1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 #include <linux/dax.h>
46 #include "ext4_jbd2.h"
51 #include <trace/events/ext4.h>
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
88 __u32 provided, calculated;
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
101 calculated &= 0xFFFF;
103 return provided == calculated;
106 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
126 trace_ext4_begin_ordered_truncate(inode, new_size);
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
133 if (!EXT4_I(inode)->jinode)
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 * Test whether an inode is a fast symlink.
146 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148 int ext4_inode_is_fast_symlink(struct inode *inode)
150 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
151 int ea_blocks = EXT4_I(inode)->i_file_acl ?
152 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 if (ext4_has_inline_data(inode))
157 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 return S_ISLNK(inode->i_mode) && inode->i_size &&
160 (inode->i_size < EXT4_N_BLOCKS * 4);
164 * Called at the last iput() if i_nlink is zero.
166 void ext4_evict_inode(struct inode *inode)
171 * Credits for final inode cleanup and freeing:
172 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
173 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 int extra_credits = 6;
176 struct ext4_xattr_inode_array *ea_inode_array = NULL;
177 bool freeze_protected = false;
179 trace_ext4_evict_inode(inode);
181 if (inode->i_nlink) {
183 * When journalling data dirty buffers are tracked only in the
184 * journal. So although mm thinks everything is clean and
185 * ready for reaping the inode might still have some pages to
186 * write in the running transaction or waiting to be
187 * checkpointed. Thus calling jbd2_journal_invalidatepage()
188 * (via truncate_inode_pages()) to discard these buffers can
189 * cause data loss. Also even if we did not discard these
190 * buffers, we would have no way to find them after the inode
191 * is reaped and thus user could see stale data if he tries to
192 * read them before the transaction is checkpointed. So be
193 * careful and force everything to disk here... We use
194 * ei->i_datasync_tid to store the newest transaction
195 * containing inode's data.
197 * Note that directories do not have this problem because they
198 * don't use page cache.
200 if (inode->i_ino != EXT4_JOURNAL_INO &&
201 ext4_should_journal_data(inode) &&
202 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203 inode->i_data.nrpages) {
204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207 jbd2_complete_transaction(journal, commit_tid);
208 filemap_write_and_wait(&inode->i_data);
210 truncate_inode_pages_final(&inode->i_data);
215 if (is_bad_inode(inode))
217 dquot_initialize(inode);
219 if (ext4_should_order_data(inode))
220 ext4_begin_ordered_truncate(inode, 0);
221 truncate_inode_pages_final(&inode->i_data);
224 * For inodes with journalled data, transaction commit could have
225 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226 * flag but we still need to remove the inode from the writeback lists.
228 if (!list_empty_careful(&inode->i_io_list)) {
229 WARN_ON_ONCE(!ext4_should_journal_data(inode));
230 inode_io_list_del(inode);
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it. When we are in a running transaction though,
236 * we are already protected against freezing and we cannot grab further
237 * protection due to lock ordering constraints.
239 if (!ext4_journal_current_handle()) {
240 sb_start_intwrite(inode->i_sb);
241 freeze_protected = true;
244 if (!IS_NOQUOTA(inode))
245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
248 * Block bitmap, group descriptor, and inode are accounted in both
249 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
251 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252 ext4_blocks_for_truncate(inode) + extra_credits - 3);
253 if (IS_ERR(handle)) {
254 ext4_std_error(inode->i_sb, PTR_ERR(handle));
256 * If we're going to skip the normal cleanup, we still need to
257 * make sure that the in-core orphan linked list is properly
260 ext4_orphan_del(NULL, inode);
261 if (freeze_protected)
262 sb_end_intwrite(inode->i_sb);
267 ext4_handle_sync(handle);
270 * Set inode->i_size to 0 before calling ext4_truncate(). We need
271 * special handling of symlinks here because i_size is used to
272 * determine whether ext4_inode_info->i_data contains symlink data or
273 * block mappings. Setting i_size to 0 will remove its fast symlink
274 * status. Erase i_data so that it becomes a valid empty block map.
276 if (ext4_inode_is_fast_symlink(inode))
277 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
279 err = ext4_mark_inode_dirty(handle, inode);
281 ext4_warning(inode->i_sb,
282 "couldn't mark inode dirty (err %d)", err);
285 if (inode->i_blocks) {
286 err = ext4_truncate(inode);
288 ext4_error_err(inode->i_sb, -err,
289 "couldn't truncate inode %lu (err %d)",
295 /* Remove xattr references. */
296 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301 ext4_journal_stop(handle);
302 ext4_orphan_del(NULL, inode);
303 if (freeze_protected)
304 sb_end_intwrite(inode->i_sb);
305 ext4_xattr_inode_array_free(ea_inode_array);
310 * Kill off the orphan record which ext4_truncate created.
311 * AKPM: I think this can be inside the above `if'.
312 * Note that ext4_orphan_del() has to be able to cope with the
313 * deletion of a non-existent orphan - this is because we don't
314 * know if ext4_truncate() actually created an orphan record.
315 * (Well, we could do this if we need to, but heck - it works)
317 ext4_orphan_del(handle, inode);
318 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
321 * One subtle ordering requirement: if anything has gone wrong
322 * (transaction abort, IO errors, whatever), then we can still
323 * do these next steps (the fs will already have been marked as
324 * having errors), but we can't free the inode if the mark_dirty
327 if (ext4_mark_inode_dirty(handle, inode))
328 /* If that failed, just do the required in-core inode clear. */
329 ext4_clear_inode(inode);
331 ext4_free_inode(handle, inode);
332 ext4_journal_stop(handle);
333 if (freeze_protected)
334 sb_end_intwrite(inode->i_sb);
335 ext4_xattr_inode_array_free(ea_inode_array);
338 if (!list_empty(&EXT4_I(inode)->i_fc_list))
339 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
340 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
344 qsize_t *ext4_get_reserved_space(struct inode *inode)
346 return &EXT4_I(inode)->i_reserved_quota;
351 * Called with i_data_sem down, which is important since we can call
352 * ext4_discard_preallocations() from here.
354 void ext4_da_update_reserve_space(struct inode *inode,
355 int used, int quota_claim)
357 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
358 struct ext4_inode_info *ei = EXT4_I(inode);
360 spin_lock(&ei->i_block_reservation_lock);
361 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
362 if (unlikely(used > ei->i_reserved_data_blocks)) {
363 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
364 "with only %d reserved data blocks",
365 __func__, inode->i_ino, used,
366 ei->i_reserved_data_blocks);
368 used = ei->i_reserved_data_blocks;
371 /* Update per-inode reservations */
372 ei->i_reserved_data_blocks -= used;
373 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
375 spin_unlock(&ei->i_block_reservation_lock);
377 /* Update quota subsystem for data blocks */
379 dquot_claim_block(inode, EXT4_C2B(sbi, used));
382 * We did fallocate with an offset that is already delayed
383 * allocated. So on delayed allocated writeback we should
384 * not re-claim the quota for fallocated blocks.
386 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
390 * If we have done all the pending block allocations and if
391 * there aren't any writers on the inode, we can discard the
392 * inode's preallocations.
394 if ((ei->i_reserved_data_blocks == 0) &&
395 !inode_is_open_for_write(inode))
396 ext4_discard_preallocations(inode, 0);
399 static int __check_block_validity(struct inode *inode, const char *func,
401 struct ext4_map_blocks *map)
403 if (ext4_has_feature_journal(inode->i_sb) &&
405 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
407 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
408 ext4_error_inode(inode, func, line, map->m_pblk,
409 "lblock %lu mapped to illegal pblock %llu "
410 "(length %d)", (unsigned long) map->m_lblk,
411 map->m_pblk, map->m_len);
412 return -EFSCORRUPTED;
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
422 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
423 return fscrypt_zeroout_range(inode, lblk, pblk, len);
425 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
432 #define check_block_validity(inode, map) \
433 __check_block_validity((inode), __func__, __LINE__, (map))
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
438 struct ext4_map_blocks *es_map,
439 struct ext4_map_blocks *map,
446 * There is a race window that the result is not the same.
447 * e.g. xfstests #223 when dioread_nolock enables. The reason
448 * is that we lookup a block mapping in extent status tree with
449 * out taking i_data_sem. So at the time the unwritten extent
450 * could be converted.
452 down_read(&EXT4_I(inode)->i_data_sem);
453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454 retval = ext4_ext_map_blocks(handle, inode, map, 0);
456 retval = ext4_ind_map_blocks(handle, inode, map, 0);
458 up_read((&EXT4_I(inode)->i_data_sem));
461 * We don't check m_len because extent will be collpased in status
462 * tree. So the m_len might not equal.
464 if (es_map->m_lblk != map->m_lblk ||
465 es_map->m_flags != map->m_flags ||
466 es_map->m_pblk != map->m_pblk) {
467 printk("ES cache assertion failed for inode: %lu "
468 "es_cached ex [%d/%d/%llu/%x] != "
469 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
470 inode->i_ino, es_map->m_lblk, es_map->m_len,
471 es_map->m_pblk, es_map->m_flags, map->m_lblk,
472 map->m_len, map->m_pblk, map->m_flags,
476 #endif /* ES_AGGRESSIVE_TEST */
479 * The ext4_map_blocks() function tries to look up the requested blocks,
480 * and returns if the blocks are already mapped.
482 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
483 * and store the allocated blocks in the result buffer head and mark it
486 * If file type is extents based, it will call ext4_ext_map_blocks(),
487 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490 * On success, it returns the number of blocks being mapped or allocated. if
491 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
492 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
494 * It returns 0 if plain look up failed (blocks have not been allocated), in
495 * that case, @map is returned as unmapped but we still do fill map->m_len to
496 * indicate the length of a hole starting at map->m_lblk.
498 * It returns the error in case of allocation failure.
500 int ext4_map_blocks(handle_t *handle, struct inode *inode,
501 struct ext4_map_blocks *map, int flags)
503 struct extent_status es;
506 #ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
509 memcpy(&orig_map, map, sizeof(*map));
513 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
514 flags, map->m_len, (unsigned long) map->m_lblk);
517 * ext4_map_blocks returns an int, and m_len is an unsigned int
519 if (unlikely(map->m_len > INT_MAX))
520 map->m_len = INT_MAX;
522 /* We can handle the block number less than EXT_MAX_BLOCKS */
523 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
524 return -EFSCORRUPTED;
526 /* Lookup extent status tree firstly */
527 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
528 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
529 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
530 map->m_pblk = ext4_es_pblock(&es) +
531 map->m_lblk - es.es_lblk;
532 map->m_flags |= ext4_es_is_written(&es) ?
533 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
534 retval = es.es_len - (map->m_lblk - es.es_lblk);
535 if (retval > map->m_len)
538 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
540 retval = es.es_len - (map->m_lblk - es.es_lblk);
541 if (retval > map->m_len)
548 #ifdef ES_AGGRESSIVE_TEST
549 ext4_map_blocks_es_recheck(handle, inode, map,
556 * Try to see if we can get the block without requesting a new
559 down_read(&EXT4_I(inode)->i_data_sem);
560 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
561 retval = ext4_ext_map_blocks(handle, inode, map, 0);
563 retval = ext4_ind_map_blocks(handle, inode, map, 0);
568 if (unlikely(retval != map->m_len)) {
569 ext4_warning(inode->i_sb,
570 "ES len assertion failed for inode "
571 "%lu: retval %d != map->m_len %d",
572 inode->i_ino, retval, map->m_len);
576 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579 !(status & EXTENT_STATUS_WRITTEN) &&
580 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
588 up_read((&EXT4_I(inode)->i_data_sem));
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592 ret = check_block_validity(inode, map);
597 /* If it is only a block(s) look up */
598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
602 * Returns if the blocks have already allocated
604 * Note that if blocks have been preallocated
605 * ext4_ext_get_block() returns the create = 0
606 * with buffer head unmapped.
608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610 * If we need to convert extent to unwritten
611 * we continue and do the actual work in
612 * ext4_ext_map_blocks()
614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
618 * Here we clear m_flags because after allocating an new extent,
619 * it will be set again.
621 map->m_flags &= ~EXT4_MAP_FLAGS;
624 * New blocks allocate and/or writing to unwritten extent
625 * will possibly result in updating i_data, so we take
626 * the write lock of i_data_sem, and call get_block()
627 * with create == 1 flag.
629 down_write(&EXT4_I(inode)->i_data_sem);
632 * We need to check for EXT4 here because migrate
633 * could have changed the inode type in between
635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636 retval = ext4_ext_map_blocks(handle, inode, map, flags);
638 retval = ext4_ind_map_blocks(handle, inode, map, flags);
640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642 * We allocated new blocks which will result in
643 * i_data's format changing. Force the migrate
644 * to fail by clearing migrate flags
646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
650 * Update reserved blocks/metadata blocks after successful
651 * block allocation which had been deferred till now. We don't
652 * support fallocate for non extent files. So we can update
653 * reserve space here.
656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657 ext4_da_update_reserve_space(inode, retval, 1);
663 if (unlikely(retval != map->m_len)) {
664 ext4_warning(inode->i_sb,
665 "ES len assertion failed for inode "
666 "%lu: retval %d != map->m_len %d",
667 inode->i_ino, retval, map->m_len);
672 * We have to zeroout blocks before inserting them into extent
673 * status tree. Otherwise someone could look them up there and
674 * use them before they are really zeroed. We also have to
675 * unmap metadata before zeroing as otherwise writeback can
676 * overwrite zeros with stale data from block device.
678 if (flags & EXT4_GET_BLOCKS_ZERO &&
679 map->m_flags & EXT4_MAP_MAPPED &&
680 map->m_flags & EXT4_MAP_NEW) {
681 ret = ext4_issue_zeroout(inode, map->m_lblk,
682 map->m_pblk, map->m_len);
690 * If the extent has been zeroed out, we don't need to update
691 * extent status tree.
693 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
694 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
695 if (ext4_es_is_written(&es))
698 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
699 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
700 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
701 !(status & EXTENT_STATUS_WRITTEN) &&
702 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
703 map->m_lblk + map->m_len - 1))
704 status |= EXTENT_STATUS_DELAYED;
705 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
706 map->m_pblk, status);
714 up_write((&EXT4_I(inode)->i_data_sem));
715 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
716 ret = check_block_validity(inode, map);
721 * Inodes with freshly allocated blocks where contents will be
722 * visible after transaction commit must be on transaction's
725 if (map->m_flags & EXT4_MAP_NEW &&
726 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
727 !(flags & EXT4_GET_BLOCKS_ZERO) &&
728 !ext4_is_quota_file(inode) &&
729 ext4_should_order_data(inode)) {
731 (loff_t)map->m_lblk << inode->i_blkbits;
732 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
734 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
735 ret = ext4_jbd2_inode_add_wait(handle, inode,
738 ret = ext4_jbd2_inode_add_write(handle, inode,
744 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
745 map->m_flags & EXT4_MAP_MAPPED))
746 ext4_fc_track_range(handle, inode, map->m_lblk,
747 map->m_lblk + map->m_len - 1);
749 ext_debug(inode, "failed with err %d\n", retval);
754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755 * we have to be careful as someone else may be manipulating b_state as well.
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759 unsigned long old_state;
760 unsigned long new_state;
762 flags &= EXT4_MAP_FLAGS;
764 /* Dummy buffer_head? Set non-atomically. */
766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
770 * Someone else may be modifying b_state. Be careful! This is ugly but
771 * once we get rid of using bh as a container for mapping information
772 * to pass to / from get_block functions, this can go away.
775 old_state = READ_ONCE(bh->b_state);
776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
778 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782 struct buffer_head *bh, int flags)
784 struct ext4_map_blocks map;
787 if (ext4_has_inline_data(inode))
791 map.m_len = bh->b_size >> inode->i_blkbits;
793 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
796 map_bh(bh, inode->i_sb, map.m_pblk);
797 ext4_update_bh_state(bh, map.m_flags);
798 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800 } else if (ret == 0) {
801 /* hole case, need to fill in bh->b_size */
802 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808 struct buffer_head *bh, int create)
810 return _ext4_get_block(inode, iblock, bh,
811 create ? EXT4_GET_BLOCKS_CREATE : 0);
815 * Get block function used when preparing for buffered write if we require
816 * creating an unwritten extent if blocks haven't been allocated. The extent
817 * will be converted to written after the IO is complete.
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820 struct buffer_head *bh_result, int create)
822 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823 inode->i_ino, create);
824 return _ext4_get_block(inode, iblock, bh_result,
825 EXT4_GET_BLOCKS_IO_CREATE_EXT);
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
832 * `handle' can be NULL if create is zero
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 ext4_lblk_t block, int map_flags)
837 struct ext4_map_blocks map;
838 struct buffer_head *bh;
839 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
842 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843 || handle != NULL || create == 0);
847 err = ext4_map_blocks(handle, inode, &map, map_flags);
850 return create ? ERR_PTR(-ENOSPC) : NULL;
854 bh = sb_getblk(inode->i_sb, map.m_pblk);
856 return ERR_PTR(-ENOMEM);
857 if (map.m_flags & EXT4_MAP_NEW) {
859 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860 || (handle != NULL));
863 * Now that we do not always journal data, we should
864 * keep in mind whether this should always journal the
865 * new buffer as metadata. For now, regular file
866 * writes use ext4_get_block instead, so it's not a
870 BUFFER_TRACE(bh, "call get_create_access");
871 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
877 if (!buffer_uptodate(bh)) {
878 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 set_buffer_uptodate(bh);
882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 err = ext4_handle_dirty_metadata(handle, inode, bh);
887 BUFFER_TRACE(bh, "not a new buffer");
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895 ext4_lblk_t block, int map_flags)
897 struct buffer_head *bh;
900 bh = ext4_getblk(handle, inode, block, map_flags);
903 if (!bh || ext4_buffer_uptodate(bh))
906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 bool wait, struct buffer_head **bhs)
920 for (i = 0; i < bh_count; i++) {
921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 if (IS_ERR(bhs[i])) {
923 err = PTR_ERR(bhs[i]);
929 for (i = 0; i < bh_count; i++)
930 /* Note that NULL bhs[i] is valid because of holes. */
931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
937 for (i = 0; i < bh_count; i++)
939 wait_on_buffer(bhs[i]);
941 for (i = 0; i < bh_count; i++) {
942 if (bhs[i] && !buffer_uptodate(bhs[i])) {
950 for (i = 0; i < bh_count; i++) {
957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
958 struct buffer_head *head,
962 int (*fn)(handle_t *handle, struct inode *inode,
963 struct buffer_head *bh))
965 struct buffer_head *bh;
966 unsigned block_start, block_end;
967 unsigned blocksize = head->b_size;
969 struct buffer_head *next;
971 for (bh = head, block_start = 0;
972 ret == 0 && (bh != head || !block_start);
973 block_start = block_end, bh = next) {
974 next = bh->b_this_page;
975 block_end = block_start + blocksize;
976 if (block_end <= from || block_start >= to) {
977 if (partial && !buffer_uptodate(bh))
981 err = (*fn)(handle, inode, bh);
989 * To preserve ordering, it is essential that the hole instantiation and
990 * the data write be encapsulated in a single transaction. We cannot
991 * close off a transaction and start a new one between the ext4_get_block()
992 * and the commit_write(). So doing the jbd2_journal_start at the start of
993 * prepare_write() is the right place.
995 * Also, this function can nest inside ext4_writepage(). In that case, we
996 * *know* that ext4_writepage() has generated enough buffer credits to do the
997 * whole page. So we won't block on the journal in that case, which is good,
998 * because the caller may be PF_MEMALLOC.
1000 * By accident, ext4 can be reentered when a transaction is open via
1001 * quota file writes. If we were to commit the transaction while thus
1002 * reentered, there can be a deadlock - we would be holding a quota
1003 * lock, and the commit would never complete if another thread had a
1004 * transaction open and was blocking on the quota lock - a ranking
1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008 * will _not_ run commit under these circumstances because handle->h_ref
1009 * is elevated. We'll still have enough credits for the tiny quotafile
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013 struct buffer_head *bh)
1015 int dirty = buffer_dirty(bh);
1018 if (!buffer_mapped(bh) || buffer_freed(bh))
1021 * __block_write_begin() could have dirtied some buffers. Clean
1022 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 * otherwise about fs integrity issues. Setting of the dirty bit
1024 * by __block_write_begin() isn't a real problem here as we clear
1025 * the bit before releasing a page lock and thus writeback cannot
1026 * ever write the buffer.
1029 clear_buffer_dirty(bh);
1030 BUFFER_TRACE(bh, "get write access");
1031 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1034 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1038 #ifdef CONFIG_FS_ENCRYPTION
1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040 get_block_t *get_block)
1042 unsigned from = pos & (PAGE_SIZE - 1);
1043 unsigned to = from + len;
1044 struct inode *inode = page->mapping->host;
1045 unsigned block_start, block_end;
1048 unsigned blocksize = inode->i_sb->s_blocksize;
1050 struct buffer_head *bh, *head, *wait[2];
1054 BUG_ON(!PageLocked(page));
1055 BUG_ON(from > PAGE_SIZE);
1056 BUG_ON(to > PAGE_SIZE);
1059 if (!page_has_buffers(page))
1060 create_empty_buffers(page, blocksize, 0);
1061 head = page_buffers(page);
1062 bbits = ilog2(blocksize);
1063 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1065 for (bh = head, block_start = 0; bh != head || !block_start;
1066 block++, block_start = block_end, bh = bh->b_this_page) {
1067 block_end = block_start + blocksize;
1068 if (block_end <= from || block_start >= to) {
1069 if (PageUptodate(page)) {
1070 set_buffer_uptodate(bh);
1075 clear_buffer_new(bh);
1076 if (!buffer_mapped(bh)) {
1077 WARN_ON(bh->b_size != blocksize);
1078 err = get_block(inode, block, bh, 1);
1081 if (buffer_new(bh)) {
1082 if (PageUptodate(page)) {
1083 clear_buffer_new(bh);
1084 set_buffer_uptodate(bh);
1085 mark_buffer_dirty(bh);
1088 if (block_end > to || block_start < from)
1089 zero_user_segments(page, to, block_end,
1094 if (PageUptodate(page)) {
1095 set_buffer_uptodate(bh);
1098 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099 !buffer_unwritten(bh) &&
1100 (block_start < from || block_end > to)) {
1101 ext4_read_bh_lock(bh, 0, false);
1102 wait[nr_wait++] = bh;
1106 * If we issued read requests, let them complete.
1108 for (i = 0; i < nr_wait; i++) {
1109 wait_on_buffer(wait[i]);
1110 if (!buffer_uptodate(wait[i]))
1113 if (unlikely(err)) {
1114 page_zero_new_buffers(page, from, to);
1115 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116 for (i = 0; i < nr_wait; i++) {
1119 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120 bh_offset(wait[i]));
1122 clear_buffer_uptodate(wait[i]);
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133 loff_t pos, unsigned len, unsigned flags,
1134 struct page **pagep, void **fsdata)
1136 struct inode *inode = mapping->host;
1137 int ret, needed_blocks;
1144 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1147 trace_ext4_write_begin(inode, pos, len, flags);
1149 * Reserve one block more for addition to orphan list in case
1150 * we allocate blocks but write fails for some reason
1152 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153 index = pos >> PAGE_SHIFT;
1154 from = pos & (PAGE_SIZE - 1);
1157 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167 * grab_cache_page_write_begin() can take a long time if the
1168 * system is thrashing due to memory pressure, or if the page
1169 * is being written back. So grab it first before we start
1170 * the transaction handle. This also allows us to allocate
1171 * the page (if needed) without using GFP_NOFS.
1174 page = grab_cache_page_write_begin(mapping, index, flags);
1180 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181 if (IS_ERR(handle)) {
1183 return PTR_ERR(handle);
1187 if (page->mapping != mapping) {
1188 /* The page got truncated from under us */
1191 ext4_journal_stop(handle);
1194 /* In case writeback began while the page was unlocked */
1195 wait_for_stable_page(page);
1197 #ifdef CONFIG_FS_ENCRYPTION
1198 if (ext4_should_dioread_nolock(inode))
1199 ret = ext4_block_write_begin(page, pos, len,
1200 ext4_get_block_unwritten);
1202 ret = ext4_block_write_begin(page, pos, len,
1205 if (ext4_should_dioread_nolock(inode))
1206 ret = __block_write_begin(page, pos, len,
1207 ext4_get_block_unwritten);
1209 ret = __block_write_begin(page, pos, len, ext4_get_block);
1211 if (!ret && ext4_should_journal_data(inode)) {
1212 ret = ext4_walk_page_buffers(handle, inode,
1213 page_buffers(page), from, to, NULL,
1214 do_journal_get_write_access);
1218 bool extended = (pos + len > inode->i_size) &&
1219 !ext4_verity_in_progress(inode);
1223 * __block_write_begin may have instantiated a few blocks
1224 * outside i_size. Trim these off again. Don't need
1225 * i_size_read because we hold i_rwsem.
1227 * Add inode to orphan list in case we crash before
1230 if (extended && ext4_can_truncate(inode))
1231 ext4_orphan_add(handle, inode);
1233 ext4_journal_stop(handle);
1235 ext4_truncate_failed_write(inode);
1237 * If truncate failed early the inode might
1238 * still be on the orphan list; we need to
1239 * make sure the inode is removed from the
1240 * orphan list in that case.
1243 ext4_orphan_del(NULL, inode);
1246 if (ret == -ENOSPC &&
1247 ext4_should_retry_alloc(inode->i_sb, &retries))
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct inode *inode,
1258 struct buffer_head *bh)
1261 if (!buffer_mapped(bh) || buffer_freed(bh))
1263 set_buffer_uptodate(bh);
1264 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265 clear_buffer_meta(bh);
1266 clear_buffer_prio(bh);
1271 * We need to pick up the new inode size which generic_commit_write gave us
1272 * `file' can be NULL - eg, when called from page_symlink().
1274 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1275 * buffers are managed internally.
1277 static int ext4_write_end(struct file *file,
1278 struct address_space *mapping,
1279 loff_t pos, unsigned len, unsigned copied,
1280 struct page *page, void *fsdata)
1282 handle_t *handle = ext4_journal_current_handle();
1283 struct inode *inode = mapping->host;
1284 loff_t old_size = inode->i_size;
1286 int i_size_changed = 0;
1287 bool verity = ext4_verity_in_progress(inode);
1289 trace_ext4_write_end(inode, pos, len, copied);
1291 if (ext4_has_inline_data(inode))
1292 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1294 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1296 * it's important to update i_size while still holding page lock:
1297 * page writeout could otherwise come in and zero beyond i_size.
1299 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1300 * blocks are being written past EOF, so skip the i_size update.
1303 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1307 if (old_size < pos && !verity)
1308 pagecache_isize_extended(inode, old_size, pos);
1310 * Don't mark the inode dirty under page lock. First, it unnecessarily
1311 * makes the holding time of page lock longer. Second, it forces lock
1312 * ordering of page lock and transaction start for journaling
1316 ret = ext4_mark_inode_dirty(handle, inode);
1318 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1319 /* if we have allocated more blocks and copied
1320 * less. We will have blocks allocated outside
1321 * inode->i_size. So truncate them
1323 ext4_orphan_add(handle, inode);
1325 ret2 = ext4_journal_stop(handle);
1329 if (pos + len > inode->i_size && !verity) {
1330 ext4_truncate_failed_write(inode);
1332 * If truncate failed early the inode might still be
1333 * on the orphan list; we need to make sure the inode
1334 * is removed from the orphan list in that case.
1337 ext4_orphan_del(NULL, inode);
1340 return ret ? ret : copied;
1344 * This is a private version of page_zero_new_buffers() which doesn't
1345 * set the buffer to be dirty, since in data=journalled mode we need
1346 * to call ext4_handle_dirty_metadata() instead.
1348 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1349 struct inode *inode,
1351 unsigned from, unsigned to)
1353 unsigned int block_start = 0, block_end;
1354 struct buffer_head *head, *bh;
1356 bh = head = page_buffers(page);
1358 block_end = block_start + bh->b_size;
1359 if (buffer_new(bh)) {
1360 if (block_end > from && block_start < to) {
1361 if (!PageUptodate(page)) {
1362 unsigned start, size;
1364 start = max(from, block_start);
1365 size = min(to, block_end) - start;
1367 zero_user(page, start, size);
1368 write_end_fn(handle, inode, bh);
1370 clear_buffer_new(bh);
1373 block_start = block_end;
1374 bh = bh->b_this_page;
1375 } while (bh != head);
1378 static int ext4_journalled_write_end(struct file *file,
1379 struct address_space *mapping,
1380 loff_t pos, unsigned len, unsigned copied,
1381 struct page *page, void *fsdata)
1383 handle_t *handle = ext4_journal_current_handle();
1384 struct inode *inode = mapping->host;
1385 loff_t old_size = inode->i_size;
1389 int size_changed = 0;
1390 bool verity = ext4_verity_in_progress(inode);
1392 trace_ext4_journalled_write_end(inode, pos, len, copied);
1393 from = pos & (PAGE_SIZE - 1);
1396 BUG_ON(!ext4_handle_valid(handle));
1398 if (ext4_has_inline_data(inode))
1399 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1401 if (unlikely(copied < len) && !PageUptodate(page)) {
1403 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1405 if (unlikely(copied < len))
1406 ext4_journalled_zero_new_buffers(handle, inode, page,
1408 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1409 from, from + copied, &partial,
1412 SetPageUptodate(page);
1415 size_changed = ext4_update_inode_size(inode, pos + copied);
1416 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1417 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1421 if (old_size < pos && !verity)
1422 pagecache_isize_extended(inode, old_size, pos);
1425 ret2 = ext4_mark_inode_dirty(handle, inode);
1430 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1431 /* if we have allocated more blocks and copied
1432 * less. We will have blocks allocated outside
1433 * inode->i_size. So truncate them
1435 ext4_orphan_add(handle, inode);
1437 ret2 = ext4_journal_stop(handle);
1440 if (pos + len > inode->i_size && !verity) {
1441 ext4_truncate_failed_write(inode);
1443 * If truncate failed early the inode might still be
1444 * on the orphan list; we need to make sure the inode
1445 * is removed from the orphan list in that case.
1448 ext4_orphan_del(NULL, inode);
1451 return ret ? ret : copied;
1455 * Reserve space for a single cluster
1457 static int ext4_da_reserve_space(struct inode *inode)
1459 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1460 struct ext4_inode_info *ei = EXT4_I(inode);
1464 * We will charge metadata quota at writeout time; this saves
1465 * us from metadata over-estimation, though we may go over by
1466 * a small amount in the end. Here we just reserve for data.
1468 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1472 spin_lock(&ei->i_block_reservation_lock);
1473 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1474 spin_unlock(&ei->i_block_reservation_lock);
1475 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1478 ei->i_reserved_data_blocks++;
1479 trace_ext4_da_reserve_space(inode);
1480 spin_unlock(&ei->i_block_reservation_lock);
1482 return 0; /* success */
1485 void ext4_da_release_space(struct inode *inode, int to_free)
1487 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488 struct ext4_inode_info *ei = EXT4_I(inode);
1491 return; /* Nothing to release, exit */
1493 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1495 trace_ext4_da_release_space(inode, to_free);
1496 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1498 * if there aren't enough reserved blocks, then the
1499 * counter is messed up somewhere. Since this
1500 * function is called from invalidate page, it's
1501 * harmless to return without any action.
1503 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1504 "ino %lu, to_free %d with only %d reserved "
1505 "data blocks", inode->i_ino, to_free,
1506 ei->i_reserved_data_blocks);
1508 to_free = ei->i_reserved_data_blocks;
1510 ei->i_reserved_data_blocks -= to_free;
1512 /* update fs dirty data blocks counter */
1513 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1515 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1517 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1521 * Delayed allocation stuff
1524 struct mpage_da_data {
1525 struct inode *inode;
1526 struct writeback_control *wbc;
1528 pgoff_t first_page; /* The first page to write */
1529 pgoff_t next_page; /* Current page to examine */
1530 pgoff_t last_page; /* Last page to examine */
1532 * Extent to map - this can be after first_page because that can be
1533 * fully mapped. We somewhat abuse m_flags to store whether the extent
1534 * is delalloc or unwritten.
1536 struct ext4_map_blocks map;
1537 struct ext4_io_submit io_submit; /* IO submission data */
1538 unsigned int do_map:1;
1539 unsigned int scanned_until_end:1;
1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1547 struct pagevec pvec;
1548 struct inode *inode = mpd->inode;
1549 struct address_space *mapping = inode->i_mapping;
1551 /* This is necessary when next_page == 0. */
1552 if (mpd->first_page >= mpd->next_page)
1555 mpd->scanned_until_end = 0;
1556 index = mpd->first_page;
1557 end = mpd->next_page - 1;
1559 ext4_lblk_t start, last;
1560 start = index << (PAGE_SHIFT - inode->i_blkbits);
1561 last = end << (PAGE_SHIFT - inode->i_blkbits);
1562 ext4_es_remove_extent(inode, start, last - start + 1);
1565 pagevec_init(&pvec);
1566 while (index <= end) {
1567 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1570 for (i = 0; i < nr_pages; i++) {
1571 struct page *page = pvec.pages[i];
1572 struct folio *folio = page_folio(page);
1574 BUG_ON(!folio_test_locked(folio));
1575 BUG_ON(folio_test_writeback(folio));
1577 if (folio_mapped(folio))
1578 folio_clear_dirty_for_io(folio);
1579 block_invalidate_folio(folio, 0,
1581 folio_clear_uptodate(folio);
1583 folio_unlock(folio);
1585 pagevec_release(&pvec);
1589 static void ext4_print_free_blocks(struct inode *inode)
1591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1592 struct super_block *sb = inode->i_sb;
1593 struct ext4_inode_info *ei = EXT4_I(inode);
1595 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1596 EXT4_C2B(EXT4_SB(inode->i_sb),
1597 ext4_count_free_clusters(sb)));
1598 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1599 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1600 (long long) EXT4_C2B(EXT4_SB(sb),
1601 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1602 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1603 (long long) EXT4_C2B(EXT4_SB(sb),
1604 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1605 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1606 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1607 ei->i_reserved_data_blocks);
1611 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1612 struct buffer_head *bh)
1614 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1618 * ext4_insert_delayed_block - adds a delayed block to the extents status
1619 * tree, incrementing the reserved cluster/block
1620 * count or making a pending reservation
1623 * @inode - file containing the newly added block
1624 * @lblk - logical block to be added
1626 * Returns 0 on success, negative error code on failure.
1628 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1630 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1632 bool allocated = false;
1633 bool reserved = false;
1636 * If the cluster containing lblk is shared with a delayed,
1637 * written, or unwritten extent in a bigalloc file system, it's
1638 * already been accounted for and does not need to be reserved.
1639 * A pending reservation must be made for the cluster if it's
1640 * shared with a written or unwritten extent and doesn't already
1641 * have one. Written and unwritten extents can be purged from the
1642 * extents status tree if the system is under memory pressure, so
1643 * it's necessary to examine the extent tree if a search of the
1644 * extents status tree doesn't get a match.
1646 if (sbi->s_cluster_ratio == 1) {
1647 ret = ext4_da_reserve_space(inode);
1648 if (ret != 0) /* ENOSPC */
1651 } else { /* bigalloc */
1652 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1653 if (!ext4_es_scan_clu(inode,
1654 &ext4_es_is_mapped, lblk)) {
1655 ret = ext4_clu_mapped(inode,
1656 EXT4_B2C(sbi, lblk));
1660 ret = ext4_da_reserve_space(inode);
1661 if (ret != 0) /* ENOSPC */
1673 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1674 if (ret && reserved)
1675 ext4_da_release_space(inode, 1);
1682 * This function is grabs code from the very beginning of
1683 * ext4_map_blocks, but assumes that the caller is from delayed write
1684 * time. This function looks up the requested blocks and sets the
1685 * buffer delay bit under the protection of i_data_sem.
1687 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1688 struct ext4_map_blocks *map,
1689 struct buffer_head *bh)
1691 struct extent_status es;
1693 sector_t invalid_block = ~((sector_t) 0xffff);
1694 #ifdef ES_AGGRESSIVE_TEST
1695 struct ext4_map_blocks orig_map;
1697 memcpy(&orig_map, map, sizeof(*map));
1700 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1704 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1705 (unsigned long) map->m_lblk);
1707 /* Lookup extent status tree firstly */
1708 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1709 if (ext4_es_is_hole(&es)) {
1711 down_read(&EXT4_I(inode)->i_data_sem);
1716 * Delayed extent could be allocated by fallocate.
1717 * So we need to check it.
1719 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1720 map_bh(bh, inode->i_sb, invalid_block);
1722 set_buffer_delay(bh);
1726 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1727 retval = es.es_len - (iblock - es.es_lblk);
1728 if (retval > map->m_len)
1729 retval = map->m_len;
1730 map->m_len = retval;
1731 if (ext4_es_is_written(&es))
1732 map->m_flags |= EXT4_MAP_MAPPED;
1733 else if (ext4_es_is_unwritten(&es))
1734 map->m_flags |= EXT4_MAP_UNWRITTEN;
1738 #ifdef ES_AGGRESSIVE_TEST
1739 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1745 * Try to see if we can get the block without requesting a new
1746 * file system block.
1748 down_read(&EXT4_I(inode)->i_data_sem);
1749 if (ext4_has_inline_data(inode))
1751 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1752 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1754 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1761 * XXX: __block_prepare_write() unmaps passed block,
1765 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1771 map_bh(bh, inode->i_sb, invalid_block);
1773 set_buffer_delay(bh);
1774 } else if (retval > 0) {
1776 unsigned int status;
1778 if (unlikely(retval != map->m_len)) {
1779 ext4_warning(inode->i_sb,
1780 "ES len assertion failed for inode "
1781 "%lu: retval %d != map->m_len %d",
1782 inode->i_ino, retval, map->m_len);
1786 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1787 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1788 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1789 map->m_pblk, status);
1795 up_read((&EXT4_I(inode)->i_data_sem));
1801 * This is a special get_block_t callback which is used by
1802 * ext4_da_write_begin(). It will either return mapped block or
1803 * reserve space for a single block.
1805 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1806 * We also have b_blocknr = -1 and b_bdev initialized properly
1808 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1809 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1810 * initialized properly.
1812 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1813 struct buffer_head *bh, int create)
1815 struct ext4_map_blocks map;
1818 BUG_ON(create == 0);
1819 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1821 map.m_lblk = iblock;
1825 * first, we need to know whether the block is allocated already
1826 * preallocated blocks are unmapped but should treated
1827 * the same as allocated blocks.
1829 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1833 map_bh(bh, inode->i_sb, map.m_pblk);
1834 ext4_update_bh_state(bh, map.m_flags);
1836 if (buffer_unwritten(bh)) {
1837 /* A delayed write to unwritten bh should be marked
1838 * new and mapped. Mapped ensures that we don't do
1839 * get_block multiple times when we write to the same
1840 * offset and new ensures that we do proper zero out
1841 * for partial write.
1844 set_buffer_mapped(bh);
1849 static int __ext4_journalled_writepage(struct page *page,
1852 struct address_space *mapping = page->mapping;
1853 struct inode *inode = mapping->host;
1854 handle_t *handle = NULL;
1855 int ret = 0, err = 0;
1856 int inline_data = ext4_has_inline_data(inode);
1857 struct buffer_head *inode_bh = NULL;
1860 ClearPageChecked(page);
1863 BUG_ON(page->index != 0);
1864 BUG_ON(len > ext4_get_max_inline_size(inode));
1865 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1866 if (inode_bh == NULL)
1870 * We need to release the page lock before we start the
1871 * journal, so grab a reference so the page won't disappear
1872 * out from under us.
1877 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1878 ext4_writepage_trans_blocks(inode));
1879 if (IS_ERR(handle)) {
1880 ret = PTR_ERR(handle);
1882 goto out_no_pagelock;
1884 BUG_ON(!ext4_handle_valid(handle));
1888 size = i_size_read(inode);
1889 if (page->mapping != mapping || page_offset(page) > size) {
1890 /* The page got truncated from under us */
1891 ext4_journal_stop(handle);
1897 ret = ext4_mark_inode_dirty(handle, inode);
1899 struct buffer_head *page_bufs = page_buffers(page);
1901 if (page->index == size >> PAGE_SHIFT)
1902 len = size & ~PAGE_MASK;
1906 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1907 NULL, do_journal_get_write_access);
1909 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1910 NULL, write_end_fn);
1914 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1917 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1918 err = ext4_journal_stop(handle);
1922 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1931 * Note that we don't need to start a transaction unless we're journaling data
1932 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1933 * need to file the inode to the transaction's list in ordered mode because if
1934 * we are writing back data added by write(), the inode is already there and if
1935 * we are writing back data modified via mmap(), no one guarantees in which
1936 * transaction the data will hit the disk. In case we are journaling data, we
1937 * cannot start transaction directly because transaction start ranks above page
1938 * lock so we have to do some magic.
1940 * This function can get called via...
1941 * - ext4_writepages after taking page lock (have journal handle)
1942 * - journal_submit_inode_data_buffers (no journal handle)
1943 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1944 * - grab_page_cache when doing write_begin (have journal handle)
1946 * We don't do any block allocation in this function. If we have page with
1947 * multiple blocks we need to write those buffer_heads that are mapped. This
1948 * is important for mmaped based write. So if we do with blocksize 1K
1949 * truncate(f, 1024);
1950 * a = mmap(f, 0, 4096);
1952 * truncate(f, 4096);
1953 * we have in the page first buffer_head mapped via page_mkwrite call back
1954 * but other buffer_heads would be unmapped but dirty (dirty done via the
1955 * do_wp_page). So writepage should write the first block. If we modify
1956 * the mmap area beyond 1024 we will again get a page_fault and the
1957 * page_mkwrite callback will do the block allocation and mark the
1958 * buffer_heads mapped.
1960 * We redirty the page if we have any buffer_heads that is either delay or
1961 * unwritten in the page.
1963 * We can get recursively called as show below.
1965 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1968 * But since we don't do any block allocation we should not deadlock.
1969 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1971 static int ext4_writepage(struct page *page,
1972 struct writeback_control *wbc)
1974 struct folio *folio = page_folio(page);
1978 struct buffer_head *page_bufs = NULL;
1979 struct inode *inode = page->mapping->host;
1980 struct ext4_io_submit io_submit;
1981 bool keep_towrite = false;
1983 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1984 folio_invalidate(folio, 0, folio_size(folio));
1985 folio_unlock(folio);
1989 trace_ext4_writepage(page);
1990 size = i_size_read(inode);
1991 if (page->index == size >> PAGE_SHIFT &&
1992 !ext4_verity_in_progress(inode))
1993 len = size & ~PAGE_MASK;
1997 page_bufs = page_buffers(page);
1999 * We cannot do block allocation or other extent handling in this
2000 * function. If there are buffers needing that, we have to redirty
2001 * the page. But we may reach here when we do a journal commit via
2002 * journal_submit_inode_data_buffers() and in that case we must write
2003 * allocated buffers to achieve data=ordered mode guarantees.
2005 * Also, if there is only one buffer per page (the fs block
2006 * size == the page size), if one buffer needs block
2007 * allocation or needs to modify the extent tree to clear the
2008 * unwritten flag, we know that the page can't be written at
2009 * all, so we might as well refuse the write immediately.
2010 * Unfortunately if the block size != page size, we can't as
2011 * easily detect this case using ext4_walk_page_buffers(), but
2012 * for the extremely common case, this is an optimization that
2013 * skips a useless round trip through ext4_bio_write_page().
2015 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2016 ext4_bh_delay_or_unwritten)) {
2017 redirty_page_for_writepage(wbc, page);
2018 if ((current->flags & PF_MEMALLOC) ||
2019 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2021 * For memory cleaning there's no point in writing only
2022 * some buffers. So just bail out. Warn if we came here
2023 * from direct reclaim.
2025 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2030 keep_towrite = true;
2033 if (PageChecked(page) && ext4_should_journal_data(inode))
2035 * It's mmapped pagecache. Add buffers and journal it. There
2036 * doesn't seem much point in redirtying the page here.
2038 return __ext4_journalled_writepage(page, len);
2040 ext4_io_submit_init(&io_submit, wbc);
2041 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2042 if (!io_submit.io_end) {
2043 redirty_page_for_writepage(wbc, page);
2047 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2048 ext4_io_submit(&io_submit);
2049 /* Drop io_end reference we got from init */
2050 ext4_put_io_end_defer(io_submit.io_end);
2054 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2060 BUG_ON(page->index != mpd->first_page);
2061 clear_page_dirty_for_io(page);
2063 * We have to be very careful here! Nothing protects writeback path
2064 * against i_size changes and the page can be writeably mapped into
2065 * page tables. So an application can be growing i_size and writing
2066 * data through mmap while writeback runs. clear_page_dirty_for_io()
2067 * write-protects our page in page tables and the page cannot get
2068 * written to again until we release page lock. So only after
2069 * clear_page_dirty_for_io() we are safe to sample i_size for
2070 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2071 * on the barrier provided by TestClearPageDirty in
2072 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2073 * after page tables are updated.
2075 size = i_size_read(mpd->inode);
2076 if (page->index == size >> PAGE_SHIFT &&
2077 !ext4_verity_in_progress(mpd->inode))
2078 len = size & ~PAGE_MASK;
2081 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2083 mpd->wbc->nr_to_write--;
2089 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2092 * mballoc gives us at most this number of blocks...
2093 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2094 * The rest of mballoc seems to handle chunks up to full group size.
2096 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2099 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2101 * @mpd - extent of blocks
2102 * @lblk - logical number of the block in the file
2103 * @bh - buffer head we want to add to the extent
2105 * The function is used to collect contig. blocks in the same state. If the
2106 * buffer doesn't require mapping for writeback and we haven't started the
2107 * extent of buffers to map yet, the function returns 'true' immediately - the
2108 * caller can write the buffer right away. Otherwise the function returns true
2109 * if the block has been added to the extent, false if the block couldn't be
2112 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2113 struct buffer_head *bh)
2115 struct ext4_map_blocks *map = &mpd->map;
2117 /* Buffer that doesn't need mapping for writeback? */
2118 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2119 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2120 /* So far no extent to map => we write the buffer right away */
2121 if (map->m_len == 0)
2126 /* First block in the extent? */
2127 if (map->m_len == 0) {
2128 /* We cannot map unless handle is started... */
2133 map->m_flags = bh->b_state & BH_FLAGS;
2137 /* Don't go larger than mballoc is willing to allocate */
2138 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2141 /* Can we merge the block to our big extent? */
2142 if (lblk == map->m_lblk + map->m_len &&
2143 (bh->b_state & BH_FLAGS) == map->m_flags) {
2151 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2153 * @mpd - extent of blocks for mapping
2154 * @head - the first buffer in the page
2155 * @bh - buffer we should start processing from
2156 * @lblk - logical number of the block in the file corresponding to @bh
2158 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2159 * the page for IO if all buffers in this page were mapped and there's no
2160 * accumulated extent of buffers to map or add buffers in the page to the
2161 * extent of buffers to map. The function returns 1 if the caller can continue
2162 * by processing the next page, 0 if it should stop adding buffers to the
2163 * extent to map because we cannot extend it anymore. It can also return value
2164 * < 0 in case of error during IO submission.
2166 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2167 struct buffer_head *head,
2168 struct buffer_head *bh,
2171 struct inode *inode = mpd->inode;
2173 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2174 >> inode->i_blkbits;
2176 if (ext4_verity_in_progress(inode))
2177 blocks = EXT_MAX_BLOCKS;
2180 BUG_ON(buffer_locked(bh));
2182 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2183 /* Found extent to map? */
2186 /* Buffer needs mapping and handle is not started? */
2189 /* Everything mapped so far and we hit EOF */
2192 } while (lblk++, (bh = bh->b_this_page) != head);
2193 /* So far everything mapped? Submit the page for IO. */
2194 if (mpd->map.m_len == 0) {
2195 err = mpage_submit_page(mpd, head->b_page);
2199 if (lblk >= blocks) {
2200 mpd->scanned_until_end = 1;
2207 * mpage_process_page - update page buffers corresponding to changed extent and
2208 * may submit fully mapped page for IO
2210 * @mpd - description of extent to map, on return next extent to map
2211 * @m_lblk - logical block mapping.
2212 * @m_pblk - corresponding physical mapping.
2213 * @map_bh - determines on return whether this page requires any further
2215 * Scan given page buffers corresponding to changed extent and update buffer
2216 * state according to new extent state.
2217 * We map delalloc buffers to their physical location, clear unwritten bits.
2218 * If the given page is not fully mapped, we update @map to the next extent in
2219 * the given page that needs mapping & return @map_bh as true.
2221 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2222 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2225 struct buffer_head *head, *bh;
2226 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2227 ext4_lblk_t lblk = *m_lblk;
2228 ext4_fsblk_t pblock = *m_pblk;
2230 int blkbits = mpd->inode->i_blkbits;
2231 ssize_t io_end_size = 0;
2232 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2234 bh = head = page_buffers(page);
2236 if (lblk < mpd->map.m_lblk)
2238 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2240 * Buffer after end of mapped extent.
2241 * Find next buffer in the page to map.
2244 mpd->map.m_flags = 0;
2245 io_end_vec->size += io_end_size;
2247 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2250 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2251 io_end_vec = ext4_alloc_io_end_vec(io_end);
2252 if (IS_ERR(io_end_vec)) {
2253 err = PTR_ERR(io_end_vec);
2256 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2261 if (buffer_delay(bh)) {
2262 clear_buffer_delay(bh);
2263 bh->b_blocknr = pblock++;
2265 clear_buffer_unwritten(bh);
2266 io_end_size += (1 << blkbits);
2267 } while (lblk++, (bh = bh->b_this_page) != head);
2269 io_end_vec->size += io_end_size;
2278 * mpage_map_buffers - update buffers corresponding to changed extent and
2279 * submit fully mapped pages for IO
2281 * @mpd - description of extent to map, on return next extent to map
2283 * Scan buffers corresponding to changed extent (we expect corresponding pages
2284 * to be already locked) and update buffer state according to new extent state.
2285 * We map delalloc buffers to their physical location, clear unwritten bits,
2286 * and mark buffers as uninit when we perform writes to unwritten extents
2287 * and do extent conversion after IO is finished. If the last page is not fully
2288 * mapped, we update @map to the next extent in the last page that needs
2289 * mapping. Otherwise we submit the page for IO.
2291 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2293 struct pagevec pvec;
2295 struct inode *inode = mpd->inode;
2296 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2299 ext4_fsblk_t pblock;
2301 bool map_bh = false;
2303 start = mpd->map.m_lblk >> bpp_bits;
2304 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2305 lblk = start << bpp_bits;
2306 pblock = mpd->map.m_pblk;
2308 pagevec_init(&pvec);
2309 while (start <= end) {
2310 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2314 for (i = 0; i < nr_pages; i++) {
2315 struct page *page = pvec.pages[i];
2317 err = mpage_process_page(mpd, page, &lblk, &pblock,
2320 * If map_bh is true, means page may require further bh
2321 * mapping, or maybe the page was submitted for IO.
2322 * So we return to call further extent mapping.
2324 if (err < 0 || map_bh)
2326 /* Page fully mapped - let IO run! */
2327 err = mpage_submit_page(mpd, page);
2331 pagevec_release(&pvec);
2333 /* Extent fully mapped and matches with page boundary. We are done. */
2335 mpd->map.m_flags = 0;
2338 pagevec_release(&pvec);
2342 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2344 struct inode *inode = mpd->inode;
2345 struct ext4_map_blocks *map = &mpd->map;
2346 int get_blocks_flags;
2347 int err, dioread_nolock;
2349 trace_ext4_da_write_pages_extent(inode, map);
2351 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2352 * to convert an unwritten extent to be initialized (in the case
2353 * where we have written into one or more preallocated blocks). It is
2354 * possible that we're going to need more metadata blocks than
2355 * previously reserved. However we must not fail because we're in
2356 * writeback and there is nothing we can do about it so it might result
2357 * in data loss. So use reserved blocks to allocate metadata if
2360 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2361 * the blocks in question are delalloc blocks. This indicates
2362 * that the blocks and quotas has already been checked when
2363 * the data was copied into the page cache.
2365 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2366 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2367 EXT4_GET_BLOCKS_IO_SUBMIT;
2368 dioread_nolock = ext4_should_dioread_nolock(inode);
2370 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2371 if (map->m_flags & BIT(BH_Delay))
2372 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2374 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2377 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2378 if (!mpd->io_submit.io_end->handle &&
2379 ext4_handle_valid(handle)) {
2380 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2381 handle->h_rsv_handle = NULL;
2383 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2386 BUG_ON(map->m_len == 0);
2391 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2392 * mpd->len and submit pages underlying it for IO
2394 * @handle - handle for journal operations
2395 * @mpd - extent to map
2396 * @give_up_on_write - we set this to true iff there is a fatal error and there
2397 * is no hope of writing the data. The caller should discard
2398 * dirty pages to avoid infinite loops.
2400 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2401 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2402 * them to initialized or split the described range from larger unwritten
2403 * extent. Note that we need not map all the described range since allocation
2404 * can return less blocks or the range is covered by more unwritten extents. We
2405 * cannot map more because we are limited by reserved transaction credits. On
2406 * the other hand we always make sure that the last touched page is fully
2407 * mapped so that it can be written out (and thus forward progress is
2408 * guaranteed). After mapping we submit all mapped pages for IO.
2410 static int mpage_map_and_submit_extent(handle_t *handle,
2411 struct mpage_da_data *mpd,
2412 bool *give_up_on_write)
2414 struct inode *inode = mpd->inode;
2415 struct ext4_map_blocks *map = &mpd->map;
2419 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2420 struct ext4_io_end_vec *io_end_vec;
2422 io_end_vec = ext4_alloc_io_end_vec(io_end);
2423 if (IS_ERR(io_end_vec))
2424 return PTR_ERR(io_end_vec);
2425 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2427 err = mpage_map_one_extent(handle, mpd);
2429 struct super_block *sb = inode->i_sb;
2431 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2432 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2433 goto invalidate_dirty_pages;
2435 * Let the uper layers retry transient errors.
2436 * In the case of ENOSPC, if ext4_count_free_blocks()
2437 * is non-zero, a commit should free up blocks.
2439 if ((err == -ENOMEM) ||
2440 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2442 goto update_disksize;
2445 ext4_msg(sb, KERN_CRIT,
2446 "Delayed block allocation failed for "
2447 "inode %lu at logical offset %llu with"
2448 " max blocks %u with error %d",
2450 (unsigned long long)map->m_lblk,
2451 (unsigned)map->m_len, -err);
2452 ext4_msg(sb, KERN_CRIT,
2453 "This should not happen!! Data will "
2456 ext4_print_free_blocks(inode);
2457 invalidate_dirty_pages:
2458 *give_up_on_write = true;
2463 * Update buffer state, submit mapped pages, and get us new
2466 err = mpage_map_and_submit_buffers(mpd);
2468 goto update_disksize;
2469 } while (map->m_len);
2473 * Update on-disk size after IO is submitted. Races with
2474 * truncate are avoided by checking i_size under i_data_sem.
2476 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2477 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2481 down_write(&EXT4_I(inode)->i_data_sem);
2482 i_size = i_size_read(inode);
2483 if (disksize > i_size)
2485 if (disksize > EXT4_I(inode)->i_disksize)
2486 EXT4_I(inode)->i_disksize = disksize;
2487 up_write(&EXT4_I(inode)->i_data_sem);
2488 err2 = ext4_mark_inode_dirty(handle, inode);
2490 ext4_error_err(inode->i_sb, -err2,
2491 "Failed to mark inode %lu dirty",
2501 * Calculate the total number of credits to reserve for one writepages
2502 * iteration. This is called from ext4_writepages(). We map an extent of
2503 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2504 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2505 * bpp - 1 blocks in bpp different extents.
2507 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2509 int bpp = ext4_journal_blocks_per_page(inode);
2511 return ext4_meta_trans_blocks(inode,
2512 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2516 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2517 * and underlying extent to map
2519 * @mpd - where to look for pages
2521 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2522 * IO immediately. When we find a page which isn't mapped we start accumulating
2523 * extent of buffers underlying these pages that needs mapping (formed by
2524 * either delayed or unwritten buffers). We also lock the pages containing
2525 * these buffers. The extent found is returned in @mpd structure (starting at
2526 * mpd->lblk with length mpd->len blocks).
2528 * Note that this function can attach bios to one io_end structure which are
2529 * neither logically nor physically contiguous. Although it may seem as an
2530 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2531 * case as we need to track IO to all buffers underlying a page in one io_end.
2533 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2535 struct address_space *mapping = mpd->inode->i_mapping;
2536 struct pagevec pvec;
2537 unsigned int nr_pages;
2538 long left = mpd->wbc->nr_to_write;
2539 pgoff_t index = mpd->first_page;
2540 pgoff_t end = mpd->last_page;
2543 int blkbits = mpd->inode->i_blkbits;
2545 struct buffer_head *head;
2547 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2548 tag = PAGECACHE_TAG_TOWRITE;
2550 tag = PAGECACHE_TAG_DIRTY;
2552 pagevec_init(&pvec);
2554 mpd->next_page = index;
2555 while (index <= end) {
2556 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2561 for (i = 0; i < nr_pages; i++) {
2562 struct page *page = pvec.pages[i];
2565 * Accumulated enough dirty pages? This doesn't apply
2566 * to WB_SYNC_ALL mode. For integrity sync we have to
2567 * keep going because someone may be concurrently
2568 * dirtying pages, and we might have synced a lot of
2569 * newly appeared dirty pages, but have not synced all
2570 * of the old dirty pages.
2572 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2575 /* If we can't merge this page, we are done. */
2576 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2581 * If the page is no longer dirty, or its mapping no
2582 * longer corresponds to inode we are writing (which
2583 * means it has been truncated or invalidated), or the
2584 * page is already under writeback and we are not doing
2585 * a data integrity writeback, skip the page
2587 if (!PageDirty(page) ||
2588 (PageWriteback(page) &&
2589 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2590 unlikely(page->mapping != mapping)) {
2595 wait_on_page_writeback(page);
2596 BUG_ON(PageWriteback(page));
2598 if (mpd->map.m_len == 0)
2599 mpd->first_page = page->index;
2600 mpd->next_page = page->index + 1;
2601 /* Add all dirty buffers to mpd */
2602 lblk = ((ext4_lblk_t)page->index) <<
2603 (PAGE_SHIFT - blkbits);
2604 head = page_buffers(page);
2605 err = mpage_process_page_bufs(mpd, head, head, lblk);
2611 pagevec_release(&pvec);
2614 mpd->scanned_until_end = 1;
2617 pagevec_release(&pvec);
2621 static int ext4_writepages(struct address_space *mapping,
2622 struct writeback_control *wbc)
2624 pgoff_t writeback_index = 0;
2625 long nr_to_write = wbc->nr_to_write;
2626 int range_whole = 0;
2628 handle_t *handle = NULL;
2629 struct mpage_da_data mpd;
2630 struct inode *inode = mapping->host;
2631 int needed_blocks, rsv_blocks = 0, ret = 0;
2632 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2633 struct blk_plug plug;
2634 bool give_up_on_write = false;
2636 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2639 percpu_down_read(&sbi->s_writepages_rwsem);
2640 trace_ext4_writepages(inode, wbc);
2643 * No pages to write? This is mainly a kludge to avoid starting
2644 * a transaction for special inodes like journal inode on last iput()
2645 * because that could violate lock ordering on umount
2647 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2648 goto out_writepages;
2650 if (ext4_should_journal_data(inode)) {
2651 ret = generic_writepages(mapping, wbc);
2652 goto out_writepages;
2656 * If the filesystem has aborted, it is read-only, so return
2657 * right away instead of dumping stack traces later on that
2658 * will obscure the real source of the problem. We test
2659 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2660 * the latter could be true if the filesystem is mounted
2661 * read-only, and in that case, ext4_writepages should
2662 * *never* be called, so if that ever happens, we would want
2665 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2666 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2668 goto out_writepages;
2672 * If we have inline data and arrive here, it means that
2673 * we will soon create the block for the 1st page, so
2674 * we'd better clear the inline data here.
2676 if (ext4_has_inline_data(inode)) {
2677 /* Just inode will be modified... */
2678 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2679 if (IS_ERR(handle)) {
2680 ret = PTR_ERR(handle);
2681 goto out_writepages;
2683 BUG_ON(ext4_test_inode_state(inode,
2684 EXT4_STATE_MAY_INLINE_DATA));
2685 ext4_destroy_inline_data(handle, inode);
2686 ext4_journal_stop(handle);
2689 if (ext4_should_dioread_nolock(inode)) {
2691 * We may need to convert up to one extent per block in
2692 * the page and we may dirty the inode.
2694 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2695 PAGE_SIZE >> inode->i_blkbits);
2698 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2701 if (wbc->range_cyclic) {
2702 writeback_index = mapping->writeback_index;
2703 if (writeback_index)
2705 mpd.first_page = writeback_index;
2708 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2709 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2714 ext4_io_submit_init(&mpd.io_submit, wbc);
2716 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2717 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2718 blk_start_plug(&plug);
2721 * First writeback pages that don't need mapping - we can avoid
2722 * starting a transaction unnecessarily and also avoid being blocked
2723 * in the block layer on device congestion while having transaction
2727 mpd.scanned_until_end = 0;
2728 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2729 if (!mpd.io_submit.io_end) {
2733 ret = mpage_prepare_extent_to_map(&mpd);
2734 /* Unlock pages we didn't use */
2735 mpage_release_unused_pages(&mpd, false);
2736 /* Submit prepared bio */
2737 ext4_io_submit(&mpd.io_submit);
2738 ext4_put_io_end_defer(mpd.io_submit.io_end);
2739 mpd.io_submit.io_end = NULL;
2743 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2744 /* For each extent of pages we use new io_end */
2745 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2746 if (!mpd.io_submit.io_end) {
2752 * We have two constraints: We find one extent to map and we
2753 * must always write out whole page (makes a difference when
2754 * blocksize < pagesize) so that we don't block on IO when we
2755 * try to write out the rest of the page. Journalled mode is
2756 * not supported by delalloc.
2758 BUG_ON(ext4_should_journal_data(inode));
2759 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2761 /* start a new transaction */
2762 handle = ext4_journal_start_with_reserve(inode,
2763 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2764 if (IS_ERR(handle)) {
2765 ret = PTR_ERR(handle);
2766 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2767 "%ld pages, ino %lu; err %d", __func__,
2768 wbc->nr_to_write, inode->i_ino, ret);
2769 /* Release allocated io_end */
2770 ext4_put_io_end(mpd.io_submit.io_end);
2771 mpd.io_submit.io_end = NULL;
2776 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2777 ret = mpage_prepare_extent_to_map(&mpd);
2778 if (!ret && mpd.map.m_len)
2779 ret = mpage_map_and_submit_extent(handle, &mpd,
2782 * Caution: If the handle is synchronous,
2783 * ext4_journal_stop() can wait for transaction commit
2784 * to finish which may depend on writeback of pages to
2785 * complete or on page lock to be released. In that
2786 * case, we have to wait until after we have
2787 * submitted all the IO, released page locks we hold,
2788 * and dropped io_end reference (for extent conversion
2789 * to be able to complete) before stopping the handle.
2791 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2792 ext4_journal_stop(handle);
2796 /* Unlock pages we didn't use */
2797 mpage_release_unused_pages(&mpd, give_up_on_write);
2798 /* Submit prepared bio */
2799 ext4_io_submit(&mpd.io_submit);
2802 * Drop our io_end reference we got from init. We have
2803 * to be careful and use deferred io_end finishing if
2804 * we are still holding the transaction as we can
2805 * release the last reference to io_end which may end
2806 * up doing unwritten extent conversion.
2809 ext4_put_io_end_defer(mpd.io_submit.io_end);
2810 ext4_journal_stop(handle);
2812 ext4_put_io_end(mpd.io_submit.io_end);
2813 mpd.io_submit.io_end = NULL;
2815 if (ret == -ENOSPC && sbi->s_journal) {
2817 * Commit the transaction which would
2818 * free blocks released in the transaction
2821 jbd2_journal_force_commit_nested(sbi->s_journal);
2825 /* Fatal error - ENOMEM, EIO... */
2830 blk_finish_plug(&plug);
2831 if (!ret && !cycled && wbc->nr_to_write > 0) {
2833 mpd.last_page = writeback_index - 1;
2839 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2841 * Set the writeback_index so that range_cyclic
2842 * mode will write it back later
2844 mapping->writeback_index = mpd.first_page;
2847 trace_ext4_writepages_result(inode, wbc, ret,
2848 nr_to_write - wbc->nr_to_write);
2849 percpu_up_read(&sbi->s_writepages_rwsem);
2853 static int ext4_dax_writepages(struct address_space *mapping,
2854 struct writeback_control *wbc)
2857 long nr_to_write = wbc->nr_to_write;
2858 struct inode *inode = mapping->host;
2859 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2861 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2864 percpu_down_read(&sbi->s_writepages_rwsem);
2865 trace_ext4_writepages(inode, wbc);
2867 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2868 trace_ext4_writepages_result(inode, wbc, ret,
2869 nr_to_write - wbc->nr_to_write);
2870 percpu_up_read(&sbi->s_writepages_rwsem);
2874 static int ext4_nonda_switch(struct super_block *sb)
2876 s64 free_clusters, dirty_clusters;
2877 struct ext4_sb_info *sbi = EXT4_SB(sb);
2880 * switch to non delalloc mode if we are running low
2881 * on free block. The free block accounting via percpu
2882 * counters can get slightly wrong with percpu_counter_batch getting
2883 * accumulated on each CPU without updating global counters
2884 * Delalloc need an accurate free block accounting. So switch
2885 * to non delalloc when we are near to error range.
2888 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892 * Start pushing delalloc when 1/2 of free blocks are dirty.
2894 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2895 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897 if (2 * free_clusters < 3 * dirty_clusters ||
2898 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900 * free block count is less than 150% of dirty blocks
2901 * or free blocks is less than watermark
2908 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2909 loff_t pos, unsigned len, unsigned flags,
2910 struct page **pagep, void **fsdata)
2912 int ret, retries = 0;
2915 struct inode *inode = mapping->host;
2917 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2920 index = pos >> PAGE_SHIFT;
2922 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2923 ext4_verity_in_progress(inode)) {
2924 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2925 return ext4_write_begin(file, mapping, pos,
2926 len, flags, pagep, fsdata);
2928 *fsdata = (void *)0;
2929 trace_ext4_da_write_begin(inode, pos, len, flags);
2931 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2932 ret = ext4_da_write_inline_data_begin(mapping, inode,
2942 page = grab_cache_page_write_begin(mapping, index, flags);
2946 /* In case writeback began while the page was unlocked */
2947 wait_for_stable_page(page);
2949 #ifdef CONFIG_FS_ENCRYPTION
2950 ret = ext4_block_write_begin(page, pos, len,
2951 ext4_da_get_block_prep);
2953 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2959 * block_write_begin may have instantiated a few blocks
2960 * outside i_size. Trim these off again. Don't need
2961 * i_size_read because we hold inode lock.
2963 if (pos + len > inode->i_size)
2964 ext4_truncate_failed_write(inode);
2966 if (ret == -ENOSPC &&
2967 ext4_should_retry_alloc(inode->i_sb, &retries))
2977 * Check if we should update i_disksize
2978 * when write to the end of file but not require block allocation
2980 static int ext4_da_should_update_i_disksize(struct page *page,
2981 unsigned long offset)
2983 struct buffer_head *bh;
2984 struct inode *inode = page->mapping->host;
2988 bh = page_buffers(page);
2989 idx = offset >> inode->i_blkbits;
2991 for (i = 0; i < idx; i++)
2992 bh = bh->b_this_page;
2994 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2999 static int ext4_da_write_end(struct file *file,
3000 struct address_space *mapping,
3001 loff_t pos, unsigned len, unsigned copied,
3002 struct page *page, void *fsdata)
3004 struct inode *inode = mapping->host;
3006 unsigned long start, end;
3007 int write_mode = (int)(unsigned long)fsdata;
3009 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3010 return ext4_write_end(file, mapping, pos,
3011 len, copied, page, fsdata);
3013 trace_ext4_da_write_end(inode, pos, len, copied);
3015 if (write_mode != CONVERT_INLINE_DATA &&
3016 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3017 ext4_has_inline_data(inode))
3018 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3020 start = pos & (PAGE_SIZE - 1);
3021 end = start + copied - 1;
3024 * Since we are holding inode lock, we are sure i_disksize <=
3025 * i_size. We also know that if i_disksize < i_size, there are
3026 * delalloc writes pending in the range upto i_size. If the end of
3027 * the current write is <= i_size, there's no need to touch
3028 * i_disksize since writeback will push i_disksize upto i_size
3029 * eventually. If the end of the current write is > i_size and
3030 * inside an allocated block (ext4_da_should_update_i_disksize()
3031 * check), we need to update i_disksize here as neither
3032 * ext4_writepage() nor certain ext4_writepages() paths not
3033 * allocating blocks update i_disksize.
3035 * Note that we defer inode dirtying to generic_write_end() /
3036 * ext4_da_write_inline_data_end().
3038 new_i_size = pos + copied;
3039 if (copied && new_i_size > inode->i_size &&
3040 ext4_da_should_update_i_disksize(page, end))
3041 ext4_update_i_disksize(inode, new_i_size);
3043 return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3047 * Force all delayed allocation blocks to be allocated for a given inode.
3049 int ext4_alloc_da_blocks(struct inode *inode)
3051 trace_ext4_alloc_da_blocks(inode);
3053 if (!EXT4_I(inode)->i_reserved_data_blocks)
3057 * We do something simple for now. The filemap_flush() will
3058 * also start triggering a write of the data blocks, which is
3059 * not strictly speaking necessary (and for users of
3060 * laptop_mode, not even desirable). However, to do otherwise
3061 * would require replicating code paths in:
3063 * ext4_writepages() ->
3064 * write_cache_pages() ---> (via passed in callback function)
3065 * __mpage_da_writepage() -->
3066 * mpage_add_bh_to_extent()
3067 * mpage_da_map_blocks()
3069 * The problem is that write_cache_pages(), located in
3070 * mm/page-writeback.c, marks pages clean in preparation for
3071 * doing I/O, which is not desirable if we're not planning on
3074 * We could call write_cache_pages(), and then redirty all of
3075 * the pages by calling redirty_page_for_writepage() but that
3076 * would be ugly in the extreme. So instead we would need to
3077 * replicate parts of the code in the above functions,
3078 * simplifying them because we wouldn't actually intend to
3079 * write out the pages, but rather only collect contiguous
3080 * logical block extents, call the multi-block allocator, and
3081 * then update the buffer heads with the block allocations.
3083 * For now, though, we'll cheat by calling filemap_flush(),
3084 * which will map the blocks, and start the I/O, but not
3085 * actually wait for the I/O to complete.
3087 return filemap_flush(inode->i_mapping);
3091 * bmap() is special. It gets used by applications such as lilo and by
3092 * the swapper to find the on-disk block of a specific piece of data.
3094 * Naturally, this is dangerous if the block concerned is still in the
3095 * journal. If somebody makes a swapfile on an ext4 data-journaling
3096 * filesystem and enables swap, then they may get a nasty shock when the
3097 * data getting swapped to that swapfile suddenly gets overwritten by
3098 * the original zero's written out previously to the journal and
3099 * awaiting writeback in the kernel's buffer cache.
3101 * So, if we see any bmap calls here on a modified, data-journaled file,
3102 * take extra steps to flush any blocks which might be in the cache.
3104 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3106 struct inode *inode = mapping->host;
3111 * We can get here for an inline file via the FIBMAP ioctl
3113 if (ext4_has_inline_data(inode))
3116 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3117 test_opt(inode->i_sb, DELALLOC)) {
3119 * With delalloc we want to sync the file
3120 * so that we can make sure we allocate
3123 filemap_write_and_wait(mapping);
3126 if (EXT4_JOURNAL(inode) &&
3127 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3129 * This is a REALLY heavyweight approach, but the use of
3130 * bmap on dirty files is expected to be extremely rare:
3131 * only if we run lilo or swapon on a freshly made file
3132 * do we expect this to happen.
3134 * (bmap requires CAP_SYS_RAWIO so this does not
3135 * represent an unprivileged user DOS attack --- we'd be
3136 * in trouble if mortal users could trigger this path at
3139 * NB. EXT4_STATE_JDATA is not set on files other than
3140 * regular files. If somebody wants to bmap a directory
3141 * or symlink and gets confused because the buffer
3142 * hasn't yet been flushed to disk, they deserve
3143 * everything they get.
3146 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3147 journal = EXT4_JOURNAL(inode);
3148 jbd2_journal_lock_updates(journal);
3149 err = jbd2_journal_flush(journal, 0);
3150 jbd2_journal_unlock_updates(journal);
3156 return iomap_bmap(mapping, block, &ext4_iomap_ops);
3159 static int ext4_readpage(struct file *file, struct page *page)
3162 struct inode *inode = page->mapping->host;
3164 trace_ext4_readpage(page);
3166 if (ext4_has_inline_data(inode))
3167 ret = ext4_readpage_inline(inode, page);
3170 return ext4_mpage_readpages(inode, NULL, page);
3175 static void ext4_readahead(struct readahead_control *rac)
3177 struct inode *inode = rac->mapping->host;
3179 /* If the file has inline data, no need to do readahead. */
3180 if (ext4_has_inline_data(inode))
3183 ext4_mpage_readpages(inode, rac, NULL);
3186 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3189 trace_ext4_invalidatepage(&folio->page, offset, length);
3191 /* No journalling happens on data buffers when this function is used */
3192 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3194 block_invalidate_folio(folio, offset, length);
3197 static int __ext4_journalled_invalidatepage(struct page *page,
3198 unsigned int offset,
3199 unsigned int length)
3201 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3203 trace_ext4_journalled_invalidatepage(page, offset, length);
3206 * If it's a full truncate we just forget about the pending dirtying
3208 if (offset == 0 && length == PAGE_SIZE)
3209 ClearPageChecked(page);
3211 return jbd2_journal_invalidatepage(journal, page, offset, length);
3214 /* Wrapper for aops... */
3215 static void ext4_journalled_invalidatepage(struct page *page,
3216 unsigned int offset,
3217 unsigned int length)
3219 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3222 static int ext4_releasepage(struct page *page, gfp_t wait)
3224 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3226 trace_ext4_releasepage(page);
3228 /* Page has dirty journalled data -> cannot release */
3229 if (PageChecked(page))
3232 return jbd2_journal_try_to_free_buffers(journal, page);
3234 return try_to_free_buffers(page);
3237 static bool ext4_inode_datasync_dirty(struct inode *inode)
3239 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3242 if (jbd2_transaction_committed(journal,
3243 EXT4_I(inode)->i_datasync_tid))
3245 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3246 return !list_empty(&EXT4_I(inode)->i_fc_list);
3250 /* Any metadata buffers to write? */
3251 if (!list_empty(&inode->i_mapping->private_list))
3253 return inode->i_state & I_DIRTY_DATASYNC;
3256 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3257 struct ext4_map_blocks *map, loff_t offset,
3258 loff_t length, unsigned int flags)
3260 u8 blkbits = inode->i_blkbits;
3263 * Writes that span EOF might trigger an I/O size update on completion,
3264 * so consider them to be dirty for the purpose of O_DSYNC, even if
3265 * there is no other metadata changes being made or are pending.
3268 if (ext4_inode_datasync_dirty(inode) ||
3269 offset + length > i_size_read(inode))
3270 iomap->flags |= IOMAP_F_DIRTY;
3272 if (map->m_flags & EXT4_MAP_NEW)
3273 iomap->flags |= IOMAP_F_NEW;
3275 if (flags & IOMAP_DAX)
3276 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3278 iomap->bdev = inode->i_sb->s_bdev;
3279 iomap->offset = (u64) map->m_lblk << blkbits;
3280 iomap->length = (u64) map->m_len << blkbits;
3282 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3283 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3284 iomap->flags |= IOMAP_F_MERGED;
3287 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3288 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3289 * set. In order for any allocated unwritten extents to be converted
3290 * into written extents correctly within the ->end_io() handler, we
3291 * need to ensure that the iomap->type is set appropriately. Hence, the
3292 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3295 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3296 iomap->type = IOMAP_UNWRITTEN;
3297 iomap->addr = (u64) map->m_pblk << blkbits;
3298 if (flags & IOMAP_DAX)
3299 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3300 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3301 iomap->type = IOMAP_MAPPED;
3302 iomap->addr = (u64) map->m_pblk << blkbits;
3303 if (flags & IOMAP_DAX)
3304 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3306 iomap->type = IOMAP_HOLE;
3307 iomap->addr = IOMAP_NULL_ADDR;
3311 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3315 u8 blkbits = inode->i_blkbits;
3316 int ret, dio_credits, m_flags = 0, retries = 0;
3319 * Trim the mapping request to the maximum value that we can map at
3320 * once for direct I/O.
3322 if (map->m_len > DIO_MAX_BLOCKS)
3323 map->m_len = DIO_MAX_BLOCKS;
3324 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3328 * Either we allocate blocks and then don't get an unwritten extent, so
3329 * in that case we have reserved enough credits. Or, the blocks are
3330 * already allocated and unwritten. In that case, the extent conversion
3331 * fits into the credits as well.
3333 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3335 return PTR_ERR(handle);
3338 * DAX and direct I/O are the only two operations that are currently
3339 * supported with IOMAP_WRITE.
3341 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3342 if (flags & IOMAP_DAX)
3343 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3345 * We use i_size instead of i_disksize here because delalloc writeback
3346 * can complete at any point during the I/O and subsequently push the
3347 * i_disksize out to i_size. This could be beyond where direct I/O is
3348 * happening and thus expose allocated blocks to direct I/O reads.
3350 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3351 m_flags = EXT4_GET_BLOCKS_CREATE;
3352 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3353 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3355 ret = ext4_map_blocks(handle, inode, map, m_flags);
3358 * We cannot fill holes in indirect tree based inodes as that could
3359 * expose stale data in the case of a crash. Use the magic error code
3360 * to fallback to buffered I/O.
3362 if (!m_flags && !ret)
3365 ext4_journal_stop(handle);
3366 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3373 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3374 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3377 struct ext4_map_blocks map;
3378 u8 blkbits = inode->i_blkbits;
3380 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3383 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3387 * Calculate the first and last logical blocks respectively.
3389 map.m_lblk = offset >> blkbits;
3390 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3391 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3393 if (flags & IOMAP_WRITE) {
3395 * We check here if the blocks are already allocated, then we
3396 * don't need to start a journal txn and we can directly return
3397 * the mapping information. This could boost performance
3398 * especially in multi-threaded overwrite requests.
3400 if (offset + length <= i_size_read(inode)) {
3401 ret = ext4_map_blocks(NULL, inode, &map, 0);
3402 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3405 ret = ext4_iomap_alloc(inode, &map, flags);
3407 ret = ext4_map_blocks(NULL, inode, &map, 0);
3413 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3418 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3419 loff_t length, unsigned flags, struct iomap *iomap,
3420 struct iomap *srcmap)
3425 * Even for writes we don't need to allocate blocks, so just pretend
3426 * we are reading to save overhead of starting a transaction.
3428 flags &= ~IOMAP_WRITE;
3429 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3430 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3434 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3435 ssize_t written, unsigned flags, struct iomap *iomap)
3438 * Check to see whether an error occurred while writing out the data to
3439 * the allocated blocks. If so, return the magic error code so that we
3440 * fallback to buffered I/O and attempt to complete the remainder of
3441 * the I/O. Any blocks that may have been allocated in preparation for
3442 * the direct I/O will be reused during buffered I/O.
3444 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3450 const struct iomap_ops ext4_iomap_ops = {
3451 .iomap_begin = ext4_iomap_begin,
3452 .iomap_end = ext4_iomap_end,
3455 const struct iomap_ops ext4_iomap_overwrite_ops = {
3456 .iomap_begin = ext4_iomap_overwrite_begin,
3457 .iomap_end = ext4_iomap_end,
3460 static bool ext4_iomap_is_delalloc(struct inode *inode,
3461 struct ext4_map_blocks *map)
3463 struct extent_status es;
3464 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3466 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3467 map->m_lblk, end, &es);
3469 if (!es.es_len || es.es_lblk > end)
3472 if (es.es_lblk > map->m_lblk) {
3473 map->m_len = es.es_lblk - map->m_lblk;
3477 offset = map->m_lblk - es.es_lblk;
3478 map->m_len = es.es_len - offset;
3483 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3484 loff_t length, unsigned int flags,
3485 struct iomap *iomap, struct iomap *srcmap)
3488 bool delalloc = false;
3489 struct ext4_map_blocks map;
3490 u8 blkbits = inode->i_blkbits;
3492 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3495 if (ext4_has_inline_data(inode)) {
3496 ret = ext4_inline_data_iomap(inode, iomap);
3497 if (ret != -EAGAIN) {
3498 if (ret == 0 && offset >= iomap->length)
3505 * Calculate the first and last logical block respectively.
3507 map.m_lblk = offset >> blkbits;
3508 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3509 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3512 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3513 * So handle it here itself instead of querying ext4_map_blocks().
3514 * Since ext4_map_blocks() will warn about it and will return
3517 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3518 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3520 if (offset >= sbi->s_bitmap_maxbytes) {
3526 ret = ext4_map_blocks(NULL, inode, &map, 0);
3530 delalloc = ext4_iomap_is_delalloc(inode, &map);
3533 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3534 if (delalloc && iomap->type == IOMAP_HOLE)
3535 iomap->type = IOMAP_DELALLOC;
3540 const struct iomap_ops ext4_iomap_report_ops = {
3541 .iomap_begin = ext4_iomap_begin_report,
3545 * Pages can be marked dirty completely asynchronously from ext4's journalling
3546 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3547 * much here because ->set_page_dirty is called under VFS locks. The page is
3548 * not necessarily locked.
3550 * We cannot just dirty the page and leave attached buffers clean, because the
3551 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3552 * or jbddirty because all the journalling code will explode.
3554 * So what we do is to mark the page "pending dirty" and next time writepage
3555 * is called, propagate that into the buffers appropriately.
3557 static int ext4_journalled_set_page_dirty(struct page *page)
3559 SetPageChecked(page);
3560 return __set_page_dirty_nobuffers(page);
3563 static int ext4_set_page_dirty(struct page *page)
3565 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3566 WARN_ON_ONCE(!page_has_buffers(page));
3567 return __set_page_dirty_buffers(page);
3570 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3571 struct file *file, sector_t *span)
3573 return iomap_swapfile_activate(sis, file, span,
3574 &ext4_iomap_report_ops);
3577 static const struct address_space_operations ext4_aops = {
3578 .readpage = ext4_readpage,
3579 .readahead = ext4_readahead,
3580 .writepage = ext4_writepage,
3581 .writepages = ext4_writepages,
3582 .write_begin = ext4_write_begin,
3583 .write_end = ext4_write_end,
3584 .set_page_dirty = ext4_set_page_dirty,
3586 .invalidate_folio = ext4_invalidate_folio,
3587 .releasepage = ext4_releasepage,
3588 .direct_IO = noop_direct_IO,
3589 .migratepage = buffer_migrate_page,
3590 .is_partially_uptodate = block_is_partially_uptodate,
3591 .error_remove_page = generic_error_remove_page,
3592 .swap_activate = ext4_iomap_swap_activate,
3595 static const struct address_space_operations ext4_journalled_aops = {
3596 .readpage = ext4_readpage,
3597 .readahead = ext4_readahead,
3598 .writepage = ext4_writepage,
3599 .writepages = ext4_writepages,
3600 .write_begin = ext4_write_begin,
3601 .write_end = ext4_journalled_write_end,
3602 .set_page_dirty = ext4_journalled_set_page_dirty,
3604 .invalidatepage = ext4_journalled_invalidatepage,
3605 .releasepage = ext4_releasepage,
3606 .direct_IO = noop_direct_IO,
3607 .is_partially_uptodate = block_is_partially_uptodate,
3608 .error_remove_page = generic_error_remove_page,
3609 .swap_activate = ext4_iomap_swap_activate,
3612 static const struct address_space_operations ext4_da_aops = {
3613 .readpage = ext4_readpage,
3614 .readahead = ext4_readahead,
3615 .writepage = ext4_writepage,
3616 .writepages = ext4_writepages,
3617 .write_begin = ext4_da_write_begin,
3618 .write_end = ext4_da_write_end,
3619 .set_page_dirty = ext4_set_page_dirty,
3621 .invalidate_folio = ext4_invalidate_folio,
3622 .releasepage = ext4_releasepage,
3623 .direct_IO = noop_direct_IO,
3624 .migratepage = buffer_migrate_page,
3625 .is_partially_uptodate = block_is_partially_uptodate,
3626 .error_remove_page = generic_error_remove_page,
3627 .swap_activate = ext4_iomap_swap_activate,
3630 static const struct address_space_operations ext4_dax_aops = {
3631 .writepages = ext4_dax_writepages,
3632 .direct_IO = noop_direct_IO,
3633 .set_page_dirty = __set_page_dirty_no_writeback,
3635 .invalidatepage = noop_invalidatepage,
3636 .swap_activate = ext4_iomap_swap_activate,
3639 void ext4_set_aops(struct inode *inode)
3641 switch (ext4_inode_journal_mode(inode)) {
3642 case EXT4_INODE_ORDERED_DATA_MODE:
3643 case EXT4_INODE_WRITEBACK_DATA_MODE:
3645 case EXT4_INODE_JOURNAL_DATA_MODE:
3646 inode->i_mapping->a_ops = &ext4_journalled_aops;
3652 inode->i_mapping->a_ops = &ext4_dax_aops;
3653 else if (test_opt(inode->i_sb, DELALLOC))
3654 inode->i_mapping->a_ops = &ext4_da_aops;
3656 inode->i_mapping->a_ops = &ext4_aops;
3659 static int __ext4_block_zero_page_range(handle_t *handle,
3660 struct address_space *mapping, loff_t from, loff_t length)
3662 ext4_fsblk_t index = from >> PAGE_SHIFT;
3663 unsigned offset = from & (PAGE_SIZE-1);
3664 unsigned blocksize, pos;
3666 struct inode *inode = mapping->host;
3667 struct buffer_head *bh;
3671 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3672 mapping_gfp_constraint(mapping, ~__GFP_FS));
3676 blocksize = inode->i_sb->s_blocksize;
3678 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3680 if (!page_has_buffers(page))
3681 create_empty_buffers(page, blocksize, 0);
3683 /* Find the buffer that contains "offset" */
3684 bh = page_buffers(page);
3686 while (offset >= pos) {
3687 bh = bh->b_this_page;
3691 if (buffer_freed(bh)) {
3692 BUFFER_TRACE(bh, "freed: skip");
3695 if (!buffer_mapped(bh)) {
3696 BUFFER_TRACE(bh, "unmapped");
3697 ext4_get_block(inode, iblock, bh, 0);
3698 /* unmapped? It's a hole - nothing to do */
3699 if (!buffer_mapped(bh)) {
3700 BUFFER_TRACE(bh, "still unmapped");
3705 /* Ok, it's mapped. Make sure it's up-to-date */
3706 if (PageUptodate(page))
3707 set_buffer_uptodate(bh);
3709 if (!buffer_uptodate(bh)) {
3710 err = ext4_read_bh_lock(bh, 0, true);
3713 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3714 /* We expect the key to be set. */
3715 BUG_ON(!fscrypt_has_encryption_key(inode));
3716 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3719 clear_buffer_uptodate(bh);
3724 if (ext4_should_journal_data(inode)) {
3725 BUFFER_TRACE(bh, "get write access");
3726 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3731 zero_user(page, offset, length);
3732 BUFFER_TRACE(bh, "zeroed end of block");
3734 if (ext4_should_journal_data(inode)) {
3735 err = ext4_handle_dirty_metadata(handle, inode, bh);
3738 mark_buffer_dirty(bh);
3739 if (ext4_should_order_data(inode))
3740 err = ext4_jbd2_inode_add_write(handle, inode, from,
3751 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3752 * starting from file offset 'from'. The range to be zero'd must
3753 * be contained with in one block. If the specified range exceeds
3754 * the end of the block it will be shortened to end of the block
3755 * that corresponds to 'from'
3757 static int ext4_block_zero_page_range(handle_t *handle,
3758 struct address_space *mapping, loff_t from, loff_t length)
3760 struct inode *inode = mapping->host;
3761 unsigned offset = from & (PAGE_SIZE-1);
3762 unsigned blocksize = inode->i_sb->s_blocksize;
3763 unsigned max = blocksize - (offset & (blocksize - 1));
3766 * correct length if it does not fall between
3767 * 'from' and the end of the block
3769 if (length > max || length < 0)
3772 if (IS_DAX(inode)) {
3773 return dax_zero_range(inode, from, length, NULL,
3776 return __ext4_block_zero_page_range(handle, mapping, from, length);
3780 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3781 * up to the end of the block which corresponds to `from'.
3782 * This required during truncate. We need to physically zero the tail end
3783 * of that block so it doesn't yield old data if the file is later grown.
3785 static int ext4_block_truncate_page(handle_t *handle,
3786 struct address_space *mapping, loff_t from)
3788 unsigned offset = from & (PAGE_SIZE-1);
3791 struct inode *inode = mapping->host;
3793 /* If we are processing an encrypted inode during orphan list handling */
3794 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3797 blocksize = inode->i_sb->s_blocksize;
3798 length = blocksize - (offset & (blocksize - 1));
3800 return ext4_block_zero_page_range(handle, mapping, from, length);
3803 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3804 loff_t lstart, loff_t length)
3806 struct super_block *sb = inode->i_sb;
3807 struct address_space *mapping = inode->i_mapping;
3808 unsigned partial_start, partial_end;
3809 ext4_fsblk_t start, end;
3810 loff_t byte_end = (lstart + length - 1);
3813 partial_start = lstart & (sb->s_blocksize - 1);
3814 partial_end = byte_end & (sb->s_blocksize - 1);
3816 start = lstart >> sb->s_blocksize_bits;
3817 end = byte_end >> sb->s_blocksize_bits;
3819 /* Handle partial zero within the single block */
3821 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3822 err = ext4_block_zero_page_range(handle, mapping,
3826 /* Handle partial zero out on the start of the range */
3827 if (partial_start) {
3828 err = ext4_block_zero_page_range(handle, mapping,
3829 lstart, sb->s_blocksize);
3833 /* Handle partial zero out on the end of the range */
3834 if (partial_end != sb->s_blocksize - 1)
3835 err = ext4_block_zero_page_range(handle, mapping,
3836 byte_end - partial_end,
3841 int ext4_can_truncate(struct inode *inode)
3843 if (S_ISREG(inode->i_mode))
3845 if (S_ISDIR(inode->i_mode))
3847 if (S_ISLNK(inode->i_mode))
3848 return !ext4_inode_is_fast_symlink(inode);
3853 * We have to make sure i_disksize gets properly updated before we truncate
3854 * page cache due to hole punching or zero range. Otherwise i_disksize update
3855 * can get lost as it may have been postponed to submission of writeback but
3856 * that will never happen after we truncate page cache.
3858 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3864 loff_t size = i_size_read(inode);
3866 WARN_ON(!inode_is_locked(inode));
3867 if (offset > size || offset + len < size)
3870 if (EXT4_I(inode)->i_disksize >= size)
3873 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3875 return PTR_ERR(handle);
3876 ext4_update_i_disksize(inode, size);
3877 ret = ext4_mark_inode_dirty(handle, inode);
3878 ext4_journal_stop(handle);
3883 static void ext4_wait_dax_page(struct inode *inode)
3885 filemap_invalidate_unlock(inode->i_mapping);
3887 filemap_invalidate_lock(inode->i_mapping);
3890 int ext4_break_layouts(struct inode *inode)
3895 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3899 page = dax_layout_busy_page(inode->i_mapping);
3903 error = ___wait_var_event(&page->_refcount,
3904 atomic_read(&page->_refcount) == 1,
3905 TASK_INTERRUPTIBLE, 0, 0,
3906 ext4_wait_dax_page(inode));
3907 } while (error == 0);
3913 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3914 * associated with the given offset and length
3916 * @inode: File inode
3917 * @offset: The offset where the hole will begin
3918 * @len: The length of the hole
3920 * Returns: 0 on success or negative on failure
3923 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3925 struct super_block *sb = inode->i_sb;
3926 ext4_lblk_t first_block, stop_block;
3927 struct address_space *mapping = inode->i_mapping;
3928 loff_t first_block_offset, last_block_offset;
3930 unsigned int credits;
3931 int ret = 0, ret2 = 0;
3933 trace_ext4_punch_hole(inode, offset, length, 0);
3935 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3936 if (ext4_has_inline_data(inode)) {
3937 filemap_invalidate_lock(mapping);
3938 ret = ext4_convert_inline_data(inode);
3939 filemap_invalidate_unlock(mapping);
3945 * Write out all dirty pages to avoid race conditions
3946 * Then release them.
3948 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3949 ret = filemap_write_and_wait_range(mapping, offset,
3950 offset + length - 1);
3957 /* No need to punch hole beyond i_size */
3958 if (offset >= inode->i_size)
3962 * If the hole extends beyond i_size, set the hole
3963 * to end after the page that contains i_size
3965 if (offset + length > inode->i_size) {
3966 length = inode->i_size +
3967 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3971 if (offset & (sb->s_blocksize - 1) ||
3972 (offset + length) & (sb->s_blocksize - 1)) {
3974 * Attach jinode to inode for jbd2 if we do any zeroing of
3977 ret = ext4_inode_attach_jinode(inode);
3983 /* Wait all existing dio workers, newcomers will block on i_rwsem */
3984 inode_dio_wait(inode);
3987 * Prevent page faults from reinstantiating pages we have released from
3990 filemap_invalidate_lock(mapping);
3992 ret = ext4_break_layouts(inode);
3996 first_block_offset = round_up(offset, sb->s_blocksize);
3997 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3999 /* Now release the pages and zero block aligned part of pages*/
4000 if (last_block_offset > first_block_offset) {
4001 ret = ext4_update_disksize_before_punch(inode, offset, length);
4004 truncate_pagecache_range(inode, first_block_offset,
4008 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4009 credits = ext4_writepage_trans_blocks(inode);
4011 credits = ext4_blocks_for_truncate(inode);
4012 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4013 if (IS_ERR(handle)) {
4014 ret = PTR_ERR(handle);
4015 ext4_std_error(sb, ret);
4019 ret = ext4_zero_partial_blocks(handle, inode, offset,
4024 first_block = (offset + sb->s_blocksize - 1) >>
4025 EXT4_BLOCK_SIZE_BITS(sb);
4026 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4028 /* If there are blocks to remove, do it */
4029 if (stop_block > first_block) {
4031 down_write(&EXT4_I(inode)->i_data_sem);
4032 ext4_discard_preallocations(inode, 0);
4034 ret = ext4_es_remove_extent(inode, first_block,
4035 stop_block - first_block);
4037 up_write(&EXT4_I(inode)->i_data_sem);
4041 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4042 ret = ext4_ext_remove_space(inode, first_block,
4045 ret = ext4_ind_remove_space(handle, inode, first_block,
4048 up_write(&EXT4_I(inode)->i_data_sem);
4050 ext4_fc_track_range(handle, inode, first_block, stop_block);
4052 ext4_handle_sync(handle);
4054 inode->i_mtime = inode->i_ctime = current_time(inode);
4055 ret2 = ext4_mark_inode_dirty(handle, inode);
4059 ext4_update_inode_fsync_trans(handle, inode, 1);
4061 ext4_journal_stop(handle);
4063 filemap_invalidate_unlock(mapping);
4065 inode_unlock(inode);
4069 int ext4_inode_attach_jinode(struct inode *inode)
4071 struct ext4_inode_info *ei = EXT4_I(inode);
4072 struct jbd2_inode *jinode;
4074 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4077 jinode = jbd2_alloc_inode(GFP_KERNEL);
4078 spin_lock(&inode->i_lock);
4081 spin_unlock(&inode->i_lock);
4084 ei->jinode = jinode;
4085 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4088 spin_unlock(&inode->i_lock);
4089 if (unlikely(jinode != NULL))
4090 jbd2_free_inode(jinode);
4097 * We block out ext4_get_block() block instantiations across the entire
4098 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4099 * simultaneously on behalf of the same inode.
4101 * As we work through the truncate and commit bits of it to the journal there
4102 * is one core, guiding principle: the file's tree must always be consistent on
4103 * disk. We must be able to restart the truncate after a crash.
4105 * The file's tree may be transiently inconsistent in memory (although it
4106 * probably isn't), but whenever we close off and commit a journal transaction,
4107 * the contents of (the filesystem + the journal) must be consistent and
4108 * restartable. It's pretty simple, really: bottom up, right to left (although
4109 * left-to-right works OK too).
4111 * Note that at recovery time, journal replay occurs *before* the restart of
4112 * truncate against the orphan inode list.
4114 * The committed inode has the new, desired i_size (which is the same as
4115 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4116 * that this inode's truncate did not complete and it will again call
4117 * ext4_truncate() to have another go. So there will be instantiated blocks
4118 * to the right of the truncation point in a crashed ext4 filesystem. But
4119 * that's fine - as long as they are linked from the inode, the post-crash
4120 * ext4_truncate() run will find them and release them.
4122 int ext4_truncate(struct inode *inode)
4124 struct ext4_inode_info *ei = EXT4_I(inode);
4125 unsigned int credits;
4128 struct address_space *mapping = inode->i_mapping;
4131 * There is a possibility that we're either freeing the inode
4132 * or it's a completely new inode. In those cases we might not
4133 * have i_rwsem locked because it's not necessary.
4135 if (!(inode->i_state & (I_NEW|I_FREEING)))
4136 WARN_ON(!inode_is_locked(inode));
4137 trace_ext4_truncate_enter(inode);
4139 if (!ext4_can_truncate(inode))
4142 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4143 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4145 if (ext4_has_inline_data(inode)) {
4148 err = ext4_inline_data_truncate(inode, &has_inline);
4149 if (err || has_inline)
4153 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4154 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4155 if (ext4_inode_attach_jinode(inode) < 0)
4159 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4160 credits = ext4_writepage_trans_blocks(inode);
4162 credits = ext4_blocks_for_truncate(inode);
4164 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4165 if (IS_ERR(handle)) {
4166 err = PTR_ERR(handle);
4170 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4171 ext4_block_truncate_page(handle, mapping, inode->i_size);
4174 * We add the inode to the orphan list, so that if this
4175 * truncate spans multiple transactions, and we crash, we will
4176 * resume the truncate when the filesystem recovers. It also
4177 * marks the inode dirty, to catch the new size.
4179 * Implication: the file must always be in a sane, consistent
4180 * truncatable state while each transaction commits.
4182 err = ext4_orphan_add(handle, inode);
4186 down_write(&EXT4_I(inode)->i_data_sem);
4188 ext4_discard_preallocations(inode, 0);
4190 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4191 err = ext4_ext_truncate(handle, inode);
4193 ext4_ind_truncate(handle, inode);
4195 up_write(&ei->i_data_sem);
4200 ext4_handle_sync(handle);
4204 * If this was a simple ftruncate() and the file will remain alive,
4205 * then we need to clear up the orphan record which we created above.
4206 * However, if this was a real unlink then we were called by
4207 * ext4_evict_inode(), and we allow that function to clean up the
4208 * orphan info for us.
4211 ext4_orphan_del(handle, inode);
4213 inode->i_mtime = inode->i_ctime = current_time(inode);
4214 err2 = ext4_mark_inode_dirty(handle, inode);
4215 if (unlikely(err2 && !err))
4217 ext4_journal_stop(handle);
4220 trace_ext4_truncate_exit(inode);
4224 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4226 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4227 return inode_peek_iversion_raw(inode);
4229 return inode_peek_iversion(inode);
4232 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4233 struct ext4_inode_info *ei)
4235 struct inode *inode = &(ei->vfs_inode);
4236 u64 i_blocks = READ_ONCE(inode->i_blocks);
4237 struct super_block *sb = inode->i_sb;
4239 if (i_blocks <= ~0U) {
4241 * i_blocks can be represented in a 32 bit variable
4242 * as multiple of 512 bytes
4244 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4245 raw_inode->i_blocks_high = 0;
4246 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4251 * This should never happen since sb->s_maxbytes should not have
4252 * allowed this, sb->s_maxbytes was set according to the huge_file
4253 * feature in ext4_fill_super().
4255 if (!ext4_has_feature_huge_file(sb))
4256 return -EFSCORRUPTED;
4258 if (i_blocks <= 0xffffffffffffULL) {
4260 * i_blocks can be represented in a 48 bit variable
4261 * as multiple of 512 bytes
4263 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4264 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4265 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4267 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4268 /* i_block is stored in file system block size */
4269 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4270 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4271 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4276 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4278 struct ext4_inode_info *ei = EXT4_I(inode);
4285 err = ext4_inode_blocks_set(raw_inode, ei);
4287 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4288 i_uid = i_uid_read(inode);
4289 i_gid = i_gid_read(inode);
4290 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4291 if (!(test_opt(inode->i_sb, NO_UID32))) {
4292 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4293 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4295 * Fix up interoperability with old kernels. Otherwise,
4296 * old inodes get re-used with the upper 16 bits of the
4299 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4300 raw_inode->i_uid_high = 0;
4301 raw_inode->i_gid_high = 0;
4303 raw_inode->i_uid_high =
4304 cpu_to_le16(high_16_bits(i_uid));
4305 raw_inode->i_gid_high =
4306 cpu_to_le16(high_16_bits(i_gid));
4309 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4310 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4311 raw_inode->i_uid_high = 0;
4312 raw_inode->i_gid_high = 0;
4314 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4316 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4317 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4318 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4319 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4321 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4322 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4323 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4324 raw_inode->i_file_acl_high =
4325 cpu_to_le16(ei->i_file_acl >> 32);
4326 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4327 ext4_isize_set(raw_inode, ei->i_disksize);
4329 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4330 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4331 if (old_valid_dev(inode->i_rdev)) {
4332 raw_inode->i_block[0] =
4333 cpu_to_le32(old_encode_dev(inode->i_rdev));
4334 raw_inode->i_block[1] = 0;
4336 raw_inode->i_block[0] = 0;
4337 raw_inode->i_block[1] =
4338 cpu_to_le32(new_encode_dev(inode->i_rdev));
4339 raw_inode->i_block[2] = 0;
4341 } else if (!ext4_has_inline_data(inode)) {
4342 for (block = 0; block < EXT4_N_BLOCKS; block++)
4343 raw_inode->i_block[block] = ei->i_data[block];
4346 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4347 u64 ivers = ext4_inode_peek_iversion(inode);
4349 raw_inode->i_disk_version = cpu_to_le32(ivers);
4350 if (ei->i_extra_isize) {
4351 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4352 raw_inode->i_version_hi =
4353 cpu_to_le32(ivers >> 32);
4354 raw_inode->i_extra_isize =
4355 cpu_to_le16(ei->i_extra_isize);
4359 if (i_projid != EXT4_DEF_PROJID &&
4360 !ext4_has_feature_project(inode->i_sb))
4361 err = err ?: -EFSCORRUPTED;
4363 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4364 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4365 raw_inode->i_projid = cpu_to_le32(i_projid);
4367 ext4_inode_csum_set(inode, raw_inode, ei);
4372 * ext4_get_inode_loc returns with an extra refcount against the inode's
4373 * underlying buffer_head on success. If we pass 'inode' and it does not
4374 * have in-inode xattr, we have all inode data in memory that is needed
4375 * to recreate the on-disk version of this inode.
4377 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4378 struct inode *inode, struct ext4_iloc *iloc,
4379 ext4_fsblk_t *ret_block)
4381 struct ext4_group_desc *gdp;
4382 struct buffer_head *bh;
4384 struct blk_plug plug;
4385 int inodes_per_block, inode_offset;
4388 if (ino < EXT4_ROOT_INO ||
4389 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4390 return -EFSCORRUPTED;
4392 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4393 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4398 * Figure out the offset within the block group inode table
4400 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4401 inode_offset = ((ino - 1) %
4402 EXT4_INODES_PER_GROUP(sb));
4403 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4404 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4406 bh = sb_getblk(sb, block);
4409 if (ext4_buffer_uptodate(bh))
4413 if (ext4_buffer_uptodate(bh)) {
4414 /* Someone brought it uptodate while we waited */
4420 * If we have all information of the inode in memory and this
4421 * is the only valid inode in the block, we need not read the
4424 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4425 struct buffer_head *bitmap_bh;
4428 start = inode_offset & ~(inodes_per_block - 1);
4430 /* Is the inode bitmap in cache? */
4431 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4432 if (unlikely(!bitmap_bh))
4436 * If the inode bitmap isn't in cache then the
4437 * optimisation may end up performing two reads instead
4438 * of one, so skip it.
4440 if (!buffer_uptodate(bitmap_bh)) {
4444 for (i = start; i < start + inodes_per_block; i++) {
4445 if (i == inode_offset)
4447 if (ext4_test_bit(i, bitmap_bh->b_data))
4451 if (i == start + inodes_per_block) {
4452 struct ext4_inode *raw_inode =
4453 (struct ext4_inode *) (bh->b_data + iloc->offset);
4455 /* all other inodes are free, so skip I/O */
4456 memset(bh->b_data, 0, bh->b_size);
4457 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4458 ext4_fill_raw_inode(inode, raw_inode);
4459 set_buffer_uptodate(bh);
4467 * If we need to do any I/O, try to pre-readahead extra
4468 * blocks from the inode table.
4470 blk_start_plug(&plug);
4471 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4472 ext4_fsblk_t b, end, table;
4474 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4476 table = ext4_inode_table(sb, gdp);
4477 /* s_inode_readahead_blks is always a power of 2 */
4478 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4482 num = EXT4_INODES_PER_GROUP(sb);
4483 if (ext4_has_group_desc_csum(sb))
4484 num -= ext4_itable_unused_count(sb, gdp);
4485 table += num / inodes_per_block;
4489 ext4_sb_breadahead_unmovable(sb, b++);
4493 * There are other valid inodes in the buffer, this inode
4494 * has in-inode xattrs, or we don't have this inode in memory.
4495 * Read the block from disk.
4497 trace_ext4_load_inode(sb, ino);
4498 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4499 blk_finish_plug(&plug);
4501 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4502 if (!buffer_uptodate(bh)) {
4513 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4514 struct ext4_iloc *iloc)
4516 ext4_fsblk_t err_blk = 0;
4519 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4523 ext4_error_inode_block(inode, err_blk, EIO,
4524 "unable to read itable block");
4529 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4531 ext4_fsblk_t err_blk = 0;
4534 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4538 ext4_error_inode_block(inode, err_blk, EIO,
4539 "unable to read itable block");
4545 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4546 struct ext4_iloc *iloc)
4548 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4551 static bool ext4_should_enable_dax(struct inode *inode)
4553 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4555 if (test_opt2(inode->i_sb, DAX_NEVER))
4557 if (!S_ISREG(inode->i_mode))
4559 if (ext4_should_journal_data(inode))
4561 if (ext4_has_inline_data(inode))
4563 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4565 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4567 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4569 if (test_opt(inode->i_sb, DAX_ALWAYS))
4572 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4575 void ext4_set_inode_flags(struct inode *inode, bool init)
4577 unsigned int flags = EXT4_I(inode)->i_flags;
4578 unsigned int new_fl = 0;
4580 WARN_ON_ONCE(IS_DAX(inode) && init);
4582 if (flags & EXT4_SYNC_FL)
4584 if (flags & EXT4_APPEND_FL)
4586 if (flags & EXT4_IMMUTABLE_FL)
4587 new_fl |= S_IMMUTABLE;
4588 if (flags & EXT4_NOATIME_FL)
4589 new_fl |= S_NOATIME;
4590 if (flags & EXT4_DIRSYNC_FL)
4591 new_fl |= S_DIRSYNC;
4593 /* Because of the way inode_set_flags() works we must preserve S_DAX
4594 * here if already set. */
4595 new_fl |= (inode->i_flags & S_DAX);
4596 if (init && ext4_should_enable_dax(inode))
4599 if (flags & EXT4_ENCRYPT_FL)
4600 new_fl |= S_ENCRYPTED;
4601 if (flags & EXT4_CASEFOLD_FL)
4602 new_fl |= S_CASEFOLD;
4603 if (flags & EXT4_VERITY_FL)
4605 inode_set_flags(inode, new_fl,
4606 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4607 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4610 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4611 struct ext4_inode_info *ei)
4614 struct inode *inode = &(ei->vfs_inode);
4615 struct super_block *sb = inode->i_sb;
4617 if (ext4_has_feature_huge_file(sb)) {
4618 /* we are using combined 48 bit field */
4619 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4620 le32_to_cpu(raw_inode->i_blocks_lo);
4621 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4622 /* i_blocks represent file system block size */
4623 return i_blocks << (inode->i_blkbits - 9);
4628 return le32_to_cpu(raw_inode->i_blocks_lo);
4632 static inline int ext4_iget_extra_inode(struct inode *inode,
4633 struct ext4_inode *raw_inode,
4634 struct ext4_inode_info *ei)
4636 __le32 *magic = (void *)raw_inode +
4637 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4639 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4640 EXT4_INODE_SIZE(inode->i_sb) &&
4641 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4642 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4643 return ext4_find_inline_data_nolock(inode);
4645 EXT4_I(inode)->i_inline_off = 0;
4649 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4651 if (!ext4_has_feature_project(inode->i_sb))
4653 *projid = EXT4_I(inode)->i_projid;
4658 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4659 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4662 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4664 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4665 inode_set_iversion_raw(inode, val);
4667 inode_set_iversion_queried(inode, val);
4670 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4671 ext4_iget_flags flags, const char *function,
4674 struct ext4_iloc iloc;
4675 struct ext4_inode *raw_inode;
4676 struct ext4_inode_info *ei;
4677 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4678 struct inode *inode;
4679 journal_t *journal = EXT4_SB(sb)->s_journal;
4687 if ((!(flags & EXT4_IGET_SPECIAL) &&
4688 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4689 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4690 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4691 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4692 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4693 (ino < EXT4_ROOT_INO) ||
4694 (ino > le32_to_cpu(es->s_inodes_count))) {
4695 if (flags & EXT4_IGET_HANDLE)
4696 return ERR_PTR(-ESTALE);
4697 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4698 "inode #%lu: comm %s: iget: illegal inode #",
4699 ino, current->comm);
4700 return ERR_PTR(-EFSCORRUPTED);
4703 inode = iget_locked(sb, ino);
4705 return ERR_PTR(-ENOMEM);
4706 if (!(inode->i_state & I_NEW))
4712 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4715 raw_inode = ext4_raw_inode(&iloc);
4717 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4718 ext4_error_inode(inode, function, line, 0,
4719 "iget: root inode unallocated");
4720 ret = -EFSCORRUPTED;
4724 if ((flags & EXT4_IGET_HANDLE) &&
4725 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4730 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4731 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4732 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4733 EXT4_INODE_SIZE(inode->i_sb) ||
4734 (ei->i_extra_isize & 3)) {
4735 ext4_error_inode(inode, function, line, 0,
4736 "iget: bad extra_isize %u "
4739 EXT4_INODE_SIZE(inode->i_sb));
4740 ret = -EFSCORRUPTED;
4744 ei->i_extra_isize = 0;
4746 /* Precompute checksum seed for inode metadata */
4747 if (ext4_has_metadata_csum(sb)) {
4748 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4750 __le32 inum = cpu_to_le32(inode->i_ino);
4751 __le32 gen = raw_inode->i_generation;
4752 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4754 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4758 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4759 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4760 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4761 ext4_error_inode_err(inode, function, line, 0,
4762 EFSBADCRC, "iget: checksum invalid");
4767 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4768 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4769 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4770 if (ext4_has_feature_project(sb) &&
4771 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4772 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4773 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4775 i_projid = EXT4_DEF_PROJID;
4777 if (!(test_opt(inode->i_sb, NO_UID32))) {
4778 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4779 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4781 i_uid_write(inode, i_uid);
4782 i_gid_write(inode, i_gid);
4783 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4784 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4786 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4787 ei->i_inline_off = 0;
4788 ei->i_dir_start_lookup = 0;
4789 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4790 /* We now have enough fields to check if the inode was active or not.
4791 * This is needed because nfsd might try to access dead inodes
4792 * the test is that same one that e2fsck uses
4793 * NeilBrown 1999oct15
4795 if (inode->i_nlink == 0) {
4796 if ((inode->i_mode == 0 ||
4797 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4798 ino != EXT4_BOOT_LOADER_INO) {
4799 /* this inode is deleted */
4803 /* The only unlinked inodes we let through here have
4804 * valid i_mode and are being read by the orphan
4805 * recovery code: that's fine, we're about to complete
4806 * the process of deleting those.
4807 * OR it is the EXT4_BOOT_LOADER_INO which is
4808 * not initialized on a new filesystem. */
4810 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4811 ext4_set_inode_flags(inode, true);
4812 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4813 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4814 if (ext4_has_feature_64bit(sb))
4816 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4817 inode->i_size = ext4_isize(sb, raw_inode);
4818 if ((size = i_size_read(inode)) < 0) {
4819 ext4_error_inode(inode, function, line, 0,
4820 "iget: bad i_size value: %lld", size);
4821 ret = -EFSCORRUPTED;
4825 * If dir_index is not enabled but there's dir with INDEX flag set,
4826 * we'd normally treat htree data as empty space. But with metadata
4827 * checksumming that corrupts checksums so forbid that.
4829 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4830 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4831 ext4_error_inode(inode, function, line, 0,
4832 "iget: Dir with htree data on filesystem without dir_index feature.");
4833 ret = -EFSCORRUPTED;
4836 ei->i_disksize = inode->i_size;
4838 ei->i_reserved_quota = 0;
4840 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4841 ei->i_block_group = iloc.block_group;
4842 ei->i_last_alloc_group = ~0;
4844 * NOTE! The in-memory inode i_data array is in little-endian order
4845 * even on big-endian machines: we do NOT byteswap the block numbers!
4847 for (block = 0; block < EXT4_N_BLOCKS; block++)
4848 ei->i_data[block] = raw_inode->i_block[block];
4849 INIT_LIST_HEAD(&ei->i_orphan);
4850 ext4_fc_init_inode(&ei->vfs_inode);
4853 * Set transaction id's of transactions that have to be committed
4854 * to finish f[data]sync. We set them to currently running transaction
4855 * as we cannot be sure that the inode or some of its metadata isn't
4856 * part of the transaction - the inode could have been reclaimed and
4857 * now it is reread from disk.
4860 transaction_t *transaction;
4863 read_lock(&journal->j_state_lock);
4864 if (journal->j_running_transaction)
4865 transaction = journal->j_running_transaction;
4867 transaction = journal->j_committing_transaction;
4869 tid = transaction->t_tid;
4871 tid = journal->j_commit_sequence;
4872 read_unlock(&journal->j_state_lock);
4873 ei->i_sync_tid = tid;
4874 ei->i_datasync_tid = tid;
4877 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4878 if (ei->i_extra_isize == 0) {
4879 /* The extra space is currently unused. Use it. */
4880 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4881 ei->i_extra_isize = sizeof(struct ext4_inode) -
4882 EXT4_GOOD_OLD_INODE_SIZE;
4884 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4890 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4891 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4892 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4893 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4895 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4896 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4898 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4899 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4901 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4903 ext4_inode_set_iversion_queried(inode, ivers);
4907 if (ei->i_file_acl &&
4908 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4909 ext4_error_inode(inode, function, line, 0,
4910 "iget: bad extended attribute block %llu",
4912 ret = -EFSCORRUPTED;
4914 } else if (!ext4_has_inline_data(inode)) {
4915 /* validate the block references in the inode */
4916 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4917 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4918 (S_ISLNK(inode->i_mode) &&
4919 !ext4_inode_is_fast_symlink(inode)))) {
4920 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4921 ret = ext4_ext_check_inode(inode);
4923 ret = ext4_ind_check_inode(inode);
4929 if (S_ISREG(inode->i_mode)) {
4930 inode->i_op = &ext4_file_inode_operations;
4931 inode->i_fop = &ext4_file_operations;
4932 ext4_set_aops(inode);
4933 } else if (S_ISDIR(inode->i_mode)) {
4934 inode->i_op = &ext4_dir_inode_operations;
4935 inode->i_fop = &ext4_dir_operations;
4936 } else if (S_ISLNK(inode->i_mode)) {
4937 /* VFS does not allow setting these so must be corruption */
4938 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4939 ext4_error_inode(inode, function, line, 0,
4940 "iget: immutable or append flags "
4941 "not allowed on symlinks");
4942 ret = -EFSCORRUPTED;
4945 if (IS_ENCRYPTED(inode)) {
4946 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4947 ext4_set_aops(inode);
4948 } else if (ext4_inode_is_fast_symlink(inode)) {
4949 inode->i_link = (char *)ei->i_data;
4950 inode->i_op = &ext4_fast_symlink_inode_operations;
4951 nd_terminate_link(ei->i_data, inode->i_size,
4952 sizeof(ei->i_data) - 1);
4954 inode->i_op = &ext4_symlink_inode_operations;
4955 ext4_set_aops(inode);
4957 inode_nohighmem(inode);
4958 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4959 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4960 inode->i_op = &ext4_special_inode_operations;
4961 if (raw_inode->i_block[0])
4962 init_special_inode(inode, inode->i_mode,
4963 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4965 init_special_inode(inode, inode->i_mode,
4966 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4967 } else if (ino == EXT4_BOOT_LOADER_INO) {
4968 make_bad_inode(inode);
4970 ret = -EFSCORRUPTED;
4971 ext4_error_inode(inode, function, line, 0,
4972 "iget: bogus i_mode (%o)", inode->i_mode);
4975 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4976 ext4_error_inode(inode, function, line, 0,
4977 "casefold flag without casefold feature");
4980 unlock_new_inode(inode);
4986 return ERR_PTR(ret);
4989 static void __ext4_update_other_inode_time(struct super_block *sb,
4990 unsigned long orig_ino,
4992 struct ext4_inode *raw_inode)
4994 struct inode *inode;
4996 inode = find_inode_by_ino_rcu(sb, ino);
5000 if (!inode_is_dirtytime_only(inode))
5003 spin_lock(&inode->i_lock);
5004 if (inode_is_dirtytime_only(inode)) {
5005 struct ext4_inode_info *ei = EXT4_I(inode);
5007 inode->i_state &= ~I_DIRTY_TIME;
5008 spin_unlock(&inode->i_lock);
5010 spin_lock(&ei->i_raw_lock);
5011 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5012 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5013 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5014 ext4_inode_csum_set(inode, raw_inode, ei);
5015 spin_unlock(&ei->i_raw_lock);
5016 trace_ext4_other_inode_update_time(inode, orig_ino);
5019 spin_unlock(&inode->i_lock);
5023 * Opportunistically update the other time fields for other inodes in
5024 * the same inode table block.
5026 static void ext4_update_other_inodes_time(struct super_block *sb,
5027 unsigned long orig_ino, char *buf)
5030 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5031 int inode_size = EXT4_INODE_SIZE(sb);
5034 * Calculate the first inode in the inode table block. Inode
5035 * numbers are one-based. That is, the first inode in a block
5036 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5038 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5040 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5041 if (ino == orig_ino)
5043 __ext4_update_other_inode_time(sb, orig_ino, ino,
5044 (struct ext4_inode *)buf);
5050 * Post the struct inode info into an on-disk inode location in the
5051 * buffer-cache. This gobbles the caller's reference to the
5052 * buffer_head in the inode location struct.
5054 * The caller must have write access to iloc->bh.
5056 static int ext4_do_update_inode(handle_t *handle,
5057 struct inode *inode,
5058 struct ext4_iloc *iloc)
5060 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5061 struct ext4_inode_info *ei = EXT4_I(inode);
5062 struct buffer_head *bh = iloc->bh;
5063 struct super_block *sb = inode->i_sb;
5065 int need_datasync = 0, set_large_file = 0;
5067 spin_lock(&ei->i_raw_lock);
5070 * For fields not tracked in the in-memory inode, initialise them
5071 * to zero for new inodes.
5073 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5074 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5076 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5078 if (ei->i_disksize > 0x7fffffffULL) {
5079 if (!ext4_has_feature_large_file(sb) ||
5080 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5084 err = ext4_fill_raw_inode(inode, raw_inode);
5085 spin_unlock(&ei->i_raw_lock);
5087 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5091 if (inode->i_sb->s_flags & SB_LAZYTIME)
5092 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5095 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5096 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5099 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5100 if (set_large_file) {
5101 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5102 err = ext4_journal_get_write_access(handle, sb,
5107 lock_buffer(EXT4_SB(sb)->s_sbh);
5108 ext4_set_feature_large_file(sb);
5109 ext4_superblock_csum_set(sb);
5110 unlock_buffer(EXT4_SB(sb)->s_sbh);
5111 ext4_handle_sync(handle);
5112 err = ext4_handle_dirty_metadata(handle, NULL,
5113 EXT4_SB(sb)->s_sbh);
5115 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5117 ext4_std_error(inode->i_sb, err);
5124 * ext4_write_inode()
5126 * We are called from a few places:
5128 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5129 * Here, there will be no transaction running. We wait for any running
5130 * transaction to commit.
5132 * - Within flush work (sys_sync(), kupdate and such).
5133 * We wait on commit, if told to.
5135 * - Within iput_final() -> write_inode_now()
5136 * We wait on commit, if told to.
5138 * In all cases it is actually safe for us to return without doing anything,
5139 * because the inode has been copied into a raw inode buffer in
5140 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5143 * Note that we are absolutely dependent upon all inode dirtiers doing the
5144 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5145 * which we are interested.
5147 * It would be a bug for them to not do this. The code:
5149 * mark_inode_dirty(inode)
5151 * inode->i_size = expr;
5153 * is in error because write_inode() could occur while `stuff()' is running,
5154 * and the new i_size will be lost. Plus the inode will no longer be on the
5155 * superblock's dirty inode list.
5157 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5161 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5162 sb_rdonly(inode->i_sb))
5165 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5168 if (EXT4_SB(inode->i_sb)->s_journal) {
5169 if (ext4_journal_current_handle()) {
5170 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5176 * No need to force transaction in WB_SYNC_NONE mode. Also
5177 * ext4_sync_fs() will force the commit after everything is
5180 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5183 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5184 EXT4_I(inode)->i_sync_tid);
5186 struct ext4_iloc iloc;
5188 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5192 * sync(2) will flush the whole buffer cache. No need to do
5193 * it here separately for each inode.
5195 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5196 sync_dirty_buffer(iloc.bh);
5197 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5198 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5199 "IO error syncing inode");
5208 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5209 * buffers that are attached to a page stradding i_size and are undergoing
5210 * commit. In that case we have to wait for commit to finish and try again.
5212 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5217 tid_t commit_tid = 0;
5220 offset = inode->i_size & (PAGE_SIZE - 1);
5222 * If the page is fully truncated, we don't need to wait for any commit
5223 * (and we even should not as __ext4_journalled_invalidatepage() may
5224 * strip all buffers from the page but keep the page dirty which can then
5225 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5226 * buffers). Also we don't need to wait for any commit if all buffers in
5227 * the page remain valid. This is most beneficial for the common case of
5228 * blocksize == PAGESIZE.
5230 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5233 page = find_lock_page(inode->i_mapping,
5234 inode->i_size >> PAGE_SHIFT);
5237 ret = __ext4_journalled_invalidatepage(page, offset,
5238 PAGE_SIZE - offset);
5244 read_lock(&journal->j_state_lock);
5245 if (journal->j_committing_transaction)
5246 commit_tid = journal->j_committing_transaction->t_tid;
5247 read_unlock(&journal->j_state_lock);
5249 jbd2_log_wait_commit(journal, commit_tid);
5256 * Called from notify_change.
5258 * We want to trap VFS attempts to truncate the file as soon as
5259 * possible. In particular, we want to make sure that when the VFS
5260 * shrinks i_size, we put the inode on the orphan list and modify
5261 * i_disksize immediately, so that during the subsequent flushing of
5262 * dirty pages and freeing of disk blocks, we can guarantee that any
5263 * commit will leave the blocks being flushed in an unused state on
5264 * disk. (On recovery, the inode will get truncated and the blocks will
5265 * be freed, so we have a strong guarantee that no future commit will
5266 * leave these blocks visible to the user.)
5268 * Another thing we have to assure is that if we are in ordered mode
5269 * and inode is still attached to the committing transaction, we must
5270 * we start writeout of all the dirty pages which are being truncated.
5271 * This way we are sure that all the data written in the previous
5272 * transaction are already on disk (truncate waits for pages under
5275 * Called with inode->i_rwsem down.
5277 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5280 struct inode *inode = d_inode(dentry);
5283 const unsigned int ia_valid = attr->ia_valid;
5285 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5288 if (unlikely(IS_IMMUTABLE(inode)))
5291 if (unlikely(IS_APPEND(inode) &&
5292 (ia_valid & (ATTR_MODE | ATTR_UID |
5293 ATTR_GID | ATTR_TIMES_SET))))
5296 error = setattr_prepare(mnt_userns, dentry, attr);
5300 error = fscrypt_prepare_setattr(dentry, attr);
5304 error = fsverity_prepare_setattr(dentry, attr);
5308 if (is_quota_modification(inode, attr)) {
5309 error = dquot_initialize(inode);
5314 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5315 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5318 /* (user+group)*(old+new) structure, inode write (sb,
5319 * inode block, ? - but truncate inode update has it) */
5320 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5321 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5322 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5323 if (IS_ERR(handle)) {
5324 error = PTR_ERR(handle);
5328 /* dquot_transfer() calls back ext4_get_inode_usage() which
5329 * counts xattr inode references.
5331 down_read(&EXT4_I(inode)->xattr_sem);
5332 error = dquot_transfer(inode, attr);
5333 up_read(&EXT4_I(inode)->xattr_sem);
5336 ext4_journal_stop(handle);
5339 /* Update corresponding info in inode so that everything is in
5340 * one transaction */
5341 if (attr->ia_valid & ATTR_UID)
5342 inode->i_uid = attr->ia_uid;
5343 if (attr->ia_valid & ATTR_GID)
5344 inode->i_gid = attr->ia_gid;
5345 error = ext4_mark_inode_dirty(handle, inode);
5346 ext4_journal_stop(handle);
5347 if (unlikely(error)) {
5352 if (attr->ia_valid & ATTR_SIZE) {
5354 loff_t oldsize = inode->i_size;
5355 int shrink = (attr->ia_size < inode->i_size);
5357 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5358 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5360 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5364 if (!S_ISREG(inode->i_mode)) {
5368 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5369 inode_inc_iversion(inode);
5372 if (ext4_should_order_data(inode)) {
5373 error = ext4_begin_ordered_truncate(inode,
5379 * Blocks are going to be removed from the inode. Wait
5380 * for dio in flight.
5382 inode_dio_wait(inode);
5385 filemap_invalidate_lock(inode->i_mapping);
5387 rc = ext4_break_layouts(inode);
5389 filemap_invalidate_unlock(inode->i_mapping);
5393 if (attr->ia_size != inode->i_size) {
5394 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5395 if (IS_ERR(handle)) {
5396 error = PTR_ERR(handle);
5399 if (ext4_handle_valid(handle) && shrink) {
5400 error = ext4_orphan_add(handle, inode);
5404 * Update c/mtime on truncate up, ext4_truncate() will
5405 * update c/mtime in shrink case below
5408 inode->i_mtime = current_time(inode);
5409 inode->i_ctime = inode->i_mtime;
5413 ext4_fc_track_range(handle, inode,
5414 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5415 inode->i_sb->s_blocksize_bits,
5416 EXT_MAX_BLOCKS - 1);
5418 ext4_fc_track_range(
5420 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5421 inode->i_sb->s_blocksize_bits,
5422 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5423 inode->i_sb->s_blocksize_bits);
5425 down_write(&EXT4_I(inode)->i_data_sem);
5426 EXT4_I(inode)->i_disksize = attr->ia_size;
5427 rc = ext4_mark_inode_dirty(handle, inode);
5431 * We have to update i_size under i_data_sem together
5432 * with i_disksize to avoid races with writeback code
5433 * running ext4_wb_update_i_disksize().
5436 i_size_write(inode, attr->ia_size);
5437 up_write(&EXT4_I(inode)->i_data_sem);
5438 ext4_journal_stop(handle);
5442 pagecache_isize_extended(inode, oldsize,
5444 } else if (ext4_should_journal_data(inode)) {
5445 ext4_wait_for_tail_page_commit(inode);
5450 * Truncate pagecache after we've waited for commit
5451 * in data=journal mode to make pages freeable.
5453 truncate_pagecache(inode, inode->i_size);
5455 * Call ext4_truncate() even if i_size didn't change to
5456 * truncate possible preallocated blocks.
5458 if (attr->ia_size <= oldsize) {
5459 rc = ext4_truncate(inode);
5464 filemap_invalidate_unlock(inode->i_mapping);
5468 setattr_copy(mnt_userns, inode, attr);
5469 mark_inode_dirty(inode);
5473 * If the call to ext4_truncate failed to get a transaction handle at
5474 * all, we need to clean up the in-core orphan list manually.
5476 if (orphan && inode->i_nlink)
5477 ext4_orphan_del(NULL, inode);
5479 if (!error && (ia_valid & ATTR_MODE))
5480 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5484 ext4_std_error(inode->i_sb, error);
5490 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5491 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5493 struct inode *inode = d_inode(path->dentry);
5494 struct ext4_inode *raw_inode;
5495 struct ext4_inode_info *ei = EXT4_I(inode);
5498 if ((request_mask & STATX_BTIME) &&
5499 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5500 stat->result_mask |= STATX_BTIME;
5501 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5502 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5505 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5506 if (flags & EXT4_APPEND_FL)
5507 stat->attributes |= STATX_ATTR_APPEND;
5508 if (flags & EXT4_COMPR_FL)
5509 stat->attributes |= STATX_ATTR_COMPRESSED;
5510 if (flags & EXT4_ENCRYPT_FL)
5511 stat->attributes |= STATX_ATTR_ENCRYPTED;
5512 if (flags & EXT4_IMMUTABLE_FL)
5513 stat->attributes |= STATX_ATTR_IMMUTABLE;
5514 if (flags & EXT4_NODUMP_FL)
5515 stat->attributes |= STATX_ATTR_NODUMP;
5516 if (flags & EXT4_VERITY_FL)
5517 stat->attributes |= STATX_ATTR_VERITY;
5519 stat->attributes_mask |= (STATX_ATTR_APPEND |
5520 STATX_ATTR_COMPRESSED |
5521 STATX_ATTR_ENCRYPTED |
5522 STATX_ATTR_IMMUTABLE |
5526 generic_fillattr(mnt_userns, inode, stat);
5530 int ext4_file_getattr(struct user_namespace *mnt_userns,
5531 const struct path *path, struct kstat *stat,
5532 u32 request_mask, unsigned int query_flags)
5534 struct inode *inode = d_inode(path->dentry);
5535 u64 delalloc_blocks;
5537 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5540 * If there is inline data in the inode, the inode will normally not
5541 * have data blocks allocated (it may have an external xattr block).
5542 * Report at least one sector for such files, so tools like tar, rsync,
5543 * others don't incorrectly think the file is completely sparse.
5545 if (unlikely(ext4_has_inline_data(inode)))
5546 stat->blocks += (stat->size + 511) >> 9;
5549 * We can't update i_blocks if the block allocation is delayed
5550 * otherwise in the case of system crash before the real block
5551 * allocation is done, we will have i_blocks inconsistent with
5552 * on-disk file blocks.
5553 * We always keep i_blocks updated together with real
5554 * allocation. But to not confuse with user, stat
5555 * will return the blocks that include the delayed allocation
5556 * blocks for this file.
5558 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5559 EXT4_I(inode)->i_reserved_data_blocks);
5560 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5564 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5567 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5568 return ext4_ind_trans_blocks(inode, lblocks);
5569 return ext4_ext_index_trans_blocks(inode, pextents);
5573 * Account for index blocks, block groups bitmaps and block group
5574 * descriptor blocks if modify datablocks and index blocks
5575 * worse case, the indexs blocks spread over different block groups
5577 * If datablocks are discontiguous, they are possible to spread over
5578 * different block groups too. If they are contiguous, with flexbg,
5579 * they could still across block group boundary.
5581 * Also account for superblock, inode, quota and xattr blocks
5583 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5586 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5592 * How many index blocks need to touch to map @lblocks logical blocks
5593 * to @pextents physical extents?
5595 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5600 * Now let's see how many group bitmaps and group descriptors need
5603 groups = idxblocks + pextents;
5605 if (groups > ngroups)
5607 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5608 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5610 /* bitmaps and block group descriptor blocks */
5611 ret += groups + gdpblocks;
5613 /* Blocks for super block, inode, quota and xattr blocks */
5614 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5620 * Calculate the total number of credits to reserve to fit
5621 * the modification of a single pages into a single transaction,
5622 * which may include multiple chunks of block allocations.
5624 * This could be called via ext4_write_begin()
5626 * We need to consider the worse case, when
5627 * one new block per extent.
5629 int ext4_writepage_trans_blocks(struct inode *inode)
5631 int bpp = ext4_journal_blocks_per_page(inode);
5634 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5636 /* Account for data blocks for journalled mode */
5637 if (ext4_should_journal_data(inode))
5643 * Calculate the journal credits for a chunk of data modification.
5645 * This is called from DIO, fallocate or whoever calling
5646 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5648 * journal buffers for data blocks are not included here, as DIO
5649 * and fallocate do no need to journal data buffers.
5651 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5653 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5657 * The caller must have previously called ext4_reserve_inode_write().
5658 * Give this, we know that the caller already has write access to iloc->bh.
5660 int ext4_mark_iloc_dirty(handle_t *handle,
5661 struct inode *inode, struct ext4_iloc *iloc)
5665 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5669 ext4_fc_track_inode(handle, inode);
5671 if (IS_I_VERSION(inode))
5672 inode_inc_iversion(inode);
5674 /* the do_update_inode consumes one bh->b_count */
5677 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5678 err = ext4_do_update_inode(handle, inode, iloc);
5684 * On success, We end up with an outstanding reference count against
5685 * iloc->bh. This _must_ be cleaned up later.
5689 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5690 struct ext4_iloc *iloc)
5694 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5697 err = ext4_get_inode_loc(inode, iloc);
5699 BUFFER_TRACE(iloc->bh, "get_write_access");
5700 err = ext4_journal_get_write_access(handle, inode->i_sb,
5701 iloc->bh, EXT4_JTR_NONE);
5707 ext4_std_error(inode->i_sb, err);
5711 static int __ext4_expand_extra_isize(struct inode *inode,
5712 unsigned int new_extra_isize,
5713 struct ext4_iloc *iloc,
5714 handle_t *handle, int *no_expand)
5716 struct ext4_inode *raw_inode;
5717 struct ext4_xattr_ibody_header *header;
5718 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5719 struct ext4_inode_info *ei = EXT4_I(inode);
5722 /* this was checked at iget time, but double check for good measure */
5723 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5724 (ei->i_extra_isize & 3)) {
5725 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5727 EXT4_INODE_SIZE(inode->i_sb));
5728 return -EFSCORRUPTED;
5730 if ((new_extra_isize < ei->i_extra_isize) ||
5731 (new_extra_isize < 4) ||
5732 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5733 return -EINVAL; /* Should never happen */
5735 raw_inode = ext4_raw_inode(iloc);
5737 header = IHDR(inode, raw_inode);
5739 /* No extended attributes present */
5740 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5741 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5742 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5743 EXT4_I(inode)->i_extra_isize, 0,
5744 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5745 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5749 /* try to expand with EAs present */
5750 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5754 * Inode size expansion failed; don't try again
5763 * Expand an inode by new_extra_isize bytes.
5764 * Returns 0 on success or negative error number on failure.
5766 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5767 unsigned int new_extra_isize,
5768 struct ext4_iloc iloc,
5774 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5778 * In nojournal mode, we can immediately attempt to expand
5779 * the inode. When journaled, we first need to obtain extra
5780 * buffer credits since we may write into the EA block
5781 * with this same handle. If journal_extend fails, then it will
5782 * only result in a minor loss of functionality for that inode.
5783 * If this is felt to be critical, then e2fsck should be run to
5784 * force a large enough s_min_extra_isize.
5786 if (ext4_journal_extend(handle,
5787 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5790 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5793 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5794 handle, &no_expand);
5795 ext4_write_unlock_xattr(inode, &no_expand);
5800 int ext4_expand_extra_isize(struct inode *inode,
5801 unsigned int new_extra_isize,
5802 struct ext4_iloc *iloc)
5808 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5813 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5814 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5815 if (IS_ERR(handle)) {
5816 error = PTR_ERR(handle);
5821 ext4_write_lock_xattr(inode, &no_expand);
5823 BUFFER_TRACE(iloc->bh, "get_write_access");
5824 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5831 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5832 handle, &no_expand);
5834 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5839 ext4_write_unlock_xattr(inode, &no_expand);
5840 ext4_journal_stop(handle);
5845 * What we do here is to mark the in-core inode as clean with respect to inode
5846 * dirtiness (it may still be data-dirty).
5847 * This means that the in-core inode may be reaped by prune_icache
5848 * without having to perform any I/O. This is a very good thing,
5849 * because *any* task may call prune_icache - even ones which
5850 * have a transaction open against a different journal.
5852 * Is this cheating? Not really. Sure, we haven't written the
5853 * inode out, but prune_icache isn't a user-visible syncing function.
5854 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5855 * we start and wait on commits.
5857 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5858 const char *func, unsigned int line)
5860 struct ext4_iloc iloc;
5861 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5865 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5866 err = ext4_reserve_inode_write(handle, inode, &iloc);
5870 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5871 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5874 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5877 ext4_error_inode_err(inode, func, line, 0, err,
5878 "mark_inode_dirty error");
5883 * ext4_dirty_inode() is called from __mark_inode_dirty()
5885 * We're really interested in the case where a file is being extended.
5886 * i_size has been changed by generic_commit_write() and we thus need
5887 * to include the updated inode in the current transaction.
5889 * Also, dquot_alloc_block() will always dirty the inode when blocks
5890 * are allocated to the file.
5892 * If the inode is marked synchronous, we don't honour that here - doing
5893 * so would cause a commit on atime updates, which we don't bother doing.
5894 * We handle synchronous inodes at the highest possible level.
5896 void ext4_dirty_inode(struct inode *inode, int flags)
5900 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5903 ext4_mark_inode_dirty(handle, inode);
5904 ext4_journal_stop(handle);
5907 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5912 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5915 * We have to be very careful here: changing a data block's
5916 * journaling status dynamically is dangerous. If we write a
5917 * data block to the journal, change the status and then delete
5918 * that block, we risk forgetting to revoke the old log record
5919 * from the journal and so a subsequent replay can corrupt data.
5920 * So, first we make sure that the journal is empty and that
5921 * nobody is changing anything.
5924 journal = EXT4_JOURNAL(inode);
5927 if (is_journal_aborted(journal))
5930 /* Wait for all existing dio workers */
5931 inode_dio_wait(inode);
5934 * Before flushing the journal and switching inode's aops, we have
5935 * to flush all dirty data the inode has. There can be outstanding
5936 * delayed allocations, there can be unwritten extents created by
5937 * fallocate or buffered writes in dioread_nolock mode covered by
5938 * dirty data which can be converted only after flushing the dirty
5939 * data (and journalled aops don't know how to handle these cases).
5942 filemap_invalidate_lock(inode->i_mapping);
5943 err = filemap_write_and_wait(inode->i_mapping);
5945 filemap_invalidate_unlock(inode->i_mapping);
5950 percpu_down_write(&sbi->s_writepages_rwsem);
5951 jbd2_journal_lock_updates(journal);
5954 * OK, there are no updates running now, and all cached data is
5955 * synced to disk. We are now in a completely consistent state
5956 * which doesn't have anything in the journal, and we know that
5957 * no filesystem updates are running, so it is safe to modify
5958 * the inode's in-core data-journaling state flag now.
5962 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5964 err = jbd2_journal_flush(journal, 0);
5966 jbd2_journal_unlock_updates(journal);
5967 percpu_up_write(&sbi->s_writepages_rwsem);
5970 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5972 ext4_set_aops(inode);
5974 jbd2_journal_unlock_updates(journal);
5975 percpu_up_write(&sbi->s_writepages_rwsem);
5978 filemap_invalidate_unlock(inode->i_mapping);
5980 /* Finally we can mark the inode as dirty. */
5982 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5984 return PTR_ERR(handle);
5986 ext4_fc_mark_ineligible(inode->i_sb,
5987 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
5988 err = ext4_mark_inode_dirty(handle, inode);
5989 ext4_handle_sync(handle);
5990 ext4_journal_stop(handle);
5991 ext4_std_error(inode->i_sb, err);
5996 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
5997 struct buffer_head *bh)
5999 return !buffer_mapped(bh);
6002 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6004 struct vm_area_struct *vma = vmf->vma;
6005 struct page *page = vmf->page;
6010 struct file *file = vma->vm_file;
6011 struct inode *inode = file_inode(file);
6012 struct address_space *mapping = inode->i_mapping;
6014 get_block_t *get_block;
6017 if (unlikely(IS_IMMUTABLE(inode)))
6018 return VM_FAULT_SIGBUS;
6020 sb_start_pagefault(inode->i_sb);
6021 file_update_time(vma->vm_file);
6023 filemap_invalidate_lock_shared(mapping);
6025 err = ext4_convert_inline_data(inode);
6030 * On data journalling we skip straight to the transaction handle:
6031 * there's no delalloc; page truncated will be checked later; the
6032 * early return w/ all buffers mapped (calculates size/len) can't
6033 * be used; and there's no dioread_nolock, so only ext4_get_block.
6035 if (ext4_should_journal_data(inode))
6038 /* Delalloc case is easy... */
6039 if (test_opt(inode->i_sb, DELALLOC) &&
6040 !ext4_nonda_switch(inode->i_sb)) {
6042 err = block_page_mkwrite(vma, vmf,
6043 ext4_da_get_block_prep);
6044 } while (err == -ENOSPC &&
6045 ext4_should_retry_alloc(inode->i_sb, &retries));
6050 size = i_size_read(inode);
6051 /* Page got truncated from under us? */
6052 if (page->mapping != mapping || page_offset(page) > size) {
6054 ret = VM_FAULT_NOPAGE;
6058 if (page->index == size >> PAGE_SHIFT)
6059 len = size & ~PAGE_MASK;
6063 * Return if we have all the buffers mapped. This avoids the need to do
6064 * journal_start/journal_stop which can block and take a long time
6066 * This cannot be done for data journalling, as we have to add the
6067 * inode to the transaction's list to writeprotect pages on commit.
6069 if (page_has_buffers(page)) {
6070 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6072 ext4_bh_unmapped)) {
6073 /* Wait so that we don't change page under IO */
6074 wait_for_stable_page(page);
6075 ret = VM_FAULT_LOCKED;
6080 /* OK, we need to fill the hole... */
6081 if (ext4_should_dioread_nolock(inode))
6082 get_block = ext4_get_block_unwritten;
6084 get_block = ext4_get_block;
6086 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6087 ext4_writepage_trans_blocks(inode));
6088 if (IS_ERR(handle)) {
6089 ret = VM_FAULT_SIGBUS;
6093 * Data journalling can't use block_page_mkwrite() because it
6094 * will set_buffer_dirty() before do_journal_get_write_access()
6095 * thus might hit warning messages for dirty metadata buffers.
6097 if (!ext4_should_journal_data(inode)) {
6098 err = block_page_mkwrite(vma, vmf, get_block);
6101 size = i_size_read(inode);
6102 /* Page got truncated from under us? */
6103 if (page->mapping != mapping || page_offset(page) > size) {
6104 ret = VM_FAULT_NOPAGE;
6108 if (page->index == size >> PAGE_SHIFT)
6109 len = size & ~PAGE_MASK;
6113 err = __block_write_begin(page, 0, len, ext4_get_block);
6115 ret = VM_FAULT_SIGBUS;
6116 if (ext4_walk_page_buffers(handle, inode,
6117 page_buffers(page), 0, len, NULL,
6118 do_journal_get_write_access))
6120 if (ext4_walk_page_buffers(handle, inode,
6121 page_buffers(page), 0, len, NULL,
6124 if (ext4_jbd2_inode_add_write(handle, inode,
6125 page_offset(page), len))
6127 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6132 ext4_journal_stop(handle);
6133 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6136 ret = block_page_mkwrite_return(err);
6138 filemap_invalidate_unlock_shared(mapping);
6139 sb_end_pagefault(inode->i_sb);
6143 ext4_journal_stop(handle);