]> Git Repo - linux.git/blame - fs/xfs/xfs_aops.c
xfs: maintain a sequence count for inode fork manipulations
[linux.git] / fs / xfs / xfs_aops.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
98c1a7c0 4 * Copyright (c) 2016-2018 Christoph Hellwig.
7b718769 5 * All Rights Reserved.
1da177e4 6 */
1da177e4 7#include "xfs.h"
70a9883c 8#include "xfs_shared.h"
239880ef
DC
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
1da177e4 13#include "xfs_inode.h"
239880ef 14#include "xfs_trans.h"
281627df 15#include "xfs_inode_item.h"
a844f451 16#include "xfs_alloc.h"
1da177e4 17#include "xfs_error.h"
1da177e4 18#include "xfs_iomap.h"
0b1b213f 19#include "xfs_trace.h"
3ed3a434 20#include "xfs_bmap.h"
68988114 21#include "xfs_bmap_util.h"
a4fbe6ab 22#include "xfs_bmap_btree.h"
ef473667 23#include "xfs_reflink.h"
1da177e4
LT
24#include <linux/writeback.h>
25
fbcc0256
DC
26/*
27 * structure owned by writepages passed to individual writepage calls
28 */
29struct xfs_writepage_ctx {
30 struct xfs_bmbt_irec imap;
fbcc0256 31 unsigned int io_type;
fbcc0256 32 struct xfs_ioend *ioend;
fbcc0256
DC
33};
34
20a90f58 35struct block_device *
6214ed44 36xfs_find_bdev_for_inode(
046f1685 37 struct inode *inode)
6214ed44 38{
046f1685 39 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
40 struct xfs_mount *mp = ip->i_mount;
41
71ddabb9 42 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
43 return mp->m_rtdev_targp->bt_bdev;
44 else
45 return mp->m_ddev_targp->bt_bdev;
46}
47
486aff5e
DW
48struct dax_device *
49xfs_find_daxdev_for_inode(
50 struct inode *inode)
51{
52 struct xfs_inode *ip = XFS_I(inode);
53 struct xfs_mount *mp = ip->i_mount;
54
55 if (XFS_IS_REALTIME_INODE(ip))
56 return mp->m_rtdev_targp->bt_daxdev;
57 else
58 return mp->m_ddev_targp->bt_daxdev;
59}
60
ac8ee546
CH
61static void
62xfs_finish_page_writeback(
63 struct inode *inode,
64 struct bio_vec *bvec,
65 int error)
66{
82cb1417
CH
67 struct iomap_page *iop = to_iomap_page(bvec->bv_page);
68
ac8ee546
CH
69 if (error) {
70 SetPageError(bvec->bv_page);
71 mapping_set_error(inode->i_mapping, -EIO);
72 }
ac8ee546 73
82cb1417
CH
74 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
75 ASSERT(!iop || atomic_read(&iop->write_count) > 0);
8353a814 76
82cb1417 77 if (!iop || atomic_dec_and_test(&iop->write_count))
8353a814 78 end_page_writeback(bvec->bv_page);
37992c18
DC
79}
80
81/*
82 * We're now finished for good with this ioend structure. Update the page
83 * state, release holds on bios, and finally free up memory. Do not use the
84 * ioend after this.
f6d6d4fc 85 */
0829c360
CH
86STATIC void
87xfs_destroy_ioend(
0e51a8e1
CH
88 struct xfs_ioend *ioend,
89 int error)
0829c360 90{
37992c18 91 struct inode *inode = ioend->io_inode;
8353a814
CH
92 struct bio *bio = &ioend->io_inline_bio;
93 struct bio *last = ioend->io_bio, *next;
94 u64 start = bio->bi_iter.bi_sector;
95 bool quiet = bio_flagged(bio, BIO_QUIET);
f6d6d4fc 96
0e51a8e1 97 for (bio = &ioend->io_inline_bio; bio; bio = next) {
37992c18
DC
98 struct bio_vec *bvec;
99 int i;
100
0e51a8e1
CH
101 /*
102 * For the last bio, bi_private points to the ioend, so we
103 * need to explicitly end the iteration here.
104 */
105 if (bio == last)
106 next = NULL;
107 else
108 next = bio->bi_private;
583fa586 109
37992c18 110 /* walk each page on bio, ending page IO on them */
82cb1417
CH
111 bio_for_each_segment_all(bvec, bio, i)
112 xfs_finish_page_writeback(inode, bvec, error);
37992c18 113 bio_put(bio);
f6d6d4fc 114 }
8353a814
CH
115
116 if (unlikely(error && !quiet)) {
117 xfs_err_ratelimited(XFS_I(inode)->i_mount,
118 "writeback error on sector %llu", start);
119 }
0829c360
CH
120}
121
fc0063c4
CH
122/*
123 * Fast and loose check if this write could update the on-disk inode size.
124 */
125static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
126{
127 return ioend->io_offset + ioend->io_size >
128 XFS_I(ioend->io_inode)->i_d.di_size;
129}
130
281627df
CH
131STATIC int
132xfs_setfilesize_trans_alloc(
133 struct xfs_ioend *ioend)
134{
135 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
136 struct xfs_trans *tp;
137 int error;
138
4df0f7f1
DC
139 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
140 XFS_TRANS_NOFS, &tp);
253f4911 141 if (error)
281627df 142 return error;
281627df
CH
143
144 ioend->io_append_trans = tp;
145
d9457dc0 146 /*
437a255a 147 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
148 * we released it.
149 */
bee9182d 150 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
151 /*
152 * We hand off the transaction to the completion thread now, so
153 * clear the flag here.
154 */
9070733b 155 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
281627df
CH
156 return 0;
157}
158
ba87ea69 159/*
2813d682 160 * Update on-disk file size now that data has been written to disk.
ba87ea69 161 */
281627df 162STATIC int
e372843a 163__xfs_setfilesize(
2ba66237
CH
164 struct xfs_inode *ip,
165 struct xfs_trans *tp,
166 xfs_off_t offset,
167 size_t size)
ba87ea69 168{
ba87ea69 169 xfs_fsize_t isize;
ba87ea69 170
aa6bf01d 171 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 172 isize = xfs_new_eof(ip, offset + size);
281627df
CH
173 if (!isize) {
174 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 175 xfs_trans_cancel(tp);
281627df 176 return 0;
ba87ea69
LM
177 }
178
2ba66237 179 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
180
181 ip->i_d.di_size = isize;
182 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
183 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
184
70393313 185 return xfs_trans_commit(tp);
77d7a0c2
DC
186}
187
e372843a
CH
188int
189xfs_setfilesize(
190 struct xfs_inode *ip,
191 xfs_off_t offset,
192 size_t size)
193{
194 struct xfs_mount *mp = ip->i_mount;
195 struct xfs_trans *tp;
196 int error;
197
198 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
199 if (error)
200 return error;
201
202 return __xfs_setfilesize(ip, tp, offset, size);
203}
204
2ba66237
CH
205STATIC int
206xfs_setfilesize_ioend(
0e51a8e1
CH
207 struct xfs_ioend *ioend,
208 int error)
2ba66237
CH
209{
210 struct xfs_inode *ip = XFS_I(ioend->io_inode);
211 struct xfs_trans *tp = ioend->io_append_trans;
212
213 /*
214 * The transaction may have been allocated in the I/O submission thread,
215 * thus we need to mark ourselves as being in a transaction manually.
216 * Similarly for freeze protection.
217 */
9070733b 218 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
bee9182d 219 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237 220
5cb13dcd 221 /* we abort the update if there was an IO error */
0e51a8e1 222 if (error) {
5cb13dcd 223 xfs_trans_cancel(tp);
0e51a8e1 224 return error;
5cb13dcd
Z
225 }
226
e372843a 227 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
2ba66237
CH
228}
229
0829c360 230/*
5ec4fabb 231 * IO write completion.
f6d6d4fc
CH
232 */
233STATIC void
5ec4fabb 234xfs_end_io(
77d7a0c2 235 struct work_struct *work)
0829c360 236{
0e51a8e1
CH
237 struct xfs_ioend *ioend =
238 container_of(work, struct xfs_ioend, io_work);
239 struct xfs_inode *ip = XFS_I(ioend->io_inode);
787eb485
CH
240 xfs_off_t offset = ioend->io_offset;
241 size_t size = ioend->io_size;
4e4cbee9 242 int error;
ba87ea69 243
af055e37 244 /*
787eb485 245 * Just clean up the in-memory strutures if the fs has been shut down.
af055e37 246 */
787eb485 247 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
0e51a8e1 248 error = -EIO;
787eb485
CH
249 goto done;
250 }
04f658ee 251
43caeb18 252 /*
787eb485 253 * Clean up any COW blocks on an I/O error.
43caeb18 254 */
4e4cbee9 255 error = blk_status_to_errno(ioend->io_bio->bi_status);
787eb485
CH
256 if (unlikely(error)) {
257 switch (ioend->io_type) {
258 case XFS_IO_COW:
259 xfs_reflink_cancel_cow_range(ip, offset, size, true);
260 break;
43caeb18 261 }
787eb485
CH
262
263 goto done;
43caeb18
DW
264 }
265
5ec4fabb 266 /*
787eb485 267 * Success: commit the COW or unwritten blocks if needed.
5ec4fabb 268 */
787eb485
CH
269 switch (ioend->io_type) {
270 case XFS_IO_COW:
271 error = xfs_reflink_end_cow(ip, offset, size);
272 break;
273 case XFS_IO_UNWRITTEN:
ee70daab
EG
274 /* writeback should never update isize */
275 error = xfs_iomap_write_unwritten(ip, offset, size, false);
787eb485
CH
276 break;
277 default:
278 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
279 break;
5ec4fabb 280 }
ba87ea69 281
04f658ee 282done:
787eb485
CH
283 if (ioend->io_append_trans)
284 error = xfs_setfilesize_ioend(ioend, error);
0e51a8e1 285 xfs_destroy_ioend(ioend, error);
c626d174
DC
286}
287
0e51a8e1
CH
288STATIC void
289xfs_end_bio(
290 struct bio *bio)
0829c360 291{
0e51a8e1
CH
292 struct xfs_ioend *ioend = bio->bi_private;
293 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
0829c360 294
43caeb18 295 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
0e51a8e1
CH
296 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
297 else if (ioend->io_append_trans)
298 queue_work(mp->m_data_workqueue, &ioend->io_work);
299 else
4e4cbee9 300 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
0829c360
CH
301}
302
1da177e4
LT
303STATIC int
304xfs_map_blocks(
5c665e5b 305 struct xfs_writepage_ctx *wpc,
1da177e4 306 struct inode *inode,
5c665e5b 307 loff_t offset)
1da177e4 308{
a206c817
CH
309 struct xfs_inode *ip = XFS_I(inode);
310 struct xfs_mount *mp = ip->i_mount;
93407472 311 ssize_t count = i_blocksize(inode);
889c65b3 312 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset), end_fsb;
5c665e5b
CH
313 struct xfs_bmbt_irec imap;
314 int whichfork = XFS_DATA_FORK;
060d4eaa 315 struct xfs_iext_cursor icur;
889c65b3 316 bool imap_valid;
a206c817 317 int error = 0;
a206c817 318
889c65b3
CH
319 /*
320 * We have to make sure the cached mapping is within EOF to protect
321 * against eofblocks trimming on file release leaving us with a stale
322 * mapping. Otherwise, a page for a subsequent file extending buffered
323 * write could get picked up by this writeback cycle and written to the
324 * wrong blocks.
325 *
326 * Note that what we really want here is a generic mapping invalidation
327 * mechanism to protect us from arbitrary extent modifying contexts, not
328 * just eofblocks.
329 */
330 xfs_trim_extent_eof(&wpc->imap, ip);
331
332 /*
333 * COW fork blocks can overlap data fork blocks even if the blocks
334 * aren't shared. COW I/O always takes precedent, so we must always
335 * check for overlap on reflink inodes unless the mapping is already a
336 * COW one.
337 */
338 imap_valid = offset_fsb >= wpc->imap.br_startoff &&
339 offset_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount;
340 if (imap_valid &&
51d62690 341 (!xfs_inode_has_cow_data(ip) || wpc->io_type == XFS_IO_COW))
889c65b3
CH
342 return 0;
343
a206c817 344 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 345 return -EIO;
a206c817 346
889c65b3
CH
347 /*
348 * If we don't have a valid map, now it's time to get a new one for this
349 * offset. This will convert delayed allocations (including COW ones)
350 * into real extents. If we return without a valid map, it means we
351 * landed in a hole and we skip the block.
352 */
988ef927 353 xfs_ilock(ip, XFS_ILOCK_SHARED);
8ff2957d
CH
354 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
355 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 356 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 357
060d4eaa
CH
358 if (offset > mp->m_super->s_maxbytes - count)
359 count = mp->m_super->s_maxbytes - offset;
360 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
060d4eaa
CH
361
362 /*
363 * Check if this is offset is covered by a COW extents, and if yes use
364 * it directly instead of looking up anything in the data fork.
365 */
51d62690 366 if (xfs_inode_has_cow_data(ip) &&
060d4eaa
CH
367 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap) &&
368 imap.br_startoff <= offset_fsb) {
5c665e5b
CH
369 xfs_iunlock(ip, XFS_ILOCK_SHARED);
370 /*
371 * Truncate can race with writeback since writeback doesn't
372 * take the iolock and truncate decreases the file size before
373 * it starts truncating the pages between new_size and old_size.
374 * Therefore, we can end up in the situation where writeback
375 * gets a CoW fork mapping but the truncate makes the mapping
376 * invalid and we end up in here trying to get a new mapping.
377 * bail out here so that we simply never get a valid mapping
378 * and so we drop the write altogether. The page truncation
379 * will kill the contents anyway.
380 */
381 if (offset > i_size_read(inode)) {
382 wpc->io_type = XFS_IO_HOLE;
383 return 0;
384 }
385 whichfork = XFS_COW_FORK;
386 wpc->io_type = XFS_IO_COW;
387 goto allocate_blocks;
388 }
389
390 /*
391 * Map valid and no COW extent in the way? We're done.
392 */
889c65b3 393 if (imap_valid) {
5c665e5b
CH
394 xfs_iunlock(ip, XFS_ILOCK_SHARED);
395 return 0;
396 }
397
398 /*
399 * If we don't have a valid map, now it's time to get a new one for this
400 * offset. This will convert delayed allocations (including COW ones)
401 * into real extents.
402 */
3345746e
CH
403 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
404 imap.br_startoff = end_fsb; /* fake a hole past EOF */
8ff2957d 405 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 406
3345746e
CH
407 if (imap.br_startoff > offset_fsb) {
408 /* landed in a hole or beyond EOF */
409 imap.br_blockcount = imap.br_startoff - offset_fsb;
5c665e5b 410 imap.br_startoff = offset_fsb;
5c665e5b
CH
411 imap.br_startblock = HOLESTARTBLOCK;
412 wpc->io_type = XFS_IO_HOLE;
e2f6ad46
DC
413 } else {
414 if (isnullstartblock(imap.br_startblock)) {
415 /* got a delalloc extent */
416 wpc->io_type = XFS_IO_DELALLOC;
417 goto allocate_blocks;
418 }
5c665e5b 419
e2f6ad46
DC
420 if (imap.br_state == XFS_EXT_UNWRITTEN)
421 wpc->io_type = XFS_IO_UNWRITTEN;
422 else
423 wpc->io_type = XFS_IO_OVERWRITE;
8ff2957d 424 }
e2f6ad46 425
5c665e5b
CH
426 wpc->imap = imap;
427 trace_xfs_map_blocks_found(ip, offset, count, wpc->io_type, &imap);
428 return 0;
429allocate_blocks:
430 error = xfs_iomap_write_allocate(ip, whichfork, offset, &imap);
431 if (error)
432 return error;
433 wpc->imap = imap;
434 trace_xfs_map_blocks_alloc(ip, offset, count, wpc->io_type, &imap);
8ff2957d 435 return 0;
1da177e4
LT
436}
437
f6d6d4fc 438/*
bb18782a
DC
439 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
440 * it, and we submit that bio. The ioend may be used for multiple bio
441 * submissions, so we only want to allocate an append transaction for the ioend
442 * once. In the case of multiple bio submission, each bio will take an IO
443 * reference to the ioend to ensure that the ioend completion is only done once
444 * all bios have been submitted and the ioend is really done.
7bf7f352
DC
445 *
446 * If @fail is non-zero, it means that we have a situation where some part of
447 * the submission process has failed after we have marked paged for writeback
bb18782a
DC
448 * and unlocked them. In this situation, we need to fail the bio and ioend
449 * rather than submit it to IO. This typically only happens on a filesystem
450 * shutdown.
f6d6d4fc 451 */
e10de372 452STATIC int
f6d6d4fc 453xfs_submit_ioend(
06342cf8 454 struct writeback_control *wbc,
0e51a8e1 455 struct xfs_ioend *ioend,
e10de372 456 int status)
f6d6d4fc 457{
5eda4300
DW
458 /* Convert CoW extents to regular */
459 if (!status && ioend->io_type == XFS_IO_COW) {
4a2d01b0
DC
460 /*
461 * Yuk. This can do memory allocation, but is not a
462 * transactional operation so everything is done in GFP_KERNEL
463 * context. That can deadlock, because we hold pages in
464 * writeback state and GFP_KERNEL allocations can block on them.
465 * Hence we must operate in nofs conditions here.
466 */
467 unsigned nofs_flag;
468
469 nofs_flag = memalloc_nofs_save();
5eda4300
DW
470 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
471 ioend->io_offset, ioend->io_size);
4a2d01b0 472 memalloc_nofs_restore(nofs_flag);
5eda4300
DW
473 }
474
e10de372
DC
475 /* Reserve log space if we might write beyond the on-disk inode size. */
476 if (!status &&
0e51a8e1 477 ioend->io_type != XFS_IO_UNWRITTEN &&
bb18782a
DC
478 xfs_ioend_is_append(ioend) &&
479 !ioend->io_append_trans)
e10de372 480 status = xfs_setfilesize_trans_alloc(ioend);
bb18782a 481
0e51a8e1
CH
482 ioend->io_bio->bi_private = ioend;
483 ioend->io_bio->bi_end_io = xfs_end_bio;
7637241e 484 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
70fd7614 485
e10de372
DC
486 /*
487 * If we are failing the IO now, just mark the ioend with an
488 * error and finish it. This will run IO completion immediately
489 * as there is only one reference to the ioend at this point in
490 * time.
491 */
492 if (status) {
4e4cbee9 493 ioend->io_bio->bi_status = errno_to_blk_status(status);
0e51a8e1 494 bio_endio(ioend->io_bio);
e10de372
DC
495 return status;
496 }
d88992f6 497
31d7d58d 498 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
4e49ea4a 499 submit_bio(ioend->io_bio);
e10de372 500 return 0;
f6d6d4fc 501}
f6d6d4fc 502
0e51a8e1
CH
503static struct xfs_ioend *
504xfs_alloc_ioend(
505 struct inode *inode,
506 unsigned int type,
507 xfs_off_t offset,
3faed667
CH
508 struct block_device *bdev,
509 sector_t sector)
0e51a8e1
CH
510{
511 struct xfs_ioend *ioend;
512 struct bio *bio;
f6d6d4fc 513
e292d7bc 514 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
3faed667
CH
515 bio_set_dev(bio, bdev);
516 bio->bi_iter.bi_sector = sector;
0e51a8e1
CH
517
518 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
519 INIT_LIST_HEAD(&ioend->io_list);
520 ioend->io_type = type;
521 ioend->io_inode = inode;
522 ioend->io_size = 0;
523 ioend->io_offset = offset;
524 INIT_WORK(&ioend->io_work, xfs_end_io);
525 ioend->io_append_trans = NULL;
526 ioend->io_bio = bio;
527 return ioend;
528}
529
530/*
531 * Allocate a new bio, and chain the old bio to the new one.
532 *
533 * Note that we have to do perform the chaining in this unintuitive order
534 * so that the bi_private linkage is set up in the right direction for the
535 * traversal in xfs_destroy_ioend().
536 */
537static void
538xfs_chain_bio(
539 struct xfs_ioend *ioend,
540 struct writeback_control *wbc,
3faed667
CH
541 struct block_device *bdev,
542 sector_t sector)
0e51a8e1
CH
543{
544 struct bio *new;
545
546 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
3faed667
CH
547 bio_set_dev(new, bdev);
548 new->bi_iter.bi_sector = sector;
0e51a8e1
CH
549 bio_chain(ioend->io_bio, new);
550 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
7637241e 551 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
31d7d58d 552 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
4e49ea4a 553 submit_bio(ioend->io_bio);
0e51a8e1 554 ioend->io_bio = new;
f6d6d4fc
CH
555}
556
557/*
3faed667
CH
558 * Test to see if we have an existing ioend structure that we could append to
559 * first, otherwise finish off the current ioend and start another.
f6d6d4fc
CH
560 */
561STATIC void
562xfs_add_to_ioend(
563 struct inode *inode,
7336cea8 564 xfs_off_t offset,
3faed667 565 struct page *page,
82cb1417 566 struct iomap_page *iop,
e10de372 567 struct xfs_writepage_ctx *wpc,
bb18782a 568 struct writeback_control *wbc,
e10de372 569 struct list_head *iolist)
f6d6d4fc 570{
3faed667
CH
571 struct xfs_inode *ip = XFS_I(inode);
572 struct xfs_mount *mp = ip->i_mount;
573 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
574 unsigned len = i_blocksize(inode);
575 unsigned poff = offset & (PAGE_SIZE - 1);
576 sector_t sector;
577
578 sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
579 ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
580
fbcc0256 581 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
3faed667 582 sector != bio_end_sector(wpc->ioend->io_bio) ||
0df61da8 583 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
e10de372
DC
584 if (wpc->ioend)
585 list_add(&wpc->ioend->io_list, iolist);
3faed667
CH
586 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset,
587 bdev, sector);
f6d6d4fc
CH
588 }
589
82cb1417
CH
590 if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff)) {
591 if (iop)
592 atomic_inc(&iop->write_count);
593 if (bio_full(wpc->ioend->io_bio))
594 xfs_chain_bio(wpc->ioend, wbc, bdev, sector);
595 __bio_add_page(wpc->ioend->io_bio, page, len, poff);
596 }
bb18782a 597
3faed667 598 wpc->ioend->io_size += len;
f6d6d4fc
CH
599}
600
3ed3a434
DC
601STATIC void
602xfs_vm_invalidatepage(
603 struct page *page,
d47992f8
LC
604 unsigned int offset,
605 unsigned int length)
3ed3a434 606{
82cb1417
CH
607 trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
608 iomap_invalidatepage(page, offset, length);
3ed3a434
DC
609}
610
611/*
82cb1417
CH
612 * If the page has delalloc blocks on it, we need to punch them out before we
613 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
614 * inode that can trip up a later direct I/O read operation on the same region.
3ed3a434 615 *
82cb1417
CH
616 * We prevent this by truncating away the delalloc regions on the page. Because
617 * they are delalloc, we can do this without needing a transaction. Indeed - if
618 * we get ENOSPC errors, we have to be able to do this truncation without a
619 * transaction as there is no space left for block reservation (typically why we
620 * see a ENOSPC in writeback).
3ed3a434
DC
621 */
622STATIC void
623xfs_aops_discard_page(
624 struct page *page)
625{
626 struct inode *inode = page->mapping->host;
627 struct xfs_inode *ip = XFS_I(inode);
03625721 628 struct xfs_mount *mp = ip->i_mount;
3ed3a434 629 loff_t offset = page_offset(page);
03625721
CH
630 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset);
631 int error;
3ed3a434 632
03625721 633 if (XFS_FORCED_SHUTDOWN(mp))
e8c3753c
DC
634 goto out_invalidate;
635
03625721 636 xfs_alert(mp,
c9690043 637 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
3ed3a434
DC
638 page, ip->i_ino, offset);
639
03625721
CH
640 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
641 PAGE_SIZE / i_blocksize(inode));
03625721
CH
642 if (error && !XFS_FORCED_SHUTDOWN(mp))
643 xfs_alert(mp, "page discard unable to remove delalloc mapping.");
3ed3a434 644out_invalidate:
09cbfeaf 645 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
3ed3a434
DC
646}
647
e10de372
DC
648/*
649 * We implement an immediate ioend submission policy here to avoid needing to
650 * chain multiple ioends and hence nest mempool allocations which can violate
651 * forward progress guarantees we need to provide. The current ioend we are
82cb1417 652 * adding blocks to is cached on the writepage context, and if the new block
e10de372
DC
653 * does not append to the cached ioend it will create a new ioend and cache that
654 * instead.
655 *
656 * If a new ioend is created and cached, the old ioend is returned and queued
657 * locally for submission once the entire page is processed or an error has been
658 * detected. While ioends are submitted immediately after they are completed,
659 * batching optimisations are provided by higher level block plugging.
660 *
661 * At the end of a writeback pass, there will be a cached ioend remaining on the
662 * writepage context that the caller will need to submit.
663 */
bfce7d2e
DC
664static int
665xfs_writepage_map(
666 struct xfs_writepage_ctx *wpc,
e10de372 667 struct writeback_control *wbc,
bfce7d2e
DC
668 struct inode *inode,
669 struct page *page,
2d5f4b5b 670 uint64_t end_offset)
bfce7d2e 671{
e10de372 672 LIST_HEAD(submit_list);
82cb1417
CH
673 struct iomap_page *iop = to_iomap_page(page);
674 unsigned len = i_blocksize(inode);
e10de372 675 struct xfs_ioend *ioend, *next;
6a4c9501 676 uint64_t file_offset; /* file offset of page */
82cb1417 677 int error = 0, count = 0, i;
bfce7d2e 678
82cb1417
CH
679 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
680 ASSERT(!iop || atomic_read(&iop->write_count) == 0);
ac8ee546 681
e2f6ad46 682 /*
82cb1417
CH
683 * Walk through the page to find areas to write back. If we run off the
684 * end of the current map or find the current map invalid, grab a new
685 * one.
e2f6ad46 686 */
82cb1417
CH
687 for (i = 0, file_offset = page_offset(page);
688 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
689 i++, file_offset += len) {
690 if (iop && !test_bit(i, iop->uptodate))
bfce7d2e 691 continue;
bfce7d2e 692
889c65b3
CH
693 error = xfs_map_blocks(wpc, inode, file_offset);
694 if (error)
695 break;
82cb1417 696 if (wpc->io_type == XFS_IO_HOLE)
5c665e5b 697 continue;
82cb1417
CH
698 xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
699 &submit_list);
5c665e5b 700 count++;
e2f6ad46 701 }
bfce7d2e 702
e10de372 703 ASSERT(wpc->ioend || list_empty(&submit_list));
1b65d3dd
CH
704 ASSERT(PageLocked(page));
705 ASSERT(!PageWriteback(page));
bfce7d2e 706
bfce7d2e 707 /*
82cb1417
CH
708 * On error, we have to fail the ioend here because we may have set
709 * pages under writeback, we have to make sure we run IO completion to
710 * mark the error state of the IO appropriately, so we can't cancel the
711 * ioend directly here. That means we have to mark this page as under
712 * writeback if we included any blocks from it in the ioend chain so
713 * that completion treats it correctly.
bfce7d2e 714 *
e10de372
DC
715 * If we didn't include the page in the ioend, the on error we can
716 * simply discard and unlock it as there are no other users of the page
82cb1417
CH
717 * now. The caller will still need to trigger submission of outstanding
718 * ioends on the writepage context so they are treated correctly on
719 * error.
bfce7d2e 720 */
8e1f065b
CH
721 if (unlikely(error)) {
722 if (!count) {
723 xfs_aops_discard_page(page);
724 ClearPageUptodate(page);
725 unlock_page(page);
726 goto done;
727 }
728
1b65d3dd
CH
729 /*
730 * If the page was not fully cleaned, we need to ensure that the
731 * higher layers come back to it correctly. That means we need
732 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
733 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
734 * so another attempt to write this page in this writeback sweep
735 * will be made.
736 */
8e1f065b 737 set_page_writeback_keepwrite(page);
e10de372 738 } else {
1b65d3dd
CH
739 clear_page_dirty_for_io(page);
740 set_page_writeback(page);
bfce7d2e 741 }
e10de372 742
8e1f065b
CH
743 unlock_page(page);
744
745 /*
746 * Preserve the original error if there was one, otherwise catch
747 * submission errors here and propagate into subsequent ioend
748 * submissions.
749 */
750 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
751 int error2;
752
753 list_del_init(&ioend->io_list);
754 error2 = xfs_submit_ioend(wbc, ioend, error);
755 if (error2 && !error)
756 error = error2;
757 }
758
759 /*
82cb1417
CH
760 * We can end up here with no error and nothing to write only if we race
761 * with a partial page truncate on a sub-page block sized filesystem.
8e1f065b
CH
762 */
763 if (!count)
764 end_page_writeback(page);
765done:
bfce7d2e
DC
766 mapping_set_error(page->mapping, error);
767 return error;
768}
769
1da177e4 770/*
89f3b363
CH
771 * Write out a dirty page.
772 *
773 * For delalloc space on the page we need to allocate space and flush it.
774 * For unwritten space on the page we need to start the conversion to
775 * regular allocated space.
1da177e4 776 */
1da177e4 777STATIC int
fbcc0256 778xfs_do_writepage(
89f3b363 779 struct page *page,
fbcc0256
DC
780 struct writeback_control *wbc,
781 void *data)
1da177e4 782{
fbcc0256 783 struct xfs_writepage_ctx *wpc = data;
89f3b363 784 struct inode *inode = page->mapping->host;
1da177e4 785 loff_t offset;
c8ce540d 786 uint64_t end_offset;
ad68972a 787 pgoff_t end_index;
89f3b363 788
34097dfe 789 trace_xfs_writepage(inode, page, 0, 0);
89f3b363
CH
790
791 /*
792 * Refuse to write the page out if we are called from reclaim context.
793 *
d4f7a5cb
CH
794 * This avoids stack overflows when called from deeply used stacks in
795 * random callers for direct reclaim or memcg reclaim. We explicitly
796 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 797 *
94054fa3
MG
798 * This should never happen except in the case of a VM regression so
799 * warn about it.
89f3b363 800 */
94054fa3
MG
801 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
802 PF_MEMALLOC))
b5420f23 803 goto redirty;
1da177e4 804
89f3b363 805 /*
680a647b
CH
806 * Given that we do not allow direct reclaim to call us, we should
807 * never be called while in a filesystem transaction.
89f3b363 808 */
9070733b 809 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
b5420f23 810 goto redirty;
89f3b363 811
8695d27e 812 /*
ad68972a
DC
813 * Is this page beyond the end of the file?
814 *
8695d27e
JL
815 * The page index is less than the end_index, adjust the end_offset
816 * to the highest offset that this page should represent.
817 * -----------------------------------------------------
818 * | file mapping | <EOF> |
819 * -----------------------------------------------------
820 * | Page ... | Page N-2 | Page N-1 | Page N | |
821 * ^--------------------------------^----------|--------
822 * | desired writeback range | see else |
823 * ---------------------------------^------------------|
824 */
ad68972a 825 offset = i_size_read(inode);
09cbfeaf 826 end_index = offset >> PAGE_SHIFT;
8695d27e 827 if (page->index < end_index)
09cbfeaf 828 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
8695d27e
JL
829 else {
830 /*
831 * Check whether the page to write out is beyond or straddles
832 * i_size or not.
833 * -------------------------------------------------------
834 * | file mapping | <EOF> |
835 * -------------------------------------------------------
836 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
837 * ^--------------------------------^-----------|---------
838 * | | Straddles |
839 * ---------------------------------^-----------|--------|
840 */
09cbfeaf 841 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
6b7a03f0
CH
842
843 /*
ff9a28f6
JK
844 * Skip the page if it is fully outside i_size, e.g. due to a
845 * truncate operation that is in progress. We must redirty the
846 * page so that reclaim stops reclaiming it. Otherwise
847 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
848 *
849 * Note that the end_index is unsigned long, it would overflow
850 * if the given offset is greater than 16TB on 32-bit system
851 * and if we do check the page is fully outside i_size or not
852 * via "if (page->index >= end_index + 1)" as "end_index + 1"
853 * will be evaluated to 0. Hence this page will be redirtied
854 * and be written out repeatedly which would result in an
855 * infinite loop, the user program that perform this operation
856 * will hang. Instead, we can verify this situation by checking
857 * if the page to write is totally beyond the i_size or if it's
858 * offset is just equal to the EOF.
6b7a03f0 859 */
8695d27e
JL
860 if (page->index > end_index ||
861 (page->index == end_index && offset_into_page == 0))
ff9a28f6 862 goto redirty;
6b7a03f0
CH
863
864 /*
865 * The page straddles i_size. It must be zeroed out on each
866 * and every writepage invocation because it may be mmapped.
867 * "A file is mapped in multiples of the page size. For a file
8695d27e 868 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
869 * memory is zeroed when mapped, and writes to that region are
870 * not written out to the file."
871 */
09cbfeaf 872 zero_user_segment(page, offset_into_page, PAGE_SIZE);
8695d27e
JL
873
874 /* Adjust the end_offset to the end of file */
875 end_offset = offset;
1da177e4
LT
876 }
877
2d5f4b5b 878 return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
f51623b2 879
b5420f23 880redirty:
f51623b2
NS
881 redirty_page_for_writepage(wbc, page);
882 unlock_page(page);
883 return 0;
f51623b2
NS
884}
885
fbcc0256
DC
886STATIC int
887xfs_vm_writepage(
888 struct page *page,
889 struct writeback_control *wbc)
890{
891 struct xfs_writepage_ctx wpc = {
892 .io_type = XFS_IO_INVALID,
893 };
894 int ret;
895
896 ret = xfs_do_writepage(page, wbc, &wpc);
e10de372
DC
897 if (wpc.ioend)
898 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
899 return ret;
fbcc0256
DC
900}
901
7d4fb40a
NS
902STATIC int
903xfs_vm_writepages(
904 struct address_space *mapping,
905 struct writeback_control *wbc)
906{
fbcc0256
DC
907 struct xfs_writepage_ctx wpc = {
908 .io_type = XFS_IO_INVALID,
909 };
910 int ret;
911
b3aea4ed 912 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
fbcc0256 913 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
e10de372
DC
914 if (wpc.ioend)
915 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
916 return ret;
7d4fb40a
NS
917}
918
6e2608df
DW
919STATIC int
920xfs_dax_writepages(
921 struct address_space *mapping,
922 struct writeback_control *wbc)
923{
924 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
925 return dax_writeback_mapping_range(mapping,
926 xfs_find_bdev_for_inode(mapping->host), wbc);
927}
928
f51623b2 929STATIC int
238f4c54 930xfs_vm_releasepage(
f51623b2
NS
931 struct page *page,
932 gfp_t gfp_mask)
933{
34097dfe 934 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
82cb1417 935 return iomap_releasepage(page, gfp_mask);
1da177e4
LT
936}
937
1da177e4 938STATIC sector_t
e4c573bb 939xfs_vm_bmap(
1da177e4
LT
940 struct address_space *mapping,
941 sector_t block)
942{
b84e7722 943 struct xfs_inode *ip = XFS_I(mapping->host);
1da177e4 944
b84e7722 945 trace_xfs_vm_bmap(ip);
db1327b1
DW
946
947 /*
948 * The swap code (ab-)uses ->bmap to get a block mapping and then
793057e1 949 * bypasses the file system for actual I/O. We really can't allow
db1327b1 950 * that on reflinks inodes, so we have to skip out here. And yes,
eb5e248d
DW
951 * 0 is the magic code for a bmap error.
952 *
953 * Since we don't pass back blockdev info, we can't return bmap
954 * information for rt files either.
db1327b1 955 */
eb5e248d 956 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
db1327b1 957 return 0;
b84e7722 958 return iomap_bmap(mapping, block, &xfs_iomap_ops);
1da177e4
LT
959}
960
961STATIC int
e4c573bb 962xfs_vm_readpage(
1da177e4
LT
963 struct file *unused,
964 struct page *page)
965{
121e213e 966 trace_xfs_vm_readpage(page->mapping->host, 1);
82cb1417 967 return iomap_readpage(page, &xfs_iomap_ops);
1da177e4
LT
968}
969
970STATIC int
e4c573bb 971xfs_vm_readpages(
1da177e4
LT
972 struct file *unused,
973 struct address_space *mapping,
974 struct list_head *pages,
975 unsigned nr_pages)
976{
121e213e 977 trace_xfs_vm_readpages(mapping->host, nr_pages);
82cb1417 978 return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
22e757a4
DC
979}
980
67482129
DW
981static int
982xfs_iomap_swapfile_activate(
983 struct swap_info_struct *sis,
984 struct file *swap_file,
985 sector_t *span)
986{
987 sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
988 return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
989}
990
f5e54d6e 991const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
992 .readpage = xfs_vm_readpage,
993 .readpages = xfs_vm_readpages,
994 .writepage = xfs_vm_writepage,
7d4fb40a 995 .writepages = xfs_vm_writepages,
82cb1417 996 .set_page_dirty = iomap_set_page_dirty,
238f4c54
NS
997 .releasepage = xfs_vm_releasepage,
998 .invalidatepage = xfs_vm_invalidatepage,
e4c573bb 999 .bmap = xfs_vm_bmap,
6e2608df 1000 .direct_IO = noop_direct_IO,
82cb1417
CH
1001 .migratepage = iomap_migrate_page,
1002 .is_partially_uptodate = iomap_is_partially_uptodate,
aa261f54 1003 .error_remove_page = generic_error_remove_page,
67482129 1004 .swap_activate = xfs_iomap_swapfile_activate,
1da177e4 1005};
6e2608df
DW
1006
1007const struct address_space_operations xfs_dax_aops = {
1008 .writepages = xfs_dax_writepages,
1009 .direct_IO = noop_direct_IO,
1010 .set_page_dirty = noop_set_page_dirty,
1011 .invalidatepage = noop_invalidatepage,
67482129 1012 .swap_activate = xfs_iomap_swapfile_activate,
6e2608df 1013};
This page took 1.125738 seconds and 4 git commands to generate.