1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_alloc.h"
17 #include "xfs_error.h"
18 #include "xfs_iomap.h"
19 #include "xfs_trace.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_bmap_btree.h"
23 #include "xfs_reflink.h"
24 #include <linux/writeback.h>
27 * structure owned by writepages passed to individual writepage calls
29 struct xfs_writepage_ctx {
30 struct xfs_bmbt_irec imap;
32 struct xfs_ioend *ioend;
36 xfs_find_bdev_for_inode(
39 struct xfs_inode *ip = XFS_I(inode);
40 struct xfs_mount *mp = ip->i_mount;
42 if (XFS_IS_REALTIME_INODE(ip))
43 return mp->m_rtdev_targp->bt_bdev;
45 return mp->m_ddev_targp->bt_bdev;
49 xfs_find_daxdev_for_inode(
52 struct xfs_inode *ip = XFS_I(inode);
53 struct xfs_mount *mp = ip->i_mount;
55 if (XFS_IS_REALTIME_INODE(ip))
56 return mp->m_rtdev_targp->bt_daxdev;
58 return mp->m_ddev_targp->bt_daxdev;
62 xfs_finish_page_writeback(
67 struct iomap_page *iop = to_iomap_page(bvec->bv_page);
70 SetPageError(bvec->bv_page);
71 mapping_set_error(inode->i_mapping, -EIO);
74 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
75 ASSERT(!iop || atomic_read(&iop->write_count) > 0);
77 if (!iop || atomic_dec_and_test(&iop->write_count))
78 end_page_writeback(bvec->bv_page);
82 * We're now finished for good with this ioend structure. Update the page
83 * state, release holds on bios, and finally free up memory. Do not use the
88 struct xfs_ioend *ioend,
91 struct inode *inode = ioend->io_inode;
92 struct bio *bio = &ioend->io_inline_bio;
93 struct bio *last = ioend->io_bio, *next;
94 u64 start = bio->bi_iter.bi_sector;
95 bool quiet = bio_flagged(bio, BIO_QUIET);
97 for (bio = &ioend->io_inline_bio; bio; bio = next) {
102 * For the last bio, bi_private points to the ioend, so we
103 * need to explicitly end the iteration here.
108 next = bio->bi_private;
110 /* walk each page on bio, ending page IO on them */
111 bio_for_each_segment_all(bvec, bio, i)
112 xfs_finish_page_writeback(inode, bvec, error);
116 if (unlikely(error && !quiet)) {
117 xfs_err_ratelimited(XFS_I(inode)->i_mount,
118 "writeback error on sector %llu", start);
123 * Fast and loose check if this write could update the on-disk inode size.
125 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
127 return ioend->io_offset + ioend->io_size >
128 XFS_I(ioend->io_inode)->i_d.di_size;
132 xfs_setfilesize_trans_alloc(
133 struct xfs_ioend *ioend)
135 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
136 struct xfs_trans *tp;
139 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
140 XFS_TRANS_NOFS, &tp);
144 ioend->io_append_trans = tp;
147 * We may pass freeze protection with a transaction. So tell lockdep
150 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
152 * We hand off the transaction to the completion thread now, so
153 * clear the flag here.
155 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
160 * Update on-disk file size now that data has been written to disk.
164 struct xfs_inode *ip,
165 struct xfs_trans *tp,
171 xfs_ilock(ip, XFS_ILOCK_EXCL);
172 isize = xfs_new_eof(ip, offset + size);
174 xfs_iunlock(ip, XFS_ILOCK_EXCL);
175 xfs_trans_cancel(tp);
179 trace_xfs_setfilesize(ip, offset, size);
181 ip->i_d.di_size = isize;
182 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
183 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
185 return xfs_trans_commit(tp);
190 struct xfs_inode *ip,
194 struct xfs_mount *mp = ip->i_mount;
195 struct xfs_trans *tp;
198 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
202 return __xfs_setfilesize(ip, tp, offset, size);
206 xfs_setfilesize_ioend(
207 struct xfs_ioend *ioend,
210 struct xfs_inode *ip = XFS_I(ioend->io_inode);
211 struct xfs_trans *tp = ioend->io_append_trans;
214 * The transaction may have been allocated in the I/O submission thread,
215 * thus we need to mark ourselves as being in a transaction manually.
216 * Similarly for freeze protection.
218 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
219 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
221 /* we abort the update if there was an IO error */
223 xfs_trans_cancel(tp);
227 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
231 * IO write completion.
235 struct work_struct *work)
237 struct xfs_ioend *ioend =
238 container_of(work, struct xfs_ioend, io_work);
239 struct xfs_inode *ip = XFS_I(ioend->io_inode);
240 xfs_off_t offset = ioend->io_offset;
241 size_t size = ioend->io_size;
245 * Just clean up the in-memory strutures if the fs has been shut down.
247 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
253 * Clean up any COW blocks on an I/O error.
255 error = blk_status_to_errno(ioend->io_bio->bi_status);
256 if (unlikely(error)) {
257 switch (ioend->io_type) {
259 xfs_reflink_cancel_cow_range(ip, offset, size, true);
267 * Success: commit the COW or unwritten blocks if needed.
269 switch (ioend->io_type) {
271 error = xfs_reflink_end_cow(ip, offset, size);
273 case XFS_IO_UNWRITTEN:
274 /* writeback should never update isize */
275 error = xfs_iomap_write_unwritten(ip, offset, size, false);
278 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
283 if (ioend->io_append_trans)
284 error = xfs_setfilesize_ioend(ioend, error);
285 xfs_destroy_ioend(ioend, error);
292 struct xfs_ioend *ioend = bio->bi_private;
293 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
295 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
296 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
297 else if (ioend->io_append_trans)
298 queue_work(mp->m_data_workqueue, &ioend->io_work);
300 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
305 struct xfs_writepage_ctx *wpc,
309 struct xfs_inode *ip = XFS_I(inode);
310 struct xfs_mount *mp = ip->i_mount;
311 ssize_t count = i_blocksize(inode);
312 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset), end_fsb;
313 struct xfs_bmbt_irec imap;
314 int whichfork = XFS_DATA_FORK;
315 struct xfs_iext_cursor icur;
320 * We have to make sure the cached mapping is within EOF to protect
321 * against eofblocks trimming on file release leaving us with a stale
322 * mapping. Otherwise, a page for a subsequent file extending buffered
323 * write could get picked up by this writeback cycle and written to the
326 * Note that what we really want here is a generic mapping invalidation
327 * mechanism to protect us from arbitrary extent modifying contexts, not
330 xfs_trim_extent_eof(&wpc->imap, ip);
333 * COW fork blocks can overlap data fork blocks even if the blocks
334 * aren't shared. COW I/O always takes precedent, so we must always
335 * check for overlap on reflink inodes unless the mapping is already a
338 imap_valid = offset_fsb >= wpc->imap.br_startoff &&
339 offset_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount;
341 (!xfs_inode_has_cow_data(ip) || wpc->io_type == XFS_IO_COW))
344 if (XFS_FORCED_SHUTDOWN(mp))
348 * If we don't have a valid map, now it's time to get a new one for this
349 * offset. This will convert delayed allocations (including COW ones)
350 * into real extents. If we return without a valid map, it means we
351 * landed in a hole and we skip the block.
353 xfs_ilock(ip, XFS_ILOCK_SHARED);
354 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
355 (ip->i_df.if_flags & XFS_IFEXTENTS));
356 ASSERT(offset <= mp->m_super->s_maxbytes);
358 if (offset > mp->m_super->s_maxbytes - count)
359 count = mp->m_super->s_maxbytes - offset;
360 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
363 * Check if this is offset is covered by a COW extents, and if yes use
364 * it directly instead of looking up anything in the data fork.
366 if (xfs_inode_has_cow_data(ip) &&
367 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap) &&
368 imap.br_startoff <= offset_fsb) {
369 xfs_iunlock(ip, XFS_ILOCK_SHARED);
371 * Truncate can race with writeback since writeback doesn't
372 * take the iolock and truncate decreases the file size before
373 * it starts truncating the pages between new_size and old_size.
374 * Therefore, we can end up in the situation where writeback
375 * gets a CoW fork mapping but the truncate makes the mapping
376 * invalid and we end up in here trying to get a new mapping.
377 * bail out here so that we simply never get a valid mapping
378 * and so we drop the write altogether. The page truncation
379 * will kill the contents anyway.
381 if (offset > i_size_read(inode)) {
382 wpc->io_type = XFS_IO_HOLE;
385 whichfork = XFS_COW_FORK;
386 wpc->io_type = XFS_IO_COW;
387 goto allocate_blocks;
391 * Map valid and no COW extent in the way? We're done.
394 xfs_iunlock(ip, XFS_ILOCK_SHARED);
399 * If we don't have a valid map, now it's time to get a new one for this
400 * offset. This will convert delayed allocations (including COW ones)
403 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
404 imap.br_startoff = end_fsb; /* fake a hole past EOF */
405 xfs_iunlock(ip, XFS_ILOCK_SHARED);
407 if (imap.br_startoff > offset_fsb) {
408 /* landed in a hole or beyond EOF */
409 imap.br_blockcount = imap.br_startoff - offset_fsb;
410 imap.br_startoff = offset_fsb;
411 imap.br_startblock = HOLESTARTBLOCK;
412 wpc->io_type = XFS_IO_HOLE;
414 if (isnullstartblock(imap.br_startblock)) {
415 /* got a delalloc extent */
416 wpc->io_type = XFS_IO_DELALLOC;
417 goto allocate_blocks;
420 if (imap.br_state == XFS_EXT_UNWRITTEN)
421 wpc->io_type = XFS_IO_UNWRITTEN;
423 wpc->io_type = XFS_IO_OVERWRITE;
427 trace_xfs_map_blocks_found(ip, offset, count, wpc->io_type, &imap);
430 error = xfs_iomap_write_allocate(ip, whichfork, offset, &imap);
434 trace_xfs_map_blocks_alloc(ip, offset, count, wpc->io_type, &imap);
439 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
440 * it, and we submit that bio. The ioend may be used for multiple bio
441 * submissions, so we only want to allocate an append transaction for the ioend
442 * once. In the case of multiple bio submission, each bio will take an IO
443 * reference to the ioend to ensure that the ioend completion is only done once
444 * all bios have been submitted and the ioend is really done.
446 * If @fail is non-zero, it means that we have a situation where some part of
447 * the submission process has failed after we have marked paged for writeback
448 * and unlocked them. In this situation, we need to fail the bio and ioend
449 * rather than submit it to IO. This typically only happens on a filesystem
454 struct writeback_control *wbc,
455 struct xfs_ioend *ioend,
458 /* Convert CoW extents to regular */
459 if (!status && ioend->io_type == XFS_IO_COW) {
461 * Yuk. This can do memory allocation, but is not a
462 * transactional operation so everything is done in GFP_KERNEL
463 * context. That can deadlock, because we hold pages in
464 * writeback state and GFP_KERNEL allocations can block on them.
465 * Hence we must operate in nofs conditions here.
469 nofs_flag = memalloc_nofs_save();
470 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
471 ioend->io_offset, ioend->io_size);
472 memalloc_nofs_restore(nofs_flag);
475 /* Reserve log space if we might write beyond the on-disk inode size. */
477 ioend->io_type != XFS_IO_UNWRITTEN &&
478 xfs_ioend_is_append(ioend) &&
479 !ioend->io_append_trans)
480 status = xfs_setfilesize_trans_alloc(ioend);
482 ioend->io_bio->bi_private = ioend;
483 ioend->io_bio->bi_end_io = xfs_end_bio;
484 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
487 * If we are failing the IO now, just mark the ioend with an
488 * error and finish it. This will run IO completion immediately
489 * as there is only one reference to the ioend at this point in
493 ioend->io_bio->bi_status = errno_to_blk_status(status);
494 bio_endio(ioend->io_bio);
498 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
499 submit_bio(ioend->io_bio);
503 static struct xfs_ioend *
508 struct block_device *bdev,
511 struct xfs_ioend *ioend;
514 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
515 bio_set_dev(bio, bdev);
516 bio->bi_iter.bi_sector = sector;
518 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
519 INIT_LIST_HEAD(&ioend->io_list);
520 ioend->io_type = type;
521 ioend->io_inode = inode;
523 ioend->io_offset = offset;
524 INIT_WORK(&ioend->io_work, xfs_end_io);
525 ioend->io_append_trans = NULL;
531 * Allocate a new bio, and chain the old bio to the new one.
533 * Note that we have to do perform the chaining in this unintuitive order
534 * so that the bi_private linkage is set up in the right direction for the
535 * traversal in xfs_destroy_ioend().
539 struct xfs_ioend *ioend,
540 struct writeback_control *wbc,
541 struct block_device *bdev,
546 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
547 bio_set_dev(new, bdev);
548 new->bi_iter.bi_sector = sector;
549 bio_chain(ioend->io_bio, new);
550 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
551 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
552 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
553 submit_bio(ioend->io_bio);
558 * Test to see if we have an existing ioend structure that we could append to
559 * first, otherwise finish off the current ioend and start another.
566 struct iomap_page *iop,
567 struct xfs_writepage_ctx *wpc,
568 struct writeback_control *wbc,
569 struct list_head *iolist)
571 struct xfs_inode *ip = XFS_I(inode);
572 struct xfs_mount *mp = ip->i_mount;
573 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
574 unsigned len = i_blocksize(inode);
575 unsigned poff = offset & (PAGE_SIZE - 1);
578 sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
579 ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
581 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
582 sector != bio_end_sector(wpc->ioend->io_bio) ||
583 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
585 list_add(&wpc->ioend->io_list, iolist);
586 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset,
590 if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff)) {
592 atomic_inc(&iop->write_count);
593 if (bio_full(wpc->ioend->io_bio))
594 xfs_chain_bio(wpc->ioend, wbc, bdev, sector);
595 __bio_add_page(wpc->ioend->io_bio, page, len, poff);
598 wpc->ioend->io_size += len;
602 xfs_vm_invalidatepage(
607 trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
608 iomap_invalidatepage(page, offset, length);
612 * If the page has delalloc blocks on it, we need to punch them out before we
613 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
614 * inode that can trip up a later direct I/O read operation on the same region.
616 * We prevent this by truncating away the delalloc regions on the page. Because
617 * they are delalloc, we can do this without needing a transaction. Indeed - if
618 * we get ENOSPC errors, we have to be able to do this truncation without a
619 * transaction as there is no space left for block reservation (typically why we
620 * see a ENOSPC in writeback).
623 xfs_aops_discard_page(
626 struct inode *inode = page->mapping->host;
627 struct xfs_inode *ip = XFS_I(inode);
628 struct xfs_mount *mp = ip->i_mount;
629 loff_t offset = page_offset(page);
630 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset);
633 if (XFS_FORCED_SHUTDOWN(mp))
637 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
638 page, ip->i_ino, offset);
640 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
641 PAGE_SIZE / i_blocksize(inode));
642 if (error && !XFS_FORCED_SHUTDOWN(mp))
643 xfs_alert(mp, "page discard unable to remove delalloc mapping.");
645 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
649 * We implement an immediate ioend submission policy here to avoid needing to
650 * chain multiple ioends and hence nest mempool allocations which can violate
651 * forward progress guarantees we need to provide. The current ioend we are
652 * adding blocks to is cached on the writepage context, and if the new block
653 * does not append to the cached ioend it will create a new ioend and cache that
656 * If a new ioend is created and cached, the old ioend is returned and queued
657 * locally for submission once the entire page is processed or an error has been
658 * detected. While ioends are submitted immediately after they are completed,
659 * batching optimisations are provided by higher level block plugging.
661 * At the end of a writeback pass, there will be a cached ioend remaining on the
662 * writepage context that the caller will need to submit.
666 struct xfs_writepage_ctx *wpc,
667 struct writeback_control *wbc,
672 LIST_HEAD(submit_list);
673 struct iomap_page *iop = to_iomap_page(page);
674 unsigned len = i_blocksize(inode);
675 struct xfs_ioend *ioend, *next;
676 uint64_t file_offset; /* file offset of page */
677 int error = 0, count = 0, i;
679 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
680 ASSERT(!iop || atomic_read(&iop->write_count) == 0);
683 * Walk through the page to find areas to write back. If we run off the
684 * end of the current map or find the current map invalid, grab a new
687 for (i = 0, file_offset = page_offset(page);
688 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
689 i++, file_offset += len) {
690 if (iop && !test_bit(i, iop->uptodate))
693 error = xfs_map_blocks(wpc, inode, file_offset);
696 if (wpc->io_type == XFS_IO_HOLE)
698 xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
703 ASSERT(wpc->ioend || list_empty(&submit_list));
704 ASSERT(PageLocked(page));
705 ASSERT(!PageWriteback(page));
708 * On error, we have to fail the ioend here because we may have set
709 * pages under writeback, we have to make sure we run IO completion to
710 * mark the error state of the IO appropriately, so we can't cancel the
711 * ioend directly here. That means we have to mark this page as under
712 * writeback if we included any blocks from it in the ioend chain so
713 * that completion treats it correctly.
715 * If we didn't include the page in the ioend, the on error we can
716 * simply discard and unlock it as there are no other users of the page
717 * now. The caller will still need to trigger submission of outstanding
718 * ioends on the writepage context so they are treated correctly on
721 if (unlikely(error)) {
723 xfs_aops_discard_page(page);
724 ClearPageUptodate(page);
730 * If the page was not fully cleaned, we need to ensure that the
731 * higher layers come back to it correctly. That means we need
732 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
733 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
734 * so another attempt to write this page in this writeback sweep
737 set_page_writeback_keepwrite(page);
739 clear_page_dirty_for_io(page);
740 set_page_writeback(page);
746 * Preserve the original error if there was one, otherwise catch
747 * submission errors here and propagate into subsequent ioend
750 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
753 list_del_init(&ioend->io_list);
754 error2 = xfs_submit_ioend(wbc, ioend, error);
755 if (error2 && !error)
760 * We can end up here with no error and nothing to write only if we race
761 * with a partial page truncate on a sub-page block sized filesystem.
764 end_page_writeback(page);
766 mapping_set_error(page->mapping, error);
771 * Write out a dirty page.
773 * For delalloc space on the page we need to allocate space and flush it.
774 * For unwritten space on the page we need to start the conversion to
775 * regular allocated space.
780 struct writeback_control *wbc,
783 struct xfs_writepage_ctx *wpc = data;
784 struct inode *inode = page->mapping->host;
789 trace_xfs_writepage(inode, page, 0, 0);
792 * Refuse to write the page out if we are called from reclaim context.
794 * This avoids stack overflows when called from deeply used stacks in
795 * random callers for direct reclaim or memcg reclaim. We explicitly
796 * allow reclaim from kswapd as the stack usage there is relatively low.
798 * This should never happen except in the case of a VM regression so
801 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
806 * Given that we do not allow direct reclaim to call us, we should
807 * never be called while in a filesystem transaction.
809 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
813 * Is this page beyond the end of the file?
815 * The page index is less than the end_index, adjust the end_offset
816 * to the highest offset that this page should represent.
817 * -----------------------------------------------------
818 * | file mapping | <EOF> |
819 * -----------------------------------------------------
820 * | Page ... | Page N-2 | Page N-1 | Page N | |
821 * ^--------------------------------^----------|--------
822 * | desired writeback range | see else |
823 * ---------------------------------^------------------|
825 offset = i_size_read(inode);
826 end_index = offset >> PAGE_SHIFT;
827 if (page->index < end_index)
828 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
831 * Check whether the page to write out is beyond or straddles
833 * -------------------------------------------------------
834 * | file mapping | <EOF> |
835 * -------------------------------------------------------
836 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
837 * ^--------------------------------^-----------|---------
839 * ---------------------------------^-----------|--------|
841 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
844 * Skip the page if it is fully outside i_size, e.g. due to a
845 * truncate operation that is in progress. We must redirty the
846 * page so that reclaim stops reclaiming it. Otherwise
847 * xfs_vm_releasepage() is called on it and gets confused.
849 * Note that the end_index is unsigned long, it would overflow
850 * if the given offset is greater than 16TB on 32-bit system
851 * and if we do check the page is fully outside i_size or not
852 * via "if (page->index >= end_index + 1)" as "end_index + 1"
853 * will be evaluated to 0. Hence this page will be redirtied
854 * and be written out repeatedly which would result in an
855 * infinite loop, the user program that perform this operation
856 * will hang. Instead, we can verify this situation by checking
857 * if the page to write is totally beyond the i_size or if it's
858 * offset is just equal to the EOF.
860 if (page->index > end_index ||
861 (page->index == end_index && offset_into_page == 0))
865 * The page straddles i_size. It must be zeroed out on each
866 * and every writepage invocation because it may be mmapped.
867 * "A file is mapped in multiples of the page size. For a file
868 * that is not a multiple of the page size, the remaining
869 * memory is zeroed when mapped, and writes to that region are
870 * not written out to the file."
872 zero_user_segment(page, offset_into_page, PAGE_SIZE);
874 /* Adjust the end_offset to the end of file */
878 return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
881 redirty_page_for_writepage(wbc, page);
889 struct writeback_control *wbc)
891 struct xfs_writepage_ctx wpc = {
892 .io_type = XFS_IO_INVALID,
896 ret = xfs_do_writepage(page, wbc, &wpc);
898 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
904 struct address_space *mapping,
905 struct writeback_control *wbc)
907 struct xfs_writepage_ctx wpc = {
908 .io_type = XFS_IO_INVALID,
912 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
913 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
915 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
921 struct address_space *mapping,
922 struct writeback_control *wbc)
924 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
925 return dax_writeback_mapping_range(mapping,
926 xfs_find_bdev_for_inode(mapping->host), wbc);
934 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
935 return iomap_releasepage(page, gfp_mask);
940 struct address_space *mapping,
943 struct xfs_inode *ip = XFS_I(mapping->host);
945 trace_xfs_vm_bmap(ip);
948 * The swap code (ab-)uses ->bmap to get a block mapping and then
949 * bypasses the file system for actual I/O. We really can't allow
950 * that on reflinks inodes, so we have to skip out here. And yes,
951 * 0 is the magic code for a bmap error.
953 * Since we don't pass back blockdev info, we can't return bmap
954 * information for rt files either.
956 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
958 return iomap_bmap(mapping, block, &xfs_iomap_ops);
966 trace_xfs_vm_readpage(page->mapping->host, 1);
967 return iomap_readpage(page, &xfs_iomap_ops);
973 struct address_space *mapping,
974 struct list_head *pages,
977 trace_xfs_vm_readpages(mapping->host, nr_pages);
978 return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
982 xfs_iomap_swapfile_activate(
983 struct swap_info_struct *sis,
984 struct file *swap_file,
987 sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
988 return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
991 const struct address_space_operations xfs_address_space_operations = {
992 .readpage = xfs_vm_readpage,
993 .readpages = xfs_vm_readpages,
994 .writepage = xfs_vm_writepage,
995 .writepages = xfs_vm_writepages,
996 .set_page_dirty = iomap_set_page_dirty,
997 .releasepage = xfs_vm_releasepage,
998 .invalidatepage = xfs_vm_invalidatepage,
1000 .direct_IO = noop_direct_IO,
1001 .migratepage = iomap_migrate_page,
1002 .is_partially_uptodate = iomap_is_partially_uptodate,
1003 .error_remove_page = generic_error_remove_page,
1004 .swap_activate = xfs_iomap_swapfile_activate,
1007 const struct address_space_operations xfs_dax_aops = {
1008 .writepages = xfs_dax_writepages,
1009 .direct_IO = noop_direct_IO,
1010 .set_page_dirty = noop_set_page_dirty,
1011 .invalidatepage = noop_invalidatepage,
1012 .swap_activate = xfs_iomap_swapfile_activate,