2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #define pr_fmt(fmt) "SVM: " fmt
20 #include <linux/kvm_host.h>
24 #include "kvm_cache_regs.h"
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40 #include <linux/psp-sev.h>
41 #include <linux/file.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
46 #include <asm/perf_event.h>
47 #include <asm/tlbflush.h>
49 #include <asm/debugreg.h>
50 #include <asm/kvm_para.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/spec-ctrl.h>
54 #include <asm/virtext.h>
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
62 static const struct x86_cpu_id svm_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_SVM),
66 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68 #define IOPM_ALLOC_ORDER 2
69 #define MSRPM_ALLOC_ORDER 1
71 #define SEG_TYPE_LDT 2
72 #define SEG_TYPE_BUSY_TSS16 3
74 #define SVM_FEATURE_NPT (1 << 0)
75 #define SVM_FEATURE_LBRV (1 << 1)
76 #define SVM_FEATURE_SVML (1 << 2)
77 #define SVM_FEATURE_NRIP (1 << 3)
78 #define SVM_FEATURE_TSC_RATE (1 << 4)
79 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
80 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
81 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
82 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
84 #define SVM_AVIC_DOORBELL 0xc001011b
86 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
87 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
88 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
90 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
92 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
93 #define TSC_RATIO_MIN 0x0000000000000001ULL
94 #define TSC_RATIO_MAX 0x000000ffffffffffULL
96 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
99 * 0xff is broadcast, so the max index allowed for physical APIC ID
100 * table is 0xfe. APIC IDs above 0xff are reserved.
102 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
104 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
105 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
106 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
108 /* AVIC GATAG is encoded using VM and VCPU IDs */
109 #define AVIC_VCPU_ID_BITS 8
110 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
112 #define AVIC_VM_ID_BITS 24
113 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
114 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
116 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
117 (y & AVIC_VCPU_ID_MASK))
118 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
119 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
121 static bool erratum_383_found __read_mostly;
123 static const u32 host_save_user_msrs[] = {
125 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
128 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
132 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
134 struct kvm_sev_info {
135 bool active; /* SEV enabled guest */
136 unsigned int asid; /* ASID used for this guest */
137 unsigned int handle; /* SEV firmware handle */
138 int fd; /* SEV device fd */
139 unsigned long pages_locked; /* Number of pages locked */
140 struct list_head regions_list; /* List of registered regions */
146 /* Struct members for AVIC */
148 struct page *avic_logical_id_table_page;
149 struct page *avic_physical_id_table_page;
150 struct hlist_node hnode;
152 struct kvm_sev_info sev_info;
157 struct nested_state {
163 /* These are the merged vectors */
166 /* gpa pointers to the real vectors */
170 /* A VMEXIT is required but not yet emulated */
173 /* cache for intercepts of the guest */
176 u32 intercept_exceptions;
179 /* Nested Paging related state */
183 #define MSRPM_OFFSETS 16
184 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
187 * Set osvw_len to higher value when updated Revision Guides
188 * are published and we know what the new status bits are
190 static uint64_t osvw_len = 4, osvw_status;
193 struct kvm_vcpu vcpu;
195 unsigned long vmcb_pa;
196 struct svm_cpu_data *svm_data;
197 uint64_t asid_generation;
198 uint64_t sysenter_esp;
199 uint64_t sysenter_eip;
206 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
216 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
217 * translated into the appropriate L2_CFG bits on the host to
218 * perform speculative control.
226 struct nested_state nested;
229 u64 nmi_singlestep_guest_rflags;
231 unsigned int3_injected;
232 unsigned long int3_rip;
234 /* cached guest cpuid flags for faster access */
235 bool nrips_enabled : 1;
239 struct page *avic_backing_page;
240 u64 *avic_physical_id_cache;
241 bool avic_is_running;
244 * Per-vcpu list of struct amd_svm_iommu_ir:
245 * This is used mainly to store interrupt remapping information used
246 * when update the vcpu affinity. This avoids the need to scan for
247 * IRTE and try to match ga_tag in the IOMMU driver.
249 struct list_head ir_list;
250 spinlock_t ir_list_lock;
252 /* which host CPU was used for running this vcpu */
253 unsigned int last_cpu;
257 * This is a wrapper of struct amd_iommu_ir_data.
259 struct amd_svm_iommu_ir {
260 struct list_head node; /* Used by SVM for per-vcpu ir_list */
261 void *data; /* Storing pointer to struct amd_ir_data */
264 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
265 #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31
266 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
268 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
269 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
270 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
271 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
273 static DEFINE_PER_CPU(u64, current_tsc_ratio);
274 #define TSC_RATIO_DEFAULT 0x0100000000ULL
276 #define MSR_INVALID 0xffffffffU
278 static const struct svm_direct_access_msrs {
279 u32 index; /* Index of the MSR */
280 bool always; /* True if intercept is always on */
281 } direct_access_msrs[] = {
282 { .index = MSR_STAR, .always = true },
283 { .index = MSR_IA32_SYSENTER_CS, .always = true },
285 { .index = MSR_GS_BASE, .always = true },
286 { .index = MSR_FS_BASE, .always = true },
287 { .index = MSR_KERNEL_GS_BASE, .always = true },
288 { .index = MSR_LSTAR, .always = true },
289 { .index = MSR_CSTAR, .always = true },
290 { .index = MSR_SYSCALL_MASK, .always = true },
292 { .index = MSR_IA32_SPEC_CTRL, .always = false },
293 { .index = MSR_IA32_PRED_CMD, .always = false },
294 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
295 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
296 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
297 { .index = MSR_IA32_LASTINTTOIP, .always = false },
298 { .index = MSR_INVALID, .always = false },
301 /* enable NPT for AMD64 and X86 with PAE */
302 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
303 static bool npt_enabled = true;
305 static bool npt_enabled;
309 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
310 * pause_filter_count: On processors that support Pause filtering(indicated
311 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
312 * count value. On VMRUN this value is loaded into an internal counter.
313 * Each time a pause instruction is executed, this counter is decremented
314 * until it reaches zero at which time a #VMEXIT is generated if pause
315 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
316 * Intercept Filtering for more details.
317 * This also indicate if ple logic enabled.
319 * pause_filter_thresh: In addition, some processor families support advanced
320 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
321 * the amount of time a guest is allowed to execute in a pause loop.
322 * In this mode, a 16-bit pause filter threshold field is added in the
323 * VMCB. The threshold value is a cycle count that is used to reset the
324 * pause counter. As with simple pause filtering, VMRUN loads the pause
325 * count value from VMCB into an internal counter. Then, on each pause
326 * instruction the hardware checks the elapsed number of cycles since
327 * the most recent pause instruction against the pause filter threshold.
328 * If the elapsed cycle count is greater than the pause filter threshold,
329 * then the internal pause count is reloaded from the VMCB and execution
330 * continues. If the elapsed cycle count is less than the pause filter
331 * threshold, then the internal pause count is decremented. If the count
332 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
333 * triggered. If advanced pause filtering is supported and pause filter
334 * threshold field is set to zero, the filter will operate in the simpler,
338 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
339 module_param(pause_filter_thresh, ushort, 0444);
341 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
342 module_param(pause_filter_count, ushort, 0444);
344 /* Default doubles per-vcpu window every exit. */
345 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
346 module_param(pause_filter_count_grow, ushort, 0444);
348 /* Default resets per-vcpu window every exit to pause_filter_count. */
349 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
350 module_param(pause_filter_count_shrink, ushort, 0444);
352 /* Default is to compute the maximum so we can never overflow. */
353 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
354 module_param(pause_filter_count_max, ushort, 0444);
356 /* allow nested paging (virtualized MMU) for all guests */
357 static int npt = true;
358 module_param(npt, int, S_IRUGO);
360 /* allow nested virtualization in KVM/SVM */
361 static int nested = true;
362 module_param(nested, int, S_IRUGO);
364 /* enable / disable AVIC */
366 #ifdef CONFIG_X86_LOCAL_APIC
367 module_param(avic, int, S_IRUGO);
370 /* enable/disable Virtual VMLOAD VMSAVE */
371 static int vls = true;
372 module_param(vls, int, 0444);
374 /* enable/disable Virtual GIF */
375 static int vgif = true;
376 module_param(vgif, int, 0444);
378 /* enable/disable SEV support */
379 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
380 module_param(sev, int, 0444);
382 static u8 rsm_ins_bytes[] = "\x0f\xaa";
384 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
385 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
386 static void svm_complete_interrupts(struct vcpu_svm *svm);
388 static int nested_svm_exit_handled(struct vcpu_svm *svm);
389 static int nested_svm_intercept(struct vcpu_svm *svm);
390 static int nested_svm_vmexit(struct vcpu_svm *svm);
391 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
392 bool has_error_code, u32 error_code);
395 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
396 pause filter count */
397 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
398 VMCB_ASID, /* ASID */
399 VMCB_INTR, /* int_ctl, int_vector */
400 VMCB_NPT, /* npt_en, nCR3, gPAT */
401 VMCB_CR, /* CR0, CR3, CR4, EFER */
402 VMCB_DR, /* DR6, DR7 */
403 VMCB_DT, /* GDT, IDT */
404 VMCB_SEG, /* CS, DS, SS, ES, CPL */
405 VMCB_CR2, /* CR2 only */
406 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
407 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
408 * AVIC PHYSICAL_TABLE pointer,
409 * AVIC LOGICAL_TABLE pointer
414 /* TPR and CR2 are always written before VMRUN */
415 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
417 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
419 static unsigned int max_sev_asid;
420 static unsigned int min_sev_asid;
421 static unsigned long *sev_asid_bitmap;
422 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
425 struct list_head list;
426 unsigned long npages;
433 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
435 return container_of(kvm, struct kvm_svm, kvm);
438 static inline bool svm_sev_enabled(void)
440 return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
443 static inline bool sev_guest(struct kvm *kvm)
445 #ifdef CONFIG_KVM_AMD_SEV
446 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
454 static inline int sev_get_asid(struct kvm *kvm)
456 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
461 static inline void mark_all_dirty(struct vmcb *vmcb)
463 vmcb->control.clean = 0;
466 static inline void mark_all_clean(struct vmcb *vmcb)
468 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
469 & ~VMCB_ALWAYS_DIRTY_MASK;
472 static inline void mark_dirty(struct vmcb *vmcb, int bit)
474 vmcb->control.clean &= ~(1 << bit);
477 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
479 return container_of(vcpu, struct vcpu_svm, vcpu);
482 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
484 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
485 mark_dirty(svm->vmcb, VMCB_AVIC);
488 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
490 struct vcpu_svm *svm = to_svm(vcpu);
491 u64 *entry = svm->avic_physical_id_cache;
496 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
499 static void recalc_intercepts(struct vcpu_svm *svm)
501 struct vmcb_control_area *c, *h;
502 struct nested_state *g;
504 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
506 if (!is_guest_mode(&svm->vcpu))
509 c = &svm->vmcb->control;
510 h = &svm->nested.hsave->control;
513 c->intercept_cr = h->intercept_cr | g->intercept_cr;
514 c->intercept_dr = h->intercept_dr | g->intercept_dr;
515 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
516 c->intercept = h->intercept | g->intercept;
519 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
521 if (is_guest_mode(&svm->vcpu))
522 return svm->nested.hsave;
527 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
529 struct vmcb *vmcb = get_host_vmcb(svm);
531 vmcb->control.intercept_cr |= (1U << bit);
533 recalc_intercepts(svm);
536 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
538 struct vmcb *vmcb = get_host_vmcb(svm);
540 vmcb->control.intercept_cr &= ~(1U << bit);
542 recalc_intercepts(svm);
545 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
547 struct vmcb *vmcb = get_host_vmcb(svm);
549 return vmcb->control.intercept_cr & (1U << bit);
552 static inline void set_dr_intercepts(struct vcpu_svm *svm)
554 struct vmcb *vmcb = get_host_vmcb(svm);
556 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
557 | (1 << INTERCEPT_DR1_READ)
558 | (1 << INTERCEPT_DR2_READ)
559 | (1 << INTERCEPT_DR3_READ)
560 | (1 << INTERCEPT_DR4_READ)
561 | (1 << INTERCEPT_DR5_READ)
562 | (1 << INTERCEPT_DR6_READ)
563 | (1 << INTERCEPT_DR7_READ)
564 | (1 << INTERCEPT_DR0_WRITE)
565 | (1 << INTERCEPT_DR1_WRITE)
566 | (1 << INTERCEPT_DR2_WRITE)
567 | (1 << INTERCEPT_DR3_WRITE)
568 | (1 << INTERCEPT_DR4_WRITE)
569 | (1 << INTERCEPT_DR5_WRITE)
570 | (1 << INTERCEPT_DR6_WRITE)
571 | (1 << INTERCEPT_DR7_WRITE);
573 recalc_intercepts(svm);
576 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
578 struct vmcb *vmcb = get_host_vmcb(svm);
580 vmcb->control.intercept_dr = 0;
582 recalc_intercepts(svm);
585 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
587 struct vmcb *vmcb = get_host_vmcb(svm);
589 vmcb->control.intercept_exceptions |= (1U << bit);
591 recalc_intercepts(svm);
594 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
596 struct vmcb *vmcb = get_host_vmcb(svm);
598 vmcb->control.intercept_exceptions &= ~(1U << bit);
600 recalc_intercepts(svm);
603 static inline void set_intercept(struct vcpu_svm *svm, int bit)
605 struct vmcb *vmcb = get_host_vmcb(svm);
607 vmcb->control.intercept |= (1ULL << bit);
609 recalc_intercepts(svm);
612 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
614 struct vmcb *vmcb = get_host_vmcb(svm);
616 vmcb->control.intercept &= ~(1ULL << bit);
618 recalc_intercepts(svm);
621 static inline bool vgif_enabled(struct vcpu_svm *svm)
623 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
626 static inline void enable_gif(struct vcpu_svm *svm)
628 if (vgif_enabled(svm))
629 svm->vmcb->control.int_ctl |= V_GIF_MASK;
631 svm->vcpu.arch.hflags |= HF_GIF_MASK;
634 static inline void disable_gif(struct vcpu_svm *svm)
636 if (vgif_enabled(svm))
637 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
639 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
642 static inline bool gif_set(struct vcpu_svm *svm)
644 if (vgif_enabled(svm))
645 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
647 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
650 static unsigned long iopm_base;
652 struct kvm_ldttss_desc {
655 unsigned base1:8, type:5, dpl:2, p:1;
656 unsigned limit1:4, zero0:3, g:1, base2:8;
659 } __attribute__((packed));
661 struct svm_cpu_data {
668 struct kvm_ldttss_desc *tss_desc;
670 struct page *save_area;
671 struct vmcb *current_vmcb;
673 /* index = sev_asid, value = vmcb pointer */
674 struct vmcb **sev_vmcbs;
677 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
679 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
681 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
682 #define MSRS_RANGE_SIZE 2048
683 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
685 static u32 svm_msrpm_offset(u32 msr)
690 for (i = 0; i < NUM_MSR_MAPS; i++) {
691 if (msr < msrpm_ranges[i] ||
692 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
695 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
696 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
698 /* Now we have the u8 offset - but need the u32 offset */
702 /* MSR not in any range */
706 #define MAX_INST_SIZE 15
708 static inline void clgi(void)
710 asm volatile (__ex("clgi"));
713 static inline void stgi(void)
715 asm volatile (__ex("stgi"));
718 static inline void invlpga(unsigned long addr, u32 asid)
720 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
723 static int get_npt_level(struct kvm_vcpu *vcpu)
726 return PT64_ROOT_4LEVEL;
728 return PT32E_ROOT_LEVEL;
732 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
734 vcpu->arch.efer = efer;
735 if (!npt_enabled && !(efer & EFER_LMA))
738 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
739 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
742 static int is_external_interrupt(u32 info)
744 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
745 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
748 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
750 struct vcpu_svm *svm = to_svm(vcpu);
753 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
754 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
758 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
760 struct vcpu_svm *svm = to_svm(vcpu);
763 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
765 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
769 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
771 struct vcpu_svm *svm = to_svm(vcpu);
773 if (svm->vmcb->control.next_rip != 0) {
774 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
775 svm->next_rip = svm->vmcb->control.next_rip;
778 if (!svm->next_rip) {
779 if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
781 printk(KERN_DEBUG "%s: NOP\n", __func__);
784 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
785 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
786 __func__, kvm_rip_read(vcpu), svm->next_rip);
788 kvm_rip_write(vcpu, svm->next_rip);
789 svm_set_interrupt_shadow(vcpu, 0);
792 static void svm_queue_exception(struct kvm_vcpu *vcpu)
794 struct vcpu_svm *svm = to_svm(vcpu);
795 unsigned nr = vcpu->arch.exception.nr;
796 bool has_error_code = vcpu->arch.exception.has_error_code;
797 bool reinject = vcpu->arch.exception.injected;
798 u32 error_code = vcpu->arch.exception.error_code;
801 * If we are within a nested VM we'd better #VMEXIT and let the guest
802 * handle the exception
805 nested_svm_check_exception(svm, nr, has_error_code, error_code))
808 kvm_deliver_exception_payload(&svm->vcpu);
810 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
811 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
814 * For guest debugging where we have to reinject #BP if some
815 * INT3 is guest-owned:
816 * Emulate nRIP by moving RIP forward. Will fail if injection
817 * raises a fault that is not intercepted. Still better than
818 * failing in all cases.
820 skip_emulated_instruction(&svm->vcpu);
821 rip = kvm_rip_read(&svm->vcpu);
822 svm->int3_rip = rip + svm->vmcb->save.cs.base;
823 svm->int3_injected = rip - old_rip;
826 svm->vmcb->control.event_inj = nr
828 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
829 | SVM_EVTINJ_TYPE_EXEPT;
830 svm->vmcb->control.event_inj_err = error_code;
833 static void svm_init_erratum_383(void)
839 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
842 /* Use _safe variants to not break nested virtualization */
843 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
849 low = lower_32_bits(val);
850 high = upper_32_bits(val);
852 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
854 erratum_383_found = true;
857 static void svm_init_osvw(struct kvm_vcpu *vcpu)
860 * Guests should see errata 400 and 415 as fixed (assuming that
861 * HLT and IO instructions are intercepted).
863 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
864 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
867 * By increasing VCPU's osvw.length to 3 we are telling the guest that
868 * all osvw.status bits inside that length, including bit 0 (which is
869 * reserved for erratum 298), are valid. However, if host processor's
870 * osvw_len is 0 then osvw_status[0] carries no information. We need to
871 * be conservative here and therefore we tell the guest that erratum 298
872 * is present (because we really don't know).
874 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
875 vcpu->arch.osvw.status |= 1;
878 static int has_svm(void)
882 if (!cpu_has_svm(&msg)) {
883 printk(KERN_INFO "has_svm: %s\n", msg);
890 static void svm_hardware_disable(void)
892 /* Make sure we clean up behind us */
893 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
894 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
898 amd_pmu_disable_virt();
901 static int svm_hardware_enable(void)
904 struct svm_cpu_data *sd;
906 struct desc_struct *gdt;
907 int me = raw_smp_processor_id();
909 rdmsrl(MSR_EFER, efer);
910 if (efer & EFER_SVME)
914 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
917 sd = per_cpu(svm_data, me);
919 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
923 sd->asid_generation = 1;
924 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
925 sd->next_asid = sd->max_asid + 1;
926 sd->min_asid = max_sev_asid + 1;
928 gdt = get_current_gdt_rw();
929 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
931 wrmsrl(MSR_EFER, efer | EFER_SVME);
933 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
935 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
936 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
937 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
944 * Note that it is possible to have a system with mixed processor
945 * revisions and therefore different OSVW bits. If bits are not the same
946 * on different processors then choose the worst case (i.e. if erratum
947 * is present on one processor and not on another then assume that the
948 * erratum is present everywhere).
950 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
951 uint64_t len, status = 0;
954 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
956 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
960 osvw_status = osvw_len = 0;
964 osvw_status |= status;
965 osvw_status &= (1ULL << osvw_len) - 1;
968 osvw_status = osvw_len = 0;
970 svm_init_erratum_383();
972 amd_pmu_enable_virt();
977 static void svm_cpu_uninit(int cpu)
979 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
984 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
985 kfree(sd->sev_vmcbs);
986 __free_page(sd->save_area);
990 static int svm_cpu_init(int cpu)
992 struct svm_cpu_data *sd;
995 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1000 sd->save_area = alloc_page(GFP_KERNEL);
1004 if (svm_sev_enabled()) {
1006 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1013 per_cpu(svm_data, cpu) = sd;
1023 static bool valid_msr_intercept(u32 index)
1027 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1028 if (direct_access_msrs[i].index == index)
1034 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1041 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1042 to_svm(vcpu)->msrpm;
1044 offset = svm_msrpm_offset(msr);
1045 bit_write = 2 * (msr & 0x0f) + 1;
1046 tmp = msrpm[offset];
1048 BUG_ON(offset == MSR_INVALID);
1050 return !!test_bit(bit_write, &tmp);
1053 static void set_msr_interception(u32 *msrpm, unsigned msr,
1054 int read, int write)
1056 u8 bit_read, bit_write;
1061 * If this warning triggers extend the direct_access_msrs list at the
1062 * beginning of the file
1064 WARN_ON(!valid_msr_intercept(msr));
1066 offset = svm_msrpm_offset(msr);
1067 bit_read = 2 * (msr & 0x0f);
1068 bit_write = 2 * (msr & 0x0f) + 1;
1069 tmp = msrpm[offset];
1071 BUG_ON(offset == MSR_INVALID);
1073 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1074 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1076 msrpm[offset] = tmp;
1079 static void svm_vcpu_init_msrpm(u32 *msrpm)
1083 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1085 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1086 if (!direct_access_msrs[i].always)
1089 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1093 static void add_msr_offset(u32 offset)
1097 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1099 /* Offset already in list? */
1100 if (msrpm_offsets[i] == offset)
1103 /* Slot used by another offset? */
1104 if (msrpm_offsets[i] != MSR_INVALID)
1107 /* Add offset to list */
1108 msrpm_offsets[i] = offset;
1114 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1115 * increase MSRPM_OFFSETS in this case.
1120 static void init_msrpm_offsets(void)
1124 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1126 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1129 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1130 BUG_ON(offset == MSR_INVALID);
1132 add_msr_offset(offset);
1136 static void svm_enable_lbrv(struct vcpu_svm *svm)
1138 u32 *msrpm = svm->msrpm;
1140 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1141 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1142 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1143 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1144 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1147 static void svm_disable_lbrv(struct vcpu_svm *svm)
1149 u32 *msrpm = svm->msrpm;
1151 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1152 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1153 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1154 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1155 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1158 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1160 svm->nmi_singlestep = false;
1162 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1163 /* Clear our flags if they were not set by the guest */
1164 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1165 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1166 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1167 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1172 * This hash table is used to map VM_ID to a struct kvm_svm,
1173 * when handling AMD IOMMU GALOG notification to schedule in
1174 * a particular vCPU.
1176 #define SVM_VM_DATA_HASH_BITS 8
1177 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1178 static u32 next_vm_id = 0;
1179 static bool next_vm_id_wrapped = 0;
1180 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1183 * This function is called from IOMMU driver to notify
1184 * SVM to schedule in a particular vCPU of a particular VM.
1186 static int avic_ga_log_notifier(u32 ga_tag)
1188 unsigned long flags;
1189 struct kvm_svm *kvm_svm;
1190 struct kvm_vcpu *vcpu = NULL;
1191 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1192 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1194 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1196 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1197 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1198 if (kvm_svm->avic_vm_id != vm_id)
1200 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1203 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1206 * At this point, the IOMMU should have already set the pending
1207 * bit in the vAPIC backing page. So, we just need to schedule
1211 kvm_vcpu_wake_up(vcpu);
1216 static __init int sev_hardware_setup(void)
1218 struct sev_user_data_status *status;
1221 /* Maximum number of encrypted guests supported simultaneously */
1222 max_sev_asid = cpuid_ecx(0x8000001F);
1227 /* Minimum ASID value that should be used for SEV guest */
1228 min_sev_asid = cpuid_edx(0x8000001F);
1230 /* Initialize SEV ASID bitmap */
1231 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1232 if (!sev_asid_bitmap)
1235 status = kmalloc(sizeof(*status), GFP_KERNEL);
1240 * Check SEV platform status.
1242 * PLATFORM_STATUS can be called in any state, if we failed to query
1243 * the PLATFORM status then either PSP firmware does not support SEV
1244 * feature or SEV firmware is dead.
1246 rc = sev_platform_status(status, NULL);
1250 pr_info("SEV supported\n");
1257 static void grow_ple_window(struct kvm_vcpu *vcpu)
1259 struct vcpu_svm *svm = to_svm(vcpu);
1260 struct vmcb_control_area *control = &svm->vmcb->control;
1261 int old = control->pause_filter_count;
1263 control->pause_filter_count = __grow_ple_window(old,
1265 pause_filter_count_grow,
1266 pause_filter_count_max);
1268 if (control->pause_filter_count != old)
1269 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1271 trace_kvm_ple_window_grow(vcpu->vcpu_id,
1272 control->pause_filter_count, old);
1275 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1277 struct vcpu_svm *svm = to_svm(vcpu);
1278 struct vmcb_control_area *control = &svm->vmcb->control;
1279 int old = control->pause_filter_count;
1281 control->pause_filter_count =
1282 __shrink_ple_window(old,
1284 pause_filter_count_shrink,
1285 pause_filter_count);
1286 if (control->pause_filter_count != old)
1287 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1289 trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1290 control->pause_filter_count, old);
1293 static __init int svm_hardware_setup(void)
1296 struct page *iopm_pages;
1300 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1305 iopm_va = page_address(iopm_pages);
1306 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1307 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1309 init_msrpm_offsets();
1311 if (boot_cpu_has(X86_FEATURE_NX))
1312 kvm_enable_efer_bits(EFER_NX);
1314 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1315 kvm_enable_efer_bits(EFER_FFXSR);
1317 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1318 kvm_has_tsc_control = true;
1319 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1320 kvm_tsc_scaling_ratio_frac_bits = 32;
1323 /* Check for pause filtering support */
1324 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1325 pause_filter_count = 0;
1326 pause_filter_thresh = 0;
1327 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1328 pause_filter_thresh = 0;
1332 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1333 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1337 if (boot_cpu_has(X86_FEATURE_SEV) &&
1338 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1339 r = sev_hardware_setup();
1347 for_each_possible_cpu(cpu) {
1348 r = svm_cpu_init(cpu);
1353 if (!boot_cpu_has(X86_FEATURE_NPT))
1354 npt_enabled = false;
1356 if (npt_enabled && !npt) {
1357 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1358 npt_enabled = false;
1362 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1369 !boot_cpu_has(X86_FEATURE_AVIC) ||
1370 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1373 pr_info("AVIC enabled\n");
1375 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1381 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1382 !IS_ENABLED(CONFIG_X86_64)) {
1385 pr_info("Virtual VMLOAD VMSAVE supported\n");
1390 if (!boot_cpu_has(X86_FEATURE_VGIF))
1393 pr_info("Virtual GIF supported\n");
1399 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1404 static __exit void svm_hardware_unsetup(void)
1408 if (svm_sev_enabled())
1409 bitmap_free(sev_asid_bitmap);
1411 for_each_possible_cpu(cpu)
1412 svm_cpu_uninit(cpu);
1414 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1418 static void init_seg(struct vmcb_seg *seg)
1421 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1422 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1423 seg->limit = 0xffff;
1427 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1430 seg->attrib = SVM_SELECTOR_P_MASK | type;
1431 seg->limit = 0xffff;
1435 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1437 struct vcpu_svm *svm = to_svm(vcpu);
1439 if (is_guest_mode(vcpu))
1440 return svm->nested.hsave->control.tsc_offset;
1442 return vcpu->arch.tsc_offset;
1445 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1447 struct vcpu_svm *svm = to_svm(vcpu);
1448 u64 g_tsc_offset = 0;
1450 if (is_guest_mode(vcpu)) {
1451 /* Write L1's TSC offset. */
1452 g_tsc_offset = svm->vmcb->control.tsc_offset -
1453 svm->nested.hsave->control.tsc_offset;
1454 svm->nested.hsave->control.tsc_offset = offset;
1457 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1458 svm->vmcb->control.tsc_offset - g_tsc_offset,
1461 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1463 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1464 return svm->vmcb->control.tsc_offset;
1467 static void avic_init_vmcb(struct vcpu_svm *svm)
1469 struct vmcb *vmcb = svm->vmcb;
1470 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1471 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1472 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1473 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1475 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1476 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1477 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1478 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1479 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1482 static void init_vmcb(struct vcpu_svm *svm)
1484 struct vmcb_control_area *control = &svm->vmcb->control;
1485 struct vmcb_save_area *save = &svm->vmcb->save;
1487 svm->vcpu.arch.hflags = 0;
1489 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1490 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1491 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1492 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1493 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1494 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1495 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1496 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1498 set_dr_intercepts(svm);
1500 set_exception_intercept(svm, PF_VECTOR);
1501 set_exception_intercept(svm, UD_VECTOR);
1502 set_exception_intercept(svm, MC_VECTOR);
1503 set_exception_intercept(svm, AC_VECTOR);
1504 set_exception_intercept(svm, DB_VECTOR);
1506 * Guest access to VMware backdoor ports could legitimately
1507 * trigger #GP because of TSS I/O permission bitmap.
1508 * We intercept those #GP and allow access to them anyway
1511 if (enable_vmware_backdoor)
1512 set_exception_intercept(svm, GP_VECTOR);
1514 set_intercept(svm, INTERCEPT_INTR);
1515 set_intercept(svm, INTERCEPT_NMI);
1516 set_intercept(svm, INTERCEPT_SMI);
1517 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1518 set_intercept(svm, INTERCEPT_RDPMC);
1519 set_intercept(svm, INTERCEPT_CPUID);
1520 set_intercept(svm, INTERCEPT_INVD);
1521 set_intercept(svm, INTERCEPT_INVLPG);
1522 set_intercept(svm, INTERCEPT_INVLPGA);
1523 set_intercept(svm, INTERCEPT_IOIO_PROT);
1524 set_intercept(svm, INTERCEPT_MSR_PROT);
1525 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1526 set_intercept(svm, INTERCEPT_SHUTDOWN);
1527 set_intercept(svm, INTERCEPT_VMRUN);
1528 set_intercept(svm, INTERCEPT_VMMCALL);
1529 set_intercept(svm, INTERCEPT_VMLOAD);
1530 set_intercept(svm, INTERCEPT_VMSAVE);
1531 set_intercept(svm, INTERCEPT_STGI);
1532 set_intercept(svm, INTERCEPT_CLGI);
1533 set_intercept(svm, INTERCEPT_SKINIT);
1534 set_intercept(svm, INTERCEPT_WBINVD);
1535 set_intercept(svm, INTERCEPT_XSETBV);
1536 set_intercept(svm, INTERCEPT_RSM);
1538 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1539 set_intercept(svm, INTERCEPT_MONITOR);
1540 set_intercept(svm, INTERCEPT_MWAIT);
1543 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1544 set_intercept(svm, INTERCEPT_HLT);
1546 control->iopm_base_pa = __sme_set(iopm_base);
1547 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1548 control->int_ctl = V_INTR_MASKING_MASK;
1550 init_seg(&save->es);
1551 init_seg(&save->ss);
1552 init_seg(&save->ds);
1553 init_seg(&save->fs);
1554 init_seg(&save->gs);
1556 save->cs.selector = 0xf000;
1557 save->cs.base = 0xffff0000;
1558 /* Executable/Readable Code Segment */
1559 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1560 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1561 save->cs.limit = 0xffff;
1563 save->gdtr.limit = 0xffff;
1564 save->idtr.limit = 0xffff;
1566 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1567 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1569 svm_set_efer(&svm->vcpu, 0);
1570 save->dr6 = 0xffff0ff0;
1571 kvm_set_rflags(&svm->vcpu, 2);
1572 save->rip = 0x0000fff0;
1573 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1576 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1577 * It also updates the guest-visible cr0 value.
1579 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1580 kvm_mmu_reset_context(&svm->vcpu);
1582 save->cr4 = X86_CR4_PAE;
1586 /* Setup VMCB for Nested Paging */
1587 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1588 clr_intercept(svm, INTERCEPT_INVLPG);
1589 clr_exception_intercept(svm, PF_VECTOR);
1590 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1591 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1592 save->g_pat = svm->vcpu.arch.pat;
1596 svm->asid_generation = 0;
1598 svm->nested.vmcb = 0;
1599 svm->vcpu.arch.hflags = 0;
1601 if (pause_filter_count) {
1602 control->pause_filter_count = pause_filter_count;
1603 if (pause_filter_thresh)
1604 control->pause_filter_thresh = pause_filter_thresh;
1605 set_intercept(svm, INTERCEPT_PAUSE);
1607 clr_intercept(svm, INTERCEPT_PAUSE);
1610 if (kvm_vcpu_apicv_active(&svm->vcpu))
1611 avic_init_vmcb(svm);
1614 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1615 * in VMCB and clear intercepts to avoid #VMEXIT.
1618 clr_intercept(svm, INTERCEPT_VMLOAD);
1619 clr_intercept(svm, INTERCEPT_VMSAVE);
1620 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1624 clr_intercept(svm, INTERCEPT_STGI);
1625 clr_intercept(svm, INTERCEPT_CLGI);
1626 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1629 if (sev_guest(svm->vcpu.kvm)) {
1630 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1631 clr_exception_intercept(svm, UD_VECTOR);
1634 mark_all_dirty(svm->vmcb);
1640 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1643 u64 *avic_physical_id_table;
1644 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1646 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1649 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1651 return &avic_physical_id_table[index];
1656 * AVIC hardware walks the nested page table to check permissions,
1657 * but does not use the SPA address specified in the leaf page
1658 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1659 * field of the VMCB. Therefore, we set up the
1660 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1662 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1664 struct kvm *kvm = vcpu->kvm;
1667 mutex_lock(&kvm->slots_lock);
1668 if (kvm->arch.apic_access_page_done)
1671 ret = __x86_set_memory_region(kvm,
1672 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1673 APIC_DEFAULT_PHYS_BASE,
1678 kvm->arch.apic_access_page_done = true;
1680 mutex_unlock(&kvm->slots_lock);
1684 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1687 u64 *entry, new_entry;
1688 int id = vcpu->vcpu_id;
1689 struct vcpu_svm *svm = to_svm(vcpu);
1691 ret = avic_init_access_page(vcpu);
1695 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1698 if (!svm->vcpu.arch.apic->regs)
1701 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1703 /* Setting AVIC backing page address in the phy APIC ID table */
1704 entry = avic_get_physical_id_entry(vcpu, id);
1708 new_entry = READ_ONCE(*entry);
1709 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1710 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1711 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1712 WRITE_ONCE(*entry, new_entry);
1714 svm->avic_physical_id_cache = entry;
1719 static void __sev_asid_free(int asid)
1721 struct svm_cpu_data *sd;
1725 clear_bit(pos, sev_asid_bitmap);
1727 for_each_possible_cpu(cpu) {
1728 sd = per_cpu(svm_data, cpu);
1729 sd->sev_vmcbs[pos] = NULL;
1733 static void sev_asid_free(struct kvm *kvm)
1735 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1737 __sev_asid_free(sev->asid);
1740 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1742 struct sev_data_decommission *decommission;
1743 struct sev_data_deactivate *data;
1748 data = kzalloc(sizeof(*data), GFP_KERNEL);
1752 /* deactivate handle */
1753 data->handle = handle;
1754 sev_guest_deactivate(data, NULL);
1756 wbinvd_on_all_cpus();
1757 sev_guest_df_flush(NULL);
1760 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1764 /* decommission handle */
1765 decommission->handle = handle;
1766 sev_guest_decommission(decommission, NULL);
1768 kfree(decommission);
1771 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1772 unsigned long ulen, unsigned long *n,
1775 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1776 unsigned long npages, npinned, size;
1777 unsigned long locked, lock_limit;
1778 struct page **pages;
1779 unsigned long first, last;
1781 if (ulen == 0 || uaddr + ulen < uaddr)
1784 /* Calculate number of pages. */
1785 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1786 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1787 npages = (last - first + 1);
1789 locked = sev->pages_locked + npages;
1790 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1791 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1792 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1796 /* Avoid using vmalloc for smaller buffers. */
1797 size = npages * sizeof(struct page *);
1798 if (size > PAGE_SIZE)
1799 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1802 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1807 /* Pin the user virtual address. */
1808 npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
1809 if (npinned != npages) {
1810 pr_err("SEV: Failure locking %lu pages.\n", npages);
1815 sev->pages_locked = locked;
1821 release_pages(pages, npinned);
1827 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1828 unsigned long npages)
1830 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1832 release_pages(pages, npages);
1834 sev->pages_locked -= npages;
1837 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1839 uint8_t *page_virtual;
1842 if (npages == 0 || pages == NULL)
1845 for (i = 0; i < npages; i++) {
1846 page_virtual = kmap_atomic(pages[i]);
1847 clflush_cache_range(page_virtual, PAGE_SIZE);
1848 kunmap_atomic(page_virtual);
1852 static void __unregister_enc_region_locked(struct kvm *kvm,
1853 struct enc_region *region)
1856 * The guest may change the memory encryption attribute from C=0 -> C=1
1857 * or vice versa for this memory range. Lets make sure caches are
1858 * flushed to ensure that guest data gets written into memory with
1861 sev_clflush_pages(region->pages, region->npages);
1863 sev_unpin_memory(kvm, region->pages, region->npages);
1864 list_del(®ion->list);
1868 static struct kvm *svm_vm_alloc(void)
1870 struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1871 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1873 return &kvm_svm->kvm;
1876 static void svm_vm_free(struct kvm *kvm)
1878 vfree(to_kvm_svm(kvm));
1881 static void sev_vm_destroy(struct kvm *kvm)
1883 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1884 struct list_head *head = &sev->regions_list;
1885 struct list_head *pos, *q;
1887 if (!sev_guest(kvm))
1890 mutex_lock(&kvm->lock);
1893 * if userspace was terminated before unregistering the memory regions
1894 * then lets unpin all the registered memory.
1896 if (!list_empty(head)) {
1897 list_for_each_safe(pos, q, head) {
1898 __unregister_enc_region_locked(kvm,
1899 list_entry(pos, struct enc_region, list));
1903 mutex_unlock(&kvm->lock);
1905 sev_unbind_asid(kvm, sev->handle);
1909 static void avic_vm_destroy(struct kvm *kvm)
1911 unsigned long flags;
1912 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1917 if (kvm_svm->avic_logical_id_table_page)
1918 __free_page(kvm_svm->avic_logical_id_table_page);
1919 if (kvm_svm->avic_physical_id_table_page)
1920 __free_page(kvm_svm->avic_physical_id_table_page);
1922 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1923 hash_del(&kvm_svm->hnode);
1924 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1927 static void svm_vm_destroy(struct kvm *kvm)
1929 avic_vm_destroy(kvm);
1930 sev_vm_destroy(kvm);
1933 static int avic_vm_init(struct kvm *kvm)
1935 unsigned long flags;
1937 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1939 struct page *p_page;
1940 struct page *l_page;
1946 /* Allocating physical APIC ID table (4KB) */
1947 p_page = alloc_page(GFP_KERNEL_ACCOUNT);
1951 kvm_svm->avic_physical_id_table_page = p_page;
1952 clear_page(page_address(p_page));
1954 /* Allocating logical APIC ID table (4KB) */
1955 l_page = alloc_page(GFP_KERNEL_ACCOUNT);
1959 kvm_svm->avic_logical_id_table_page = l_page;
1960 clear_page(page_address(l_page));
1962 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1964 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1965 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1966 next_vm_id_wrapped = 1;
1969 /* Is it still in use? Only possible if wrapped at least once */
1970 if (next_vm_id_wrapped) {
1971 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1972 if (k2->avic_vm_id == vm_id)
1976 kvm_svm->avic_vm_id = vm_id;
1977 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1978 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1983 avic_vm_destroy(kvm);
1988 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1991 unsigned long flags;
1992 struct amd_svm_iommu_ir *ir;
1993 struct vcpu_svm *svm = to_svm(vcpu);
1995 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1999 * Here, we go through the per-vcpu ir_list to update all existing
2000 * interrupt remapping table entry targeting this vcpu.
2002 spin_lock_irqsave(&svm->ir_list_lock, flags);
2004 if (list_empty(&svm->ir_list))
2007 list_for_each_entry(ir, &svm->ir_list, node) {
2008 ret = amd_iommu_update_ga(cpu, r, ir->data);
2013 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2017 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2020 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2021 int h_physical_id = kvm_cpu_get_apicid(cpu);
2022 struct vcpu_svm *svm = to_svm(vcpu);
2024 if (!kvm_vcpu_apicv_active(vcpu))
2027 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
2030 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2031 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2033 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2034 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2036 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2037 if (svm->avic_is_running)
2038 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2040 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2041 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2042 svm->avic_is_running);
2045 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2048 struct vcpu_svm *svm = to_svm(vcpu);
2050 if (!kvm_vcpu_apicv_active(vcpu))
2053 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2054 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2055 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2057 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2058 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2062 * This function is called during VCPU halt/unhalt.
2064 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2066 struct vcpu_svm *svm = to_svm(vcpu);
2068 svm->avic_is_running = is_run;
2070 avic_vcpu_load(vcpu, vcpu->cpu);
2072 avic_vcpu_put(vcpu);
2075 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2077 struct vcpu_svm *svm = to_svm(vcpu);
2081 vcpu->arch.microcode_version = 0x01000065;
2083 svm->virt_spec_ctrl = 0;
2086 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2087 MSR_IA32_APICBASE_ENABLE;
2088 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2089 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2093 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2094 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
2096 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2097 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2100 static int avic_init_vcpu(struct vcpu_svm *svm)
2104 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2107 ret = avic_init_backing_page(&svm->vcpu);
2111 INIT_LIST_HEAD(&svm->ir_list);
2112 spin_lock_init(&svm->ir_list_lock);
2113 svm->dfr_reg = APIC_DFR_FLAT;
2118 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2120 struct vcpu_svm *svm;
2122 struct page *msrpm_pages;
2123 struct page *hsave_page;
2124 struct page *nested_msrpm_pages;
2127 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
2133 svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
2134 GFP_KERNEL_ACCOUNT);
2135 if (!svm->vcpu.arch.guest_fpu) {
2136 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2138 goto free_partial_svm;
2141 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2146 page = alloc_page(GFP_KERNEL_ACCOUNT);
2150 msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2154 nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2155 if (!nested_msrpm_pages)
2158 hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2162 err = avic_init_vcpu(svm);
2166 /* We initialize this flag to true to make sure that the is_running
2167 * bit would be set the first time the vcpu is loaded.
2169 svm->avic_is_running = true;
2171 svm->nested.hsave = page_address(hsave_page);
2173 svm->msrpm = page_address(msrpm_pages);
2174 svm_vcpu_init_msrpm(svm->msrpm);
2176 svm->nested.msrpm = page_address(nested_msrpm_pages);
2177 svm_vcpu_init_msrpm(svm->nested.msrpm);
2179 svm->vmcb = page_address(page);
2180 clear_page(svm->vmcb);
2181 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2182 svm->asid_generation = 0;
2185 svm_init_osvw(&svm->vcpu);
2190 __free_page(hsave_page);
2192 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2194 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2198 kvm_vcpu_uninit(&svm->vcpu);
2200 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2202 kmem_cache_free(kvm_vcpu_cache, svm);
2204 return ERR_PTR(err);
2207 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2211 for_each_online_cpu(i)
2212 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2215 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2217 struct vcpu_svm *svm = to_svm(vcpu);
2220 * The vmcb page can be recycled, causing a false negative in
2221 * svm_vcpu_load(). So, ensure that no logical CPU has this
2222 * vmcb page recorded as its current vmcb.
2224 svm_clear_current_vmcb(svm->vmcb);
2226 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2227 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2228 __free_page(virt_to_page(svm->nested.hsave));
2229 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2230 kvm_vcpu_uninit(vcpu);
2231 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2232 kmem_cache_free(kvm_vcpu_cache, svm);
2235 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2237 struct vcpu_svm *svm = to_svm(vcpu);
2238 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2241 if (unlikely(cpu != vcpu->cpu)) {
2242 svm->asid_generation = 0;
2243 mark_all_dirty(svm->vmcb);
2246 #ifdef CONFIG_X86_64
2247 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2249 savesegment(fs, svm->host.fs);
2250 savesegment(gs, svm->host.gs);
2251 svm->host.ldt = kvm_read_ldt();
2253 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2254 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2256 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2257 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2258 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2259 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2260 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2263 /* This assumes that the kernel never uses MSR_TSC_AUX */
2264 if (static_cpu_has(X86_FEATURE_RDTSCP))
2265 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2267 if (sd->current_vmcb != svm->vmcb) {
2268 sd->current_vmcb = svm->vmcb;
2269 indirect_branch_prediction_barrier();
2271 avic_vcpu_load(vcpu, cpu);
2274 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2276 struct vcpu_svm *svm = to_svm(vcpu);
2279 avic_vcpu_put(vcpu);
2281 ++vcpu->stat.host_state_reload;
2282 kvm_load_ldt(svm->host.ldt);
2283 #ifdef CONFIG_X86_64
2284 loadsegment(fs, svm->host.fs);
2285 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2286 load_gs_index(svm->host.gs);
2288 #ifdef CONFIG_X86_32_LAZY_GS
2289 loadsegment(gs, svm->host.gs);
2292 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2293 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2296 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2298 avic_set_running(vcpu, false);
2301 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2303 avic_set_running(vcpu, true);
2306 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2308 struct vcpu_svm *svm = to_svm(vcpu);
2309 unsigned long rflags = svm->vmcb->save.rflags;
2311 if (svm->nmi_singlestep) {
2312 /* Hide our flags if they were not set by the guest */
2313 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2314 rflags &= ~X86_EFLAGS_TF;
2315 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2316 rflags &= ~X86_EFLAGS_RF;
2321 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2323 if (to_svm(vcpu)->nmi_singlestep)
2324 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2327 * Any change of EFLAGS.VM is accompanied by a reload of SS
2328 * (caused by either a task switch or an inter-privilege IRET),
2329 * so we do not need to update the CPL here.
2331 to_svm(vcpu)->vmcb->save.rflags = rflags;
2334 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2337 case VCPU_EXREG_PDPTR:
2338 BUG_ON(!npt_enabled);
2339 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2346 static void svm_set_vintr(struct vcpu_svm *svm)
2348 set_intercept(svm, INTERCEPT_VINTR);
2351 static void svm_clear_vintr(struct vcpu_svm *svm)
2353 clr_intercept(svm, INTERCEPT_VINTR);
2356 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2358 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2361 case VCPU_SREG_CS: return &save->cs;
2362 case VCPU_SREG_DS: return &save->ds;
2363 case VCPU_SREG_ES: return &save->es;
2364 case VCPU_SREG_FS: return &save->fs;
2365 case VCPU_SREG_GS: return &save->gs;
2366 case VCPU_SREG_SS: return &save->ss;
2367 case VCPU_SREG_TR: return &save->tr;
2368 case VCPU_SREG_LDTR: return &save->ldtr;
2374 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2376 struct vmcb_seg *s = svm_seg(vcpu, seg);
2381 static void svm_get_segment(struct kvm_vcpu *vcpu,
2382 struct kvm_segment *var, int seg)
2384 struct vmcb_seg *s = svm_seg(vcpu, seg);
2386 var->base = s->base;
2387 var->limit = s->limit;
2388 var->selector = s->selector;
2389 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2390 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2391 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2392 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2393 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2394 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2395 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2398 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2399 * However, the SVM spec states that the G bit is not observed by the
2400 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2401 * So let's synthesize a legal G bit for all segments, this helps
2402 * running KVM nested. It also helps cross-vendor migration, because
2403 * Intel's vmentry has a check on the 'G' bit.
2405 var->g = s->limit > 0xfffff;
2408 * AMD's VMCB does not have an explicit unusable field, so emulate it
2409 * for cross vendor migration purposes by "not present"
2411 var->unusable = !var->present;
2416 * Work around a bug where the busy flag in the tr selector
2426 * The accessed bit must always be set in the segment
2427 * descriptor cache, although it can be cleared in the
2428 * descriptor, the cached bit always remains at 1. Since
2429 * Intel has a check on this, set it here to support
2430 * cross-vendor migration.
2437 * On AMD CPUs sometimes the DB bit in the segment
2438 * descriptor is left as 1, although the whole segment has
2439 * been made unusable. Clear it here to pass an Intel VMX
2440 * entry check when cross vendor migrating.
2444 /* This is symmetric with svm_set_segment() */
2445 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2450 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2452 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2457 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2459 struct vcpu_svm *svm = to_svm(vcpu);
2461 dt->size = svm->vmcb->save.idtr.limit;
2462 dt->address = svm->vmcb->save.idtr.base;
2465 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2467 struct vcpu_svm *svm = to_svm(vcpu);
2469 svm->vmcb->save.idtr.limit = dt->size;
2470 svm->vmcb->save.idtr.base = dt->address ;
2471 mark_dirty(svm->vmcb, VMCB_DT);
2474 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2476 struct vcpu_svm *svm = to_svm(vcpu);
2478 dt->size = svm->vmcb->save.gdtr.limit;
2479 dt->address = svm->vmcb->save.gdtr.base;
2482 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2484 struct vcpu_svm *svm = to_svm(vcpu);
2486 svm->vmcb->save.gdtr.limit = dt->size;
2487 svm->vmcb->save.gdtr.base = dt->address ;
2488 mark_dirty(svm->vmcb, VMCB_DT);
2491 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2495 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2499 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2503 static void update_cr0_intercept(struct vcpu_svm *svm)
2505 ulong gcr0 = svm->vcpu.arch.cr0;
2506 u64 *hcr0 = &svm->vmcb->save.cr0;
2508 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2509 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2511 mark_dirty(svm->vmcb, VMCB_CR);
2513 if (gcr0 == *hcr0) {
2514 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2515 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2517 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2518 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2522 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2524 struct vcpu_svm *svm = to_svm(vcpu);
2526 #ifdef CONFIG_X86_64
2527 if (vcpu->arch.efer & EFER_LME) {
2528 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2529 vcpu->arch.efer |= EFER_LMA;
2530 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2533 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2534 vcpu->arch.efer &= ~EFER_LMA;
2535 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2539 vcpu->arch.cr0 = cr0;
2542 cr0 |= X86_CR0_PG | X86_CR0_WP;
2545 * re-enable caching here because the QEMU bios
2546 * does not do it - this results in some delay at
2549 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2550 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2551 svm->vmcb->save.cr0 = cr0;
2552 mark_dirty(svm->vmcb, VMCB_CR);
2553 update_cr0_intercept(svm);
2556 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2558 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2559 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2561 if (cr4 & X86_CR4_VMXE)
2564 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2565 svm_flush_tlb(vcpu, true);
2567 vcpu->arch.cr4 = cr4;
2570 cr4 |= host_cr4_mce;
2571 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2572 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2576 static void svm_set_segment(struct kvm_vcpu *vcpu,
2577 struct kvm_segment *var, int seg)
2579 struct vcpu_svm *svm = to_svm(vcpu);
2580 struct vmcb_seg *s = svm_seg(vcpu, seg);
2582 s->base = var->base;
2583 s->limit = var->limit;
2584 s->selector = var->selector;
2585 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2586 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2587 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2588 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2589 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2590 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2591 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2592 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2595 * This is always accurate, except if SYSRET returned to a segment
2596 * with SS.DPL != 3. Intel does not have this quirk, and always
2597 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2598 * would entail passing the CPL to userspace and back.
2600 if (seg == VCPU_SREG_SS)
2601 /* This is symmetric with svm_get_segment() */
2602 svm->vmcb->save.cpl = (var->dpl & 3);
2604 mark_dirty(svm->vmcb, VMCB_SEG);
2607 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2609 struct vcpu_svm *svm = to_svm(vcpu);
2611 clr_exception_intercept(svm, BP_VECTOR);
2613 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2614 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2615 set_exception_intercept(svm, BP_VECTOR);
2617 vcpu->guest_debug = 0;
2620 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2622 if (sd->next_asid > sd->max_asid) {
2623 ++sd->asid_generation;
2624 sd->next_asid = sd->min_asid;
2625 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2628 svm->asid_generation = sd->asid_generation;
2629 svm->vmcb->control.asid = sd->next_asid++;
2631 mark_dirty(svm->vmcb, VMCB_ASID);
2634 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2636 return to_svm(vcpu)->vmcb->save.dr6;
2639 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2641 struct vcpu_svm *svm = to_svm(vcpu);
2643 svm->vmcb->save.dr6 = value;
2644 mark_dirty(svm->vmcb, VMCB_DR);
2647 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2649 struct vcpu_svm *svm = to_svm(vcpu);
2651 get_debugreg(vcpu->arch.db[0], 0);
2652 get_debugreg(vcpu->arch.db[1], 1);
2653 get_debugreg(vcpu->arch.db[2], 2);
2654 get_debugreg(vcpu->arch.db[3], 3);
2655 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2656 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2658 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2659 set_dr_intercepts(svm);
2662 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2664 struct vcpu_svm *svm = to_svm(vcpu);
2666 svm->vmcb->save.dr7 = value;
2667 mark_dirty(svm->vmcb, VMCB_DR);
2670 static int pf_interception(struct vcpu_svm *svm)
2672 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2673 u64 error_code = svm->vmcb->control.exit_info_1;
2675 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2676 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2677 svm->vmcb->control.insn_bytes : NULL,
2678 svm->vmcb->control.insn_len);
2681 static int npf_interception(struct vcpu_svm *svm)
2683 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2684 u64 error_code = svm->vmcb->control.exit_info_1;
2686 trace_kvm_page_fault(fault_address, error_code);
2687 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2688 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2689 svm->vmcb->control.insn_bytes : NULL,
2690 svm->vmcb->control.insn_len);
2693 static int db_interception(struct vcpu_svm *svm)
2695 struct kvm_run *kvm_run = svm->vcpu.run;
2696 struct kvm_vcpu *vcpu = &svm->vcpu;
2698 if (!(svm->vcpu.guest_debug &
2699 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2700 !svm->nmi_singlestep) {
2701 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2705 if (svm->nmi_singlestep) {
2706 disable_nmi_singlestep(svm);
2707 /* Make sure we check for pending NMIs upon entry */
2708 kvm_make_request(KVM_REQ_EVENT, vcpu);
2711 if (svm->vcpu.guest_debug &
2712 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2713 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2714 kvm_run->debug.arch.pc =
2715 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2716 kvm_run->debug.arch.exception = DB_VECTOR;
2723 static int bp_interception(struct vcpu_svm *svm)
2725 struct kvm_run *kvm_run = svm->vcpu.run;
2727 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2728 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2729 kvm_run->debug.arch.exception = BP_VECTOR;
2733 static int ud_interception(struct vcpu_svm *svm)
2735 return handle_ud(&svm->vcpu);
2738 static int ac_interception(struct vcpu_svm *svm)
2740 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2744 static int gp_interception(struct vcpu_svm *svm)
2746 struct kvm_vcpu *vcpu = &svm->vcpu;
2747 u32 error_code = svm->vmcb->control.exit_info_1;
2750 WARN_ON_ONCE(!enable_vmware_backdoor);
2752 er = kvm_emulate_instruction(vcpu,
2753 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2754 if (er == EMULATE_USER_EXIT)
2756 else if (er != EMULATE_DONE)
2757 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2761 static bool is_erratum_383(void)
2766 if (!erratum_383_found)
2769 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2773 /* Bit 62 may or may not be set for this mce */
2774 value &= ~(1ULL << 62);
2776 if (value != 0xb600000000010015ULL)
2779 /* Clear MCi_STATUS registers */
2780 for (i = 0; i < 6; ++i)
2781 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2783 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2787 value &= ~(1ULL << 2);
2788 low = lower_32_bits(value);
2789 high = upper_32_bits(value);
2791 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2794 /* Flush tlb to evict multi-match entries */
2800 static void svm_handle_mce(struct vcpu_svm *svm)
2802 if (is_erratum_383()) {
2804 * Erratum 383 triggered. Guest state is corrupt so kill the
2807 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2809 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2815 * On an #MC intercept the MCE handler is not called automatically in
2816 * the host. So do it by hand here.
2820 /* not sure if we ever come back to this point */
2825 static int mc_interception(struct vcpu_svm *svm)
2830 static int shutdown_interception(struct vcpu_svm *svm)
2832 struct kvm_run *kvm_run = svm->vcpu.run;
2835 * VMCB is undefined after a SHUTDOWN intercept
2836 * so reinitialize it.
2838 clear_page(svm->vmcb);
2841 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2845 static int io_interception(struct vcpu_svm *svm)
2847 struct kvm_vcpu *vcpu = &svm->vcpu;
2848 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2849 int size, in, string;
2852 ++svm->vcpu.stat.io_exits;
2853 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2854 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2856 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
2858 port = io_info >> 16;
2859 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2860 svm->next_rip = svm->vmcb->control.exit_info_2;
2862 return kvm_fast_pio(&svm->vcpu, size, port, in);
2865 static int nmi_interception(struct vcpu_svm *svm)
2870 static int intr_interception(struct vcpu_svm *svm)
2872 ++svm->vcpu.stat.irq_exits;
2876 static int nop_on_interception(struct vcpu_svm *svm)
2881 static int halt_interception(struct vcpu_svm *svm)
2883 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2884 return kvm_emulate_halt(&svm->vcpu);
2887 static int vmmcall_interception(struct vcpu_svm *svm)
2889 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2890 return kvm_emulate_hypercall(&svm->vcpu);
2893 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2895 struct vcpu_svm *svm = to_svm(vcpu);
2897 return svm->nested.nested_cr3;
2900 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2902 struct vcpu_svm *svm = to_svm(vcpu);
2903 u64 cr3 = svm->nested.nested_cr3;
2907 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2908 offset_in_page(cr3) + index * 8, 8);
2914 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2917 struct vcpu_svm *svm = to_svm(vcpu);
2919 svm->vmcb->control.nested_cr3 = __sme_set(root);
2920 mark_dirty(svm->vmcb, VMCB_NPT);
2923 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2924 struct x86_exception *fault)
2926 struct vcpu_svm *svm = to_svm(vcpu);
2928 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2930 * TODO: track the cause of the nested page fault, and
2931 * correctly fill in the high bits of exit_info_1.
2933 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2934 svm->vmcb->control.exit_code_hi = 0;
2935 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2936 svm->vmcb->control.exit_info_2 = fault->address;
2939 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2940 svm->vmcb->control.exit_info_1 |= fault->error_code;
2943 * The present bit is always zero for page structure faults on real
2946 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2947 svm->vmcb->control.exit_info_1 &= ~1;
2949 nested_svm_vmexit(svm);
2952 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2954 WARN_ON(mmu_is_nested(vcpu));
2956 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
2957 kvm_init_shadow_mmu(vcpu);
2958 vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3;
2959 vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3;
2960 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
2961 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
2962 vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
2963 reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
2964 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2967 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2969 vcpu->arch.mmu = &vcpu->arch.root_mmu;
2970 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
2973 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2975 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2976 !is_paging(&svm->vcpu)) {
2977 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2981 if (svm->vmcb->save.cpl) {
2982 kvm_inject_gp(&svm->vcpu, 0);
2989 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2990 bool has_error_code, u32 error_code)
2994 if (!is_guest_mode(&svm->vcpu))
2997 vmexit = nested_svm_intercept(svm);
2998 if (vmexit != NESTED_EXIT_DONE)
3001 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3002 svm->vmcb->control.exit_code_hi = 0;
3003 svm->vmcb->control.exit_info_1 = error_code;
3006 * EXITINFO2 is undefined for all exception intercepts other
3009 if (svm->vcpu.arch.exception.nested_apf)
3010 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3011 else if (svm->vcpu.arch.exception.has_payload)
3012 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3014 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3016 svm->nested.exit_required = true;
3020 /* This function returns true if it is save to enable the irq window */
3021 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3023 if (!is_guest_mode(&svm->vcpu))
3026 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3029 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3033 * if vmexit was already requested (by intercepted exception
3034 * for instance) do not overwrite it with "external interrupt"
3037 if (svm->nested.exit_required)
3040 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3041 svm->vmcb->control.exit_info_1 = 0;
3042 svm->vmcb->control.exit_info_2 = 0;
3044 if (svm->nested.intercept & 1ULL) {
3046 * The #vmexit can't be emulated here directly because this
3047 * code path runs with irqs and preemption disabled. A
3048 * #vmexit emulation might sleep. Only signal request for
3051 svm->nested.exit_required = true;
3052 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3059 /* This function returns true if it is save to enable the nmi window */
3060 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3062 if (!is_guest_mode(&svm->vcpu))
3065 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3068 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3069 svm->nested.exit_required = true;
3074 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
3080 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
3081 if (is_error_page(page))
3089 kvm_inject_gp(&svm->vcpu, 0);
3094 static void nested_svm_unmap(struct page *page)
3097 kvm_release_page_dirty(page);
3100 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3102 unsigned port, size, iopm_len;
3107 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3108 return NESTED_EXIT_HOST;
3110 port = svm->vmcb->control.exit_info_1 >> 16;
3111 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3112 SVM_IOIO_SIZE_SHIFT;
3113 gpa = svm->nested.vmcb_iopm + (port / 8);
3114 start_bit = port % 8;
3115 iopm_len = (start_bit + size > 8) ? 2 : 1;
3116 mask = (0xf >> (4 - size)) << start_bit;
3119 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3120 return NESTED_EXIT_DONE;
3122 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3125 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3127 u32 offset, msr, value;
3130 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3131 return NESTED_EXIT_HOST;
3133 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3134 offset = svm_msrpm_offset(msr);
3135 write = svm->vmcb->control.exit_info_1 & 1;
3136 mask = 1 << ((2 * (msr & 0xf)) + write);
3138 if (offset == MSR_INVALID)
3139 return NESTED_EXIT_DONE;
3141 /* Offset is in 32 bit units but need in 8 bit units */
3144 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3145 return NESTED_EXIT_DONE;
3147 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3150 /* DB exceptions for our internal use must not cause vmexit */
3151 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3155 /* if we're not singlestepping, it's not ours */
3156 if (!svm->nmi_singlestep)
3157 return NESTED_EXIT_DONE;
3159 /* if it's not a singlestep exception, it's not ours */
3160 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3161 return NESTED_EXIT_DONE;
3162 if (!(dr6 & DR6_BS))
3163 return NESTED_EXIT_DONE;
3165 /* if the guest is singlestepping, it should get the vmexit */
3166 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3167 disable_nmi_singlestep(svm);
3168 return NESTED_EXIT_DONE;
3171 /* it's ours, the nested hypervisor must not see this one */
3172 return NESTED_EXIT_HOST;
3175 static int nested_svm_exit_special(struct vcpu_svm *svm)
3177 u32 exit_code = svm->vmcb->control.exit_code;
3179 switch (exit_code) {
3182 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3183 return NESTED_EXIT_HOST;
3185 /* For now we are always handling NPFs when using them */
3187 return NESTED_EXIT_HOST;
3189 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3190 /* When we're shadowing, trap PFs, but not async PF */
3191 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3192 return NESTED_EXIT_HOST;
3198 return NESTED_EXIT_CONTINUE;
3202 * If this function returns true, this #vmexit was already handled
3204 static int nested_svm_intercept(struct vcpu_svm *svm)
3206 u32 exit_code = svm->vmcb->control.exit_code;
3207 int vmexit = NESTED_EXIT_HOST;
3209 switch (exit_code) {
3211 vmexit = nested_svm_exit_handled_msr(svm);
3214 vmexit = nested_svm_intercept_ioio(svm);
3216 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3217 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3218 if (svm->nested.intercept_cr & bit)
3219 vmexit = NESTED_EXIT_DONE;
3222 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3223 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3224 if (svm->nested.intercept_dr & bit)
3225 vmexit = NESTED_EXIT_DONE;
3228 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3229 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3230 if (svm->nested.intercept_exceptions & excp_bits) {
3231 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3232 vmexit = nested_svm_intercept_db(svm);
3234 vmexit = NESTED_EXIT_DONE;
3236 /* async page fault always cause vmexit */
3237 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3238 svm->vcpu.arch.exception.nested_apf != 0)
3239 vmexit = NESTED_EXIT_DONE;
3242 case SVM_EXIT_ERR: {
3243 vmexit = NESTED_EXIT_DONE;
3247 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3248 if (svm->nested.intercept & exit_bits)
3249 vmexit = NESTED_EXIT_DONE;
3256 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3260 vmexit = nested_svm_intercept(svm);
3262 if (vmexit == NESTED_EXIT_DONE)
3263 nested_svm_vmexit(svm);
3268 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3270 struct vmcb_control_area *dst = &dst_vmcb->control;
3271 struct vmcb_control_area *from = &from_vmcb->control;
3273 dst->intercept_cr = from->intercept_cr;
3274 dst->intercept_dr = from->intercept_dr;
3275 dst->intercept_exceptions = from->intercept_exceptions;
3276 dst->intercept = from->intercept;
3277 dst->iopm_base_pa = from->iopm_base_pa;
3278 dst->msrpm_base_pa = from->msrpm_base_pa;
3279 dst->tsc_offset = from->tsc_offset;
3280 dst->asid = from->asid;
3281 dst->tlb_ctl = from->tlb_ctl;
3282 dst->int_ctl = from->int_ctl;
3283 dst->int_vector = from->int_vector;
3284 dst->int_state = from->int_state;
3285 dst->exit_code = from->exit_code;
3286 dst->exit_code_hi = from->exit_code_hi;
3287 dst->exit_info_1 = from->exit_info_1;
3288 dst->exit_info_2 = from->exit_info_2;
3289 dst->exit_int_info = from->exit_int_info;
3290 dst->exit_int_info_err = from->exit_int_info_err;
3291 dst->nested_ctl = from->nested_ctl;
3292 dst->event_inj = from->event_inj;
3293 dst->event_inj_err = from->event_inj_err;
3294 dst->nested_cr3 = from->nested_cr3;
3295 dst->virt_ext = from->virt_ext;
3296 dst->pause_filter_count = from->pause_filter_count;
3297 dst->pause_filter_thresh = from->pause_filter_thresh;
3300 static int nested_svm_vmexit(struct vcpu_svm *svm)
3302 struct vmcb *nested_vmcb;
3303 struct vmcb *hsave = svm->nested.hsave;
3304 struct vmcb *vmcb = svm->vmcb;
3307 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3308 vmcb->control.exit_info_1,
3309 vmcb->control.exit_info_2,
3310 vmcb->control.exit_int_info,
3311 vmcb->control.exit_int_info_err,
3314 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3318 /* Exit Guest-Mode */
3319 leave_guest_mode(&svm->vcpu);
3320 svm->nested.vmcb = 0;
3322 /* Give the current vmcb to the guest */
3325 nested_vmcb->save.es = vmcb->save.es;
3326 nested_vmcb->save.cs = vmcb->save.cs;
3327 nested_vmcb->save.ss = vmcb->save.ss;
3328 nested_vmcb->save.ds = vmcb->save.ds;
3329 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3330 nested_vmcb->save.idtr = vmcb->save.idtr;
3331 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3332 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3333 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3334 nested_vmcb->save.cr2 = vmcb->save.cr2;
3335 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3336 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3337 nested_vmcb->save.rip = vmcb->save.rip;
3338 nested_vmcb->save.rsp = vmcb->save.rsp;
3339 nested_vmcb->save.rax = vmcb->save.rax;
3340 nested_vmcb->save.dr7 = vmcb->save.dr7;
3341 nested_vmcb->save.dr6 = vmcb->save.dr6;
3342 nested_vmcb->save.cpl = vmcb->save.cpl;
3344 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3345 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3346 nested_vmcb->control.int_state = vmcb->control.int_state;
3347 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3348 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3349 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3350 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3351 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3352 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3354 if (svm->nrips_enabled)
3355 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3358 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3359 * to make sure that we do not lose injected events. So check event_inj
3360 * here and copy it to exit_int_info if it is valid.
3361 * Exit_int_info and event_inj can't be both valid because the case
3362 * below only happens on a VMRUN instruction intercept which has
3363 * no valid exit_int_info set.
3365 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3366 struct vmcb_control_area *nc = &nested_vmcb->control;
3368 nc->exit_int_info = vmcb->control.event_inj;
3369 nc->exit_int_info_err = vmcb->control.event_inj_err;
3372 nested_vmcb->control.tlb_ctl = 0;
3373 nested_vmcb->control.event_inj = 0;
3374 nested_vmcb->control.event_inj_err = 0;
3376 nested_vmcb->control.pause_filter_count =
3377 svm->vmcb->control.pause_filter_count;
3378 nested_vmcb->control.pause_filter_thresh =
3379 svm->vmcb->control.pause_filter_thresh;
3381 /* We always set V_INTR_MASKING and remember the old value in hflags */
3382 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3383 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3385 /* Restore the original control entries */
3386 copy_vmcb_control_area(vmcb, hsave);
3388 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3389 kvm_clear_exception_queue(&svm->vcpu);
3390 kvm_clear_interrupt_queue(&svm->vcpu);
3392 svm->nested.nested_cr3 = 0;
3394 /* Restore selected save entries */
3395 svm->vmcb->save.es = hsave->save.es;
3396 svm->vmcb->save.cs = hsave->save.cs;
3397 svm->vmcb->save.ss = hsave->save.ss;
3398 svm->vmcb->save.ds = hsave->save.ds;
3399 svm->vmcb->save.gdtr = hsave->save.gdtr;
3400 svm->vmcb->save.idtr = hsave->save.idtr;
3401 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3402 svm_set_efer(&svm->vcpu, hsave->save.efer);
3403 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3404 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3406 svm->vmcb->save.cr3 = hsave->save.cr3;
3407 svm->vcpu.arch.cr3 = hsave->save.cr3;
3409 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3411 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3412 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3413 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3414 svm->vmcb->save.dr7 = 0;
3415 svm->vmcb->save.cpl = 0;
3416 svm->vmcb->control.exit_int_info = 0;
3418 mark_all_dirty(svm->vmcb);
3420 nested_svm_unmap(page);
3422 nested_svm_uninit_mmu_context(&svm->vcpu);
3423 kvm_mmu_reset_context(&svm->vcpu);
3424 kvm_mmu_load(&svm->vcpu);
3427 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3428 * doesn't end up in L1.
3430 svm->vcpu.arch.nmi_injected = false;
3431 kvm_clear_exception_queue(&svm->vcpu);
3432 kvm_clear_interrupt_queue(&svm->vcpu);
3437 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3440 * This function merges the msr permission bitmaps of kvm and the
3441 * nested vmcb. It is optimized in that it only merges the parts where
3442 * the kvm msr permission bitmap may contain zero bits
3446 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3449 for (i = 0; i < MSRPM_OFFSETS; i++) {
3453 if (msrpm_offsets[i] == 0xffffffff)
3456 p = msrpm_offsets[i];
3457 offset = svm->nested.vmcb_msrpm + (p * 4);
3459 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3462 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3465 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3470 static bool nested_vmcb_checks(struct vmcb *vmcb)
3472 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3475 if (vmcb->control.asid == 0)
3478 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3485 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3486 struct vmcb *nested_vmcb, struct page *page)
3488 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3489 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3491 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3493 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3494 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3495 nested_svm_init_mmu_context(&svm->vcpu);
3498 /* Load the nested guest state */
3499 svm->vmcb->save.es = nested_vmcb->save.es;
3500 svm->vmcb->save.cs = nested_vmcb->save.cs;
3501 svm->vmcb->save.ss = nested_vmcb->save.ss;
3502 svm->vmcb->save.ds = nested_vmcb->save.ds;
3503 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3504 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3505 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3506 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3507 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3508 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3510 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3511 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3513 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3515 /* Guest paging mode is active - reset mmu */
3516 kvm_mmu_reset_context(&svm->vcpu);
3518 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3519 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3520 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3521 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3523 /* In case we don't even reach vcpu_run, the fields are not updated */
3524 svm->vmcb->save.rax = nested_vmcb->save.rax;
3525 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3526 svm->vmcb->save.rip = nested_vmcb->save.rip;
3527 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3528 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3529 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3531 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3532 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3534 /* cache intercepts */
3535 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3536 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3537 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3538 svm->nested.intercept = nested_vmcb->control.intercept;
3540 svm_flush_tlb(&svm->vcpu, true);
3541 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3542 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3543 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3545 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3547 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3548 /* We only want the cr8 intercept bits of the guest */
3549 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3550 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3553 /* We don't want to see VMMCALLs from a nested guest */
3554 clr_intercept(svm, INTERCEPT_VMMCALL);
3556 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3557 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3559 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3560 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3561 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3562 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3563 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3565 svm->vmcb->control.pause_filter_count =
3566 nested_vmcb->control.pause_filter_count;
3567 svm->vmcb->control.pause_filter_thresh =
3568 nested_vmcb->control.pause_filter_thresh;
3570 nested_svm_unmap(page);
3572 /* Enter Guest-Mode */
3573 enter_guest_mode(&svm->vcpu);
3576 * Merge guest and host intercepts - must be called with vcpu in
3577 * guest-mode to take affect here
3579 recalc_intercepts(svm);
3581 svm->nested.vmcb = vmcb_gpa;
3585 mark_all_dirty(svm->vmcb);
3588 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3590 struct vmcb *nested_vmcb;
3591 struct vmcb *hsave = svm->nested.hsave;
3592 struct vmcb *vmcb = svm->vmcb;
3596 vmcb_gpa = svm->vmcb->save.rax;
3598 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3602 if (!nested_vmcb_checks(nested_vmcb)) {
3603 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3604 nested_vmcb->control.exit_code_hi = 0;
3605 nested_vmcb->control.exit_info_1 = 0;
3606 nested_vmcb->control.exit_info_2 = 0;
3608 nested_svm_unmap(page);
3613 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3614 nested_vmcb->save.rip,
3615 nested_vmcb->control.int_ctl,
3616 nested_vmcb->control.event_inj,
3617 nested_vmcb->control.nested_ctl);
3619 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3620 nested_vmcb->control.intercept_cr >> 16,
3621 nested_vmcb->control.intercept_exceptions,
3622 nested_vmcb->control.intercept);
3624 /* Clear internal status */
3625 kvm_clear_exception_queue(&svm->vcpu);
3626 kvm_clear_interrupt_queue(&svm->vcpu);
3629 * Save the old vmcb, so we don't need to pick what we save, but can
3630 * restore everything when a VMEXIT occurs
3632 hsave->save.es = vmcb->save.es;
3633 hsave->save.cs = vmcb->save.cs;
3634 hsave->save.ss = vmcb->save.ss;
3635 hsave->save.ds = vmcb->save.ds;
3636 hsave->save.gdtr = vmcb->save.gdtr;
3637 hsave->save.idtr = vmcb->save.idtr;
3638 hsave->save.efer = svm->vcpu.arch.efer;
3639 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3640 hsave->save.cr4 = svm->vcpu.arch.cr4;
3641 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3642 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3643 hsave->save.rsp = vmcb->save.rsp;
3644 hsave->save.rax = vmcb->save.rax;
3646 hsave->save.cr3 = vmcb->save.cr3;
3648 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3650 copy_vmcb_control_area(hsave, vmcb);
3652 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3657 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3659 to_vmcb->save.fs = from_vmcb->save.fs;
3660 to_vmcb->save.gs = from_vmcb->save.gs;
3661 to_vmcb->save.tr = from_vmcb->save.tr;
3662 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3663 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3664 to_vmcb->save.star = from_vmcb->save.star;
3665 to_vmcb->save.lstar = from_vmcb->save.lstar;
3666 to_vmcb->save.cstar = from_vmcb->save.cstar;
3667 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3668 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3669 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3670 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3673 static int vmload_interception(struct vcpu_svm *svm)
3675 struct vmcb *nested_vmcb;
3679 if (nested_svm_check_permissions(svm))
3682 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3686 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3687 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3689 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3690 nested_svm_unmap(page);
3695 static int vmsave_interception(struct vcpu_svm *svm)
3697 struct vmcb *nested_vmcb;
3701 if (nested_svm_check_permissions(svm))
3704 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3708 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3709 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3711 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3712 nested_svm_unmap(page);
3717 static int vmrun_interception(struct vcpu_svm *svm)
3719 if (nested_svm_check_permissions(svm))
3722 /* Save rip after vmrun instruction */
3723 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3725 if (!nested_svm_vmrun(svm))
3728 if (!nested_svm_vmrun_msrpm(svm))
3735 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3736 svm->vmcb->control.exit_code_hi = 0;
3737 svm->vmcb->control.exit_info_1 = 0;
3738 svm->vmcb->control.exit_info_2 = 0;
3740 nested_svm_vmexit(svm);
3745 static int stgi_interception(struct vcpu_svm *svm)
3749 if (nested_svm_check_permissions(svm))
3753 * If VGIF is enabled, the STGI intercept is only added to
3754 * detect the opening of the SMI/NMI window; remove it now.
3756 if (vgif_enabled(svm))
3757 clr_intercept(svm, INTERCEPT_STGI);
3759 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3760 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3761 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3768 static int clgi_interception(struct vcpu_svm *svm)
3772 if (nested_svm_check_permissions(svm))
3775 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3776 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3780 /* After a CLGI no interrupts should come */
3781 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3782 svm_clear_vintr(svm);
3783 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3784 mark_dirty(svm->vmcb, VMCB_INTR);
3790 static int invlpga_interception(struct vcpu_svm *svm)
3792 struct kvm_vcpu *vcpu = &svm->vcpu;
3794 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3795 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3797 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3798 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3800 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3801 return kvm_skip_emulated_instruction(&svm->vcpu);
3804 static int skinit_interception(struct vcpu_svm *svm)
3806 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3808 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3812 static int wbinvd_interception(struct vcpu_svm *svm)
3814 return kvm_emulate_wbinvd(&svm->vcpu);
3817 static int xsetbv_interception(struct vcpu_svm *svm)
3819 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3820 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3822 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3823 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3824 return kvm_skip_emulated_instruction(&svm->vcpu);
3830 static int task_switch_interception(struct vcpu_svm *svm)
3834 int int_type = svm->vmcb->control.exit_int_info &
3835 SVM_EXITINTINFO_TYPE_MASK;
3836 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3838 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3840 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3841 bool has_error_code = false;
3844 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3846 if (svm->vmcb->control.exit_info_2 &
3847 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3848 reason = TASK_SWITCH_IRET;
3849 else if (svm->vmcb->control.exit_info_2 &
3850 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3851 reason = TASK_SWITCH_JMP;
3853 reason = TASK_SWITCH_GATE;
3855 reason = TASK_SWITCH_CALL;
3857 if (reason == TASK_SWITCH_GATE) {
3859 case SVM_EXITINTINFO_TYPE_NMI:
3860 svm->vcpu.arch.nmi_injected = false;
3862 case SVM_EXITINTINFO_TYPE_EXEPT:
3863 if (svm->vmcb->control.exit_info_2 &
3864 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3865 has_error_code = true;
3867 (u32)svm->vmcb->control.exit_info_2;
3869 kvm_clear_exception_queue(&svm->vcpu);
3871 case SVM_EXITINTINFO_TYPE_INTR:
3872 kvm_clear_interrupt_queue(&svm->vcpu);
3879 if (reason != TASK_SWITCH_GATE ||
3880 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3881 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3882 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3883 skip_emulated_instruction(&svm->vcpu);
3885 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3888 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3889 has_error_code, error_code) == EMULATE_FAIL) {
3890 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3891 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3892 svm->vcpu.run->internal.ndata = 0;
3898 static int cpuid_interception(struct vcpu_svm *svm)
3900 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3901 return kvm_emulate_cpuid(&svm->vcpu);
3904 static int iret_interception(struct vcpu_svm *svm)
3906 ++svm->vcpu.stat.nmi_window_exits;
3907 clr_intercept(svm, INTERCEPT_IRET);
3908 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3909 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3910 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3914 static int invlpg_interception(struct vcpu_svm *svm)
3916 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3917 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3919 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3920 return kvm_skip_emulated_instruction(&svm->vcpu);
3923 static int emulate_on_interception(struct vcpu_svm *svm)
3925 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3928 static int rsm_interception(struct vcpu_svm *svm)
3930 return kvm_emulate_instruction_from_buffer(&svm->vcpu,
3931 rsm_ins_bytes, 2) == EMULATE_DONE;
3934 static int rdpmc_interception(struct vcpu_svm *svm)
3938 if (!static_cpu_has(X86_FEATURE_NRIPS))
3939 return emulate_on_interception(svm);
3941 err = kvm_rdpmc(&svm->vcpu);
3942 return kvm_complete_insn_gp(&svm->vcpu, err);
3945 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3948 unsigned long cr0 = svm->vcpu.arch.cr0;
3952 intercept = svm->nested.intercept;
3954 if (!is_guest_mode(&svm->vcpu) ||
3955 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3958 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3959 val &= ~SVM_CR0_SELECTIVE_MASK;
3962 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3963 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3969 #define CR_VALID (1ULL << 63)
3971 static int cr_interception(struct vcpu_svm *svm)
3977 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3978 return emulate_on_interception(svm);
3980 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3981 return emulate_on_interception(svm);
3983 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3984 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3985 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3987 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3990 if (cr >= 16) { /* mov to cr */
3992 val = kvm_register_read(&svm->vcpu, reg);
3995 if (!check_selective_cr0_intercepted(svm, val))
3996 err = kvm_set_cr0(&svm->vcpu, val);
4002 err = kvm_set_cr3(&svm->vcpu, val);
4005 err = kvm_set_cr4(&svm->vcpu, val);
4008 err = kvm_set_cr8(&svm->vcpu, val);
4011 WARN(1, "unhandled write to CR%d", cr);
4012 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4015 } else { /* mov from cr */
4018 val = kvm_read_cr0(&svm->vcpu);
4021 val = svm->vcpu.arch.cr2;
4024 val = kvm_read_cr3(&svm->vcpu);
4027 val = kvm_read_cr4(&svm->vcpu);
4030 val = kvm_get_cr8(&svm->vcpu);
4033 WARN(1, "unhandled read from CR%d", cr);
4034 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4037 kvm_register_write(&svm->vcpu, reg, val);
4039 return kvm_complete_insn_gp(&svm->vcpu, err);
4042 static int dr_interception(struct vcpu_svm *svm)
4047 if (svm->vcpu.guest_debug == 0) {
4049 * No more DR vmexits; force a reload of the debug registers
4050 * and reenter on this instruction. The next vmexit will
4051 * retrieve the full state of the debug registers.
4053 clr_dr_intercepts(svm);
4054 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4058 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4059 return emulate_on_interception(svm);
4061 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4062 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4064 if (dr >= 16) { /* mov to DRn */
4065 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4067 val = kvm_register_read(&svm->vcpu, reg);
4068 kvm_set_dr(&svm->vcpu, dr - 16, val);
4070 if (!kvm_require_dr(&svm->vcpu, dr))
4072 kvm_get_dr(&svm->vcpu, dr, &val);
4073 kvm_register_write(&svm->vcpu, reg, val);
4076 return kvm_skip_emulated_instruction(&svm->vcpu);
4079 static int cr8_write_interception(struct vcpu_svm *svm)
4081 struct kvm_run *kvm_run = svm->vcpu.run;
4084 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4085 /* instruction emulation calls kvm_set_cr8() */
4086 r = cr_interception(svm);
4087 if (lapic_in_kernel(&svm->vcpu))
4089 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4091 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4095 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4099 switch (msr->index) {
4100 case MSR_F10H_DECFG:
4101 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4102 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4111 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4113 struct vcpu_svm *svm = to_svm(vcpu);
4115 switch (msr_info->index) {
4117 msr_info->data = svm->vmcb->save.star;
4119 #ifdef CONFIG_X86_64
4121 msr_info->data = svm->vmcb->save.lstar;
4124 msr_info->data = svm->vmcb->save.cstar;
4126 case MSR_KERNEL_GS_BASE:
4127 msr_info->data = svm->vmcb->save.kernel_gs_base;
4129 case MSR_SYSCALL_MASK:
4130 msr_info->data = svm->vmcb->save.sfmask;
4133 case MSR_IA32_SYSENTER_CS:
4134 msr_info->data = svm->vmcb->save.sysenter_cs;
4136 case MSR_IA32_SYSENTER_EIP:
4137 msr_info->data = svm->sysenter_eip;
4139 case MSR_IA32_SYSENTER_ESP:
4140 msr_info->data = svm->sysenter_esp;
4143 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4145 msr_info->data = svm->tsc_aux;
4148 * Nobody will change the following 5 values in the VMCB so we can
4149 * safely return them on rdmsr. They will always be 0 until LBRV is
4152 case MSR_IA32_DEBUGCTLMSR:
4153 msr_info->data = svm->vmcb->save.dbgctl;
4155 case MSR_IA32_LASTBRANCHFROMIP:
4156 msr_info->data = svm->vmcb->save.br_from;
4158 case MSR_IA32_LASTBRANCHTOIP:
4159 msr_info->data = svm->vmcb->save.br_to;
4161 case MSR_IA32_LASTINTFROMIP:
4162 msr_info->data = svm->vmcb->save.last_excp_from;
4164 case MSR_IA32_LASTINTTOIP:
4165 msr_info->data = svm->vmcb->save.last_excp_to;
4167 case MSR_VM_HSAVE_PA:
4168 msr_info->data = svm->nested.hsave_msr;
4171 msr_info->data = svm->nested.vm_cr_msr;
4173 case MSR_IA32_SPEC_CTRL:
4174 if (!msr_info->host_initiated &&
4175 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4176 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4179 msr_info->data = svm->spec_ctrl;
4181 case MSR_AMD64_VIRT_SPEC_CTRL:
4182 if (!msr_info->host_initiated &&
4183 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4186 msr_info->data = svm->virt_spec_ctrl;
4188 case MSR_F15H_IC_CFG: {
4192 family = guest_cpuid_family(vcpu);
4193 model = guest_cpuid_model(vcpu);
4195 if (family < 0 || model < 0)
4196 return kvm_get_msr_common(vcpu, msr_info);
4200 if (family == 0x15 &&
4201 (model >= 0x2 && model < 0x20))
4202 msr_info->data = 0x1E;
4205 case MSR_F10H_DECFG:
4206 msr_info->data = svm->msr_decfg;
4209 return kvm_get_msr_common(vcpu, msr_info);
4214 static int rdmsr_interception(struct vcpu_svm *svm)
4216 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4217 struct msr_data msr_info;
4219 msr_info.index = ecx;
4220 msr_info.host_initiated = false;
4221 if (svm_get_msr(&svm->vcpu, &msr_info)) {
4222 trace_kvm_msr_read_ex(ecx);
4223 kvm_inject_gp(&svm->vcpu, 0);
4226 trace_kvm_msr_read(ecx, msr_info.data);
4228 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4229 msr_info.data & 0xffffffff);
4230 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4231 msr_info.data >> 32);
4232 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4233 return kvm_skip_emulated_instruction(&svm->vcpu);
4237 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4239 struct vcpu_svm *svm = to_svm(vcpu);
4240 int svm_dis, chg_mask;
4242 if (data & ~SVM_VM_CR_VALID_MASK)
4245 chg_mask = SVM_VM_CR_VALID_MASK;
4247 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4248 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4250 svm->nested.vm_cr_msr &= ~chg_mask;
4251 svm->nested.vm_cr_msr |= (data & chg_mask);
4253 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4255 /* check for svm_disable while efer.svme is set */
4256 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4262 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4264 struct vcpu_svm *svm = to_svm(vcpu);
4266 u32 ecx = msr->index;
4267 u64 data = msr->data;
4269 case MSR_IA32_CR_PAT:
4270 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4272 vcpu->arch.pat = data;
4273 svm->vmcb->save.g_pat = data;
4274 mark_dirty(svm->vmcb, VMCB_NPT);
4276 case MSR_IA32_SPEC_CTRL:
4277 if (!msr->host_initiated &&
4278 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4279 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4282 /* The STIBP bit doesn't fault even if it's not advertised */
4283 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4286 svm->spec_ctrl = data;
4293 * When it's written (to non-zero) for the first time, pass
4297 * The handling of the MSR bitmap for L2 guests is done in
4298 * nested_svm_vmrun_msrpm.
4299 * We update the L1 MSR bit as well since it will end up
4300 * touching the MSR anyway now.
4302 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4304 case MSR_IA32_PRED_CMD:
4305 if (!msr->host_initiated &&
4306 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4309 if (data & ~PRED_CMD_IBPB)
4315 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4316 if (is_guest_mode(vcpu))
4318 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4320 case MSR_AMD64_VIRT_SPEC_CTRL:
4321 if (!msr->host_initiated &&
4322 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4325 if (data & ~SPEC_CTRL_SSBD)
4328 svm->virt_spec_ctrl = data;
4331 svm->vmcb->save.star = data;
4333 #ifdef CONFIG_X86_64
4335 svm->vmcb->save.lstar = data;
4338 svm->vmcb->save.cstar = data;
4340 case MSR_KERNEL_GS_BASE:
4341 svm->vmcb->save.kernel_gs_base = data;
4343 case MSR_SYSCALL_MASK:
4344 svm->vmcb->save.sfmask = data;
4347 case MSR_IA32_SYSENTER_CS:
4348 svm->vmcb->save.sysenter_cs = data;
4350 case MSR_IA32_SYSENTER_EIP:
4351 svm->sysenter_eip = data;
4352 svm->vmcb->save.sysenter_eip = data;
4354 case MSR_IA32_SYSENTER_ESP:
4355 svm->sysenter_esp = data;
4356 svm->vmcb->save.sysenter_esp = data;
4359 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4363 * This is rare, so we update the MSR here instead of using
4364 * direct_access_msrs. Doing that would require a rdmsr in
4367 svm->tsc_aux = data;
4368 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4370 case MSR_IA32_DEBUGCTLMSR:
4371 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4372 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4376 if (data & DEBUGCTL_RESERVED_BITS)
4379 svm->vmcb->save.dbgctl = data;
4380 mark_dirty(svm->vmcb, VMCB_LBR);
4381 if (data & (1ULL<<0))
4382 svm_enable_lbrv(svm);
4384 svm_disable_lbrv(svm);
4386 case MSR_VM_HSAVE_PA:
4387 svm->nested.hsave_msr = data;
4390 return svm_set_vm_cr(vcpu, data);
4392 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4394 case MSR_F10H_DECFG: {
4395 struct kvm_msr_entry msr_entry;
4397 msr_entry.index = msr->index;
4398 if (svm_get_msr_feature(&msr_entry))
4401 /* Check the supported bits */
4402 if (data & ~msr_entry.data)
4405 /* Don't allow the guest to change a bit, #GP */
4406 if (!msr->host_initiated && (data ^ msr_entry.data))
4409 svm->msr_decfg = data;
4412 case MSR_IA32_APICBASE:
4413 if (kvm_vcpu_apicv_active(vcpu))
4414 avic_update_vapic_bar(to_svm(vcpu), data);
4417 return kvm_set_msr_common(vcpu, msr);
4422 static int wrmsr_interception(struct vcpu_svm *svm)
4424 struct msr_data msr;
4425 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4426 u64 data = kvm_read_edx_eax(&svm->vcpu);
4430 msr.host_initiated = false;
4432 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4433 if (kvm_set_msr(&svm->vcpu, &msr)) {
4434 trace_kvm_msr_write_ex(ecx, data);
4435 kvm_inject_gp(&svm->vcpu, 0);
4438 trace_kvm_msr_write(ecx, data);
4439 return kvm_skip_emulated_instruction(&svm->vcpu);
4443 static int msr_interception(struct vcpu_svm *svm)
4445 if (svm->vmcb->control.exit_info_1)
4446 return wrmsr_interception(svm);
4448 return rdmsr_interception(svm);
4451 static int interrupt_window_interception(struct vcpu_svm *svm)
4453 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4454 svm_clear_vintr(svm);
4455 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4456 mark_dirty(svm->vmcb, VMCB_INTR);
4457 ++svm->vcpu.stat.irq_window_exits;
4461 static int pause_interception(struct vcpu_svm *svm)
4463 struct kvm_vcpu *vcpu = &svm->vcpu;
4464 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4466 if (pause_filter_thresh)
4467 grow_ple_window(vcpu);
4469 kvm_vcpu_on_spin(vcpu, in_kernel);
4473 static int nop_interception(struct vcpu_svm *svm)
4475 return kvm_skip_emulated_instruction(&(svm->vcpu));
4478 static int monitor_interception(struct vcpu_svm *svm)
4480 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4481 return nop_interception(svm);
4484 static int mwait_interception(struct vcpu_svm *svm)
4486 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4487 return nop_interception(svm);
4490 enum avic_ipi_failure_cause {
4491 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4492 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4493 AVIC_IPI_FAILURE_INVALID_TARGET,
4494 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4497 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4499 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4500 u32 icrl = svm->vmcb->control.exit_info_1;
4501 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4502 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4503 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4505 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4508 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4510 * AVIC hardware handles the generation of
4511 * IPIs when the specified Message Type is Fixed
4512 * (also known as fixed delivery mode) and
4513 * the Trigger Mode is edge-triggered. The hardware
4514 * also supports self and broadcast delivery modes
4515 * specified via the Destination Shorthand(DSH)
4516 * field of the ICRL. Logical and physical APIC ID
4517 * formats are supported. All other IPI types cause
4518 * a #VMEXIT, which needs to emulated.
4520 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4521 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4523 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4525 struct kvm_vcpu *vcpu;
4526 struct kvm *kvm = svm->vcpu.kvm;
4527 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4530 * At this point, we expect that the AVIC HW has already
4531 * set the appropriate IRR bits on the valid target
4532 * vcpus. So, we just need to kick the appropriate vcpu.
4534 kvm_for_each_vcpu(i, vcpu, kvm) {
4535 bool m = kvm_apic_match_dest(vcpu, apic,
4536 icrl & KVM_APIC_SHORT_MASK,
4537 GET_APIC_DEST_FIELD(icrh),
4538 icrl & KVM_APIC_DEST_MASK);
4540 if (m && !avic_vcpu_is_running(vcpu))
4541 kvm_vcpu_wake_up(vcpu);
4545 case AVIC_IPI_FAILURE_INVALID_TARGET:
4546 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4547 index, svm->vcpu.vcpu_id, icrh, icrl);
4549 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4550 WARN_ONCE(1, "Invalid backing page\n");
4553 pr_err("Unknown IPI interception\n");
4559 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4561 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4563 u32 *logical_apic_id_table;
4564 int dlid = GET_APIC_LOGICAL_ID(ldr);
4569 if (flat) { /* flat */
4570 index = ffs(dlid) - 1;
4573 } else { /* cluster */
4574 int cluster = (dlid & 0xf0) >> 4;
4575 int apic = ffs(dlid & 0x0f) - 1;
4577 if ((apic < 0) || (apic > 7) ||
4580 index = (cluster << 2) + apic;
4583 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4585 return &logical_apic_id_table[index];
4588 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4591 u32 *entry, new_entry;
4593 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4594 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4598 new_entry = READ_ONCE(*entry);
4599 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4600 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4601 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4602 WRITE_ONCE(*entry, new_entry);
4607 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4609 struct vcpu_svm *svm = to_svm(vcpu);
4610 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4611 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4614 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4617 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4620 struct vcpu_svm *svm = to_svm(vcpu);
4621 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4623 if (ldr == svm->ldr_reg)
4626 avic_invalidate_logical_id_entry(vcpu);
4629 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr);
4637 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4640 struct vcpu_svm *svm = to_svm(vcpu);
4641 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4642 u32 id = (apic_id_reg >> 24) & 0xff;
4644 if (vcpu->vcpu_id == id)
4647 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4648 new = avic_get_physical_id_entry(vcpu, id);
4652 /* We need to move physical_id_entry to new offset */
4655 to_svm(vcpu)->avic_physical_id_cache = new;
4658 * Also update the guest physical APIC ID in the logical
4659 * APIC ID table entry if already setup the LDR.
4662 avic_handle_ldr_update(vcpu);
4667 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4669 struct vcpu_svm *svm = to_svm(vcpu);
4670 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4672 if (svm->dfr_reg == dfr)
4675 avic_invalidate_logical_id_entry(vcpu);
4679 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4681 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4682 u32 offset = svm->vmcb->control.exit_info_1 &
4683 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4687 if (avic_handle_apic_id_update(&svm->vcpu))
4691 if (avic_handle_ldr_update(&svm->vcpu))
4695 avic_handle_dfr_update(&svm->vcpu);
4701 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4706 static bool is_avic_unaccelerated_access_trap(u32 offset)
4735 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4738 u32 offset = svm->vmcb->control.exit_info_1 &
4739 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4740 u32 vector = svm->vmcb->control.exit_info_2 &
4741 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4742 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4743 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4744 bool trap = is_avic_unaccelerated_access_trap(offset);
4746 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4747 trap, write, vector);
4750 WARN_ONCE(!write, "svm: Handling trap read.\n");
4751 ret = avic_unaccel_trap_write(svm);
4753 /* Handling Fault */
4754 ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4760 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4761 [SVM_EXIT_READ_CR0] = cr_interception,
4762 [SVM_EXIT_READ_CR3] = cr_interception,
4763 [SVM_EXIT_READ_CR4] = cr_interception,
4764 [SVM_EXIT_READ_CR8] = cr_interception,
4765 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4766 [SVM_EXIT_WRITE_CR0] = cr_interception,
4767 [SVM_EXIT_WRITE_CR3] = cr_interception,
4768 [SVM_EXIT_WRITE_CR4] = cr_interception,
4769 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4770 [SVM_EXIT_READ_DR0] = dr_interception,
4771 [SVM_EXIT_READ_DR1] = dr_interception,
4772 [SVM_EXIT_READ_DR2] = dr_interception,
4773 [SVM_EXIT_READ_DR3] = dr_interception,
4774 [SVM_EXIT_READ_DR4] = dr_interception,
4775 [SVM_EXIT_READ_DR5] = dr_interception,
4776 [SVM_EXIT_READ_DR6] = dr_interception,
4777 [SVM_EXIT_READ_DR7] = dr_interception,
4778 [SVM_EXIT_WRITE_DR0] = dr_interception,
4779 [SVM_EXIT_WRITE_DR1] = dr_interception,
4780 [SVM_EXIT_WRITE_DR2] = dr_interception,
4781 [SVM_EXIT_WRITE_DR3] = dr_interception,
4782 [SVM_EXIT_WRITE_DR4] = dr_interception,
4783 [SVM_EXIT_WRITE_DR5] = dr_interception,
4784 [SVM_EXIT_WRITE_DR6] = dr_interception,
4785 [SVM_EXIT_WRITE_DR7] = dr_interception,
4786 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4787 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4788 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4789 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4790 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4791 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4792 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4793 [SVM_EXIT_INTR] = intr_interception,
4794 [SVM_EXIT_NMI] = nmi_interception,
4795 [SVM_EXIT_SMI] = nop_on_interception,
4796 [SVM_EXIT_INIT] = nop_on_interception,
4797 [SVM_EXIT_VINTR] = interrupt_window_interception,
4798 [SVM_EXIT_RDPMC] = rdpmc_interception,
4799 [SVM_EXIT_CPUID] = cpuid_interception,
4800 [SVM_EXIT_IRET] = iret_interception,
4801 [SVM_EXIT_INVD] = emulate_on_interception,
4802 [SVM_EXIT_PAUSE] = pause_interception,
4803 [SVM_EXIT_HLT] = halt_interception,
4804 [SVM_EXIT_INVLPG] = invlpg_interception,
4805 [SVM_EXIT_INVLPGA] = invlpga_interception,
4806 [SVM_EXIT_IOIO] = io_interception,
4807 [SVM_EXIT_MSR] = msr_interception,
4808 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4809 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4810 [SVM_EXIT_VMRUN] = vmrun_interception,
4811 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4812 [SVM_EXIT_VMLOAD] = vmload_interception,
4813 [SVM_EXIT_VMSAVE] = vmsave_interception,
4814 [SVM_EXIT_STGI] = stgi_interception,
4815 [SVM_EXIT_CLGI] = clgi_interception,
4816 [SVM_EXIT_SKINIT] = skinit_interception,
4817 [SVM_EXIT_WBINVD] = wbinvd_interception,
4818 [SVM_EXIT_MONITOR] = monitor_interception,
4819 [SVM_EXIT_MWAIT] = mwait_interception,
4820 [SVM_EXIT_XSETBV] = xsetbv_interception,
4821 [SVM_EXIT_NPF] = npf_interception,
4822 [SVM_EXIT_RSM] = rsm_interception,
4823 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4824 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4827 static void dump_vmcb(struct kvm_vcpu *vcpu)
4829 struct vcpu_svm *svm = to_svm(vcpu);
4830 struct vmcb_control_area *control = &svm->vmcb->control;
4831 struct vmcb_save_area *save = &svm->vmcb->save;
4833 pr_err("VMCB Control Area:\n");
4834 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4835 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4836 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4837 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4838 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4839 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4840 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4841 pr_err("%-20s%d\n", "pause filter threshold:",
4842 control->pause_filter_thresh);
4843 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4844 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4845 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4846 pr_err("%-20s%d\n", "asid:", control->asid);
4847 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4848 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4849 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4850 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4851 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4852 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4853 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4854 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4855 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4856 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4857 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4858 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4859 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4860 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4861 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4862 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4863 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4864 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4865 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4866 pr_err("VMCB State Save Area:\n");
4867 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4869 save->es.selector, save->es.attrib,
4870 save->es.limit, save->es.base);
4871 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4873 save->cs.selector, save->cs.attrib,
4874 save->cs.limit, save->cs.base);
4875 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4877 save->ss.selector, save->ss.attrib,
4878 save->ss.limit, save->ss.base);
4879 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4881 save->ds.selector, save->ds.attrib,
4882 save->ds.limit, save->ds.base);
4883 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4885 save->fs.selector, save->fs.attrib,
4886 save->fs.limit, save->fs.base);
4887 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4889 save->gs.selector, save->gs.attrib,
4890 save->gs.limit, save->gs.base);
4891 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4893 save->gdtr.selector, save->gdtr.attrib,
4894 save->gdtr.limit, save->gdtr.base);
4895 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4897 save->ldtr.selector, save->ldtr.attrib,
4898 save->ldtr.limit, save->ldtr.base);
4899 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4901 save->idtr.selector, save->idtr.attrib,
4902 save->idtr.limit, save->idtr.base);
4903 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4905 save->tr.selector, save->tr.attrib,
4906 save->tr.limit, save->tr.base);
4907 pr_err("cpl: %d efer: %016llx\n",
4908 save->cpl, save->efer);
4909 pr_err("%-15s %016llx %-13s %016llx\n",
4910 "cr0:", save->cr0, "cr2:", save->cr2);
4911 pr_err("%-15s %016llx %-13s %016llx\n",
4912 "cr3:", save->cr3, "cr4:", save->cr4);
4913 pr_err("%-15s %016llx %-13s %016llx\n",
4914 "dr6:", save->dr6, "dr7:", save->dr7);
4915 pr_err("%-15s %016llx %-13s %016llx\n",
4916 "rip:", save->rip, "rflags:", save->rflags);
4917 pr_err("%-15s %016llx %-13s %016llx\n",
4918 "rsp:", save->rsp, "rax:", save->rax);
4919 pr_err("%-15s %016llx %-13s %016llx\n",
4920 "star:", save->star, "lstar:", save->lstar);
4921 pr_err("%-15s %016llx %-13s %016llx\n",
4922 "cstar:", save->cstar, "sfmask:", save->sfmask);
4923 pr_err("%-15s %016llx %-13s %016llx\n",
4924 "kernel_gs_base:", save->kernel_gs_base,
4925 "sysenter_cs:", save->sysenter_cs);
4926 pr_err("%-15s %016llx %-13s %016llx\n",
4927 "sysenter_esp:", save->sysenter_esp,
4928 "sysenter_eip:", save->sysenter_eip);
4929 pr_err("%-15s %016llx %-13s %016llx\n",
4930 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4931 pr_err("%-15s %016llx %-13s %016llx\n",
4932 "br_from:", save->br_from, "br_to:", save->br_to);
4933 pr_err("%-15s %016llx %-13s %016llx\n",
4934 "excp_from:", save->last_excp_from,
4935 "excp_to:", save->last_excp_to);
4938 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4940 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4942 *info1 = control->exit_info_1;
4943 *info2 = control->exit_info_2;
4946 static int handle_exit(struct kvm_vcpu *vcpu)
4948 struct vcpu_svm *svm = to_svm(vcpu);
4949 struct kvm_run *kvm_run = vcpu->run;
4950 u32 exit_code = svm->vmcb->control.exit_code;
4952 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4954 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4955 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4957 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4959 if (unlikely(svm->nested.exit_required)) {
4960 nested_svm_vmexit(svm);
4961 svm->nested.exit_required = false;
4966 if (is_guest_mode(vcpu)) {
4969 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4970 svm->vmcb->control.exit_info_1,
4971 svm->vmcb->control.exit_info_2,
4972 svm->vmcb->control.exit_int_info,
4973 svm->vmcb->control.exit_int_info_err,
4976 vmexit = nested_svm_exit_special(svm);
4978 if (vmexit == NESTED_EXIT_CONTINUE)
4979 vmexit = nested_svm_exit_handled(svm);
4981 if (vmexit == NESTED_EXIT_DONE)
4985 svm_complete_interrupts(svm);
4987 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4988 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4989 kvm_run->fail_entry.hardware_entry_failure_reason
4990 = svm->vmcb->control.exit_code;
4991 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4996 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4997 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4998 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4999 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
5000 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
5002 __func__, svm->vmcb->control.exit_int_info,
5005 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
5006 || !svm_exit_handlers[exit_code]) {
5007 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
5008 kvm_queue_exception(vcpu, UD_VECTOR);
5012 return svm_exit_handlers[exit_code](svm);
5015 static void reload_tss(struct kvm_vcpu *vcpu)
5017 int cpu = raw_smp_processor_id();
5019 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5020 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5024 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5026 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5027 int asid = sev_get_asid(svm->vcpu.kvm);
5029 /* Assign the asid allocated with this SEV guest */
5030 svm->vmcb->control.asid = asid;
5035 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5036 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5038 if (sd->sev_vmcbs[asid] == svm->vmcb &&
5039 svm->last_cpu == cpu)
5042 svm->last_cpu = cpu;
5043 sd->sev_vmcbs[asid] = svm->vmcb;
5044 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5045 mark_dirty(svm->vmcb, VMCB_ASID);
5048 static void pre_svm_run(struct vcpu_svm *svm)
5050 int cpu = raw_smp_processor_id();
5052 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5054 if (sev_guest(svm->vcpu.kvm))
5055 return pre_sev_run(svm, cpu);
5057 /* FIXME: handle wraparound of asid_generation */
5058 if (svm->asid_generation != sd->asid_generation)
5062 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5064 struct vcpu_svm *svm = to_svm(vcpu);
5066 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5067 vcpu->arch.hflags |= HF_NMI_MASK;
5068 set_intercept(svm, INTERCEPT_IRET);
5069 ++vcpu->stat.nmi_injections;
5072 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5074 struct vmcb_control_area *control;
5076 /* The following fields are ignored when AVIC is enabled */
5077 control = &svm->vmcb->control;
5078 control->int_vector = irq;
5079 control->int_ctl &= ~V_INTR_PRIO_MASK;
5080 control->int_ctl |= V_IRQ_MASK |
5081 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5082 mark_dirty(svm->vmcb, VMCB_INTR);
5085 static void svm_set_irq(struct kvm_vcpu *vcpu)
5087 struct vcpu_svm *svm = to_svm(vcpu);
5089 BUG_ON(!(gif_set(svm)));
5091 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5092 ++vcpu->stat.irq_injections;
5094 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5095 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5098 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5100 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5103 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5105 struct vcpu_svm *svm = to_svm(vcpu);
5107 if (svm_nested_virtualize_tpr(vcpu) ||
5108 kvm_vcpu_apicv_active(vcpu))
5111 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5117 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5120 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5125 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5127 return avic && irqchip_split(vcpu->kvm);
5130 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5134 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5138 /* Note: Currently only used by Hyper-V. */
5139 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5141 struct vcpu_svm *svm = to_svm(vcpu);
5142 struct vmcb *vmcb = svm->vmcb;
5144 if (kvm_vcpu_apicv_active(vcpu))
5145 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5147 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5148 mark_dirty(vmcb, VMCB_AVIC);
5151 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5156 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5158 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5159 smp_mb__after_atomic();
5161 if (avic_vcpu_is_running(vcpu))
5162 wrmsrl(SVM_AVIC_DOORBELL,
5163 kvm_cpu_get_apicid(vcpu->cpu));
5165 kvm_vcpu_wake_up(vcpu);
5168 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5170 unsigned long flags;
5171 struct amd_svm_iommu_ir *cur;
5173 spin_lock_irqsave(&svm->ir_list_lock, flags);
5174 list_for_each_entry(cur, &svm->ir_list, node) {
5175 if (cur->data != pi->ir_data)
5177 list_del(&cur->node);
5181 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5184 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5187 unsigned long flags;
5188 struct amd_svm_iommu_ir *ir;
5191 * In some cases, the existing irte is updaed and re-set,
5192 * so we need to check here if it's already been * added
5195 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5196 struct kvm *kvm = svm->vcpu.kvm;
5197 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5198 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5199 struct vcpu_svm *prev_svm;
5206 prev_svm = to_svm(prev_vcpu);
5207 svm_ir_list_del(prev_svm, pi);
5211 * Allocating new amd_iommu_pi_data, which will get
5212 * add to the per-vcpu ir_list.
5214 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5219 ir->data = pi->ir_data;
5221 spin_lock_irqsave(&svm->ir_list_lock, flags);
5222 list_add(&ir->node, &svm->ir_list);
5223 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5230 * The HW cannot support posting multicast/broadcast
5231 * interrupts to a vCPU. So, we still use legacy interrupt
5232 * remapping for these kind of interrupts.
5234 * For lowest-priority interrupts, we only support
5235 * those with single CPU as the destination, e.g. user
5236 * configures the interrupts via /proc/irq or uses
5237 * irqbalance to make the interrupts single-CPU.
5240 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5241 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5243 struct kvm_lapic_irq irq;
5244 struct kvm_vcpu *vcpu = NULL;
5246 kvm_set_msi_irq(kvm, e, &irq);
5248 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5249 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5250 __func__, irq.vector);
5254 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5256 *svm = to_svm(vcpu);
5257 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5258 vcpu_info->vector = irq.vector;
5264 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5267 * @host_irq: host irq of the interrupt
5268 * @guest_irq: gsi of the interrupt
5269 * @set: set or unset PI
5270 * returns 0 on success, < 0 on failure
5272 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5273 uint32_t guest_irq, bool set)
5275 struct kvm_kernel_irq_routing_entry *e;
5276 struct kvm_irq_routing_table *irq_rt;
5277 int idx, ret = -EINVAL;
5279 if (!kvm_arch_has_assigned_device(kvm) ||
5280 !irq_remapping_cap(IRQ_POSTING_CAP))
5283 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5284 __func__, host_irq, guest_irq, set);
5286 idx = srcu_read_lock(&kvm->irq_srcu);
5287 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5288 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5290 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5291 struct vcpu_data vcpu_info;
5292 struct vcpu_svm *svm = NULL;
5294 if (e->type != KVM_IRQ_ROUTING_MSI)
5298 * Here, we setup with legacy mode in the following cases:
5299 * 1. When cannot target interrupt to a specific vcpu.
5300 * 2. Unsetting posted interrupt.
5301 * 3. APIC virtialization is disabled for the vcpu.
5303 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5304 kvm_vcpu_apicv_active(&svm->vcpu)) {
5305 struct amd_iommu_pi_data pi;
5307 /* Try to enable guest_mode in IRTE */
5308 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5310 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5312 pi.is_guest_mode = true;
5313 pi.vcpu_data = &vcpu_info;
5314 ret = irq_set_vcpu_affinity(host_irq, &pi);
5317 * Here, we successfully setting up vcpu affinity in
5318 * IOMMU guest mode. Now, we need to store the posted
5319 * interrupt information in a per-vcpu ir_list so that
5320 * we can reference to them directly when we update vcpu
5321 * scheduling information in IOMMU irte.
5323 if (!ret && pi.is_guest_mode)
5324 svm_ir_list_add(svm, &pi);
5326 /* Use legacy mode in IRTE */
5327 struct amd_iommu_pi_data pi;
5330 * Here, pi is used to:
5331 * - Tell IOMMU to use legacy mode for this interrupt.
5332 * - Retrieve ga_tag of prior interrupt remapping data.
5334 pi.is_guest_mode = false;
5335 ret = irq_set_vcpu_affinity(host_irq, &pi);
5338 * Check if the posted interrupt was previously
5339 * setup with the guest_mode by checking if the ga_tag
5340 * was cached. If so, we need to clean up the per-vcpu
5343 if (!ret && pi.prev_ga_tag) {
5344 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5345 struct kvm_vcpu *vcpu;
5347 vcpu = kvm_get_vcpu_by_id(kvm, id);
5349 svm_ir_list_del(to_svm(vcpu), &pi);
5354 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5355 e->gsi, vcpu_info.vector,
5356 vcpu_info.pi_desc_addr, set);
5360 pr_err("%s: failed to update PI IRTE\n", __func__);
5367 srcu_read_unlock(&kvm->irq_srcu, idx);
5371 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5373 struct vcpu_svm *svm = to_svm(vcpu);
5374 struct vmcb *vmcb = svm->vmcb;
5376 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5377 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5378 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5383 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5385 struct vcpu_svm *svm = to_svm(vcpu);
5387 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5390 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5392 struct vcpu_svm *svm = to_svm(vcpu);
5395 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5396 set_intercept(svm, INTERCEPT_IRET);
5398 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5399 clr_intercept(svm, INTERCEPT_IRET);
5403 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5405 struct vcpu_svm *svm = to_svm(vcpu);
5406 struct vmcb *vmcb = svm->vmcb;
5409 if (!gif_set(svm) ||
5410 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5413 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5415 if (is_guest_mode(vcpu))
5416 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5421 static void enable_irq_window(struct kvm_vcpu *vcpu)
5423 struct vcpu_svm *svm = to_svm(vcpu);
5425 if (kvm_vcpu_apicv_active(vcpu))
5429 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5430 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5431 * get that intercept, this function will be called again though and
5432 * we'll get the vintr intercept. However, if the vGIF feature is
5433 * enabled, the STGI interception will not occur. Enable the irq
5434 * window under the assumption that the hardware will set the GIF.
5436 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5438 svm_inject_irq(svm, 0x0);
5442 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5444 struct vcpu_svm *svm = to_svm(vcpu);
5446 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5448 return; /* IRET will cause a vm exit */
5450 if (!gif_set(svm)) {
5451 if (vgif_enabled(svm))
5452 set_intercept(svm, INTERCEPT_STGI);
5453 return; /* STGI will cause a vm exit */
5456 if (svm->nested.exit_required)
5457 return; /* we're not going to run the guest yet */
5460 * Something prevents NMI from been injected. Single step over possible
5461 * problem (IRET or exception injection or interrupt shadow)
5463 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5464 svm->nmi_singlestep = true;
5465 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5468 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5473 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5478 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5480 struct vcpu_svm *svm = to_svm(vcpu);
5482 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5483 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5485 svm->asid_generation--;
5488 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5490 struct vcpu_svm *svm = to_svm(vcpu);
5492 invlpga(gva, svm->vmcb->control.asid);
5495 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5499 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5501 struct vcpu_svm *svm = to_svm(vcpu);
5503 if (svm_nested_virtualize_tpr(vcpu))
5506 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5507 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5508 kvm_set_cr8(vcpu, cr8);
5512 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5514 struct vcpu_svm *svm = to_svm(vcpu);
5517 if (svm_nested_virtualize_tpr(vcpu) ||
5518 kvm_vcpu_apicv_active(vcpu))
5521 cr8 = kvm_get_cr8(vcpu);
5522 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5523 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5526 static void svm_complete_interrupts(struct vcpu_svm *svm)
5530 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5531 unsigned int3_injected = svm->int3_injected;
5533 svm->int3_injected = 0;
5536 * If we've made progress since setting HF_IRET_MASK, we've
5537 * executed an IRET and can allow NMI injection.
5539 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5540 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5541 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5542 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5545 svm->vcpu.arch.nmi_injected = false;
5546 kvm_clear_exception_queue(&svm->vcpu);
5547 kvm_clear_interrupt_queue(&svm->vcpu);
5549 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5552 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5554 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5555 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5558 case SVM_EXITINTINFO_TYPE_NMI:
5559 svm->vcpu.arch.nmi_injected = true;
5561 case SVM_EXITINTINFO_TYPE_EXEPT:
5563 * In case of software exceptions, do not reinject the vector,
5564 * but re-execute the instruction instead. Rewind RIP first
5565 * if we emulated INT3 before.
5567 if (kvm_exception_is_soft(vector)) {
5568 if (vector == BP_VECTOR && int3_injected &&
5569 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5570 kvm_rip_write(&svm->vcpu,
5571 kvm_rip_read(&svm->vcpu) -
5575 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5576 u32 err = svm->vmcb->control.exit_int_info_err;
5577 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5580 kvm_requeue_exception(&svm->vcpu, vector);
5582 case SVM_EXITINTINFO_TYPE_INTR:
5583 kvm_queue_interrupt(&svm->vcpu, vector, false);
5590 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5592 struct vcpu_svm *svm = to_svm(vcpu);
5593 struct vmcb_control_area *control = &svm->vmcb->control;
5595 control->exit_int_info = control->event_inj;
5596 control->exit_int_info_err = control->event_inj_err;
5597 control->event_inj = 0;
5598 svm_complete_interrupts(svm);
5601 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5603 struct vcpu_svm *svm = to_svm(vcpu);
5605 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5606 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5607 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5610 * A vmexit emulation is required before the vcpu can be executed
5613 if (unlikely(svm->nested.exit_required))
5617 * Disable singlestep if we're injecting an interrupt/exception.
5618 * We don't want our modified rflags to be pushed on the stack where
5619 * we might not be able to easily reset them if we disabled NMI
5622 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5624 * Event injection happens before external interrupts cause a
5625 * vmexit and interrupts are disabled here, so smp_send_reschedule
5626 * is enough to force an immediate vmexit.
5628 disable_nmi_singlestep(svm);
5629 smp_send_reschedule(vcpu->cpu);
5634 sync_lapic_to_cr8(vcpu);
5636 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5639 kvm_load_guest_xcr0(vcpu);
5642 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5643 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5644 * is no need to worry about the conditional branch over the wrmsr
5645 * being speculatively taken.
5647 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5652 "push %%" _ASM_BP "; \n\t"
5653 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5654 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5655 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5656 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5657 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5658 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5659 #ifdef CONFIG_X86_64
5660 "mov %c[r8](%[svm]), %%r8 \n\t"
5661 "mov %c[r9](%[svm]), %%r9 \n\t"
5662 "mov %c[r10](%[svm]), %%r10 \n\t"
5663 "mov %c[r11](%[svm]), %%r11 \n\t"
5664 "mov %c[r12](%[svm]), %%r12 \n\t"
5665 "mov %c[r13](%[svm]), %%r13 \n\t"
5666 "mov %c[r14](%[svm]), %%r14 \n\t"
5667 "mov %c[r15](%[svm]), %%r15 \n\t"
5670 /* Enter guest mode */
5671 "push %%" _ASM_AX " \n\t"
5672 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5673 __ex("vmload %%" _ASM_AX) "\n\t"
5674 __ex("vmrun %%" _ASM_AX) "\n\t"
5675 __ex("vmsave %%" _ASM_AX) "\n\t"
5676 "pop %%" _ASM_AX " \n\t"
5678 /* Save guest registers, load host registers */
5679 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5680 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5681 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5682 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5683 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5684 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5685 #ifdef CONFIG_X86_64
5686 "mov %%r8, %c[r8](%[svm]) \n\t"
5687 "mov %%r9, %c[r9](%[svm]) \n\t"
5688 "mov %%r10, %c[r10](%[svm]) \n\t"
5689 "mov %%r11, %c[r11](%[svm]) \n\t"
5690 "mov %%r12, %c[r12](%[svm]) \n\t"
5691 "mov %%r13, %c[r13](%[svm]) \n\t"
5692 "mov %%r14, %c[r14](%[svm]) \n\t"
5693 "mov %%r15, %c[r15](%[svm]) \n\t"
5695 * Clear host registers marked as clobbered to prevent
5698 "xor %%r8d, %%r8d \n\t"
5699 "xor %%r9d, %%r9d \n\t"
5700 "xor %%r10d, %%r10d \n\t"
5701 "xor %%r11d, %%r11d \n\t"
5702 "xor %%r12d, %%r12d \n\t"
5703 "xor %%r13d, %%r13d \n\t"
5704 "xor %%r14d, %%r14d \n\t"
5705 "xor %%r15d, %%r15d \n\t"
5707 "xor %%ebx, %%ebx \n\t"
5708 "xor %%ecx, %%ecx \n\t"
5709 "xor %%edx, %%edx \n\t"
5710 "xor %%esi, %%esi \n\t"
5711 "xor %%edi, %%edi \n\t"
5715 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5716 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5717 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5718 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5719 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5720 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5721 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5722 #ifdef CONFIG_X86_64
5723 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5724 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5725 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5726 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5727 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5728 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5729 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5730 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5733 #ifdef CONFIG_X86_64
5734 , "rbx", "rcx", "rdx", "rsi", "rdi"
5735 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5737 , "ebx", "ecx", "edx", "esi", "edi"
5741 /* Eliminate branch target predictions from guest mode */
5744 #ifdef CONFIG_X86_64
5745 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5747 loadsegment(fs, svm->host.fs);
5748 #ifndef CONFIG_X86_32_LAZY_GS
5749 loadsegment(gs, svm->host.gs);
5754 * We do not use IBRS in the kernel. If this vCPU has used the
5755 * SPEC_CTRL MSR it may have left it on; save the value and
5756 * turn it off. This is much more efficient than blindly adding
5757 * it to the atomic save/restore list. Especially as the former
5758 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5760 * For non-nested case:
5761 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5765 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5768 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5769 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5773 local_irq_disable();
5775 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5777 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5778 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5779 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5780 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5782 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5783 kvm_before_interrupt(&svm->vcpu);
5785 kvm_put_guest_xcr0(vcpu);
5788 /* Any pending NMI will happen here */
5790 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5791 kvm_after_interrupt(&svm->vcpu);
5793 sync_cr8_to_lapic(vcpu);
5797 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5799 /* if exit due to PF check for async PF */
5800 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5801 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5804 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5805 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5809 * We need to handle MC intercepts here before the vcpu has a chance to
5810 * change the physical cpu
5812 if (unlikely(svm->vmcb->control.exit_code ==
5813 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5814 svm_handle_mce(svm);
5816 mark_all_clean(svm->vmcb);
5818 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5820 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5822 struct vcpu_svm *svm = to_svm(vcpu);
5824 svm->vmcb->save.cr3 = __sme_set(root);
5825 mark_dirty(svm->vmcb, VMCB_CR);
5828 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5830 struct vcpu_svm *svm = to_svm(vcpu);
5832 svm->vmcb->control.nested_cr3 = __sme_set(root);
5833 mark_dirty(svm->vmcb, VMCB_NPT);
5835 /* Also sync guest cr3 here in case we live migrate */
5836 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5837 mark_dirty(svm->vmcb, VMCB_CR);
5840 static int is_disabled(void)
5844 rdmsrl(MSR_VM_CR, vm_cr);
5845 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5852 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5855 * Patch in the VMMCALL instruction:
5857 hypercall[0] = 0x0f;
5858 hypercall[1] = 0x01;
5859 hypercall[2] = 0xd9;
5862 static void svm_check_processor_compat(void *rtn)
5867 static bool svm_cpu_has_accelerated_tpr(void)
5872 static bool svm_has_emulated_msr(int index)
5875 case MSR_IA32_MCG_EXT_CTL:
5884 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5889 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5891 struct vcpu_svm *svm = to_svm(vcpu);
5893 /* Update nrips enabled cache */
5894 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5896 if (!kvm_vcpu_apicv_active(vcpu))
5899 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5902 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5907 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5911 entry->ecx |= (1 << 2); /* Set SVM bit */
5914 entry->eax = 1; /* SVM revision 1 */
5915 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5916 ASID emulation to nested SVM */
5917 entry->ecx = 0; /* Reserved */
5918 entry->edx = 0; /* Per default do not support any
5919 additional features */
5921 /* Support next_rip if host supports it */
5922 if (boot_cpu_has(X86_FEATURE_NRIPS))
5923 entry->edx |= SVM_FEATURE_NRIP;
5925 /* Support NPT for the guest if enabled */
5927 entry->edx |= SVM_FEATURE_NPT;
5931 /* Support memory encryption cpuid if host supports it */
5932 if (boot_cpu_has(X86_FEATURE_SEV))
5933 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5934 &entry->ecx, &entry->edx);
5939 static int svm_get_lpage_level(void)
5941 return PT_PDPE_LEVEL;
5944 static bool svm_rdtscp_supported(void)
5946 return boot_cpu_has(X86_FEATURE_RDTSCP);
5949 static bool svm_invpcid_supported(void)
5954 static bool svm_mpx_supported(void)
5959 static bool svm_xsaves_supported(void)
5964 static bool svm_umip_emulated(void)
5969 static bool svm_pt_supported(void)
5974 static bool svm_has_wbinvd_exit(void)
5979 #define PRE_EX(exit) { .exit_code = (exit), \
5980 .stage = X86_ICPT_PRE_EXCEPT, }
5981 #define POST_EX(exit) { .exit_code = (exit), \
5982 .stage = X86_ICPT_POST_EXCEPT, }
5983 #define POST_MEM(exit) { .exit_code = (exit), \
5984 .stage = X86_ICPT_POST_MEMACCESS, }
5986 static const struct __x86_intercept {
5988 enum x86_intercept_stage stage;
5989 } x86_intercept_map[] = {
5990 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5991 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5992 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5993 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5994 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5995 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5996 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5997 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5998 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5999 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
6000 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
6001 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
6002 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
6003 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
6004 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
6005 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
6006 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
6007 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
6008 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
6009 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
6010 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
6011 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
6012 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
6013 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
6014 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
6015 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
6016 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
6017 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
6018 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
6019 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
6020 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
6021 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
6022 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
6023 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
6024 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
6025 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
6026 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
6027 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
6028 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
6029 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
6030 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
6031 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
6032 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
6033 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
6034 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
6035 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
6042 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6043 struct x86_instruction_info *info,
6044 enum x86_intercept_stage stage)
6046 struct vcpu_svm *svm = to_svm(vcpu);
6047 int vmexit, ret = X86EMUL_CONTINUE;
6048 struct __x86_intercept icpt_info;
6049 struct vmcb *vmcb = svm->vmcb;
6051 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6054 icpt_info = x86_intercept_map[info->intercept];
6056 if (stage != icpt_info.stage)
6059 switch (icpt_info.exit_code) {
6060 case SVM_EXIT_READ_CR0:
6061 if (info->intercept == x86_intercept_cr_read)
6062 icpt_info.exit_code += info->modrm_reg;
6064 case SVM_EXIT_WRITE_CR0: {
6065 unsigned long cr0, val;
6068 if (info->intercept == x86_intercept_cr_write)
6069 icpt_info.exit_code += info->modrm_reg;
6071 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6072 info->intercept == x86_intercept_clts)
6075 intercept = svm->nested.intercept;
6077 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6080 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6081 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6083 if (info->intercept == x86_intercept_lmsw) {
6086 /* lmsw can't clear PE - catch this here */
6087 if (cr0 & X86_CR0_PE)
6092 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6096 case SVM_EXIT_READ_DR0:
6097 case SVM_EXIT_WRITE_DR0:
6098 icpt_info.exit_code += info->modrm_reg;
6101 if (info->intercept == x86_intercept_wrmsr)
6102 vmcb->control.exit_info_1 = 1;
6104 vmcb->control.exit_info_1 = 0;
6106 case SVM_EXIT_PAUSE:
6108 * We get this for NOP only, but pause
6109 * is rep not, check this here
6111 if (info->rep_prefix != REPE_PREFIX)
6114 case SVM_EXIT_IOIO: {
6118 if (info->intercept == x86_intercept_in ||
6119 info->intercept == x86_intercept_ins) {
6120 exit_info = ((info->src_val & 0xffff) << 16) |
6122 bytes = info->dst_bytes;
6124 exit_info = (info->dst_val & 0xffff) << 16;
6125 bytes = info->src_bytes;
6128 if (info->intercept == x86_intercept_outs ||
6129 info->intercept == x86_intercept_ins)
6130 exit_info |= SVM_IOIO_STR_MASK;
6132 if (info->rep_prefix)
6133 exit_info |= SVM_IOIO_REP_MASK;
6135 bytes = min(bytes, 4u);
6137 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6139 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6141 vmcb->control.exit_info_1 = exit_info;
6142 vmcb->control.exit_info_2 = info->next_rip;
6150 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6151 if (static_cpu_has(X86_FEATURE_NRIPS))
6152 vmcb->control.next_rip = info->next_rip;
6153 vmcb->control.exit_code = icpt_info.exit_code;
6154 vmexit = nested_svm_exit_handled(svm);
6156 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6163 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6167 * We must have an instruction with interrupts enabled, so
6168 * the timer interrupt isn't delayed by the interrupt shadow.
6171 local_irq_disable();
6174 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6176 if (pause_filter_thresh)
6177 shrink_ple_window(vcpu);
6180 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6182 if (avic_handle_apic_id_update(vcpu) != 0)
6184 avic_handle_dfr_update(vcpu);
6185 avic_handle_ldr_update(vcpu);
6188 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6190 /* [63:9] are reserved. */
6191 vcpu->arch.mcg_cap &= 0x1ff;
6194 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6196 struct vcpu_svm *svm = to_svm(vcpu);
6198 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6202 if (is_guest_mode(&svm->vcpu) &&
6203 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6204 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6205 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6206 svm->nested.exit_required = true;
6213 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6215 struct vcpu_svm *svm = to_svm(vcpu);
6218 if (is_guest_mode(vcpu)) {
6219 /* FED8h - SVM Guest */
6220 put_smstate(u64, smstate, 0x7ed8, 1);
6221 /* FEE0h - SVM Guest VMCB Physical Address */
6222 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6224 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6225 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6226 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6228 ret = nested_svm_vmexit(svm);
6235 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6237 struct vcpu_svm *svm = to_svm(vcpu);
6238 struct vmcb *nested_vmcb;
6243 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6244 vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6247 nested_vmcb = nested_svm_map(svm, vmcb, &page);
6250 enter_svm_guest_mode(svm, vmcb, nested_vmcb, page);
6255 static int enable_smi_window(struct kvm_vcpu *vcpu)
6257 struct vcpu_svm *svm = to_svm(vcpu);
6259 if (!gif_set(svm)) {
6260 if (vgif_enabled(svm))
6261 set_intercept(svm, INTERCEPT_STGI);
6262 /* STGI will cause a vm exit */
6268 static int sev_asid_new(void)
6273 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6275 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6276 if (pos >= max_sev_asid)
6279 set_bit(pos, sev_asid_bitmap);
6283 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6285 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6289 if (unlikely(sev->active))
6292 asid = sev_asid_new();
6296 ret = sev_platform_init(&argp->error);
6302 INIT_LIST_HEAD(&sev->regions_list);
6307 __sev_asid_free(asid);
6311 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6313 struct sev_data_activate *data;
6314 int asid = sev_get_asid(kvm);
6317 wbinvd_on_all_cpus();
6319 ret = sev_guest_df_flush(error);
6323 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6327 /* activate ASID on the given handle */
6328 data->handle = handle;
6330 ret = sev_guest_activate(data, error);
6336 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6345 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6351 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6353 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6355 return __sev_issue_cmd(sev->fd, id, data, error);
6358 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6360 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6361 struct sev_data_launch_start *start;
6362 struct kvm_sev_launch_start params;
6363 void *dh_blob, *session_blob;
6364 int *error = &argp->error;
6367 if (!sev_guest(kvm))
6370 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6373 start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6378 if (params.dh_uaddr) {
6379 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6380 if (IS_ERR(dh_blob)) {
6381 ret = PTR_ERR(dh_blob);
6385 start->dh_cert_address = __sme_set(__pa(dh_blob));
6386 start->dh_cert_len = params.dh_len;
6389 session_blob = NULL;
6390 if (params.session_uaddr) {
6391 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6392 if (IS_ERR(session_blob)) {
6393 ret = PTR_ERR(session_blob);
6397 start->session_address = __sme_set(__pa(session_blob));
6398 start->session_len = params.session_len;
6401 start->handle = params.handle;
6402 start->policy = params.policy;
6404 /* create memory encryption context */
6405 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6407 goto e_free_session;
6409 /* Bind ASID to this guest */
6410 ret = sev_bind_asid(kvm, start->handle, error);
6412 goto e_free_session;
6414 /* return handle to userspace */
6415 params.handle = start->handle;
6416 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
6417 sev_unbind_asid(kvm, start->handle);
6419 goto e_free_session;
6422 sev->handle = start->handle;
6423 sev->fd = argp->sev_fd;
6426 kfree(session_blob);
6434 static unsigned long get_num_contig_pages(unsigned long idx,
6435 struct page **inpages, unsigned long npages)
6437 unsigned long paddr, next_paddr;
6438 unsigned long i = idx + 1, pages = 1;
6440 /* find the number of contiguous pages starting from idx */
6441 paddr = __sme_page_pa(inpages[idx]);
6442 while (i < npages) {
6443 next_paddr = __sme_page_pa(inpages[i++]);
6444 if ((paddr + PAGE_SIZE) == next_paddr) {
6455 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6457 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6458 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6459 struct kvm_sev_launch_update_data params;
6460 struct sev_data_launch_update_data *data;
6461 struct page **inpages;
6464 if (!sev_guest(kvm))
6467 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6470 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6474 vaddr = params.uaddr;
6476 vaddr_end = vaddr + size;
6478 /* Lock the user memory. */
6479 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6486 * The LAUNCH_UPDATE command will perform in-place encryption of the
6487 * memory content (i.e it will write the same memory region with C=1).
6488 * It's possible that the cache may contain the data with C=0, i.e.,
6489 * unencrypted so invalidate it first.
6491 sev_clflush_pages(inpages, npages);
6493 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6497 * If the user buffer is not page-aligned, calculate the offset
6500 offset = vaddr & (PAGE_SIZE - 1);
6502 /* Calculate the number of pages that can be encrypted in one go. */
6503 pages = get_num_contig_pages(i, inpages, npages);
6505 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6507 data->handle = sev->handle;
6509 data->address = __sme_page_pa(inpages[i]) + offset;
6510 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6515 next_vaddr = vaddr + len;
6519 /* content of memory is updated, mark pages dirty */
6520 for (i = 0; i < npages; i++) {
6521 set_page_dirty_lock(inpages[i]);
6522 mark_page_accessed(inpages[i]);
6524 /* unlock the user pages */
6525 sev_unpin_memory(kvm, inpages, npages);
6531 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6533 void __user *measure = (void __user *)(uintptr_t)argp->data;
6534 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6535 struct sev_data_launch_measure *data;
6536 struct kvm_sev_launch_measure params;
6537 void __user *p = NULL;
6541 if (!sev_guest(kvm))
6544 if (copy_from_user(¶ms, measure, sizeof(params)))
6547 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6551 /* User wants to query the blob length */
6555 p = (void __user *)(uintptr_t)params.uaddr;
6557 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6563 blob = kmalloc(params.len, GFP_KERNEL);
6567 data->address = __psp_pa(blob);
6568 data->len = params.len;
6572 data->handle = sev->handle;
6573 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6576 * If we query the session length, FW responded with expected data.
6585 if (copy_to_user(p, blob, params.len))
6590 params.len = data->len;
6591 if (copy_to_user(measure, ¶ms, sizeof(params)))
6600 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6602 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6603 struct sev_data_launch_finish *data;
6606 if (!sev_guest(kvm))
6609 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6613 data->handle = sev->handle;
6614 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6620 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6622 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6623 struct kvm_sev_guest_status params;
6624 struct sev_data_guest_status *data;
6627 if (!sev_guest(kvm))
6630 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6634 data->handle = sev->handle;
6635 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6639 params.policy = data->policy;
6640 params.state = data->state;
6641 params.handle = data->handle;
6643 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
6650 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6651 unsigned long dst, int size,
6652 int *error, bool enc)
6654 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6655 struct sev_data_dbg *data;
6658 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6662 data->handle = sev->handle;
6663 data->dst_addr = dst;
6664 data->src_addr = src;
6667 ret = sev_issue_cmd(kvm,
6668 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6674 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6675 unsigned long dst_paddr, int sz, int *err)
6680 * Its safe to read more than we are asked, caller should ensure that
6681 * destination has enough space.
6683 src_paddr = round_down(src_paddr, 16);
6684 offset = src_paddr & 15;
6685 sz = round_up(sz + offset, 16);
6687 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6690 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6691 unsigned long __user dst_uaddr,
6692 unsigned long dst_paddr,
6695 struct page *tpage = NULL;
6698 /* if inputs are not 16-byte then use intermediate buffer */
6699 if (!IS_ALIGNED(dst_paddr, 16) ||
6700 !IS_ALIGNED(paddr, 16) ||
6701 !IS_ALIGNED(size, 16)) {
6702 tpage = (void *)alloc_page(GFP_KERNEL);
6706 dst_paddr = __sme_page_pa(tpage);
6709 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6714 offset = paddr & 15;
6715 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6716 page_address(tpage) + offset, size))
6727 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6728 unsigned long __user vaddr,
6729 unsigned long dst_paddr,
6730 unsigned long __user dst_vaddr,
6731 int size, int *error)
6733 struct page *src_tpage = NULL;
6734 struct page *dst_tpage = NULL;
6735 int ret, len = size;
6737 /* If source buffer is not aligned then use an intermediate buffer */
6738 if (!IS_ALIGNED(vaddr, 16)) {
6739 src_tpage = alloc_page(GFP_KERNEL);
6743 if (copy_from_user(page_address(src_tpage),
6744 (void __user *)(uintptr_t)vaddr, size)) {
6745 __free_page(src_tpage);
6749 paddr = __sme_page_pa(src_tpage);
6753 * If destination buffer or length is not aligned then do read-modify-write:
6754 * - decrypt destination in an intermediate buffer
6755 * - copy the source buffer in an intermediate buffer
6756 * - use the intermediate buffer as source buffer
6758 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6761 dst_tpage = alloc_page(GFP_KERNEL);
6767 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6768 __sme_page_pa(dst_tpage), size, error);
6773 * If source is kernel buffer then use memcpy() otherwise
6776 dst_offset = dst_paddr & 15;
6779 memcpy(page_address(dst_tpage) + dst_offset,
6780 page_address(src_tpage), size);
6782 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6783 (void __user *)(uintptr_t)vaddr, size)) {
6789 paddr = __sme_page_pa(dst_tpage);
6790 dst_paddr = round_down(dst_paddr, 16);
6791 len = round_up(size, 16);
6794 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6798 __free_page(src_tpage);
6800 __free_page(dst_tpage);
6804 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6806 unsigned long vaddr, vaddr_end, next_vaddr;
6807 unsigned long dst_vaddr;
6808 struct page **src_p, **dst_p;
6809 struct kvm_sev_dbg debug;
6814 if (!sev_guest(kvm))
6817 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6820 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6822 if (!debug.dst_uaddr)
6825 vaddr = debug.src_uaddr;
6827 vaddr_end = vaddr + size;
6828 dst_vaddr = debug.dst_uaddr;
6830 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6831 int len, s_off, d_off;
6833 /* lock userspace source and destination page */
6834 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6838 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6840 sev_unpin_memory(kvm, src_p, n);
6845 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6846 * memory content (i.e it will write the same memory region with C=1).
6847 * It's possible that the cache may contain the data with C=0, i.e.,
6848 * unencrypted so invalidate it first.
6850 sev_clflush_pages(src_p, 1);
6851 sev_clflush_pages(dst_p, 1);
6854 * Since user buffer may not be page aligned, calculate the
6855 * offset within the page.
6857 s_off = vaddr & ~PAGE_MASK;
6858 d_off = dst_vaddr & ~PAGE_MASK;
6859 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6862 ret = __sev_dbg_decrypt_user(kvm,
6863 __sme_page_pa(src_p[0]) + s_off,
6865 __sme_page_pa(dst_p[0]) + d_off,
6868 ret = __sev_dbg_encrypt_user(kvm,
6869 __sme_page_pa(src_p[0]) + s_off,
6871 __sme_page_pa(dst_p[0]) + d_off,
6875 sev_unpin_memory(kvm, src_p, n);
6876 sev_unpin_memory(kvm, dst_p, n);
6881 next_vaddr = vaddr + len;
6882 dst_vaddr = dst_vaddr + len;
6889 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6891 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6892 struct sev_data_launch_secret *data;
6893 struct kvm_sev_launch_secret params;
6894 struct page **pages;
6899 if (!sev_guest(kvm))
6902 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6905 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6910 * The secret must be copied into contiguous memory region, lets verify
6911 * that userspace memory pages are contiguous before we issue command.
6913 if (get_num_contig_pages(0, pages, n) != n) {
6915 goto e_unpin_memory;
6919 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6921 goto e_unpin_memory;
6923 offset = params.guest_uaddr & (PAGE_SIZE - 1);
6924 data->guest_address = __sme_page_pa(pages[0]) + offset;
6925 data->guest_len = params.guest_len;
6927 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6929 ret = PTR_ERR(blob);
6933 data->trans_address = __psp_pa(blob);
6934 data->trans_len = params.trans_len;
6936 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6941 data->hdr_address = __psp_pa(hdr);
6942 data->hdr_len = params.hdr_len;
6944 data->handle = sev->handle;
6945 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6954 sev_unpin_memory(kvm, pages, n);
6958 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6960 struct kvm_sev_cmd sev_cmd;
6963 if (!svm_sev_enabled())
6966 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6969 mutex_lock(&kvm->lock);
6971 switch (sev_cmd.id) {
6973 r = sev_guest_init(kvm, &sev_cmd);
6975 case KVM_SEV_LAUNCH_START:
6976 r = sev_launch_start(kvm, &sev_cmd);
6978 case KVM_SEV_LAUNCH_UPDATE_DATA:
6979 r = sev_launch_update_data(kvm, &sev_cmd);
6981 case KVM_SEV_LAUNCH_MEASURE:
6982 r = sev_launch_measure(kvm, &sev_cmd);
6984 case KVM_SEV_LAUNCH_FINISH:
6985 r = sev_launch_finish(kvm, &sev_cmd);
6987 case KVM_SEV_GUEST_STATUS:
6988 r = sev_guest_status(kvm, &sev_cmd);
6990 case KVM_SEV_DBG_DECRYPT:
6991 r = sev_dbg_crypt(kvm, &sev_cmd, true);
6993 case KVM_SEV_DBG_ENCRYPT:
6994 r = sev_dbg_crypt(kvm, &sev_cmd, false);
6996 case KVM_SEV_LAUNCH_SECRET:
6997 r = sev_launch_secret(kvm, &sev_cmd);
7004 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7008 mutex_unlock(&kvm->lock);
7012 static int svm_register_enc_region(struct kvm *kvm,
7013 struct kvm_enc_region *range)
7015 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7016 struct enc_region *region;
7019 if (!sev_guest(kvm))
7022 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7025 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7029 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
7030 if (!region->pages) {
7036 * The guest may change the memory encryption attribute from C=0 -> C=1
7037 * or vice versa for this memory range. Lets make sure caches are
7038 * flushed to ensure that guest data gets written into memory with
7041 sev_clflush_pages(region->pages, region->npages);
7043 region->uaddr = range->addr;
7044 region->size = range->size;
7046 mutex_lock(&kvm->lock);
7047 list_add_tail(®ion->list, &sev->regions_list);
7048 mutex_unlock(&kvm->lock);
7057 static struct enc_region *
7058 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7060 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7061 struct list_head *head = &sev->regions_list;
7062 struct enc_region *i;
7064 list_for_each_entry(i, head, list) {
7065 if (i->uaddr == range->addr &&
7066 i->size == range->size)
7074 static int svm_unregister_enc_region(struct kvm *kvm,
7075 struct kvm_enc_region *range)
7077 struct enc_region *region;
7080 mutex_lock(&kvm->lock);
7082 if (!sev_guest(kvm)) {
7087 region = find_enc_region(kvm, range);
7093 __unregister_enc_region_locked(kvm, region);
7095 mutex_unlock(&kvm->lock);
7099 mutex_unlock(&kvm->lock);
7103 static uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu)
7109 static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
7110 uint16_t *vmcs_version)
7112 /* Intel-only feature */
7116 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7120 is_user = svm_get_cpl(vcpu) == 3;
7121 smap = !kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
7124 * Detect and workaround Errata 1096 Fam_17h_00_0Fh
7126 * In non SEV guest, hypervisor will be able to read the guest
7127 * memory to decode the instruction pointer when insn_len is zero
7128 * so we return true to indicate that decoding is possible.
7130 * But in the SEV guest, the guest memory is encrypted with the
7131 * guest specific key and hypervisor will not be able to decode the
7132 * instruction pointer so we will not able to workaround it. Lets
7133 * print the error and request to kill the guest.
7135 if (is_user && smap) {
7136 if (!sev_guest(vcpu->kvm))
7139 pr_err_ratelimited("KVM: Guest triggered AMD Erratum 1096\n");
7140 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7146 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7147 .cpu_has_kvm_support = has_svm,
7148 .disabled_by_bios = is_disabled,
7149 .hardware_setup = svm_hardware_setup,
7150 .hardware_unsetup = svm_hardware_unsetup,
7151 .check_processor_compatibility = svm_check_processor_compat,
7152 .hardware_enable = svm_hardware_enable,
7153 .hardware_disable = svm_hardware_disable,
7154 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7155 .has_emulated_msr = svm_has_emulated_msr,
7157 .vcpu_create = svm_create_vcpu,
7158 .vcpu_free = svm_free_vcpu,
7159 .vcpu_reset = svm_vcpu_reset,
7161 .vm_alloc = svm_vm_alloc,
7162 .vm_free = svm_vm_free,
7163 .vm_init = avic_vm_init,
7164 .vm_destroy = svm_vm_destroy,
7166 .prepare_guest_switch = svm_prepare_guest_switch,
7167 .vcpu_load = svm_vcpu_load,
7168 .vcpu_put = svm_vcpu_put,
7169 .vcpu_blocking = svm_vcpu_blocking,
7170 .vcpu_unblocking = svm_vcpu_unblocking,
7172 .update_bp_intercept = update_bp_intercept,
7173 .get_msr_feature = svm_get_msr_feature,
7174 .get_msr = svm_get_msr,
7175 .set_msr = svm_set_msr,
7176 .get_segment_base = svm_get_segment_base,
7177 .get_segment = svm_get_segment,
7178 .set_segment = svm_set_segment,
7179 .get_cpl = svm_get_cpl,
7180 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7181 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7182 .decache_cr3 = svm_decache_cr3,
7183 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7184 .set_cr0 = svm_set_cr0,
7185 .set_cr3 = svm_set_cr3,
7186 .set_cr4 = svm_set_cr4,
7187 .set_efer = svm_set_efer,
7188 .get_idt = svm_get_idt,
7189 .set_idt = svm_set_idt,
7190 .get_gdt = svm_get_gdt,
7191 .set_gdt = svm_set_gdt,
7192 .get_dr6 = svm_get_dr6,
7193 .set_dr6 = svm_set_dr6,
7194 .set_dr7 = svm_set_dr7,
7195 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7196 .cache_reg = svm_cache_reg,
7197 .get_rflags = svm_get_rflags,
7198 .set_rflags = svm_set_rflags,
7200 .tlb_flush = svm_flush_tlb,
7201 .tlb_flush_gva = svm_flush_tlb_gva,
7203 .run = svm_vcpu_run,
7204 .handle_exit = handle_exit,
7205 .skip_emulated_instruction = skip_emulated_instruction,
7206 .set_interrupt_shadow = svm_set_interrupt_shadow,
7207 .get_interrupt_shadow = svm_get_interrupt_shadow,
7208 .patch_hypercall = svm_patch_hypercall,
7209 .set_irq = svm_set_irq,
7210 .set_nmi = svm_inject_nmi,
7211 .queue_exception = svm_queue_exception,
7212 .cancel_injection = svm_cancel_injection,
7213 .interrupt_allowed = svm_interrupt_allowed,
7214 .nmi_allowed = svm_nmi_allowed,
7215 .get_nmi_mask = svm_get_nmi_mask,
7216 .set_nmi_mask = svm_set_nmi_mask,
7217 .enable_nmi_window = enable_nmi_window,
7218 .enable_irq_window = enable_irq_window,
7219 .update_cr8_intercept = update_cr8_intercept,
7220 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7221 .get_enable_apicv = svm_get_enable_apicv,
7222 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7223 .load_eoi_exitmap = svm_load_eoi_exitmap,
7224 .hwapic_irr_update = svm_hwapic_irr_update,
7225 .hwapic_isr_update = svm_hwapic_isr_update,
7226 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7227 .apicv_post_state_restore = avic_post_state_restore,
7229 .set_tss_addr = svm_set_tss_addr,
7230 .set_identity_map_addr = svm_set_identity_map_addr,
7231 .get_tdp_level = get_npt_level,
7232 .get_mt_mask = svm_get_mt_mask,
7234 .get_exit_info = svm_get_exit_info,
7236 .get_lpage_level = svm_get_lpage_level,
7238 .cpuid_update = svm_cpuid_update,
7240 .rdtscp_supported = svm_rdtscp_supported,
7241 .invpcid_supported = svm_invpcid_supported,
7242 .mpx_supported = svm_mpx_supported,
7243 .xsaves_supported = svm_xsaves_supported,
7244 .umip_emulated = svm_umip_emulated,
7245 .pt_supported = svm_pt_supported,
7247 .set_supported_cpuid = svm_set_supported_cpuid,
7249 .has_wbinvd_exit = svm_has_wbinvd_exit,
7251 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7252 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7254 .set_tdp_cr3 = set_tdp_cr3,
7256 .check_intercept = svm_check_intercept,
7257 .handle_external_intr = svm_handle_external_intr,
7259 .request_immediate_exit = __kvm_request_immediate_exit,
7261 .sched_in = svm_sched_in,
7263 .pmu_ops = &amd_pmu_ops,
7264 .deliver_posted_interrupt = svm_deliver_avic_intr,
7265 .update_pi_irte = svm_update_pi_irte,
7266 .setup_mce = svm_setup_mce,
7268 .smi_allowed = svm_smi_allowed,
7269 .pre_enter_smm = svm_pre_enter_smm,
7270 .pre_leave_smm = svm_pre_leave_smm,
7271 .enable_smi_window = enable_smi_window,
7273 .mem_enc_op = svm_mem_enc_op,
7274 .mem_enc_reg_region = svm_register_enc_region,
7275 .mem_enc_unreg_region = svm_unregister_enc_region,
7277 .nested_enable_evmcs = nested_enable_evmcs,
7278 .nested_get_evmcs_version = nested_get_evmcs_version,
7280 .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7283 static int __init svm_init(void)
7285 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7286 __alignof__(struct vcpu_svm), THIS_MODULE);
7289 static void __exit svm_exit(void)
7294 module_init(svm_init)
7295 module_exit(svm_exit)