                         ret = ext4_issue_zeroout(inode, map->m_lblk,
682                                                  map->m_pblk, map->m_len);
683                         if (ret) {
684                                 retval = ret;
685                                 goto out_sem;
686                         }
687                 }
688
689                 /*
690                  * If the extent has been zeroed out, we don't need to update
691                  * extent status tree.
692                  */
693                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
694                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
695                         if (ext4_es_is_written(&es))
696                                 goto out_sem;
697                 }
698                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
699                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
700                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
701                     !(status & EXTENT_STATUS_WRITTEN) &&
702                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
703                                        map->m_lblk + map->m_len - 1))
704                         status |= EXTENT_STATUS_DELAYED;
705                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
706                                             map->m_pblk, status);
707                 if (ret < 0) {
708                         retval = ret;
709                         goto out_sem;
710                 }
711         }
712
713 out_sem:
714         up_write((&EXT4_I(inode)->i_data_sem));
715         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
716                 ret = check_block_validity(inode, map);
717                 if (ret != 0)
718                         return ret;
719
720                 /*
721                  * Inodes with freshly allocated blocks where contents will be
722                  * visible after transaction commit must be on transaction's
723                  * ordered data list.
724                  */
725                 if (map->m_flags & EXT4_MAP_NEW &&
726                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
727                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
728                     !ext4_is_quota_file(inode) &&
729                     ext4_should_order_data(inode)) {
730                         loff_t start_byte =
731                                 (loff_t)map->m_lblk << inode->i_blkbits;
732                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
733
734                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
735                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
736                                                 start_byte, length);
737                         else
738                                 ret = ext4_jbd2_inode_add_write(handle, inode,
739                                                 start_byte, length);
740                         if (ret)
741                                 return ret;
742                 }
743         }
744         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
745                                 map->m_flags & EXT4_MAP_MAPPED))
746                 ext4_fc_track_range(handle, inode, map->m_lblk,
747                                         map->m_lblk + map->m_len - 1);
748         if (retval < 0)
749                 ext_debug(inode, "failed with err %d\n", retval);
750         return retval;
751 }
752
753 /*
754  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755  * we have to be careful as someone else may be manipulating b_state as well.
756  */
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759         unsigned long old_state;
760         unsigned long new_state;
761
762         flags &= EXT4_MAP_FLAGS;
763
764         /* Dummy buffer_head? Set non-atomically. */
765         if (!bh->b_page) {
766                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767                 return;
768         }
769         /*
770          * Someone else may be modifying b_state. Be careful! This is ugly but
771          * once we get rid of using bh as a container for mapping information
772          * to pass to / from get_block functions, this can go away.
773          */
774         do {
775                 old_state = READ_ONCE(bh->b_state);
776                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777         } while (unlikely(
778                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
779 }
780
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782                            struct buffer_head *bh, int flags)
783 {
784         struct ext4_map_blocks map;
785         int ret = 0;
786
787         if (ext4_has_inline_data(inode))
788                 return -ERANGE;
789
790         map.m_lblk = iblock;
791         map.m_len = bh->b_size >> inode->i_blkbits;
792
793         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794                               flags);
795         if (ret > 0) {
796                 map_bh(bh, inode->i_sb, map.m_pblk);
797                 ext4_update_bh_state(bh, map.m_flags);
798                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
799                 ret = 0;
800         } else if (ret == 0) {
801                 /* hole case, need to fill in bh->b_size */
802                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
803         }
804         return ret;
805 }
806
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808                    struct buffer_head *bh, int create)
809 {
810         return _ext4_get_block(inode, iblock, bh,
811                                create ? EXT4_GET_BLOCKS_CREATE : 0);
812 }
813
814 /*
815  * Get block function used when preparing for buffered write if we require
816  * creating an unwritten extent if blocks haven't been allocated.  The extent
817  * will be converted to written after the IO is complete.
818  */
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820                              struct buffer_head *bh_result, int create)
821 {
822         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823                    inode->i_ino, create);
824         return _ext4_get_block(inode, iblock, bh_result,
825                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
826 }
827
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835                                 ext4_lblk_t block, int map_flags)
836 {
837         struct ext4_map_blocks map;
838         struct buffer_head *bh;
839         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840         int err;
841
842         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843                     || handle != NULL || create == 0);
844
845         map.m_lblk = block;
846         map.m_len = 1;
847         err = ext4_map_blocks(handle, inode, &map, map_flags);
848
849         if (err == 0)
850                 return create ? ERR_PTR(-ENOSPC) : NULL;
851         if (err < 0)
852                 return ERR_PTR(err);
853
854         bh = sb_getblk(inode->i_sb, map.m_pblk);
855         if (unlikely(!bh))
856                 return ERR_PTR(-ENOMEM);
857         if (map.m_flags & EXT4_MAP_NEW) {
858                 ASSERT(create != 0);
859                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860                             || (handle != NULL));
861
862                 /*
863                  * Now that we do not always journal data, we should
864                  * keep in mind whether this should always journal the
865                  * new buffer as metadata.  For now, regular file
866                  * writes use ext4_get_block instead, so it's not a
867                  * problem.
868                  */
869                 lock_buffer(bh);
870                 BUFFER_TRACE(bh, "call get_create_access");
871                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
872                                                      EXT4_JTR_NONE);
873                 if (unlikely(err)) {
874                         unlock_buffer(bh);
875                         goto errout;
876                 }
877                 if (!buffer_uptodate(bh)) {
878                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879                         set_buffer_uptodate(bh);
880                 }
881                 unlock_buffer(bh);
882                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883                 err = ext4_handle_dirty_metadata(handle, inode, bh);
884                 if (unlikely(err))
885                         goto errout;
886         } else
887                 BUFFER_TRACE(bh, "not a new buffer");
888         return bh;
889 errout:
890         brelse(bh);
891         return ERR_PTR(err);
892 }
893
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895                                ext4_lblk_t block, int map_flags)
896 {
897         struct buffer_head *bh;
898         int ret;
899
900         bh = ext4_getblk(handle, inode, block, map_flags);
901         if (IS_ERR(bh))
902                 return bh;
903         if (!bh || ext4_buffer_uptodate(bh))
904                 return bh;
905
906         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907         if (ret) {
908                 put_bh(bh);
909                 return ERR_PTR(ret);
910         }
911         return bh;
912 }
913
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916                      bool wait, struct buffer_head **bhs)
917 {
918         int i, err;
919
920         for (i = 0; i < bh_count; i++) {
921                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922                 if (IS_ERR(bhs[i])) {
923                         err = PTR_ERR(bhs[i]);
924                         bh_count = i;
925                         goto out_brelse;
926                 }
927         }
928
929         for (i = 0; i < bh_count; i++)
930                 /* Note that NULL bhs[i] is valid because of holes. */
931                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933
934         if (!wait)
935                 return 0;
936
937         for (i = 0; i < bh_count; i++)
938                 if (bhs[i])
939                         wait_on_buffer(bhs[i]);
940
941         for (i = 0; i < bh_count; i++) {
942                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
943                         err = -EIO;
944                         goto out_brelse;
945                 }
946         }
947         return 0;
948
949 out_brelse:
950         for (i = 0; i < bh_count; i++) {
951                 brelse(bhs[i]);
952                 bhs[i] = NULL;
953         }
954         return err;
955 }
956
957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
958                            struct buffer_head *head,
959                            unsigned from,
960                            unsigned to,
961                            int *partial,
962                            int (*fn)(handle_t *handle, struct inode *inode,
963                                      struct buffer_head *bh))
964 {
965         struct buffer_head *bh;
966         unsigned block_start, block_end;
967         unsigned blocksize = head->b_size;
968         int err, ret = 0;
969         struct buffer_head *next;
970
971         for (bh = head, block_start = 0;
972              ret == 0 && (bh != head || !block_start);
973              block_start = block_end, bh = next) {
974                 next = bh->b_this_page;
975                 block_end = block_start + blocksize;
976                 if (block_end <= from || block_start >= to) {
977                         if (partial && !buffer_uptodate(bh))
978                                 *partial = 1;
979                         continue;
980                 }
981                 err = (*fn)(handle, inode, bh);
982                 if (!ret)
983                         ret = err;
984         }
985         return ret;
986 }
987
988 /*
989  * To preserve ordering, it is essential that the hole instantiation and
990  * the data write be encapsulated in a single transaction.  We cannot
991  * close off a transaction and start a new one between the ext4_get_block()
992  * and the commit_write().  So doing the jbd2_journal_start at the start of
993  * prepare_write() is the right place.
994  *
995  * Also, this function can nest inside ext4_writepage().  In that case, we
996  * *know* that ext4_writepage() has generated enough buffer credits to do the
997  * whole page.  So we won't block on the journal in that case, which is good,
998  * because the caller may be PF_MEMALLOC.
999  *
1000  * By accident, ext4 can be reentered when a transaction is open via
1001  * quota file writes.  If we were to commit the transaction while thus
1002  * reentered, there can be a deadlock - we would be holding a quota
1003  * lock, and the commit would never complete if another thread had a
1004  * transaction open and was blocking on the quota lock - a ranking
1005  * violation.
1006  *
1007  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008  * will _not_ run commit under these circumstances because handle->h_ref
1009  * is elevated.  We'll still have enough credits for the tiny quotafile
1010  * write.
1011  */
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013                                 struct buffer_head *bh)
1014 {
1015         int dirty = buffer_dirty(bh);
1016         int ret;
1017
1018         if (!buffer_mapped(bh) || buffer_freed(bh))
1019                 return 0;
1020         /*
1021          * __block_write_begin() could have dirtied some buffers. Clean
1022          * the dirty bit as jbd2_journal_get_write_access() could complain
1023          * otherwise about fs integrity issues. Setting of the dirty bit
1024          * by __block_write_begin() isn't a real problem here as we clear
1025          * the bit before releasing a page lock and thus writeback cannot
1026          * ever write the buffer.
1027          */
1028         if (dirty)
1029                 clear_buffer_dirty(bh);
1030         BUFFER_TRACE(bh, "get write access");
1031         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1032                                             EXT4_JTR_NONE);
1033         if (!ret && dirty)
1034                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1035         return ret;
1036 }
1037
1038 #ifdef CONFIG_FS_ENCRYPTION
1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040                                   get_block_t *get_block)
1041 {
1042         unsigned from = pos & (PAGE_SIZE - 1);
1043         unsigned to = from + len;
1044         struct inode *inode = page->mapping->host;
1045         unsigned block_start, block_end;
1046         sector_t block;
1047         int err = 0;
1048         unsigned blocksize = inode->i_sb->s_blocksize;
1049         unsigned bbits;
1050         struct buffer_head *bh, *head, *wait[2];
1051         int nr_wait = 0;
1052         int i;
1053
1054         BUG_ON(!PageLocked(page));
1055         BUG_ON(from > PAGE_SIZE);
1056         BUG_ON(to > PAGE_SIZE);
1057         BUG_ON(from > to);
1058
1059         if (!page_has_buffers(page))
1060                 create_empty_buffers(page, blocksize, 0);
1061         head = page_buffers(page);
1062         bbits = ilog2(blocksize);
1063         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1064
1065         for (bh = head, block_start = 0; bh != head || !block_start;
1066             block++, block_start = block_end, bh = bh->b_this_page) {
1067                 block_end = block_start + blocksize;
1068                 if (block_end <= from || block_start >= to) {
1069                         if (PageUptodate(page)) {
1070                                 set_buffer_uptodate(bh);
1071                         }
1072                         continue;
1073                 }
1074                 if (buffer_new(bh))
1075                         clear_buffer_new(bh);
1076                 if (!buffer_mapped(bh)) {
1077                         WARN_ON(bh->b_size != blocksize);
1078                         err = get_block(inode, block, bh, 1);
1079                         if (err)
1080                                 break;
1081                         if (buffer_new(bh)) {
1082                                 if (PageUptodate(page)) {
1083                                         clear_buffer_new(bh);
1084                                         set_buffer_uptodate(bh);
1085                                         mark_buffer_dirty(bh);
1086                                         continue;
1087                                 }
1088                                 if (block_end > to || block_start < from)
1089                                         zero_user_segments(page, to, block_end,
1090                                                            block_start, from);
1091                                 continue;
1092                         }
1093                 }
1094                 if (PageUptodate(page)) {
1095                         set_buffer_uptodate(bh);
1096                         continue;
1097                 }
1098                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099                     !buffer_unwritten(bh) &&
1100                     (block_start < from || block_end > to)) {
1101                         ext4_read_bh_lock(bh, 0, false);
1102                         wait[nr_wait++] = bh;
1103                 }
1104         }
1105         /*
1106          * If we issued read requests, let them complete.
1107          */
1108         for (i = 0; i < nr_wait; i++) {
1109                 wait_on_buffer(wait[i]);
1110                 if (!buffer_uptodate(wait[i]))
1111                         err = -EIO;
1112         }
1113         if (unlikely(err)) {
1114                 page_zero_new_buffers(page, from, to);
1115         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116                 for (i = 0; i < nr_wait; i++) {
1117                         int err2;
1118
1119                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120                                                                 bh_offset(wait[i]));
1121                         if (err2) {
1122                                 clear_buffer_uptodate(wait[i]);
1123                                 err = err2;
1124                         }
1125                 }
1126         }
1127
1128         return err;
1129 }
1130 #endif
1131
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133                             loff_t pos, unsigned len, unsigned flags,
1134                             struct page **pagep, void **fsdata)
1135 {
1136         struct inode *inode = mapping->host;
1137         int ret, needed_blocks;
1138         handle_t *handle;
1139         int retries = 0;
1140         struct page *page;
1141         pgoff_t index;
1142         unsigned from, to;
1143
1144         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145                 return -EIO;
1146
1147         trace_ext4_write_begin(inode, pos, len, flags);
1148         /*
1149          * Reserve one block more for addition to orphan list in case
1150          * we allocate blocks but write fails for some reason
1151          */
1152         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153         index = pos >> PAGE_SHIFT;
1154         from = pos & (PAGE_SIZE - 1);
1155         to = from + len;
1156
1157         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159                                                     flags, pagep);
1160                 if (ret < 0)
1161                         return ret;
1162                 if (ret == 1)
1163                         return 0;
1164         }
1165
1166         /*
1167          * grab_cache_page_write_begin() can take a long time if the
1168          * system is thrashing due to memory pressure, or if the page
1169          * is being written back.  So grab it first before we start
1170          * the transaction handle.  This also allows us to allocate
1171          * the page (if needed) without using GFP_NOFS.
1172          */
1173 retry_grab:
1174         page = grab_cache_page_write_begin(mapping, index, flags);
1175         if (!page)
1176                 return -ENOMEM;
1177         unlock_page(page);
1178
1179 retry_journal:
1180         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181         if (IS_ERR(handle)) {
1182                 put_page(page);
1183                 return PTR_ERR(handle);
1184         }
1185
1186         lock_page(page);
1187         if (page->mapping != mapping) {
1188                 /* The page got truncated from under us */
1189                 unlock_page(page);
1190                 put_page(page);
1191                 ext4_journal_stop(handle);
1192                 goto retry_grab;
1193         }
1194         /* In case writeback began while the page was unlocked */
1195         wait_for_stable_page(page);
1196
1197 #ifdef CONFIG_FS_ENCRYPTION
1198         if (ext4_should_dioread_nolock(inode))
1199                 ret = ext4_block_write_begin(page, pos, len,
1200                                              ext4_get_block_unwritten);
1201         else
1202                 ret = ext4_block_write_begin(page, pos, len,
1203                                              ext4_get_block);
1204 #else
1205         if (ext4_should_dioread_nolock(inode))
1206                 ret = __block_write_begin(page, pos, len,
1207                                           ext4_get_block_unwritten);
1208         else
1209                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1210 #endif
1211         if (!ret && ext4_should_journal_data(inode)) {
1212                 ret = ext4_walk_page_buffers(handle, inode,
1213                                              page_buffers(page), from, to, NULL,
1214                                              do_journal_get_write_access);
1215         }
1216
1217         if (ret) {
1218                 bool extended = (pos + len > inode->i_size) &&
1219                                 !ext4_verity_in_progress(inode);
1220
1221                 unlock_page(page);
1222                 /*
1223                  * __block_write_begin may have instantiated a few blocks
1224                  * outside i_size.  Trim these off again. Don't need
1225                  * i_size_read because we hold i_rwsem.
1226                  *
1227                  * Add inode to orphan list in case we crash before
1228                  * truncate finishes
1229                  */
1230                 if (extended && ext4_can_truncate(inode))
1231                         ext4_orphan_add(handle, inode);
1232
1233                 ext4_journal_stop(handle);
1234                 if (extended) {
1235                         ext4_truncate_failed_write(inode);
1236                         /*
1237                          * If truncate failed early the inode might
1238                          * still be on the orphan list; we need to
1239                          * make sure the inode is removed from the
1240                          * orphan list in that case.
1241                          */
1242                         if (inode->i_nlink)
1243                                 ext4_orphan_del(NULL, inode);
1244                 }
1245
1246                 if (ret == -ENOSPC &&
1247                     ext4_should_retry_alloc(inode->i_sb, &retries))
1248                         goto retry_journal;
1249                 put_page(page);
1250                 return ret;
1251         }
1252         *pagep = page;
1253         return ret;
1254 }
1255
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct inode *inode,
1258                         struct buffer_head *bh)
1259 {
1260         int ret;
1261         if (!buffer_mapped(bh) || buffer_freed(bh))
1262                 return 0;
1263         set_buffer_uptodate(bh);
1264         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265         clear_buffer_meta(bh);
1266         clear_buffer_prio(bh);
1267         return ret;
1268 }
1269
1270 /*
1271  * We need to pick up the new inode size which generic_commit_write gave us
1272  * `file' can be NULL - eg, when called from page_symlink().
1273  *
1274  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1275  * buffers are managed internally.
1276  */
1277 static int ext4_write_end(struct file *file,
1278                           struct address_space *mapping,
1279                           loff_t pos, unsigned len, unsigned copied,
1280                           struct page *page, void *fsdata)
1281 {
1282         handle_t *handle = ext4_journal_current_handle();
1283         struct inode *inode = mapping->host;
1284         loff_t old_size = inode->i_size;
1285         int ret = 0, ret2;
1286         int i_size_changed = 0;
1287         bool verity = ext4_verity_in_progress(inode);
1288
1289         trace_ext4_write_end(inode, pos, len, copied);
1290
1291         if (ext4_has_inline_data(inode))
1292                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1293
1294         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1295         /*
1296          * it's important to update i_size while still holding page lock:
1297          * page writeout could otherwise come in and zero beyond i_size.
1298          *
1299          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1300          * blocks are being written past EOF, so skip the i_size update.
1301          */
1302         if (!verity)
1303                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1304         unlock_page(page);
1305         put_page(page);
1306
1307         if (old_size < pos && !verity)
1308                 pagecache_isize_extended(inode, old_size, pos);
1309         /*
1310          * Don't mark the inode dirty under page lock. First, it unnecessarily
1311          * makes the holding time of page lock longer. Second, it forces lock
1312          * ordering of page lock and transaction start for journaling
1313          * filesystems.
1314          */
1315         if (i_size_changed)
1316                 ret = ext4_mark_inode_dirty(handle, inode);
1317
1318         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1319                 /* if we have allocated more blocks and copied
1320                  * less. We will have blocks allocated outside
1321                  * inode->i_size. So truncate them
1322                  */
1323                 ext4_orphan_add(handle, inode);
1324
1325         ret2 = ext4_journal_stop(handle);
1326         if (!ret)
1327                 ret = ret2;
1328
1329         if (pos + len > inode->i_size && !verity) {
1330                 ext4_truncate_failed_write(inode);
1331                 /*
1332                  * If truncate failed early the inode might still be
1333                  * on the orphan list; we need to make sure the inode
1334                  * is removed from the orphan list in that case.
1335                  */
1336                 if (inode->i_nlink)
1337                         ext4_orphan_del(NULL, inode);
1338         }
1339
1340         return ret ? ret : copied;
1341 }
1342
1343 /*
1344  * This is a private version of page_zero_new_buffers() which doesn't
1345  * set the buffer to be dirty, since in data=journalled mode we need
1346  * to call ext4_handle_dirty_metadata() instead.
1347  */
1348 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1349                                             struct inode *inode,
1350                                             struct page *page,
1351                                             unsigned from, unsigned to)
1352 {
1353         unsigned int block_start = 0, block_end;
1354         struct buffer_head *head, *bh;
1355
1356         bh = head = page_buffers(page);
1357         do {
1358                 block_end = block_start + bh->b_size;
1359                 if (buffer_new(bh)) {
1360                         if (block_end > from && block_start < to) {
1361                                 if (!PageUptodate(page)) {
1362                                         unsigned start, size;
1363
1364                                         start = max(from, block_start);
1365                                         size = min(to, block_end) - start;
1366
1367                                         zero_user(page, start, size);
1368                                         write_end_fn(handle, inode, bh);
1369                                 }
1370                                 clear_buffer_new(bh);
1371                         }
1372                 }
1373                 block_start = block_end;
1374                 bh = bh->b_this_page;
1375         } while (bh != head);
1376 }
1377
1378 static int ext4_journalled_write_end(struct file *file,
1379                                      struct address_space *mapping,
1380                                      loff_t pos, unsigned len, unsigned copied,
1381                                      struct page *page, void *fsdata)
1382 {
1383         handle_t *handle = ext4_journal_current_handle();
1384         struct inode *inode = mapping->host;
1385         loff_t old_size = inode->i_size;
1386         int ret = 0, ret2;
1387         int partial = 0;
1388         unsigned from, to;
1389         int size_changed = 0;
1390         bool verity = ext4_verity_in_progress(inode);
1391
1392         trace_ext4_journalled_write_end(inode, pos, len, copied);
1393         from = pos & (PAGE_SIZE - 1);
1394         to = from + len;
1395
1396         BUG_ON(!ext4_handle_valid(handle));
1397
1398         if (ext4_has_inline_data(inode))
1399                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1400
1401         if (unlikely(copied < len) && !PageUptodate(page)) {
1402                 copied = 0;
1403                 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1404         } else {
1405                 if (unlikely(copied < len))
1406                         ext4_journalled_zero_new_buffers(handle, inode, page,
1407                                                          from + copied, to);
1408                 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1409                                              from, from + copied, &partial,
1410                                              write_end_fn);
1411                 if (!partial)
1412                         SetPageUptodate(page);
1413         }
1414         if (!verity)
1415                 size_changed = ext4_update_inode_size(inode, pos + copied);
1416         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1417         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1418         unlock_page(page);
1419         put_page(page);
1420
1421         if (old_size < pos && !verity)
1422                 pagecache_isize_extended(inode, old_size, pos);
1423
1424         if (size_changed) {
1425                 ret2 = ext4_mark_inode_dirty(handle, inode);
1426                 if (!ret)
1427                         ret = ret2;
1428         }
1429
1430         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1431                 /* if we have allocated more blocks and copied
1432                  * less. We will have blocks allocated outside
1433                  * inode->i_size. So truncate them
1434                  */
1435                 ext4_orphan_add(handle, inode);
1436
1437         ret2 = ext4_journal_stop(handle);
1438         if (!ret)
1439                 ret = ret2;
1440         if (pos + len > inode->i_size && !verity) {
1441                 ext4_truncate_failed_write(inode);
1442                 /*
1443                  * If truncate failed early the inode might still be
1444                  * on the orphan list; we need to make sure the inode
1445                  * is removed from the orphan list in that case.
1446                  */
1447                 if (inode->i_nlink)
1448                         ext4_orphan_del(NULL, inode);
1449         }
1450
1451         return ret ? ret : copied;
1452 }
1453
1454 /*
1455  * Reserve space for a single cluster
1456  */
1457 static int ext4_da_reserve_space(struct inode *inode)
1458 {
1459         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1460         struct ext4_inode_info *ei = EXT4_I(inode);
1461         int ret;
1462
1463         /*
1464          * We will charge metadata quota at writeout time; this saves
1465          * us from metadata over-estimation, though we may go over by
1466          * a small amount in the end.  Here we just reserve for data.
1467          */
1468         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1469         if (ret)
1470                 return ret;
1471
1472         spin_lock(&ei->i_block_reservation_lock);
1473         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1474                 spin_unlock(&ei->i_block_reservation_lock);
1475                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1476                 return -ENOSPC;
1477         }
1478         ei->i_reserved_data_blocks++;
1479         trace_ext4_da_reserve_space(inode);
1480         spin_unlock(&ei->i_block_reservation_lock);
1481
1482         return 0;       /* success */
1483 }
1484
1485 void ext4_da_release_space(struct inode *inode, int to_free)
1486 {
1487         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488         struct ext4_inode_info *ei = EXT4_I(inode);
1489
1490         if (!to_free)
1491                 return;         /* Nothing to release, exit */
1492
1493         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1494
1495         trace_ext4_da_release_space(inode, to_free);
1496         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1497                 /*
1498                  * if there aren't enough reserved blocks, then the
1499                  * counter is messed up somewhere.  Since this
1500                  * function is called from invalidate page, it's
1501                  * harmless to return without any action.
1502                  */
1503                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1504                          "ino %lu, to_free %d with only %d reserved "
1505                          "data blocks", inode->i_ino, to_free,
1506                          ei->i_reserved_data_blocks);
1507                 WARN_ON(1);
1508                 to_free = ei->i_reserved_data_blocks;
1509         }
1510         ei->i_reserved_data_blocks -= to_free;
1511
1512         /* update fs dirty data blocks counter */
1513         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1514
1515         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1516
1517         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1518 }
1519
1520 /*
1521  * Delayed allocation stuff
1522  */
1523
1524 struct mpage_da_data {
1525         struct inode *inode;
1526         struct writeback_control *wbc;
1527
1528         pgoff_t first_page;     /* The first page to write */
1529         pgoff_t next_page;      /* Current page to examine */
1530         pgoff_t last_page;      /* Last page to examine */
1531         /*
1532          * Extent to map - this can be after first_page because that can be
1533          * fully mapped. We somewhat abuse m_flags to store whether the extent
1534          * is delalloc or unwritten.
1535          */
1536         struct ext4_map_blocks map;
1537         struct ext4_io_submit io_submit;        /* IO submission data */
1538         unsigned int do_map:1;
1539         unsigned int scanned_until_end:1;
1540 };
1541
1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1543                                        bool invalidate)
1544 {
1545         int nr_pages, i;
1546         pgoff_t index, end;
1547         struct pagevec pvec;
1548         struct inode *inode = mpd->inode;
1549         struct address_space *mapping = inode->i_mapping;
1550
1551         /* This is necessary when next_page == 0. */
1552         if (mpd->first_page >= mpd->next_page)
1553                 return;
1554
1555         mpd->scanned_until_end = 0;
1556         index = mpd->first_page;
1557         end   = mpd->next_page - 1;
1558         if (invalidate) {
1559                 ext4_lblk_t start, last;
1560                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1561                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1562                 ext4_es_remove_extent(inode, start, last - start + 1);
1563         }
1564
1565         pagevec_init(&pvec);
1566         while (index <= end) {
1567                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1568                 if (nr_pages == 0)
1569                         break;
1570                 for (i = 0; i < nr_pages; i++) {
1571                         struct page *page = pvec.pages[i];
1572                         struct folio *folio = page_folio(page);
1573
1574                         BUG_ON(!folio_test_locked(folio));
1575                         BUG_ON(folio_test_writeback(folio));
1576                         if (invalidate) {
1577                                 if (folio_mapped(folio))
1578                                         folio_clear_dirty_for_io(folio);
1579                                 block_invalidate_folio(folio, 0,
1580                                                 folio_size(folio));
1581                                 folio_clear_uptodate(folio);
1582                         }
1583                         folio_unlock(folio);
1584                 }
1585                 pagevec_release(&pvec);
1586         }
1587 }
1588
1589 static void ext4_print_free_blocks(struct inode *inode)
1590 {
1591         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1592         struct super_block *sb = inode->i_sb;
1593         struct ext4_inode_info *ei = EXT4_I(inode);
1594
1595         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1596                EXT4_C2B(EXT4_SB(inode->i_sb),
1597                         ext4_count_free_clusters(sb)));
1598         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1599         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1600                (long long) EXT4_C2B(EXT4_SB(sb),
1601                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1602         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1603                (long long) EXT4_C2B(EXT4_SB(sb),
1604                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1605         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1606         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1607                  ei->i_reserved_data_blocks);
1608         return;
1609 }
1610
1611 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1612                                       struct buffer_head *bh)
1613 {
1614         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1615 }
1616
1617 /*
1618  * ext4_insert_delayed_block - adds a delayed block to the extents status
1619  *                             tree, incrementing the reserved cluster/block
1620  *                             count or making a pending reservation
1621  *                             where needed
1622  *
1623  * @inode - file containing the newly added block
1624  * @lblk - logical block to be added
1625  *
1626  * Returns 0 on success, negative error code on failure.
1627  */
1628 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1629 {
1630         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1631         int ret;
1632         bool allocated = false;
1633         bool reserved = false;
1634
1635         /*
1636          * If the cluster containing lblk is shared with a delayed,
1637          * written, or unwritten extent in a bigalloc file system, it's
1638          * already been accounted for and does not need to be reserved.
1639          * A pending reservation must be made for the cluster if it's
1640          * shared with a written or unwritten extent and doesn't already
1641          * have one.  Written and unwritten extents can be purged from the
1642          * extents status tree if the system is under memory pressure, so
1643          * it's necessary to examine the extent tree if a search of the
1644          * extents status tree doesn't get a match.
1645          */
1646         if (sbi->s_cluster_ratio == 1) {
1647                 ret = ext4_da_reserve_space(inode);
1648                 if (ret != 0)   /* ENOSPC */
1649                         goto errout;
1650                 reserved = true;
1651         } else {   /* bigalloc */
1652                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1653                         if (!ext4_es_scan_clu(inode,
1654                                               &ext4_es_is_mapped, lblk)) {
1655                                 ret = ext4_clu_mapped(inode,
1656                                                       EXT4_B2C(sbi, lblk));
1657                                 if (ret < 0)
1658                                         goto errout;
1659                                 if (ret == 0) {
1660                                         ret = ext4_da_reserve_space(inode);
1661                                         if (ret != 0)   /* ENOSPC */
1662                                                 goto errout;
1663                                         reserved = true;
1664                                 } else {
1665                                         allocated = true;
1666                                 }
1667                         } else {
1668                                 allocated = true;
1669                         }
1670                 }
1671         }
1672
1673         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1674         if (ret && reserved)
1675                 ext4_da_release_space(inode, 1);
1676
1677 errout:
1678         return ret;
1679 }
1680
1681 /*
1682  * This function is grabs code from the very beginning of
1683  * ext4_map_blocks, but assumes that the caller is from delayed write
1684  * time. This function looks up the requested blocks and sets the
1685  * buffer delay bit under the protection of i_data_sem.
1686  */
1687 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1688                               struct ext4_map_blocks *map,
1689                               struct buffer_head *bh)
1690 {
1691         struct extent_status es;
1692         int retval;
1693         sector_t invalid_block = ~((sector_t) 0xffff);
1694 #ifdef ES_AGGRESSIVE_TEST
1695         struct ext4_map_blocks orig_map;
1696
1697         memcpy(&orig_map, map, sizeof(*map));
1698 #endif
1699
1700         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1701                 invalid_block = ~0;
1702
1703         map->m_flags = 0;
1704         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1705                   (unsigned long) map->m_lblk);
1706
1707         /* Lookup extent status tree firstly */
1708         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1709                 if (ext4_es_is_hole(&es)) {
1710                         retval = 0;
1711                         down_read(&EXT4_I(inode)->i_data_sem);
1712                         goto add_delayed;
1713                 }
1714
1715                 /*
1716                  * Delayed extent could be allocated by fallocate.
1717                  * So we need to check it.
1718                  */
1719                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1720                         map_bh(bh, inode->i_sb, invalid_block);
1721                         set_buffer_new(bh);
1722                         set_buffer_delay(bh);
1723                         return 0;
1724                 }
1725
1726                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1727                 retval = es.es_len - (iblock - es.es_lblk);
1728                 if (retval > map->m_len)
1729                         retval = map->m_len;
1730                 map->m_len = retval;
1731                 if (ext4_es_is_written(&es))
1732                         map->m_flags |= EXT4_MAP_MAPPED;
1733                 else if (ext4_es_is_unwritten(&es))
1734                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1735                 else
1736                         BUG();
1737
1738 #ifdef ES_AGGRESSIVE_TEST
1739                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1740 #endif
1741                 return retval;
1742         }
1743
1744         /*
1745          * Try to see if we can get the block without requesting a new
1746          * file system block.
1747          */
1748         down_read(&EXT4_I(inode)->i_data_sem);
1749         if (ext4_has_inline_data(inode))
1750                 retval = 0;
1751         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1752                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1753         else
1754                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1755
1756 add_delayed:
1757         if (retval == 0) {
1758                 int ret;
1759
1760                 /*
1761                  * XXX: __block_prepare_write() unmaps passed block,
1762                  * is it OK?
1763                  */
1764
1765                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1766                 if (ret != 0) {
1767                         retval = ret;
1768                         goto out_unlock;
1769                 }
1770
1771                 map_bh(bh, inode->i_sb, invalid_block);
1772                 set_buffer_new(bh);
1773                 set_buffer_delay(bh);
1774         } else if (retval > 0) {
1775                 int ret;
1776                 unsigned int status;
1777
1778                 if (unlikely(retval != map->m_len)) {
1779                         ext4_warning(inode->i_sb,
1780                                      "ES len assertion failed for inode "
1781                                      "%lu: retval %d != map->m_len %d",
1782                                      inode->i_ino, retval, map->m_len);
1783                         WARN_ON(1);
1784                 }
1785
1786                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1787                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1788                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1789                                             map->m_pblk, status);
1790                 if (ret != 0)
1791                         retval = ret;
1792         }
1793
1794 out_unlock:
1795         up_read((&EXT4_I(inode)->i_data_sem));
1796
1797         return retval;
1798 }
1799
1800 /*
1801  * This is a special get_block_t callback which is used by
1802  * ext4_da_write_begin().  It will either return mapped block or
1803  * reserve space for a single block.
1804  *
1805  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1806  * We also have b_blocknr = -1 and b_bdev initialized properly
1807  *
1808  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1809  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1810  * initialized properly.
1811  */
1812 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1813                            struct buffer_head *bh, int create)
1814 {
1815         struct ext4_map_blocks map;
1816         int ret = 0;
1817
1818         BUG_ON(create == 0);
1819         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1820
1821         map.m_lblk = iblock;
1822         map.m_len = 1;
1823
1824         /*
1825          * first, we need to know whether the block is allocated already
1826          * preallocated blocks are unmapped but should treated
1827          * the same as allocated blocks.
1828          */
1829         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1830         if (ret <= 0)
1831                 return ret;
1832
1833         map_bh(bh, inode->i_sb, map.m_pblk);
1834         ext4_update_bh_state(bh, map.m_flags);
1835
1836         if (buffer_unwritten(bh)) {
1837                 /* A delayed write to unwritten bh should be marked
1838                  * new and mapped.  Mapped ensures that we don't do
1839                  * get_block multiple times when we write to the same
1840                  * offset and new ensures that we do proper zero out
1841                  * for partial write.
1842                  */
1843                 set_buffer_new(bh);
1844                 set_buffer_mapped(bh);
1845         }
1846         return 0;
1847 }
1848
1849 static int __ext4_journalled_writepage(struct page *page,
1850                                        unsigned int len)
1851 {
1852         struct address_space *mapping = page->mapping;
1853         struct inode *inode = mapping->host;
1854         handle_t *handle = NULL;
1855         int ret = 0, err = 0;
1856         int inline_data = ext4_has_inline_data(inode);
1857         struct buffer_head *inode_bh = NULL;
1858         loff_t size;
1859
1860         ClearPageChecked(page);
1861
1862         if (inline_data) {
1863                 BUG_ON(page->index != 0);
1864                 BUG_ON(len > ext4_get_max_inline_size(inode));
1865                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1866                 if (inode_bh == NULL)
1867                         goto out;
1868         }
1869         /*
1870          * We need to release the page lock before we start the
1871          * journal, so grab a reference so the page won't disappear
1872          * out from under us.
1873          */
1874         get_page(page);
1875         unlock_page(page);
1876
1877         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1878                                     ext4_writepage_trans_blocks(inode));
1879         if (IS_ERR(handle)) {
1880                 ret = PTR_ERR(handle);
1881                 put_page(page);
1882                 goto out_no_pagelock;
1883         }
1884         BUG_ON(!ext4_handle_valid(handle));
1885
1886         lock_page(page);
1887         put_page(page);
1888         size = i_size_read(inode);
1889         if (page->mapping != mapping || page_offset(page) > size) {
1890                 /* The page got truncated from under us */
1891                 ext4_journal_stop(handle);
1892                 ret = 0;
1893                 goto out;
1894         }
1895
1896         if (inline_data) {
1897                 ret = ext4_mark_inode_dirty(handle, inode);
1898         } else {
1899                 struct buffer_head *page_bufs = page_buffers(page);
1900
1901                 if (page->index == size >> PAGE_SHIFT)
1902                         len = size & ~PAGE_MASK;
1903                 else
1904                         len = PAGE_SIZE;
1905
1906                 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1907                                              NULL, do_journal_get_write_access);
1908
1909                 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1910                                              NULL, write_end_fn);
1911         }
1912         if (ret == 0)
1913                 ret = err;
1914         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1915         if (ret == 0)
1916                 ret = err;
1917         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1918         err = ext4_journal_stop(handle);
1919         if (!ret)
1920                 ret = err;
1921
1922         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1923 out:
1924         unlock_page(page);
1925 out_no_pagelock:
1926         brelse(inode_bh);
1927         return ret;
1928 }
1929
1930 /*
1931  * Note that we don't need to start a transaction unless we're journaling data
1932  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1933  * need to file the inode to the transaction's list in ordered mode because if
1934  * we are writing back data added by write(), the inode is already there and if
1935  * we are writing back data modified via mmap(), no one guarantees in which
1936  * transaction the data will hit the disk. In case we are journaling data, we
1937  * cannot start transaction directly because transaction start ranks above page
1938  * lock so we have to do some magic.
1939  *
1940  * This function can get called via...
1941  *   - ext4_writepages after taking page lock (have journal handle)
1942  *   - journal_submit_inode_data_buffers (no journal handle)
1943  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1944  *   - grab_page_cache when doing write_begin (have journal handle)
1945  *
1946  * We don't do any block allocation in this function. If we have page with
1947  * multiple blocks we need to write those buffer_heads that are mapped. This
1948  * is important for mmaped based write. So if we do with blocksize 1K
1949  * truncate(f, 1024);
1950  * a = mmap(f, 0, 4096);
1951  * a[0] = 'a';
1952  * truncate(f, 4096);
1953  * we have in the page first buffer_head mapped via page_mkwrite call back
1954  * but other buffer_heads would be unmapped but dirty (dirty done via the
1955  * do_wp_page). So writepage should write the first block. If we modify
1956  * the mmap area beyond 1024 we will again get a page_fault and the
1957  * page_mkwrite callback will do the block allocation and mark the
1958  * buffer_heads mapped.
1959  *
1960  * We redirty the page if we have any buffer_heads that is either delay or
1961  * unwritten in the page.
1962  *
1963  * We can get recursively called as show below.
1964  *
1965  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1966  *              ext4_writepage()
1967  *
1968  * But since we don't do any block allocation we should not deadlock.
1969  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1970  */
1971 static int ext4_writepage(struct page *page,
1972                           struct writeback_control *wbc)
1973 {
1974         struct folio *folio = page_folio(page);
1975         int ret = 0;
1976         loff_t size;
1977         unsigned int len;
1978         struct buffer_head *page_bufs = NULL;
1979         struct inode *inode = page->mapping->host;
1980         struct ext4_io_submit io_submit;
1981         bool keep_towrite = false;
1982
1983         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1984                 folio_invalidate(folio, 0, folio_size(folio));
1985                 folio_unlock(folio);
1986                 return -EIO;
1987         }
1988
1989         trace_ext4_writepage(page);
1990         size = i_size_read(inode);
1991         if (page->index == size >> PAGE_SHIFT &&
1992             !ext4_verity_in_progress(inode))
1993                 len = size & ~PAGE_MASK;
1994         else
1995                 len = PAGE_SIZE;
1996
1997         page_bufs = page_buffers(page);
1998         /*
1999          * We cannot do block allocation or other extent handling in this
2000          * function. If there are buffers needing that, we have to redirty
2001          * the page. But we may reach here when we do a journal commit via
2002          * journal_submit_inode_data_buffers() and in that case we must write
2003          * allocated buffers to achieve data=ordered mode guarantees.
2004          *
2005          * Also, if there is only one buffer per page (the fs block
2006          * size == the page size), if one buffer needs block
2007          * allocation or needs to modify the extent tree to clear the
2008          * unwritten flag, we know that the page can't be written at
2009          * all, so we might as well refuse the write immediately.
2010          * Unfortunately if the block size != page size, we can't as
2011          * easily detect this case using ext4_walk_page_buffers(), but
2012          * for the extremely common case, this is an optimization that
2013          * skips a useless round trip through ext4_bio_write_page().
2014          */
2015         if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2016                                    ext4_bh_delay_or_unwritten)) {
2017                 redirty_page_for_writepage(wbc, page);
2018                 if ((current->flags & PF_MEMALLOC) ||
2019                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2020                         /*
2021                          * For memory cleaning there's no point in writing only
2022                          * some buffers. So just bail out. Warn if we came here
2023                          * from direct reclaim.
2024                          */
2025                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2026                                                         == PF_MEMALLOC);
2027                         unlock_page(page);
2028                         return 0;
2029                 }
2030                 keep_towrite = true;
2031         }
2032
2033         if (PageChecked(page) && ext4_should_journal_data(inode))
2034                 /*
2035                  * It's mmapped pagecache.  Add buffers and journal it.  There
2036                  * doesn't seem much point in redirtying the page here.
2037                  */
2038                 return __ext4_journalled_writepage(page, len);
2039
2040         ext4_io_submit_init(&io_submit, wbc);
2041         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2042         if (!io_submit.io_end) {
2043                 redirty_page_for_writepage(wbc, page);
2044                 unlock_page(page);
2045                 return -ENOMEM;
2046         }
2047         ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2048         ext4_io_submit(&io_submit);
2049         /* Drop io_end reference we got from init */
2050         ext4_put_io_end_defer(io_submit.io_end);
2051         return ret;
2052 }
2053
2054 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2055 {
2056         int len;
2057         loff_t size;
2058         int err;
2059
2060         BUG_ON(page->index != mpd->first_page);
2061         clear_page_dirty_for_io(page);
2062         /*
2063          * We have to be very careful here!  Nothing protects writeback path
2064          * against i_size changes and the page can be writeably mapped into
2065          * page tables. So an application can be growing i_size and writing
2066          * data through mmap while writeback runs. clear_page_dirty_for_io()
2067          * write-protects our page in page tables and the page cannot get
2068          * written to again until we release page lock. So only after
2069          * clear_page_dirty_for_io() we are safe to sample i_size for
2070          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2071          * on the barrier provided by TestClearPageDirty in
2072          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2073          * after page tables are updated.
2074          */
2075         size = i_size_read(mpd->inode);
2076         if (page->index == size >> PAGE_SHIFT &&
2077             !ext4_verity_in_progress(mpd->inode))
2078                 len = size & ~PAGE_MASK;
2079         else
2080                 len = PAGE_SIZE;
2081         err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2082         if (!err)
2083                 mpd->wbc->nr_to_write--;
2084         mpd->first_page++;
2085
2086         return err;
2087 }
2088
2089 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2090
2091 /*
2092  * mballoc gives us at most this number of blocks...
2093  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2094  * The rest of mballoc seems to handle chunks up to full group size.
2095  */
2096 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2097
2098 /*
2099  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2100  *
2101  * @mpd - extent of blocks
2102  * @lblk - logical number of the block in the file
2103  * @bh - buffer head we want to add to the extent
2104  *
2105  * The function is used to collect contig. blocks in the same state. If the
2106  * buffer doesn't require mapping for writeback and we haven't started the
2107  * extent of buffers to map yet, the function returns 'true' immediately - the
2108  * caller can write the buffer right away. Otherwise the function returns true
2109  * if the block has been added to the extent, false if the block couldn't be
2110  * added.
2111  */
2112 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2113                                    struct buffer_head *bh)
2114 {
2115         struct ext4_map_blocks *map = &mpd->map;
2116
2117         /* Buffer that doesn't need mapping for writeback? */
2118         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2119             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2120                 /* So far no extent to map => we write the buffer right away */
2121                 if (map->m_len == 0)
2122                         return true;
2123                 return false;
2124         }
2125
2126         /* First block in the extent? */
2127         if (map->m_len == 0) {
2128                 /* We cannot map unless handle is started... */
2129                 if (!mpd->do_map)
2130                         return false;
2131                 map->m_lblk = lblk;
2132                 map->m_len = 1;
2133                 map->m_flags = bh->b_state & BH_FLAGS;
2134                 return true;
2135         }
2136
2137         /* Don't go larger than mballoc is willing to allocate */
2138         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2139                 return false;
2140
2141         /* Can we merge the block to our big extent? */
2142         if (lblk == map->m_lblk + map->m_len &&
2143             (bh->b_state & BH_FLAGS) == map->m_flags) {
2144                 map->m_len++;
2145                 return true;
2146         }
2147         return false;
2148 }
2149
2150 /*
2151  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2152  *
2153  * @mpd - extent of blocks for mapping
2154  * @head - the first buffer in the page
2155  * @bh - buffer we should start processing from
2156  * @lblk - logical number of the block in the file corresponding to @bh
2157  *
2158  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2159  * the page for IO if all buffers in this page were mapped and there's no
2160  * accumulated extent of buffers to map or add buffers in the page to the
2161  * extent of buffers to map. The function returns 1 if the caller can continue
2162  * by processing the next page, 0 if it should stop adding buffers to the
2163  * extent to map because we cannot extend it anymore. It can also return value
2164  * < 0 in case of error during IO submission.
2165  */
2166 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2167                                    struct buffer_head *head,
2168                                    struct buffer_head *bh,
2169                                    ext4_lblk_t lblk)
2170 {
2171         struct inode *inode = mpd->inode;
2172         int err;
2173         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2174                                                         >> inode->i_blkbits;
2175
2176         if (ext4_verity_in_progress(inode))
2177                 blocks = EXT_MAX_BLOCKS;
2178
2179         do {
2180                 BUG_ON(buffer_locked(bh));
2181
2182                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2183                         /* Found extent to map? */
2184                         if (mpd->map.m_len)
2185                                 return 0;
2186                         /* Buffer needs mapping and handle is not started? */
2187                         if (!mpd->do_map)
2188                                 return 0;
2189                         /* Everything mapped so far and we hit EOF */
2190                         break;
2191                 }
2192         } while (lblk++, (bh = bh->b_this_page) != head);
2193         /* So far everything mapped? Submit the page for IO. */
2194         if (mpd->map.m_len == 0) {
2195                 err = mpage_submit_page(mpd, head->b_page);
2196                 if (err < 0)
2197                         return err;
2198         }
2199         if (lblk >= blocks) {
2200                 mpd->scanned_until_end = 1;
2201                 return 0;
2202         }
2203         return 1;
2204 }
2205
2206 /*
2207  * mpage_process_page - update page buffers corresponding to changed extent and
2208  *                     may submit fully mapped page for IO
2209  *
2210  * @mpd         - description of extent to map, on return next extent to map
2211  * @m_lblk      - logical block mapping.
2212  * @m_pblk      - corresponding physical mapping.
2213  * @map_bh      - determines on return whether this page requires any further
2214  *                mapping or not.
2215  * Scan given page buffers corresponding to changed extent and update buffer
2216  * state according to new extent state.
2217  * We map delalloc buffers to their physical location, clear unwritten bits.
2218  * If the given page is not fully mapped, we update @map to the next extent in
2219  * the given page that needs mapping & return @map_bh as true.
2220  */
2221 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2222                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2223                               bool *map_bh)
2224 {
2225         struct buffer_head *head, *bh;
2226         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2227         ext4_lblk_t lblk = *m_lblk;
2228         ext4_fsblk_t pblock = *m_pblk;
2229         int err = 0;
2230         int blkbits = mpd->inode->i_blkbits;
2231         ssize_t io_end_size = 0;
2232         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2233
2234         bh = head = page_buffers(page);
2235         do {
2236                 if (lblk < mpd->map.m_lblk)
2237                         continue;
2238                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2239                         /*
2240                          * Buffer after end of mapped extent.
2241                          * Find next buffer in the page to map.
2242                          */
2243                         mpd->map.m_len = 0;
2244                         mpd->map.m_flags = 0;
2245                         io_end_vec->size += io_end_size;
2246
2247                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2248                         if (err > 0)
2249                                 err = 0;
2250                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2251                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2252                                 if (IS_ERR(io_end_vec)) {
2253                                         err = PTR_ERR(io_end_vec);
2254                                         goto out;
2255                                 }
2256                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2257                         }
2258                         *map_bh = true;
2259                         goto out;
2260                 }
2261                 if (buffer_delay(bh)) {
2262                         clear_buffer_delay(bh);
2263                         bh->b_blocknr = pblock++;
2264                 }
2265                 clear_buffer_unwritten(bh);
2266                 io_end_size += (1 << blkbits);
2267         } while (lblk++, (bh = bh->b_this_page) != head);
2268
2269         io_end_vec->size += io_end_size;
2270         *map_bh = false;
2271 out:
2272         *m_lblk = lblk;
2273         *m_pblk = pblock;
2274         return err;
2275 }
2276
2277 /*
2278  * mpage_map_buffers - update buffers corresponding to changed extent and
2279  *                     submit fully mapped pages for IO
2280  *
2281  * @mpd - description of extent to map, on return next extent to map
2282  *
2283  * Scan buffers corresponding to changed extent (we expect corresponding pages
2284  * to be already locked) and update buffer state according to new extent state.
2285  * We map delalloc buffers to their physical location, clear unwritten bits,
2286  * and mark buffers as uninit when we perform writes to unwritten extents
2287  * and do extent conversion after IO is finished. If the last page is not fully
2288  * mapped, we update @map to the next extent in the last page that needs
2289  * mapping. Otherwise we submit the page for IO.
2290  */
2291 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2292 {
2293         struct pagevec pvec;
2294         int nr_pages, i;
2295         struct inode *inode = mpd->inode;
2296         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2297         pgoff_t start, end;
2298         ext4_lblk_t lblk;
2299         ext4_fsblk_t pblock;
2300         int err;
2301         bool map_bh = false;
2302
2303         start = mpd->map.m_lblk >> bpp_bits;
2304         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2305         lblk = start << bpp_bits;
2306         pblock = mpd->map.m_pblk;
2307
2308         pagevec_init(&pvec);
2309         while (start <= end) {
2310                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2311                                                 &start, end);
2312                 if (nr_pages == 0)
2313                         break;
2314                 for (i = 0; i < nr_pages; i++) {
2315                         struct page *page = pvec.pages[i];
2316
2317                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2318                                                  &map_bh);
2319                         /*
2320                          * If map_bh is true, means page may require further bh
2321                          * mapping, or maybe the page was submitted for IO.
2322                          * So we return to call further extent mapping.
2323                          */
2324                         if (err < 0 || map_bh)
2325                                 goto out;
2326                         /* Page fully mapped - let IO run! */
2327                         err = mpage_submit_page(mpd, page);
2328                         if (err < 0)
2329                                 goto out;
2330                 }
2331                 pagevec_release(&pvec);
2332         }
2333         /* Extent fully mapped and matches with page boundary. We are done. */
2334         mpd->map.m_len = 0;
2335         mpd->map.m_flags = 0;
2336         return 0;
2337 out:
2338         pagevec_release(&pvec);
2339         return err;
2340 }
2341
2342 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2343 {
2344         struct inode *inode = mpd->inode;
2345         struct ext4_map_blocks *map = &mpd->map;
2346         int get_blocks_flags;
2347         int err, dioread_nolock;
2348
2349         trace_ext4_da_write_pages_extent(inode, map);
2350         /*
2351          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2352          * to convert an unwritten extent to be initialized (in the case
2353          * where we have written into one or more preallocated blocks).  It is
2354          * possible that we're going to need more metadata blocks than
2355          * previously reserved. However we must not fail because we're in
2356          * writeback and there is nothing we can do about it so it might result
2357          * in data loss.  So use reserved blocks to allocate metadata if
2358          * possible.
2359          *
2360          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2361          * the blocks in question are delalloc blocks.  This indicates
2362          * that the blocks and quotas has already been checked when
2363          * the data was copied into the page cache.
2364          */
2365         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2366                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2367                            EXT4_GET_BLOCKS_IO_SUBMIT;
2368         dioread_nolock = ext4_should_dioread_nolock(inode);
2369         if (dioread_nolock)
2370                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2371         if (map->m_flags & BIT(BH_Delay))
2372                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2373
2374         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2375         if (err < 0)
2376                 return err;
2377         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2378                 if (!mpd->io_submit.io_end->handle &&
2379                     ext4_handle_valid(handle)) {
2380                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2381                         handle->h_rsv_handle = NULL;
2382                 }
2383                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2384         }
2385
2386         BUG_ON(map->m_len == 0);
2387         return 0;
2388 }
2389
2390 /*
2391  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2392  *                               mpd->len and submit pages underlying it for IO
2393  *
2394  * @handle - handle for journal operations
2395  * @mpd - extent to map
2396  * @give_up_on_write - we set this to true iff there is a fatal error and there
2397  *                     is no hope of writing the data. The caller should discard
2398  *                     dirty pages to avoid infinite loops.
2399  *
2400  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2401  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2402  * them to initialized or split the described range from larger unwritten
2403  * extent. Note that we need not map all the described range since allocation
2404  * can return less blocks or the range is covered by more unwritten extents. We
2405  * cannot map more because we are limited by reserved transaction credits. On
2406  * the other hand we always make sure that the last touched page is fully
2407  * mapped so that it can be written out (and thus forward progress is
2408  * guaranteed). After mapping we submit all mapped pages for IO.
2409  */
2410 static int mpage_map_and_submit_extent(handle_t *handle,
2411                                        struct mpage_da_data *mpd,
2412                                        bool *give_up_on_write)
2413 {
2414         struct inode *inode = mpd->inode;
2415         struct ext4_map_blocks *map = &mpd->map;
2416         int err;
2417         loff_t disksize;
2418         int progress = 0;
2419         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2420         struct ext4_io_end_vec *io_end_vec;
2421
2422         io_end_vec = ext4_alloc_io_end_vec(io_end);
2423         if (IS_ERR(io_end_vec))
2424                 return PTR_ERR(io_end_vec);
2425         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2426         do {
2427                 err = mpage_map_one_extent(handle, mpd);
2428                 if (err < 0) {
2429                         struct super_block *sb = inode->i_sb;
2430
2431                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2432                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2433                                 goto invalidate_dirty_pages;
2434                         /*
2435                          * Let the uper layers retry transient errors.
2436                          * In the case of ENOSPC, if ext4_count_free_blocks()
2437                          * is non-zero, a commit should free up blocks.
2438                          */
2439                         if ((err == -ENOMEM) ||
2440                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2441                                 if (progress)
2442                                         goto update_disksize;
2443                                 return err;
2444                         }
2445                         ext4_msg(sb, KERN_CRIT,
2446                                  "Delayed block allocation failed for "
2447                                  "inode %lu at logical offset %llu with"
2448                                  " max blocks %u with error %d",
2449                                  inode->i_ino,
2450                                  (unsigned long long)map->m_lblk,
2451                                  (unsigned)map->m_len, -err);
2452                         ext4_msg(sb, KERN_CRIT,
2453                                  "This should not happen!! Data will "
2454                                  "be lost\n");
2455                         if (err == -ENOSPC)
2456                                 ext4_print_free_blocks(inode);
2457                 invalidate_dirty_pages:
2458                         *give_up_on_write = true;
2459                         return err;
2460                 }
2461                 progress = 1;
2462                 /*
2463                  * Update buffer state, submit mapped pages, and get us new
2464                  * extent to map
2465                  */
2466                 err = mpage_map_and_submit_buffers(mpd);
2467                 if (err < 0)
2468                         goto update_disksize;
2469         } while (map->m_len);
2470
2471 update_disksize:
2472         /*
2473          * Update on-disk size after IO is submitted.  Races with
2474          * truncate are avoided by checking i_size under i_data_sem.
2475          */
2476         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2477         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2478                 int err2;
2479                 loff_t i_size;
2480
2481                 down_write(&EXT4_I(inode)->i_data_sem);
2482                 i_size = i_size_read(inode);
2483                 if (disksize > i_size)
2484                         disksize = i_size;
2485                 if (disksize > EXT4_I(inode)->i_disksize)
2486                         EXT4_I(inode)->i_disksize = disksize;
2487                 up_write(&EXT4_I(inode)->i_data_sem);
2488                 err2 = ext4_mark_inode_dirty(handle, inode);
2489                 if (err2) {
2490                         ext4_error_err(inode->i_sb, -err2,
2491                                        "Failed to mark inode %lu dirty",
2492                                        inode->i_ino);
2493                 }
2494                 if (!err)
2495                         err = err2;
2496         }
2497         return err;
2498 }
2499
2500 /*
2501  * Calculate the total number of credits to reserve for one writepages
2502  * iteration. This is called from ext4_writepages(). We map an extent of
2503  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2504  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2505  * bpp - 1 blocks in bpp different extents.
2506  */
2507 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2508 {
2509         int bpp = ext4_journal_blocks_per_page(inode);
2510
2511         return ext4_meta_trans_blocks(inode,
2512                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2513 }
2514
2515 /*
2516  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2517  *                               and underlying extent to map
2518  *
2519  * @mpd - where to look for pages
2520  *
2521  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2522  * IO immediately. When we find a page which isn't mapped we start accumulating
2523  * extent of buffers underlying these pages that needs mapping (formed by
2524  * either delayed or unwritten buffers). We also lock the pages containing
2525  * these buffers. The extent found is returned in @mpd structure (starting at
2526  * mpd->lblk with length mpd->len blocks).
2527  *
2528  * Note that this function can attach bios to one io_end structure which are
2529  * neither logically nor physically contiguous. Although it may seem as an
2530  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2531  * case as we need to track IO to all buffers underlying a page in one io_end.
2532  */
2533 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2534 {
2535         struct address_space *mapping = mpd->inode->i_mapping;
2536         struct pagevec pvec;
2537         unsigned int nr_pages;
2538         long left = mpd->wbc->nr_to_write;
2539         pgoff_t index = mpd->first_page;
2540         pgoff_t end = mpd->last_page;
2541         xa_mark_t tag;
2542         int i, err = 0;
2543         int blkbits = mpd->inode->i_blkbits;
2544         ext4_lblk_t lblk;
2545         struct buffer_head *head;
2546
2547         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2548                 tag = PAGECACHE_TAG_TOWRITE;
2549         else
2550                 tag = PAGECACHE_TAG_DIRTY;
2551
2552         pagevec_init(&pvec);
2553         mpd->map.m_len = 0;
2554         mpd->next_page = index;
2555         while (index <= end) {
2556                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2557                                 tag);
2558                 if (nr_pages == 0)
2559                         break;
2560
2561                 for (i = 0; i < nr_pages; i++) {
2562                         struct page *page = pvec.pages[i];
2563
2564                         /*
2565                          * Accumulated enough dirty pages? This doesn't apply
2566                          * to WB_SYNC_ALL mode. For integrity sync we have to
2567                          * keep going because someone may be concurrently
2568                          * dirtying pages, and we might have synced a lot of
2569                          * newly appeared dirty pages, but have not synced all
2570                          * of the old dirty pages.
2571                          */
2572                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2573                                 goto out;
2574
2575                         /* If we can't merge this page, we are done. */
2576                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2577                                 goto out;
2578
2579                         lock_page(page);
2580                         /*
2581                          * If the page is no longer dirty, or its mapping no
2582                          * longer corresponds to inode we are writing (which
2583                          * means it has been truncated or invalidated), or the
2584                          * page is already under writeback and we are not doing
2585                          * a data integrity writeback, skip the page
2586                          */
2587                         if (!PageDirty(page) ||
2588                             (PageWriteback(page) &&
2589                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2590                             unlikely(page->mapping != mapping)) {
2591                                 unlock_page(page);
2592                                 continue;
2593                         }
2594
2595                         wait_on_page_writeback(page);
2596                         BUG_ON(PageWriteback(page));
2597
2598                         if (mpd->map.m_len == 0)
2599                                 mpd->first_page = page->index;
2600                         mpd->next_page = page->index + 1;
2601                         /* Add all dirty buffers to mpd */
2602                         lblk = ((ext4_lblk_t)page->index) <<
2603                                 (PAGE_SHIFT - blkbits);
2604                         head = page_buffers(page);
2605                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2606                         if (err <= 0)
2607                                 goto out;
2608                         err = 0;
2609                         left--;
2610                 }
2611                 pagevec_release(&pvec);
2612                 cond_resched();
2613         }
2614         mpd->scanned_until_end = 1;
2615         return 0;
2616 out:
2617         pagevec_release(&pvec);
2618         return err;
2619 }
2620
2621 static int ext4_writepages(struct address_space *mapping,
2622                            struct writeback_control *wbc)
2623 {
2624         pgoff_t writeback_index = 0;
2625         long nr_to_write = wbc->nr_to_write;
2626         int range_whole = 0;
2627         int cycled = 1;
2628         handle_t *handle = NULL;
2629         struct mpage_da_data mpd;
2630         struct inode *inode = mapping->host;
2631         int needed_blocks, rsv_blocks = 0, ret = 0;
2632         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2633         struct blk_plug plug;
2634         bool give_up_on_write = false;
2635
2636         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2637                 return -EIO;
2638
2639         percpu_down_read(&sbi->s_writepages_rwsem);
2640         trace_ext4_writepages(inode, wbc);
2641
2642         /*
2643          * No pages to write? This is mainly a kludge to avoid starting
2644          * a transaction for special inodes like journal inode on last iput()
2645          * because that could violate lock ordering on umount
2646          */
2647         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2648                 goto out_writepages;
2649
2650         if (ext4_should_journal_data(inode)) {
2651                 ret = generic_writepages(mapping, wbc);
2652                 goto out_writepages;
2653         }
2654
2655         /*
2656          * If the filesystem has aborted, it is read-only, so return
2657          * right away instead of dumping stack traces later on that
2658          * will obscure the real source of the problem.  We test
2659          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2660          * the latter could be true if the filesystem is mounted
2661          * read-only, and in that case, ext4_writepages should
2662          * *never* be called, so if that ever happens, we would want
2663          * the stack trace.
2664          */
2665         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2666                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2667                 ret = -EROFS;
2668                 goto out_writepages;
2669         }
2670
2671         /*
2672          * If we have inline data and arrive here, it means that
2673          * we will soon create the block for the 1st page, so
2674          * we'd better clear the inline data here.
2675          */
2676         if (ext4_has_inline_data(inode)) {
2677                 /* Just inode will be modified... */
2678                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2679                 if (IS_ERR(handle)) {
2680                         ret = PTR_ERR(handle);
2681                         goto out_writepages;
2682                 }
2683                 BUG_ON(ext4_test_inode_state(inode,
2684                                 EXT4_STATE_MAY_INLINE_DATA));
2685                 ext4_destroy_inline_data(handle, inode);
2686                 ext4_journal_stop(handle);
2687         }
2688
2689         if (ext4_should_dioread_nolock(inode)) {
2690                 /*
2691                  * We may need to convert up to one extent per block in
2692                  * the page and we may dirty the inode.
2693                  */
2694                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2695                                                 PAGE_SIZE >> inode->i_blkbits);
2696         }
2697
2698         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2699                 range_whole = 1;
2700
2701         if (wbc->range_cyclic) {
2702                 writeback_index = mapping->writeback_index;
2703                 if (writeback_index)
2704                         cycled = 0;
2705                 mpd.first_page = writeback_index;
2706                 mpd.last_page = -1;
2707         } else {
2708                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2709                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2710         }
2711
2712         mpd.inode = inode;
2713         mpd.wbc = wbc;
2714         ext4_io_submit_init(&mpd.io_submit, wbc);
2715 retry:
2716         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2717                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2718         blk_start_plug(&plug);
2719
2720         /*
2721          * First writeback pages that don't need mapping - we can avoid
2722          * starting a transaction unnecessarily and also avoid being blocked
2723          * in the block layer on device congestion while having transaction
2724          * started.
2725          */
2726         mpd.do_map = 0;
2727         mpd.scanned_until_end = 0;
2728         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2729         if (!mpd.io_submit.io_end) {
2730                 ret = -ENOMEM;
2731                 goto unplug;
2732         }
2733         ret = mpage_prepare_extent_to_map(&mpd);
2734         /* Unlock pages we didn't use */
2735         mpage_release_unused_pages(&mpd, false);
2736         /* Submit prepared bio */
2737         ext4_io_submit(&mpd.io_submit);
2738         ext4_put_io_end_defer(mpd.io_submit.io_end);
2739         mpd.io_submit.io_end = NULL;
2740         if (ret < 0)
2741                 goto unplug;
2742
2743         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2744                 /* For each extent of pages we use new io_end */
2745                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2746                 if (!mpd.io_submit.io_end) {
2747                         ret = -ENOMEM;
2748                         break;
2749                 }
2750
2751                 /*
2752                  * We have two constraints: We find one extent to map and we
2753                  * must always write out whole page (makes a difference when
2754                  * blocksize < pagesize) so that we don't block on IO when we
2755                  * try to write out the rest of the page. Journalled mode is
2756                  * not supported by delalloc.
2757                  */
2758                 BUG_ON(ext4_should_journal_data(inode));
2759                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2760
2761                 /* start a new transaction */
2762                 handle = ext4_journal_start_with_reserve(inode,
2763                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2764                 if (IS_ERR(handle)) {
2765                         ret = PTR_ERR(handle);
2766                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2767                                "%ld pages, ino %lu; err %d", __func__,
2768                                 wbc->nr_to_write, inode->i_ino, ret);
2769                         /* Release allocated io_end */
2770                         ext4_put_io_end(mpd.io_submit.io_end);
2771                         mpd.io_submit.io_end = NULL;
2772                         break;
2773                 }
2774                 mpd.do_map = 1;
2775
2776                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2777                 ret = mpage_prepare_extent_to_map(&mpd);
2778                 if (!ret && mpd.map.m_len)
2779                         ret = mpage_map_and_submit_extent(handle, &mpd,
2780                                         &give_up_on_write);
2781                 /*
2782                  * Caution: If the handle is synchronous,
2783                  * ext4_journal_stop() can wait for transaction commit
2784                  * to finish which may depend on writeback of pages to
2785                  * complete or on page lock to be released.  In that
2786                  * case, we have to wait until after we have
2787                  * submitted all the IO, released page locks we hold,
2788                  * and dropped io_end reference (for extent conversion
2789                  * to be able to complete) before stopping the handle.
2790                  */
2791                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2792                         ext4_journal_stop(handle);
2793                         handle = NULL;
2794                         mpd.do_map = 0;
2795                 }
2796                 /* Unlock pages we didn't use */
2797                 mpage_release_unused_pages(&mpd, give_up_on_write);
2798                 /* Submit prepared bio */
2799                 ext4_io_submit(&mpd.io_submit);
2800
2801                 /*
2802                  * Drop our io_end reference we got from init. We have
2803                  * to be careful and use deferred io_end finishing if
2804                  * we are still holding the transaction as we can
2805                  * release the last reference to io_end which may end
2806                  * up doing unwritten extent conversion.
2807                  */
2808                 if (handle) {
2809                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2810                         ext4_journal_stop(handle);
2811                 } else
2812                         ext4_put_io_end(mpd.io_submit.io_end);
2813                 mpd.io_submit.io_end = NULL;
2814
2815                 if (ret == -ENOSPC && sbi->s_journal) {
2816                         /*
2817                          * Commit the transaction which would
2818                          * free blocks released in the transaction
2819                          * and try again
2820                          */
2821                         jbd2_journal_force_commit_nested(sbi->s_journal);
2822                         ret = 0;
2823                         continue;
2824                 }
2825                 /* Fatal error - ENOMEM, EIO... */
2826                 if (ret)
2827                         break;
2828         }
2829 unplug:
2830         blk_finish_plug(&plug);
2831         if (!ret && !cycled && wbc->nr_to_write > 0) {
2832                 cycled = 1;
2833                 mpd.last_page = writeback_index - 1;
2834                 mpd.first_page = 0;
2835                 goto retry;
2836         }
2837
2838         /* Update index */
2839         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2840                 /*
2841                  * Set the writeback_index so that range_cyclic
2842                  * mode will write it back later
2843                  */
2844                 mapping->writeback_index = mpd.first_page;
2845
2846 out_writepages:
2847         trace_ext4_writepages_result(inode, wbc, ret,
2848                                      nr_to_write - wbc->nr_to_write);
2849         percpu_up_read(&sbi->s_writepages_rwsem);
2850         return ret;
2851 }
2852
2853 static int ext4_dax_writepages(struct address_space *mapping,
2854                                struct writeback_control *wbc)
2855 {
2856         int ret;
2857         long nr_to_write = wbc->nr_to_write;
2858         struct inode *inode = mapping->host;
2859         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2860
2861         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2862                 return -EIO;
2863
2864         percpu_down_read(&sbi->s_writepages_rwsem);
2865         trace_ext4_writepages(inode, wbc);
2866
2867         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2868         trace_ext4_writepages_result(inode, wbc, ret,
2869                                      nr_to_write - wbc->nr_to_write);
2870         percpu_up_read(&sbi->s_writepages_rwsem);
2871         return ret;
2872 }
2873
2874 static int ext4_nonda_switch(struct super_block *sb)
2875 {
2876         s64 free_clusters, dirty_clusters;
2877         struct ext4_sb_info *sbi = EXT4_SB(sb);
2878
2879         /*
2880          * switch to non delalloc mode if we are running low
2881          * on free block. The free block accounting via percpu
2882          * counters can get slightly wrong with percpu_counter_batch getting
2883          * accumulated on each CPU without updating global counters
2884          * Delalloc need an accurate free block accounting. So switch
2885          * to non delalloc when we are near to error range.
2886          */
2887         free_clusters =
2888                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2889         dirty_clusters =
2890                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2891         /*
2892          * Start pushing delalloc when 1/2 of free blocks are dirty.
2893          */
2894         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2895                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2896
2897         if (2 * free_clusters < 3 * dirty_clusters ||
2898             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2899                 /*
2900                  * free block count is less than 150% of dirty blocks
2901                  * or free blocks is less than watermark
2902                  */
2903                 return 1;
2904         }
2905         return 0;
2906 }
2907
2908 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2909                                loff_t pos, unsigned len, unsigned flags,
2910                                struct page **pagep, void **fsdata)
2911 {
2912         int ret, retries = 0;
2913         struct page *page;
2914         pgoff_t index;
2915         struct inode *inode = mapping->host;
2916
2917         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2918                 return -EIO;
2919
2920         index = pos >> PAGE_SHIFT;
2921
2922         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2923             ext4_verity_in_progress(inode)) {
2924                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2925                 return ext4_write_begin(file, mapping, pos,
2926                                         len, flags, pagep, fsdata);
2927         }
2928         *fsdata = (void *)0;
2929         trace_ext4_da_write_begin(inode, pos, len, flags);
2930
2931         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2932                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2933                                                       pos, len, flags,
2934                                                       pagep, fsdata);
2935                 if (ret < 0)
2936                         return ret;
2937                 if (ret == 1)
2938                         return 0;
2939         }
2940
2941 retry:
2942         page = grab_cache_page_write_begin(mapping, index, flags);
2943         if (!page)
2944                 return -ENOMEM;
2945
2946         /* In case writeback began while the page was unlocked */
2947         wait_for_stable_page(page);
2948
2949 #ifdef CONFIG_FS_ENCRYPTION
2950         ret = ext4_block_write_begin(page, pos, len,
2951                                      ext4_da_get_block_prep);
2952 #else
2953         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2954 #endif
2955         if (ret < 0) {
2956                 unlock_page(page);
2957                 put_page(page);
2958                 /*
2959                  * block_write_begin may have instantiated a few blocks
2960                  * outside i_size.  Trim these off again. Don't need
2961                  * i_size_read because we hold inode lock.
2962                  */
2963                 if (pos + len > inode->i_size)
2964                         ext4_truncate_failed_write(inode);
2965
2966                 if (ret == -ENOSPC &&
2967                     ext4_should_retry_alloc(inode->i_sb, &retries))
2968                         goto retry;
2969                 return ret;
2970         }
2971
2972         *pagep = page;
2973         return ret;
2974 }
2975
2976 /*
2977  * Check if we should update i_disksize
2978  * when write to the end of file but not require block allocation
2979  */
2980 static int ext4_da_should_update_i_disksize(struct page *page,
2981                                             unsigned long offset)
2982 {
2983         struct buffer_head *bh;
2984         struct inode *inode = page->mapping->host;
2985         unsigned int idx;
2986         int i;
2987
2988         bh = page_buffers(page);
2989         idx = offset >> inode->i_blkbits;
2990
2991         for (i = 0; i < idx; i++)
2992                 bh = bh->b_this_page;
2993
2994         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2995                 return 0;
2996         return 1;
2997 }
2998
2999 static int ext4_da_write_end(struct file *file,
3000                              struct address_space *mapping,
3001                              loff_t pos, unsigned len, unsigned copied,
3002                              struct page *page, void *fsdata)
3003 {
3004         struct inode *inode = mapping->host;
3005         loff_t new_i_size;
3006         unsigned long start, end;
3007         int write_mode = (int)(unsigned long)fsdata;
3008
3009         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3010                 return ext4_write_end(file, mapping, pos,
3011                                       len, copied, page, fsdata);
3012
3013         trace_ext4_da_write_end(inode, pos, len, copied);
3014
3015         if (write_mode != CONVERT_INLINE_DATA &&
3016             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3017             ext4_has_inline_data(inode))
3018                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3019
3020         start = pos & (PAGE_SIZE - 1);
3021         end = start + copied - 1;
3022
3023         /*
3024          * Since we are holding inode lock, we are sure i_disksize <=
3025          * i_size. We also know that if i_disksize < i_size, there are
3026          * delalloc writes pending in the range upto i_size. If the end of
3027          * the current write is <= i_size, there's no need to touch
3028          * i_disksize since writeback will push i_disksize upto i_size
3029          * eventually. If the end of the current write is > i_size and
3030          * inside an allocated block (ext4_da_should_update_i_disksize()
3031          * check), we need to update i_disksize here as neither
3032          * ext4_writepage() nor certain ext4_writepages() paths not
3033          * allocating blocks update i_disksize.
3034          *
3035          * Note that we defer inode dirtying to generic_write_end() /
3036          * ext4_da_write_inline_data_end().
3037          */
3038         new_i_size = pos + copied;
3039         if (copied && new_i_size > inode->i_size &&
3040             ext4_da_should_update_i_disksize(page, end))
3041                 ext4_update_i_disksize(inode, new_i_size);
3042
3043         return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3044 }
3045
3046 /*
3047  * Force all delayed allocation blocks to be allocated for a given inode.
3048  */
3049 int ext4_alloc_da_blocks(struct inode *inode)
3050 {
3051         trace_ext4_alloc_da_blocks(inode);
3052
3053         if (!EXT4_I(inode)->i_reserved_data_blocks)
3054                 return 0;
3055
3056         /*
3057          * We do something simple for now.  The filemap_flush() will
3058          * also start triggering a write of the data blocks, which is
3059          * not strictly speaking necessary (and for users of
3060          * laptop_mode, not even desirable).  However, to do otherwise
3061          * would require replicating code paths in:
3062          *
3063          * ext4_writepages() ->
3064          *    write_cache_pages() ---> (via passed in callback function)
3065          *        __mpage_da_writepage() -->
3066          *           mpage_add_bh_to_extent()
3067          *           mpage_da_map_blocks()
3068          *
3069          * The problem is that write_cache_pages(), located in
3070          * mm/page-writeback.c, marks pages clean in preparation for
3071          * doing I/O, which is not desirable if we're not planning on
3072          * doing I/O at all.
3073          *
3074          * We could call write_cache_pages(), and then redirty all of
3075          * the pages by calling redirty_page_for_writepage() but that
3076          * would be ugly in the extreme.  So instead we would need to
3077          * replicate parts of the code in the above functions,
3078          * simplifying them because we wouldn't actually intend to
3079          * write out the pages, but rather only collect contiguous
3080          * logical block extents, call the multi-block allocator, and
3081          * then update the buffer heads with the block allocations.
3082          *
3083          * For now, though, we'll cheat by calling filemap_flush(),
3084          * which will map the blocks, and start the I/O, but not
3085          * actually wait for the I/O to complete.
3086          */
3087         return filemap_flush(inode->i_mapping);
3088 }
3089
3090 /*
3091  * bmap() is special.  It gets used by applications such as lilo and by
3092  * the swapper to find the on-disk block of a specific piece of data.
3093  *
3094  * Naturally, this is dangerous if the block concerned is still in the
3095  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3096  * filesystem and enables swap, then they may get a nasty shock when the
3097  * data getting swapped to that swapfile suddenly gets overwritten by
3098  * the original zero's written out previously to the journal and
3099  * awaiting writeback in the kernel's buffer cache.
3100  *
3101  * So, if we see any bmap calls here on a modified, data-journaled file,
3102  * take extra steps to flush any blocks which might be in the cache.
3103  */
3104 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3105 {
3106         struct inode *inode = mapping->host;
3107         journal_t *journal;
3108         int err;
3109
3110         /*
3111          * We can get here for an inline file via the FIBMAP ioctl
3112          */
3113         if (ext4_has_inline_data(inode))
3114                 return 0;
3115
3116         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3117                         test_opt(inode->i_sb, DELALLOC)) {
3118                 /*
3119                  * With delalloc we want to sync the file
3120                  * so that we can make sure we allocate
3121                  * blocks for file
3122                  */
3123                 filemap_write_and_wait(mapping);
3124         }
3125
3126         if (EXT4_JOURNAL(inode) &&
3127             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3128                 /*
3129                  * This is a REALLY heavyweight approach, but the use of
3130                  * bmap on dirty files is expected to be extremely rare:
3131                  * only if we run lilo or swapon on a freshly made file
3132                  * do we expect this to happen.
3133                  *
3134                  * (bmap requires CAP_SYS_RAWIO so this does not
3135                  * represent an unprivileged user DOS attack --- we'd be
3136                  * in trouble if mortal users could trigger this path at
3137                  * will.)
3138                  *
3139                  * NB. EXT4_STATE_JDATA is not set on files other than
3140                  * regular files.  If somebody wants to bmap a directory
3141                  * or symlink and gets confused because the buffer
3142                  * hasn't yet been flushed to disk, they deserve
3143                  * everything they get.
3144                  */
3145
3146                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3147                 journal = EXT4_JOURNAL(inode);
3148                 jbd2_journal_lock_updates(journal);
3149                 err = jbd2_journal_flush(journal, 0);
3150                 jbd2_journal_unlock_updates(journal);
3151
3152                 if (err)
3153                         return 0;
3154         }
3155
3156         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3157 }
3158
3159 static int ext4_readpage(struct file *file, struct page *page)
3160 {
3161         int ret = -EAGAIN;
3162         struct inode *inode = page->mapping->host;
3163
3164         trace_ext4_readpage(page);
3165
3166         if (ext4_has_inline_data(inode))
3167                 ret = ext4_readpage_inline(inode, page);
3168
3169         if (ret == -EAGAIN)
3170                 return ext4_mpage_readpages(inode, NULL, page);
3171
3172         return ret;
3173 }
3174
3175 static void ext4_readahead(struct readahead_control *rac)
3176 {
3177         struct inode *inode = rac->mapping->host;
3178
3179         /* If the file has inline data, no need to do readahead. */
3180         if (ext4_has_inline_data(inode))
3181                 return;
3182
3183         ext4_mpage_readpages(inode, rac, NULL);
3184 }
3185
3186 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3187                                 size_t length)
3188 {
3189         trace_ext4_invalidatepage(&folio->page, offset, length);
3190
3191         /* No journalling happens on data buffers when this function is used */
3192         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3193
3194         block_invalidate_folio(folio, offset, length);
3195 }
3196
3197 static int __ext4_journalled_invalidatepage(struct page *page,
3198                                             unsigned int offset,
3199                                             unsigned int length)
3200 {
3201         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3202
3203         trace_ext4_journalled_invalidatepage(page, offset, length);
3204
3205         /*
3206          * If it's a full truncate we just forget about the pending dirtying
3207          */
3208         if (offset == 0 && length == PAGE_SIZE)
3209                 ClearPageChecked(page);
3210
3211         return jbd2_journal_invalidatepage(journal, page, offset, length);
3212 }
3213
3214 /* Wrapper for aops... */
3215 static void ext4_journalled_invalidatepage(struct page *page,
3216                                            unsigned int offset,
3217                                            unsigned int length)
3218 {
3219         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3220 }
3221
3222 static int ext4_releasepage(struct page *page, gfp_t wait)
3223 {
3224         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3225
3226         trace_ext4_releasepage(page);
3227
3228         /* Page has dirty journalled data -> cannot release */
3229         if (PageChecked(page))
3230                 return 0;
3231         if (journal)
3232                 return jbd2_journal_try_to_free_buffers(journal, page);
3233         else
3234                 return try_to_free_buffers(page);
3235 }
3236
3237 static bool ext4_inode_datasync_dirty(struct inode *inode)
3238 {
3239         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3240
3241         if (journal) {
3242                 if (jbd2_transaction_committed(journal,
3243                         EXT4_I(inode)->i_datasync_tid))
3244                         return false;
3245                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3246                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3247                 return true;
3248         }
3249
3250         /* Any metadata buffers to write? */
3251         if (!list_empty(&inode->i_mapping->private_list))
3252                 return true;
3253         return inode->i_state & I_DIRTY_DATASYNC;
3254 }
3255
3256 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3257                            struct ext4_map_blocks *map, loff_t offset,
3258                            loff_t length, unsigned int flags)
3259 {
3260         u8 blkbits = inode->i_blkbits;
3261
3262         /*
3263          * Writes that span EOF might trigger an I/O size update on completion,
3264          * so consider them to be dirty for the purpose of O_DSYNC, even if
3265          * there is no other metadata changes being made or are pending.
3266          */
3267         iomap->flags = 0;
3268         if (ext4_inode_datasync_dirty(inode) ||
3269             offset + length > i_size_read(inode))
3270                 iomap->flags |= IOMAP_F_DIRTY;
3271
3272         if (map->m_flags & EXT4_MAP_NEW)
3273                 iomap->flags |= IOMAP_F_NEW;
3274
3275         if (flags & IOMAP_DAX)
3276                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3277         else
3278                 iomap->bdev = inode->i_sb->s_bdev;
3279         iomap->offset = (u64) map->m_lblk << blkbits;
3280         iomap->length = (u64) map->m_len << blkbits;
3281
3282         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3283             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3284                 iomap->flags |= IOMAP_F_MERGED;
3285
3286         /*
3287          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3288          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3289          * set. In order for any allocated unwritten extents to be converted
3290          * into written extents correctly within the ->end_io() handler, we
3291          * need to ensure that the iomap->type is set appropriately. Hence, the
3292          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3293          * been set first.
3294          */
3295         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3296                 iomap->type = IOMAP_UNWRITTEN;
3297                 iomap->addr = (u64) map->m_pblk << blkbits;
3298                 if (flags & IOMAP_DAX)
3299                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3300         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3301                 iomap->type = IOMAP_MAPPED;
3302                 iomap->addr = (u64) map->m_pblk << blkbits;
3303                 if (flags & IOMAP_DAX)
3304                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3305         } else {
3306                 iomap->type = IOMAP_HOLE;
3307                 iomap->addr = IOMAP_NULL_ADDR;
3308         }
3309 }
3310
3311 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3312                             unsigned int flags)
3313 {
3314         handle_t *handle;
3315         u8 blkbits = inode->i_blkbits;
3316         int ret, dio_credits, m_flags = 0, retries = 0;
3317
3318         /*
3319          * Trim the mapping request to the maximum value that we can map at
3320          * once for direct I/O.
3321          */
3322         if (map->m_len > DIO_MAX_BLOCKS)
3323                 map->m_len = DIO_MAX_BLOCKS;
3324         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3325
3326 retry:
3327         /*
3328          * Either we allocate blocks and then don't get an unwritten extent, so
3329          * in that case we have reserved enough credits. Or, the blocks are
3330          * already allocated and unwritten. In that case, the extent conversion
3331          * fits into the credits as well.
3332          */
3333         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3334         if (IS_ERR(handle))
3335                 return PTR_ERR(handle);
3336
3337         /*
3338          * DAX and direct I/O are the only two operations that are currently
3339          * supported with IOMAP_WRITE.
3340          */
3341         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3342         if (flags & IOMAP_DAX)
3343                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3344         /*
3345          * We use i_size instead of i_disksize here because delalloc writeback
3346          * can complete at any point during the I/O and subsequently push the
3347          * i_disksize out to i_size. This could be beyond where direct I/O is
3348          * happening and thus expose allocated blocks to direct I/O reads.
3349          */
3350         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3351                 m_flags = EXT4_GET_BLOCKS_CREATE;
3352         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3353                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3354
3355         ret = ext4_map_blocks(handle, inode, map, m_flags);
3356
3357         /*
3358          * We cannot fill holes in indirect tree based inodes as that could
3359          * expose stale data in the case of a crash. Use the magic error code
3360          * to fallback to buffered I/O.
3361          */
3362         if (!m_flags && !ret)
3363                 ret = -ENOTBLK;
3364
3365         ext4_journal_stop(handle);
3366         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3367                 goto retry;
3368
3369         return ret;
3370 }
3371
3372
3373 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3374                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3375 {
3376         int ret;
3377         struct ext4_map_blocks map;
3378         u8 blkbits = inode->i_blkbits;
3379
3380         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3381                 return -EINVAL;
3382
3383         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3384                 return -ERANGE;
3385
3386         /*
3387          * Calculate the first and last logical blocks respectively.
3388          */
3389         map.m_lblk = offset >> blkbits;
3390         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3391                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3392
3393         if (flags & IOMAP_WRITE) {
3394                 /*
3395                  * We check here if the blocks are already allocated, then we
3396                  * don't need to start a journal txn and we can directly return
3397                  * the mapping information. This could boost performance
3398                  * especially in multi-threaded overwrite requests.
3399                  */
3400                 if (offset + length <= i_size_read(inode)) {
3401                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3402                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3403                                 goto out;
3404                 }
3405                 ret = ext4_iomap_alloc(inode, &map, flags);
3406         } else {
3407                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3408         }
3409
3410         if (ret < 0)
3411                 return ret;
3412 out:
3413         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3414
3415         return 0;
3416 }
3417
3418 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3419                 loff_t length, unsigned flags, struct iomap *iomap,
3420                 struct iomap *srcmap)
3421 {
3422         int ret;
3423
3424         /*
3425          * Even for writes we don't need to allocate blocks, so just pretend
3426          * we are reading to save overhead of starting a transaction.
3427          */
3428         flags &= ~IOMAP_WRITE;
3429         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3430         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3431         return ret;
3432 }
3433
3434 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3435                           ssize_t written, unsigned flags, struct iomap *iomap)
3436 {
3437         /*
3438          * Check to see whether an error occurred while writing out the data to
3439          * the allocated blocks. If so, return the magic error code so that we
3440          * fallback to buffered I/O and attempt to complete the remainder of
3441          * the I/O. Any blocks that may have been allocated in preparation for
3442          * the direct I/O will be reused during buffered I/O.
3443          */
3444         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3445                 return -ENOTBLK;
3446
3447         return 0;
3448 }
3449
3450 const struct iomap_ops ext4_iomap_ops = {
3451         .iomap_begin            = ext4_iomap_begin,
3452         .iomap_end              = ext4_iomap_end,
3453 };
3454
3455 const struct iomap_ops ext4_iomap_overwrite_ops = {
3456         .iomap_begin            = ext4_iomap_overwrite_begin,
3457         .iomap_end              = ext4_iomap_end,
3458 };
3459
3460 static bool ext4_iomap_is_delalloc(struct inode *inode,
3461                                    struct ext4_map_blocks *map)
3462 {
3463         struct extent_status es;
3464         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3465
3466         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3467                                   map->m_lblk, end, &es);
3468
3469         if (!es.es_len || es.es_lblk > end)
3470                 return false;
3471
3472         if (es.es_lblk > map->m_lblk) {
3473                 map->m_len = es.es_lblk - map->m_lblk;
3474                 return false;
3475         }
3476
3477         offset = map->m_lblk - es.es_lblk;
3478         map->m_len = es.es_len - offset;
3479
3480         return true;
3481 }
3482
3483 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3484                                    loff_t length, unsigned int flags,
3485                                    struct iomap *iomap, struct iomap *srcmap)
3486 {
3487         int ret;
3488         bool delalloc = false;
3489         struct ext4_map_blocks map;
3490         u8 blkbits = inode->i_blkbits;
3491
3492         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3493                 return -EINVAL;
3494
3495         if (ext4_has_inline_data(inode)) {
3496                 ret = ext4_inline_data_iomap(inode, iomap);
3497                 if (ret != -EAGAIN) {
3498                         if (ret == 0 && offset >= iomap->length)
3499                                 ret = -ENOENT;
3500                         return ret;
3501                 }
3502         }
3503
3504         /*
3505          * Calculate the first and last logical block respectively.
3506          */
3507         map.m_lblk = offset >> blkbits;
3508         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3509                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3510
3511         /*
3512          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3513          * So handle it here itself instead of querying ext4_map_blocks().
3514          * Since ext4_map_blocks() will warn about it and will return
3515          * -EIO error.
3516          */
3517         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3518                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3519
3520                 if (offset >= sbi->s_bitmap_maxbytes) {
3521                         map.m_flags = 0;
3522                         goto set_iomap;
3523                 }
3524         }
3525
3526         ret = ext4_map_blocks(NULL, inode, &map, 0);
3527         if (ret < 0)
3528                 return ret;
3529         if (ret == 0)
3530                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3531
3532 set_iomap:
3533         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3534         if (delalloc && iomap->type == IOMAP_HOLE)
3535                 iomap->type = IOMAP_DELALLOC;
3536
3537         return 0;
3538 }
3539
3540 const struct iomap_ops ext4_iomap_report_ops = {
3541         .iomap_begin = ext4_iomap_begin_report,
3542 };
3543
3544 /*
3545  * Pages can be marked dirty completely asynchronously from ext4's journalling
3546  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3547  * much here because ->set_page_dirty is called under VFS locks.  The page is
3548  * not necessarily locked.
3549  *
3550  * We cannot just dirty the page and leave attached buffers clean, because the
3551  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3552  * or jbddirty because all the journalling code will explode.
3553  *
3554  * So what we do is to mark the page "pending dirty" and next time writepage
3555  * is called, propagate that into the buffers appropriately.
3556  */
3557 static int ext4_journalled_set_page_dirty(struct page *page)
3558 {
3559         SetPageChecked(page);
3560         return __set_page_dirty_nobuffers(page);
3561 }
3562
3563 static int ext4_set_page_dirty(struct page *page)
3564 {
3565         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3566         WARN_ON_ONCE(!page_has_buffers(page));
3567         return __set_page_dirty_buffers(page);
3568 }
3569
3570 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3571                                     struct file *file, sector_t *span)
3572 {
3573         return iomap_swapfile_activate(sis, file, span,
3574                                        &ext4_iomap_report_ops);
3575 }
3576
3577 static const struct address_space_operations ext4_aops = {
3578         .readpage               = ext4_readpage,
3579         .readahead              = ext4_readahead,
3580         .writepage              = ext4_writepage,
3581         .writepages             = ext4_writepages,
3582         .write_begin            = ext4_write_begin,
3583         .write_end              = ext4_write_end,
3584         .set_page_dirty         = ext4_set_page_dirty,
3585         .bmap                   = ext4_bmap,
3586         .invalidate_folio       = ext4_invalidate_folio,
3587         .releasepage            = ext4_releasepage,
3588         .direct_IO              = noop_direct_IO,
3589         .migratepage            = buffer_migrate_page,
3590         .is_partially_uptodate  = block_is_partially_uptodate,
3591         .error_remove_page      = generic_error_remove_page,
3592         .swap_activate          = ext4_iomap_swap_activate,
3593 };
3594
3595 static const struct address_space_operations ext4_journalled_aops = {
3596         .readpage               = ext4_readpage,
3597         .readahead              = ext4_readahead,
3598         .writepage              = ext4_writepage,
3599         .writepages             = ext4_writepages,
3600         .write_begin            = ext4_write_begin,
3601         .write_end              = ext4_journalled_write_end,
3602         .set_page_dirty         = ext4_journalled_set_page_dirty,
3603         .bmap                   = ext4_bmap,
3604         .invalidatepage         = ext4_journalled_invalidatepage,
3605         .releasepage            = ext4_releasepage,
3606         .direct_IO              = noop_direct_IO,
3607         .is_partially_uptodate  = block_is_partially_uptodate,
3608         .error_remove_page      = generic_error_remove_page,
3609         .swap_activate          = ext4_iomap_swap_activate,
3610 };
3611
3612 static const struct address_space_operations ext4_da_aops = {
3613         .readpage               = ext4_readpage,
3614         .readahead              = ext4_readahead,
3615         .writepage              = ext4_writepage,
3616         .writepages             = ext4_writepages,
3617         .write_begin            = ext4_da_write_begin,
3618         .write_end              = ext4_da_write_end,
3619         .set_page_dirty         = ext4_set_page_dirty,
3620         .bmap                   = ext4_bmap,
3621         .invalidate_folio       = ext4_invalidate_folio,
3622         .releasepage            = ext4_releasepage,
3623         .direct_IO              = noop_direct_IO,
3624         .migratepage            = buffer_migrate_page,
3625         .is_partially_uptodate  = block_is_partially_uptodate,
3626         .error_remove_page      = generic_error_remove_page,
3627         .swap_activate          = ext4_iomap_swap_activate,
3628 };
3629
3630 static const struct address_space_operations ext4_dax_aops = {
3631         .writepages             = ext4_dax_writepages,
3632         .direct_IO              = noop_direct_IO,
3633         .set_page_dirty         = __set_page_dirty_no_writeback,
3634         .bmap                   = ext4_bmap,
3635         .invalidatepage         = noop_invalidatepage,
3636         .swap_activate          = ext4_iomap_swap_activate,
3637 };
3638
3639 void ext4_set_aops(struct inode *inode)
3640 {
3641         switch (ext4_inode_journal_mode(inode)) {
3642         case EXT4_INODE_ORDERED_DATA_MODE:
3643         case EXT4_INODE_WRITEBACK_DATA_MODE:
3644                 break;
3645         case EXT4_INODE_JOURNAL_DATA_MODE:
3646                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3647                 return;
3648         default:
3649                 BUG();
3650         }
3651         if (IS_DAX(inode))
3652                 inode->i_mapping->a_ops = &ext4_dax_aops;
3653         else if (test_opt(inode->i_sb, DELALLOC))
3654                 inode->i_mapping->a_ops = &ext4_da_aops;
3655         else
3656                 inode->i_mapping->a_ops = &ext4_aops;
3657 }
3658
3659 static int __ext4_block_zero_page_range(handle_t *handle,
3660                 struct address_space *mapping, loff_t from, loff_t length)
3661 {
3662         ext4_fsblk_t index = from >> PAGE_SHIFT;
3663         unsigned offset = from & (PAGE_SIZE-1);
3664         unsigned blocksize, pos;
3665         ext4_lblk_t iblock;
3666         struct inode *inode = mapping->host;
3667         struct buffer_head *bh;
3668         struct page *page;
3669         int err = 0;
3670
3671         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3672                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3673         if (!page)
3674                 return -ENOMEM;
3675
3676         blocksize = inode->i_sb->s_blocksize;
3677
3678         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3679
3680         if (!page_has_buffers(page))
3681                 create_empty_buffers(page, blocksize, 0);
3682
3683         /* Find the buffer that contains "offset" */
3684         bh = page_buffers(page);
3685         pos = blocksize;
3686         while (offset >= pos) {
3687                 bh = bh->b_this_page;
3688                 iblock++;
3689                 pos += blocksize;
3690         }
3691         if (buffer_freed(bh)) {
3692                 BUFFER_TRACE(bh, "freed: skip");
3693                 goto unlock;
3694         }
3695         if (!buffer_mapped(bh)) {
3696                 BUFFER_TRACE(bh, "unmapped");
3697                 ext4_get_block(inode, iblock, bh, 0);
3698                 /* unmapped? It's a hole - nothing to do */
3699                 if (!buffer_mapped(bh)) {
3700                         BUFFER_TRACE(bh, "still unmapped");
3701                         goto unlock;
3702                 }
3703         }
3704
3705         /* Ok, it's mapped. Make sure it's up-to-date */
3706         if (PageUptodate(page))
3707                 set_buffer_uptodate(bh);
3708
3709         if (!buffer_uptodate(bh)) {
3710                 err = ext4_read_bh_lock(bh, 0, true);
3711                 if (err)
3712                         goto unlock;
3713                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3714                         /* We expect the key to be set. */
3715                         BUG_ON(!fscrypt_has_encryption_key(inode));
3716                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3717                                                                bh_offset(bh));
3718                         if (err) {
3719                                 clear_buffer_uptodate(bh);
3720                                 goto unlock;
3721                         }
3722                 }
3723         }
3724         if (ext4_should_journal_data(inode)) {
3725                 BUFFER_TRACE(bh, "get write access");
3726                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3727                                                     EXT4_JTR_NONE);
3728                 if (err)
3729                         goto unlock;
3730         }
3731         zero_user(page, offset, length);
3732         BUFFER_TRACE(bh, "zeroed end of block");
3733
3734         if (ext4_should_journal_data(inode)) {
3735                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3736         } else {
3737                 err = 0;
3738                 mark_buffer_dirty(bh);
3739                 if (ext4_should_order_data(inode))
3740                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3741                                         length);
3742         }
3743
3744 unlock:
3745         unlock_page(page);
3746         put_page(page);
3747         return err;
3748 }
3749
3750 /*
3751  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3752  * starting from file offset 'from'.  The range to be zero'd must
3753  * be contained with in one block.  If the specified range exceeds
3754  * the end of the block it will be shortened to end of the block
3755  * that corresponds to 'from'
3756  */
3757 static int ext4_block_zero_page_range(handle_t *handle,
3758                 struct address_space *mapping, loff_t from, loff_t length)
3759 {
3760         struct inode *inode = mapping->host;
3761         unsigned offset = from & (PAGE_SIZE-1);
3762         unsigned blocksize = inode->i_sb->s_blocksize;
3763         unsigned max = blocksize - (offset & (blocksize - 1));
3764
3765         /*
3766          * correct length if it does not fall between
3767          * 'from' and the end of the block
3768          */
3769         if (length > max || length < 0)
3770                 length = max;
3771
3772         if (IS_DAX(inode)) {
3773                 return dax_zero_range(inode, from, length, NULL,
3774                                       &ext4_iomap_ops);
3775         }
3776         return __ext4_block_zero_page_range(handle, mapping, from, length);
3777 }
3778
3779 /*
3780  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3781  * up to the end of the block which corresponds to `from'.
3782  * This required during truncate. We need to physically zero the tail end
3783  * of that block so it doesn't yield old data if the file is later grown.
3784  */
3785 static int ext4_block_truncate_page(handle_t *handle,
3786                 struct address_space *mapping, loff_t from)
3787 {
3788         unsigned offset = from & (PAGE_SIZE-1);
3789         unsigned length;
3790         unsigned blocksize;
3791         struct inode *inode = mapping->host;
3792
3793         /* If we are processing an encrypted inode during orphan list handling */
3794         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3795                 return 0;
3796
3797         blocksize = inode->i_sb->s_blocksize;
3798         length = blocksize - (offset & (blocksize - 1));
3799
3800         return ext4_block_zero_page_range(handle, mapping, from, length);
3801 }
3802
3803 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3804                              loff_t lstart, loff_t length)
3805 {
3806         struct super_block *sb = inode->i_sb;
3807         struct address_space *mapping = inode->i_mapping;
3808         unsigned partial_start, partial_end;
3809         ext4_fsblk_t start, end;
3810         loff_t byte_end = (lstart + length - 1);
3811         int err = 0;
3812
3813         partial_start = lstart & (sb->s_blocksize - 1);
3814         partial_end = byte_end & (sb->s_blocksize - 1);
3815
3816         start = lstart >> sb->s_blocksize_bits;
3817         end = byte_end >> sb->s_blocksize_bits;
3818
3819         /* Handle partial zero within the single block */
3820         if (start == end &&
3821             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3822                 err = ext4_block_zero_page_range(handle, mapping,
3823                                                  lstart, length);
3824                 return err;
3825         }
3826         /* Handle partial zero out on the start of the range */
3827         if (partial_start) {
3828                 err = ext4_block_zero_page_range(handle, mapping,
3829                                                  lstart, sb->s_blocksize);
3830                 if (err)
3831                         return err;
3832         }
3833         /* Handle partial zero out on the end of the range */
3834         if (partial_end != sb->s_blocksize - 1)
3835                 err = ext4_block_zero_page_range(handle, mapping,
3836                                                  byte_end - partial_end,
3837                                                  partial_end + 1);
3838         return err;
3839 }
3840
3841 int ext4_can_truncate(struct inode *inode)
3842 {
3843         if (S_ISREG(inode->i_mode))
3844                 return 1;
3845         if (S_ISDIR(inode->i_mode))
3846                 return 1;
3847         if (S_ISLNK(inode->i_mode))
3848                 return !ext4_inode_is_fast_symlink(inode);
3849         return 0;
3850 }
3851
3852 /*
3853  * We have to make sure i_disksize gets properly updated before we truncate
3854  * page cache due to hole punching or zero range. Otherwise i_disksize update
3855  * can get lost as it may have been postponed to submission of writeback but
3856  * that will never happen after we truncate page cache.
3857  */
3858 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3859                                       loff_t len)
3860 {
3861         handle_t *handle;
3862         int ret;
3863
3864         loff_t size = i_size_read(inode);
3865
3866         WARN_ON(!inode_is_locked(inode));
3867         if (offset > size || offset + len < size)
3868                 return 0;
3869
3870         if (EXT4_I(inode)->i_disksize >= size)
3871                 return 0;
3872
3873         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3874         if (IS_ERR(handle))
3875                 return PTR_ERR(handle);
3876         ext4_update_i_disksize(inode, size);
3877         ret = ext4_mark_inode_dirty(handle, inode);
3878         ext4_journal_stop(handle);
3879
3880         return ret;
3881 }
3882
3883 static void ext4_wait_dax_page(struct inode *inode)
3884 {
3885         filemap_invalidate_unlock(inode->i_mapping);
3886         schedule();
3887         filemap_invalidate_lock(inode->i_mapping);
3888 }
3889
3890 int ext4_break_layouts(struct inode *inode)
3891 {
3892         struct page *page;
3893         int error;
3894
3895         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3896                 return -EINVAL;
3897
3898         do {
3899                 page = dax_layout_busy_page(inode->i_mapping);
3900                 if (!page)
3901                         return 0;
3902
3903                 error = ___wait_var_event(&page->_refcount,
3904                                 atomic_read(&page->_refcount) == 1,
3905                                 TASK_INTERRUPTIBLE, 0, 0,
3906                                 ext4_wait_dax_page(inode));
3907         } while (error == 0);
3908
3909         return error;
3910 }
3911
3912 /*
3913  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3914  * associated with the given offset and length
3915  *
3916  * @inode:  File inode
3917  * @offset: The offset where the hole will begin
3918  * @len:    The length of the hole
3919  *
3920  * Returns: 0 on success or negative on failure
3921  */
3922
3923 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3924 {
3925         struct super_block *sb = inode->i_sb;
3926         ext4_lblk_t first_block, stop_block;
3927         struct address_space *mapping = inode->i_mapping;
3928         loff_t first_block_offset, last_block_offset;
3929         handle_t *handle;
3930         unsigned int credits;
3931         int ret = 0, ret2 = 0;
3932
3933         trace_ext4_punch_hole(inode, offset, length, 0);
3934
3935         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3936         if (ext4_has_inline_data(inode)) {
3937                 filemap_invalidate_lock(mapping);
3938                 ret = ext4_convert_inline_data(inode);
3939                 filemap_invalidate_unlock(mapping);
3940                 if (ret)
3941                         return ret;
3942         }
3943
3944         /*
3945          * Write out all dirty pages to avoid race conditions
3946          * Then release them.
3947          */
3948         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3949                 ret = filemap_write_and_wait_range(mapping, offset,
3950                                                    offset + length - 1);
3951                 if (ret)
3952                         return ret;
3953         }
3954
3955         inode_lock(inode);
3956
3957         /* No need to punch hole beyond i_size */
3958         if (offset >= inode->i_size)
3959                 goto out_mutex;
3960
3961         /*
3962          * If the hole extends beyond i_size, set the hole
3963          * to end after the page that contains i_size
3964          */
3965         if (offset + length > inode->i_size) {
3966                 length = inode->i_size +
3967                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3968                    offset;
3969         }
3970
3971         if (offset & (sb->s_blocksize - 1) ||
3972             (offset + length) & (sb->s_blocksize - 1)) {
3973                 /*
3974                  * Attach jinode to inode for jbd2 if we do any zeroing of
3975                  * partial block
3976                  */
3977                 ret = ext4_inode_attach_jinode(inode);
3978                 if (ret < 0)
3979                         goto out_mutex;
3980
3981         }
3982
3983         /* Wait all existing dio workers, newcomers will block on i_rwsem */
3984         inode_dio_wait(inode);
3985
3986         /*
3987          * Prevent page faults from reinstantiating pages we have released from
3988          * page cache.
3989          */
3990         filemap_invalidate_lock(mapping);
3991
3992         ret = ext4_break_layouts(inode);
3993         if (ret)
3994                 goto out_dio;
3995
3996         first_block_offset = round_up(offset, sb->s_blocksize);
3997         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3998
3999         /* Now release the pages and zero block aligned part of pages*/
4000         if (last_block_offset > first_block_offset) {
4001                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4002                 if (ret)
4003                         goto out_dio;
4004                 truncate_pagecache_range(inode, first_block_offset,
4005                                          last_block_offset);
4006         }
4007
4008         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4009                 credits = ext4_writepage_trans_blocks(inode);
4010         else
4011                 credits = ext4_blocks_for_truncate(inode);
4012         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4013         if (IS_ERR(handle)) {
4014                 ret = PTR_ERR(handle);
4015                 ext4_std_error(sb, ret);
4016                 goto out_dio;
4017         }
4018
4019         ret = ext4_zero_partial_blocks(handle, inode, offset,
4020                                        length);
4021         if (ret)
4022                 goto out_stop;
4023
4024         first_block = (offset + sb->s_blocksize - 1) >>
4025                 EXT4_BLOCK_SIZE_BITS(sb);
4026         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4027
4028         /* If there are blocks to remove, do it */
4029         if (stop_block > first_block) {
4030
4031                 down_write(&EXT4_I(inode)->i_data_sem);
4032                 ext4_discard_preallocations(inode, 0);
4033
4034                 ret = ext4_es_remove_extent(inode, first_block,
4035                                             stop_block - first_block);
4036                 if (ret) {
4037                         up_write(&EXT4_I(inode)->i_data_sem);
4038                         goto out_stop;
4039                 }
4040
4041                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4042                         ret = ext4_ext_remove_space(inode, first_block,
4043                                                     stop_block - 1);
4044                 else
4045                         ret = ext4_ind_remove_space(handle, inode, first_block,
4046                                                     stop_block);
4047
4048                 up_write(&EXT4_I(inode)->i_data_sem);
4049         }
4050         ext4_fc_track_range(handle, inode, first_block, stop_block);
4051         if (IS_SYNC(inode))
4052                 ext4_handle_sync(handle);
4053
4054         inode->i_mtime = inode->i_ctime = current_time(inode);
4055         ret2 = ext4_mark_inode_dirty(handle, inode);
4056         if (unlikely(ret2))
4057                 ret = ret2;
4058         if (ret >= 0)
4059                 ext4_update_inode_fsync_trans(handle, inode, 1);
4060 out_stop:
4061         ext4_journal_stop(handle);
4062 out_dio:
4063         filemap_invalidate_unlock(mapping);
4064 out_mutex:
4065         inode_unlock(inode);
4066         return ret;
4067 }
4068
4069 int ext4_inode_attach_jinode(struct inode *inode)
4070 {
4071         struct ext4_inode_info *ei = EXT4_I(inode);
4072         struct jbd2_inode *jinode;
4073
4074         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4075                 return 0;
4076
4077         jinode = jbd2_alloc_inode(GFP_KERNEL);
4078         spin_lock(&inode->i_lock);
4079         if (!ei->jinode) {
4080                 if (!jinode) {
4081                         spin_unlock(&inode->i_lock);
4082                         return -ENOMEM;
4083                 }
4084                 ei->jinode = jinode;
4085                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4086                 jinode = NULL;
4087         }
4088         spin_unlock(&inode->i_lock);
4089         if (unlikely(jinode != NULL))
4090                 jbd2_free_inode(jinode);
4091         return 0;
4092 }
4093
4094 /*
4095  * ext4_truncate()
4096  *
4097  * We block out ext4_get_block() block instantiations across the entire
4098  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4099  * simultaneously on behalf of the same inode.
4100  *
4101  * As we work through the truncate and commit bits of it to the journal there
4102  * is one core, guiding principle: the file's tree must always be consistent on
4103  * disk.  We must be able to restart the truncate after a crash.
4104  *
4105  * The file's tree may be transiently inconsistent in memory (although it
4106  * probably isn't), but whenever we close off and commit a journal transaction,
4107  * the contents of (the filesystem + the journal) must be consistent and
4108  * restartable.  It's pretty simple, really: bottom up, right to left (although
4109  * left-to-right works OK too).
4110  *
4111  * Note that at recovery time, journal replay occurs *before* the restart of
4112  * truncate against the orphan inode list.
4113  *
4114  * The committed inode has the new, desired i_size (which is the same as
4115  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4116  * that this inode's truncate did not complete and it will again call
4117  * ext4_truncate() to have another go.  So there will be instantiated blocks
4118  * to the right of the truncation point in a crashed ext4 filesystem.  But
4119  * that's fine - as long as they are linked from the inode, the post-crash
4120  * ext4_truncate() run will find them and release them.
4121  */
4122 int ext4_truncate(struct inode *inode)
4123 {
4124         struct ext4_inode_info *ei = EXT4_I(inode);
4125         unsigned int credits;
4126         int err = 0, err2;
4127         handle_t *handle;
4128         struct address_space *mapping = inode->i_mapping;
4129
4130         /*
4131          * There is a possibility that we're either freeing the inode
4132          * or it's a completely new inode. In those cases we might not
4133          * have i_rwsem locked because it's not necessary.
4134          */
4135         if (!(inode->i_state & (I_NEW|I_FREEING)))
4136                 WARN_ON(!inode_is_locked(inode));
4137         trace_ext4_truncate_enter(inode);
4138
4139         if (!ext4_can_truncate(inode))
4140                 goto out_trace;
4141
4142         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4143                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4144
4145         if (ext4_has_inline_data(inode)) {
4146                 int has_inline = 1;
4147
4148                 err = ext4_inline_data_truncate(inode, &has_inline);
4149                 if (err || has_inline)
4150                         goto out_trace;
4151         }
4152
4153         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4154         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4155                 if (ext4_inode_attach_jinode(inode) < 0)
4156                         goto out_trace;
4157         }
4158
4159         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4160                 credits = ext4_writepage_trans_blocks(inode);
4161         else
4162                 credits = ext4_blocks_for_truncate(inode);
4163
4164         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4165         if (IS_ERR(handle)) {
4166                 err = PTR_ERR(handle);
4167                 goto out_trace;
4168         }
4169
4170         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4171                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4172
4173         /*
4174          * We add the inode to the orphan list, so that if this
4175          * truncate spans multiple transactions, and we crash, we will
4176          * resume the truncate when the filesystem recovers.  It also
4177          * marks the inode dirty, to catch the new size.
4178          *
4179          * Implication: the file must always be in a sane, consistent
4180          * truncatable state while each transaction commits.
4181          */
4182         err = ext4_orphan_add(handle, inode);
4183         if (err)
4184                 goto out_stop;
4185
4186         down_write(&EXT4_I(inode)->i_data_sem);
4187
4188         ext4_discard_preallocations(inode, 0);
4189
4190         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4191                 err = ext4_ext_truncate(handle, inode);
4192         else
4193                 ext4_ind_truncate(handle, inode);
4194
4195         up_write(&ei->i_data_sem);
4196         if (err)
4197                 goto out_stop;
4198
4199         if (IS_SYNC(inode))
4200                 ext4_handle_sync(handle);
4201
4202 out_stop:
4203         /*
4204          * If this was a simple ftruncate() and the file will remain alive,
4205          * then we need to clear up the orphan record which we created above.
4206          * However, if this was a real unlink then we were called by
4207          * ext4_evict_inode(), and we allow that function to clean up the
4208          * orphan info for us.
4209          */
4210         if (inode->i_nlink)
4211                 ext4_orphan_del(handle, inode);
4212
4213         inode->i_mtime = inode->i_ctime = current_time(inode);
4214         err2 = ext4_mark_inode_dirty(handle, inode);
4215         if (unlikely(err2 && !err))
4216                 err = err2;
4217         ext4_journal_stop(handle);
4218
4219 out_trace:
4220         trace_ext4_truncate_exit(inode);
4221         return err;
4222 }
4223
4224 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4225 {
4226         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4227                 return inode_peek_iversion_raw(inode);
4228         else
4229                 return inode_peek_iversion(inode);
4230 }
4231
4232 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4233                                  struct ext4_inode_info *ei)
4234 {
4235         struct inode *inode = &(ei->vfs_inode);
4236         u64 i_blocks = READ_ONCE(inode->i_blocks);
4237         struct super_block *sb = inode->i_sb;
4238
4239         if (i_blocks <= ~0U) {
4240                 /*
4241                  * i_blocks can be represented in a 32 bit variable
4242                  * as multiple of 512 bytes
4243                  */
4244                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4245                 raw_inode->i_blocks_high = 0;
4246                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4247                 return 0;
4248         }
4249
4250         /*
4251          * This should never happen since sb->s_maxbytes should not have
4252          * allowed this, sb->s_maxbytes was set according to the huge_file
4253          * feature in ext4_fill_super().
4254          */
4255         if (!ext4_has_feature_huge_file(sb))
4256                 return -EFSCORRUPTED;
4257
4258         if (i_blocks <= 0xffffffffffffULL) {
4259                 /*
4260                  * i_blocks can be represented in a 48 bit variable
4261                  * as multiple of 512 bytes
4262                  */
4263                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4264                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4265                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4266         } else {
4267                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4268                 /* i_block is stored in file system block size */
4269                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4270                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4271                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4272         }
4273         return 0;
4274 }
4275
4276 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4277 {
4278         struct ext4_inode_info *ei = EXT4_I(inode);
4279         uid_t i_uid;
4280         gid_t i_gid;
4281         projid_t i_projid;
4282         int block;
4283         int err;
4284
4285         err = ext4_inode_blocks_set(raw_inode, ei);
4286
4287         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4288         i_uid = i_uid_read(inode);
4289         i_gid = i_gid_read(inode);
4290         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4291         if (!(test_opt(inode->i_sb, NO_UID32))) {
4292                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4293                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4294                 /*
4295                  * Fix up interoperability with old kernels. Otherwise,
4296                  * old inodes get re-used with the upper 16 bits of the
4297                  * uid/gid intact.
4298                  */
4299                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4300                         raw_inode->i_uid_high = 0;
4301                         raw_inode->i_gid_high = 0;
4302                 } else {
4303                         raw_inode->i_uid_high =
4304                                 cpu_to_le16(high_16_bits(i_uid));
4305                         raw_inode->i_gid_high =
4306                                 cpu_to_le16(high_16_bits(i_gid));
4307                 }
4308         } else {
4309                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4310                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4311                 raw_inode->i_uid_high = 0;
4312                 raw_inode->i_gid_high = 0;
4313         }
4314         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4315
4316         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4317         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4318         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4319         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4320
4321         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4322         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4323         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4324                 raw_inode->i_file_acl_high =
4325                         cpu_to_le16(ei->i_file_acl >> 32);
4326         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4327         ext4_isize_set(raw_inode, ei->i_disksize);
4328
4329         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4330         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4331                 if (old_valid_dev(inode->i_rdev)) {
4332                         raw_inode->i_block[0] =
4333                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4334                         raw_inode->i_block[1] = 0;
4335                 } else {
4336                         raw_inode->i_block[0] = 0;
4337                         raw_inode->i_block[1] =
4338                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4339                         raw_inode->i_block[2] = 0;
4340                 }
4341         } else if (!ext4_has_inline_data(inode)) {
4342                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4343                         raw_inode->i_block[block] = ei->i_data[block];
4344         }
4345
4346         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4347                 u64 ivers = ext4_inode_peek_iversion(inode);
4348
4349                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4350                 if (ei->i_extra_isize) {
4351                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4352                                 raw_inode->i_version_hi =
4353                                         cpu_to_le32(ivers >> 32);
4354                         raw_inode->i_extra_isize =
4355                                 cpu_to_le16(ei->i_extra_isize);
4356                 }
4357         }
4358
4359         if (i_projid != EXT4_DEF_PROJID &&
4360             !ext4_has_feature_project(inode->i_sb))
4361                 err = err ?: -EFSCORRUPTED;
4362
4363         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4364             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4365                 raw_inode->i_projid = cpu_to_le32(i_projid);
4366
4367         ext4_inode_csum_set(inode, raw_inode, ei);
4368         return err;
4369 }
4370
4371 /*
4372  * ext4_get_inode_loc returns with an extra refcount against the inode's
4373  * underlying buffer_head on success. If we pass 'inode' and it does not
4374  * have in-inode xattr, we have all inode data in memory that is needed
4375  * to recreate the on-disk version of this inode.
4376  */
4377 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4378                                 struct inode *inode, struct ext4_iloc *iloc,
4379                                 ext4_fsblk_t *ret_block)
4380 {
4381         struct ext4_group_desc  *gdp;
4382         struct buffer_head      *bh;
4383         ext4_fsblk_t            block;
4384         struct blk_plug         plug;
4385         int                     inodes_per_block, inode_offset;
4386
4387         iloc->bh = NULL;
4388         if (ino < EXT4_ROOT_INO ||
4389             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4390                 return -EFSCORRUPTED;
4391
4392         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4393         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4394         if (!gdp)
4395                 return -EIO;
4396
4397         /*
4398          * Figure out the offset within the block group inode table
4399          */
4400         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4401         inode_offset = ((ino - 1) %
4402                         EXT4_INODES_PER_GROUP(sb));
4403         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4404         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4405
4406         bh = sb_getblk(sb, block);
4407         if (unlikely(!bh))
4408                 return -ENOMEM;
4409         if (ext4_buffer_uptodate(bh))
4410                 goto has_buffer;
4411
4412         lock_buffer(bh);
4413         if (ext4_buffer_uptodate(bh)) {
4414                 /* Someone brought it uptodate while we waited */
4415                 unlock_buffer(bh);
4416                 goto has_buffer;
4417         }
4418
4419         /*
4420          * If we have all information of the inode in memory and this
4421          * is the only valid inode in the block, we need not read the
4422          * block.
4423          */
4424         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4425                 struct buffer_head *bitmap_bh;
4426                 int i, start;
4427
4428                 start = inode_offset & ~(inodes_per_block - 1);
4429
4430                 /* Is the inode bitmap in cache? */
4431                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4432                 if (unlikely(!bitmap_bh))
4433                         goto make_io;
4434
4435                 /*
4436                  * If the inode bitmap isn't in cache then the
4437                  * optimisation may end up performing two reads instead
4438                  * of one, so skip it.
4439                  */
4440                 if (!buffer_uptodate(bitmap_bh)) {
4441                         brelse(bitmap_bh);
4442                         goto make_io;
4443                 }
4444                 for (i = start; i < start + inodes_per_block; i++) {
4445                         if (i == inode_offset)
4446                                 continue;
4447                         if (ext4_test_bit(i, bitmap_bh->b_data))
4448                                 break;
4449                 }
4450                 brelse(bitmap_bh);
4451                 if (i == start + inodes_per_block) {
4452                         struct ext4_inode *raw_inode =
4453                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4454
4455                         /* all other inodes are free, so skip I/O */
4456                         memset(bh->b_data, 0, bh->b_size);
4457                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4458                                 ext4_fill_raw_inode(inode, raw_inode);
4459                         set_buffer_uptodate(bh);
4460                         unlock_buffer(bh);
4461                         goto has_buffer;
4462                 }
4463         }
4464
4465 make_io:
4466         /*
4467          * If we need to do any I/O, try to pre-readahead extra
4468          * blocks from the inode table.
4469          */
4470         blk_start_plug(&plug);
4471         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4472                 ext4_fsblk_t b, end, table;
4473                 unsigned num;
4474                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4475
4476                 table = ext4_inode_table(sb, gdp);
4477                 /* s_inode_readahead_blks is always a power of 2 */
4478                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4479                 if (table > b)
4480                         b = table;
4481                 end = b + ra_blks;
4482                 num = EXT4_INODES_PER_GROUP(sb);
4483                 if (ext4_has_group_desc_csum(sb))
4484                         num -= ext4_itable_unused_count(sb, gdp);
4485                 table += num / inodes_per_block;
4486                 if (end > table)
4487                         end = table;
4488                 while (b <= end)
4489                         ext4_sb_breadahead_unmovable(sb, b++);
4490         }
4491
4492         /*
4493          * There are other valid inodes in the buffer, this inode
4494          * has in-inode xattrs, or we don't have this inode in memory.
4495          * Read the block from disk.
4496          */
4497         trace_ext4_load_inode(sb, ino);
4498         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4499         blk_finish_plug(&plug);
4500         wait_on_buffer(bh);
4501         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4502         if (!buffer_uptodate(bh)) {
4503                 if (ret_block)
4504                         *ret_block = block;
4505                 brelse(bh);
4506                 return -EIO;
4507         }
4508 has_buffer:
4509         iloc->bh = bh;
4510         return 0;
4511 }
4512
4513 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4514                                         struct ext4_iloc *iloc)
4515 {
4516         ext4_fsblk_t err_blk = 0;
4517         int ret;
4518
4519         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4520                                         &err_blk);
4521
4522         if (ret == -EIO)
4523                 ext4_error_inode_block(inode, err_blk, EIO,
4524                                         "unable to read itable block");
4525
4526         return ret;
4527 }
4528
4529 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4530 {
4531         ext4_fsblk_t err_blk = 0;
4532         int ret;
4533
4534         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4535                                         &err_blk);
4536
4537         if (ret == -EIO)
4538                 ext4_error_inode_block(inode, err_blk, EIO,
4539                                         "unable to read itable block");
4540
4541         return ret;
4542 }
4543
4544
4545 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4546                           struct ext4_iloc *iloc)
4547 {
4548         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4549 }
4550
4551 static bool ext4_should_enable_dax(struct inode *inode)
4552 {
4553         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4554
4555         if (test_opt2(inode->i_sb, DAX_NEVER))
4556                 return false;
4557         if (!S_ISREG(inode->i_mode))
4558                 return false;
4559         if (ext4_should_journal_data(inode))
4560                 return false;
4561         if (ext4_has_inline_data(inode))
4562                 return false;
4563         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4564                 return false;
4565         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4566                 return false;
4567         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4568                 return false;
4569         if (test_opt(inode->i_sb, DAX_ALWAYS))
4570                 return true;
4571
4572         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4573 }
4574
4575 void ext4_set_inode_flags(struct inode *inode, bool init)
4576 {
4577         unsigned int flags = EXT4_I(inode)->i_flags;
4578         unsigned int new_fl = 0;
4579
4580         WARN_ON_ONCE(IS_DAX(inode) && init);
4581
4582         if (flags & EXT4_SYNC_FL)
4583                 new_fl |= S_SYNC;
4584         if (flags & EXT4_APPEND_FL)
4585                 new_fl |= S_APPEND;
4586         if (flags & EXT4_IMMUTABLE_FL)
4587                 new_fl |= S_IMMUTABLE;
4588         if (flags & EXT4_NOATIME_FL)
4589                 new_fl |= S_NOATIME;
4590         if (flags & EXT4_DIRSYNC_FL)
4591                 new_fl |= S_DIRSYNC;
4592
4593         /* Because of the way inode_set_flags() works we must preserve S_DAX
4594          * here if already set. */
4595         new_fl |= (inode->i_flags & S_DAX);
4596         if (init && ext4_should_enable_dax(inode))
4597                 new_fl |= S_DAX;
4598
4599         if (flags & EXT4_ENCRYPT_FL)
4600                 new_fl |= S_ENCRYPTED;
4601         if (flags & EXT4_CASEFOLD_FL)
4602                 new_fl |= S_CASEFOLD;
4603         if (flags & EXT4_VERITY_FL)
4604                 new_fl |= S_VERITY;
4605         inode_set_flags(inode, new_fl,
4606                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4607                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4608 }
4609
4610 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4611                                   struct ext4_inode_info *ei)
4612 {
4613         blkcnt_t i_blocks ;
4614         struct inode *inode = &(ei->vfs_inode);
4615         struct super_block *sb = inode->i_sb;
4616
4617         if (ext4_has_feature_huge_file(sb)) {
4618                 /* we are using combined 48 bit field */
4619                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4620                                         le32_to_cpu(raw_inode->i_blocks_lo);
4621                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4622                         /* i_blocks represent file system block size */
4623                         return i_blocks  << (inode->i_blkbits - 9);
4624                 } else {
4625                         return i_blocks;
4626                 }
4627         } else {
4628                 return le32_to_cpu(raw_inode->i_blocks_lo);
4629         }
4630 }
4631
4632 static inline int ext4_iget_extra_inode(struct inode *inode,
4633                                          struct ext4_inode *raw_inode,
4634                                          struct ext4_inode_info *ei)
4635 {
4636         __le32 *magic = (void *)raw_inode +
4637                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4638
4639         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4640             EXT4_INODE_SIZE(inode->i_sb) &&
4641             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4642                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4643                 return ext4_find_inline_data_nolock(inode);
4644         } else
4645                 EXT4_I(inode)->i_inline_off = 0;
4646         return 0;
4647 }
4648
4649 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4650 {
4651         if (!ext4_has_feature_project(inode->i_sb))
4652                 return -EOPNOTSUPP;
4653         *projid = EXT4_I(inode)->i_projid;
4654         return 0;
4655 }
4656
4657 /*
4658  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4659  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4660  * set.
4661  */
4662 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4663 {
4664         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4665                 inode_set_iversion_raw(inode, val);
4666         else
4667                 inode_set_iversion_queried(inode, val);
4668 }
4669
4670 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4671                           ext4_iget_flags flags, const char *function,
4672                           unsigned int line)
4673 {
4674         struct ext4_iloc iloc;
4675         struct ext4_inode *raw_inode;
4676         struct ext4_inode_info *ei;
4677         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4678         struct inode *inode;
4679         journal_t *journal = EXT4_SB(sb)->s_journal;
4680         long ret;
4681         loff_t size;
4682         int block;
4683         uid_t i_uid;
4684         gid_t i_gid;
4685         projid_t i_projid;
4686
4687         if ((!(flags & EXT4_IGET_SPECIAL) &&
4688              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4689               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4690               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4691               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4692               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4693             (ino < EXT4_ROOT_INO) ||
4694             (ino > le32_to_cpu(es->s_inodes_count))) {
4695                 if (flags & EXT4_IGET_HANDLE)
4696                         return ERR_PTR(-ESTALE);
4697                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4698                              "inode #%lu: comm %s: iget: illegal inode #",
4699                              ino, current->comm);
4700                 return ERR_PTR(-EFSCORRUPTED);
4701         }
4702
4703         inode = iget_locked(sb, ino);
4704         if (!inode)
4705                 return ERR_PTR(-ENOMEM);
4706         if (!(inode->i_state & I_NEW))
4707                 return inode;
4708
4709         ei = EXT4_I(inode);
4710         iloc.bh = NULL;
4711
4712         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4713         if (ret < 0)
4714                 goto bad_inode;
4715         raw_inode = ext4_raw_inode(&iloc);
4716
4717         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4718                 ext4_error_inode(inode, function, line, 0,
4719                                  "iget: root inode unallocated");
4720                 ret = -EFSCORRUPTED;
4721                 goto bad_inode;
4722         }
4723
4724         if ((flags & EXT4_IGET_HANDLE) &&
4725             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4726                 ret = -ESTALE;
4727                 goto bad_inode;
4728         }
4729
4730         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4731                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4732                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4733                         EXT4_INODE_SIZE(inode->i_sb) ||
4734                     (ei->i_extra_isize & 3)) {
4735                         ext4_error_inode(inode, function, line, 0,
4736                                          "iget: bad extra_isize %u "
4737                                          "(inode size %u)",
4738                                          ei->i_extra_isize,
4739                                          EXT4_INODE_SIZE(inode->i_sb));
4740                         ret = -EFSCORRUPTED;
4741                         goto bad_inode;
4742                 }
4743         } else
4744                 ei->i_extra_isize = 0;
4745
4746         /* Precompute checksum seed for inode metadata */
4747         if (ext4_has_metadata_csum(sb)) {
4748                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4749                 __u32 csum;
4750                 __le32 inum = cpu_to_le32(inode->i_ino);
4751                 __le32 gen = raw_inode->i_generation;
4752                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4753                                    sizeof(inum));
4754                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4755                                               sizeof(gen));
4756         }
4757
4758         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4759             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4760              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4761                 ext4_error_inode_err(inode, function, line, 0,
4762                                 EFSBADCRC, "iget: checksum invalid");
4763                 ret = -EFSBADCRC;
4764                 goto bad_inode;
4765         }
4766
4767         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4768         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4769         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4770         if (ext4_has_feature_project(sb) &&
4771             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4772             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4773                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4774         else
4775                 i_projid = EXT4_DEF_PROJID;
4776
4777         if (!(test_opt(inode->i_sb, NO_UID32))) {
4778                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4779                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4780         }
4781         i_uid_write(inode, i_uid);
4782         i_gid_write(inode, i_gid);
4783         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4784         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4785
4786         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4787         ei->i_inline_off = 0;
4788         ei->i_dir_start_lookup = 0;
4789         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4790         /* We now have enough fields to check if the inode was active or not.
4791          * This is needed because nfsd might try to access dead inodes
4792          * the test is that same one that e2fsck uses
4793          * NeilBrown 1999oct15
4794          */
4795         if (inode->i_nlink == 0) {
4796                 if ((inode->i_mode == 0 ||
4797                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4798                     ino != EXT4_BOOT_LOADER_INO) {
4799                         /* this inode is deleted */
4800                         ret = -ESTALE;
4801                         goto bad_inode;
4802                 }
4803                 /* The only unlinked inodes we let through here have
4804                  * valid i_mode and are being read by the orphan
4805                  * recovery code: that's fine, we're about to complete
4806                  * the process of deleting those.
4807                  * OR it is the EXT4_BOOT_LOADER_INO which is
4808                  * not initialized on a new filesystem. */
4809         }
4810         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4811         ext4_set_inode_flags(inode, true);
4812         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4813         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4814         if (ext4_has_feature_64bit(sb))
4815                 ei->i_file_acl |=
4816                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4817         inode->i_size = ext4_isize(sb, raw_inode);
4818         if ((size = i_size_read(inode)) < 0) {
4819                 ext4_error_inode(inode, function, line, 0,
4820                                  "iget: bad i_size value: %lld", size);
4821                 ret = -EFSCORRUPTED;
4822                 goto bad_inode;
4823         }
4824         /*
4825          * If dir_index is not enabled but there's dir with INDEX flag set,
4826          * we'd normally treat htree data as empty space. But with metadata
4827          * checksumming that corrupts checksums so forbid that.
4828          */
4829         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4830             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4831                 ext4_error_inode(inode, function, line, 0,
4832                          "iget: Dir with htree data on filesystem without dir_index feature.");
4833                 ret = -EFSCORRUPTED;
4834                 goto bad_inode;
4835         }
4836         ei->i_disksize = inode->i_size;
4837 #ifdef CONFIG_QUOTA
4838         ei->i_reserved_quota = 0;
4839 #endif
4840         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4841         ei->i_block_group = iloc.block_group;
4842         ei->i_last_alloc_group = ~0;
4843         /*
4844          * NOTE! The in-memory inode i_data array is in little-endian order
4845          * even on big-endian machines: we do NOT byteswap the block numbers!
4846          */
4847         for (block = 0; block < EXT4_N_BLOCKS; block++)
4848                 ei->i_data[block] = raw_inode->i_block[block];
4849         INIT_LIST_HEAD(&ei->i_orphan);
4850         ext4_fc_init_inode(&ei->vfs_inode);
4851
4852         /*
4853          * Set transaction id's of transactions that have to be committed
4854          * to finish f[data]sync. We set them to currently running transaction
4855          * as we cannot be sure that the inode or some of its metadata isn't
4856          * part of the transaction - the inode could have been reclaimed and
4857          * now it is reread from disk.
4858          */
4859         if (journal) {
4860                 transaction_t *transaction;
4861                 tid_t tid;
4862
4863                 read_lock(&journal->j_state_lock);
4864                 if (journal->j_running_transaction)
4865                         transaction = journal->j_running_transaction;
4866                 else
4867                         transaction = journal->j_committing_transaction;
4868                 if (transaction)
4869                         tid = transaction->t_tid;
4870                 else
4871                         tid = journal->j_commit_sequence;
4872                 read_unlock(&journal->j_state_lock);
4873                 ei->i_sync_tid = tid;
4874                 ei->i_datasync_tid = tid;
4875         }
4876
4877         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4878                 if (ei->i_extra_isize == 0) {
4879                         /* The extra space is currently unused. Use it. */
4880                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4881                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4882                                             EXT4_GOOD_OLD_INODE_SIZE;
4883                 } else {
4884                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4885                         if (ret)
4886                                 goto bad_inode;
4887                 }
4888         }
4889
4890         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4891         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4892         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4893         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4894
4895         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4896                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4897
4898                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4899                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4900                                 ivers |=
4901                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4902                 }
4903                 ext4_inode_set_iversion_queried(inode, ivers);
4904         }
4905
4906         ret = 0;
4907         if (ei->i_file_acl &&
4908             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4909                 ext4_error_inode(inode, function, line, 0,
4910                                  "iget: bad extended attribute block %llu",
4911                                  ei->i_file_acl);
4912                 ret = -EFSCORRUPTED;
4913                 goto bad_inode;
4914         } else if (!ext4_has_inline_data(inode)) {
4915                 /* validate the block references in the inode */
4916                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4917                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4918                         (S_ISLNK(inode->i_mode) &&
4919                         !ext4_inode_is_fast_symlink(inode)))) {
4920                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4921                                 ret = ext4_ext_check_inode(inode);
4922                         else
4923                                 ret = ext4_ind_check_inode(inode);
4924                 }
4925         }
4926         if (ret)
4927                 goto bad_inode;
4928
4929         if (S_ISREG(inode->i_mode)) {
4930                 inode->i_op = &ext4_file_inode_operations;
4931                 inode->i_fop = &ext4_file_operations;
4932                 ext4_set_aops(inode);
4933         } else if (S_ISDIR(inode->i_mode)) {
4934                 inode->i_op = &ext4_dir_inode_operations;
4935                 inode->i_fop = &ext4_dir_operations;
4936         } else if (S_ISLNK(inode->i_mode)) {
4937                 /* VFS does not allow setting these so must be corruption */
4938                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4939                         ext4_error_inode(inode, function, line, 0,
4940                                          "iget: immutable or append flags "
4941                                          "not allowed on symlinks");
4942                         ret = -EFSCORRUPTED;
4943                         goto bad_inode;
4944                 }
4945                 if (IS_ENCRYPTED(inode)) {
4946                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4947                         ext4_set_aops(inode);
4948                 } else if (ext4_inode_is_fast_symlink(inode)) {
4949                         inode->i_link = (char *)ei->i_data;
4950                         inode->i_op = &ext4_fast_symlink_inode_operations;
4951                         nd_terminate_link(ei->i_data, inode->i_size,
4952                                 sizeof(ei->i_data) - 1);
4953                 } else {
4954                         inode->i_op = &ext4_symlink_inode_operations;
4955                         ext4_set_aops(inode);
4956                 }
4957                 inode_nohighmem(inode);
4958         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4959               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4960                 inode->i_op = &ext4_special_inode_operations;
4961                 if (raw_inode->i_block[0])
4962                         init_special_inode(inode, inode->i_mode,
4963                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4964                 else
4965                         init_special_inode(inode, inode->i_mode,
4966                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4967         } else if (ino == EXT4_BOOT_LOADER_INO) {
4968                 make_bad_inode(inode);
4969         } else {
4970                 ret = -EFSCORRUPTED;
4971                 ext4_error_inode(inode, function, line, 0,
4972                                  "iget: bogus i_mode (%o)", inode->i_mode);
4973                 goto bad_inode;
4974         }
4975         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4976                 ext4_error_inode(inode, function, line, 0,
4977                                  "casefold flag without casefold feature");
4978         brelse(iloc.bh);
4979
4980         unlock_new_inode(inode);
4981         return inode;
4982
4983 bad_inode:
4984         brelse(iloc.bh);
4985         iget_failed(inode);
4986         return ERR_PTR(ret);
4987 }
4988
4989 static void __ext4_update_other_inode_time(struct super_block *sb,
4990                                            unsigned long orig_ino,
4991                                            unsigned long ino,
4992                                            struct ext4_inode *raw_inode)
4993 {
4994         struct inode *inode;
4995
4996         inode = find_inode_by_ino_rcu(sb, ino);
4997         if (!inode)
4998                 return;
4999
5000         if (!inode_is_dirtytime_only(inode))
5001                 return;
5002
5003         spin_lock(&inode->i_lock);
5004         if (inode_is_dirtytime_only(inode)) {
5005                 struct ext4_inode_info  *ei = EXT4_I(inode);
5006
5007                 inode->i_state &= ~I_DIRTY_TIME;
5008                 spin_unlock(&inode->i_lock);
5009
5010                 spin_lock(&ei->i_raw_lock);
5011                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5012                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5013                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5014                 ext4_inode_csum_set(inode, raw_inode, ei);
5015                 spin_unlock(&ei->i_raw_lock);
5016                 trace_ext4_other_inode_update_time(inode, orig_ino);
5017                 return;
5018         }
5019         spin_unlock(&inode->i_lock);
5020 }
5021
5022 /*
5023  * Opportunistically update the other time fields for other inodes in
5024  * the same inode table block.
5025  */
5026 static void ext4_update_other_inodes_time(struct super_block *sb,
5027                                           unsigned long orig_ino, char *buf)
5028 {
5029         unsigned long ino;
5030         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5031         int inode_size = EXT4_INODE_SIZE(sb);
5032
5033         /*
5034          * Calculate the first inode in the inode table block.  Inode
5035          * numbers are one-based.  That is, the first inode in a block
5036          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5037          */
5038         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5039         rcu_read_lock();
5040         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5041                 if (ino == orig_ino)
5042                         continue;
5043                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5044                                                (struct ext4_inode *)buf);
5045         }
5046         rcu_read_unlock();
5047 }
5048
5049 /*
5050  * Post the struct inode info into an on-disk inode location in the
5051  * buffer-cache.  This gobbles the caller's reference to the
5052  * buffer_head in the inode location struct.
5053  *
5054  * The caller must have write access to iloc->bh.
5055  */
5056 static int ext4_do_update_inode(handle_t *handle,
5057                                 struct inode *inode,
5058                                 struct ext4_iloc *iloc)
5059 {
5060         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5061         struct ext4_inode_info *ei = EXT4_I(inode);
5062         struct buffer_head *bh = iloc->bh;
5063         struct super_block *sb = inode->i_sb;
5064         int err;
5065         int need_datasync = 0, set_large_file = 0;
5066
5067         spin_lock(&ei->i_raw_lock);
5068
5069         /*
5070          * For fields not tracked in the in-memory inode, initialise them
5071          * to zero for new inodes.
5072          */
5073         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5074                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5075
5076         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5077                 need_datasync = 1;
5078         if (ei->i_disksize > 0x7fffffffULL) {
5079                 if (!ext4_has_feature_large_file(sb) ||
5080                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5081                         set_large_file = 1;
5082         }
5083
5084         err = ext4_fill_raw_inode(inode, raw_inode);
5085         spin_unlock(&ei->i_raw_lock);
5086         if (err) {
5087                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5088                 goto out_brelse;
5089         }
5090
5091         if (inode->i_sb->s_flags & SB_LAZYTIME)
5092                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5093                                               bh->b_data);
5094
5095         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5096         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5097         if (err)
5098                 goto out_error;
5099         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5100         if (set_large_file) {
5101                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5102                 err = ext4_journal_get_write_access(handle, sb,
5103                                                     EXT4_SB(sb)->s_sbh,
5104                                                     EXT4_JTR_NONE);
5105                 if (err)
5106                         goto out_error;
5107                 lock_buffer(EXT4_SB(sb)->s_sbh);
5108                 ext4_set_feature_large_file(sb);
5109                 ext4_superblock_csum_set(sb);
5110                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5111                 ext4_handle_sync(handle);
5112                 err = ext4_handle_dirty_metadata(handle, NULL,
5113                                                  EXT4_SB(sb)->s_sbh);
5114         }
5115         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5116 out_error:
5117         ext4_std_error(inode->i_sb, err);
5118 out_brelse:
5119         brelse(bh);
5120         return err;
5121 }
5122
5123 /*
5124  * ext4_write_inode()
5125  *
5126  * We are called from a few places:
5127  *
5128  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5129  *   Here, there will be no transaction running. We wait for any running
5130  *   transaction to commit.
5131  *
5132  * - Within flush work (sys_sync(), kupdate and such).
5133  *   We wait on commit, if told to.
5134  *
5135  * - Within iput_final() -> write_inode_now()
5136  *   We wait on commit, if told to.
5137  *
5138  * In all cases it is actually safe for us to return without doing anything,
5139  * because the inode has been copied into a raw inode buffer in
5140  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5141  * writeback.
5142  *
5143  * Note that we are absolutely dependent upon all inode dirtiers doing the
5144  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5145  * which we are interested.
5146  *
5147  * It would be a bug for them to not do this.  The code:
5148  *
5149  *      mark_inode_dirty(inode)
5150  *      stuff();
5151  *      inode->i_size = expr;
5152  *
5153  * is in error because write_inode() could occur while `stuff()' is running,
5154  * and the new i_size will be lost.  Plus the inode will no longer be on the
5155  * superblock's dirty inode list.
5156  */
5157 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5158 {
5159         int err;
5160
5161         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5162             sb_rdonly(inode->i_sb))
5163                 return 0;
5164
5165         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5166                 return -EIO;
5167
5168         if (EXT4_SB(inode->i_sb)->s_journal) {
5169                 if (ext4_journal_current_handle()) {
5170                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5171                         dump_stack();
5172                         return -EIO;
5173                 }
5174
5175                 /*
5176                  * No need to force transaction in WB_SYNC_NONE mode. Also
5177                  * ext4_sync_fs() will force the commit after everything is
5178                  * written.
5179                  */
5180                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5181                         return 0;
5182
5183                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5184                                                 EXT4_I(inode)->i_sync_tid);
5185         } else {
5186                 struct ext4_iloc iloc;
5187
5188                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5189                 if (err)
5190                         return err;
5191                 /*
5192                  * sync(2) will flush the whole buffer cache. No need to do
5193                  * it here separately for each inode.
5194                  */
5195                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5196                         sync_dirty_buffer(iloc.bh);
5197                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5198                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5199                                                "IO error syncing inode");
5200                         err = -EIO;
5201                 }
5202                 brelse(iloc.bh);
5203         }
5204         return err;
5205 }
5206
5207 /*
5208  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5209  * buffers that are attached to a page stradding i_size and are undergoing
5210  * commit. In that case we have to wait for commit to finish and try again.
5211  */
5212 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5213 {
5214         struct page *page;
5215         unsigned offset;
5216         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5217         tid_t commit_tid = 0;
5218         int ret;
5219
5220         offset = inode->i_size & (PAGE_SIZE - 1);
5221         /*
5222          * If the page is fully truncated, we don't need to wait for any commit
5223          * (and we even should not as __ext4_journalled_invalidatepage() may
5224          * strip all buffers from the page but keep the page dirty which can then
5225          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5226          * buffers). Also we don't need to wait for any commit if all buffers in
5227          * the page remain valid. This is most beneficial for the common case of
5228          * blocksize == PAGESIZE.
5229          */
5230         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5231                 return;
5232         while (1) {
5233                 page = find_lock_page(inode->i_mapping,
5234                                       inode->i_size >> PAGE_SHIFT);
5235                 if (!page)
5236                         return;
5237                 ret = __ext4_journalled_invalidatepage(page, offset,
5238                                                 PAGE_SIZE - offset);
5239                 unlock_page(page);
5240                 put_page(page);
5241                 if (ret != -EBUSY)
5242                         return;
5243                 commit_tid = 0;
5244                 read_lock(&journal->j_state_lock);
5245                 if (journal->j_committing_transaction)
5246                         commit_tid = journal->j_committing_transaction->t_tid;
5247                 read_unlock(&journal->j_state_lock);
5248                 if (commit_tid)
5249                         jbd2_log_wait_commit(journal, commit_tid);
5250         }
5251 }
5252
5253 /*
5254  * ext4_setattr()
5255  *
5256  * Called from notify_change.
5257  *
5258  * We want to trap VFS attempts to truncate the file as soon as
5259  * possible.  In particular, we want to make sure that when the VFS
5260  * shrinks i_size, we put the inode on the orphan list and modify
5261  * i_disksize immediately, so that during the subsequent flushing of
5262  * dirty pages and freeing of disk blocks, we can guarantee that any
5263  * commit will leave the blocks being flushed in an unused state on
5264  * disk.  (On recovery, the inode will get truncated and the blocks will
5265  * be freed, so we have a strong guarantee that no future commit will
5266  * leave these blocks visible to the user.)
5267  *
5268  * Another thing we have to assure is that if we are in ordered mode
5269  * and inode is still attached to the committing transaction, we must
5270  * we start writeout of all the dirty pages which are being truncated.
5271  * This way we are sure that all the data written in the previous
5272  * transaction are already on disk (truncate waits for pages under
5273  * writeback).
5274  *
5275  * Called with inode->i_rwsem down.
5276  */
5277 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5278                  struct iattr *attr)
5279 {
5280         struct inode *inode = d_inode(dentry);
5281         int error, rc = 0;
5282         int orphan = 0;
5283         const unsigned int ia_valid = attr->ia_valid;
5284
5285         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5286                 return -EIO;
5287
5288         if (unlikely(IS_IMMUTABLE(inode)))
5289                 return -EPERM;
5290
5291         if (unlikely(IS_APPEND(inode) &&
5292                      (ia_valid & (ATTR_MODE | ATTR_UID |
5293                                   ATTR_GID | ATTR_TIMES_SET))))
5294                 return -EPERM;
5295
5296         error = setattr_prepare(mnt_userns, dentry, attr);
5297         if (error)
5298                 return error;
5299
5300         error = fscrypt_prepare_setattr(dentry, attr);
5301         if (error)
5302                 return error;
5303
5304         error = fsverity_prepare_setattr(dentry, attr);
5305         if (error)
5306                 return error;
5307
5308         if (is_quota_modification(inode, attr)) {
5309                 error = dquot_initialize(inode);
5310                 if (error)
5311                         return error;
5312         }
5313
5314         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5315             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5316                 handle_t *handle;
5317
5318                 /* (user+group)*(old+new) structure, inode write (sb,
5319                  * inode block, ? - but truncate inode update has it) */
5320                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5321                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5322                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5323                 if (IS_ERR(handle)) {
5324                         error = PTR_ERR(handle);
5325                         goto err_out;
5326                 }
5327
5328                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5329                  * counts xattr inode references.
5330                  */
5331                 down_read(&EXT4_I(inode)->xattr_sem);
5332                 error = dquot_transfer(inode, attr);
5333                 up_read(&EXT4_I(inode)->xattr_sem);
5334
5335                 if (error) {
5336                         ext4_journal_stop(handle);
5337                         return error;
5338                 }
5339                 /* Update corresponding info in inode so that everything is in
5340                  * one transaction */
5341                 if (attr->ia_valid & ATTR_UID)
5342                         inode->i_uid = attr->ia_uid;
5343                 if (attr->ia_valid & ATTR_GID)
5344                         inode->i_gid = attr->ia_gid;
5345                 error = ext4_mark_inode_dirty(handle, inode);
5346                 ext4_journal_stop(handle);
5347                 if (unlikely(error)) {
5348                         return error;
5349                 }
5350         }
5351
5352         if (attr->ia_valid & ATTR_SIZE) {
5353                 handle_t *handle;
5354                 loff_t oldsize = inode->i_size;
5355                 int shrink = (attr->ia_size < inode->i_size);
5356
5357                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5358                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5359
5360                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5361                                 return -EFBIG;
5362                         }
5363                 }
5364                 if (!S_ISREG(inode->i_mode)) {
5365                         return -EINVAL;
5366                 }
5367
5368                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5369                         inode_inc_iversion(inode);
5370
5371                 if (shrink) {
5372                         if (ext4_should_order_data(inode)) {
5373                                 error = ext4_begin_ordered_truncate(inode,
5374                                                             attr->ia_size);
5375                                 if (error)
5376                                         goto err_out;
5377                         }
5378                         /*
5379                          * Blocks are going to be removed from the inode. Wait
5380                          * for dio in flight.
5381                          */
5382                         inode_dio_wait(inode);
5383                 }
5384
5385                 filemap_invalidate_lock(inode->i_mapping);
5386
5387                 rc = ext4_break_layouts(inode);
5388                 if (rc) {
5389                         filemap_invalidate_unlock(inode->i_mapping);
5390                         goto err_out;
5391                 }
5392
5393                 if (attr->ia_size != inode->i_size) {
5394                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5395                         if (IS_ERR(handle)) {
5396                                 error = PTR_ERR(handle);
5397                                 goto out_mmap_sem;
5398                         }
5399                         if (ext4_handle_valid(handle) && shrink) {
5400                                 error = ext4_orphan_add(handle, inode);
5401                                 orphan = 1;
5402                         }
5403                         /*
5404                          * Update c/mtime on truncate up, ext4_truncate() will
5405                          * update c/mtime in shrink case below
5406                          */
5407                         if (!shrink) {
5408                                 inode->i_mtime = current_time(inode);
5409                                 inode->i_ctime = inode->i_mtime;
5410                         }
5411
5412                         if (shrink)
5413                                 ext4_fc_track_range(handle, inode,
5414                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5415                                         inode->i_sb->s_blocksize_bits,
5416                                         EXT_MAX_BLOCKS - 1);
5417                         else
5418                                 ext4_fc_track_range(
5419                                         handle, inode,
5420                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5421                                         inode->i_sb->s_blocksize_bits,
5422                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5423                                         inode->i_sb->s_blocksize_bits);
5424
5425                         down_write(&EXT4_I(inode)->i_data_sem);
5426                         EXT4_I(inode)->i_disksize = attr->ia_size;
5427                         rc = ext4_mark_inode_dirty(handle, inode);
5428                         if (!error)
5429                                 error = rc;
5430                         /*
5431                          * We have to update i_size under i_data_sem together
5432                          * with i_disksize to avoid races with writeback code
5433                          * running ext4_wb_update_i_disksize().
5434                          */
5435                         if (!error)
5436                                 i_size_write(inode, attr->ia_size);
5437                         up_write(&EXT4_I(inode)->i_data_sem);
5438                         ext4_journal_stop(handle);
5439                         if (error)
5440                                 goto out_mmap_sem;
5441                         if (!shrink) {
5442                                 pagecache_isize_extended(inode, oldsize,
5443                                                          inode->i_size);
5444                         } else if (ext4_should_journal_data(inode)) {
5445                                 ext4_wait_for_tail_page_commit(inode);
5446                         }
5447                 }
5448
5449                 /*
5450                  * Truncate pagecache after we've waited for commit
5451                  * in data=journal mode to make pages freeable.
5452                  */
5453                 truncate_pagecache(inode, inode->i_size);
5454                 /*
5455                  * Call ext4_truncate() even if i_size didn't change to
5456                  * truncate possible preallocated blocks.
5457                  */
5458                 if (attr->ia_size <= oldsize) {
5459                         rc = ext4_truncate(inode);
5460                         if (rc)
5461                                 error = rc;
5462                 }
5463 out_mmap_sem:
5464                 filemap_invalidate_unlock(inode->i_mapping);
5465         }
5466
5467         if (!error) {
5468                 setattr_copy(mnt_userns, inode, attr);
5469                 mark_inode_dirty(inode);
5470         }
5471
5472         /*
5473          * If the call to ext4_truncate failed to get a transaction handle at
5474          * all, we need to clean up the in-core orphan list manually.
5475          */
5476         if (orphan && inode->i_nlink)
5477                 ext4_orphan_del(NULL, inode);
5478
5479         if (!error && (ia_valid & ATTR_MODE))
5480                 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5481
5482 err_out:
5483         if  (error)
5484                 ext4_std_error(inode->i_sb, error);
5485         if (!error)
5486                 error = rc;
5487         return error;
5488 }
5489
5490 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5491                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5492 {
5493         struct inode *inode = d_inode(path->dentry);
5494         struct ext4_inode *raw_inode;
5495         struct ext4_inode_info *ei = EXT4_I(inode);
5496         unsigned int flags;
5497
5498         if ((request_mask & STATX_BTIME) &&
5499             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5500                 stat->result_mask |= STATX_BTIME;
5501                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5502                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5503         }
5504
5505         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5506         if (flags & EXT4_APPEND_FL)
5507                 stat->attributes |= STATX_ATTR_APPEND;
5508         if (flags & EXT4_COMPR_FL)
5509                 stat->attributes |= STATX_ATTR_COMPRESSED;
5510         if (flags & EXT4_ENCRYPT_FL)
5511                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5512         if (flags & EXT4_IMMUTABLE_FL)
5513                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5514         if (flags & EXT4_NODUMP_FL)
5515                 stat->attributes |= STATX_ATTR_NODUMP;
5516         if (flags & EXT4_VERITY_FL)
5517                 stat->attributes |= STATX_ATTR_VERITY;
5518
5519         stat->attributes_mask |= (STATX_ATTR_APPEND |
5520                                   STATX_ATTR_COMPRESSED |
5521                                   STATX_ATTR_ENCRYPTED |
5522                                   STATX_ATTR_IMMUTABLE |
5523                                   STATX_ATTR_NODUMP |
5524                                   STATX_ATTR_VERITY);
5525
5526         generic_fillattr(mnt_userns, inode, stat);
5527         return 0;
5528 }
5529
5530 int ext4_file_getattr(struct user_namespace *mnt_userns,
5531                       const struct path *path, struct kstat *stat,
5532                       u32 request_mask, unsigned int query_flags)
5533 {
5534         struct inode *inode = d_inode(path->dentry);
5535         u64 delalloc_blocks;
5536
5537         ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5538
5539         /*
5540          * If there is inline data in the inode, the inode will normally not
5541          * have data blocks allocated (it may have an external xattr block).
5542          * Report at least one sector for such files, so tools like tar, rsync,
5543          * others don't incorrectly think the file is completely sparse.
5544          */
5545         if (unlikely(ext4_has_inline_data(inode)))
5546                 stat->blocks += (stat->size + 511) >> 9;
5547
5548         /*
5549          * We can't update i_blocks if the block allocation is delayed
5550          * otherwise in the case of system crash before the real block
5551          * allocation is done, we will have i_blocks inconsistent with
5552          * on-disk file blocks.
5553          * We always keep i_blocks updated together with real
5554          * allocation. But to not confuse with user, stat
5555          * will return the blocks that include the delayed allocation
5556          * blocks for this file.
5557          */
5558         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5559                                    EXT4_I(inode)->i_reserved_data_blocks);
5560         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5561         return 0;
5562 }
5563
5564 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5565                                    int pextents)
5566 {
5567         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5568                 return ext4_ind_trans_blocks(inode, lblocks);
5569         return ext4_ext_index_trans_blocks(inode, pextents);
5570 }
5571
5572 /*
5573  * Account for index blocks, block groups bitmaps and block group
5574  * descriptor blocks if modify datablocks and index blocks
5575  * worse case, the indexs blocks spread over different block groups
5576  *
5577  * If datablocks are discontiguous, they are possible to spread over
5578  * different block groups too. If they are contiguous, with flexbg,
5579  * they could still across block group boundary.
5580  *
5581  * Also account for superblock, inode, quota and xattr blocks
5582  */
5583 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5584                                   int pextents)
5585 {
5586         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5587         int gdpblocks;
5588         int idxblocks;
5589         int ret = 0;
5590
5591         /*
5592          * How many index blocks need to touch to map @lblocks logical blocks
5593          * to @pextents physical extents?
5594          */
5595         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5596
5597         ret = idxblocks;
5598
5599         /*
5600          * Now let's see how many group bitmaps and group descriptors need
5601          * to account
5602          */
5603         groups = idxblocks + pextents;
5604         gdpblocks = groups;
5605         if (groups > ngroups)
5606                 groups = ngroups;
5607         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5608                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5609
5610         /* bitmaps and block group descriptor blocks */
5611         ret += groups + gdpblocks;
5612
5613         /* Blocks for super block, inode, quota and xattr blocks */
5614         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5615
5616         return ret;
5617 }
5618
5619 /*
5620  * Calculate the total number of credits to reserve to fit
5621  * the modification of a single pages into a single transaction,
5622  * which may include multiple chunks of block allocations.
5623  *
5624  * This could be called via ext4_write_begin()
5625  *
5626  * We need to consider the worse case, when
5627  * one new block per extent.
5628  */
5629 int ext4_writepage_trans_blocks(struct inode *inode)
5630 {
5631         int bpp = ext4_journal_blocks_per_page(inode);
5632         int ret;
5633
5634         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5635
5636         /* Account for data blocks for journalled mode */
5637         if (ext4_should_journal_data(inode))
5638                 ret += bpp;
5639         return ret;
5640 }
5641
5642 /*
5643  * Calculate the journal credits for a chunk of data modification.
5644  *
5645  * This is called from DIO, fallocate or whoever calling
5646  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5647  *
5648  * journal buffers for data blocks are not included here, as DIO
5649  * and fallocate do no need to journal data buffers.
5650  */
5651 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5652 {
5653         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5654 }
5655
5656 /*
5657  * The caller must have previously called ext4_reserve_inode_write().
5658  * Give this, we know that the caller already has write access to iloc->bh.
5659  */
5660 int ext4_mark_iloc_dirty(handle_t *handle,
5661                          struct inode *inode, struct ext4_iloc *iloc)
5662 {
5663         int err = 0;
5664
5665         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5666                 put_bh(iloc->bh);
5667                 return -EIO;
5668         }
5669         ext4_fc_track_inode(handle, inode);
5670
5671         if (IS_I_VERSION(inode))
5672                 inode_inc_iversion(inode);
5673
5674         /* the do_update_inode consumes one bh->b_count */
5675         get_bh(iloc->bh);
5676
5677         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5678         err = ext4_do_update_inode(handle, inode, iloc);
5679         put_bh(iloc->bh);
5680         return err;
5681 }
5682
5683 /*
5684  * On success, We end up with an outstanding reference count against
5685  * iloc->bh.  This _must_ be cleaned up later.
5686  */
5687
5688 int
5689 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5690                          struct ext4_iloc *iloc)
5691 {
5692         int err;
5693
5694         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5695                 return -EIO;
5696
5697         err = ext4_get_inode_loc(inode, iloc);
5698         if (!err) {
5699                 BUFFER_TRACE(iloc->bh, "get_write_access");
5700                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5701                                                     iloc->bh, EXT4_JTR_NONE);
5702                 if (err) {
5703                         brelse(iloc->bh);
5704                         iloc->bh = NULL;
5705                 }
5706         }
5707         ext4_std_error(inode->i_sb, err);
5708         return err;
5709 }
5710
5711 static int __ext4_expand_extra_isize(struct inode *inode,
5712                                      unsigned int new_extra_isize,
5713                                      struct ext4_iloc *iloc,
5714                                      handle_t *handle, int *no_expand)
5715 {
5716         struct ext4_inode *raw_inode;
5717         struct ext4_xattr_ibody_header *header;
5718         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5719         struct ext4_inode_info *ei = EXT4_I(inode);
5720         int error;
5721
5722         /* this was checked at iget time, but double check for good measure */
5723         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5724             (ei->i_extra_isize & 3)) {
5725                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5726                                  ei->i_extra_isize,
5727                                  EXT4_INODE_SIZE(inode->i_sb));
5728                 return -EFSCORRUPTED;
5729         }
5730         if ((new_extra_isize < ei->i_extra_isize) ||
5731             (new_extra_isize < 4) ||
5732             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5733                 return -EINVAL; /* Should never happen */
5734
5735         raw_inode = ext4_raw_inode(iloc);
5736
5737         header = IHDR(inode, raw_inode);
5738
5739         /* No extended attributes present */
5740         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5741             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5742                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5743                        EXT4_I(inode)->i_extra_isize, 0,
5744                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5745                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5746                 return 0;
5747         }
5748
5749         /* try to expand with EAs present */
5750         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5751                                            raw_inode, handle);
5752         if (error) {
5753                 /*
5754                  * Inode size expansion failed; don't try again
5755                  */
5756                 *no_expand = 1;
5757         }
5758
5759         return error;
5760 }
5761
5762 /*
5763  * Expand an inode by new_extra_isize bytes.
5764  * Returns 0 on success or negative error number on failure.
5765  */
5766 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5767                                           unsigned int new_extra_isize,
5768                                           struct ext4_iloc iloc,
5769                                           handle_t *handle)
5770 {
5771         int no_expand;
5772         int error;
5773
5774         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5775                 return -EOVERFLOW;
5776
5777         /*
5778          * In nojournal mode, we can immediately attempt to expand
5779          * the inode.  When journaled, we first need to obtain extra
5780          * buffer credits since we may write into the EA block
5781          * with this same handle. If journal_extend fails, then it will
5782          * only result in a minor loss of functionality for that inode.
5783          * If this is felt to be critical, then e2fsck should be run to
5784          * force a large enough s_min_extra_isize.
5785          */
5786         if (ext4_journal_extend(handle,
5787                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5788                 return -ENOSPC;
5789
5790         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5791                 return -EBUSY;
5792
5793         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5794                                           handle, &no_expand);
5795         ext4_write_unlock_xattr(inode, &no_expand);
5796
5797         return error;
5798 }
5799
5800 int ext4_expand_extra_isize(struct inode *inode,
5801                             unsigned int new_extra_isize,
5802                             struct ext4_iloc *iloc)
5803 {
5804         handle_t *handle;
5805         int no_expand;
5806         int error, rc;
5807
5808         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5809                 brelse(iloc->bh);
5810                 return -EOVERFLOW;
5811         }
5812
5813         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5814                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5815         if (IS_ERR(handle)) {
5816                 error = PTR_ERR(handle);
5817                 brelse(iloc->bh);
5818                 return error;
5819         }
5820
5821         ext4_write_lock_xattr(inode, &no_expand);
5822
5823         BUFFER_TRACE(iloc->bh, "get_write_access");
5824         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5825                                               EXT4_JTR_NONE);
5826         if (error) {
5827                 brelse(iloc->bh);
5828                 goto out_unlock;
5829         }
5830
5831         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5832                                           handle, &no_expand);
5833
5834         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5835         if (!error)
5836                 error = rc;
5837
5838 out_unlock:
5839         ext4_write_unlock_xattr(inode, &no_expand);
5840         ext4_journal_stop(handle);
5841         return error;
5842 }
5843
5844 /*
5845  * What we do here is to mark the in-core inode as clean with respect to inode
5846  * dirtiness (it may still be data-dirty).
5847  * This means that the in-core inode may be reaped by prune_icache
5848  * without having to perform any I/O.  This is a very good thing,
5849  * because *any* task may call prune_icache - even ones which
5850  * have a transaction open against a different journal.
5851  *
5852  * Is this cheating?  Not really.  Sure, we haven't written the
5853  * inode out, but prune_icache isn't a user-visible syncing function.
5854  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5855  * we start and wait on commits.
5856  */
5857 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5858                                 const char *func, unsigned int line)
5859 {
5860         struct ext4_iloc iloc;
5861         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5862         int err;
5863
5864         might_sleep();
5865         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5866         err = ext4_reserve_inode_write(handle, inode, &iloc);
5867         if (err)
5868                 goto out;
5869
5870         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5871                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5872                                                iloc, handle);
5873
5874         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5875 out:
5876         if (unlikely(err))
5877                 ext4_error_inode_err(inode, func, line, 0, err,
5878                                         "mark_inode_dirty error");
5879         return err;
5880 }
5881
5882 /*
5883  * ext4_dirty_inode() is called from __mark_inode_dirty()
5884  *
5885  * We're really interested in the case where a file is being extended.
5886  * i_size has been changed by generic_commit_write() and we thus need
5887  * to include the updated inode in the current transaction.
5888  *
5889  * Also, dquot_alloc_block() will always dirty the inode when blocks
5890  * are allocated to the file.
5891  *
5892  * If the inode is marked synchronous, we don't honour that here - doing
5893  * so would cause a commit on atime updates, which we don't bother doing.
5894  * We handle synchronous inodes at the highest possible level.
5895  */
5896 void ext4_dirty_inode(struct inode *inode, int flags)
5897 {
5898         handle_t *handle;
5899
5900         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5901         if (IS_ERR(handle))
5902                 return;
5903         ext4_mark_inode_dirty(handle, inode);
5904         ext4_journal_stop(handle);
5905 }
5906
5907 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5908 {
5909         journal_t *journal;
5910         handle_t *handle;
5911         int err;
5912         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5913
5914         /*
5915          * We have to be very careful here: changing a data block's
5916          * journaling status dynamically is dangerous.  If we write a
5917          * data block to the journal, change the status and then delete
5918          * that block, we risk forgetting to revoke the old log record
5919          * from the journal and so a subsequent replay can corrupt data.
5920          * So, first we make sure that the journal is empty and that
5921          * nobody is changing anything.
5922          */
5923
5924         journal = EXT4_JOURNAL(inode);
5925         if (!journal)
5926                 return 0;
5927         if (is_journal_aborted(journal))
5928                 return -EROFS;
5929
5930         /* Wait for all existing dio workers */
5931         inode_dio_wait(inode);
5932
5933         /*
5934          * Before flushing the journal and switching inode's aops, we have
5935          * to flush all dirty data the inode has. There can be outstanding
5936          * delayed allocations, there can be unwritten extents created by
5937          * fallocate or buffered writes in dioread_nolock mode covered by
5938          * dirty data which can be converted only after flushing the dirty
5939          * data (and journalled aops don't know how to handle these cases).
5940          */
5941         if (val) {
5942                 filemap_invalidate_lock(inode->i_mapping);
5943                 err = filemap_write_and_wait(inode->i_mapping);
5944                 if (err < 0) {
5945                         filemap_invalidate_unlock(inode->i_mapping);
5946                         return err;
5947                 }
5948         }
5949
5950         percpu_down_write(&sbi->s_writepages_rwsem);
5951         jbd2_journal_lock_updates(journal);
5952
5953         /*
5954          * OK, there are no updates running now, and all cached data is
5955          * synced to disk.  We are now in a completely consistent state
5956          * which doesn't have anything in the journal, and we know that
5957          * no filesystem updates are running, so it is safe to modify
5958          * the inode's in-core data-journaling state flag now.
5959          */
5960
5961         if (val)
5962                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5963         else {
5964                 err = jbd2_journal_flush(journal, 0);
5965                 if (err < 0) {
5966                         jbd2_journal_unlock_updates(journal);
5967                         percpu_up_write(&sbi->s_writepages_rwsem);
5968                         return err;
5969                 }
5970                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5971         }
5972         ext4_set_aops(inode);
5973
5974         jbd2_journal_unlock_updates(journal);
5975         percpu_up_write(&sbi->s_writepages_rwsem);
5976
5977         if (val)
5978                 filemap_invalidate_unlock(inode->i_mapping);
5979
5980         /* Finally we can mark the inode as dirty. */
5981
5982         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5983         if (IS_ERR(handle))
5984                 return PTR_ERR(handle);
5985
5986         ext4_fc_mark_ineligible(inode->i_sb,
5987                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
5988         err = ext4_mark_inode_dirty(handle, inode);
5989         ext4_handle_sync(handle);
5990         ext4_journal_stop(handle);
5991         ext4_std_error(inode->i_sb, err);
5992
5993         return err;
5994 }
5995
5996 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
5997                             struct buffer_head *bh)
5998 {
5999         return !buffer_mapped(bh);
6000 }
6001
6002 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6003 {
6004         struct vm_area_struct *vma = vmf->vma;
6005         struct page *page = vmf->page;
6006         loff_t size;
6007         unsigned long len;
6008         int err;
6009         vm_fault_t ret;
6010         struct file *file = vma->vm_file;
6011         struct inode *inode = file_inode(file);
6012         struct address_space *mapping = inode->i_mapping;
6013         handle_t *handle;
6014         get_block_t *get_block;
6015         int retries = 0;
6016
6017         if (unlikely(IS_IMMUTABLE(inode)))
6018                 return VM_FAULT_SIGBUS;
6019
6020         sb_start_pagefault(inode->i_sb);
6021         file_update_time(vma->vm_file);
6022
6023         filemap_invalidate_lock_shared(mapping);
6024
6025         err = ext4_convert_inline_data(inode);
6026         if (err)
6027                 goto out_ret;
6028
6029         /*
6030          * On data journalling we skip straight to the transaction handle:
6031          * there's no delalloc; page truncated will be checked later; the
6032          * early return w/ all buffers mapped (calculates size/len) can't
6033          * be used; and there's no dioread_nolock, so only ext4_get_block.
6034          */
6035         if (ext4_should_journal_data(inode))
6036                 goto retry_alloc;
6037
6038         /* Delalloc case is easy... */
6039         if (test_opt(inode->i_sb, DELALLOC) &&
6040             !ext4_nonda_switch(inode->i_sb)) {
6041                 do {
6042                         err = block_page_mkwrite(vma, vmf,
6043                                                    ext4_da_get_block_prep);
6044                 } while (err == -ENOSPC &&
6045                        ext4_should_retry_alloc(inode->i_sb, &retries));
6046                 goto out_ret;
6047         }
6048
6049         lock_page(page);
6050         size = i_size_read(inode);
6051         /* Page got truncated from under us? */
6052         if (page->mapping != mapping || page_offset(page) > size) {
6053                 unlock_page(page);
6054                 ret = VM_FAULT_NOPAGE;
6055                 goto out;
6056         }
6057
6058         if (page->index == size >> PAGE_SHIFT)
6059                 len = size & ~PAGE_MASK;
6060         else
6061                 len = PAGE_SIZE;
6062         /*
6063          * Return if we have all the buffers mapped. This avoids the need to do
6064          * journal_start/journal_stop which can block and take a long time
6065          *
6066          * This cannot be done for data journalling, as we have to add the
6067          * inode to the transaction's list to writeprotect pages on commit.
6068          */
6069         if (page_has_buffers(page)) {
6070                 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6071                                             0, len, NULL,
6072                                             ext4_bh_unmapped)) {
6073                         /* Wait so that we don't change page under IO */
6074                         wait_for_stable_page(page);
6075                         ret = VM_FAULT_LOCKED;
6076                         goto out;
6077                 }
6078         }
6079         unlock_page(page);
6080         /* OK, we need to fill the hole... */
6081         if (ext4_should_dioread_nolock(inode))
6082                 get_block = ext4_get_block_unwritten;
6083         else
6084                 get_block = ext4_get_block;
6085 retry_alloc:
6086         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6087                                     ext4_writepage_trans_blocks(inode));
6088         if (IS_ERR(handle)) {
6089                 ret = VM_FAULT_SIGBUS;
6090                 goto out;
6091         }
6092         /*
6093          * Data journalling can't use block_page_mkwrite() because it
6094          * will set_buffer_dirty() before do_journal_get_write_access()
6095          * thus might hit warning messages for dirty metadata buffers.
6096          */
6097         if (!ext4_should_journal_data(inode)) {
6098                 err = block_page_mkwrite(vma, vmf, get_block);
6099         } else {
6100                 lock_page(page);
6101                 size = i_size_read(inode);
6102                 /* Page got truncated from under us? */
6103                 if (page->mapping != mapping || page_offset(page) > size) {
6104                         ret = VM_FAULT_NOPAGE;
6105                         goto out_error;
6106                 }
6107
6108                 if (page->index == size >> PAGE_SHIFT)
6109                         len = size & ~PAGE_MASK;
6110                 else
6111                         len = PAGE_SIZE;
6112
6113                 err = __block_write_begin(page, 0, len, ext4_get_block);
6114                 if (!err) {
6115                         ret = VM_FAULT_SIGBUS;
6116                         if (ext4_walk_page_buffers(handle, inode,
6117                                         page_buffers(page), 0, len, NULL,
6118                                         do_journal_get_write_access))
6119                                 goto out_error;
6120                         if (ext4_walk_page_buffers(handle, inode,
6121                                         page_buffers(page), 0, len, NULL,
6122                                         write_end_fn))
6123                                 goto out_error;
6124                         if (ext4_jbd2_inode_add_write(handle, inode,
6125                                                       page_offset(page), len))
6126                                 goto out_error;
6127                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6128                 } else {
6129                         unlock_page(page);
6130                 }
6131         }
6132         ext4_journal_stop(handle);
6133         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6134                 goto retry_alloc;
6135 out_ret:
6136         ret = block_page_mkwrite_return(err);
6137 out:
6138         filemap_invalidate_unlock_shared(mapping);
6139         sb_end_pagefault(inode->i_sb);
6140         return ret;
6141 out_error:
6142         unlock_page(page);
6143         ext4_journal_stop(handle);
6144         goto out;
6145 }
This page took 0.380664 seconds and 4 git commands to generate.