]>
Commit | Line | Data |
---|---|---|
6aa8b732 AK |
1 | /* |
2 | * Kernel-based Virtual Machine driver for Linux | |
3 | * | |
4 | * AMD SVM support | |
5 | * | |
6 | * Copyright (C) 2006 Qumranet, Inc. | |
9611c187 | 7 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
6aa8b732 AK |
8 | * |
9 | * Authors: | |
10 | * Yaniv Kamay <[email protected]> | |
11 | * Avi Kivity <[email protected]> | |
12 | * | |
13 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
14 | * the COPYING file in the top-level directory. | |
15 | * | |
16 | */ | |
44a95dae SS |
17 | |
18 | #define pr_fmt(fmt) "SVM: " fmt | |
19 | ||
edf88417 AK |
20 | #include <linux/kvm_host.h> |
21 | ||
85f455f7 | 22 | #include "irq.h" |
1d737c8a | 23 | #include "mmu.h" |
5fdbf976 | 24 | #include "kvm_cache_regs.h" |
fe4c7b19 | 25 | #include "x86.h" |
66f7b72e | 26 | #include "cpuid.h" |
25462f7f | 27 | #include "pmu.h" |
e495606d | 28 | |
6aa8b732 | 29 | #include <linux/module.h> |
ae759544 | 30 | #include <linux/mod_devicetable.h> |
9d8f549d | 31 | #include <linux/kernel.h> |
6aa8b732 AK |
32 | #include <linux/vmalloc.h> |
33 | #include <linux/highmem.h> | |
e8edc6e0 | 34 | #include <linux/sched.h> |
af658dca | 35 | #include <linux/trace_events.h> |
5a0e3ad6 | 36 | #include <linux/slab.h> |
5881f737 SS |
37 | #include <linux/amd-iommu.h> |
38 | #include <linux/hashtable.h> | |
c207aee4 | 39 | #include <linux/frame.h> |
e9df0942 | 40 | #include <linux/psp-sev.h> |
1654efcb | 41 | #include <linux/file.h> |
89c50580 BS |
42 | #include <linux/pagemap.h> |
43 | #include <linux/swap.h> | |
6aa8b732 | 44 | |
8221c137 | 45 | #include <asm/apic.h> |
1018faa6 | 46 | #include <asm/perf_event.h> |
67ec6607 | 47 | #include <asm/tlbflush.h> |
e495606d | 48 | #include <asm/desc.h> |
facb0139 | 49 | #include <asm/debugreg.h> |
631bc487 | 50 | #include <asm/kvm_para.h> |
411b44ba | 51 | #include <asm/irq_remapping.h> |
28a27752 | 52 | #include <asm/spec-ctrl.h> |
6aa8b732 | 53 | |
63d1142f | 54 | #include <asm/virtext.h> |
229456fc | 55 | #include "trace.h" |
63d1142f | 56 | |
4ecac3fd AK |
57 | #define __ex(x) __kvm_handle_fault_on_reboot(x) |
58 | ||
6aa8b732 AK |
59 | MODULE_AUTHOR("Qumranet"); |
60 | MODULE_LICENSE("GPL"); | |
61 | ||
ae759544 JT |
62 | static const struct x86_cpu_id svm_cpu_id[] = { |
63 | X86_FEATURE_MATCH(X86_FEATURE_SVM), | |
64 | {} | |
65 | }; | |
66 | MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); | |
67 | ||
6aa8b732 AK |
68 | #define IOPM_ALLOC_ORDER 2 |
69 | #define MSRPM_ALLOC_ORDER 1 | |
70 | ||
6aa8b732 AK |
71 | #define SEG_TYPE_LDT 2 |
72 | #define SEG_TYPE_BUSY_TSS16 3 | |
73 | ||
6bc31bdc AP |
74 | #define SVM_FEATURE_NPT (1 << 0) |
75 | #define SVM_FEATURE_LBRV (1 << 1) | |
76 | #define SVM_FEATURE_SVML (1 << 2) | |
77 | #define SVM_FEATURE_NRIP (1 << 3) | |
ddce97aa AP |
78 | #define SVM_FEATURE_TSC_RATE (1 << 4) |
79 | #define SVM_FEATURE_VMCB_CLEAN (1 << 5) | |
80 | #define SVM_FEATURE_FLUSH_ASID (1 << 6) | |
81 | #define SVM_FEATURE_DECODE_ASSIST (1 << 7) | |
6bc31bdc | 82 | #define SVM_FEATURE_PAUSE_FILTER (1 << 10) |
80b7706e | 83 | |
340d3bc3 SS |
84 | #define SVM_AVIC_DOORBELL 0xc001011b |
85 | ||
410e4d57 JR |
86 | #define NESTED_EXIT_HOST 0 /* Exit handled on host level */ |
87 | #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */ | |
88 | #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */ | |
89 | ||
24e09cbf JR |
90 | #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) |
91 | ||
fbc0db76 | 92 | #define TSC_RATIO_RSVD 0xffffff0000000000ULL |
92a1f12d JR |
93 | #define TSC_RATIO_MIN 0x0000000000000001ULL |
94 | #define TSC_RATIO_MAX 0x000000ffffffffffULL | |
fbc0db76 | 95 | |
5446a979 | 96 | #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF) |
44a95dae SS |
97 | |
98 | /* | |
99 | * 0xff is broadcast, so the max index allowed for physical APIC ID | |
100 | * table is 0xfe. APIC IDs above 0xff are reserved. | |
101 | */ | |
102 | #define AVIC_MAX_PHYSICAL_ID_COUNT 255 | |
103 | ||
18f40c53 SS |
104 | #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1 |
105 | #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0 | |
106 | #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF | |
107 | ||
5ea11f2b SS |
108 | /* AVIC GATAG is encoded using VM and VCPU IDs */ |
109 | #define AVIC_VCPU_ID_BITS 8 | |
110 | #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1) | |
111 | ||
112 | #define AVIC_VM_ID_BITS 24 | |
113 | #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS) | |
114 | #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1) | |
115 | ||
116 | #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \ | |
117 | (y & AVIC_VCPU_ID_MASK)) | |
118 | #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK) | |
119 | #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK) | |
120 | ||
67ec6607 JR |
121 | static bool erratum_383_found __read_mostly; |
122 | ||
6c8166a7 AK |
123 | static const u32 host_save_user_msrs[] = { |
124 | #ifdef CONFIG_X86_64 | |
125 | MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE, | |
126 | MSR_FS_BASE, | |
127 | #endif | |
128 | MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, | |
46896c73 | 129 | MSR_TSC_AUX, |
6c8166a7 AK |
130 | }; |
131 | ||
132 | #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs) | |
133 | ||
81811c16 SC |
134 | struct kvm_sev_info { |
135 | bool active; /* SEV enabled guest */ | |
136 | unsigned int asid; /* ASID used for this guest */ | |
137 | unsigned int handle; /* SEV firmware handle */ | |
138 | int fd; /* SEV device fd */ | |
139 | unsigned long pages_locked; /* Number of pages locked */ | |
140 | struct list_head regions_list; /* List of registered regions */ | |
141 | }; | |
142 | ||
143 | struct kvm_svm { | |
144 | struct kvm kvm; | |
145 | ||
146 | /* Struct members for AVIC */ | |
147 | u32 avic_vm_id; | |
81811c16 SC |
148 | struct page *avic_logical_id_table_page; |
149 | struct page *avic_physical_id_table_page; | |
150 | struct hlist_node hnode; | |
151 | ||
152 | struct kvm_sev_info sev_info; | |
153 | }; | |
154 | ||
6c8166a7 AK |
155 | struct kvm_vcpu; |
156 | ||
e6aa9abd JR |
157 | struct nested_state { |
158 | struct vmcb *hsave; | |
159 | u64 hsave_msr; | |
4a810181 | 160 | u64 vm_cr_msr; |
e6aa9abd JR |
161 | u64 vmcb; |
162 | ||
163 | /* These are the merged vectors */ | |
164 | u32 *msrpm; | |
165 | ||
166 | /* gpa pointers to the real vectors */ | |
167 | u64 vmcb_msrpm; | |
ce2ac085 | 168 | u64 vmcb_iopm; |
aad42c64 | 169 | |
cd3ff653 JR |
170 | /* A VMEXIT is required but not yet emulated */ |
171 | bool exit_required; | |
172 | ||
aad42c64 | 173 | /* cache for intercepts of the guest */ |
4ee546b4 | 174 | u32 intercept_cr; |
3aed041a | 175 | u32 intercept_dr; |
aad42c64 JR |
176 | u32 intercept_exceptions; |
177 | u64 intercept; | |
178 | ||
5bd2edc3 JR |
179 | /* Nested Paging related state */ |
180 | u64 nested_cr3; | |
e6aa9abd JR |
181 | }; |
182 | ||
323c3d80 JR |
183 | #define MSRPM_OFFSETS 16 |
184 | static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; | |
185 | ||
2b036c6b BO |
186 | /* |
187 | * Set osvw_len to higher value when updated Revision Guides | |
188 | * are published and we know what the new status bits are | |
189 | */ | |
190 | static uint64_t osvw_len = 4, osvw_status; | |
191 | ||
6c8166a7 AK |
192 | struct vcpu_svm { |
193 | struct kvm_vcpu vcpu; | |
194 | struct vmcb *vmcb; | |
195 | unsigned long vmcb_pa; | |
196 | struct svm_cpu_data *svm_data; | |
197 | uint64_t asid_generation; | |
198 | uint64_t sysenter_esp; | |
199 | uint64_t sysenter_eip; | |
46896c73 | 200 | uint64_t tsc_aux; |
6c8166a7 | 201 | |
d1d93fa9 TL |
202 | u64 msr_decfg; |
203 | ||
6c8166a7 AK |
204 | u64 next_rip; |
205 | ||
206 | u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS]; | |
afe9e66f | 207 | struct { |
dacccfdd AK |
208 | u16 fs; |
209 | u16 gs; | |
210 | u16 ldt; | |
afe9e66f AK |
211 | u64 gs_base; |
212 | } host; | |
6c8166a7 | 213 | |
b2ac58f9 | 214 | u64 spec_ctrl; |
ccbcd267 TG |
215 | /* |
216 | * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be | |
217 | * translated into the appropriate L2_CFG bits on the host to | |
218 | * perform speculative control. | |
219 | */ | |
220 | u64 virt_spec_ctrl; | |
b2ac58f9 | 221 | |
6c8166a7 | 222 | u32 *msrpm; |
6c8166a7 | 223 | |
bd3d1ec3 AK |
224 | ulong nmi_iret_rip; |
225 | ||
e6aa9abd | 226 | struct nested_state nested; |
6be7d306 JK |
227 | |
228 | bool nmi_singlestep; | |
ab2f4d73 | 229 | u64 nmi_singlestep_guest_rflags; |
66b7138f JK |
230 | |
231 | unsigned int3_injected; | |
232 | unsigned long int3_rip; | |
fbc0db76 | 233 | |
6092d3d3 JR |
234 | /* cached guest cpuid flags for faster access */ |
235 | bool nrips_enabled : 1; | |
44a95dae | 236 | |
18f40c53 | 237 | u32 ldr_reg; |
98d90582 | 238 | u32 dfr_reg; |
44a95dae SS |
239 | struct page *avic_backing_page; |
240 | u64 *avic_physical_id_cache; | |
8221c137 | 241 | bool avic_is_running; |
411b44ba SS |
242 | |
243 | /* | |
244 | * Per-vcpu list of struct amd_svm_iommu_ir: | |
245 | * This is used mainly to store interrupt remapping information used | |
246 | * when update the vcpu affinity. This avoids the need to scan for | |
247 | * IRTE and try to match ga_tag in the IOMMU driver. | |
248 | */ | |
249 | struct list_head ir_list; | |
250 | spinlock_t ir_list_lock; | |
70cd94e6 BS |
251 | |
252 | /* which host CPU was used for running this vcpu */ | |
253 | unsigned int last_cpu; | |
411b44ba SS |
254 | }; |
255 | ||
256 | /* | |
257 | * This is a wrapper of struct amd_iommu_ir_data. | |
258 | */ | |
259 | struct amd_svm_iommu_ir { | |
260 | struct list_head node; /* Used by SVM for per-vcpu ir_list */ | |
261 | void *data; /* Storing pointer to struct amd_ir_data */ | |
6c8166a7 AK |
262 | }; |
263 | ||
44a95dae | 264 | #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF) |
e44e3eac | 265 | #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31 |
44a95dae SS |
266 | #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31) |
267 | ||
268 | #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL) | |
269 | #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12) | |
270 | #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62) | |
271 | #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63) | |
272 | ||
fbc0db76 JR |
273 | static DEFINE_PER_CPU(u64, current_tsc_ratio); |
274 | #define TSC_RATIO_DEFAULT 0x0100000000ULL | |
275 | ||
455716fa JR |
276 | #define MSR_INVALID 0xffffffffU |
277 | ||
09941fbb | 278 | static const struct svm_direct_access_msrs { |
ac72a9b7 JR |
279 | u32 index; /* Index of the MSR */ |
280 | bool always; /* True if intercept is always on */ | |
281 | } direct_access_msrs[] = { | |
8c06585d | 282 | { .index = MSR_STAR, .always = true }, |
ac72a9b7 JR |
283 | { .index = MSR_IA32_SYSENTER_CS, .always = true }, |
284 | #ifdef CONFIG_X86_64 | |
285 | { .index = MSR_GS_BASE, .always = true }, | |
286 | { .index = MSR_FS_BASE, .always = true }, | |
287 | { .index = MSR_KERNEL_GS_BASE, .always = true }, | |
288 | { .index = MSR_LSTAR, .always = true }, | |
289 | { .index = MSR_CSTAR, .always = true }, | |
290 | { .index = MSR_SYSCALL_MASK, .always = true }, | |
291 | #endif | |
b2ac58f9 | 292 | { .index = MSR_IA32_SPEC_CTRL, .always = false }, |
15d45071 | 293 | { .index = MSR_IA32_PRED_CMD, .always = false }, |
ac72a9b7 JR |
294 | { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, |
295 | { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, | |
296 | { .index = MSR_IA32_LASTINTFROMIP, .always = false }, | |
297 | { .index = MSR_IA32_LASTINTTOIP, .always = false }, | |
298 | { .index = MSR_INVALID, .always = false }, | |
6c8166a7 AK |
299 | }; |
300 | ||
709ddebf JR |
301 | /* enable NPT for AMD64 and X86 with PAE */ |
302 | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) | |
303 | static bool npt_enabled = true; | |
304 | #else | |
e0231715 | 305 | static bool npt_enabled; |
709ddebf | 306 | #endif |
6c7dac72 | 307 | |
8566ac8b BM |
308 | /* |
309 | * These 2 parameters are used to config the controls for Pause-Loop Exiting: | |
310 | * pause_filter_count: On processors that support Pause filtering(indicated | |
311 | * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter | |
312 | * count value. On VMRUN this value is loaded into an internal counter. | |
313 | * Each time a pause instruction is executed, this counter is decremented | |
314 | * until it reaches zero at which time a #VMEXIT is generated if pause | |
315 | * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause | |
316 | * Intercept Filtering for more details. | |
317 | * This also indicate if ple logic enabled. | |
318 | * | |
319 | * pause_filter_thresh: In addition, some processor families support advanced | |
320 | * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on | |
321 | * the amount of time a guest is allowed to execute in a pause loop. | |
322 | * In this mode, a 16-bit pause filter threshold field is added in the | |
323 | * VMCB. The threshold value is a cycle count that is used to reset the | |
324 | * pause counter. As with simple pause filtering, VMRUN loads the pause | |
325 | * count value from VMCB into an internal counter. Then, on each pause | |
326 | * instruction the hardware checks the elapsed number of cycles since | |
327 | * the most recent pause instruction against the pause filter threshold. | |
328 | * If the elapsed cycle count is greater than the pause filter threshold, | |
329 | * then the internal pause count is reloaded from the VMCB and execution | |
330 | * continues. If the elapsed cycle count is less than the pause filter | |
331 | * threshold, then the internal pause count is decremented. If the count | |
332 | * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is | |
333 | * triggered. If advanced pause filtering is supported and pause filter | |
334 | * threshold field is set to zero, the filter will operate in the simpler, | |
335 | * count only mode. | |
336 | */ | |
337 | ||
338 | static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; | |
339 | module_param(pause_filter_thresh, ushort, 0444); | |
340 | ||
341 | static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; | |
342 | module_param(pause_filter_count, ushort, 0444); | |
343 | ||
344 | /* Default doubles per-vcpu window every exit. */ | |
345 | static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; | |
346 | module_param(pause_filter_count_grow, ushort, 0444); | |
347 | ||
348 | /* Default resets per-vcpu window every exit to pause_filter_count. */ | |
349 | static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; | |
350 | module_param(pause_filter_count_shrink, ushort, 0444); | |
351 | ||
352 | /* Default is to compute the maximum so we can never overflow. */ | |
353 | static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; | |
354 | module_param(pause_filter_count_max, ushort, 0444); | |
355 | ||
e2358851 DB |
356 | /* allow nested paging (virtualized MMU) for all guests */ |
357 | static int npt = true; | |
6c7dac72 | 358 | module_param(npt, int, S_IRUGO); |
e3da3acd | 359 | |
e2358851 DB |
360 | /* allow nested virtualization in KVM/SVM */ |
361 | static int nested = true; | |
236de055 AG |
362 | module_param(nested, int, S_IRUGO); |
363 | ||
44a95dae SS |
364 | /* enable / disable AVIC */ |
365 | static int avic; | |
5b8abf1f | 366 | #ifdef CONFIG_X86_LOCAL_APIC |
44a95dae | 367 | module_param(avic, int, S_IRUGO); |
5b8abf1f | 368 | #endif |
44a95dae | 369 | |
89c8a498 JN |
370 | /* enable/disable Virtual VMLOAD VMSAVE */ |
371 | static int vls = true; | |
372 | module_param(vls, int, 0444); | |
373 | ||
640bd6e5 JN |
374 | /* enable/disable Virtual GIF */ |
375 | static int vgif = true; | |
376 | module_param(vgif, int, 0444); | |
5ea11f2b | 377 | |
e9df0942 BS |
378 | /* enable/disable SEV support */ |
379 | static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); | |
380 | module_param(sev, int, 0444); | |
381 | ||
7607b717 BS |
382 | static u8 rsm_ins_bytes[] = "\x0f\xaa"; |
383 | ||
79a8059d | 384 | static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); |
c2ba05cc | 385 | static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa); |
a5c3832d | 386 | static void svm_complete_interrupts(struct vcpu_svm *svm); |
04d2cc77 | 387 | |
410e4d57 | 388 | static int nested_svm_exit_handled(struct vcpu_svm *svm); |
b8e88bc8 | 389 | static int nested_svm_intercept(struct vcpu_svm *svm); |
cf74a78b | 390 | static int nested_svm_vmexit(struct vcpu_svm *svm); |
cf74a78b AG |
391 | static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, |
392 | bool has_error_code, u32 error_code); | |
393 | ||
8d28fec4 | 394 | enum { |
116a0a23 JR |
395 | VMCB_INTERCEPTS, /* Intercept vectors, TSC offset, |
396 | pause filter count */ | |
f56838e4 | 397 | VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */ |
d48086d1 | 398 | VMCB_ASID, /* ASID */ |
decdbf6a | 399 | VMCB_INTR, /* int_ctl, int_vector */ |
b2747166 | 400 | VMCB_NPT, /* npt_en, nCR3, gPAT */ |
dcca1a65 | 401 | VMCB_CR, /* CR0, CR3, CR4, EFER */ |
72214b96 | 402 | VMCB_DR, /* DR6, DR7 */ |
17a703cb | 403 | VMCB_DT, /* GDT, IDT */ |
060d0c9a | 404 | VMCB_SEG, /* CS, DS, SS, ES, CPL */ |
0574dec0 | 405 | VMCB_CR2, /* CR2 only */ |
b53ba3f9 | 406 | VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */ |
44a95dae SS |
407 | VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE, |
408 | * AVIC PHYSICAL_TABLE pointer, | |
409 | * AVIC LOGICAL_TABLE pointer | |
410 | */ | |
8d28fec4 RJ |
411 | VMCB_DIRTY_MAX, |
412 | }; | |
413 | ||
0574dec0 JR |
414 | /* TPR and CR2 are always written before VMRUN */ |
415 | #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2)) | |
8d28fec4 | 416 | |
44a95dae SS |
417 | #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL |
418 | ||
ed3cd233 | 419 | static unsigned int max_sev_asid; |
1654efcb BS |
420 | static unsigned int min_sev_asid; |
421 | static unsigned long *sev_asid_bitmap; | |
89c50580 | 422 | #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT) |
1654efcb | 423 | |
1e80fdc0 BS |
424 | struct enc_region { |
425 | struct list_head list; | |
426 | unsigned long npages; | |
427 | struct page **pages; | |
428 | unsigned long uaddr; | |
429 | unsigned long size; | |
430 | }; | |
431 | ||
81811c16 SC |
432 | |
433 | static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm) | |
434 | { | |
435 | return container_of(kvm, struct kvm_svm, kvm); | |
436 | } | |
437 | ||
1654efcb BS |
438 | static inline bool svm_sev_enabled(void) |
439 | { | |
853c1109 | 440 | return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0; |
1654efcb BS |
441 | } |
442 | ||
443 | static inline bool sev_guest(struct kvm *kvm) | |
444 | { | |
853c1109 | 445 | #ifdef CONFIG_KVM_AMD_SEV |
81811c16 | 446 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
1654efcb BS |
447 | |
448 | return sev->active; | |
853c1109 PB |
449 | #else |
450 | return false; | |
451 | #endif | |
1654efcb | 452 | } |
ed3cd233 | 453 | |
70cd94e6 BS |
454 | static inline int sev_get_asid(struct kvm *kvm) |
455 | { | |
81811c16 | 456 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
70cd94e6 BS |
457 | |
458 | return sev->asid; | |
459 | } | |
460 | ||
8d28fec4 RJ |
461 | static inline void mark_all_dirty(struct vmcb *vmcb) |
462 | { | |
463 | vmcb->control.clean = 0; | |
464 | } | |
465 | ||
466 | static inline void mark_all_clean(struct vmcb *vmcb) | |
467 | { | |
468 | vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1) | |
469 | & ~VMCB_ALWAYS_DIRTY_MASK; | |
470 | } | |
471 | ||
472 | static inline void mark_dirty(struct vmcb *vmcb, int bit) | |
473 | { | |
474 | vmcb->control.clean &= ~(1 << bit); | |
475 | } | |
476 | ||
a2fa3e9f GH |
477 | static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) |
478 | { | |
fb3f0f51 | 479 | return container_of(vcpu, struct vcpu_svm, vcpu); |
a2fa3e9f GH |
480 | } |
481 | ||
44a95dae SS |
482 | static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data) |
483 | { | |
484 | svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK; | |
485 | mark_dirty(svm->vmcb, VMCB_AVIC); | |
486 | } | |
487 | ||
340d3bc3 SS |
488 | static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu) |
489 | { | |
490 | struct vcpu_svm *svm = to_svm(vcpu); | |
491 | u64 *entry = svm->avic_physical_id_cache; | |
492 | ||
493 | if (!entry) | |
494 | return false; | |
495 | ||
496 | return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); | |
497 | } | |
498 | ||
384c6368 JR |
499 | static void recalc_intercepts(struct vcpu_svm *svm) |
500 | { | |
501 | struct vmcb_control_area *c, *h; | |
502 | struct nested_state *g; | |
503 | ||
116a0a23 JR |
504 | mark_dirty(svm->vmcb, VMCB_INTERCEPTS); |
505 | ||
384c6368 JR |
506 | if (!is_guest_mode(&svm->vcpu)) |
507 | return; | |
508 | ||
509 | c = &svm->vmcb->control; | |
510 | h = &svm->nested.hsave->control; | |
511 | g = &svm->nested; | |
512 | ||
4ee546b4 | 513 | c->intercept_cr = h->intercept_cr | g->intercept_cr; |
3aed041a | 514 | c->intercept_dr = h->intercept_dr | g->intercept_dr; |
bd89525a | 515 | c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions; |
384c6368 JR |
516 | c->intercept = h->intercept | g->intercept; |
517 | } | |
518 | ||
4ee546b4 RJ |
519 | static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm) |
520 | { | |
521 | if (is_guest_mode(&svm->vcpu)) | |
522 | return svm->nested.hsave; | |
523 | else | |
524 | return svm->vmcb; | |
525 | } | |
526 | ||
527 | static inline void set_cr_intercept(struct vcpu_svm *svm, int bit) | |
528 | { | |
529 | struct vmcb *vmcb = get_host_vmcb(svm); | |
530 | ||
531 | vmcb->control.intercept_cr |= (1U << bit); | |
532 | ||
533 | recalc_intercepts(svm); | |
534 | } | |
535 | ||
536 | static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit) | |
537 | { | |
538 | struct vmcb *vmcb = get_host_vmcb(svm); | |
539 | ||
540 | vmcb->control.intercept_cr &= ~(1U << bit); | |
541 | ||
542 | recalc_intercepts(svm); | |
543 | } | |
544 | ||
545 | static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit) | |
546 | { | |
547 | struct vmcb *vmcb = get_host_vmcb(svm); | |
548 | ||
549 | return vmcb->control.intercept_cr & (1U << bit); | |
550 | } | |
551 | ||
5315c716 | 552 | static inline void set_dr_intercepts(struct vcpu_svm *svm) |
3aed041a JR |
553 | { |
554 | struct vmcb *vmcb = get_host_vmcb(svm); | |
555 | ||
5315c716 PB |
556 | vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ) |
557 | | (1 << INTERCEPT_DR1_READ) | |
558 | | (1 << INTERCEPT_DR2_READ) | |
559 | | (1 << INTERCEPT_DR3_READ) | |
560 | | (1 << INTERCEPT_DR4_READ) | |
561 | | (1 << INTERCEPT_DR5_READ) | |
562 | | (1 << INTERCEPT_DR6_READ) | |
563 | | (1 << INTERCEPT_DR7_READ) | |
564 | | (1 << INTERCEPT_DR0_WRITE) | |
565 | | (1 << INTERCEPT_DR1_WRITE) | |
566 | | (1 << INTERCEPT_DR2_WRITE) | |
567 | | (1 << INTERCEPT_DR3_WRITE) | |
568 | | (1 << INTERCEPT_DR4_WRITE) | |
569 | | (1 << INTERCEPT_DR5_WRITE) | |
570 | | (1 << INTERCEPT_DR6_WRITE) | |
571 | | (1 << INTERCEPT_DR7_WRITE); | |
3aed041a JR |
572 | |
573 | recalc_intercepts(svm); | |
574 | } | |
575 | ||
5315c716 | 576 | static inline void clr_dr_intercepts(struct vcpu_svm *svm) |
3aed041a JR |
577 | { |
578 | struct vmcb *vmcb = get_host_vmcb(svm); | |
579 | ||
5315c716 | 580 | vmcb->control.intercept_dr = 0; |
3aed041a JR |
581 | |
582 | recalc_intercepts(svm); | |
583 | } | |
584 | ||
18c918c5 JR |
585 | static inline void set_exception_intercept(struct vcpu_svm *svm, int bit) |
586 | { | |
587 | struct vmcb *vmcb = get_host_vmcb(svm); | |
588 | ||
589 | vmcb->control.intercept_exceptions |= (1U << bit); | |
590 | ||
591 | recalc_intercepts(svm); | |
592 | } | |
593 | ||
594 | static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit) | |
595 | { | |
596 | struct vmcb *vmcb = get_host_vmcb(svm); | |
597 | ||
598 | vmcb->control.intercept_exceptions &= ~(1U << bit); | |
599 | ||
600 | recalc_intercepts(svm); | |
601 | } | |
602 | ||
8a05a1b8 JR |
603 | static inline void set_intercept(struct vcpu_svm *svm, int bit) |
604 | { | |
605 | struct vmcb *vmcb = get_host_vmcb(svm); | |
606 | ||
607 | vmcb->control.intercept |= (1ULL << bit); | |
608 | ||
609 | recalc_intercepts(svm); | |
610 | } | |
611 | ||
612 | static inline void clr_intercept(struct vcpu_svm *svm, int bit) | |
613 | { | |
614 | struct vmcb *vmcb = get_host_vmcb(svm); | |
615 | ||
616 | vmcb->control.intercept &= ~(1ULL << bit); | |
617 | ||
618 | recalc_intercepts(svm); | |
619 | } | |
620 | ||
640bd6e5 JN |
621 | static inline bool vgif_enabled(struct vcpu_svm *svm) |
622 | { | |
623 | return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK); | |
624 | } | |
625 | ||
2af9194d JR |
626 | static inline void enable_gif(struct vcpu_svm *svm) |
627 | { | |
640bd6e5 JN |
628 | if (vgif_enabled(svm)) |
629 | svm->vmcb->control.int_ctl |= V_GIF_MASK; | |
630 | else | |
631 | svm->vcpu.arch.hflags |= HF_GIF_MASK; | |
2af9194d JR |
632 | } |
633 | ||
634 | static inline void disable_gif(struct vcpu_svm *svm) | |
635 | { | |
640bd6e5 JN |
636 | if (vgif_enabled(svm)) |
637 | svm->vmcb->control.int_ctl &= ~V_GIF_MASK; | |
638 | else | |
639 | svm->vcpu.arch.hflags &= ~HF_GIF_MASK; | |
2af9194d JR |
640 | } |
641 | ||
642 | static inline bool gif_set(struct vcpu_svm *svm) | |
643 | { | |
640bd6e5 JN |
644 | if (vgif_enabled(svm)) |
645 | return !!(svm->vmcb->control.int_ctl & V_GIF_MASK); | |
646 | else | |
647 | return !!(svm->vcpu.arch.hflags & HF_GIF_MASK); | |
2af9194d JR |
648 | } |
649 | ||
4866d5e3 | 650 | static unsigned long iopm_base; |
6aa8b732 AK |
651 | |
652 | struct kvm_ldttss_desc { | |
653 | u16 limit0; | |
654 | u16 base0; | |
e0231715 JR |
655 | unsigned base1:8, type:5, dpl:2, p:1; |
656 | unsigned limit1:4, zero0:3, g:1, base2:8; | |
6aa8b732 AK |
657 | u32 base3; |
658 | u32 zero1; | |
659 | } __attribute__((packed)); | |
660 | ||
661 | struct svm_cpu_data { | |
662 | int cpu; | |
663 | ||
5008fdf5 AK |
664 | u64 asid_generation; |
665 | u32 max_asid; | |
666 | u32 next_asid; | |
4faefff3 | 667 | u32 min_asid; |
6aa8b732 AK |
668 | struct kvm_ldttss_desc *tss_desc; |
669 | ||
670 | struct page *save_area; | |
15d45071 | 671 | struct vmcb *current_vmcb; |
70cd94e6 BS |
672 | |
673 | /* index = sev_asid, value = vmcb pointer */ | |
674 | struct vmcb **sev_vmcbs; | |
6aa8b732 AK |
675 | }; |
676 | ||
677 | static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); | |
678 | ||
09941fbb | 679 | static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; |
6aa8b732 | 680 | |
9d8f549d | 681 | #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) |
6aa8b732 AK |
682 | #define MSRS_RANGE_SIZE 2048 |
683 | #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) | |
684 | ||
455716fa JR |
685 | static u32 svm_msrpm_offset(u32 msr) |
686 | { | |
687 | u32 offset; | |
688 | int i; | |
689 | ||
690 | for (i = 0; i < NUM_MSR_MAPS; i++) { | |
691 | if (msr < msrpm_ranges[i] || | |
692 | msr >= msrpm_ranges[i] + MSRS_IN_RANGE) | |
693 | continue; | |
694 | ||
695 | offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ | |
696 | offset += (i * MSRS_RANGE_SIZE); /* add range offset */ | |
697 | ||
698 | /* Now we have the u8 offset - but need the u32 offset */ | |
699 | return offset / 4; | |
700 | } | |
701 | ||
702 | /* MSR not in any range */ | |
703 | return MSR_INVALID; | |
704 | } | |
705 | ||
6aa8b732 AK |
706 | #define MAX_INST_SIZE 15 |
707 | ||
6aa8b732 AK |
708 | static inline void clgi(void) |
709 | { | |
ac5ffda2 | 710 | asm volatile (__ex("clgi")); |
6aa8b732 AK |
711 | } |
712 | ||
713 | static inline void stgi(void) | |
714 | { | |
ac5ffda2 | 715 | asm volatile (__ex("stgi")); |
6aa8b732 AK |
716 | } |
717 | ||
718 | static inline void invlpga(unsigned long addr, u32 asid) | |
719 | { | |
ac5ffda2 | 720 | asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr)); |
6aa8b732 AK |
721 | } |
722 | ||
855feb67 | 723 | static int get_npt_level(struct kvm_vcpu *vcpu) |
4b16184c JR |
724 | { |
725 | #ifdef CONFIG_X86_64 | |
2a7266a8 | 726 | return PT64_ROOT_4LEVEL; |
4b16184c JR |
727 | #else |
728 | return PT32E_ROOT_LEVEL; | |
729 | #endif | |
730 | } | |
731 | ||
6aa8b732 AK |
732 | static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) |
733 | { | |
6dc696d4 | 734 | vcpu->arch.efer = efer; |
709ddebf | 735 | if (!npt_enabled && !(efer & EFER_LMA)) |
2b5203ee | 736 | efer &= ~EFER_LME; |
6aa8b732 | 737 | |
9962d032 | 738 | to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME; |
dcca1a65 | 739 | mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); |
6aa8b732 AK |
740 | } |
741 | ||
6aa8b732 AK |
742 | static int is_external_interrupt(u32 info) |
743 | { | |
744 | info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; | |
745 | return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); | |
746 | } | |
747 | ||
37ccdcbe | 748 | static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) |
2809f5d2 GC |
749 | { |
750 | struct vcpu_svm *svm = to_svm(vcpu); | |
751 | u32 ret = 0; | |
752 | ||
753 | if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) | |
37ccdcbe PB |
754 | ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; |
755 | return ret; | |
2809f5d2 GC |
756 | } |
757 | ||
758 | static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) | |
759 | { | |
760 | struct vcpu_svm *svm = to_svm(vcpu); | |
761 | ||
762 | if (mask == 0) | |
763 | svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; | |
764 | else | |
765 | svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; | |
766 | ||
767 | } | |
768 | ||
6aa8b732 AK |
769 | static void skip_emulated_instruction(struct kvm_vcpu *vcpu) |
770 | { | |
a2fa3e9f GH |
771 | struct vcpu_svm *svm = to_svm(vcpu); |
772 | ||
f104765b | 773 | if (svm->vmcb->control.next_rip != 0) { |
d2922422 | 774 | WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); |
6bc31bdc | 775 | svm->next_rip = svm->vmcb->control.next_rip; |
f104765b | 776 | } |
6bc31bdc | 777 | |
a2fa3e9f | 778 | if (!svm->next_rip) { |
0ce97a2b | 779 | if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) != |
f629cf84 GN |
780 | EMULATE_DONE) |
781 | printk(KERN_DEBUG "%s: NOP\n", __func__); | |
6aa8b732 AK |
782 | return; |
783 | } | |
5fdbf976 MT |
784 | if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE) |
785 | printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n", | |
786 | __func__, kvm_rip_read(vcpu), svm->next_rip); | |
6aa8b732 | 787 | |
5fdbf976 | 788 | kvm_rip_write(vcpu, svm->next_rip); |
2809f5d2 | 789 | svm_set_interrupt_shadow(vcpu, 0); |
6aa8b732 AK |
790 | } |
791 | ||
cfcd20e5 | 792 | static void svm_queue_exception(struct kvm_vcpu *vcpu) |
116a4752 JK |
793 | { |
794 | struct vcpu_svm *svm = to_svm(vcpu); | |
cfcd20e5 WL |
795 | unsigned nr = vcpu->arch.exception.nr; |
796 | bool has_error_code = vcpu->arch.exception.has_error_code; | |
664f8e26 | 797 | bool reinject = vcpu->arch.exception.injected; |
cfcd20e5 | 798 | u32 error_code = vcpu->arch.exception.error_code; |
116a4752 | 799 | |
e0231715 JR |
800 | /* |
801 | * If we are within a nested VM we'd better #VMEXIT and let the guest | |
802 | * handle the exception | |
803 | */ | |
ce7ddec4 JR |
804 | if (!reinject && |
805 | nested_svm_check_exception(svm, nr, has_error_code, error_code)) | |
116a4752 JK |
806 | return; |
807 | ||
da998b46 JM |
808 | kvm_deliver_exception_payload(&svm->vcpu); |
809 | ||
2a6b20b8 | 810 | if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) { |
66b7138f JK |
811 | unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); |
812 | ||
813 | /* | |
814 | * For guest debugging where we have to reinject #BP if some | |
815 | * INT3 is guest-owned: | |
816 | * Emulate nRIP by moving RIP forward. Will fail if injection | |
817 | * raises a fault that is not intercepted. Still better than | |
818 | * failing in all cases. | |
819 | */ | |
820 | skip_emulated_instruction(&svm->vcpu); | |
821 | rip = kvm_rip_read(&svm->vcpu); | |
822 | svm->int3_rip = rip + svm->vmcb->save.cs.base; | |
823 | svm->int3_injected = rip - old_rip; | |
824 | } | |
825 | ||
116a4752 JK |
826 | svm->vmcb->control.event_inj = nr |
827 | | SVM_EVTINJ_VALID | |
828 | | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) | |
829 | | SVM_EVTINJ_TYPE_EXEPT; | |
830 | svm->vmcb->control.event_inj_err = error_code; | |
831 | } | |
832 | ||
67ec6607 JR |
833 | static void svm_init_erratum_383(void) |
834 | { | |
835 | u32 low, high; | |
836 | int err; | |
837 | u64 val; | |
838 | ||
e6ee94d5 | 839 | if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) |
67ec6607 JR |
840 | return; |
841 | ||
842 | /* Use _safe variants to not break nested virtualization */ | |
843 | val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); | |
844 | if (err) | |
845 | return; | |
846 | ||
847 | val |= (1ULL << 47); | |
848 | ||
849 | low = lower_32_bits(val); | |
850 | high = upper_32_bits(val); | |
851 | ||
852 | native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); | |
853 | ||
854 | erratum_383_found = true; | |
855 | } | |
856 | ||
2b036c6b BO |
857 | static void svm_init_osvw(struct kvm_vcpu *vcpu) |
858 | { | |
859 | /* | |
860 | * Guests should see errata 400 and 415 as fixed (assuming that | |
861 | * HLT and IO instructions are intercepted). | |
862 | */ | |
863 | vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; | |
864 | vcpu->arch.osvw.status = osvw_status & ~(6ULL); | |
865 | ||
866 | /* | |
867 | * By increasing VCPU's osvw.length to 3 we are telling the guest that | |
868 | * all osvw.status bits inside that length, including bit 0 (which is | |
869 | * reserved for erratum 298), are valid. However, if host processor's | |
870 | * osvw_len is 0 then osvw_status[0] carries no information. We need to | |
871 | * be conservative here and therefore we tell the guest that erratum 298 | |
872 | * is present (because we really don't know). | |
873 | */ | |
874 | if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) | |
875 | vcpu->arch.osvw.status |= 1; | |
876 | } | |
877 | ||
6aa8b732 AK |
878 | static int has_svm(void) |
879 | { | |
63d1142f | 880 | const char *msg; |
6aa8b732 | 881 | |
63d1142f | 882 | if (!cpu_has_svm(&msg)) { |
ff81ff10 | 883 | printk(KERN_INFO "has_svm: %s\n", msg); |
6aa8b732 AK |
884 | return 0; |
885 | } | |
886 | ||
6aa8b732 AK |
887 | return 1; |
888 | } | |
889 | ||
13a34e06 | 890 | static void svm_hardware_disable(void) |
6aa8b732 | 891 | { |
fbc0db76 JR |
892 | /* Make sure we clean up behind us */ |
893 | if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) | |
894 | wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); | |
895 | ||
2c8dceeb | 896 | cpu_svm_disable(); |
1018faa6 JR |
897 | |
898 | amd_pmu_disable_virt(); | |
6aa8b732 AK |
899 | } |
900 | ||
13a34e06 | 901 | static int svm_hardware_enable(void) |
6aa8b732 AK |
902 | { |
903 | ||
0fe1e009 | 904 | struct svm_cpu_data *sd; |
6aa8b732 | 905 | uint64_t efer; |
6aa8b732 AK |
906 | struct desc_struct *gdt; |
907 | int me = raw_smp_processor_id(); | |
908 | ||
10474ae8 AG |
909 | rdmsrl(MSR_EFER, efer); |
910 | if (efer & EFER_SVME) | |
911 | return -EBUSY; | |
912 | ||
6aa8b732 | 913 | if (!has_svm()) { |
1f5b77f5 | 914 | pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); |
10474ae8 | 915 | return -EINVAL; |
6aa8b732 | 916 | } |
0fe1e009 | 917 | sd = per_cpu(svm_data, me); |
0fe1e009 | 918 | if (!sd) { |
1f5b77f5 | 919 | pr_err("%s: svm_data is NULL on %d\n", __func__, me); |
10474ae8 | 920 | return -EINVAL; |
6aa8b732 AK |
921 | } |
922 | ||
0fe1e009 TH |
923 | sd->asid_generation = 1; |
924 | sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; | |
925 | sd->next_asid = sd->max_asid + 1; | |
ed3cd233 | 926 | sd->min_asid = max_sev_asid + 1; |
6aa8b732 | 927 | |
45fc8757 | 928 | gdt = get_current_gdt_rw(); |
0fe1e009 | 929 | sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); |
6aa8b732 | 930 | |
9962d032 | 931 | wrmsrl(MSR_EFER, efer | EFER_SVME); |
6aa8b732 | 932 | |
d0316554 | 933 | wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT); |
10474ae8 | 934 | |
fbc0db76 JR |
935 | if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { |
936 | wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); | |
89cbc767 | 937 | __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); |
fbc0db76 JR |
938 | } |
939 | ||
2b036c6b BO |
940 | |
941 | /* | |
942 | * Get OSVW bits. | |
943 | * | |
944 | * Note that it is possible to have a system with mixed processor | |
945 | * revisions and therefore different OSVW bits. If bits are not the same | |
946 | * on different processors then choose the worst case (i.e. if erratum | |
947 | * is present on one processor and not on another then assume that the | |
948 | * erratum is present everywhere). | |
949 | */ | |
950 | if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { | |
951 | uint64_t len, status = 0; | |
952 | int err; | |
953 | ||
954 | len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); | |
955 | if (!err) | |
956 | status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, | |
957 | &err); | |
958 | ||
959 | if (err) | |
960 | osvw_status = osvw_len = 0; | |
961 | else { | |
962 | if (len < osvw_len) | |
963 | osvw_len = len; | |
964 | osvw_status |= status; | |
965 | osvw_status &= (1ULL << osvw_len) - 1; | |
966 | } | |
967 | } else | |
968 | osvw_status = osvw_len = 0; | |
969 | ||
67ec6607 JR |
970 | svm_init_erratum_383(); |
971 | ||
1018faa6 JR |
972 | amd_pmu_enable_virt(); |
973 | ||
10474ae8 | 974 | return 0; |
6aa8b732 AK |
975 | } |
976 | ||
0da1db75 JR |
977 | static void svm_cpu_uninit(int cpu) |
978 | { | |
0fe1e009 | 979 | struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id()); |
0da1db75 | 980 | |
0fe1e009 | 981 | if (!sd) |
0da1db75 JR |
982 | return; |
983 | ||
984 | per_cpu(svm_data, raw_smp_processor_id()) = NULL; | |
70cd94e6 | 985 | kfree(sd->sev_vmcbs); |
0fe1e009 TH |
986 | __free_page(sd->save_area); |
987 | kfree(sd); | |
0da1db75 JR |
988 | } |
989 | ||
6aa8b732 AK |
990 | static int svm_cpu_init(int cpu) |
991 | { | |
0fe1e009 | 992 | struct svm_cpu_data *sd; |
6aa8b732 AK |
993 | int r; |
994 | ||
0fe1e009 TH |
995 | sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); |
996 | if (!sd) | |
6aa8b732 | 997 | return -ENOMEM; |
0fe1e009 | 998 | sd->cpu = cpu; |
6aa8b732 | 999 | r = -ENOMEM; |
70cd94e6 | 1000 | sd->save_area = alloc_page(GFP_KERNEL); |
0fe1e009 | 1001 | if (!sd->save_area) |
6aa8b732 AK |
1002 | goto err_1; |
1003 | ||
70cd94e6 BS |
1004 | if (svm_sev_enabled()) { |
1005 | r = -ENOMEM; | |
6da2ec56 KC |
1006 | sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1, |
1007 | sizeof(void *), | |
1008 | GFP_KERNEL); | |
70cd94e6 BS |
1009 | if (!sd->sev_vmcbs) |
1010 | goto err_1; | |
1011 | } | |
1012 | ||
0fe1e009 | 1013 | per_cpu(svm_data, cpu) = sd; |
6aa8b732 AK |
1014 | |
1015 | return 0; | |
1016 | ||
1017 | err_1: | |
0fe1e009 | 1018 | kfree(sd); |
6aa8b732 AK |
1019 | return r; |
1020 | ||
1021 | } | |
1022 | ||
ac72a9b7 JR |
1023 | static bool valid_msr_intercept(u32 index) |
1024 | { | |
1025 | int i; | |
1026 | ||
1027 | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) | |
1028 | if (direct_access_msrs[i].index == index) | |
1029 | return true; | |
1030 | ||
1031 | return false; | |
1032 | } | |
1033 | ||
b2ac58f9 KA |
1034 | static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr) |
1035 | { | |
1036 | u8 bit_write; | |
1037 | unsigned long tmp; | |
1038 | u32 offset; | |
1039 | u32 *msrpm; | |
1040 | ||
1041 | msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: | |
1042 | to_svm(vcpu)->msrpm; | |
1043 | ||
1044 | offset = svm_msrpm_offset(msr); | |
1045 | bit_write = 2 * (msr & 0x0f) + 1; | |
1046 | tmp = msrpm[offset]; | |
1047 | ||
1048 | BUG_ON(offset == MSR_INVALID); | |
1049 | ||
1050 | return !!test_bit(bit_write, &tmp); | |
1051 | } | |
1052 | ||
bfc733a7 RR |
1053 | static void set_msr_interception(u32 *msrpm, unsigned msr, |
1054 | int read, int write) | |
6aa8b732 | 1055 | { |
455716fa JR |
1056 | u8 bit_read, bit_write; |
1057 | unsigned long tmp; | |
1058 | u32 offset; | |
6aa8b732 | 1059 | |
ac72a9b7 JR |
1060 | /* |
1061 | * If this warning triggers extend the direct_access_msrs list at the | |
1062 | * beginning of the file | |
1063 | */ | |
1064 | WARN_ON(!valid_msr_intercept(msr)); | |
1065 | ||
455716fa JR |
1066 | offset = svm_msrpm_offset(msr); |
1067 | bit_read = 2 * (msr & 0x0f); | |
1068 | bit_write = 2 * (msr & 0x0f) + 1; | |
1069 | tmp = msrpm[offset]; | |
1070 | ||
1071 | BUG_ON(offset == MSR_INVALID); | |
1072 | ||
1073 | read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); | |
1074 | write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); | |
1075 | ||
1076 | msrpm[offset] = tmp; | |
6aa8b732 AK |
1077 | } |
1078 | ||
f65c229c | 1079 | static void svm_vcpu_init_msrpm(u32 *msrpm) |
6aa8b732 AK |
1080 | { |
1081 | int i; | |
1082 | ||
f65c229c JR |
1083 | memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); |
1084 | ||
ac72a9b7 JR |
1085 | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { |
1086 | if (!direct_access_msrs[i].always) | |
1087 | continue; | |
1088 | ||
1089 | set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1); | |
1090 | } | |
f65c229c JR |
1091 | } |
1092 | ||
323c3d80 JR |
1093 | static void add_msr_offset(u32 offset) |
1094 | { | |
1095 | int i; | |
1096 | ||
1097 | for (i = 0; i < MSRPM_OFFSETS; ++i) { | |
1098 | ||
1099 | /* Offset already in list? */ | |
1100 | if (msrpm_offsets[i] == offset) | |
bfc733a7 | 1101 | return; |
323c3d80 JR |
1102 | |
1103 | /* Slot used by another offset? */ | |
1104 | if (msrpm_offsets[i] != MSR_INVALID) | |
1105 | continue; | |
1106 | ||
1107 | /* Add offset to list */ | |
1108 | msrpm_offsets[i] = offset; | |
1109 | ||
1110 | return; | |
6aa8b732 | 1111 | } |
323c3d80 JR |
1112 | |
1113 | /* | |
1114 | * If this BUG triggers the msrpm_offsets table has an overflow. Just | |
1115 | * increase MSRPM_OFFSETS in this case. | |
1116 | */ | |
bfc733a7 | 1117 | BUG(); |
6aa8b732 AK |
1118 | } |
1119 | ||
323c3d80 | 1120 | static void init_msrpm_offsets(void) |
f65c229c | 1121 | { |
323c3d80 | 1122 | int i; |
f65c229c | 1123 | |
323c3d80 JR |
1124 | memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); |
1125 | ||
1126 | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { | |
1127 | u32 offset; | |
1128 | ||
1129 | offset = svm_msrpm_offset(direct_access_msrs[i].index); | |
1130 | BUG_ON(offset == MSR_INVALID); | |
1131 | ||
1132 | add_msr_offset(offset); | |
1133 | } | |
f65c229c JR |
1134 | } |
1135 | ||
24e09cbf JR |
1136 | static void svm_enable_lbrv(struct vcpu_svm *svm) |
1137 | { | |
1138 | u32 *msrpm = svm->msrpm; | |
1139 | ||
0dc92119 | 1140 | svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; |
24e09cbf JR |
1141 | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); |
1142 | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); | |
1143 | set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); | |
1144 | set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1); | |
1145 | } | |
1146 | ||
1147 | static void svm_disable_lbrv(struct vcpu_svm *svm) | |
1148 | { | |
1149 | u32 *msrpm = svm->msrpm; | |
1150 | ||
0dc92119 | 1151 | svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; |
24e09cbf JR |
1152 | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); |
1153 | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); | |
1154 | set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); | |
1155 | set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0); | |
1156 | } | |
1157 | ||
4aebd0e9 LP |
1158 | static void disable_nmi_singlestep(struct vcpu_svm *svm) |
1159 | { | |
1160 | svm->nmi_singlestep = false; | |
640bd6e5 | 1161 | |
ab2f4d73 LP |
1162 | if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { |
1163 | /* Clear our flags if they were not set by the guest */ | |
1164 | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) | |
1165 | svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; | |
1166 | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) | |
1167 | svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; | |
1168 | } | |
4aebd0e9 LP |
1169 | } |
1170 | ||
5881f737 | 1171 | /* Note: |
81811c16 | 1172 | * This hash table is used to map VM_ID to a struct kvm_svm, |
5881f737 SS |
1173 | * when handling AMD IOMMU GALOG notification to schedule in |
1174 | * a particular vCPU. | |
1175 | */ | |
1176 | #define SVM_VM_DATA_HASH_BITS 8 | |
681bcea8 | 1177 | static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS); |
3f0d4db7 DV |
1178 | static u32 next_vm_id = 0; |
1179 | static bool next_vm_id_wrapped = 0; | |
681bcea8 | 1180 | static DEFINE_SPINLOCK(svm_vm_data_hash_lock); |
5881f737 SS |
1181 | |
1182 | /* Note: | |
1183 | * This function is called from IOMMU driver to notify | |
1184 | * SVM to schedule in a particular vCPU of a particular VM. | |
1185 | */ | |
1186 | static int avic_ga_log_notifier(u32 ga_tag) | |
1187 | { | |
1188 | unsigned long flags; | |
81811c16 | 1189 | struct kvm_svm *kvm_svm; |
5881f737 SS |
1190 | struct kvm_vcpu *vcpu = NULL; |
1191 | u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag); | |
1192 | u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag); | |
1193 | ||
1194 | pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id); | |
1195 | ||
1196 | spin_lock_irqsave(&svm_vm_data_hash_lock, flags); | |
81811c16 SC |
1197 | hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) { |
1198 | if (kvm_svm->avic_vm_id != vm_id) | |
5881f737 | 1199 | continue; |
81811c16 | 1200 | vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id); |
5881f737 SS |
1201 | break; |
1202 | } | |
1203 | spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); | |
1204 | ||
5881f737 SS |
1205 | /* Note: |
1206 | * At this point, the IOMMU should have already set the pending | |
1207 | * bit in the vAPIC backing page. So, we just need to schedule | |
1208 | * in the vcpu. | |
1209 | */ | |
1cf53587 | 1210 | if (vcpu) |
5881f737 SS |
1211 | kvm_vcpu_wake_up(vcpu); |
1212 | ||
1213 | return 0; | |
1214 | } | |
1215 | ||
e9df0942 BS |
1216 | static __init int sev_hardware_setup(void) |
1217 | { | |
1218 | struct sev_user_data_status *status; | |
1219 | int rc; | |
1220 | ||
1221 | /* Maximum number of encrypted guests supported simultaneously */ | |
1222 | max_sev_asid = cpuid_ecx(0x8000001F); | |
1223 | ||
1224 | if (!max_sev_asid) | |
1225 | return 1; | |
1226 | ||
1654efcb BS |
1227 | /* Minimum ASID value that should be used for SEV guest */ |
1228 | min_sev_asid = cpuid_edx(0x8000001F); | |
1229 | ||
1230 | /* Initialize SEV ASID bitmap */ | |
a101c9d6 | 1231 | sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); |
1654efcb BS |
1232 | if (!sev_asid_bitmap) |
1233 | return 1; | |
1234 | ||
e9df0942 BS |
1235 | status = kmalloc(sizeof(*status), GFP_KERNEL); |
1236 | if (!status) | |
1237 | return 1; | |
1238 | ||
1239 | /* | |
1240 | * Check SEV platform status. | |
1241 | * | |
1242 | * PLATFORM_STATUS can be called in any state, if we failed to query | |
1243 | * the PLATFORM status then either PSP firmware does not support SEV | |
1244 | * feature or SEV firmware is dead. | |
1245 | */ | |
1246 | rc = sev_platform_status(status, NULL); | |
1247 | if (rc) | |
1248 | goto err; | |
1249 | ||
1250 | pr_info("SEV supported\n"); | |
1251 | ||
1252 | err: | |
1253 | kfree(status); | |
1254 | return rc; | |
1255 | } | |
1256 | ||
8566ac8b BM |
1257 | static void grow_ple_window(struct kvm_vcpu *vcpu) |
1258 | { | |
1259 | struct vcpu_svm *svm = to_svm(vcpu); | |
1260 | struct vmcb_control_area *control = &svm->vmcb->control; | |
1261 | int old = control->pause_filter_count; | |
1262 | ||
1263 | control->pause_filter_count = __grow_ple_window(old, | |
1264 | pause_filter_count, | |
1265 | pause_filter_count_grow, | |
1266 | pause_filter_count_max); | |
1267 | ||
1268 | if (control->pause_filter_count != old) | |
1269 | mark_dirty(svm->vmcb, VMCB_INTERCEPTS); | |
1270 | ||
1271 | trace_kvm_ple_window_grow(vcpu->vcpu_id, | |
1272 | control->pause_filter_count, old); | |
1273 | } | |
1274 | ||
1275 | static void shrink_ple_window(struct kvm_vcpu *vcpu) | |
1276 | { | |
1277 | struct vcpu_svm *svm = to_svm(vcpu); | |
1278 | struct vmcb_control_area *control = &svm->vmcb->control; | |
1279 | int old = control->pause_filter_count; | |
1280 | ||
1281 | control->pause_filter_count = | |
1282 | __shrink_ple_window(old, | |
1283 | pause_filter_count, | |
1284 | pause_filter_count_shrink, | |
1285 | pause_filter_count); | |
1286 | if (control->pause_filter_count != old) | |
1287 | mark_dirty(svm->vmcb, VMCB_INTERCEPTS); | |
1288 | ||
1289 | trace_kvm_ple_window_shrink(vcpu->vcpu_id, | |
1290 | control->pause_filter_count, old); | |
1291 | } | |
1292 | ||
6aa8b732 AK |
1293 | static __init int svm_hardware_setup(void) |
1294 | { | |
1295 | int cpu; | |
1296 | struct page *iopm_pages; | |
f65c229c | 1297 | void *iopm_va; |
6aa8b732 AK |
1298 | int r; |
1299 | ||
6aa8b732 AK |
1300 | iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); |
1301 | ||
1302 | if (!iopm_pages) | |
1303 | return -ENOMEM; | |
c8681339 AL |
1304 | |
1305 | iopm_va = page_address(iopm_pages); | |
1306 | memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); | |
6aa8b732 AK |
1307 | iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; |
1308 | ||
323c3d80 JR |
1309 | init_msrpm_offsets(); |
1310 | ||
50a37eb4 JR |
1311 | if (boot_cpu_has(X86_FEATURE_NX)) |
1312 | kvm_enable_efer_bits(EFER_NX); | |
1313 | ||
1b2fd70c AG |
1314 | if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) |
1315 | kvm_enable_efer_bits(EFER_FFXSR); | |
1316 | ||
92a1f12d | 1317 | if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { |
92a1f12d | 1318 | kvm_has_tsc_control = true; |
bc9b961b HZ |
1319 | kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; |
1320 | kvm_tsc_scaling_ratio_frac_bits = 32; | |
92a1f12d JR |
1321 | } |
1322 | ||
8566ac8b BM |
1323 | /* Check for pause filtering support */ |
1324 | if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { | |
1325 | pause_filter_count = 0; | |
1326 | pause_filter_thresh = 0; | |
1327 | } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { | |
1328 | pause_filter_thresh = 0; | |
1329 | } | |
1330 | ||
236de055 AG |
1331 | if (nested) { |
1332 | printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); | |
eec4b140 | 1333 | kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); |
236de055 AG |
1334 | } |
1335 | ||
e9df0942 BS |
1336 | if (sev) { |
1337 | if (boot_cpu_has(X86_FEATURE_SEV) && | |
1338 | IS_ENABLED(CONFIG_KVM_AMD_SEV)) { | |
1339 | r = sev_hardware_setup(); | |
1340 | if (r) | |
1341 | sev = false; | |
1342 | } else { | |
1343 | sev = false; | |
1344 | } | |
1345 | } | |
1346 | ||
3230bb47 | 1347 | for_each_possible_cpu(cpu) { |
6aa8b732 AK |
1348 | r = svm_cpu_init(cpu); |
1349 | if (r) | |
f65c229c | 1350 | goto err; |
6aa8b732 | 1351 | } |
33bd6a0b | 1352 | |
2a6b20b8 | 1353 | if (!boot_cpu_has(X86_FEATURE_NPT)) |
e3da3acd JR |
1354 | npt_enabled = false; |
1355 | ||
6c7dac72 JR |
1356 | if (npt_enabled && !npt) { |
1357 | printk(KERN_INFO "kvm: Nested Paging disabled\n"); | |
1358 | npt_enabled = false; | |
1359 | } | |
1360 | ||
18552672 | 1361 | if (npt_enabled) { |
e3da3acd | 1362 | printk(KERN_INFO "kvm: Nested Paging enabled\n"); |
18552672 | 1363 | kvm_enable_tdp(); |
5f4cb662 JR |
1364 | } else |
1365 | kvm_disable_tdp(); | |
e3da3acd | 1366 | |
5b8abf1f SS |
1367 | if (avic) { |
1368 | if (!npt_enabled || | |
1369 | !boot_cpu_has(X86_FEATURE_AVIC) || | |
5881f737 | 1370 | !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) { |
5b8abf1f | 1371 | avic = false; |
5881f737 | 1372 | } else { |
5b8abf1f | 1373 | pr_info("AVIC enabled\n"); |
5881f737 | 1374 | |
5881f737 SS |
1375 | amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); |
1376 | } | |
5b8abf1f | 1377 | } |
44a95dae | 1378 | |
89c8a498 JN |
1379 | if (vls) { |
1380 | if (!npt_enabled || | |
5442c269 | 1381 | !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || |
89c8a498 JN |
1382 | !IS_ENABLED(CONFIG_X86_64)) { |
1383 | vls = false; | |
1384 | } else { | |
1385 | pr_info("Virtual VMLOAD VMSAVE supported\n"); | |
1386 | } | |
1387 | } | |
1388 | ||
640bd6e5 JN |
1389 | if (vgif) { |
1390 | if (!boot_cpu_has(X86_FEATURE_VGIF)) | |
1391 | vgif = false; | |
1392 | else | |
1393 | pr_info("Virtual GIF supported\n"); | |
1394 | } | |
1395 | ||
6aa8b732 AK |
1396 | return 0; |
1397 | ||
f65c229c | 1398 | err: |
6aa8b732 AK |
1399 | __free_pages(iopm_pages, IOPM_ALLOC_ORDER); |
1400 | iopm_base = 0; | |
1401 | return r; | |
1402 | } | |
1403 | ||
1404 | static __exit void svm_hardware_unsetup(void) | |
1405 | { | |
0da1db75 JR |
1406 | int cpu; |
1407 | ||
1654efcb | 1408 | if (svm_sev_enabled()) |
a101c9d6 | 1409 | bitmap_free(sev_asid_bitmap); |
1654efcb | 1410 | |
3230bb47 | 1411 | for_each_possible_cpu(cpu) |
0da1db75 JR |
1412 | svm_cpu_uninit(cpu); |
1413 | ||
6aa8b732 | 1414 | __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); |
f65c229c | 1415 | iopm_base = 0; |
6aa8b732 AK |
1416 | } |
1417 | ||
1418 | static void init_seg(struct vmcb_seg *seg) | |
1419 | { | |
1420 | seg->selector = 0; | |
1421 | seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | | |
e0231715 | 1422 | SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ |
6aa8b732 AK |
1423 | seg->limit = 0xffff; |
1424 | seg->base = 0; | |
1425 | } | |
1426 | ||
1427 | static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) | |
1428 | { | |
1429 | seg->selector = 0; | |
1430 | seg->attrib = SVM_SELECTOR_P_MASK | type; | |
1431 | seg->limit = 0xffff; | |
1432 | seg->base = 0; | |
1433 | } | |
1434 | ||
e79f245d KA |
1435 | static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu) |
1436 | { | |
1437 | struct vcpu_svm *svm = to_svm(vcpu); | |
1438 | ||
1439 | if (is_guest_mode(vcpu)) | |
1440 | return svm->nested.hsave->control.tsc_offset; | |
1441 | ||
1442 | return vcpu->arch.tsc_offset; | |
1443 | } | |
1444 | ||
326e7425 | 1445 | static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) |
f4e1b3c8 ZA |
1446 | { |
1447 | struct vcpu_svm *svm = to_svm(vcpu); | |
1448 | u64 g_tsc_offset = 0; | |
1449 | ||
2030753d | 1450 | if (is_guest_mode(vcpu)) { |
e79f245d | 1451 | /* Write L1's TSC offset. */ |
f4e1b3c8 ZA |
1452 | g_tsc_offset = svm->vmcb->control.tsc_offset - |
1453 | svm->nested.hsave->control.tsc_offset; | |
1454 | svm->nested.hsave->control.tsc_offset = offset; | |
45c3af97 PB |
1455 | } |
1456 | ||
1457 | trace_kvm_write_tsc_offset(vcpu->vcpu_id, | |
1458 | svm->vmcb->control.tsc_offset - g_tsc_offset, | |
1459 | offset); | |
f4e1b3c8 ZA |
1460 | |
1461 | svm->vmcb->control.tsc_offset = offset + g_tsc_offset; | |
116a0a23 JR |
1462 | |
1463 | mark_dirty(svm->vmcb, VMCB_INTERCEPTS); | |
326e7425 | 1464 | return svm->vmcb->control.tsc_offset; |
f4e1b3c8 ZA |
1465 | } |
1466 | ||
44a95dae SS |
1467 | static void avic_init_vmcb(struct vcpu_svm *svm) |
1468 | { | |
1469 | struct vmcb *vmcb = svm->vmcb; | |
81811c16 | 1470 | struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm); |
d0ec49d4 | 1471 | phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page)); |
81811c16 SC |
1472 | phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page)); |
1473 | phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page)); | |
44a95dae SS |
1474 | |
1475 | vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK; | |
1476 | vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK; | |
1477 | vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK; | |
1478 | vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT; | |
1479 | vmcb->control.int_ctl |= AVIC_ENABLE_MASK; | |
44a95dae SS |
1480 | } |
1481 | ||
5690891b | 1482 | static void init_vmcb(struct vcpu_svm *svm) |
6aa8b732 | 1483 | { |
e6101a96 JR |
1484 | struct vmcb_control_area *control = &svm->vmcb->control; |
1485 | struct vmcb_save_area *save = &svm->vmcb->save; | |
6aa8b732 | 1486 | |
4ee546b4 | 1487 | svm->vcpu.arch.hflags = 0; |
bff78274 | 1488 | |
4ee546b4 RJ |
1489 | set_cr_intercept(svm, INTERCEPT_CR0_READ); |
1490 | set_cr_intercept(svm, INTERCEPT_CR3_READ); | |
1491 | set_cr_intercept(svm, INTERCEPT_CR4_READ); | |
1492 | set_cr_intercept(svm, INTERCEPT_CR0_WRITE); | |
1493 | set_cr_intercept(svm, INTERCEPT_CR3_WRITE); | |
1494 | set_cr_intercept(svm, INTERCEPT_CR4_WRITE); | |
3bbf3565 SS |
1495 | if (!kvm_vcpu_apicv_active(&svm->vcpu)) |
1496 | set_cr_intercept(svm, INTERCEPT_CR8_WRITE); | |
6aa8b732 | 1497 | |
5315c716 | 1498 | set_dr_intercepts(svm); |
6aa8b732 | 1499 | |
18c918c5 JR |
1500 | set_exception_intercept(svm, PF_VECTOR); |
1501 | set_exception_intercept(svm, UD_VECTOR); | |
1502 | set_exception_intercept(svm, MC_VECTOR); | |
54a20552 | 1503 | set_exception_intercept(svm, AC_VECTOR); |
cbdb967a | 1504 | set_exception_intercept(svm, DB_VECTOR); |
9718420e LA |
1505 | /* |
1506 | * Guest access to VMware backdoor ports could legitimately | |
1507 | * trigger #GP because of TSS I/O permission bitmap. | |
1508 | * We intercept those #GP and allow access to them anyway | |
1509 | * as VMware does. | |
1510 | */ | |
1511 | if (enable_vmware_backdoor) | |
1512 | set_exception_intercept(svm, GP_VECTOR); | |
6aa8b732 | 1513 | |
8a05a1b8 JR |
1514 | set_intercept(svm, INTERCEPT_INTR); |
1515 | set_intercept(svm, INTERCEPT_NMI); | |
1516 | set_intercept(svm, INTERCEPT_SMI); | |
1517 | set_intercept(svm, INTERCEPT_SELECTIVE_CR0); | |
332b56e4 | 1518 | set_intercept(svm, INTERCEPT_RDPMC); |
8a05a1b8 JR |
1519 | set_intercept(svm, INTERCEPT_CPUID); |
1520 | set_intercept(svm, INTERCEPT_INVD); | |
8a05a1b8 JR |
1521 | set_intercept(svm, INTERCEPT_INVLPG); |
1522 | set_intercept(svm, INTERCEPT_INVLPGA); | |
1523 | set_intercept(svm, INTERCEPT_IOIO_PROT); | |
1524 | set_intercept(svm, INTERCEPT_MSR_PROT); | |
1525 | set_intercept(svm, INTERCEPT_TASK_SWITCH); | |
1526 | set_intercept(svm, INTERCEPT_SHUTDOWN); | |
1527 | set_intercept(svm, INTERCEPT_VMRUN); | |
1528 | set_intercept(svm, INTERCEPT_VMMCALL); | |
1529 | set_intercept(svm, INTERCEPT_VMLOAD); | |
1530 | set_intercept(svm, INTERCEPT_VMSAVE); | |
1531 | set_intercept(svm, INTERCEPT_STGI); | |
1532 | set_intercept(svm, INTERCEPT_CLGI); | |
1533 | set_intercept(svm, INTERCEPT_SKINIT); | |
1534 | set_intercept(svm, INTERCEPT_WBINVD); | |
81dd35d4 | 1535 | set_intercept(svm, INTERCEPT_XSETBV); |
7607b717 | 1536 | set_intercept(svm, INTERCEPT_RSM); |
6aa8b732 | 1537 | |
4d5422ce | 1538 | if (!kvm_mwait_in_guest(svm->vcpu.kvm)) { |
668fffa3 MT |
1539 | set_intercept(svm, INTERCEPT_MONITOR); |
1540 | set_intercept(svm, INTERCEPT_MWAIT); | |
1541 | } | |
1542 | ||
caa057a2 WL |
1543 | if (!kvm_hlt_in_guest(svm->vcpu.kvm)) |
1544 | set_intercept(svm, INTERCEPT_HLT); | |
1545 | ||
d0ec49d4 TL |
1546 | control->iopm_base_pa = __sme_set(iopm_base); |
1547 | control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); | |
6aa8b732 AK |
1548 | control->int_ctl = V_INTR_MASKING_MASK; |
1549 | ||
1550 | init_seg(&save->es); | |
1551 | init_seg(&save->ss); | |
1552 | init_seg(&save->ds); | |
1553 | init_seg(&save->fs); | |
1554 | init_seg(&save->gs); | |
1555 | ||
1556 | save->cs.selector = 0xf000; | |
04b66839 | 1557 | save->cs.base = 0xffff0000; |
6aa8b732 AK |
1558 | /* Executable/Readable Code Segment */ |
1559 | save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | | |
1560 | SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; | |
1561 | save->cs.limit = 0xffff; | |
6aa8b732 AK |
1562 | |
1563 | save->gdtr.limit = 0xffff; | |
1564 | save->idtr.limit = 0xffff; | |
1565 | ||
1566 | init_sys_seg(&save->ldtr, SEG_TYPE_LDT); | |
1567 | init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); | |
1568 | ||
5690891b | 1569 | svm_set_efer(&svm->vcpu, 0); |
d77c26fc | 1570 | save->dr6 = 0xffff0ff0; |
f6e78475 | 1571 | kvm_set_rflags(&svm->vcpu, 2); |
6aa8b732 | 1572 | save->rip = 0x0000fff0; |
5fdbf976 | 1573 | svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; |
6aa8b732 | 1574 | |
e0231715 | 1575 | /* |
18fa000a | 1576 | * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. |
d28bc9dd | 1577 | * It also updates the guest-visible cr0 value. |
6aa8b732 | 1578 | */ |
79a8059d | 1579 | svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); |
ebae871a | 1580 | kvm_mmu_reset_context(&svm->vcpu); |
18fa000a | 1581 | |
66aee91a | 1582 | save->cr4 = X86_CR4_PAE; |
6aa8b732 | 1583 | /* rdx = ?? */ |
709ddebf JR |
1584 | |
1585 | if (npt_enabled) { | |
1586 | /* Setup VMCB for Nested Paging */ | |
cea3a19b | 1587 | control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; |
8a05a1b8 | 1588 | clr_intercept(svm, INTERCEPT_INVLPG); |
18c918c5 | 1589 | clr_exception_intercept(svm, PF_VECTOR); |
4ee546b4 RJ |
1590 | clr_cr_intercept(svm, INTERCEPT_CR3_READ); |
1591 | clr_cr_intercept(svm, INTERCEPT_CR3_WRITE); | |
74545705 | 1592 | save->g_pat = svm->vcpu.arch.pat; |
709ddebf JR |
1593 | save->cr3 = 0; |
1594 | save->cr4 = 0; | |
1595 | } | |
f40f6a45 | 1596 | svm->asid_generation = 0; |
1371d904 | 1597 | |
e6aa9abd | 1598 | svm->nested.vmcb = 0; |
2af9194d JR |
1599 | svm->vcpu.arch.hflags = 0; |
1600 | ||
8566ac8b BM |
1601 | if (pause_filter_count) { |
1602 | control->pause_filter_count = pause_filter_count; | |
1603 | if (pause_filter_thresh) | |
1604 | control->pause_filter_thresh = pause_filter_thresh; | |
8a05a1b8 | 1605 | set_intercept(svm, INTERCEPT_PAUSE); |
8566ac8b BM |
1606 | } else { |
1607 | clr_intercept(svm, INTERCEPT_PAUSE); | |
565d0998 ML |
1608 | } |
1609 | ||
67034bb9 | 1610 | if (kvm_vcpu_apicv_active(&svm->vcpu)) |
44a95dae SS |
1611 | avic_init_vmcb(svm); |
1612 | ||
89c8a498 JN |
1613 | /* |
1614 | * If hardware supports Virtual VMLOAD VMSAVE then enable it | |
1615 | * in VMCB and clear intercepts to avoid #VMEXIT. | |
1616 | */ | |
1617 | if (vls) { | |
1618 | clr_intercept(svm, INTERCEPT_VMLOAD); | |
1619 | clr_intercept(svm, INTERCEPT_VMSAVE); | |
1620 | svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; | |
1621 | } | |
1622 | ||
640bd6e5 JN |
1623 | if (vgif) { |
1624 | clr_intercept(svm, INTERCEPT_STGI); | |
1625 | clr_intercept(svm, INTERCEPT_CLGI); | |
1626 | svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; | |
1627 | } | |
1628 | ||
35c6f649 | 1629 | if (sev_guest(svm->vcpu.kvm)) { |
1654efcb | 1630 | svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; |
35c6f649 BS |
1631 | clr_exception_intercept(svm, UD_VECTOR); |
1632 | } | |
1654efcb | 1633 | |
8d28fec4 RJ |
1634 | mark_all_dirty(svm->vmcb); |
1635 | ||
2af9194d | 1636 | enable_gif(svm); |
44a95dae SS |
1637 | |
1638 | } | |
1639 | ||
d3e7dec0 DC |
1640 | static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, |
1641 | unsigned int index) | |
44a95dae SS |
1642 | { |
1643 | u64 *avic_physical_id_table; | |
81811c16 | 1644 | struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); |
44a95dae SS |
1645 | |
1646 | if (index >= AVIC_MAX_PHYSICAL_ID_COUNT) | |
1647 | return NULL; | |
1648 | ||
81811c16 | 1649 | avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page); |
44a95dae SS |
1650 | |
1651 | return &avic_physical_id_table[index]; | |
1652 | } | |
1653 | ||
1654 | /** | |
1655 | * Note: | |
1656 | * AVIC hardware walks the nested page table to check permissions, | |
1657 | * but does not use the SPA address specified in the leaf page | |
1658 | * table entry since it uses address in the AVIC_BACKING_PAGE pointer | |
1659 | * field of the VMCB. Therefore, we set up the | |
1660 | * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here. | |
1661 | */ | |
1662 | static int avic_init_access_page(struct kvm_vcpu *vcpu) | |
1663 | { | |
1664 | struct kvm *kvm = vcpu->kvm; | |
30510387 | 1665 | int ret = 0; |
44a95dae | 1666 | |
30510387 | 1667 | mutex_lock(&kvm->slots_lock); |
44a95dae | 1668 | if (kvm->arch.apic_access_page_done) |
30510387 | 1669 | goto out; |
44a95dae | 1670 | |
30510387 WW |
1671 | ret = __x86_set_memory_region(kvm, |
1672 | APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, | |
1673 | APIC_DEFAULT_PHYS_BASE, | |
1674 | PAGE_SIZE); | |
44a95dae | 1675 | if (ret) |
30510387 | 1676 | goto out; |
44a95dae SS |
1677 | |
1678 | kvm->arch.apic_access_page_done = true; | |
30510387 WW |
1679 | out: |
1680 | mutex_unlock(&kvm->slots_lock); | |
1681 | return ret; | |
44a95dae SS |
1682 | } |
1683 | ||
1684 | static int avic_init_backing_page(struct kvm_vcpu *vcpu) | |
1685 | { | |
1686 | int ret; | |
1687 | u64 *entry, new_entry; | |
1688 | int id = vcpu->vcpu_id; | |
1689 | struct vcpu_svm *svm = to_svm(vcpu); | |
1690 | ||
1691 | ret = avic_init_access_page(vcpu); | |
1692 | if (ret) | |
1693 | return ret; | |
1694 | ||
1695 | if (id >= AVIC_MAX_PHYSICAL_ID_COUNT) | |
1696 | return -EINVAL; | |
1697 | ||
1698 | if (!svm->vcpu.arch.apic->regs) | |
1699 | return -EINVAL; | |
1700 | ||
1701 | svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs); | |
1702 | ||
1703 | /* Setting AVIC backing page address in the phy APIC ID table */ | |
1704 | entry = avic_get_physical_id_entry(vcpu, id); | |
1705 | if (!entry) | |
1706 | return -EINVAL; | |
1707 | ||
1708 | new_entry = READ_ONCE(*entry); | |
d0ec49d4 TL |
1709 | new_entry = __sme_set((page_to_phys(svm->avic_backing_page) & |
1710 | AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) | | |
1711 | AVIC_PHYSICAL_ID_ENTRY_VALID_MASK); | |
44a95dae SS |
1712 | WRITE_ONCE(*entry, new_entry); |
1713 | ||
1714 | svm->avic_physical_id_cache = entry; | |
1715 | ||
1716 | return 0; | |
1717 | } | |
1718 | ||
1654efcb BS |
1719 | static void __sev_asid_free(int asid) |
1720 | { | |
70cd94e6 BS |
1721 | struct svm_cpu_data *sd; |
1722 | int cpu, pos; | |
1654efcb BS |
1723 | |
1724 | pos = asid - 1; | |
1725 | clear_bit(pos, sev_asid_bitmap); | |
70cd94e6 BS |
1726 | |
1727 | for_each_possible_cpu(cpu) { | |
1728 | sd = per_cpu(svm_data, cpu); | |
1729 | sd->sev_vmcbs[pos] = NULL; | |
1730 | } | |
1654efcb BS |
1731 | } |
1732 | ||
1733 | static void sev_asid_free(struct kvm *kvm) | |
1734 | { | |
81811c16 | 1735 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
1654efcb BS |
1736 | |
1737 | __sev_asid_free(sev->asid); | |
1738 | } | |
1739 | ||
59414c98 BS |
1740 | static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) |
1741 | { | |
1742 | struct sev_data_decommission *decommission; | |
1743 | struct sev_data_deactivate *data; | |
1744 | ||
1745 | if (!handle) | |
1746 | return; | |
1747 | ||
1748 | data = kzalloc(sizeof(*data), GFP_KERNEL); | |
1749 | if (!data) | |
1750 | return; | |
1751 | ||
1752 | /* deactivate handle */ | |
1753 | data->handle = handle; | |
1754 | sev_guest_deactivate(data, NULL); | |
1755 | ||
1756 | wbinvd_on_all_cpus(); | |
1757 | sev_guest_df_flush(NULL); | |
1758 | kfree(data); | |
1759 | ||
1760 | decommission = kzalloc(sizeof(*decommission), GFP_KERNEL); | |
1761 | if (!decommission) | |
1762 | return; | |
1763 | ||
1764 | /* decommission handle */ | |
1765 | decommission->handle = handle; | |
1766 | sev_guest_decommission(decommission, NULL); | |
1767 | ||
1768 | kfree(decommission); | |
1769 | } | |
1770 | ||
89c50580 BS |
1771 | static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, |
1772 | unsigned long ulen, unsigned long *n, | |
1773 | int write) | |
1774 | { | |
81811c16 | 1775 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
89c50580 BS |
1776 | unsigned long npages, npinned, size; |
1777 | unsigned long locked, lock_limit; | |
1778 | struct page **pages; | |
86bf20cb DC |
1779 | unsigned long first, last; |
1780 | ||
1781 | if (ulen == 0 || uaddr + ulen < uaddr) | |
1782 | return NULL; | |
89c50580 BS |
1783 | |
1784 | /* Calculate number of pages. */ | |
1785 | first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; | |
1786 | last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; | |
1787 | npages = (last - first + 1); | |
1788 | ||
1789 | locked = sev->pages_locked + npages; | |
1790 | lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; | |
1791 | if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { | |
1792 | pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); | |
1793 | return NULL; | |
1794 | } | |
1795 | ||
1796 | /* Avoid using vmalloc for smaller buffers. */ | |
1797 | size = npages * sizeof(struct page *); | |
1798 | if (size > PAGE_SIZE) | |
1ec69647 BG |
1799 | pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO, |
1800 | PAGE_KERNEL); | |
89c50580 | 1801 | else |
1ec69647 | 1802 | pages = kmalloc(size, GFP_KERNEL_ACCOUNT); |
89c50580 BS |
1803 | |
1804 | if (!pages) | |
1805 | return NULL; | |
1806 | ||
1807 | /* Pin the user virtual address. */ | |
73b0140b | 1808 | npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages); |
89c50580 BS |
1809 | if (npinned != npages) { |
1810 | pr_err("SEV: Failure locking %lu pages.\n", npages); | |
1811 | goto err; | |
1812 | } | |
1813 | ||
1814 | *n = npages; | |
1815 | sev->pages_locked = locked; | |
1816 | ||
1817 | return pages; | |
1818 | ||
1819 | err: | |
1820 | if (npinned > 0) | |
1821 | release_pages(pages, npinned); | |
1822 | ||
1823 | kvfree(pages); | |
1824 | return NULL; | |
1825 | } | |
1826 | ||
1827 | static void sev_unpin_memory(struct kvm *kvm, struct page **pages, | |
1828 | unsigned long npages) | |
1829 | { | |
81811c16 | 1830 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
89c50580 BS |
1831 | |
1832 | release_pages(pages, npages); | |
1833 | kvfree(pages); | |
1834 | sev->pages_locked -= npages; | |
1835 | } | |
1836 | ||
1837 | static void sev_clflush_pages(struct page *pages[], unsigned long npages) | |
1838 | { | |
1839 | uint8_t *page_virtual; | |
1840 | unsigned long i; | |
1841 | ||
1842 | if (npages == 0 || pages == NULL) | |
1843 | return; | |
1844 | ||
1845 | for (i = 0; i < npages; i++) { | |
1846 | page_virtual = kmap_atomic(pages[i]); | |
1847 | clflush_cache_range(page_virtual, PAGE_SIZE); | |
1848 | kunmap_atomic(page_virtual); | |
1849 | } | |
1850 | } | |
1851 | ||
1e80fdc0 BS |
1852 | static void __unregister_enc_region_locked(struct kvm *kvm, |
1853 | struct enc_region *region) | |
1854 | { | |
1855 | /* | |
1856 | * The guest may change the memory encryption attribute from C=0 -> C=1 | |
1857 | * or vice versa for this memory range. Lets make sure caches are | |
1858 | * flushed to ensure that guest data gets written into memory with | |
1859 | * correct C-bit. | |
1860 | */ | |
1861 | sev_clflush_pages(region->pages, region->npages); | |
1862 | ||
1863 | sev_unpin_memory(kvm, region->pages, region->npages); | |
1864 | list_del(®ion->list); | |
1865 | kfree(region); | |
1866 | } | |
1867 | ||
434a1e94 SC |
1868 | static struct kvm *svm_vm_alloc(void) |
1869 | { | |
1ec69647 BG |
1870 | struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm), |
1871 | GFP_KERNEL_ACCOUNT | __GFP_ZERO, | |
1872 | PAGE_KERNEL); | |
81811c16 | 1873 | return &kvm_svm->kvm; |
434a1e94 SC |
1874 | } |
1875 | ||
1876 | static void svm_vm_free(struct kvm *kvm) | |
1877 | { | |
d1e5b0e9 | 1878 | vfree(to_kvm_svm(kvm)); |
434a1e94 SC |
1879 | } |
1880 | ||
1654efcb BS |
1881 | static void sev_vm_destroy(struct kvm *kvm) |
1882 | { | |
81811c16 | 1883 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
1e80fdc0 BS |
1884 | struct list_head *head = &sev->regions_list; |
1885 | struct list_head *pos, *q; | |
59414c98 | 1886 | |
1654efcb BS |
1887 | if (!sev_guest(kvm)) |
1888 | return; | |
1889 | ||
1e80fdc0 BS |
1890 | mutex_lock(&kvm->lock); |
1891 | ||
1892 | /* | |
1893 | * if userspace was terminated before unregistering the memory regions | |
1894 | * then lets unpin all the registered memory. | |
1895 | */ | |
1896 | if (!list_empty(head)) { | |
1897 | list_for_each_safe(pos, q, head) { | |
1898 | __unregister_enc_region_locked(kvm, | |
1899 | list_entry(pos, struct enc_region, list)); | |
1900 | } | |
1901 | } | |
1902 | ||
1903 | mutex_unlock(&kvm->lock); | |
1904 | ||
59414c98 | 1905 | sev_unbind_asid(kvm, sev->handle); |
1654efcb BS |
1906 | sev_asid_free(kvm); |
1907 | } | |
1908 | ||
44a95dae SS |
1909 | static void avic_vm_destroy(struct kvm *kvm) |
1910 | { | |
5881f737 | 1911 | unsigned long flags; |
81811c16 | 1912 | struct kvm_svm *kvm_svm = to_kvm_svm(kvm); |
44a95dae | 1913 | |
3863dff0 DV |
1914 | if (!avic) |
1915 | return; | |
1916 | ||
81811c16 SC |
1917 | if (kvm_svm->avic_logical_id_table_page) |
1918 | __free_page(kvm_svm->avic_logical_id_table_page); | |
1919 | if (kvm_svm->avic_physical_id_table_page) | |
1920 | __free_page(kvm_svm->avic_physical_id_table_page); | |
5881f737 SS |
1921 | |
1922 | spin_lock_irqsave(&svm_vm_data_hash_lock, flags); | |
81811c16 | 1923 | hash_del(&kvm_svm->hnode); |
5881f737 | 1924 | spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); |
44a95dae SS |
1925 | } |
1926 | ||
1654efcb BS |
1927 | static void svm_vm_destroy(struct kvm *kvm) |
1928 | { | |
1929 | avic_vm_destroy(kvm); | |
1930 | sev_vm_destroy(kvm); | |
1931 | } | |
1932 | ||
44a95dae SS |
1933 | static int avic_vm_init(struct kvm *kvm) |
1934 | { | |
5881f737 | 1935 | unsigned long flags; |
3f0d4db7 | 1936 | int err = -ENOMEM; |
81811c16 SC |
1937 | struct kvm_svm *kvm_svm = to_kvm_svm(kvm); |
1938 | struct kvm_svm *k2; | |
44a95dae SS |
1939 | struct page *p_page; |
1940 | struct page *l_page; | |
3f0d4db7 | 1941 | u32 vm_id; |
44a95dae SS |
1942 | |
1943 | if (!avic) | |
1944 | return 0; | |
1945 | ||
1946 | /* Allocating physical APIC ID table (4KB) */ | |
1ec69647 | 1947 | p_page = alloc_page(GFP_KERNEL_ACCOUNT); |
44a95dae SS |
1948 | if (!p_page) |
1949 | goto free_avic; | |
1950 | ||
81811c16 | 1951 | kvm_svm->avic_physical_id_table_page = p_page; |
44a95dae SS |
1952 | clear_page(page_address(p_page)); |
1953 | ||
1954 | /* Allocating logical APIC ID table (4KB) */ | |
1ec69647 | 1955 | l_page = alloc_page(GFP_KERNEL_ACCOUNT); |
44a95dae SS |
1956 | if (!l_page) |
1957 | goto free_avic; | |
1958 | ||
81811c16 | 1959 | kvm_svm->avic_logical_id_table_page = l_page; |
44a95dae SS |
1960 | clear_page(page_address(l_page)); |
1961 | ||
5881f737 | 1962 | spin_lock_irqsave(&svm_vm_data_hash_lock, flags); |
3f0d4db7 DV |
1963 | again: |
1964 | vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK; | |
1965 | if (vm_id == 0) { /* id is 1-based, zero is not okay */ | |
1966 | next_vm_id_wrapped = 1; | |
1967 | goto again; | |
1968 | } | |
1969 | /* Is it still in use? Only possible if wrapped at least once */ | |
1970 | if (next_vm_id_wrapped) { | |
81811c16 SC |
1971 | hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) { |
1972 | if (k2->avic_vm_id == vm_id) | |
3f0d4db7 DV |
1973 | goto again; |
1974 | } | |
1975 | } | |
81811c16 SC |
1976 | kvm_svm->avic_vm_id = vm_id; |
1977 | hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id); | |
5881f737 SS |
1978 | spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); |
1979 | ||
44a95dae SS |
1980 | return 0; |
1981 | ||
1982 | free_avic: | |
1983 | avic_vm_destroy(kvm); | |
1984 | return err; | |
6aa8b732 AK |
1985 | } |
1986 | ||
411b44ba SS |
1987 | static inline int |
1988 | avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r) | |
8221c137 | 1989 | { |
411b44ba SS |
1990 | int ret = 0; |
1991 | unsigned long flags; | |
1992 | struct amd_svm_iommu_ir *ir; | |
8221c137 SS |
1993 | struct vcpu_svm *svm = to_svm(vcpu); |
1994 | ||
411b44ba SS |
1995 | if (!kvm_arch_has_assigned_device(vcpu->kvm)) |
1996 | return 0; | |
8221c137 | 1997 | |
411b44ba SS |
1998 | /* |
1999 | * Here, we go through the per-vcpu ir_list to update all existing | |
2000 | * interrupt remapping table entry targeting this vcpu. | |
2001 | */ | |
2002 | spin_lock_irqsave(&svm->ir_list_lock, flags); | |
8221c137 | 2003 | |
411b44ba SS |
2004 | if (list_empty(&svm->ir_list)) |
2005 | goto out; | |
8221c137 | 2006 | |
411b44ba SS |
2007 | list_for_each_entry(ir, &svm->ir_list, node) { |
2008 | ret = amd_iommu_update_ga(cpu, r, ir->data); | |
2009 | if (ret) | |
2010 | break; | |
2011 | } | |
2012 | out: | |
2013 | spin_unlock_irqrestore(&svm->ir_list_lock, flags); | |
2014 | return ret; | |
8221c137 SS |
2015 | } |
2016 | ||
2017 | static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | |
2018 | { | |
2019 | u64 entry; | |
2020 | /* ID = 0xff (broadcast), ID > 0xff (reserved) */ | |
7d669f50 | 2021 | int h_physical_id = kvm_cpu_get_apicid(cpu); |
8221c137 SS |
2022 | struct vcpu_svm *svm = to_svm(vcpu); |
2023 | ||
2024 | if (!kvm_vcpu_apicv_active(vcpu)) | |
2025 | return; | |
2026 | ||
2027 | if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT)) | |
2028 | return; | |
2029 | ||
2030 | entry = READ_ONCE(*(svm->avic_physical_id_cache)); | |
2031 | WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); | |
2032 | ||
2033 | entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK; | |
2034 | entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK); | |
2035 | ||
2036 | entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; | |
2037 | if (svm->avic_is_running) | |
2038 | entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; | |
2039 | ||
2040 | WRITE_ONCE(*(svm->avic_physical_id_cache), entry); | |
411b44ba SS |
2041 | avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, |
2042 | svm->avic_is_running); | |
8221c137 SS |
2043 | } |
2044 | ||
2045 | static void avic_vcpu_put(struct kvm_vcpu *vcpu) | |
2046 | { | |
2047 | u64 entry; | |
2048 | struct vcpu_svm *svm = to_svm(vcpu); | |
2049 | ||
2050 | if (!kvm_vcpu_apicv_active(vcpu)) | |
2051 | return; | |
2052 | ||
2053 | entry = READ_ONCE(*(svm->avic_physical_id_cache)); | |
411b44ba SS |
2054 | if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK) |
2055 | avic_update_iommu_vcpu_affinity(vcpu, -1, 0); | |
2056 | ||
8221c137 SS |
2057 | entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; |
2058 | WRITE_ONCE(*(svm->avic_physical_id_cache), entry); | |
6aa8b732 AK |
2059 | } |
2060 | ||
411b44ba SS |
2061 | /** |
2062 | * This function is called during VCPU halt/unhalt. | |
2063 | */ | |
2064 | static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run) | |
2065 | { | |
2066 | struct vcpu_svm *svm = to_svm(vcpu); | |
2067 | ||
2068 | svm->avic_is_running = is_run; | |
2069 | if (is_run) | |
2070 | avic_vcpu_load(vcpu, vcpu->cpu); | |
2071 | else | |
2072 | avic_vcpu_put(vcpu); | |
2073 | } | |
2074 | ||
d28bc9dd | 2075 | static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) |
04d2cc77 AK |
2076 | { |
2077 | struct vcpu_svm *svm = to_svm(vcpu); | |
66f7b72e JS |
2078 | u32 dummy; |
2079 | u32 eax = 1; | |
04d2cc77 | 2080 | |
518e7b94 | 2081 | vcpu->arch.microcode_version = 0x01000065; |
b2ac58f9 | 2082 | svm->spec_ctrl = 0; |
ccbcd267 | 2083 | svm->virt_spec_ctrl = 0; |
b2ac58f9 | 2084 | |
d28bc9dd NA |
2085 | if (!init_event) { |
2086 | svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE | | |
2087 | MSR_IA32_APICBASE_ENABLE; | |
2088 | if (kvm_vcpu_is_reset_bsp(&svm->vcpu)) | |
2089 | svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; | |
2090 | } | |
5690891b | 2091 | init_vmcb(svm); |
70433389 | 2092 | |
e911eb3b | 2093 | kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true); |
66f7b72e | 2094 | kvm_register_write(vcpu, VCPU_REGS_RDX, eax); |
44a95dae SS |
2095 | |
2096 | if (kvm_vcpu_apicv_active(vcpu) && !init_event) | |
2097 | avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); | |
04d2cc77 AK |
2098 | } |
2099 | ||
dfa20099 SS |
2100 | static int avic_init_vcpu(struct vcpu_svm *svm) |
2101 | { | |
2102 | int ret; | |
2103 | ||
67034bb9 | 2104 | if (!kvm_vcpu_apicv_active(&svm->vcpu)) |
dfa20099 SS |
2105 | return 0; |
2106 | ||
2107 | ret = avic_init_backing_page(&svm->vcpu); | |
2108 | if (ret) | |
2109 | return ret; | |
2110 | ||
2111 | INIT_LIST_HEAD(&svm->ir_list); | |
2112 | spin_lock_init(&svm->ir_list_lock); | |
98d90582 | 2113 | svm->dfr_reg = APIC_DFR_FLAT; |
dfa20099 SS |
2114 | |
2115 | return ret; | |
2116 | } | |
2117 | ||
fb3f0f51 | 2118 | static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) |
6aa8b732 | 2119 | { |
a2fa3e9f | 2120 | struct vcpu_svm *svm; |
6aa8b732 | 2121 | struct page *page; |
f65c229c | 2122 | struct page *msrpm_pages; |
b286d5d8 | 2123 | struct page *hsave_page; |
3d6368ef | 2124 | struct page *nested_msrpm_pages; |
fb3f0f51 | 2125 | int err; |
6aa8b732 | 2126 | |
1ec69647 | 2127 | svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); |
fb3f0f51 RR |
2128 | if (!svm) { |
2129 | err = -ENOMEM; | |
2130 | goto out; | |
2131 | } | |
2132 | ||
1ec69647 BG |
2133 | svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, |
2134 | GFP_KERNEL_ACCOUNT); | |
b666a4b6 MO |
2135 | if (!svm->vcpu.arch.guest_fpu) { |
2136 | printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n"); | |
2137 | err = -ENOMEM; | |
2138 | goto free_partial_svm; | |
2139 | } | |
2140 | ||
fb3f0f51 RR |
2141 | err = kvm_vcpu_init(&svm->vcpu, kvm, id); |
2142 | if (err) | |
2143 | goto free_svm; | |
2144 | ||
b7af4043 | 2145 | err = -ENOMEM; |
1ec69647 | 2146 | page = alloc_page(GFP_KERNEL_ACCOUNT); |
b7af4043 | 2147 | if (!page) |
fb3f0f51 | 2148 | goto uninit; |
6aa8b732 | 2149 | |
1ec69647 | 2150 | msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER); |
f65c229c | 2151 | if (!msrpm_pages) |
b7af4043 | 2152 | goto free_page1; |
3d6368ef | 2153 | |
1ec69647 | 2154 | nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER); |
3d6368ef | 2155 | if (!nested_msrpm_pages) |
b7af4043 | 2156 | goto free_page2; |
f65c229c | 2157 | |
1ec69647 | 2158 | hsave_page = alloc_page(GFP_KERNEL_ACCOUNT); |
b286d5d8 | 2159 | if (!hsave_page) |
b7af4043 TY |
2160 | goto free_page3; |
2161 | ||
dfa20099 SS |
2162 | err = avic_init_vcpu(svm); |
2163 | if (err) | |
2164 | goto free_page4; | |
44a95dae | 2165 | |
8221c137 SS |
2166 | /* We initialize this flag to true to make sure that the is_running |
2167 | * bit would be set the first time the vcpu is loaded. | |
2168 | */ | |
2169 | svm->avic_is_running = true; | |
2170 | ||
e6aa9abd | 2171 | svm->nested.hsave = page_address(hsave_page); |
b286d5d8 | 2172 | |
b7af4043 TY |
2173 | svm->msrpm = page_address(msrpm_pages); |
2174 | svm_vcpu_init_msrpm(svm->msrpm); | |
2175 | ||
e6aa9abd | 2176 | svm->nested.msrpm = page_address(nested_msrpm_pages); |
323c3d80 | 2177 | svm_vcpu_init_msrpm(svm->nested.msrpm); |
3d6368ef | 2178 | |
a2fa3e9f GH |
2179 | svm->vmcb = page_address(page); |
2180 | clear_page(svm->vmcb); | |
d0ec49d4 | 2181 | svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT); |
a2fa3e9f | 2182 | svm->asid_generation = 0; |
5690891b | 2183 | init_vmcb(svm); |
6aa8b732 | 2184 | |
2b036c6b BO |
2185 | svm_init_osvw(&svm->vcpu); |
2186 | ||
fb3f0f51 | 2187 | return &svm->vcpu; |
36241b8c | 2188 | |
44a95dae SS |
2189 | free_page4: |
2190 | __free_page(hsave_page); | |
b7af4043 TY |
2191 | free_page3: |
2192 | __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER); | |
2193 | free_page2: | |
2194 | __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER); | |
2195 | free_page1: | |
2196 | __free_page(page); | |
fb3f0f51 RR |
2197 | uninit: |
2198 | kvm_vcpu_uninit(&svm->vcpu); | |
2199 | free_svm: | |
b666a4b6 MO |
2200 | kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu); |
2201 | free_partial_svm: | |
a4770347 | 2202 | kmem_cache_free(kvm_vcpu_cache, svm); |
fb3f0f51 RR |
2203 | out: |
2204 | return ERR_PTR(err); | |
6aa8b732 AK |
2205 | } |
2206 | ||
fd65d314 JM |
2207 | static void svm_clear_current_vmcb(struct vmcb *vmcb) |
2208 | { | |
2209 | int i; | |
2210 | ||
2211 | for_each_online_cpu(i) | |
2212 | cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); | |
2213 | } | |
2214 | ||
6aa8b732 AK |
2215 | static void svm_free_vcpu(struct kvm_vcpu *vcpu) |
2216 | { | |
a2fa3e9f GH |
2217 | struct vcpu_svm *svm = to_svm(vcpu); |
2218 | ||
fd65d314 JM |
2219 | /* |
2220 | * The vmcb page can be recycled, causing a false negative in | |
2221 | * svm_vcpu_load(). So, ensure that no logical CPU has this | |
2222 | * vmcb page recorded as its current vmcb. | |
2223 | */ | |
2224 | svm_clear_current_vmcb(svm->vmcb); | |
2225 | ||
d0ec49d4 | 2226 | __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT)); |
f65c229c | 2227 | __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); |
e6aa9abd JR |
2228 | __free_page(virt_to_page(svm->nested.hsave)); |
2229 | __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER); | |
fb3f0f51 | 2230 | kvm_vcpu_uninit(vcpu); |
b666a4b6 | 2231 | kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu); |
a4770347 | 2232 | kmem_cache_free(kvm_vcpu_cache, svm); |
6aa8b732 AK |
2233 | } |
2234 | ||
15ad7146 | 2235 | static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
6aa8b732 | 2236 | { |
a2fa3e9f | 2237 | struct vcpu_svm *svm = to_svm(vcpu); |
15d45071 | 2238 | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); |
15ad7146 | 2239 | int i; |
0cc5064d | 2240 | |
0cc5064d | 2241 | if (unlikely(cpu != vcpu->cpu)) { |
4b656b12 | 2242 | svm->asid_generation = 0; |
8d28fec4 | 2243 | mark_all_dirty(svm->vmcb); |
0cc5064d | 2244 | } |
94dfbdb3 | 2245 | |
82ca2d10 AK |
2246 | #ifdef CONFIG_X86_64 |
2247 | rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base); | |
2248 | #endif | |
dacccfdd AK |
2249 | savesegment(fs, svm->host.fs); |
2250 | savesegment(gs, svm->host.gs); | |
2251 | svm->host.ldt = kvm_read_ldt(); | |
2252 | ||
94dfbdb3 | 2253 | for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) |
a2fa3e9f | 2254 | rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); |
fbc0db76 | 2255 | |
ad721883 HZ |
2256 | if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { |
2257 | u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; | |
2258 | if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { | |
2259 | __this_cpu_write(current_tsc_ratio, tsc_ratio); | |
2260 | wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); | |
2261 | } | |
fbc0db76 | 2262 | } |
46896c73 PB |
2263 | /* This assumes that the kernel never uses MSR_TSC_AUX */ |
2264 | if (static_cpu_has(X86_FEATURE_RDTSCP)) | |
2265 | wrmsrl(MSR_TSC_AUX, svm->tsc_aux); | |
8221c137 | 2266 | |
15d45071 AR |
2267 | if (sd->current_vmcb != svm->vmcb) { |
2268 | sd->current_vmcb = svm->vmcb; | |
2269 | indirect_branch_prediction_barrier(); | |
2270 | } | |
8221c137 | 2271 | avic_vcpu_load(vcpu, cpu); |
6aa8b732 AK |
2272 | } |
2273 | ||
2274 | static void svm_vcpu_put(struct kvm_vcpu *vcpu) | |
2275 | { | |
a2fa3e9f | 2276 | struct vcpu_svm *svm = to_svm(vcpu); |
94dfbdb3 AL |
2277 | int i; |
2278 | ||
8221c137 SS |
2279 | avic_vcpu_put(vcpu); |
2280 | ||
e1beb1d3 | 2281 | ++vcpu->stat.host_state_reload; |
dacccfdd AK |
2282 | kvm_load_ldt(svm->host.ldt); |
2283 | #ifdef CONFIG_X86_64 | |
2284 | loadsegment(fs, svm->host.fs); | |
296f781a | 2285 | wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase); |
893a5ab6 | 2286 | load_gs_index(svm->host.gs); |
dacccfdd | 2287 | #else |
831ca609 | 2288 | #ifdef CONFIG_X86_32_LAZY_GS |
dacccfdd | 2289 | loadsegment(gs, svm->host.gs); |
831ca609 | 2290 | #endif |
dacccfdd | 2291 | #endif |
94dfbdb3 | 2292 | for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) |
a2fa3e9f | 2293 | wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); |
6aa8b732 AK |
2294 | } |
2295 | ||
8221c137 SS |
2296 | static void svm_vcpu_blocking(struct kvm_vcpu *vcpu) |
2297 | { | |
2298 | avic_set_running(vcpu, false); | |
2299 | } | |
2300 | ||
2301 | static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu) | |
2302 | { | |
2303 | avic_set_running(vcpu, true); | |
2304 | } | |
2305 | ||
6aa8b732 AK |
2306 | static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) |
2307 | { | |
9b611747 LP |
2308 | struct vcpu_svm *svm = to_svm(vcpu); |
2309 | unsigned long rflags = svm->vmcb->save.rflags; | |
2310 | ||
2311 | if (svm->nmi_singlestep) { | |
2312 | /* Hide our flags if they were not set by the guest */ | |
2313 | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) | |
2314 | rflags &= ~X86_EFLAGS_TF; | |
2315 | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) | |
2316 | rflags &= ~X86_EFLAGS_RF; | |
2317 | } | |
2318 | return rflags; | |
6aa8b732 AK |
2319 | } |
2320 | ||
2321 | static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | |
2322 | { | |
9b611747 LP |
2323 | if (to_svm(vcpu)->nmi_singlestep) |
2324 | rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); | |
2325 | ||
ae9fedc7 | 2326 | /* |
bb3541f1 | 2327 | * Any change of EFLAGS.VM is accompanied by a reload of SS |
ae9fedc7 PB |
2328 | * (caused by either a task switch or an inter-privilege IRET), |
2329 | * so we do not need to update the CPL here. | |
2330 | */ | |
a2fa3e9f | 2331 | to_svm(vcpu)->vmcb->save.rflags = rflags; |
6aa8b732 AK |
2332 | } |
2333 | ||
6de4f3ad AK |
2334 | static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) |
2335 | { | |
2336 | switch (reg) { | |
2337 | case VCPU_EXREG_PDPTR: | |
2338 | BUG_ON(!npt_enabled); | |
9f8fe504 | 2339 | load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); |
6de4f3ad AK |
2340 | break; |
2341 | default: | |
2342 | BUG(); | |
2343 | } | |
2344 | } | |
2345 | ||
f0b85051 AG |
2346 | static void svm_set_vintr(struct vcpu_svm *svm) |
2347 | { | |
8a05a1b8 | 2348 | set_intercept(svm, INTERCEPT_VINTR); |
f0b85051 AG |
2349 | } |
2350 | ||
2351 | static void svm_clear_vintr(struct vcpu_svm *svm) | |
2352 | { | |
8a05a1b8 | 2353 | clr_intercept(svm, INTERCEPT_VINTR); |
f0b85051 AG |
2354 | } |
2355 | ||
6aa8b732 AK |
2356 | static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) |
2357 | { | |
a2fa3e9f | 2358 | struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; |
6aa8b732 AK |
2359 | |
2360 | switch (seg) { | |
2361 | case VCPU_SREG_CS: return &save->cs; | |
2362 | case VCPU_SREG_DS: return &save->ds; | |
2363 | case VCPU_SREG_ES: return &save->es; | |
2364 | case VCPU_SREG_FS: return &save->fs; | |
2365 | case VCPU_SREG_GS: return &save->gs; | |
2366 | case VCPU_SREG_SS: return &save->ss; | |
2367 | case VCPU_SREG_TR: return &save->tr; | |
2368 | case VCPU_SREG_LDTR: return &save->ldtr; | |
2369 | } | |
2370 | BUG(); | |
8b6d44c7 | 2371 | return NULL; |
6aa8b732 AK |
2372 | } |
2373 | ||
2374 | static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) | |
2375 | { | |
2376 | struct vmcb_seg *s = svm_seg(vcpu, seg); | |
2377 | ||
2378 | return s->base; | |
2379 | } | |
2380 | ||
2381 | static void svm_get_segment(struct kvm_vcpu *vcpu, | |
2382 | struct kvm_segment *var, int seg) | |
2383 | { | |
2384 | struct vmcb_seg *s = svm_seg(vcpu, seg); | |
2385 | ||
2386 | var->base = s->base; | |
2387 | var->limit = s->limit; | |
2388 | var->selector = s->selector; | |
2389 | var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; | |
2390 | var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; | |
2391 | var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; | |
2392 | var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; | |
2393 | var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; | |
2394 | var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; | |
2395 | var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; | |
80112c89 JM |
2396 | |
2397 | /* | |
2398 | * AMD CPUs circa 2014 track the G bit for all segments except CS. | |
2399 | * However, the SVM spec states that the G bit is not observed by the | |
2400 | * CPU, and some VMware virtual CPUs drop the G bit for all segments. | |
2401 | * So let's synthesize a legal G bit for all segments, this helps | |
2402 | * running KVM nested. It also helps cross-vendor migration, because | |
2403 | * Intel's vmentry has a check on the 'G' bit. | |
2404 | */ | |
2405 | var->g = s->limit > 0xfffff; | |
25022acc | 2406 | |
e0231715 JR |
2407 | /* |
2408 | * AMD's VMCB does not have an explicit unusable field, so emulate it | |
19bca6ab AP |
2409 | * for cross vendor migration purposes by "not present" |
2410 | */ | |
8eae9570 | 2411 | var->unusable = !var->present; |
19bca6ab | 2412 | |
1fbdc7a5 | 2413 | switch (seg) { |
1fbdc7a5 AP |
2414 | case VCPU_SREG_TR: |
2415 | /* | |
2416 | * Work around a bug where the busy flag in the tr selector | |
2417 | * isn't exposed | |
2418 | */ | |
c0d09828 | 2419 | var->type |= 0x2; |
1fbdc7a5 AP |
2420 | break; |
2421 | case VCPU_SREG_DS: | |
2422 | case VCPU_SREG_ES: | |
2423 | case VCPU_SREG_FS: | |
2424 | case VCPU_SREG_GS: | |
2425 | /* | |
2426 | * The accessed bit must always be set in the segment | |
2427 | * descriptor cache, although it can be cleared in the | |
2428 | * descriptor, the cached bit always remains at 1. Since | |
2429 | * Intel has a check on this, set it here to support | |
2430 | * cross-vendor migration. | |
2431 | */ | |
2432 | if (!var->unusable) | |
2433 | var->type |= 0x1; | |
2434 | break; | |
b586eb02 | 2435 | case VCPU_SREG_SS: |
e0231715 JR |
2436 | /* |
2437 | * On AMD CPUs sometimes the DB bit in the segment | |
b586eb02 AP |
2438 | * descriptor is left as 1, although the whole segment has |
2439 | * been made unusable. Clear it here to pass an Intel VMX | |
2440 | * entry check when cross vendor migrating. | |
2441 | */ | |
2442 | if (var->unusable) | |
2443 | var->db = 0; | |
d9c1b543 | 2444 | /* This is symmetric with svm_set_segment() */ |
33b458d2 | 2445 | var->dpl = to_svm(vcpu)->vmcb->save.cpl; |
b586eb02 | 2446 | break; |
1fbdc7a5 | 2447 | } |
6aa8b732 AK |
2448 | } |
2449 | ||
2e4d2653 IE |
2450 | static int svm_get_cpl(struct kvm_vcpu *vcpu) |
2451 | { | |
2452 | struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; | |
2453 | ||
2454 | return save->cpl; | |
2455 | } | |
2456 | ||
89a27f4d | 2457 | static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
6aa8b732 | 2458 | { |
a2fa3e9f GH |
2459 | struct vcpu_svm *svm = to_svm(vcpu); |
2460 | ||
89a27f4d GN |
2461 | dt->size = svm->vmcb->save.idtr.limit; |
2462 | dt->address = svm->vmcb->save.idtr.base; | |
6aa8b732 AK |
2463 | } |
2464 | ||
89a27f4d | 2465 | static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
6aa8b732 | 2466 | { |
a2fa3e9f GH |
2467 | struct vcpu_svm *svm = to_svm(vcpu); |
2468 | ||
89a27f4d GN |
2469 | svm->vmcb->save.idtr.limit = dt->size; |
2470 | svm->vmcb->save.idtr.base = dt->address ; | |
17a703cb | 2471 | mark_dirty(svm->vmcb, VMCB_DT); |
6aa8b732 AK |
2472 | } |
2473 | ||
89a27f4d | 2474 | static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
6aa8b732 | 2475 | { |
a2fa3e9f GH |
2476 | struct vcpu_svm *svm = to_svm(vcpu); |
2477 | ||
89a27f4d GN |
2478 | dt->size = svm->vmcb->save.gdtr.limit; |
2479 | dt->address = svm->vmcb->save.gdtr.base; | |
6aa8b732 AK |
2480 | } |
2481 | ||
89a27f4d | 2482 | static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
6aa8b732 | 2483 | { |
a2fa3e9f GH |
2484 | struct vcpu_svm *svm = to_svm(vcpu); |
2485 | ||
89a27f4d GN |
2486 | svm->vmcb->save.gdtr.limit = dt->size; |
2487 | svm->vmcb->save.gdtr.base = dt->address ; | |
17a703cb | 2488 | mark_dirty(svm->vmcb, VMCB_DT); |
6aa8b732 AK |
2489 | } |
2490 | ||
e8467fda AK |
2491 | static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) |
2492 | { | |
2493 | } | |
2494 | ||
aff48baa AK |
2495 | static void svm_decache_cr3(struct kvm_vcpu *vcpu) |
2496 | { | |
2497 | } | |
2498 | ||
25c4c276 | 2499 | static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) |
399badf3 AK |
2500 | { |
2501 | } | |
2502 | ||
d225157b AK |
2503 | static void update_cr0_intercept(struct vcpu_svm *svm) |
2504 | { | |
2505 | ulong gcr0 = svm->vcpu.arch.cr0; | |
2506 | u64 *hcr0 = &svm->vmcb->save.cr0; | |
2507 | ||
bd7e5b08 PB |
2508 | *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) |
2509 | | (gcr0 & SVM_CR0_SELECTIVE_MASK); | |
d225157b | 2510 | |
dcca1a65 | 2511 | mark_dirty(svm->vmcb, VMCB_CR); |
d225157b | 2512 | |
bd7e5b08 | 2513 | if (gcr0 == *hcr0) { |
4ee546b4 RJ |
2514 | clr_cr_intercept(svm, INTERCEPT_CR0_READ); |
2515 | clr_cr_intercept(svm, INTERCEPT_CR0_WRITE); | |
d225157b | 2516 | } else { |
4ee546b4 RJ |
2517 | set_cr_intercept(svm, INTERCEPT_CR0_READ); |
2518 | set_cr_intercept(svm, INTERCEPT_CR0_WRITE); | |
d225157b AK |
2519 | } |
2520 | } | |
2521 | ||
6aa8b732 AK |
2522 | static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
2523 | { | |
a2fa3e9f GH |
2524 | struct vcpu_svm *svm = to_svm(vcpu); |
2525 | ||
05b3e0c2 | 2526 | #ifdef CONFIG_X86_64 |
f6801dff | 2527 | if (vcpu->arch.efer & EFER_LME) { |
707d92fa | 2528 | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { |
f6801dff | 2529 | vcpu->arch.efer |= EFER_LMA; |
2b5203ee | 2530 | svm->vmcb->save.efer |= EFER_LMA | EFER_LME; |
6aa8b732 AK |
2531 | } |
2532 | ||
d77c26fc | 2533 | if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { |
f6801dff | 2534 | vcpu->arch.efer &= ~EFER_LMA; |
2b5203ee | 2535 | svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); |
6aa8b732 AK |
2536 | } |
2537 | } | |
2538 | #endif | |
ad312c7c | 2539 | vcpu->arch.cr0 = cr0; |
888f9f3e AK |
2540 | |
2541 | if (!npt_enabled) | |
2542 | cr0 |= X86_CR0_PG | X86_CR0_WP; | |
02daab21 | 2543 | |
bcf166a9 PB |
2544 | /* |
2545 | * re-enable caching here because the QEMU bios | |
2546 | * does not do it - this results in some delay at | |
2547 | * reboot | |
2548 | */ | |
2549 | if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) | |
2550 | cr0 &= ~(X86_CR0_CD | X86_CR0_NW); | |
a2fa3e9f | 2551 | svm->vmcb->save.cr0 = cr0; |
dcca1a65 | 2552 | mark_dirty(svm->vmcb, VMCB_CR); |
d225157b | 2553 | update_cr0_intercept(svm); |
6aa8b732 AK |
2554 | } |
2555 | ||
5e1746d6 | 2556 | static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
6aa8b732 | 2557 | { |
1e02ce4c | 2558 | unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; |
e5eab0ce JR |
2559 | unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4; |
2560 | ||
5e1746d6 NHE |
2561 | if (cr4 & X86_CR4_VMXE) |
2562 | return 1; | |
2563 | ||
e5eab0ce | 2564 | if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) |
c2ba05cc | 2565 | svm_flush_tlb(vcpu, true); |
6394b649 | 2566 | |
ec077263 JR |
2567 | vcpu->arch.cr4 = cr4; |
2568 | if (!npt_enabled) | |
2569 | cr4 |= X86_CR4_PAE; | |
6394b649 | 2570 | cr4 |= host_cr4_mce; |
ec077263 | 2571 | to_svm(vcpu)->vmcb->save.cr4 = cr4; |
dcca1a65 | 2572 | mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); |
5e1746d6 | 2573 | return 0; |
6aa8b732 AK |
2574 | } |
2575 | ||
2576 | static void svm_set_segment(struct kvm_vcpu *vcpu, | |
2577 | struct kvm_segment *var, int seg) | |
2578 | { | |
a2fa3e9f | 2579 | struct vcpu_svm *svm = to_svm(vcpu); |
6aa8b732 AK |
2580 | struct vmcb_seg *s = svm_seg(vcpu, seg); |
2581 | ||
2582 | s->base = var->base; | |
2583 | s->limit = var->limit; | |
2584 | s->selector = var->selector; | |
d9c1b543 RP |
2585 | s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); |
2586 | s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; | |
2587 | s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; | |
2588 | s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; | |
2589 | s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; | |
2590 | s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; | |
2591 | s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; | |
2592 | s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; | |
ae9fedc7 PB |
2593 | |
2594 | /* | |
2595 | * This is always accurate, except if SYSRET returned to a segment | |
2596 | * with SS.DPL != 3. Intel does not have this quirk, and always | |
2597 | * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it | |
2598 | * would entail passing the CPL to userspace and back. | |
2599 | */ | |
2600 | if (seg == VCPU_SREG_SS) | |
d9c1b543 RP |
2601 | /* This is symmetric with svm_get_segment() */ |
2602 | svm->vmcb->save.cpl = (var->dpl & 3); | |
6aa8b732 | 2603 | |
060d0c9a | 2604 | mark_dirty(svm->vmcb, VMCB_SEG); |
6aa8b732 AK |
2605 | } |
2606 | ||
cbdb967a | 2607 | static void update_bp_intercept(struct kvm_vcpu *vcpu) |
6aa8b732 | 2608 | { |
d0bfb940 JK |
2609 | struct vcpu_svm *svm = to_svm(vcpu); |
2610 | ||
18c918c5 | 2611 | clr_exception_intercept(svm, BP_VECTOR); |
44c11430 | 2612 | |
d0bfb940 | 2613 | if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { |
d0bfb940 | 2614 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) |
18c918c5 | 2615 | set_exception_intercept(svm, BP_VECTOR); |
d0bfb940 JK |
2616 | } else |
2617 | vcpu->guest_debug = 0; | |
44c11430 GN |
2618 | } |
2619 | ||
0fe1e009 | 2620 | static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) |
6aa8b732 | 2621 | { |
0fe1e009 TH |
2622 | if (sd->next_asid > sd->max_asid) { |
2623 | ++sd->asid_generation; | |
4faefff3 | 2624 | sd->next_asid = sd->min_asid; |
a2fa3e9f | 2625 | svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; |
6aa8b732 AK |
2626 | } |
2627 | ||
0fe1e009 TH |
2628 | svm->asid_generation = sd->asid_generation; |
2629 | svm->vmcb->control.asid = sd->next_asid++; | |
d48086d1 JR |
2630 | |
2631 | mark_dirty(svm->vmcb, VMCB_ASID); | |
6aa8b732 AK |
2632 | } |
2633 | ||
73aaf249 JK |
2634 | static u64 svm_get_dr6(struct kvm_vcpu *vcpu) |
2635 | { | |
2636 | return to_svm(vcpu)->vmcb->save.dr6; | |
2637 | } | |
2638 | ||
2639 | static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value) | |
2640 | { | |
2641 | struct vcpu_svm *svm = to_svm(vcpu); | |
2642 | ||
2643 | svm->vmcb->save.dr6 = value; | |
2644 | mark_dirty(svm->vmcb, VMCB_DR); | |
2645 | } | |
2646 | ||
facb0139 PB |
2647 | static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) |
2648 | { | |
2649 | struct vcpu_svm *svm = to_svm(vcpu); | |
2650 | ||
2651 | get_debugreg(vcpu->arch.db[0], 0); | |
2652 | get_debugreg(vcpu->arch.db[1], 1); | |
2653 | get_debugreg(vcpu->arch.db[2], 2); | |
2654 | get_debugreg(vcpu->arch.db[3], 3); | |
2655 | vcpu->arch.dr6 = svm_get_dr6(vcpu); | |
2656 | vcpu->arch.dr7 = svm->vmcb->save.dr7; | |
2657 | ||
2658 | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; | |
2659 | set_dr_intercepts(svm); | |
2660 | } | |
2661 | ||
020df079 | 2662 | static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) |
6aa8b732 | 2663 | { |
42dbaa5a | 2664 | struct vcpu_svm *svm = to_svm(vcpu); |
42dbaa5a | 2665 | |
020df079 | 2666 | svm->vmcb->save.dr7 = value; |
72214b96 | 2667 | mark_dirty(svm->vmcb, VMCB_DR); |
6aa8b732 AK |
2668 | } |
2669 | ||
851ba692 | 2670 | static int pf_interception(struct vcpu_svm *svm) |
6aa8b732 | 2671 | { |
0ede79e1 | 2672 | u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); |
1261bfa3 | 2673 | u64 error_code = svm->vmcb->control.exit_info_1; |
6aa8b732 | 2674 | |
1261bfa3 | 2675 | return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address, |
00b10fe1 BS |
2676 | static_cpu_has(X86_FEATURE_DECODEASSISTS) ? |
2677 | svm->vmcb->control.insn_bytes : NULL, | |
d0006530 PB |
2678 | svm->vmcb->control.insn_len); |
2679 | } | |
2680 | ||
2681 | static int npf_interception(struct vcpu_svm *svm) | |
2682 | { | |
0ede79e1 | 2683 | u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); |
d0006530 PB |
2684 | u64 error_code = svm->vmcb->control.exit_info_1; |
2685 | ||
2686 | trace_kvm_page_fault(fault_address, error_code); | |
2687 | return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, | |
00b10fe1 BS |
2688 | static_cpu_has(X86_FEATURE_DECODEASSISTS) ? |
2689 | svm->vmcb->control.insn_bytes : NULL, | |
d0006530 | 2690 | svm->vmcb->control.insn_len); |
6aa8b732 AK |
2691 | } |
2692 | ||
851ba692 | 2693 | static int db_interception(struct vcpu_svm *svm) |
d0bfb940 | 2694 | { |
851ba692 | 2695 | struct kvm_run *kvm_run = svm->vcpu.run; |
99c22179 | 2696 | struct kvm_vcpu *vcpu = &svm->vcpu; |
851ba692 | 2697 | |
d0bfb940 | 2698 | if (!(svm->vcpu.guest_debug & |
44c11430 | 2699 | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && |
6be7d306 | 2700 | !svm->nmi_singlestep) { |
d0bfb940 JK |
2701 | kvm_queue_exception(&svm->vcpu, DB_VECTOR); |
2702 | return 1; | |
2703 | } | |
44c11430 | 2704 | |
6be7d306 | 2705 | if (svm->nmi_singlestep) { |
4aebd0e9 | 2706 | disable_nmi_singlestep(svm); |
99c22179 VK |
2707 | /* Make sure we check for pending NMIs upon entry */ |
2708 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
44c11430 GN |
2709 | } |
2710 | ||
2711 | if (svm->vcpu.guest_debug & | |
e0231715 | 2712 | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { |
44c11430 GN |
2713 | kvm_run->exit_reason = KVM_EXIT_DEBUG; |
2714 | kvm_run->debug.arch.pc = | |
2715 | svm->vmcb->save.cs.base + svm->vmcb->save.rip; | |
2716 | kvm_run->debug.arch.exception = DB_VECTOR; | |
2717 | return 0; | |
2718 | } | |
2719 | ||
2720 | return 1; | |
d0bfb940 JK |
2721 | } |
2722 | ||
851ba692 | 2723 | static int bp_interception(struct vcpu_svm *svm) |
d0bfb940 | 2724 | { |
851ba692 AK |
2725 | struct kvm_run *kvm_run = svm->vcpu.run; |
2726 | ||
d0bfb940 JK |
2727 | kvm_run->exit_reason = KVM_EXIT_DEBUG; |
2728 | kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; | |
2729 | kvm_run->debug.arch.exception = BP_VECTOR; | |
2730 | return 0; | |
2731 | } | |
2732 | ||
851ba692 | 2733 | static int ud_interception(struct vcpu_svm *svm) |
7aa81cc0 | 2734 | { |
082d06ed | 2735 | return handle_ud(&svm->vcpu); |
7aa81cc0 AL |
2736 | } |
2737 | ||
54a20552 EN |
2738 | static int ac_interception(struct vcpu_svm *svm) |
2739 | { | |
2740 | kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0); | |
2741 | return 1; | |
2742 | } | |
2743 | ||
9718420e LA |
2744 | static int gp_interception(struct vcpu_svm *svm) |
2745 | { | |
2746 | struct kvm_vcpu *vcpu = &svm->vcpu; | |
2747 | u32 error_code = svm->vmcb->control.exit_info_1; | |
2748 | int er; | |
2749 | ||
2750 | WARN_ON_ONCE(!enable_vmware_backdoor); | |
2751 | ||
0ce97a2b | 2752 | er = kvm_emulate_instruction(vcpu, |
9718420e LA |
2753 | EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL); |
2754 | if (er == EMULATE_USER_EXIT) | |
2755 | return 0; | |
2756 | else if (er != EMULATE_DONE) | |
2757 | kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); | |
2758 | return 1; | |
2759 | } | |
2760 | ||
67ec6607 JR |
2761 | static bool is_erratum_383(void) |
2762 | { | |
2763 | int err, i; | |
2764 | u64 value; | |
2765 | ||
2766 | if (!erratum_383_found) | |
2767 | return false; | |
2768 | ||
2769 | value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); | |
2770 | if (err) | |
2771 | return false; | |
2772 | ||
2773 | /* Bit 62 may or may not be set for this mce */ | |
2774 | value &= ~(1ULL << 62); | |
2775 | ||
2776 | if (value != 0xb600000000010015ULL) | |
2777 | return false; | |
2778 | ||
2779 | /* Clear MCi_STATUS registers */ | |
2780 | for (i = 0; i < 6; ++i) | |
2781 | native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); | |
2782 | ||
2783 | value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); | |
2784 | if (!err) { | |
2785 | u32 low, high; | |
2786 | ||
2787 | value &= ~(1ULL << 2); | |
2788 | low = lower_32_bits(value); | |
2789 | high = upper_32_bits(value); | |
2790 | ||
2791 | native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); | |
2792 | } | |
2793 | ||
2794 | /* Flush tlb to evict multi-match entries */ | |
2795 | __flush_tlb_all(); | |
2796 | ||
2797 | return true; | |
2798 | } | |
2799 | ||
fe5913e4 | 2800 | static void svm_handle_mce(struct vcpu_svm *svm) |
53371b50 | 2801 | { |
67ec6607 JR |
2802 | if (is_erratum_383()) { |
2803 | /* | |
2804 | * Erratum 383 triggered. Guest state is corrupt so kill the | |
2805 | * guest. | |
2806 | */ | |
2807 | pr_err("KVM: Guest triggered AMD Erratum 383\n"); | |
2808 | ||
a8eeb04a | 2809 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); |
67ec6607 JR |
2810 | |
2811 | return; | |
2812 | } | |
2813 | ||
53371b50 JR |
2814 | /* |
2815 | * On an #MC intercept the MCE handler is not called automatically in | |
2816 | * the host. So do it by hand here. | |
2817 | */ | |
2818 | asm volatile ( | |
2819 | "int $0x12\n"); | |
2820 | /* not sure if we ever come back to this point */ | |
2821 | ||
fe5913e4 JR |
2822 | return; |
2823 | } | |
2824 | ||
2825 | static int mc_interception(struct vcpu_svm *svm) | |
2826 | { | |
53371b50 JR |
2827 | return 1; |
2828 | } | |
2829 | ||
851ba692 | 2830 | static int shutdown_interception(struct vcpu_svm *svm) |
46fe4ddd | 2831 | { |
851ba692 AK |
2832 | struct kvm_run *kvm_run = svm->vcpu.run; |
2833 | ||
46fe4ddd JR |
2834 | /* |
2835 | * VMCB is undefined after a SHUTDOWN intercept | |
2836 | * so reinitialize it. | |
2837 | */ | |
a2fa3e9f | 2838 | clear_page(svm->vmcb); |
5690891b | 2839 | init_vmcb(svm); |
46fe4ddd JR |
2840 | |
2841 | kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; | |
2842 | return 0; | |
2843 | } | |
2844 | ||
851ba692 | 2845 | static int io_interception(struct vcpu_svm *svm) |
6aa8b732 | 2846 | { |
cf8f70bf | 2847 | struct kvm_vcpu *vcpu = &svm->vcpu; |
d77c26fc | 2848 | u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ |
dca7f128 | 2849 | int size, in, string; |
039576c0 | 2850 | unsigned port; |
6aa8b732 | 2851 | |
e756fc62 | 2852 | ++svm->vcpu.stat.io_exits; |
e70669ab | 2853 | string = (io_info & SVM_IOIO_STR_MASK) != 0; |
039576c0 | 2854 | in = (io_info & SVM_IOIO_TYPE_MASK) != 0; |
8370c3d0 | 2855 | if (string) |
0ce97a2b | 2856 | return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; |
cf8f70bf | 2857 | |
039576c0 AK |
2858 | port = io_info >> 16; |
2859 | size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; | |
cf8f70bf | 2860 | svm->next_rip = svm->vmcb->control.exit_info_2; |
cf8f70bf | 2861 | |
dca7f128 | 2862 | return kvm_fast_pio(&svm->vcpu, size, port, in); |
6aa8b732 AK |
2863 | } |
2864 | ||
851ba692 | 2865 | static int nmi_interception(struct vcpu_svm *svm) |
c47f098d JR |
2866 | { |
2867 | return 1; | |
2868 | } | |
2869 | ||
851ba692 | 2870 | static int intr_interception(struct vcpu_svm *svm) |
a0698055 JR |
2871 | { |
2872 | ++svm->vcpu.stat.irq_exits; | |
2873 | return 1; | |
2874 | } | |
2875 | ||
851ba692 | 2876 | static int nop_on_interception(struct vcpu_svm *svm) |
6aa8b732 AK |
2877 | { |
2878 | return 1; | |
2879 | } | |
2880 | ||
851ba692 | 2881 | static int halt_interception(struct vcpu_svm *svm) |
6aa8b732 | 2882 | { |
5fdbf976 | 2883 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 1; |
e756fc62 | 2884 | return kvm_emulate_halt(&svm->vcpu); |
6aa8b732 AK |
2885 | } |
2886 | ||
851ba692 | 2887 | static int vmmcall_interception(struct vcpu_svm *svm) |
02e235bc | 2888 | { |
5fdbf976 | 2889 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
0d9c055e | 2890 | return kvm_emulate_hypercall(&svm->vcpu); |
02e235bc AK |
2891 | } |
2892 | ||
5bd2edc3 JR |
2893 | static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu) |
2894 | { | |
2895 | struct vcpu_svm *svm = to_svm(vcpu); | |
2896 | ||
2897 | return svm->nested.nested_cr3; | |
2898 | } | |
2899 | ||
e4e517b4 AK |
2900 | static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index) |
2901 | { | |
2902 | struct vcpu_svm *svm = to_svm(vcpu); | |
2903 | u64 cr3 = svm->nested.nested_cr3; | |
2904 | u64 pdpte; | |
2905 | int ret; | |
2906 | ||
d0ec49d4 | 2907 | ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte, |
54bf36aa | 2908 | offset_in_page(cr3) + index * 8, 8); |
e4e517b4 AK |
2909 | if (ret) |
2910 | return 0; | |
2911 | return pdpte; | |
2912 | } | |
2913 | ||
5bd2edc3 JR |
2914 | static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu, |
2915 | unsigned long root) | |
2916 | { | |
2917 | struct vcpu_svm *svm = to_svm(vcpu); | |
2918 | ||
d0ec49d4 | 2919 | svm->vmcb->control.nested_cr3 = __sme_set(root); |
b2747166 | 2920 | mark_dirty(svm->vmcb, VMCB_NPT); |
5bd2edc3 JR |
2921 | } |
2922 | ||
6389ee94 AK |
2923 | static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu, |
2924 | struct x86_exception *fault) | |
5bd2edc3 JR |
2925 | { |
2926 | struct vcpu_svm *svm = to_svm(vcpu); | |
2927 | ||
5e352519 PB |
2928 | if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) { |
2929 | /* | |
2930 | * TODO: track the cause of the nested page fault, and | |
2931 | * correctly fill in the high bits of exit_info_1. | |
2932 | */ | |
2933 | svm->vmcb->control.exit_code = SVM_EXIT_NPF; | |
2934 | svm->vmcb->control.exit_code_hi = 0; | |
2935 | svm->vmcb->control.exit_info_1 = (1ULL << 32); | |
2936 | svm->vmcb->control.exit_info_2 = fault->address; | |
2937 | } | |
2938 | ||
2939 | svm->vmcb->control.exit_info_1 &= ~0xffffffffULL; | |
2940 | svm->vmcb->control.exit_info_1 |= fault->error_code; | |
2941 | ||
2942 | /* | |
2943 | * The present bit is always zero for page structure faults on real | |
2944 | * hardware. | |
2945 | */ | |
2946 | if (svm->vmcb->control.exit_info_1 & (2ULL << 32)) | |
2947 | svm->vmcb->control.exit_info_1 &= ~1; | |
5bd2edc3 JR |
2948 | |
2949 | nested_svm_vmexit(svm); | |
2950 | } | |
2951 | ||
8a3c1a33 | 2952 | static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) |
4b16184c | 2953 | { |
ad896af0 | 2954 | WARN_ON(mmu_is_nested(vcpu)); |
3cf85f9f VK |
2955 | |
2956 | vcpu->arch.mmu = &vcpu->arch.guest_mmu; | |
ad896af0 | 2957 | kvm_init_shadow_mmu(vcpu); |
44dd3ffa VK |
2958 | vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3; |
2959 | vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3; | |
2960 | vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr; | |
2961 | vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit; | |
2962 | vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu); | |
2963 | reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu); | |
4b16184c | 2964 | vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; |
4b16184c JR |
2965 | } |
2966 | ||
2967 | static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu) | |
2968 | { | |
3cf85f9f | 2969 | vcpu->arch.mmu = &vcpu->arch.root_mmu; |
44dd3ffa | 2970 | vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; |
4b16184c JR |
2971 | } |
2972 | ||
c0725420 AG |
2973 | static int nested_svm_check_permissions(struct vcpu_svm *svm) |
2974 | { | |
e9196ceb DC |
2975 | if (!(svm->vcpu.arch.efer & EFER_SVME) || |
2976 | !is_paging(&svm->vcpu)) { | |
c0725420 AG |
2977 | kvm_queue_exception(&svm->vcpu, UD_VECTOR); |
2978 | return 1; | |
2979 | } | |
2980 | ||
2981 | if (svm->vmcb->save.cpl) { | |
2982 | kvm_inject_gp(&svm->vcpu, 0); | |
2983 | return 1; | |
2984 | } | |
2985 | ||
e9196ceb | 2986 | return 0; |
c0725420 AG |
2987 | } |
2988 | ||
cf74a78b AG |
2989 | static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, |
2990 | bool has_error_code, u32 error_code) | |
2991 | { | |
b8e88bc8 JR |
2992 | int vmexit; |
2993 | ||
2030753d | 2994 | if (!is_guest_mode(&svm->vcpu)) |
0295ad7d | 2995 | return 0; |
cf74a78b | 2996 | |
adfe20fb WL |
2997 | vmexit = nested_svm_intercept(svm); |
2998 | if (vmexit != NESTED_EXIT_DONE) | |
2999 | return 0; | |
3000 | ||
0295ad7d JR |
3001 | svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr; |
3002 | svm->vmcb->control.exit_code_hi = 0; | |
3003 | svm->vmcb->control.exit_info_1 = error_code; | |
b96fb439 PB |
3004 | |
3005 | /* | |
da998b46 JM |
3006 | * EXITINFO2 is undefined for all exception intercepts other |
3007 | * than #PF. | |
b96fb439 | 3008 | */ |
adfe20fb WL |
3009 | if (svm->vcpu.arch.exception.nested_apf) |
3010 | svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token; | |
da998b46 JM |
3011 | else if (svm->vcpu.arch.exception.has_payload) |
3012 | svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload; | |
adfe20fb WL |
3013 | else |
3014 | svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2; | |
b8e88bc8 | 3015 | |
adfe20fb | 3016 | svm->nested.exit_required = true; |
b8e88bc8 | 3017 | return vmexit; |
cf74a78b AG |
3018 | } |
3019 | ||
8fe54654 JR |
3020 | /* This function returns true if it is save to enable the irq window */ |
3021 | static inline bool nested_svm_intr(struct vcpu_svm *svm) | |
cf74a78b | 3022 | { |
2030753d | 3023 | if (!is_guest_mode(&svm->vcpu)) |
8fe54654 | 3024 | return true; |
cf74a78b | 3025 | |
26666957 | 3026 | if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) |
8fe54654 | 3027 | return true; |
cf74a78b | 3028 | |
26666957 | 3029 | if (!(svm->vcpu.arch.hflags & HF_HIF_MASK)) |
8fe54654 | 3030 | return false; |
cf74a78b | 3031 | |
a0a07cd2 GN |
3032 | /* |
3033 | * if vmexit was already requested (by intercepted exception | |
3034 | * for instance) do not overwrite it with "external interrupt" | |
3035 | * vmexit. | |
3036 | */ | |
3037 | if (svm->nested.exit_required) | |
3038 | return false; | |
3039 | ||
197717d5 JR |
3040 | svm->vmcb->control.exit_code = SVM_EXIT_INTR; |
3041 | svm->vmcb->control.exit_info_1 = 0; | |
3042 | svm->vmcb->control.exit_info_2 = 0; | |
26666957 | 3043 | |
cd3ff653 JR |
3044 | if (svm->nested.intercept & 1ULL) { |
3045 | /* | |
3046 | * The #vmexit can't be emulated here directly because this | |
c5ec2e56 | 3047 | * code path runs with irqs and preemption disabled. A |
cd3ff653 JR |
3048 | * #vmexit emulation might sleep. Only signal request for |
3049 | * the #vmexit here. | |
3050 | */ | |
3051 | svm->nested.exit_required = true; | |
236649de | 3052 | trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip); |
8fe54654 | 3053 | return false; |
cf74a78b AG |
3054 | } |
3055 | ||
8fe54654 | 3056 | return true; |
cf74a78b AG |
3057 | } |
3058 | ||
887f500c JR |
3059 | /* This function returns true if it is save to enable the nmi window */ |
3060 | static inline bool nested_svm_nmi(struct vcpu_svm *svm) | |
3061 | { | |
2030753d | 3062 | if (!is_guest_mode(&svm->vcpu)) |
887f500c JR |
3063 | return true; |
3064 | ||
3065 | if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI))) | |
3066 | return true; | |
3067 | ||
3068 | svm->vmcb->control.exit_code = SVM_EXIT_NMI; | |
3069 | svm->nested.exit_required = true; | |
3070 | ||
3071 | return false; | |
cf74a78b AG |
3072 | } |
3073 | ||
7597f129 | 3074 | static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page) |
34f80cfa JR |
3075 | { |
3076 | struct page *page; | |
3077 | ||
6c3bd3d7 JR |
3078 | might_sleep(); |
3079 | ||
54bf36aa | 3080 | page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT); |
34f80cfa JR |
3081 | if (is_error_page(page)) |
3082 | goto error; | |
3083 | ||
7597f129 JR |
3084 | *_page = page; |
3085 | ||
3086 | return kmap(page); | |
34f80cfa JR |
3087 | |
3088 | error: | |
34f80cfa JR |
3089 | kvm_inject_gp(&svm->vcpu, 0); |
3090 | ||
3091 | return NULL; | |
3092 | } | |
3093 | ||
7597f129 | 3094 | static void nested_svm_unmap(struct page *page) |
34f80cfa | 3095 | { |
7597f129 | 3096 | kunmap(page); |
34f80cfa JR |
3097 | kvm_release_page_dirty(page); |
3098 | } | |
34f80cfa | 3099 | |
ce2ac085 JR |
3100 | static int nested_svm_intercept_ioio(struct vcpu_svm *svm) |
3101 | { | |
9bf41833 JK |
3102 | unsigned port, size, iopm_len; |
3103 | u16 val, mask; | |
3104 | u8 start_bit; | |
ce2ac085 | 3105 | u64 gpa; |
34f80cfa | 3106 | |
ce2ac085 JR |
3107 | if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT))) |
3108 | return NESTED_EXIT_HOST; | |
34f80cfa | 3109 | |
ce2ac085 | 3110 | port = svm->vmcb->control.exit_info_1 >> 16; |
9bf41833 JK |
3111 | size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >> |
3112 | SVM_IOIO_SIZE_SHIFT; | |
ce2ac085 | 3113 | gpa = svm->nested.vmcb_iopm + (port / 8); |
9bf41833 JK |
3114 | start_bit = port % 8; |
3115 | iopm_len = (start_bit + size > 8) ? 2 : 1; | |
3116 | mask = (0xf >> (4 - size)) << start_bit; | |
3117 | val = 0; | |
ce2ac085 | 3118 | |
54bf36aa | 3119 | if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len)) |
9bf41833 | 3120 | return NESTED_EXIT_DONE; |
ce2ac085 | 3121 | |
9bf41833 | 3122 | return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; |
34f80cfa JR |
3123 | } |
3124 | ||
d2477826 | 3125 | static int nested_svm_exit_handled_msr(struct vcpu_svm *svm) |
4c2161ae | 3126 | { |
0d6b3537 JR |
3127 | u32 offset, msr, value; |
3128 | int write, mask; | |
4c2161ae | 3129 | |
3d62d9aa | 3130 | if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) |
d2477826 | 3131 | return NESTED_EXIT_HOST; |
3d62d9aa | 3132 | |
0d6b3537 JR |
3133 | msr = svm->vcpu.arch.regs[VCPU_REGS_RCX]; |
3134 | offset = svm_msrpm_offset(msr); | |
3135 | write = svm->vmcb->control.exit_info_1 & 1; | |
3136 | mask = 1 << ((2 * (msr & 0xf)) + write); | |
3d62d9aa | 3137 | |
0d6b3537 JR |
3138 | if (offset == MSR_INVALID) |
3139 | return NESTED_EXIT_DONE; | |
4c2161ae | 3140 | |
0d6b3537 JR |
3141 | /* Offset is in 32 bit units but need in 8 bit units */ |
3142 | offset *= 4; | |
4c2161ae | 3143 | |
54bf36aa | 3144 | if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4)) |
0d6b3537 | 3145 | return NESTED_EXIT_DONE; |
3d62d9aa | 3146 | |
0d6b3537 | 3147 | return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; |
4c2161ae JR |
3148 | } |
3149 | ||
ab2f4d73 LP |
3150 | /* DB exceptions for our internal use must not cause vmexit */ |
3151 | static int nested_svm_intercept_db(struct vcpu_svm *svm) | |
3152 | { | |
3153 | unsigned long dr6; | |
3154 | ||
3155 | /* if we're not singlestepping, it's not ours */ | |
3156 | if (!svm->nmi_singlestep) | |
3157 | return NESTED_EXIT_DONE; | |
3158 | ||
3159 | /* if it's not a singlestep exception, it's not ours */ | |
3160 | if (kvm_get_dr(&svm->vcpu, 6, &dr6)) | |
3161 | return NESTED_EXIT_DONE; | |
3162 | if (!(dr6 & DR6_BS)) | |
3163 | return NESTED_EXIT_DONE; | |
3164 | ||
3165 | /* if the guest is singlestepping, it should get the vmexit */ | |
3166 | if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) { | |
3167 | disable_nmi_singlestep(svm); | |
3168 | return NESTED_EXIT_DONE; | |
3169 | } | |
3170 | ||
3171 | /* it's ours, the nested hypervisor must not see this one */ | |
3172 | return NESTED_EXIT_HOST; | |
3173 | } | |
3174 | ||
410e4d57 | 3175 | static int nested_svm_exit_special(struct vcpu_svm *svm) |
cf74a78b | 3176 | { |
cf74a78b | 3177 | u32 exit_code = svm->vmcb->control.exit_code; |
4c2161ae | 3178 | |
410e4d57 JR |
3179 | switch (exit_code) { |
3180 | case SVM_EXIT_INTR: | |
3181 | case SVM_EXIT_NMI: | |
ff47a49b | 3182 | case SVM_EXIT_EXCP_BASE + MC_VECTOR: |
410e4d57 | 3183 | return NESTED_EXIT_HOST; |
410e4d57 | 3184 | case SVM_EXIT_NPF: |
e0231715 | 3185 | /* For now we are always handling NPFs when using them */ |
410e4d57 JR |
3186 | if (npt_enabled) |
3187 | return NESTED_EXIT_HOST; | |
3188 | break; | |
410e4d57 | 3189 | case SVM_EXIT_EXCP_BASE + PF_VECTOR: |
631bc487 | 3190 | /* When we're shadowing, trap PFs, but not async PF */ |
1261bfa3 | 3191 | if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0) |
410e4d57 JR |
3192 | return NESTED_EXIT_HOST; |
3193 | break; | |
3194 | default: | |
3195 | break; | |
cf74a78b AG |
3196 | } |
3197 | ||
410e4d57 JR |
3198 | return NESTED_EXIT_CONTINUE; |
3199 | } | |
3200 | ||
3201 | /* | |
3202 | * If this function returns true, this #vmexit was already handled | |
3203 | */ | |
b8e88bc8 | 3204 | static int nested_svm_intercept(struct vcpu_svm *svm) |
410e4d57 JR |
3205 | { |
3206 | u32 exit_code = svm->vmcb->control.exit_code; | |
3207 | int vmexit = NESTED_EXIT_HOST; | |
3208 | ||
cf74a78b | 3209 | switch (exit_code) { |
9c4e40b9 | 3210 | case SVM_EXIT_MSR: |
3d62d9aa | 3211 | vmexit = nested_svm_exit_handled_msr(svm); |
9c4e40b9 | 3212 | break; |
ce2ac085 JR |
3213 | case SVM_EXIT_IOIO: |
3214 | vmexit = nested_svm_intercept_ioio(svm); | |
3215 | break; | |
4ee546b4 RJ |
3216 | case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: { |
3217 | u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0); | |
3218 | if (svm->nested.intercept_cr & bit) | |
410e4d57 | 3219 | vmexit = NESTED_EXIT_DONE; |
cf74a78b AG |
3220 | break; |
3221 | } | |
3aed041a JR |
3222 | case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: { |
3223 | u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0); | |
3224 | if (svm->nested.intercept_dr & bit) | |
410e4d57 | 3225 | vmexit = NESTED_EXIT_DONE; |
cf74a78b AG |
3226 | break; |
3227 | } | |
3228 | case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { | |
3229 | u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); | |
ab2f4d73 LP |
3230 | if (svm->nested.intercept_exceptions & excp_bits) { |
3231 | if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR) | |
3232 | vmexit = nested_svm_intercept_db(svm); | |
3233 | else | |
3234 | vmexit = NESTED_EXIT_DONE; | |
3235 | } | |
631bc487 GN |
3236 | /* async page fault always cause vmexit */ |
3237 | else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) && | |
adfe20fb | 3238 | svm->vcpu.arch.exception.nested_apf != 0) |
631bc487 | 3239 | vmexit = NESTED_EXIT_DONE; |
cf74a78b AG |
3240 | break; |
3241 | } | |
228070b1 JR |
3242 | case SVM_EXIT_ERR: { |
3243 | vmexit = NESTED_EXIT_DONE; | |
3244 | break; | |
3245 | } | |
cf74a78b AG |
3246 | default: { |
3247 | u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR); | |
aad42c64 | 3248 | if (svm->nested.intercept & exit_bits) |
410e4d57 | 3249 | vmexit = NESTED_EXIT_DONE; |
cf74a78b AG |
3250 | } |
3251 | } | |
3252 | ||
b8e88bc8 JR |
3253 | return vmexit; |
3254 | } | |
3255 | ||
3256 | static int nested_svm_exit_handled(struct vcpu_svm *svm) | |
3257 | { | |
3258 | int vmexit; | |
3259 | ||
3260 | vmexit = nested_svm_intercept(svm); | |
3261 | ||
3262 | if (vmexit == NESTED_EXIT_DONE) | |
9c4e40b9 | 3263 | nested_svm_vmexit(svm); |
9c4e40b9 JR |
3264 | |
3265 | return vmexit; | |
cf74a78b AG |
3266 | } |
3267 | ||
0460a979 JR |
3268 | static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb) |
3269 | { | |
3270 | struct vmcb_control_area *dst = &dst_vmcb->control; | |
3271 | struct vmcb_control_area *from = &from_vmcb->control; | |
3272 | ||
4ee546b4 | 3273 | dst->intercept_cr = from->intercept_cr; |
3aed041a | 3274 | dst->intercept_dr = from->intercept_dr; |
0460a979 JR |
3275 | dst->intercept_exceptions = from->intercept_exceptions; |
3276 | dst->intercept = from->intercept; | |
3277 | dst->iopm_base_pa = from->iopm_base_pa; | |
3278 | dst->msrpm_base_pa = from->msrpm_base_pa; | |
3279 | dst->tsc_offset = from->tsc_offset; | |
3280 | dst->asid = from->asid; | |
3281 | dst->tlb_ctl = from->tlb_ctl; | |
3282 | dst->int_ctl = from->int_ctl; | |
3283 | dst->int_vector = from->int_vector; | |
3284 | dst->int_state = from->int_state; | |
3285 | dst->exit_code = from->exit_code; | |
3286 | dst->exit_code_hi = from->exit_code_hi; | |
3287 | dst->exit_info_1 = from->exit_info_1; | |
3288 | dst->exit_info_2 = from->exit_info_2; | |
3289 | dst->exit_int_info = from->exit_int_info; | |
3290 | dst->exit_int_info_err = from->exit_int_info_err; | |
3291 | dst->nested_ctl = from->nested_ctl; | |
3292 | dst->event_inj = from->event_inj; | |
3293 | dst->event_inj_err = from->event_inj_err; | |
3294 | dst->nested_cr3 = from->nested_cr3; | |
0dc92119 | 3295 | dst->virt_ext = from->virt_ext; |
e081354d TW |
3296 | dst->pause_filter_count = from->pause_filter_count; |
3297 | dst->pause_filter_thresh = from->pause_filter_thresh; | |
0460a979 JR |
3298 | } |
3299 | ||
34f80cfa | 3300 | static int nested_svm_vmexit(struct vcpu_svm *svm) |
cf74a78b | 3301 | { |
34f80cfa | 3302 | struct vmcb *nested_vmcb; |
e6aa9abd | 3303 | struct vmcb *hsave = svm->nested.hsave; |
33740e40 | 3304 | struct vmcb *vmcb = svm->vmcb; |
7597f129 | 3305 | struct page *page; |
cf74a78b | 3306 | |
17897f36 JR |
3307 | trace_kvm_nested_vmexit_inject(vmcb->control.exit_code, |
3308 | vmcb->control.exit_info_1, | |
3309 | vmcb->control.exit_info_2, | |
3310 | vmcb->control.exit_int_info, | |
e097e5ff SH |
3311 | vmcb->control.exit_int_info_err, |
3312 | KVM_ISA_SVM); | |
17897f36 | 3313 | |
7597f129 | 3314 | nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page); |
34f80cfa JR |
3315 | if (!nested_vmcb) |
3316 | return 1; | |
3317 | ||
2030753d JR |
3318 | /* Exit Guest-Mode */ |
3319 | leave_guest_mode(&svm->vcpu); | |
06fc7772 JR |
3320 | svm->nested.vmcb = 0; |
3321 | ||
cf74a78b | 3322 | /* Give the current vmcb to the guest */ |
33740e40 JR |
3323 | disable_gif(svm); |
3324 | ||
3325 | nested_vmcb->save.es = vmcb->save.es; | |
3326 | nested_vmcb->save.cs = vmcb->save.cs; | |
3327 | nested_vmcb->save.ss = vmcb->save.ss; | |
3328 | nested_vmcb->save.ds = vmcb->save.ds; | |
3329 | nested_vmcb->save.gdtr = vmcb->save.gdtr; | |
3330 | nested_vmcb->save.idtr = vmcb->save.idtr; | |
3f6a9d16 | 3331 | nested_vmcb->save.efer = svm->vcpu.arch.efer; |
cdbbdc12 | 3332 | nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu); |
9f8fe504 | 3333 | nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu); |
33740e40 | 3334 | nested_vmcb->save.cr2 = vmcb->save.cr2; |
cdbbdc12 | 3335 | nested_vmcb->save.cr4 = svm->vcpu.arch.cr4; |
f6e78475 | 3336 | nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu); |
33740e40 JR |
3337 | nested_vmcb->save.rip = vmcb->save.rip; |
3338 | nested_vmcb->save.rsp = vmcb->save.rsp; | |
3339 | nested_vmcb->save.rax = vmcb->save.rax; | |
3340 | nested_vmcb->save.dr7 = vmcb->save.dr7; | |
3341 | nested_vmcb->save.dr6 = vmcb->save.dr6; | |
3342 | nested_vmcb->save.cpl = vmcb->save.cpl; | |
3343 | ||
3344 | nested_vmcb->control.int_ctl = vmcb->control.int_ctl; | |
3345 | nested_vmcb->control.int_vector = vmcb->control.int_vector; | |
3346 | nested_vmcb->control.int_state = vmcb->control.int_state; | |
3347 | nested_vmcb->control.exit_code = vmcb->control.exit_code; | |
3348 | nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi; | |
3349 | nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1; | |
3350 | nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2; | |
3351 | nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info; | |
3352 | nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err; | |
6092d3d3 JR |
3353 | |
3354 | if (svm->nrips_enabled) | |
3355 | nested_vmcb->control.next_rip = vmcb->control.next_rip; | |
8d23c466 AG |
3356 | |
3357 | /* | |
3358 | * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have | |
3359 | * to make sure that we do not lose injected events. So check event_inj | |
3360 | * here and copy it to exit_int_info if it is valid. | |
3361 | * Exit_int_info and event_inj can't be both valid because the case | |
3362 | * below only happens on a VMRUN instruction intercept which has | |
3363 | * no valid exit_int_info set. | |
3364 | */ | |
3365 | if (vmcb->control.event_inj & SVM_EVTINJ_VALID) { | |
3366 | struct vmcb_control_area *nc = &nested_vmcb->control; | |
3367 | ||
3368 | nc->exit_int_info = vmcb->control.event_inj; | |
3369 | nc->exit_int_info_err = vmcb->control.event_inj_err; | |
3370 | } | |
3371 | ||
33740e40 JR |
3372 | nested_vmcb->control.tlb_ctl = 0; |
3373 | nested_vmcb->control.event_inj = 0; | |
3374 | nested_vmcb->control.event_inj_err = 0; | |
cf74a78b | 3375 | |
e081354d TW |
3376 | nested_vmcb->control.pause_filter_count = |
3377 | svm->vmcb->control.pause_filter_count; | |
3378 | nested_vmcb->control.pause_filter_thresh = | |
3379 | svm->vmcb->control.pause_filter_thresh; | |
3380 | ||
cf74a78b AG |
3381 | /* We always set V_INTR_MASKING and remember the old value in hflags */ |
3382 | if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) | |
3383 | nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK; | |
3384 | ||
cf74a78b | 3385 | /* Restore the original control entries */ |
0460a979 | 3386 | copy_vmcb_control_area(vmcb, hsave); |
cf74a78b | 3387 | |
e79f245d | 3388 | svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset; |
219b65dc AG |
3389 | kvm_clear_exception_queue(&svm->vcpu); |
3390 | kvm_clear_interrupt_queue(&svm->vcpu); | |
cf74a78b | 3391 | |
4b16184c JR |
3392 | svm->nested.nested_cr3 = 0; |
3393 | ||
cf74a78b AG |
3394 | /* Restore selected save entries */ |
3395 | svm->vmcb->save.es = hsave->save.es; | |
3396 | svm->vmcb->save.cs = hsave->save.cs; | |
3397 | svm->vmcb->save.ss = hsave->save.ss; | |
3398 | svm->vmcb->save.ds = hsave->save.ds; | |
3399 | svm->vmcb->save.gdtr = hsave->save.gdtr; | |
3400 | svm->vmcb->save.idtr = hsave->save.idtr; | |
f6e78475 | 3401 | kvm_set_rflags(&svm->vcpu, hsave->save.rflags); |
cf74a78b AG |
3402 | svm_set_efer(&svm->vcpu, hsave->save.efer); |
3403 | svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE); | |
3404 | svm_set_cr4(&svm->vcpu, hsave->save.cr4); | |
3405 | if (npt_enabled) { | |
3406 | svm->vmcb->save.cr3 = hsave->save.cr3; | |
3407 | svm->vcpu.arch.cr3 = hsave->save.cr3; | |
3408 | } else { | |
2390218b | 3409 | (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3); |
cf74a78b AG |
3410 | } |
3411 | kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax); | |
3412 | kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp); | |
3413 | kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip); | |
3414 | svm->vmcb->save.dr7 = 0; | |
3415 | svm->vmcb->save.cpl = 0; | |
3416 | svm->vmcb->control.exit_int_info = 0; | |
3417 | ||
8d28fec4 RJ |
3418 | mark_all_dirty(svm->vmcb); |
3419 | ||
7597f129 | 3420 | nested_svm_unmap(page); |
cf74a78b | 3421 | |
4b16184c | 3422 | nested_svm_uninit_mmu_context(&svm->vcpu); |
cf74a78b AG |
3423 | kvm_mmu_reset_context(&svm->vcpu); |
3424 | kvm_mmu_load(&svm->vcpu); | |
3425 | ||
619ad846 VK |
3426 | /* |
3427 | * Drop what we picked up for L2 via svm_complete_interrupts() so it | |
3428 | * doesn't end up in L1. | |
3429 | */ | |
3430 | svm->vcpu.arch.nmi_injected = false; | |
3431 | kvm_clear_exception_queue(&svm->vcpu); | |
3432 | kvm_clear_interrupt_queue(&svm->vcpu); | |
3433 | ||
cf74a78b AG |
3434 | return 0; |
3435 | } | |
3d6368ef | 3436 | |
9738b2c9 | 3437 | static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm) |
3d6368ef | 3438 | { |
323c3d80 JR |
3439 | /* |
3440 | * This function merges the msr permission bitmaps of kvm and the | |
c5ec2e56 | 3441 | * nested vmcb. It is optimized in that it only merges the parts where |
323c3d80 JR |
3442 | * the kvm msr permission bitmap may contain zero bits |
3443 | */ | |
3d6368ef | 3444 | int i; |
9738b2c9 | 3445 | |
323c3d80 JR |
3446 | if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) |
3447 | return true; | |
9738b2c9 | 3448 | |
323c3d80 JR |
3449 | for (i = 0; i < MSRPM_OFFSETS; i++) { |
3450 | u32 value, p; | |
3451 | u64 offset; | |
9738b2c9 | 3452 | |
323c3d80 JR |
3453 | if (msrpm_offsets[i] == 0xffffffff) |
3454 | break; | |
3d6368ef | 3455 | |
0d6b3537 JR |
3456 | p = msrpm_offsets[i]; |
3457 | offset = svm->nested.vmcb_msrpm + (p * 4); | |
323c3d80 | 3458 | |
54bf36aa | 3459 | if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4)) |
323c3d80 JR |
3460 | return false; |
3461 | ||
3462 | svm->nested.msrpm[p] = svm->msrpm[p] | value; | |
3463 | } | |
3d6368ef | 3464 | |
d0ec49d4 | 3465 | svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm)); |
9738b2c9 JR |
3466 | |
3467 | return true; | |
3d6368ef AG |
3468 | } |
3469 | ||
52c65a30 JR |
3470 | static bool nested_vmcb_checks(struct vmcb *vmcb) |
3471 | { | |
3472 | if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0) | |
3473 | return false; | |
3474 | ||
dbe77584 JR |
3475 | if (vmcb->control.asid == 0) |
3476 | return false; | |
3477 | ||
cea3a19b TL |
3478 | if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) && |
3479 | !npt_enabled) | |
4b16184c JR |
3480 | return false; |
3481 | ||
52c65a30 JR |
3482 | return true; |
3483 | } | |
3484 | ||
c2634065 LP |
3485 | static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa, |
3486 | struct vmcb *nested_vmcb, struct page *page) | |
3d6368ef | 3487 | { |
f6e78475 | 3488 | if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF) |
3d6368ef AG |
3489 | svm->vcpu.arch.hflags |= HF_HIF_MASK; |
3490 | else | |
3491 | svm->vcpu.arch.hflags &= ~HF_HIF_MASK; | |
3492 | ||
cea3a19b | 3493 | if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) { |
4b16184c JR |
3494 | svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3; |
3495 | nested_svm_init_mmu_context(&svm->vcpu); | |
3496 | } | |
3497 | ||
3d6368ef AG |
3498 | /* Load the nested guest state */ |
3499 | svm->vmcb->save.es = nested_vmcb->save.es; | |
3500 | svm->vmcb->save.cs = nested_vmcb->save.cs; | |
3501 | svm->vmcb->save.ss = nested_vmcb->save.ss; | |
3502 | svm->vmcb->save.ds = nested_vmcb->save.ds; | |
3503 | svm->vmcb->save.gdtr = nested_vmcb->save.gdtr; | |
3504 | svm->vmcb->save.idtr = nested_vmcb->save.idtr; | |
f6e78475 | 3505 | kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags); |
3d6368ef AG |
3506 | svm_set_efer(&svm->vcpu, nested_vmcb->save.efer); |
3507 | svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0); | |
3508 | svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4); | |
3509 | if (npt_enabled) { | |
3510 | svm->vmcb->save.cr3 = nested_vmcb->save.cr3; | |
3511 | svm->vcpu.arch.cr3 = nested_vmcb->save.cr3; | |
0e5cbe36 | 3512 | } else |
2390218b | 3513 | (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3); |
0e5cbe36 JR |
3514 | |
3515 | /* Guest paging mode is active - reset mmu */ | |
3516 | kvm_mmu_reset_context(&svm->vcpu); | |
3517 | ||
defbba56 | 3518 | svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2; |
3d6368ef AG |
3519 | kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax); |
3520 | kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp); | |
3521 | kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip); | |
e0231715 | 3522 | |
3d6368ef AG |
3523 | /* In case we don't even reach vcpu_run, the fields are not updated */ |
3524 | svm->vmcb->save.rax = nested_vmcb->save.rax; | |
3525 | svm->vmcb->save.rsp = nested_vmcb->save.rsp; | |
3526 | svm->vmcb->save.rip = nested_vmcb->save.rip; | |
3527 | svm->vmcb->save.dr7 = nested_vmcb->save.dr7; | |
3528 | svm->vmcb->save.dr6 = nested_vmcb->save.dr6; | |
3529 | svm->vmcb->save.cpl = nested_vmcb->save.cpl; | |
3530 | ||
f7138538 | 3531 | svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL; |
ce2ac085 | 3532 | svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL; |
3d6368ef | 3533 | |
aad42c64 | 3534 | /* cache intercepts */ |
4ee546b4 | 3535 | svm->nested.intercept_cr = nested_vmcb->control.intercept_cr; |
3aed041a | 3536 | svm->nested.intercept_dr = nested_vmcb->control.intercept_dr; |
aad42c64 JR |
3537 | svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions; |
3538 | svm->nested.intercept = nested_vmcb->control.intercept; | |
3539 | ||
c2ba05cc | 3540 | svm_flush_tlb(&svm->vcpu, true); |
3d6368ef | 3541 | svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK; |
3d6368ef AG |
3542 | if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK) |
3543 | svm->vcpu.arch.hflags |= HF_VINTR_MASK; | |
3544 | else | |
3545 | svm->vcpu.arch.hflags &= ~HF_VINTR_MASK; | |
3546 | ||
88ab24ad JR |
3547 | if (svm->vcpu.arch.hflags & HF_VINTR_MASK) { |
3548 | /* We only want the cr8 intercept bits of the guest */ | |
4ee546b4 RJ |
3549 | clr_cr_intercept(svm, INTERCEPT_CR8_READ); |
3550 | clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); | |
88ab24ad JR |
3551 | } |
3552 | ||
0d945bd9 | 3553 | /* We don't want to see VMMCALLs from a nested guest */ |
8a05a1b8 | 3554 | clr_intercept(svm, INTERCEPT_VMMCALL); |
0d945bd9 | 3555 | |
e79f245d KA |
3556 | svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset; |
3557 | svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset; | |
3558 | ||
0dc92119 | 3559 | svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext; |
3d6368ef AG |
3560 | svm->vmcb->control.int_vector = nested_vmcb->control.int_vector; |
3561 | svm->vmcb->control.int_state = nested_vmcb->control.int_state; | |
3d6368ef AG |
3562 | svm->vmcb->control.event_inj = nested_vmcb->control.event_inj; |
3563 | svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err; | |
3564 | ||
e081354d TW |
3565 | svm->vmcb->control.pause_filter_count = |
3566 | nested_vmcb->control.pause_filter_count; | |
3567 | svm->vmcb->control.pause_filter_thresh = | |
3568 | nested_vmcb->control.pause_filter_thresh; | |
3569 | ||
7597f129 | 3570 | nested_svm_unmap(page); |
9738b2c9 | 3571 | |
2030753d JR |
3572 | /* Enter Guest-Mode */ |
3573 | enter_guest_mode(&svm->vcpu); | |
3574 | ||
384c6368 JR |
3575 | /* |
3576 | * Merge guest and host intercepts - must be called with vcpu in | |
3577 | * guest-mode to take affect here | |
3578 | */ | |
3579 | recalc_intercepts(svm); | |
3580 | ||
06fc7772 | 3581 | svm->nested.vmcb = vmcb_gpa; |
9738b2c9 | 3582 | |
2af9194d | 3583 | enable_gif(svm); |
3d6368ef | 3584 | |
8d28fec4 | 3585 | mark_all_dirty(svm->vmcb); |
c2634065 LP |
3586 | } |
3587 | ||
3588 | static bool nested_svm_vmrun(struct vcpu_svm *svm) | |
3589 | { | |
3590 | struct vmcb *nested_vmcb; | |
3591 | struct vmcb *hsave = svm->nested.hsave; | |
3592 | struct vmcb *vmcb = svm->vmcb; | |
3593 | struct page *page; | |
3594 | u64 vmcb_gpa; | |
3595 | ||
3596 | vmcb_gpa = svm->vmcb->save.rax; | |
3597 | ||
3598 | nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); | |
3599 | if (!nested_vmcb) | |
3600 | return false; | |
3601 | ||
3602 | if (!nested_vmcb_checks(nested_vmcb)) { | |
3603 | nested_vmcb->control.exit_code = SVM_EXIT_ERR; | |
3604 | nested_vmcb->control.exit_code_hi = 0; | |
3605 | nested_vmcb->control.exit_info_1 = 0; | |
3606 | nested_vmcb->control.exit_info_2 = 0; | |
3607 | ||
3608 | nested_svm_unmap(page); | |
3609 | ||
3610 | return false; | |
3611 | } | |
3612 | ||
3613 | trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa, | |
3614 | nested_vmcb->save.rip, | |
3615 | nested_vmcb->control.int_ctl, | |
3616 | nested_vmcb->control.event_inj, | |
3617 | nested_vmcb->control.nested_ctl); | |
3618 | ||
3619 | trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff, | |
3620 | nested_vmcb->control.intercept_cr >> 16, | |
3621 | nested_vmcb->control.intercept_exceptions, | |
3622 | nested_vmcb->control.intercept); | |
3623 | ||
3624 | /* Clear internal status */ | |
3625 | kvm_clear_exception_queue(&svm->vcpu); | |
3626 | kvm_clear_interrupt_queue(&svm->vcpu); | |
3627 | ||
3628 | /* | |
3629 | * Save the old vmcb, so we don't need to pick what we save, but can | |
3630 | * restore everything when a VMEXIT occurs | |
3631 | */ | |
3632 | hsave->save.es = vmcb->save.es; | |
3633 | hsave->save.cs = vmcb->save.cs; | |
3634 | hsave->save.ss = vmcb->save.ss; | |
3635 | hsave->save.ds = vmcb->save.ds; | |
3636 | hsave->save.gdtr = vmcb->save.gdtr; | |
3637 | hsave->save.idtr = vmcb->save.idtr; | |
3638 | hsave->save.efer = svm->vcpu.arch.efer; | |
3639 | hsave->save.cr0 = kvm_read_cr0(&svm->vcpu); | |
3640 | hsave->save.cr4 = svm->vcpu.arch.cr4; | |
3641 | hsave->save.rflags = kvm_get_rflags(&svm->vcpu); | |
3642 | hsave->save.rip = kvm_rip_read(&svm->vcpu); | |
3643 | hsave->save.rsp = vmcb->save.rsp; | |
3644 | hsave->save.rax = vmcb->save.rax; | |
3645 | if (npt_enabled) | |
3646 | hsave->save.cr3 = vmcb->save.cr3; | |
3647 | else | |
3648 | hsave->save.cr3 = kvm_read_cr3(&svm->vcpu); | |
3649 | ||
3650 | copy_vmcb_control_area(hsave, vmcb); | |
3651 | ||
3652 | enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page); | |
8d28fec4 | 3653 | |
9738b2c9 | 3654 | return true; |
3d6368ef AG |
3655 | } |
3656 | ||
9966bf68 | 3657 | static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb) |
5542675b AG |
3658 | { |
3659 | to_vmcb->save.fs = from_vmcb->save.fs; | |
3660 | to_vmcb->save.gs = from_vmcb->save.gs; | |
3661 | to_vmcb->save.tr = from_vmcb->save.tr; | |
3662 | to_vmcb->save.ldtr = from_vmcb->save.ldtr; | |
3663 | to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; | |
3664 | to_vmcb->save.star = from_vmcb->save.star; | |
3665 | to_vmcb->save.lstar = from_vmcb->save.lstar; | |
3666 | to_vmcb->save.cstar = from_vmcb->save.cstar; | |
3667 | to_vmcb->save.sfmask = from_vmcb->save.sfmask; | |
3668 | to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; | |
3669 | to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; | |
3670 | to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; | |
5542675b AG |
3671 | } |
3672 | ||
851ba692 | 3673 | static int vmload_interception(struct vcpu_svm *svm) |
5542675b | 3674 | { |
9966bf68 | 3675 | struct vmcb *nested_vmcb; |
7597f129 | 3676 | struct page *page; |
b742c1e6 | 3677 | int ret; |
9966bf68 | 3678 | |
5542675b AG |
3679 | if (nested_svm_check_permissions(svm)) |
3680 | return 1; | |
3681 | ||
7597f129 | 3682 | nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); |
9966bf68 JR |
3683 | if (!nested_vmcb) |
3684 | return 1; | |
3685 | ||
e3e9ed3d | 3686 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
b742c1e6 | 3687 | ret = kvm_skip_emulated_instruction(&svm->vcpu); |
e3e9ed3d | 3688 | |
9966bf68 | 3689 | nested_svm_vmloadsave(nested_vmcb, svm->vmcb); |
7597f129 | 3690 | nested_svm_unmap(page); |
5542675b | 3691 | |
b742c1e6 | 3692 | return ret; |
5542675b AG |
3693 | } |
3694 | ||
851ba692 | 3695 | static int vmsave_interception(struct vcpu_svm *svm) |
5542675b | 3696 | { |
9966bf68 | 3697 | struct vmcb *nested_vmcb; |
7597f129 | 3698 | struct page *page; |
b742c1e6 | 3699 | int ret; |
9966bf68 | 3700 | |
5542675b AG |
3701 | if (nested_svm_check_permissions(svm)) |
3702 | return 1; | |
3703 | ||
7597f129 | 3704 | nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); |
9966bf68 JR |
3705 | if (!nested_vmcb) |
3706 | return 1; | |
3707 | ||
e3e9ed3d | 3708 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
b742c1e6 | 3709 | ret = kvm_skip_emulated_instruction(&svm->vcpu); |
e3e9ed3d | 3710 | |
9966bf68 | 3711 | nested_svm_vmloadsave(svm->vmcb, nested_vmcb); |
7597f129 | 3712 | nested_svm_unmap(page); |
5542675b | 3713 | |
b742c1e6 | 3714 | return ret; |
5542675b AG |
3715 | } |
3716 | ||
851ba692 | 3717 | static int vmrun_interception(struct vcpu_svm *svm) |
3d6368ef | 3718 | { |
3d6368ef AG |
3719 | if (nested_svm_check_permissions(svm)) |
3720 | return 1; | |
3721 | ||
b75f4eb3 RJ |
3722 | /* Save rip after vmrun instruction */ |
3723 | kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3); | |
3d6368ef | 3724 | |
9738b2c9 | 3725 | if (!nested_svm_vmrun(svm)) |
3d6368ef AG |
3726 | return 1; |
3727 | ||
9738b2c9 | 3728 | if (!nested_svm_vmrun_msrpm(svm)) |
1f8da478 JR |
3729 | goto failed; |
3730 | ||
3731 | return 1; | |
3732 | ||
3733 | failed: | |
3734 | ||
3735 | svm->vmcb->control.exit_code = SVM_EXIT_ERR; | |
3736 | svm->vmcb->control.exit_code_hi = 0; | |
3737 | svm->vmcb->control.exit_info_1 = 0; | |
3738 | svm->vmcb->control.exit_info_2 = 0; | |
3739 | ||
3740 | nested_svm_vmexit(svm); | |
3d6368ef AG |
3741 | |
3742 | return 1; | |
3743 | } | |
3744 | ||
851ba692 | 3745 | static int stgi_interception(struct vcpu_svm *svm) |
1371d904 | 3746 | { |
b742c1e6 LP |
3747 | int ret; |
3748 | ||
1371d904 AG |
3749 | if (nested_svm_check_permissions(svm)) |
3750 | return 1; | |
3751 | ||
640bd6e5 JN |
3752 | /* |
3753 | * If VGIF is enabled, the STGI intercept is only added to | |
cc3d967f | 3754 | * detect the opening of the SMI/NMI window; remove it now. |
640bd6e5 JN |
3755 | */ |
3756 | if (vgif_enabled(svm)) | |
3757 | clr_intercept(svm, INTERCEPT_STGI); | |
3758 | ||
1371d904 | 3759 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
b742c1e6 | 3760 | ret = kvm_skip_emulated_instruction(&svm->vcpu); |
3842d135 | 3761 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
1371d904 | 3762 | |
2af9194d | 3763 | enable_gif(svm); |
1371d904 | 3764 | |
b742c1e6 | 3765 | return ret; |
1371d904 AG |
3766 | } |
3767 | ||
851ba692 | 3768 | static int clgi_interception(struct vcpu_svm *svm) |
1371d904 | 3769 | { |
b742c1e6 LP |
3770 | int ret; |
3771 | ||
1371d904 AG |
3772 | if (nested_svm_check_permissions(svm)) |
3773 | return 1; | |
3774 | ||
3775 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | |
b742c1e6 | 3776 | ret = kvm_skip_emulated_instruction(&svm->vcpu); |
1371d904 | 3777 | |
2af9194d | 3778 | disable_gif(svm); |
1371d904 AG |
3779 | |
3780 | /* After a CLGI no interrupts should come */ | |
340d3bc3 SS |
3781 | if (!kvm_vcpu_apicv_active(&svm->vcpu)) { |
3782 | svm_clear_vintr(svm); | |
3783 | svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; | |
3784 | mark_dirty(svm->vmcb, VMCB_INTR); | |
3785 | } | |
decdbf6a | 3786 | |
b742c1e6 | 3787 | return ret; |
1371d904 AG |
3788 | } |
3789 | ||
851ba692 | 3790 | static int invlpga_interception(struct vcpu_svm *svm) |
ff092385 AG |
3791 | { |
3792 | struct kvm_vcpu *vcpu = &svm->vcpu; | |
ff092385 | 3793 | |
668f198f DK |
3794 | trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX), |
3795 | kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); | |
ec1ff790 | 3796 | |
ff092385 | 3797 | /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ |
668f198f | 3798 | kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); |
ff092385 AG |
3799 | |
3800 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | |
b742c1e6 | 3801 | return kvm_skip_emulated_instruction(&svm->vcpu); |
ff092385 AG |
3802 | } |
3803 | ||
532a46b9 JR |
3804 | static int skinit_interception(struct vcpu_svm *svm) |
3805 | { | |
668f198f | 3806 | trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); |
532a46b9 JR |
3807 | |
3808 | kvm_queue_exception(&svm->vcpu, UD_VECTOR); | |
3809 | return 1; | |
3810 | } | |
3811 | ||
dab429a7 DK |
3812 | static int wbinvd_interception(struct vcpu_svm *svm) |
3813 | { | |
6affcbed | 3814 | return kvm_emulate_wbinvd(&svm->vcpu); |
dab429a7 DK |
3815 | } |
3816 | ||
81dd35d4 JR |
3817 | static int xsetbv_interception(struct vcpu_svm *svm) |
3818 | { | |
3819 | u64 new_bv = kvm_read_edx_eax(&svm->vcpu); | |
3820 | u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); | |
3821 | ||
3822 | if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) { | |
3823 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | |
b742c1e6 | 3824 | return kvm_skip_emulated_instruction(&svm->vcpu); |
81dd35d4 JR |
3825 | } |
3826 | ||
3827 | return 1; | |
3828 | } | |
3829 | ||
851ba692 | 3830 | static int task_switch_interception(struct vcpu_svm *svm) |
6aa8b732 | 3831 | { |
37817f29 | 3832 | u16 tss_selector; |
64a7ec06 GN |
3833 | int reason; |
3834 | int int_type = svm->vmcb->control.exit_int_info & | |
3835 | SVM_EXITINTINFO_TYPE_MASK; | |
8317c298 | 3836 | int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; |
fe8e7f83 GN |
3837 | uint32_t type = |
3838 | svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; | |
3839 | uint32_t idt_v = | |
3840 | svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; | |
e269fb21 JK |
3841 | bool has_error_code = false; |
3842 | u32 error_code = 0; | |
37817f29 IE |
3843 | |
3844 | tss_selector = (u16)svm->vmcb->control.exit_info_1; | |
64a7ec06 | 3845 | |
37817f29 IE |
3846 | if (svm->vmcb->control.exit_info_2 & |
3847 | (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) | |
64a7ec06 GN |
3848 | reason = TASK_SWITCH_IRET; |
3849 | else if (svm->vmcb->control.exit_info_2 & | |
3850 | (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) | |
3851 | reason = TASK_SWITCH_JMP; | |
fe8e7f83 | 3852 | else if (idt_v) |
64a7ec06 GN |
3853 | reason = TASK_SWITCH_GATE; |
3854 | else | |
3855 | reason = TASK_SWITCH_CALL; | |
3856 | ||
fe8e7f83 GN |
3857 | if (reason == TASK_SWITCH_GATE) { |
3858 | switch (type) { | |
3859 | case SVM_EXITINTINFO_TYPE_NMI: | |
3860 | svm->vcpu.arch.nmi_injected = false; | |
3861 | break; | |
3862 | case SVM_EXITINTINFO_TYPE_EXEPT: | |
e269fb21 JK |
3863 | if (svm->vmcb->control.exit_info_2 & |
3864 | (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { | |
3865 | has_error_code = true; | |
3866 | error_code = | |
3867 | (u32)svm->vmcb->control.exit_info_2; | |
3868 | } | |
fe8e7f83 GN |
3869 | kvm_clear_exception_queue(&svm->vcpu); |
3870 | break; | |
3871 | case SVM_EXITINTINFO_TYPE_INTR: | |
3872 | kvm_clear_interrupt_queue(&svm->vcpu); | |
3873 | break; | |
3874 | default: | |
3875 | break; | |
3876 | } | |
3877 | } | |
64a7ec06 | 3878 | |
8317c298 GN |
3879 | if (reason != TASK_SWITCH_GATE || |
3880 | int_type == SVM_EXITINTINFO_TYPE_SOFT || | |
3881 | (int_type == SVM_EXITINTINFO_TYPE_EXEPT && | |
f629cf84 GN |
3882 | (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) |
3883 | skip_emulated_instruction(&svm->vcpu); | |
64a7ec06 | 3884 | |
7f3d35fd KW |
3885 | if (int_type != SVM_EXITINTINFO_TYPE_SOFT) |
3886 | int_vec = -1; | |
3887 | ||
3888 | if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason, | |
acb54517 GN |
3889 | has_error_code, error_code) == EMULATE_FAIL) { |
3890 | svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | |
3891 | svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | |
3892 | svm->vcpu.run->internal.ndata = 0; | |
3893 | return 0; | |
3894 | } | |
3895 | return 1; | |
6aa8b732 AK |
3896 | } |
3897 | ||
851ba692 | 3898 | static int cpuid_interception(struct vcpu_svm *svm) |
6aa8b732 | 3899 | { |
5fdbf976 | 3900 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; |
6a908b62 | 3901 | return kvm_emulate_cpuid(&svm->vcpu); |
6aa8b732 AK |
3902 | } |
3903 | ||
851ba692 | 3904 | static int iret_interception(struct vcpu_svm *svm) |
95ba8273 GN |
3905 | { |
3906 | ++svm->vcpu.stat.nmi_window_exits; | |
8a05a1b8 | 3907 | clr_intercept(svm, INTERCEPT_IRET); |
44c11430 | 3908 | svm->vcpu.arch.hflags |= HF_IRET_MASK; |
bd3d1ec3 | 3909 | svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu); |
f303b4ce | 3910 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
95ba8273 GN |
3911 | return 1; |
3912 | } | |
3913 | ||
851ba692 | 3914 | static int invlpg_interception(struct vcpu_svm *svm) |
a7052897 | 3915 | { |
df4f3108 | 3916 | if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) |
0ce97a2b | 3917 | return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE; |
df4f3108 AP |
3918 | |
3919 | kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); | |
b742c1e6 | 3920 | return kvm_skip_emulated_instruction(&svm->vcpu); |
a7052897 MT |
3921 | } |
3922 | ||
851ba692 | 3923 | static int emulate_on_interception(struct vcpu_svm *svm) |
6aa8b732 | 3924 | { |
0ce97a2b | 3925 | return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE; |
6aa8b732 AK |
3926 | } |
3927 | ||
7607b717 BS |
3928 | static int rsm_interception(struct vcpu_svm *svm) |
3929 | { | |
35be0ade SC |
3930 | return kvm_emulate_instruction_from_buffer(&svm->vcpu, |
3931 | rsm_ins_bytes, 2) == EMULATE_DONE; | |
7607b717 BS |
3932 | } |
3933 | ||
332b56e4 AK |
3934 | static int rdpmc_interception(struct vcpu_svm *svm) |
3935 | { | |
3936 | int err; | |
3937 | ||
3938 | if (!static_cpu_has(X86_FEATURE_NRIPS)) | |
3939 | return emulate_on_interception(svm); | |
3940 | ||
3941 | err = kvm_rdpmc(&svm->vcpu); | |
6affcbed | 3942 | return kvm_complete_insn_gp(&svm->vcpu, err); |
332b56e4 AK |
3943 | } |
3944 | ||
52eb5a6d XL |
3945 | static bool check_selective_cr0_intercepted(struct vcpu_svm *svm, |
3946 | unsigned long val) | |
628afd2a JR |
3947 | { |
3948 | unsigned long cr0 = svm->vcpu.arch.cr0; | |
3949 | bool ret = false; | |
3950 | u64 intercept; | |
3951 | ||
3952 | intercept = svm->nested.intercept; | |
3953 | ||
3954 | if (!is_guest_mode(&svm->vcpu) || | |
3955 | (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))) | |
3956 | return false; | |
3957 | ||
3958 | cr0 &= ~SVM_CR0_SELECTIVE_MASK; | |
3959 | val &= ~SVM_CR0_SELECTIVE_MASK; | |
3960 | ||
3961 | if (cr0 ^ val) { | |
3962 | svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; | |
3963 | ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); | |
3964 | } | |
3965 | ||
3966 | return ret; | |
3967 | } | |
3968 | ||
7ff76d58 AP |
3969 | #define CR_VALID (1ULL << 63) |
3970 | ||
3971 | static int cr_interception(struct vcpu_svm *svm) | |
3972 | { | |
3973 | int reg, cr; | |
3974 | unsigned long val; | |
3975 | int err; | |
3976 | ||
3977 | if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) | |
3978 | return emulate_on_interception(svm); | |
3979 | ||
3980 | if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) | |
3981 | return emulate_on_interception(svm); | |
3982 | ||
3983 | reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; | |
5e57518d DK |
3984 | if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) |
3985 | cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; | |
3986 | else | |
3987 | cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; | |
7ff76d58 AP |
3988 | |
3989 | err = 0; | |
3990 | if (cr >= 16) { /* mov to cr */ | |
3991 | cr -= 16; | |
3992 | val = kvm_register_read(&svm->vcpu, reg); | |
3993 | switch (cr) { | |
3994 | case 0: | |
628afd2a JR |
3995 | if (!check_selective_cr0_intercepted(svm, val)) |
3996 | err = kvm_set_cr0(&svm->vcpu, val); | |
977b2d03 JR |
3997 | else |
3998 | return 1; | |
3999 | ||
7ff76d58 AP |
4000 | break; |
4001 | case 3: | |
4002 | err = kvm_set_cr3(&svm->vcpu, val); | |
4003 | break; | |
4004 | case 4: | |
4005 | err = kvm_set_cr4(&svm->vcpu, val); | |
4006 | break; | |
4007 | case 8: | |
4008 | err = kvm_set_cr8(&svm->vcpu, val); | |
4009 | break; | |
4010 | default: | |
4011 | WARN(1, "unhandled write to CR%d", cr); | |
4012 | kvm_queue_exception(&svm->vcpu, UD_VECTOR); | |
4013 | return 1; | |
4014 | } | |
4015 | } else { /* mov from cr */ | |
4016 | switch (cr) { | |
4017 | case 0: | |
4018 | val = kvm_read_cr0(&svm->vcpu); | |
4019 | break; | |
4020 | case 2: | |
4021 | val = svm->vcpu.arch.cr2; | |
4022 | break; | |
4023 | case 3: | |
9f8fe504 | 4024 | val = kvm_read_cr3(&svm->vcpu); |
7ff76d58 AP |
4025 | break; |
4026 | case 4: | |
4027 | val = kvm_read_cr4(&svm->vcpu); | |
4028 | break; | |
4029 | case 8: | |
4030 | val = kvm_get_cr8(&svm->vcpu); | |
4031 | break; | |
4032 | default: | |
4033 | WARN(1, "unhandled read from CR%d", cr); | |
4034 | kvm_queue_exception(&svm->vcpu, UD_VECTOR); | |
4035 | return 1; | |
4036 | } | |
4037 | kvm_register_write(&svm->vcpu, reg, val); | |
4038 | } | |
6affcbed | 4039 | return kvm_complete_insn_gp(&svm->vcpu, err); |
7ff76d58 AP |
4040 | } |
4041 | ||
cae3797a AP |
4042 | static int dr_interception(struct vcpu_svm *svm) |
4043 | { | |
4044 | int reg, dr; | |
4045 | unsigned long val; | |
cae3797a | 4046 | |
facb0139 PB |
4047 | if (svm->vcpu.guest_debug == 0) { |
4048 | /* | |
4049 | * No more DR vmexits; force a reload of the debug registers | |
4050 | * and reenter on this instruction. The next vmexit will | |
4051 | * retrieve the full state of the debug registers. | |
4052 | */ | |
4053 | clr_dr_intercepts(svm); | |
4054 | svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; | |
4055 | return 1; | |
4056 | } | |
4057 | ||
cae3797a AP |
4058 | if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) |
4059 | return emulate_on_interception(svm); | |
4060 | ||
4061 | reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; | |
4062 | dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; | |
4063 | ||
4064 | if (dr >= 16) { /* mov to DRn */ | |
16f8a6f9 NA |
4065 | if (!kvm_require_dr(&svm->vcpu, dr - 16)) |
4066 | return 1; | |
cae3797a AP |
4067 | val = kvm_register_read(&svm->vcpu, reg); |
4068 | kvm_set_dr(&svm->vcpu, dr - 16, val); | |
4069 | } else { | |
16f8a6f9 NA |
4070 | if (!kvm_require_dr(&svm->vcpu, dr)) |
4071 | return 1; | |
4072 | kvm_get_dr(&svm->vcpu, dr, &val); | |
4073 | kvm_register_write(&svm->vcpu, reg, val); | |
cae3797a AP |
4074 | } |
4075 | ||
b742c1e6 | 4076 | return kvm_skip_emulated_instruction(&svm->vcpu); |
cae3797a AP |
4077 | } |
4078 | ||
851ba692 | 4079 | static int cr8_write_interception(struct vcpu_svm *svm) |
1d075434 | 4080 | { |
851ba692 | 4081 | struct kvm_run *kvm_run = svm->vcpu.run; |
eea1cff9 | 4082 | int r; |
851ba692 | 4083 | |
0a5fff19 GN |
4084 | u8 cr8_prev = kvm_get_cr8(&svm->vcpu); |
4085 | /* instruction emulation calls kvm_set_cr8() */ | |
7ff76d58 | 4086 | r = cr_interception(svm); |
35754c98 | 4087 | if (lapic_in_kernel(&svm->vcpu)) |
7ff76d58 | 4088 | return r; |
0a5fff19 | 4089 | if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) |
7ff76d58 | 4090 | return r; |
1d075434 JR |
4091 | kvm_run->exit_reason = KVM_EXIT_SET_TPR; |
4092 | return 0; | |
4093 | } | |
4094 | ||
801e459a TL |
4095 | static int svm_get_msr_feature(struct kvm_msr_entry *msr) |
4096 | { | |
d1d93fa9 TL |
4097 | msr->data = 0; |
4098 | ||
4099 | switch (msr->index) { | |
4100 | case MSR_F10H_DECFG: | |
4101 | if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) | |
4102 | msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; | |
4103 | break; | |
4104 | default: | |
4105 | return 1; | |
4106 | } | |
4107 | ||
4108 | return 0; | |
801e459a TL |
4109 | } |
4110 | ||
609e36d3 | 4111 | static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
6aa8b732 | 4112 | { |
a2fa3e9f GH |
4113 | struct vcpu_svm *svm = to_svm(vcpu); |
4114 | ||
609e36d3 | 4115 | switch (msr_info->index) { |
8c06585d | 4116 | case MSR_STAR: |
609e36d3 | 4117 | msr_info->data = svm->vmcb->save.star; |
6aa8b732 | 4118 | break; |
0e859cac | 4119 | #ifdef CONFIG_X86_64 |
6aa8b732 | 4120 | case MSR_LSTAR: |
609e36d3 | 4121 | msr_info->data = svm->vmcb->save.lstar; |
6aa8b732 AK |
4122 | break; |
4123 | case MSR_CSTAR: | |
609e36d3 | 4124 | msr_info->data = svm->vmcb->save.cstar; |
6aa8b732 AK |
4125 | break; |
4126 | case MSR_KERNEL_GS_BASE: | |
609e36d3 | 4127 | msr_info->data = svm->vmcb->save.kernel_gs_base; |
6aa8b732 AK |
4128 | break; |
4129 | case MSR_SYSCALL_MASK: | |
609e36d3 | 4130 | msr_info->data = svm->vmcb->save.sfmask; |
6aa8b732 AK |
4131 | break; |
4132 | #endif | |
4133 | case MSR_IA32_SYSENTER_CS: | |
609e36d3 | 4134 | msr_info->data = svm->vmcb->save.sysenter_cs; |
6aa8b732 AK |
4135 | break; |
4136 | case MSR_IA32_SYSENTER_EIP: | |
609e36d3 | 4137 | msr_info->data = svm->sysenter_eip; |
6aa8b732 AK |
4138 | break; |
4139 | case MSR_IA32_SYSENTER_ESP: | |
609e36d3 | 4140 | msr_info->data = svm->sysenter_esp; |
6aa8b732 | 4141 | break; |
46896c73 PB |
4142 | case MSR_TSC_AUX: |
4143 | if (!boot_cpu_has(X86_FEATURE_RDTSCP)) | |
4144 | return 1; | |
4145 | msr_info->data = svm->tsc_aux; | |
4146 | break; | |
e0231715 JR |
4147 | /* |
4148 | * Nobody will change the following 5 values in the VMCB so we can | |
4149 | * safely return them on rdmsr. They will always be 0 until LBRV is | |
4150 | * implemented. | |
4151 | */ | |
a2938c80 | 4152 | case MSR_IA32_DEBUGCTLMSR: |
609e36d3 | 4153 | msr_info->data = svm->vmcb->save.dbgctl; |
a2938c80 JR |
4154 | break; |
4155 | case MSR_IA32_LASTBRANCHFROMIP: | |
609e36d3 | 4156 | msr_info->data = svm->vmcb->save.br_from; |
a2938c80 JR |
4157 | break; |
4158 | case MSR_IA32_LASTBRANCHTOIP: | |
609e36d3 | 4159 | msr_info->data = svm->vmcb->save.br_to; |
a2938c80 JR |
4160 | break; |
4161 | case MSR_IA32_LASTINTFROMIP: | |
609e36d3 | 4162 | msr_info->data = svm->vmcb->save.last_excp_from; |
a2938c80 JR |
4163 | break; |
4164 | case MSR_IA32_LASTINTTOIP: | |
609e36d3 | 4165 | msr_info->data = svm->vmcb->save.last_excp_to; |
a2938c80 | 4166 | break; |
b286d5d8 | 4167 | case MSR_VM_HSAVE_PA: |
609e36d3 | 4168 | msr_info->data = svm->nested.hsave_msr; |
b286d5d8 | 4169 | break; |
eb6f302e | 4170 | case MSR_VM_CR: |
609e36d3 | 4171 | msr_info->data = svm->nested.vm_cr_msr; |
eb6f302e | 4172 | break; |
b2ac58f9 KA |
4173 | case MSR_IA32_SPEC_CTRL: |
4174 | if (!msr_info->host_initiated && | |
6ac2f49e KRW |
4175 | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && |
4176 | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) | |
b2ac58f9 KA |
4177 | return 1; |
4178 | ||
4179 | msr_info->data = svm->spec_ctrl; | |
4180 | break; | |
bc226f07 TL |
4181 | case MSR_AMD64_VIRT_SPEC_CTRL: |
4182 | if (!msr_info->host_initiated && | |
4183 | !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) | |
4184 | return 1; | |
4185 | ||
4186 | msr_info->data = svm->virt_spec_ctrl; | |
4187 | break; | |
ae8b7875 BP |
4188 | case MSR_F15H_IC_CFG: { |
4189 | ||
4190 | int family, model; | |
4191 | ||
4192 | family = guest_cpuid_family(vcpu); | |
4193 | model = guest_cpuid_model(vcpu); | |
4194 | ||
4195 | if (family < 0 || model < 0) | |
4196 | return kvm_get_msr_common(vcpu, msr_info); | |
4197 | ||
4198 | msr_info->data = 0; | |
4199 | ||
4200 | if (family == 0x15 && | |
4201 | (model >= 0x2 && model < 0x20)) | |
4202 | msr_info->data = 0x1E; | |
4203 | } | |
4204 | break; | |
d1d93fa9 TL |
4205 | case MSR_F10H_DECFG: |
4206 | msr_info->data = svm->msr_decfg; | |
4207 | break; | |
6aa8b732 | 4208 | default: |
609e36d3 | 4209 | return kvm_get_msr_common(vcpu, msr_info); |
6aa8b732 AK |
4210 | } |
4211 | return 0; | |
4212 | } | |
4213 | ||
851ba692 | 4214 | static int rdmsr_interception(struct vcpu_svm *svm) |
6aa8b732 | 4215 | { |
668f198f | 4216 | u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); |
609e36d3 | 4217 | struct msr_data msr_info; |
6aa8b732 | 4218 | |
609e36d3 PB |
4219 | msr_info.index = ecx; |
4220 | msr_info.host_initiated = false; | |
4221 | if (svm_get_msr(&svm->vcpu, &msr_info)) { | |
59200273 | 4222 | trace_kvm_msr_read_ex(ecx); |
c1a5d4f9 | 4223 | kvm_inject_gp(&svm->vcpu, 0); |
b742c1e6 | 4224 | return 1; |
59200273 | 4225 | } else { |
609e36d3 | 4226 | trace_kvm_msr_read(ecx, msr_info.data); |
af9ca2d7 | 4227 | |
609e36d3 PB |
4228 | kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, |
4229 | msr_info.data & 0xffffffff); | |
4230 | kvm_register_write(&svm->vcpu, VCPU_REGS_RDX, | |
4231 | msr_info.data >> 32); | |
5fdbf976 | 4232 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; |
b742c1e6 | 4233 | return kvm_skip_emulated_instruction(&svm->vcpu); |
6aa8b732 | 4234 | } |
6aa8b732 AK |
4235 | } |
4236 | ||
4a810181 JR |
4237 | static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) |
4238 | { | |
4239 | struct vcpu_svm *svm = to_svm(vcpu); | |
4240 | int svm_dis, chg_mask; | |
4241 | ||
4242 | if (data & ~SVM_VM_CR_VALID_MASK) | |
4243 | return 1; | |
4244 | ||
4245 | chg_mask = SVM_VM_CR_VALID_MASK; | |
4246 | ||
4247 | if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) | |
4248 | chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); | |
4249 | ||
4250 | svm->nested.vm_cr_msr &= ~chg_mask; | |
4251 | svm->nested.vm_cr_msr |= (data & chg_mask); | |
4252 | ||
4253 | svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; | |
4254 | ||
4255 | /* check for svm_disable while efer.svme is set */ | |
4256 | if (svm_dis && (vcpu->arch.efer & EFER_SVME)) | |
4257 | return 1; | |
4258 | ||
4259 | return 0; | |
4260 | } | |
4261 | ||
8fe8ab46 | 4262 | static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
6aa8b732 | 4263 | { |
a2fa3e9f GH |
4264 | struct vcpu_svm *svm = to_svm(vcpu); |
4265 | ||
8fe8ab46 WA |
4266 | u32 ecx = msr->index; |
4267 | u64 data = msr->data; | |
6aa8b732 | 4268 | switch (ecx) { |
15038e14 PB |
4269 | case MSR_IA32_CR_PAT: |
4270 | if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) | |
4271 | return 1; | |
4272 | vcpu->arch.pat = data; | |
4273 | svm->vmcb->save.g_pat = data; | |
4274 | mark_dirty(svm->vmcb, VMCB_NPT); | |
4275 | break; | |
b2ac58f9 KA |
4276 | case MSR_IA32_SPEC_CTRL: |
4277 | if (!msr->host_initiated && | |
6ac2f49e KRW |
4278 | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && |
4279 | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) | |
b2ac58f9 KA |
4280 | return 1; |
4281 | ||
4282 | /* The STIBP bit doesn't fault even if it's not advertised */ | |
6ac2f49e | 4283 | if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) |
b2ac58f9 KA |
4284 | return 1; |
4285 | ||
4286 | svm->spec_ctrl = data; | |
4287 | ||
4288 | if (!data) | |
4289 | break; | |
4290 | ||
4291 | /* | |
4292 | * For non-nested: | |
4293 | * When it's written (to non-zero) for the first time, pass | |
4294 | * it through. | |
4295 | * | |
4296 | * For nested: | |
4297 | * The handling of the MSR bitmap for L2 guests is done in | |
4298 | * nested_svm_vmrun_msrpm. | |
4299 | * We update the L1 MSR bit as well since it will end up | |
4300 | * touching the MSR anyway now. | |
4301 | */ | |
4302 | set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); | |
4303 | break; | |
15d45071 AR |
4304 | case MSR_IA32_PRED_CMD: |
4305 | if (!msr->host_initiated && | |
e7c587da | 4306 | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) |
15d45071 AR |
4307 | return 1; |
4308 | ||
4309 | if (data & ~PRED_CMD_IBPB) | |
4310 | return 1; | |
4311 | ||
4312 | if (!data) | |
4313 | break; | |
4314 | ||
4315 | wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); | |
4316 | if (is_guest_mode(vcpu)) | |
4317 | break; | |
4318 | set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); | |
4319 | break; | |
bc226f07 TL |
4320 | case MSR_AMD64_VIRT_SPEC_CTRL: |
4321 | if (!msr->host_initiated && | |
4322 | !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) | |
4323 | return 1; | |
4324 | ||
4325 | if (data & ~SPEC_CTRL_SSBD) | |
4326 | return 1; | |
4327 | ||
4328 | svm->virt_spec_ctrl = data; | |
4329 | break; | |
8c06585d | 4330 | case MSR_STAR: |
a2fa3e9f | 4331 | svm->vmcb->save.star = data; |
6aa8b732 | 4332 | break; |
49b14f24 | 4333 | #ifdef CONFIG_X86_64 |
6aa8b732 | 4334 | case MSR_LSTAR: |
a2fa3e9f | 4335 | svm->vmcb->save.lstar = data; |
6aa8b732 AK |
4336 | break; |
4337 | case MSR_CSTAR: | |
a2fa3e9f | 4338 | svm->vmcb->save.cstar = data; |
6aa8b732 AK |
4339 | break; |
4340 | case MSR_KERNEL_GS_BASE: | |
a2fa3e9f | 4341 | svm->vmcb->save.kernel_gs_base = data; |
6aa8b732 AK |
4342 | break; |
4343 | case MSR_SYSCALL_MASK: | |
a2fa3e9f | 4344 | svm->vmcb->save.sfmask = data; |
6aa8b732 AK |
4345 | break; |
4346 | #endif | |
4347 | case MSR_IA32_SYSENTER_CS: | |
a2fa3e9f | 4348 | svm->vmcb->save.sysenter_cs = data; |
6aa8b732 AK |
4349 | break; |
4350 | case MSR_IA32_SYSENTER_EIP: | |
017cb99e | 4351 | svm->sysenter_eip = data; |
a2fa3e9f | 4352 | svm->vmcb->save.sysenter_eip = data; |
6aa8b732 AK |
4353 | break; |
4354 | case MSR_IA32_SYSENTER_ESP: | |
017cb99e | 4355 | svm->sysenter_esp = data; |
a2fa3e9f | 4356 | svm->vmcb->save.sysenter_esp = data; |
6aa8b732 | 4357 | break; |
46896c73 PB |
4358 | case MSR_TSC_AUX: |
4359 | if (!boot_cpu_has(X86_FEATURE_RDTSCP)) | |
4360 | return 1; | |
4361 | ||
4362 | /* | |
4363 | * This is rare, so we update the MSR here instead of using | |
4364 | * direct_access_msrs. Doing that would require a rdmsr in | |
4365 | * svm_vcpu_put. | |
4366 | */ | |
4367 | svm->tsc_aux = data; | |
4368 | wrmsrl(MSR_TSC_AUX, svm->tsc_aux); | |
4369 | break; | |
a2938c80 | 4370 | case MSR_IA32_DEBUGCTLMSR: |
2a6b20b8 | 4371 | if (!boot_cpu_has(X86_FEATURE_LBRV)) { |
a737f256 CD |
4372 | vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", |
4373 | __func__, data); | |
24e09cbf JR |
4374 | break; |
4375 | } | |
4376 | if (data & DEBUGCTL_RESERVED_BITS) | |
4377 | return 1; | |
4378 | ||
4379 | svm->vmcb->save.dbgctl = data; | |
b53ba3f9 | 4380 | mark_dirty(svm->vmcb, VMCB_LBR); |
24e09cbf JR |
4381 | if (data & (1ULL<<0)) |
4382 | svm_enable_lbrv(svm); | |
4383 | else | |
4384 | svm_disable_lbrv(svm); | |
a2938c80 | 4385 | break; |
b286d5d8 | 4386 | case MSR_VM_HSAVE_PA: |
e6aa9abd | 4387 | svm->nested.hsave_msr = data; |
62b9abaa | 4388 | break; |
3c5d0a44 | 4389 | case MSR_VM_CR: |
4a810181 | 4390 | return svm_set_vm_cr(vcpu, data); |
3c5d0a44 | 4391 | case MSR_VM_IGNNE: |
a737f256 | 4392 | vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); |
3c5d0a44 | 4393 | break; |
d1d93fa9 TL |
4394 | case MSR_F10H_DECFG: { |
4395 | struct kvm_msr_entry msr_entry; | |
4396 | ||
4397 | msr_entry.index = msr->index; | |
4398 | if (svm_get_msr_feature(&msr_entry)) | |
4399 | return 1; | |
4400 | ||
4401 | /* Check the supported bits */ | |
4402 | if (data & ~msr_entry.data) | |
4403 | return 1; | |
4404 | ||
4405 | /* Don't allow the guest to change a bit, #GP */ | |
4406 | if (!msr->host_initiated && (data ^ msr_entry.data)) | |
4407 | return 1; | |
4408 | ||
4409 | svm->msr_decfg = data; | |
4410 | break; | |
4411 | } | |
44a95dae SS |
4412 | case MSR_IA32_APICBASE: |
4413 | if (kvm_vcpu_apicv_active(vcpu)) | |
4414 | avic_update_vapic_bar(to_svm(vcpu), data); | |
b2869f28 | 4415 | /* Fall through */ |
6aa8b732 | 4416 | default: |
8fe8ab46 | 4417 | return kvm_set_msr_common(vcpu, msr); |
6aa8b732 AK |
4418 | } |
4419 | return 0; | |
4420 | } | |
4421 | ||
851ba692 | 4422 | static int wrmsr_interception(struct vcpu_svm *svm) |
6aa8b732 | 4423 | { |
8fe8ab46 | 4424 | struct msr_data msr; |
668f198f DK |
4425 | u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); |
4426 | u64 data = kvm_read_edx_eax(&svm->vcpu); | |
af9ca2d7 | 4427 | |
8fe8ab46 WA |
4428 | msr.data = data; |
4429 | msr.index = ecx; | |
4430 | msr.host_initiated = false; | |
af9ca2d7 | 4431 | |
5fdbf976 | 4432 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; |
854e8bb1 | 4433 | if (kvm_set_msr(&svm->vcpu, &msr)) { |
59200273 | 4434 | trace_kvm_msr_write_ex(ecx, data); |
c1a5d4f9 | 4435 | kvm_inject_gp(&svm->vcpu, 0); |
b742c1e6 | 4436 | return 1; |
59200273 AK |
4437 | } else { |
4438 | trace_kvm_msr_write(ecx, data); | |
b742c1e6 | 4439 | return kvm_skip_emulated_instruction(&svm->vcpu); |
59200273 | 4440 | } |
6aa8b732 AK |
4441 | } |
4442 | ||
851ba692 | 4443 | static int msr_interception(struct vcpu_svm *svm) |
6aa8b732 | 4444 | { |
e756fc62 | 4445 | if (svm->vmcb->control.exit_info_1) |
851ba692 | 4446 | return wrmsr_interception(svm); |
6aa8b732 | 4447 | else |
851ba692 | 4448 | return rdmsr_interception(svm); |
6aa8b732 AK |
4449 | } |
4450 | ||
851ba692 | 4451 | static int interrupt_window_interception(struct vcpu_svm *svm) |
c1150d8c | 4452 | { |
3842d135 | 4453 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
f0b85051 | 4454 | svm_clear_vintr(svm); |
85f455f7 | 4455 | svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; |
decdbf6a | 4456 | mark_dirty(svm->vmcb, VMCB_INTR); |
675acb75 | 4457 | ++svm->vcpu.stat.irq_window_exits; |
c1150d8c DL |
4458 | return 1; |
4459 | } | |
4460 | ||
565d0998 ML |
4461 | static int pause_interception(struct vcpu_svm *svm) |
4462 | { | |
de63ad4c LM |
4463 | struct kvm_vcpu *vcpu = &svm->vcpu; |
4464 | bool in_kernel = (svm_get_cpl(vcpu) == 0); | |
4465 | ||
8566ac8b BM |
4466 | if (pause_filter_thresh) |
4467 | grow_ple_window(vcpu); | |
4468 | ||
de63ad4c | 4469 | kvm_vcpu_on_spin(vcpu, in_kernel); |
565d0998 ML |
4470 | return 1; |
4471 | } | |
4472 | ||
87c00572 GS |
4473 | static int nop_interception(struct vcpu_svm *svm) |
4474 | { | |
b742c1e6 | 4475 | return kvm_skip_emulated_instruction(&(svm->vcpu)); |
87c00572 GS |
4476 | } |
4477 | ||
4478 | static int monitor_interception(struct vcpu_svm *svm) | |
4479 | { | |
4480 | printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); | |
4481 | return nop_interception(svm); | |
4482 | } | |
4483 | ||
4484 | static int mwait_interception(struct vcpu_svm *svm) | |
4485 | { | |
4486 | printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); | |
4487 | return nop_interception(svm); | |
4488 | } | |
4489 | ||
18f40c53 SS |
4490 | enum avic_ipi_failure_cause { |
4491 | AVIC_IPI_FAILURE_INVALID_INT_TYPE, | |
4492 | AVIC_IPI_FAILURE_TARGET_NOT_RUNNING, | |
4493 | AVIC_IPI_FAILURE_INVALID_TARGET, | |
4494 | AVIC_IPI_FAILURE_INVALID_BACKING_PAGE, | |
4495 | }; | |
4496 | ||
4497 | static int avic_incomplete_ipi_interception(struct vcpu_svm *svm) | |
4498 | { | |
4499 | u32 icrh = svm->vmcb->control.exit_info_1 >> 32; | |
4500 | u32 icrl = svm->vmcb->control.exit_info_1; | |
4501 | u32 id = svm->vmcb->control.exit_info_2 >> 32; | |
5446a979 | 4502 | u32 index = svm->vmcb->control.exit_info_2 & 0xFF; |
18f40c53 SS |
4503 | struct kvm_lapic *apic = svm->vcpu.arch.apic; |
4504 | ||
4505 | trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index); | |
4506 | ||
4507 | switch (id) { | |
4508 | case AVIC_IPI_FAILURE_INVALID_INT_TYPE: | |
4509 | /* | |
4510 | * AVIC hardware handles the generation of | |
4511 | * IPIs when the specified Message Type is Fixed | |
4512 | * (also known as fixed delivery mode) and | |
4513 | * the Trigger Mode is edge-triggered. The hardware | |
4514 | * also supports self and broadcast delivery modes | |
4515 | * specified via the Destination Shorthand(DSH) | |
4516 | * field of the ICRL. Logical and physical APIC ID | |
4517 | * formats are supported. All other IPI types cause | |
4518 | * a #VMEXIT, which needs to emulated. | |
4519 | */ | |
4520 | kvm_lapic_reg_write(apic, APIC_ICR2, icrh); | |
4521 | kvm_lapic_reg_write(apic, APIC_ICR, icrl); | |
4522 | break; | |
4523 | case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: { | |
4a58038b SS |
4524 | int i; |
4525 | struct kvm_vcpu *vcpu; | |
4526 | struct kvm *kvm = svm->vcpu.kvm; | |
18f40c53 SS |
4527 | struct kvm_lapic *apic = svm->vcpu.arch.apic; |
4528 | ||
4529 | /* | |
4a58038b SS |
4530 | * At this point, we expect that the AVIC HW has already |
4531 | * set the appropriate IRR bits on the valid target | |
4532 | * vcpus. So, we just need to kick the appropriate vcpu. | |
18f40c53 | 4533 | */ |
4a58038b SS |
4534 | kvm_for_each_vcpu(i, vcpu, kvm) { |
4535 | bool m = kvm_apic_match_dest(vcpu, apic, | |
4536 | icrl & KVM_APIC_SHORT_MASK, | |
4537 | GET_APIC_DEST_FIELD(icrh), | |
4538 | icrl & KVM_APIC_DEST_MASK); | |
4539 | ||
4540 | if (m && !avic_vcpu_is_running(vcpu)) | |
4541 | kvm_vcpu_wake_up(vcpu); | |
4542 | } | |
18f40c53 SS |
4543 | break; |
4544 | } | |
4545 | case AVIC_IPI_FAILURE_INVALID_TARGET: | |
37ef0c44 SS |
4546 | WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n", |
4547 | index, svm->vcpu.vcpu_id, icrh, icrl); | |
18f40c53 SS |
4548 | break; |
4549 | case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE: | |
4550 | WARN_ONCE(1, "Invalid backing page\n"); | |
4551 | break; | |
4552 | default: | |
4553 | pr_err("Unknown IPI interception\n"); | |
4554 | } | |
4555 | ||
4556 | return 1; | |
4557 | } | |
4558 | ||
4559 | static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat) | |
4560 | { | |
81811c16 | 4561 | struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); |
18f40c53 SS |
4562 | int index; |
4563 | u32 *logical_apic_id_table; | |
4564 | int dlid = GET_APIC_LOGICAL_ID(ldr); | |
4565 | ||
4566 | if (!dlid) | |
4567 | return NULL; | |
4568 | ||
4569 | if (flat) { /* flat */ | |
4570 | index = ffs(dlid) - 1; | |
4571 | if (index > 7) | |
4572 | return NULL; | |
4573 | } else { /* cluster */ | |
4574 | int cluster = (dlid & 0xf0) >> 4; | |
4575 | int apic = ffs(dlid & 0x0f) - 1; | |
4576 | ||
4577 | if ((apic < 0) || (apic > 7) || | |
4578 | (cluster >= 0xf)) | |
4579 | return NULL; | |
4580 | index = (cluster << 2) + apic; | |
4581 | } | |
4582 | ||
81811c16 | 4583 | logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page); |
18f40c53 SS |
4584 | |
4585 | return &logical_apic_id_table[index]; | |
4586 | } | |
4587 | ||
98d90582 | 4588 | static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr) |
18f40c53 SS |
4589 | { |
4590 | bool flat; | |
4591 | u32 *entry, new_entry; | |
4592 | ||
4593 | flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT; | |
4594 | entry = avic_get_logical_id_entry(vcpu, ldr, flat); | |
4595 | if (!entry) | |
4596 | return -EINVAL; | |
4597 | ||
4598 | new_entry = READ_ONCE(*entry); | |
4599 | new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; | |
4600 | new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK); | |
98d90582 | 4601 | new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK; |
18f40c53 SS |
4602 | WRITE_ONCE(*entry, new_entry); |
4603 | ||
4604 | return 0; | |
4605 | } | |
4606 | ||
98d90582 SS |
4607 | static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu) |
4608 | { | |
4609 | struct vcpu_svm *svm = to_svm(vcpu); | |
4610 | bool flat = svm->dfr_reg == APIC_DFR_FLAT; | |
4611 | u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat); | |
4612 | ||
4613 | if (entry) | |
e44e3eac | 4614 | clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry); |
98d90582 SS |
4615 | } |
4616 | ||
18f40c53 SS |
4617 | static int avic_handle_ldr_update(struct kvm_vcpu *vcpu) |
4618 | { | |
98d90582 | 4619 | int ret = 0; |
18f40c53 SS |
4620 | struct vcpu_svm *svm = to_svm(vcpu); |
4621 | u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR); | |
4622 | ||
98d90582 SS |
4623 | if (ldr == svm->ldr_reg) |
4624 | return 0; | |
18f40c53 | 4625 | |
98d90582 SS |
4626 | avic_invalidate_logical_id_entry(vcpu); |
4627 | ||
4628 | if (ldr) | |
4629 | ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr); | |
4630 | ||
4631 | if (!ret) | |
18f40c53 | 4632 | svm->ldr_reg = ldr; |
98d90582 | 4633 | |
18f40c53 SS |
4634 | return ret; |
4635 | } | |
4636 | ||
4637 | static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu) | |
4638 | { | |
4639 | u64 *old, *new; | |
4640 | struct vcpu_svm *svm = to_svm(vcpu); | |
4641 | u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID); | |
4642 | u32 id = (apic_id_reg >> 24) & 0xff; | |
4643 | ||
4644 | if (vcpu->vcpu_id == id) | |
4645 | return 0; | |
4646 | ||
4647 | old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id); | |
4648 | new = avic_get_physical_id_entry(vcpu, id); | |
4649 | if (!new || !old) | |
4650 | return 1; | |
4651 | ||
4652 | /* We need to move physical_id_entry to new offset */ | |
4653 | *new = *old; | |
4654 | *old = 0ULL; | |
4655 | to_svm(vcpu)->avic_physical_id_cache = new; | |
4656 | ||
4657 | /* | |
4658 | * Also update the guest physical APIC ID in the logical | |
4659 | * APIC ID table entry if already setup the LDR. | |
4660 | */ | |
4661 | if (svm->ldr_reg) | |
4662 | avic_handle_ldr_update(vcpu); | |
4663 | ||
4664 | return 0; | |
4665 | } | |
4666 | ||
98d90582 | 4667 | static void avic_handle_dfr_update(struct kvm_vcpu *vcpu) |
18f40c53 SS |
4668 | { |
4669 | struct vcpu_svm *svm = to_svm(vcpu); | |
18f40c53 | 4670 | u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR); |
18f40c53 | 4671 | |
98d90582 SS |
4672 | if (svm->dfr_reg == dfr) |
4673 | return; | |
18f40c53 | 4674 | |
98d90582 SS |
4675 | avic_invalidate_logical_id_entry(vcpu); |
4676 | svm->dfr_reg = dfr; | |
18f40c53 SS |
4677 | } |
4678 | ||
4679 | static int avic_unaccel_trap_write(struct vcpu_svm *svm) | |
4680 | { | |
4681 | struct kvm_lapic *apic = svm->vcpu.arch.apic; | |
4682 | u32 offset = svm->vmcb->control.exit_info_1 & | |
4683 | AVIC_UNACCEL_ACCESS_OFFSET_MASK; | |
4684 | ||
4685 | switch (offset) { | |
4686 | case APIC_ID: | |
4687 | if (avic_handle_apic_id_update(&svm->vcpu)) | |
4688 | return 0; | |
4689 | break; | |
4690 | case APIC_LDR: | |
4691 | if (avic_handle_ldr_update(&svm->vcpu)) | |
4692 | return 0; | |
4693 | break; | |
4694 | case APIC_DFR: | |
4695 | avic_handle_dfr_update(&svm->vcpu); | |
4696 | break; | |
4697 | default: | |
4698 | break; | |
4699 | } | |
4700 | ||
4701 | kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); | |
4702 | ||
4703 | return 1; | |
4704 | } | |
4705 | ||
4706 | static bool is_avic_unaccelerated_access_trap(u32 offset) | |
4707 | { | |
4708 | bool ret = false; | |
4709 | ||
4710 | switch (offset) { | |
4711 | case APIC_ID: | |
4712 | case APIC_EOI: | |
4713 | case APIC_RRR: | |
4714 | case APIC_LDR: | |
4715 | case APIC_DFR: | |
4716 | case APIC_SPIV: | |
4717 | case APIC_ESR: | |
4718 | case APIC_ICR: | |
4719 | case APIC_LVTT: | |
4720 | case APIC_LVTTHMR: | |
4721 | case APIC_LVTPC: | |
4722 | case APIC_LVT0: | |
4723 | case APIC_LVT1: | |
4724 | case APIC_LVTERR: | |
4725 | case APIC_TMICT: | |
4726 | case APIC_TDCR: | |
4727 | ret = true; | |
4728 | break; | |
4729 | default: | |
4730 | break; | |
4731 | } | |
4732 | return ret; | |
4733 | } | |
4734 | ||
4735 | static int avic_unaccelerated_access_interception(struct vcpu_svm *svm) | |
4736 | { | |
4737 | int ret = 0; | |
4738 | u32 offset = svm->vmcb->control.exit_info_1 & | |
4739 | AVIC_UNACCEL_ACCESS_OFFSET_MASK; | |
4740 | u32 vector = svm->vmcb->control.exit_info_2 & | |
4741 | AVIC_UNACCEL_ACCESS_VECTOR_MASK; | |
4742 | bool write = (svm->vmcb->control.exit_info_1 >> 32) & | |
4743 | AVIC_UNACCEL_ACCESS_WRITE_MASK; | |
4744 | bool trap = is_avic_unaccelerated_access_trap(offset); | |
4745 | ||
4746 | trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset, | |
4747 | trap, write, vector); | |
4748 | if (trap) { | |
4749 | /* Handling Trap */ | |
4750 | WARN_ONCE(!write, "svm: Handling trap read.\n"); | |
4751 | ret = avic_unaccel_trap_write(svm); | |
4752 | } else { | |
4753 | /* Handling Fault */ | |
0ce97a2b | 4754 | ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE); |
18f40c53 SS |
4755 | } |
4756 | ||
4757 | return ret; | |
4758 | } | |
4759 | ||
09941fbb | 4760 | static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { |
7ff76d58 AP |
4761 | [SVM_EXIT_READ_CR0] = cr_interception, |
4762 | [SVM_EXIT_READ_CR3] = cr_interception, | |
4763 | [SVM_EXIT_READ_CR4] = cr_interception, | |
4764 | [SVM_EXIT_READ_CR8] = cr_interception, | |
5e57518d | 4765 | [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, |
628afd2a | 4766 | [SVM_EXIT_WRITE_CR0] = cr_interception, |
7ff76d58 AP |
4767 | [SVM_EXIT_WRITE_CR3] = cr_interception, |
4768 | [SVM_EXIT_WRITE_CR4] = cr_interception, | |
e0231715 | 4769 | [SVM_EXIT_WRITE_CR8] = cr8_write_interception, |
cae3797a AP |
4770 | [SVM_EXIT_READ_DR0] = dr_interception, |
4771 | [SVM_EXIT_READ_DR1] = dr_interception, | |
4772 | [SVM_EXIT_READ_DR2] = dr_interception, | |
4773 | [SVM_EXIT_READ_DR3] = dr_interception, | |
4774 | [SVM_EXIT_READ_DR4] = dr_interception, | |
4775 | [SVM_EXIT_READ_DR5] = dr_interception, | |
4776 | [SVM_EXIT_READ_DR6] = dr_interception, | |
4777 | [SVM_EXIT_READ_DR7] = dr_interception, | |
4778 | [SVM_EXIT_WRITE_DR0] = dr_interception, | |
4779 | [SVM_EXIT_WRITE_DR1] = dr_interception, | |
4780 | [SVM_EXIT_WRITE_DR2] = dr_interception, | |
4781 | [SVM_EXIT_WRITE_DR3] = dr_interception, | |
4782 | [SVM_EXIT_WRITE_DR4] = dr_interception, | |
4783 | [SVM_EXIT_WRITE_DR5] = dr_interception, | |
4784 | [SVM_EXIT_WRITE_DR6] = dr_interception, | |
4785 | [SVM_EXIT_WRITE_DR7] = dr_interception, | |
d0bfb940 JK |
4786 | [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, |
4787 | [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, | |
7aa81cc0 | 4788 | [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, |
e0231715 | 4789 | [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, |
e0231715 | 4790 | [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, |
54a20552 | 4791 | [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, |
9718420e | 4792 | [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, |
e0231715 | 4793 | [SVM_EXIT_INTR] = intr_interception, |
c47f098d | 4794 | [SVM_EXIT_NMI] = nmi_interception, |
6aa8b732 AK |
4795 | [SVM_EXIT_SMI] = nop_on_interception, |
4796 | [SVM_EXIT_INIT] = nop_on_interception, | |
c1150d8c | 4797 | [SVM_EXIT_VINTR] = interrupt_window_interception, |
332b56e4 | 4798 | [SVM_EXIT_RDPMC] = rdpmc_interception, |
6aa8b732 | 4799 | [SVM_EXIT_CPUID] = cpuid_interception, |
95ba8273 | 4800 | [SVM_EXIT_IRET] = iret_interception, |
cf5a94d1 | 4801 | [SVM_EXIT_INVD] = emulate_on_interception, |
565d0998 | 4802 | [SVM_EXIT_PAUSE] = pause_interception, |
6aa8b732 | 4803 | [SVM_EXIT_HLT] = halt_interception, |
a7052897 | 4804 | [SVM_EXIT_INVLPG] = invlpg_interception, |
ff092385 | 4805 | [SVM_EXIT_INVLPGA] = invlpga_interception, |
e0231715 | 4806 | [SVM_EXIT_IOIO] = io_interception, |
6aa8b732 AK |
4807 | [SVM_EXIT_MSR] = msr_interception, |
4808 | [SVM_EXIT_TASK_SWITCH] = task_switch_interception, | |
46fe4ddd | 4809 | [SVM_EXIT_SHUTDOWN] = shutdown_interception, |
3d6368ef | 4810 | [SVM_EXIT_VMRUN] = vmrun_interception, |
02e235bc | 4811 | [SVM_EXIT_VMMCALL] = vmmcall_interception, |
5542675b AG |
4812 | [SVM_EXIT_VMLOAD] = vmload_interception, |
4813 | [SVM_EXIT_VMSAVE] = vmsave_interception, | |
1371d904 AG |
4814 | [SVM_EXIT_STGI] = stgi_interception, |
4815 | [SVM_EXIT_CLGI] = clgi_interception, | |
532a46b9 | 4816 | [SVM_EXIT_SKINIT] = skinit_interception, |
dab429a7 | 4817 | [SVM_EXIT_WBINVD] = wbinvd_interception, |
87c00572 GS |
4818 | [SVM_EXIT_MONITOR] = monitor_interception, |
4819 | [SVM_EXIT_MWAIT] = mwait_interception, | |
81dd35d4 | 4820 | [SVM_EXIT_XSETBV] = xsetbv_interception, |
d0006530 | 4821 | [SVM_EXIT_NPF] = npf_interception, |
7607b717 | 4822 | [SVM_EXIT_RSM] = rsm_interception, |
18f40c53 SS |
4823 | [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, |
4824 | [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, | |
6aa8b732 AK |
4825 | }; |
4826 | ||
ae8cc059 | 4827 | static void dump_vmcb(struct kvm_vcpu *vcpu) |
3f10c846 JR |
4828 | { |
4829 | struct vcpu_svm *svm = to_svm(vcpu); | |
4830 | struct vmcb_control_area *control = &svm->vmcb->control; | |
4831 | struct vmcb_save_area *save = &svm->vmcb->save; | |
4832 | ||
4833 | pr_err("VMCB Control Area:\n"); | |
ae8cc059 JP |
4834 | pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff); |
4835 | pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16); | |
4836 | pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff); | |
4837 | pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16); | |
4838 | pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions); | |
4839 | pr_err("%-20s%016llx\n", "intercepts:", control->intercept); | |
4840 | pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); | |
1d8fb44a BM |
4841 | pr_err("%-20s%d\n", "pause filter threshold:", |
4842 | control->pause_filter_thresh); | |
ae8cc059 JP |
4843 | pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); |
4844 | pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); | |
4845 | pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); | |
4846 | pr_err("%-20s%d\n", "asid:", control->asid); | |
4847 | pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); | |
4848 | pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); | |
4849 | pr_err("%-20s%08x\n", "int_vector:", control->int_vector); | |
4850 | pr_err("%-20s%08x\n", "int_state:", control->int_state); | |
4851 | pr_err("%-20s%08x\n", "exit_code:", control->exit_code); | |
4852 | pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); | |
4853 | pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); | |
4854 | pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); | |
4855 | pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); | |
4856 | pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); | |
4857 | pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); | |
44a95dae | 4858 | pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); |
ae8cc059 JP |
4859 | pr_err("%-20s%08x\n", "event_inj:", control->event_inj); |
4860 | pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); | |
0dc92119 | 4861 | pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); |
ae8cc059 | 4862 | pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); |
44a95dae SS |
4863 | pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); |
4864 | pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); | |
4865 | pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); | |
3f10c846 | 4866 | pr_err("VMCB State Save Area:\n"); |
ae8cc059 JP |
4867 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
4868 | "es:", | |
4869 | save->es.selector, save->es.attrib, | |
4870 | save->es.limit, save->es.base); | |
4871 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | |
4872 | "cs:", | |
4873 | save->cs.selector, save->cs.attrib, | |
4874 | save->cs.limit, save->cs.base); | |
4875 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | |
4876 | "ss:", | |
4877 | save->ss.selector, save->ss.attrib, | |
4878 | save->ss.limit, save->ss.base); | |
4879 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | |
4880 | "ds:", | |
4881 | save->ds.selector, save->ds.attrib, | |
4882 | save->ds.limit, save->ds.base); | |
4883 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | |
4884 | "fs:", | |
4885 | save->fs.selector, save->fs.attrib, | |
4886 | save->fs.limit, save->fs.base); | |
4887 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | |
4888 | "gs:", | |
4889 | save->gs.selector, save->gs.attrib, | |
4890 | save->gs.limit, save->gs.base); | |
4891 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | |
4892 | "gdtr:", | |
4893 | save->gdtr.selector, save->gdtr.attrib, | |
4894 | save->gdtr.limit, save->gdtr.base); | |
4895 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | |
4896 | "ldtr:", | |
4897 | save->ldtr.selector, save->ldtr.attrib, | |
4898 | save->ldtr.limit, save->ldtr.base); | |
4899 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | |
4900 | "idtr:", | |
4901 | save->idtr.selector, save->idtr.attrib, | |
4902 | save->idtr.limit, save->idtr.base); | |
4903 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | |
4904 | "tr:", | |
4905 | save->tr.selector, save->tr.attrib, | |
4906 | save->tr.limit, save->tr.base); | |
3f10c846 JR |
4907 | pr_err("cpl: %d efer: %016llx\n", |
4908 | save->cpl, save->efer); | |
ae8cc059 JP |
4909 | pr_err("%-15s %016llx %-13s %016llx\n", |
4910 | "cr0:", save->cr0, "cr2:", save->cr2); | |
4911 | pr_err("%-15s %016llx %-13s %016llx\n", | |
4912 | "cr3:", save->cr3, "cr4:", save->cr4); | |
4913 | pr_err("%-15s %016llx %-13s %016llx\n", | |
4914 | "dr6:", save->dr6, "dr7:", save->dr7); | |
4915 | pr_err("%-15s %016llx %-13s %016llx\n", | |
4916 | "rip:", save->rip, "rflags:", save->rflags); | |
4917 | pr_err("%-15s %016llx %-13s %016llx\n", | |
4918 | "rsp:", save->rsp, "rax:", save->rax); | |
4919 | pr_err("%-15s %016llx %-13s %016llx\n", | |
4920 | "star:", save->star, "lstar:", save->lstar); | |
4921 | pr_err("%-15s %016llx %-13s %016llx\n", | |
4922 | "cstar:", save->cstar, "sfmask:", save->sfmask); | |
4923 | pr_err("%-15s %016llx %-13s %016llx\n", | |
4924 | "kernel_gs_base:", save->kernel_gs_base, | |
4925 | "sysenter_cs:", save->sysenter_cs); | |
4926 | pr_err("%-15s %016llx %-13s %016llx\n", | |
4927 | "sysenter_esp:", save->sysenter_esp, | |
4928 | "sysenter_eip:", save->sysenter_eip); | |
4929 | pr_err("%-15s %016llx %-13s %016llx\n", | |
4930 | "gpat:", save->g_pat, "dbgctl:", save->dbgctl); | |
4931 | pr_err("%-15s %016llx %-13s %016llx\n", | |
4932 | "br_from:", save->br_from, "br_to:", save->br_to); | |
4933 | pr_err("%-15s %016llx %-13s %016llx\n", | |
4934 | "excp_from:", save->last_excp_from, | |
4935 | "excp_to:", save->last_excp_to); | |
3f10c846 JR |
4936 | } |
4937 | ||
586f9607 AK |
4938 | static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) |
4939 | { | |
4940 | struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; | |
4941 | ||
4942 | *info1 = control->exit_info_1; | |
4943 | *info2 = control->exit_info_2; | |
4944 | } | |
4945 | ||
851ba692 | 4946 | static int handle_exit(struct kvm_vcpu *vcpu) |
6aa8b732 | 4947 | { |
04d2cc77 | 4948 | struct vcpu_svm *svm = to_svm(vcpu); |
851ba692 | 4949 | struct kvm_run *kvm_run = vcpu->run; |
a2fa3e9f | 4950 | u32 exit_code = svm->vmcb->control.exit_code; |
6aa8b732 | 4951 | |
8b89fe1f PB |
4952 | trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); |
4953 | ||
4ee546b4 | 4954 | if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE)) |
2be4fc7a JR |
4955 | vcpu->arch.cr0 = svm->vmcb->save.cr0; |
4956 | if (npt_enabled) | |
4957 | vcpu->arch.cr3 = svm->vmcb->save.cr3; | |
af9ca2d7 | 4958 | |
cd3ff653 JR |
4959 | if (unlikely(svm->nested.exit_required)) { |
4960 | nested_svm_vmexit(svm); | |
4961 | svm->nested.exit_required = false; | |
4962 | ||
4963 | return 1; | |
4964 | } | |
4965 | ||
2030753d | 4966 | if (is_guest_mode(vcpu)) { |
410e4d57 JR |
4967 | int vmexit; |
4968 | ||
d8cabddf JR |
4969 | trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code, |
4970 | svm->vmcb->control.exit_info_1, | |
4971 | svm->vmcb->control.exit_info_2, | |
4972 | svm->vmcb->control.exit_int_info, | |
e097e5ff SH |
4973 | svm->vmcb->control.exit_int_info_err, |
4974 | KVM_ISA_SVM); | |
d8cabddf | 4975 | |
410e4d57 JR |
4976 | vmexit = nested_svm_exit_special(svm); |
4977 | ||
4978 | if (vmexit == NESTED_EXIT_CONTINUE) | |
4979 | vmexit = nested_svm_exit_handled(svm); | |
4980 | ||
4981 | if (vmexit == NESTED_EXIT_DONE) | |
cf74a78b | 4982 | return 1; |
cf74a78b AG |
4983 | } |
4984 | ||
a5c3832d JR |
4985 | svm_complete_interrupts(svm); |
4986 | ||
04d2cc77 AK |
4987 | if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { |
4988 | kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; | |
4989 | kvm_run->fail_entry.hardware_entry_failure_reason | |
4990 | = svm->vmcb->control.exit_code; | |
3f10c846 JR |
4991 | pr_err("KVM: FAILED VMRUN WITH VMCB:\n"); |
4992 | dump_vmcb(vcpu); | |
04d2cc77 AK |
4993 | return 0; |
4994 | } | |
4995 | ||
a2fa3e9f | 4996 | if (is_external_interrupt(svm->vmcb->control.exit_int_info) && |
709ddebf | 4997 | exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && |
55c5e464 JR |
4998 | exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && |
4999 | exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) | |
6614c7d0 | 5000 | printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " |
6aa8b732 | 5001 | "exit_code 0x%x\n", |
b8688d51 | 5002 | __func__, svm->vmcb->control.exit_int_info, |
6aa8b732 AK |
5003 | exit_code); |
5004 | ||
9d8f549d | 5005 | if (exit_code >= ARRAY_SIZE(svm_exit_handlers) |
56919c5c | 5006 | || !svm_exit_handlers[exit_code]) { |
faac2458 | 5007 | WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code); |
2bc19dc3 MT |
5008 | kvm_queue_exception(vcpu, UD_VECTOR); |
5009 | return 1; | |
6aa8b732 AK |
5010 | } |
5011 | ||
851ba692 | 5012 | return svm_exit_handlers[exit_code](svm); |
6aa8b732 AK |
5013 | } |
5014 | ||
5015 | static void reload_tss(struct kvm_vcpu *vcpu) | |
5016 | { | |
5017 | int cpu = raw_smp_processor_id(); | |
5018 | ||
0fe1e009 TH |
5019 | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); |
5020 | sd->tss_desc->type = 9; /* available 32/64-bit TSS */ | |
6aa8b732 AK |
5021 | load_TR_desc(); |
5022 | } | |
5023 | ||
70cd94e6 BS |
5024 | static void pre_sev_run(struct vcpu_svm *svm, int cpu) |
5025 | { | |
5026 | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | |
5027 | int asid = sev_get_asid(svm->vcpu.kvm); | |
5028 | ||
5029 | /* Assign the asid allocated with this SEV guest */ | |
5030 | svm->vmcb->control.asid = asid; | |
5031 | ||
5032 | /* | |
5033 | * Flush guest TLB: | |
5034 | * | |
5035 | * 1) when different VMCB for the same ASID is to be run on the same host CPU. | |
5036 | * 2) or this VMCB was executed on different host CPU in previous VMRUNs. | |
5037 | */ | |
5038 | if (sd->sev_vmcbs[asid] == svm->vmcb && | |
5039 | svm->last_cpu == cpu) | |
5040 | return; | |
5041 | ||
5042 | svm->last_cpu = cpu; | |
5043 | sd->sev_vmcbs[asid] = svm->vmcb; | |
5044 | svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; | |
5045 | mark_dirty(svm->vmcb, VMCB_ASID); | |
5046 | } | |
5047 | ||
e756fc62 | 5048 | static void pre_svm_run(struct vcpu_svm *svm) |
6aa8b732 AK |
5049 | { |
5050 | int cpu = raw_smp_processor_id(); | |
5051 | ||
0fe1e009 | 5052 | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); |
6aa8b732 | 5053 | |
70cd94e6 BS |
5054 | if (sev_guest(svm->vcpu.kvm)) |
5055 | return pre_sev_run(svm, cpu); | |
5056 | ||
4b656b12 | 5057 | /* FIXME: handle wraparound of asid_generation */ |
0fe1e009 TH |
5058 | if (svm->asid_generation != sd->asid_generation) |
5059 | new_asid(svm, sd); | |
6aa8b732 AK |
5060 | } |
5061 | ||
95ba8273 GN |
5062 | static void svm_inject_nmi(struct kvm_vcpu *vcpu) |
5063 | { | |
5064 | struct vcpu_svm *svm = to_svm(vcpu); | |
5065 | ||
5066 | svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; | |
5067 | vcpu->arch.hflags |= HF_NMI_MASK; | |
8a05a1b8 | 5068 | set_intercept(svm, INTERCEPT_IRET); |
95ba8273 GN |
5069 | ++vcpu->stat.nmi_injections; |
5070 | } | |
6aa8b732 | 5071 | |
85f455f7 | 5072 | static inline void svm_inject_irq(struct vcpu_svm *svm, int irq) |
6aa8b732 AK |
5073 | { |
5074 | struct vmcb_control_area *control; | |
5075 | ||
340d3bc3 | 5076 | /* The following fields are ignored when AVIC is enabled */ |
e756fc62 | 5077 | control = &svm->vmcb->control; |
85f455f7 | 5078 | control->int_vector = irq; |
6aa8b732 AK |
5079 | control->int_ctl &= ~V_INTR_PRIO_MASK; |
5080 | control->int_ctl |= V_IRQ_MASK | | |
5081 | ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); | |
decdbf6a | 5082 | mark_dirty(svm->vmcb, VMCB_INTR); |
6aa8b732 AK |
5083 | } |
5084 | ||
66fd3f7f | 5085 | static void svm_set_irq(struct kvm_vcpu *vcpu) |
2a8067f1 ED |
5086 | { |
5087 | struct vcpu_svm *svm = to_svm(vcpu); | |
5088 | ||
2af9194d | 5089 | BUG_ON(!(gif_set(svm))); |
cf74a78b | 5090 | |
9fb2d2b4 GN |
5091 | trace_kvm_inj_virq(vcpu->arch.interrupt.nr); |
5092 | ++vcpu->stat.irq_injections; | |
5093 | ||
219b65dc AG |
5094 | svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | |
5095 | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; | |
2a8067f1 ED |
5096 | } |
5097 | ||
3bbf3565 SS |
5098 | static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu) |
5099 | { | |
5100 | return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK); | |
5101 | } | |
5102 | ||
95ba8273 | 5103 | static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) |
aaacfc9a JR |
5104 | { |
5105 | struct vcpu_svm *svm = to_svm(vcpu); | |
aaacfc9a | 5106 | |
3bbf3565 SS |
5107 | if (svm_nested_virtualize_tpr(vcpu) || |
5108 | kvm_vcpu_apicv_active(vcpu)) | |
88ab24ad JR |
5109 | return; |
5110 | ||
596f3142 RK |
5111 | clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); |
5112 | ||
95ba8273 | 5113 | if (irr == -1) |
aaacfc9a JR |
5114 | return; |
5115 | ||
95ba8273 | 5116 | if (tpr >= irr) |
4ee546b4 | 5117 | set_cr_intercept(svm, INTERCEPT_CR8_WRITE); |
95ba8273 | 5118 | } |
aaacfc9a | 5119 | |
8d860bbe | 5120 | static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu) |
8d14695f YZ |
5121 | { |
5122 | return; | |
5123 | } | |
5124 | ||
b2a05fef | 5125 | static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu) |
d62caabb | 5126 | { |
67034bb9 | 5127 | return avic && irqchip_split(vcpu->kvm); |
44a95dae SS |
5128 | } |
5129 | ||
5130 | static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) | |
5131 | { | |
d62caabb AS |
5132 | } |
5133 | ||
67c9dddc | 5134 | static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) |
44a95dae | 5135 | { |
d62caabb AS |
5136 | } |
5137 | ||
44a95dae | 5138 | /* Note: Currently only used by Hyper-V. */ |
d62caabb | 5139 | static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) |
c7c9c56c | 5140 | { |
44a95dae SS |
5141 | struct vcpu_svm *svm = to_svm(vcpu); |
5142 | struct vmcb *vmcb = svm->vmcb; | |
5143 | ||
c57cd3c8 SS |
5144 | if (kvm_vcpu_apicv_active(vcpu)) |
5145 | vmcb->control.int_ctl |= AVIC_ENABLE_MASK; | |
5146 | else | |
5147 | vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK; | |
5148 | mark_dirty(vmcb, VMCB_AVIC); | |
c7c9c56c YZ |
5149 | } |
5150 | ||
6308630b | 5151 | static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) |
c7c9c56c YZ |
5152 | { |
5153 | return; | |
5154 | } | |
5155 | ||
340d3bc3 SS |
5156 | static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec) |
5157 | { | |
5158 | kvm_lapic_set_irr(vec, vcpu->arch.apic); | |
5159 | smp_mb__after_atomic(); | |
5160 | ||
5161 | if (avic_vcpu_is_running(vcpu)) | |
5162 | wrmsrl(SVM_AVIC_DOORBELL, | |
7d669f50 | 5163 | kvm_cpu_get_apicid(vcpu->cpu)); |
340d3bc3 SS |
5164 | else |
5165 | kvm_vcpu_wake_up(vcpu); | |
5166 | } | |
5167 | ||
411b44ba SS |
5168 | static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) |
5169 | { | |
5170 | unsigned long flags; | |
5171 | struct amd_svm_iommu_ir *cur; | |
5172 | ||
5173 | spin_lock_irqsave(&svm->ir_list_lock, flags); | |
5174 | list_for_each_entry(cur, &svm->ir_list, node) { | |
5175 | if (cur->data != pi->ir_data) | |
5176 | continue; | |
5177 | list_del(&cur->node); | |
5178 | kfree(cur); | |
5179 | break; | |
5180 | } | |
5181 | spin_unlock_irqrestore(&svm->ir_list_lock, flags); | |
5182 | } | |
5183 | ||
5184 | static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) | |
5185 | { | |
5186 | int ret = 0; | |
5187 | unsigned long flags; | |
5188 | struct amd_svm_iommu_ir *ir; | |
5189 | ||
5190 | /** | |
5191 | * In some cases, the existing irte is updaed and re-set, | |
5192 | * so we need to check here if it's already been * added | |
5193 | * to the ir_list. | |
5194 | */ | |
5195 | if (pi->ir_data && (pi->prev_ga_tag != 0)) { | |
5196 | struct kvm *kvm = svm->vcpu.kvm; | |
5197 | u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag); | |
5198 | struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); | |
5199 | struct vcpu_svm *prev_svm; | |
5200 | ||
5201 | if (!prev_vcpu) { | |
5202 | ret = -EINVAL; | |
5203 | goto out; | |
5204 | } | |
5205 | ||
5206 | prev_svm = to_svm(prev_vcpu); | |
5207 | svm_ir_list_del(prev_svm, pi); | |
5208 | } | |
5209 | ||
5210 | /** | |
5211 | * Allocating new amd_iommu_pi_data, which will get | |
5212 | * add to the per-vcpu ir_list. | |
5213 | */ | |
1ec69647 | 5214 | ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT); |
411b44ba SS |
5215 | if (!ir) { |
5216 | ret = -ENOMEM; | |
5217 | goto out; | |
5218 | } | |
5219 | ir->data = pi->ir_data; | |
5220 | ||
5221 | spin_lock_irqsave(&svm->ir_list_lock, flags); | |
5222 | list_add(&ir->node, &svm->ir_list); | |
5223 | spin_unlock_irqrestore(&svm->ir_list_lock, flags); | |
5224 | out: | |
5225 | return ret; | |
5226 | } | |
5227 | ||
5228 | /** | |
5229 | * Note: | |
5230 | * The HW cannot support posting multicast/broadcast | |
5231 | * interrupts to a vCPU. So, we still use legacy interrupt | |
5232 | * remapping for these kind of interrupts. | |
5233 | * | |
5234 | * For lowest-priority interrupts, we only support | |
5235 | * those with single CPU as the destination, e.g. user | |
5236 | * configures the interrupts via /proc/irq or uses | |
5237 | * irqbalance to make the interrupts single-CPU. | |
5238 | */ | |
5239 | static int | |
5240 | get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, | |
5241 | struct vcpu_data *vcpu_info, struct vcpu_svm **svm) | |
5242 | { | |
5243 | struct kvm_lapic_irq irq; | |
5244 | struct kvm_vcpu *vcpu = NULL; | |
5245 | ||
5246 | kvm_set_msi_irq(kvm, e, &irq); | |
5247 | ||
5248 | if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { | |
5249 | pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n", | |
5250 | __func__, irq.vector); | |
5251 | return -1; | |
5252 | } | |
5253 | ||
5254 | pr_debug("SVM: %s: use GA mode for irq %u\n", __func__, | |
5255 | irq.vector); | |
5256 | *svm = to_svm(vcpu); | |
d0ec49d4 | 5257 | vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page)); |
411b44ba SS |
5258 | vcpu_info->vector = irq.vector; |
5259 | ||
5260 | return 0; | |
5261 | } | |
5262 | ||
5263 | /* | |
5264 | * svm_update_pi_irte - set IRTE for Posted-Interrupts | |
5265 | * | |
5266 | * @kvm: kvm | |
5267 | * @host_irq: host irq of the interrupt | |
5268 | * @guest_irq: gsi of the interrupt | |
5269 | * @set: set or unset PI | |
5270 | * returns 0 on success, < 0 on failure | |
5271 | */ | |
5272 | static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq, | |
5273 | uint32_t guest_irq, bool set) | |
5274 | { | |
5275 | struct kvm_kernel_irq_routing_entry *e; | |
5276 | struct kvm_irq_routing_table *irq_rt; | |
5277 | int idx, ret = -EINVAL; | |
5278 | ||
5279 | if (!kvm_arch_has_assigned_device(kvm) || | |
5280 | !irq_remapping_cap(IRQ_POSTING_CAP)) | |
5281 | return 0; | |
5282 | ||
5283 | pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n", | |
5284 | __func__, host_irq, guest_irq, set); | |
5285 | ||
5286 | idx = srcu_read_lock(&kvm->irq_srcu); | |
5287 | irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); | |
5288 | WARN_ON(guest_irq >= irq_rt->nr_rt_entries); | |
5289 | ||
5290 | hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { | |
5291 | struct vcpu_data vcpu_info; | |
5292 | struct vcpu_svm *svm = NULL; | |
5293 | ||
5294 | if (e->type != KVM_IRQ_ROUTING_MSI) | |
5295 | continue; | |
5296 | ||
5297 | /** | |
5298 | * Here, we setup with legacy mode in the following cases: | |
5299 | * 1. When cannot target interrupt to a specific vcpu. | |
5300 | * 2. Unsetting posted interrupt. | |
5301 | * 3. APIC virtialization is disabled for the vcpu. | |
5302 | */ | |
5303 | if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set && | |
5304 | kvm_vcpu_apicv_active(&svm->vcpu)) { | |
5305 | struct amd_iommu_pi_data pi; | |
5306 | ||
5307 | /* Try to enable guest_mode in IRTE */ | |
d0ec49d4 TL |
5308 | pi.base = __sme_set(page_to_phys(svm->avic_backing_page) & |
5309 | AVIC_HPA_MASK); | |
81811c16 | 5310 | pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id, |
411b44ba SS |
5311 | svm->vcpu.vcpu_id); |
5312 | pi.is_guest_mode = true; | |
5313 | pi.vcpu_data = &vcpu_info; | |
5314 | ret = irq_set_vcpu_affinity(host_irq, &pi); | |
5315 | ||
5316 | /** | |
5317 | * Here, we successfully setting up vcpu affinity in | |
5318 | * IOMMU guest mode. Now, we need to store the posted | |
5319 | * interrupt information in a per-vcpu ir_list so that | |
5320 | * we can reference to them directly when we update vcpu | |
5321 | * scheduling information in IOMMU irte. | |
5322 | */ | |
5323 | if (!ret && pi.is_guest_mode) | |
5324 | svm_ir_list_add(svm, &pi); | |
5325 | } else { | |
5326 | /* Use legacy mode in IRTE */ | |
5327 | struct amd_iommu_pi_data pi; | |
5328 | ||
5329 | /** | |
5330 | * Here, pi is used to: | |
5331 | * - Tell IOMMU to use legacy mode for this interrupt. | |
5332 | * - Retrieve ga_tag of prior interrupt remapping data. | |
5333 | */ | |
5334 | pi.is_guest_mode = false; | |
5335 | ret = irq_set_vcpu_affinity(host_irq, &pi); | |
5336 | ||
5337 | /** | |
5338 | * Check if the posted interrupt was previously | |
5339 | * setup with the guest_mode by checking if the ga_tag | |
5340 | * was cached. If so, we need to clean up the per-vcpu | |
5341 | * ir_list. | |
5342 | */ | |
5343 | if (!ret && pi.prev_ga_tag) { | |
5344 | int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag); | |
5345 | struct kvm_vcpu *vcpu; | |
5346 | ||
5347 | vcpu = kvm_get_vcpu_by_id(kvm, id); | |
5348 | if (vcpu) | |
5349 | svm_ir_list_del(to_svm(vcpu), &pi); | |
5350 | } | |
5351 | } | |
5352 | ||
5353 | if (!ret && svm) { | |
2698d82e | 5354 | trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id, |
5355 | e->gsi, vcpu_info.vector, | |
411b44ba SS |
5356 | vcpu_info.pi_desc_addr, set); |
5357 | } | |
5358 | ||
5359 | if (ret < 0) { | |
5360 | pr_err("%s: failed to update PI IRTE\n", __func__); | |
5361 | goto out; | |
5362 | } | |
5363 | } | |
5364 | ||
5365 | ret = 0; | |
5366 | out: | |
5367 | srcu_read_unlock(&kvm->irq_srcu, idx); | |
5368 | return ret; | |
5369 | } | |
5370 | ||
95ba8273 GN |
5371 | static int svm_nmi_allowed(struct kvm_vcpu *vcpu) |
5372 | { | |
5373 | struct vcpu_svm *svm = to_svm(vcpu); | |
5374 | struct vmcb *vmcb = svm->vmcb; | |
924584cc JR |
5375 | int ret; |
5376 | ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) && | |
5377 | !(svm->vcpu.arch.hflags & HF_NMI_MASK); | |
5378 | ret = ret && gif_set(svm) && nested_svm_nmi(svm); | |
5379 | ||
5380 | return ret; | |
aaacfc9a JR |
5381 | } |
5382 | ||
3cfc3092 JK |
5383 | static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) |
5384 | { | |
5385 | struct vcpu_svm *svm = to_svm(vcpu); | |
5386 | ||
5387 | return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); | |
5388 | } | |
5389 | ||
5390 | static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) | |
5391 | { | |
5392 | struct vcpu_svm *svm = to_svm(vcpu); | |
5393 | ||
5394 | if (masked) { | |
5395 | svm->vcpu.arch.hflags |= HF_NMI_MASK; | |
8a05a1b8 | 5396 | set_intercept(svm, INTERCEPT_IRET); |
3cfc3092 JK |
5397 | } else { |
5398 | svm->vcpu.arch.hflags &= ~HF_NMI_MASK; | |
8a05a1b8 | 5399 | clr_intercept(svm, INTERCEPT_IRET); |
3cfc3092 JK |
5400 | } |
5401 | } | |
5402 | ||
78646121 GN |
5403 | static int svm_interrupt_allowed(struct kvm_vcpu *vcpu) |
5404 | { | |
5405 | struct vcpu_svm *svm = to_svm(vcpu); | |
5406 | struct vmcb *vmcb = svm->vmcb; | |
7fcdb510 JR |
5407 | int ret; |
5408 | ||
5409 | if (!gif_set(svm) || | |
5410 | (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)) | |
5411 | return 0; | |
5412 | ||
f6e78475 | 5413 | ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF); |
7fcdb510 | 5414 | |
2030753d | 5415 | if (is_guest_mode(vcpu)) |
7fcdb510 JR |
5416 | return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK); |
5417 | ||
5418 | return ret; | |
78646121 GN |
5419 | } |
5420 | ||
c9a7953f | 5421 | static void enable_irq_window(struct kvm_vcpu *vcpu) |
6aa8b732 | 5422 | { |
219b65dc | 5423 | struct vcpu_svm *svm = to_svm(vcpu); |
219b65dc | 5424 | |
340d3bc3 SS |
5425 | if (kvm_vcpu_apicv_active(vcpu)) |
5426 | return; | |
5427 | ||
e0231715 JR |
5428 | /* |
5429 | * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes | |
5430 | * 1, because that's a separate STGI/VMRUN intercept. The next time we | |
5431 | * get that intercept, this function will be called again though and | |
640bd6e5 JN |
5432 | * we'll get the vintr intercept. However, if the vGIF feature is |
5433 | * enabled, the STGI interception will not occur. Enable the irq | |
5434 | * window under the assumption that the hardware will set the GIF. | |
e0231715 | 5435 | */ |
640bd6e5 | 5436 | if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) { |
219b65dc AG |
5437 | svm_set_vintr(svm); |
5438 | svm_inject_irq(svm, 0x0); | |
5439 | } | |
85f455f7 ED |
5440 | } |
5441 | ||
c9a7953f | 5442 | static void enable_nmi_window(struct kvm_vcpu *vcpu) |
c1150d8c | 5443 | { |
04d2cc77 | 5444 | struct vcpu_svm *svm = to_svm(vcpu); |
c1150d8c | 5445 | |
44c11430 GN |
5446 | if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) |
5447 | == HF_NMI_MASK) | |
c9a7953f | 5448 | return; /* IRET will cause a vm exit */ |
44c11430 | 5449 | |
640bd6e5 JN |
5450 | if (!gif_set(svm)) { |
5451 | if (vgif_enabled(svm)) | |
5452 | set_intercept(svm, INTERCEPT_STGI); | |
1a5e1852 | 5453 | return; /* STGI will cause a vm exit */ |
640bd6e5 | 5454 | } |
1a5e1852 LP |
5455 | |
5456 | if (svm->nested.exit_required) | |
5457 | return; /* we're not going to run the guest yet */ | |
5458 | ||
e0231715 JR |
5459 | /* |
5460 | * Something prevents NMI from been injected. Single step over possible | |
5461 | * problem (IRET or exception injection or interrupt shadow) | |
5462 | */ | |
ab2f4d73 | 5463 | svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); |
6be7d306 | 5464 | svm->nmi_singlestep = true; |
44c11430 | 5465 | svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); |
c1150d8c DL |
5466 | } |
5467 | ||
cbc94022 IE |
5468 | static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) |
5469 | { | |
5470 | return 0; | |
5471 | } | |
5472 | ||
2ac52ab8 SC |
5473 | static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) |
5474 | { | |
5475 | return 0; | |
5476 | } | |
5477 | ||
c2ba05cc | 5478 | static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) |
d9e368d6 | 5479 | { |
38e5e92f JR |
5480 | struct vcpu_svm *svm = to_svm(vcpu); |
5481 | ||
5482 | if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) | |
5483 | svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; | |
5484 | else | |
5485 | svm->asid_generation--; | |
d9e368d6 AK |
5486 | } |
5487 | ||
faff8758 JS |
5488 | static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) |
5489 | { | |
5490 | struct vcpu_svm *svm = to_svm(vcpu); | |
5491 | ||
5492 | invlpga(gva, svm->vmcb->control.asid); | |
5493 | } | |
5494 | ||
04d2cc77 AK |
5495 | static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) |
5496 | { | |
5497 | } | |
5498 | ||
d7bf8221 JR |
5499 | static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) |
5500 | { | |
5501 | struct vcpu_svm *svm = to_svm(vcpu); | |
5502 | ||
3bbf3565 | 5503 | if (svm_nested_virtualize_tpr(vcpu)) |
88ab24ad JR |
5504 | return; |
5505 | ||
4ee546b4 | 5506 | if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) { |
d7bf8221 | 5507 | int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; |
615d5193 | 5508 | kvm_set_cr8(vcpu, cr8); |
d7bf8221 JR |
5509 | } |
5510 | } | |
5511 | ||
649d6864 JR |
5512 | static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) |
5513 | { | |
5514 | struct vcpu_svm *svm = to_svm(vcpu); | |
5515 | u64 cr8; | |
5516 | ||
3bbf3565 SS |
5517 | if (svm_nested_virtualize_tpr(vcpu) || |
5518 | kvm_vcpu_apicv_active(vcpu)) | |
88ab24ad JR |
5519 | return; |
5520 | ||
649d6864 JR |
5521 | cr8 = kvm_get_cr8(vcpu); |
5522 | svm->vmcb->control.int_ctl &= ~V_TPR_MASK; | |
5523 | svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; | |
5524 | } | |
5525 | ||
9222be18 GN |
5526 | static void svm_complete_interrupts(struct vcpu_svm *svm) |
5527 | { | |
5528 | u8 vector; | |
5529 | int type; | |
5530 | u32 exitintinfo = svm->vmcb->control.exit_int_info; | |
66b7138f JK |
5531 | unsigned int3_injected = svm->int3_injected; |
5532 | ||
5533 | svm->int3_injected = 0; | |
9222be18 | 5534 | |
bd3d1ec3 AK |
5535 | /* |
5536 | * If we've made progress since setting HF_IRET_MASK, we've | |
5537 | * executed an IRET and can allow NMI injection. | |
5538 | */ | |
5539 | if ((svm->vcpu.arch.hflags & HF_IRET_MASK) | |
5540 | && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) { | |
44c11430 | 5541 | svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); |
3842d135 AK |
5542 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
5543 | } | |
44c11430 | 5544 | |
9222be18 GN |
5545 | svm->vcpu.arch.nmi_injected = false; |
5546 | kvm_clear_exception_queue(&svm->vcpu); | |
5547 | kvm_clear_interrupt_queue(&svm->vcpu); | |
5548 | ||
5549 | if (!(exitintinfo & SVM_EXITINTINFO_VALID)) | |
5550 | return; | |
5551 | ||
3842d135 AK |
5552 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
5553 | ||
9222be18 GN |
5554 | vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; |
5555 | type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; | |
5556 | ||
5557 | switch (type) { | |
5558 | case SVM_EXITINTINFO_TYPE_NMI: | |
5559 | svm->vcpu.arch.nmi_injected = true; | |
5560 | break; | |
5561 | case SVM_EXITINTINFO_TYPE_EXEPT: | |
66b7138f JK |
5562 | /* |
5563 | * In case of software exceptions, do not reinject the vector, | |
5564 | * but re-execute the instruction instead. Rewind RIP first | |
5565 | * if we emulated INT3 before. | |
5566 | */ | |
5567 | if (kvm_exception_is_soft(vector)) { | |
5568 | if (vector == BP_VECTOR && int3_injected && | |
5569 | kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) | |
5570 | kvm_rip_write(&svm->vcpu, | |
5571 | kvm_rip_read(&svm->vcpu) - | |
5572 | int3_injected); | |
9222be18 | 5573 | break; |
66b7138f | 5574 | } |
9222be18 GN |
5575 | if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { |
5576 | u32 err = svm->vmcb->control.exit_int_info_err; | |
ce7ddec4 | 5577 | kvm_requeue_exception_e(&svm->vcpu, vector, err); |
9222be18 GN |
5578 | |
5579 | } else | |
ce7ddec4 | 5580 | kvm_requeue_exception(&svm->vcpu, vector); |
9222be18 GN |
5581 | break; |
5582 | case SVM_EXITINTINFO_TYPE_INTR: | |
66fd3f7f | 5583 | kvm_queue_interrupt(&svm->vcpu, vector, false); |
9222be18 GN |
5584 | break; |
5585 | default: | |
5586 | break; | |
5587 | } | |
5588 | } | |
5589 | ||
b463a6f7 AK |
5590 | static void svm_cancel_injection(struct kvm_vcpu *vcpu) |
5591 | { | |
5592 | struct vcpu_svm *svm = to_svm(vcpu); | |
5593 | struct vmcb_control_area *control = &svm->vmcb->control; | |
5594 | ||
5595 | control->exit_int_info = control->event_inj; | |
5596 | control->exit_int_info_err = control->event_inj_err; | |
5597 | control->event_inj = 0; | |
5598 | svm_complete_interrupts(svm); | |
5599 | } | |
5600 | ||
851ba692 | 5601 | static void svm_vcpu_run(struct kvm_vcpu *vcpu) |
6aa8b732 | 5602 | { |
a2fa3e9f | 5603 | struct vcpu_svm *svm = to_svm(vcpu); |
d9e368d6 | 5604 | |
2041a06a JR |
5605 | svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; |
5606 | svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; | |
5607 | svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; | |
5608 | ||
cd3ff653 JR |
5609 | /* |
5610 | * A vmexit emulation is required before the vcpu can be executed | |
5611 | * again. | |
5612 | */ | |
5613 | if (unlikely(svm->nested.exit_required)) | |
5614 | return; | |
5615 | ||
a12713c2 LP |
5616 | /* |
5617 | * Disable singlestep if we're injecting an interrupt/exception. | |
5618 | * We don't want our modified rflags to be pushed on the stack where | |
5619 | * we might not be able to easily reset them if we disabled NMI | |
5620 | * singlestep later. | |
5621 | */ | |
5622 | if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { | |
5623 | /* | |
5624 | * Event injection happens before external interrupts cause a | |
5625 | * vmexit and interrupts are disabled here, so smp_send_reschedule | |
5626 | * is enough to force an immediate vmexit. | |
5627 | */ | |
5628 | disable_nmi_singlestep(svm); | |
5629 | smp_send_reschedule(vcpu->cpu); | |
5630 | } | |
5631 | ||
e756fc62 | 5632 | pre_svm_run(svm); |
6aa8b732 | 5633 | |
649d6864 JR |
5634 | sync_lapic_to_cr8(vcpu); |
5635 | ||
cda0ffdd | 5636 | svm->vmcb->save.cr2 = vcpu->arch.cr2; |
6aa8b732 | 5637 | |
04d2cc77 | 5638 | clgi(); |
1811d979 | 5639 | kvm_load_guest_xcr0(vcpu); |
04d2cc77 | 5640 | |
b2ac58f9 KA |
5641 | /* |
5642 | * If this vCPU has touched SPEC_CTRL, restore the guest's value if | |
5643 | * it's non-zero. Since vmentry is serialising on affected CPUs, there | |
5644 | * is no need to worry about the conditional branch over the wrmsr | |
5645 | * being speculatively taken. | |
5646 | */ | |
ccbcd267 | 5647 | x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); |
b2ac58f9 | 5648 | |
024d83ca TG |
5649 | local_irq_enable(); |
5650 | ||
6aa8b732 | 5651 | asm volatile ( |
7454766f AK |
5652 | "push %%" _ASM_BP "; \n\t" |
5653 | "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t" | |
5654 | "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t" | |
5655 | "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t" | |
5656 | "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t" | |
5657 | "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t" | |
5658 | "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t" | |
05b3e0c2 | 5659 | #ifdef CONFIG_X86_64 |
fb3f0f51 RR |
5660 | "mov %c[r8](%[svm]), %%r8 \n\t" |
5661 | "mov %c[r9](%[svm]), %%r9 \n\t" | |
5662 | "mov %c[r10](%[svm]), %%r10 \n\t" | |
5663 | "mov %c[r11](%[svm]), %%r11 \n\t" | |
5664 | "mov %c[r12](%[svm]), %%r12 \n\t" | |
5665 | "mov %c[r13](%[svm]), %%r13 \n\t" | |
5666 | "mov %c[r14](%[svm]), %%r14 \n\t" | |
5667 | "mov %c[r15](%[svm]), %%r15 \n\t" | |
6aa8b732 AK |
5668 | #endif |
5669 | ||
6aa8b732 | 5670 | /* Enter guest mode */ |
7454766f AK |
5671 | "push %%" _ASM_AX " \n\t" |
5672 | "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t" | |
ac5ffda2 UB |
5673 | __ex("vmload %%" _ASM_AX) "\n\t" |
5674 | __ex("vmrun %%" _ASM_AX) "\n\t" | |
5675 | __ex("vmsave %%" _ASM_AX) "\n\t" | |
7454766f | 5676 | "pop %%" _ASM_AX " \n\t" |
6aa8b732 AK |
5677 | |
5678 | /* Save guest registers, load host registers */ | |
7454766f AK |
5679 | "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t" |
5680 | "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t" | |
5681 | "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t" | |
5682 | "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t" | |
5683 | "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t" | |
5684 | "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t" | |
05b3e0c2 | 5685 | #ifdef CONFIG_X86_64 |
fb3f0f51 RR |
5686 | "mov %%r8, %c[r8](%[svm]) \n\t" |
5687 | "mov %%r9, %c[r9](%[svm]) \n\t" | |
5688 | "mov %%r10, %c[r10](%[svm]) \n\t" | |
5689 | "mov %%r11, %c[r11](%[svm]) \n\t" | |
5690 | "mov %%r12, %c[r12](%[svm]) \n\t" | |
5691 | "mov %%r13, %c[r13](%[svm]) \n\t" | |
5692 | "mov %%r14, %c[r14](%[svm]) \n\t" | |
5693 | "mov %%r15, %c[r15](%[svm]) \n\t" | |
0cb5b306 JM |
5694 | /* |
5695 | * Clear host registers marked as clobbered to prevent | |
5696 | * speculative use. | |
5697 | */ | |
43ce76ce UB |
5698 | "xor %%r8d, %%r8d \n\t" |
5699 | "xor %%r9d, %%r9d \n\t" | |
5700 | "xor %%r10d, %%r10d \n\t" | |
5701 | "xor %%r11d, %%r11d \n\t" | |
5702 | "xor %%r12d, %%r12d \n\t" | |
5703 | "xor %%r13d, %%r13d \n\t" | |
5704 | "xor %%r14d, %%r14d \n\t" | |
5705 | "xor %%r15d, %%r15d \n\t" | |
6aa8b732 | 5706 | #endif |
43ce76ce UB |
5707 | "xor %%ebx, %%ebx \n\t" |
5708 | "xor %%ecx, %%ecx \n\t" | |
5709 | "xor %%edx, %%edx \n\t" | |
5710 | "xor %%esi, %%esi \n\t" | |
5711 | "xor %%edi, %%edi \n\t" | |
7454766f | 5712 | "pop %%" _ASM_BP |
6aa8b732 | 5713 | : |
fb3f0f51 | 5714 | : [svm]"a"(svm), |
6aa8b732 | 5715 | [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)), |
ad312c7c ZX |
5716 | [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])), |
5717 | [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])), | |
5718 | [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])), | |
5719 | [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])), | |
5720 | [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])), | |
5721 | [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP])) | |
05b3e0c2 | 5722 | #ifdef CONFIG_X86_64 |
ad312c7c ZX |
5723 | , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])), |
5724 | [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])), | |
5725 | [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])), | |
5726 | [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])), | |
5727 | [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])), | |
5728 | [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])), | |
5729 | [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])), | |
5730 | [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15])) | |
6aa8b732 | 5731 | #endif |
54a08c04 LV |
5732 | : "cc", "memory" |
5733 | #ifdef CONFIG_X86_64 | |
7454766f | 5734 | , "rbx", "rcx", "rdx", "rsi", "rdi" |
54a08c04 | 5735 | , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15" |
7454766f AK |
5736 | #else |
5737 | , "ebx", "ecx", "edx", "esi", "edi" | |
54a08c04 LV |
5738 | #endif |
5739 | ); | |
6aa8b732 | 5740 | |
15e6c22f TG |
5741 | /* Eliminate branch target predictions from guest mode */ |
5742 | vmexit_fill_RSB(); | |
5743 | ||
5744 | #ifdef CONFIG_X86_64 | |
5745 | wrmsrl(MSR_GS_BASE, svm->host.gs_base); | |
5746 | #else | |
5747 | loadsegment(fs, svm->host.fs); | |
5748 | #ifndef CONFIG_X86_32_LAZY_GS | |
5749 | loadsegment(gs, svm->host.gs); | |
5750 | #endif | |
5751 | #endif | |
5752 | ||
b2ac58f9 KA |
5753 | /* |
5754 | * We do not use IBRS in the kernel. If this vCPU has used the | |
5755 | * SPEC_CTRL MSR it may have left it on; save the value and | |
5756 | * turn it off. This is much more efficient than blindly adding | |
5757 | * it to the atomic save/restore list. Especially as the former | |
5758 | * (Saving guest MSRs on vmexit) doesn't even exist in KVM. | |
5759 | * | |
5760 | * For non-nested case: | |
5761 | * If the L01 MSR bitmap does not intercept the MSR, then we need to | |
5762 | * save it. | |
5763 | * | |
5764 | * For nested case: | |
5765 | * If the L02 MSR bitmap does not intercept the MSR, then we need to | |
5766 | * save it. | |
5767 | */ | |
946fbbc1 | 5768 | if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) |
ecb586bd | 5769 | svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); |
b2ac58f9 | 5770 | |
6aa8b732 AK |
5771 | reload_tss(vcpu); |
5772 | ||
56ba47dd AK |
5773 | local_irq_disable(); |
5774 | ||
024d83ca TG |
5775 | x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); |
5776 | ||
13c34e07 AK |
5777 | vcpu->arch.cr2 = svm->vmcb->save.cr2; |
5778 | vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; | |
5779 | vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; | |
5780 | vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; | |
5781 | ||
3781c01c | 5782 | if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) |
dd60d217 | 5783 | kvm_before_interrupt(&svm->vcpu); |
3781c01c | 5784 | |
1811d979 | 5785 | kvm_put_guest_xcr0(vcpu); |
3781c01c JR |
5786 | stgi(); |
5787 | ||
5788 | /* Any pending NMI will happen here */ | |
5789 | ||
5790 | if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) | |
dd60d217 | 5791 | kvm_after_interrupt(&svm->vcpu); |
3781c01c | 5792 | |
d7bf8221 JR |
5793 | sync_cr8_to_lapic(vcpu); |
5794 | ||
a2fa3e9f | 5795 | svm->next_rip = 0; |
9222be18 | 5796 | |
38e5e92f JR |
5797 | svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; |
5798 | ||
631bc487 GN |
5799 | /* if exit due to PF check for async PF */ |
5800 | if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) | |
1261bfa3 | 5801 | svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); |
631bc487 | 5802 | |
6de4f3ad AK |
5803 | if (npt_enabled) { |
5804 | vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); | |
5805 | vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); | |
5806 | } | |
fe5913e4 JR |
5807 | |
5808 | /* | |
5809 | * We need to handle MC intercepts here before the vcpu has a chance to | |
5810 | * change the physical cpu | |
5811 | */ | |
5812 | if (unlikely(svm->vmcb->control.exit_code == | |
5813 | SVM_EXIT_EXCP_BASE + MC_VECTOR)) | |
5814 | svm_handle_mce(svm); | |
8d28fec4 RJ |
5815 | |
5816 | mark_all_clean(svm->vmcb); | |
6aa8b732 | 5817 | } |
c207aee4 | 5818 | STACK_FRAME_NON_STANDARD(svm_vcpu_run); |
6aa8b732 | 5819 | |
6aa8b732 AK |
5820 | static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root) |
5821 | { | |
a2fa3e9f GH |
5822 | struct vcpu_svm *svm = to_svm(vcpu); |
5823 | ||
d0ec49d4 | 5824 | svm->vmcb->save.cr3 = __sme_set(root); |
dcca1a65 | 5825 | mark_dirty(svm->vmcb, VMCB_CR); |
6aa8b732 AK |
5826 | } |
5827 | ||
1c97f0a0 JR |
5828 | static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root) |
5829 | { | |
5830 | struct vcpu_svm *svm = to_svm(vcpu); | |
5831 | ||
d0ec49d4 | 5832 | svm->vmcb->control.nested_cr3 = __sme_set(root); |
b2747166 | 5833 | mark_dirty(svm->vmcb, VMCB_NPT); |
1c97f0a0 JR |
5834 | |
5835 | /* Also sync guest cr3 here in case we live migrate */ | |
9f8fe504 | 5836 | svm->vmcb->save.cr3 = kvm_read_cr3(vcpu); |
dcca1a65 | 5837 | mark_dirty(svm->vmcb, VMCB_CR); |
1c97f0a0 JR |
5838 | } |
5839 | ||
6aa8b732 AK |
5840 | static int is_disabled(void) |
5841 | { | |
6031a61c JR |
5842 | u64 vm_cr; |
5843 | ||
5844 | rdmsrl(MSR_VM_CR, vm_cr); | |
5845 | if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) | |
5846 | return 1; | |
5847 | ||
6aa8b732 AK |
5848 | return 0; |
5849 | } | |
5850 | ||
102d8325 IM |
5851 | static void |
5852 | svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) | |
5853 | { | |
5854 | /* | |
5855 | * Patch in the VMMCALL instruction: | |
5856 | */ | |
5857 | hypercall[0] = 0x0f; | |
5858 | hypercall[1] = 0x01; | |
5859 | hypercall[2] = 0xd9; | |
102d8325 IM |
5860 | } |
5861 | ||
002c7f7c YS |
5862 | static void svm_check_processor_compat(void *rtn) |
5863 | { | |
5864 | *(int *)rtn = 0; | |
5865 | } | |
5866 | ||
774ead3a AK |
5867 | static bool svm_cpu_has_accelerated_tpr(void) |
5868 | { | |
5869 | return false; | |
5870 | } | |
5871 | ||
bc226f07 | 5872 | static bool svm_has_emulated_msr(int index) |
6d396b55 | 5873 | { |
e87555e5 VK |
5874 | switch (index) { |
5875 | case MSR_IA32_MCG_EXT_CTL: | |
5876 | return false; | |
5877 | default: | |
5878 | break; | |
5879 | } | |
5880 | ||
6d396b55 PB |
5881 | return true; |
5882 | } | |
5883 | ||
fc07e76a PB |
5884 | static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) |
5885 | { | |
5886 | return 0; | |
5887 | } | |
5888 | ||
0e851880 SY |
5889 | static void svm_cpuid_update(struct kvm_vcpu *vcpu) |
5890 | { | |
6092d3d3 JR |
5891 | struct vcpu_svm *svm = to_svm(vcpu); |
5892 | ||
5893 | /* Update nrips enabled cache */ | |
d6321d49 | 5894 | svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS); |
46781eae SS |
5895 | |
5896 | if (!kvm_vcpu_apicv_active(vcpu)) | |
5897 | return; | |
5898 | ||
1b4d56b8 | 5899 | guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC); |
0e851880 SY |
5900 | } |
5901 | ||
d4330ef2 JR |
5902 | static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) |
5903 | { | |
c2c63a49 | 5904 | switch (func) { |
46781eae SS |
5905 | case 0x1: |
5906 | if (avic) | |
5907 | entry->ecx &= ~bit(X86_FEATURE_X2APIC); | |
5908 | break; | |
4c62a2dc JR |
5909 | case 0x80000001: |
5910 | if (nested) | |
5911 | entry->ecx |= (1 << 2); /* Set SVM bit */ | |
5912 | break; | |
c2c63a49 JR |
5913 | case 0x8000000A: |
5914 | entry->eax = 1; /* SVM revision 1 */ | |
5915 | entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper | |
5916 | ASID emulation to nested SVM */ | |
5917 | entry->ecx = 0; /* Reserved */ | |
7a190667 JR |
5918 | entry->edx = 0; /* Per default do not support any |
5919 | additional features */ | |
5920 | ||
5921 | /* Support next_rip if host supports it */ | |
2a6b20b8 | 5922 | if (boot_cpu_has(X86_FEATURE_NRIPS)) |
7a190667 | 5923 | entry->edx |= SVM_FEATURE_NRIP; |
c2c63a49 | 5924 | |
3d4aeaad JR |
5925 | /* Support NPT for the guest if enabled */ |
5926 | if (npt_enabled) | |
5927 | entry->edx |= SVM_FEATURE_NPT; | |
5928 | ||
c2c63a49 | 5929 | break; |
8765d753 BS |
5930 | case 0x8000001F: |
5931 | /* Support memory encryption cpuid if host supports it */ | |
5932 | if (boot_cpu_has(X86_FEATURE_SEV)) | |
5933 | cpuid(0x8000001f, &entry->eax, &entry->ebx, | |
5934 | &entry->ecx, &entry->edx); | |
5935 | ||
c2c63a49 | 5936 | } |
d4330ef2 JR |
5937 | } |
5938 | ||
17cc3935 | 5939 | static int svm_get_lpage_level(void) |
344f414f | 5940 | { |
17cc3935 | 5941 | return PT_PDPE_LEVEL; |
344f414f JR |
5942 | } |
5943 | ||
4e47c7a6 SY |
5944 | static bool svm_rdtscp_supported(void) |
5945 | { | |
46896c73 | 5946 | return boot_cpu_has(X86_FEATURE_RDTSCP); |
4e47c7a6 SY |
5947 | } |
5948 | ||
ad756a16 MJ |
5949 | static bool svm_invpcid_supported(void) |
5950 | { | |
5951 | return false; | |
5952 | } | |
5953 | ||
93c4adc7 PB |
5954 | static bool svm_mpx_supported(void) |
5955 | { | |
5956 | return false; | |
5957 | } | |
5958 | ||
55412b2e WL |
5959 | static bool svm_xsaves_supported(void) |
5960 | { | |
5961 | return false; | |
5962 | } | |
5963 | ||
66336cab PB |
5964 | static bool svm_umip_emulated(void) |
5965 | { | |
5966 | return false; | |
5967 | } | |
5968 | ||
86f5201d CP |
5969 | static bool svm_pt_supported(void) |
5970 | { | |
5971 | return false; | |
5972 | } | |
5973 | ||
f5f48ee1 SY |
5974 | static bool svm_has_wbinvd_exit(void) |
5975 | { | |
5976 | return true; | |
5977 | } | |
5978 | ||
8061252e | 5979 | #define PRE_EX(exit) { .exit_code = (exit), \ |
40e19b51 | 5980 | .stage = X86_ICPT_PRE_EXCEPT, } |
cfec82cb | 5981 | #define POST_EX(exit) { .exit_code = (exit), \ |
40e19b51 | 5982 | .stage = X86_ICPT_POST_EXCEPT, } |
d7eb8203 | 5983 | #define POST_MEM(exit) { .exit_code = (exit), \ |
40e19b51 | 5984 | .stage = X86_ICPT_POST_MEMACCESS, } |
cfec82cb | 5985 | |
09941fbb | 5986 | static const struct __x86_intercept { |
cfec82cb JR |
5987 | u32 exit_code; |
5988 | enum x86_intercept_stage stage; | |
cfec82cb JR |
5989 | } x86_intercept_map[] = { |
5990 | [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), | |
5991 | [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), | |
5992 | [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), | |
5993 | [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), | |
5994 | [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), | |
3b88e41a JR |
5995 | [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), |
5996 | [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), | |
dee6bb70 JR |
5997 | [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), |
5998 | [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), | |
5999 | [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), | |
6000 | [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), | |
6001 | [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), | |
6002 | [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), | |
6003 | [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), | |
6004 | [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), | |
01de8b09 JR |
6005 | [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), |
6006 | [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), | |
6007 | [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), | |
6008 | [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), | |
6009 | [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), | |
6010 | [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), | |
6011 | [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), | |
6012 | [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), | |
d7eb8203 JR |
6013 | [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), |
6014 | [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), | |
6015 | [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), | |
8061252e JR |
6016 | [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), |
6017 | [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), | |
6018 | [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), | |
6019 | [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), | |
6020 | [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), | |
6021 | [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), | |
6022 | [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), | |
6023 | [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), | |
6024 | [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), | |
bf608f88 JR |
6025 | [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), |
6026 | [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), | |
6027 | [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), | |
6028 | [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), | |
6029 | [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), | |
6030 | [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), | |
6031 | [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), | |
f6511935 JR |
6032 | [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), |
6033 | [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), | |
6034 | [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), | |
6035 | [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), | |
cfec82cb JR |
6036 | }; |
6037 | ||
8061252e | 6038 | #undef PRE_EX |
cfec82cb | 6039 | #undef POST_EX |
d7eb8203 | 6040 | #undef POST_MEM |
cfec82cb | 6041 | |
8a76d7f2 JR |
6042 | static int svm_check_intercept(struct kvm_vcpu *vcpu, |
6043 | struct x86_instruction_info *info, | |
6044 | enum x86_intercept_stage stage) | |
6045 | { | |
cfec82cb JR |
6046 | struct vcpu_svm *svm = to_svm(vcpu); |
6047 | int vmexit, ret = X86EMUL_CONTINUE; | |
6048 | struct __x86_intercept icpt_info; | |
6049 | struct vmcb *vmcb = svm->vmcb; | |
6050 | ||
6051 | if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) | |
6052 | goto out; | |
6053 | ||
6054 | icpt_info = x86_intercept_map[info->intercept]; | |
6055 | ||
40e19b51 | 6056 | if (stage != icpt_info.stage) |
cfec82cb JR |
6057 | goto out; |
6058 | ||
6059 | switch (icpt_info.exit_code) { | |
6060 | case SVM_EXIT_READ_CR0: | |
6061 | if (info->intercept == x86_intercept_cr_read) | |
6062 | icpt_info.exit_code += info->modrm_reg; | |
6063 | break; | |
6064 | case SVM_EXIT_WRITE_CR0: { | |
6065 | unsigned long cr0, val; | |
6066 | u64 intercept; | |
6067 | ||
6068 | if (info->intercept == x86_intercept_cr_write) | |
6069 | icpt_info.exit_code += info->modrm_reg; | |
6070 | ||
62baf44c JK |
6071 | if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || |
6072 | info->intercept == x86_intercept_clts) | |
cfec82cb JR |
6073 | break; |
6074 | ||
6075 | intercept = svm->nested.intercept; | |
6076 | ||
6077 | if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))) | |
6078 | break; | |
6079 | ||
6080 | cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; | |
6081 | val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; | |
6082 | ||
6083 | if (info->intercept == x86_intercept_lmsw) { | |
6084 | cr0 &= 0xfUL; | |
6085 | val &= 0xfUL; | |
6086 | /* lmsw can't clear PE - catch this here */ | |
6087 | if (cr0 & X86_CR0_PE) | |
6088 | val |= X86_CR0_PE; | |
6089 | } | |
6090 | ||
6091 | if (cr0 ^ val) | |
6092 | icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; | |
6093 | ||
6094 | break; | |
6095 | } | |
3b88e41a JR |
6096 | case SVM_EXIT_READ_DR0: |
6097 | case SVM_EXIT_WRITE_DR0: | |
6098 | icpt_info.exit_code += info->modrm_reg; | |
6099 | break; | |
8061252e JR |
6100 | case SVM_EXIT_MSR: |
6101 | if (info->intercept == x86_intercept_wrmsr) | |
6102 | vmcb->control.exit_info_1 = 1; | |
6103 | else | |
6104 | vmcb->control.exit_info_1 = 0; | |
6105 | break; | |
bf608f88 JR |
6106 | case SVM_EXIT_PAUSE: |
6107 | /* | |
6108 | * We get this for NOP only, but pause | |
6109 | * is rep not, check this here | |
6110 | */ | |
6111 | if (info->rep_prefix != REPE_PREFIX) | |
6112 | goto out; | |
49a8afca | 6113 | break; |
f6511935 JR |
6114 | case SVM_EXIT_IOIO: { |
6115 | u64 exit_info; | |
6116 | u32 bytes; | |
6117 | ||
f6511935 JR |
6118 | if (info->intercept == x86_intercept_in || |
6119 | info->intercept == x86_intercept_ins) { | |
6cbc5f5a JK |
6120 | exit_info = ((info->src_val & 0xffff) << 16) | |
6121 | SVM_IOIO_TYPE_MASK; | |
f6511935 | 6122 | bytes = info->dst_bytes; |
6493f157 | 6123 | } else { |
6cbc5f5a | 6124 | exit_info = (info->dst_val & 0xffff) << 16; |
6493f157 | 6125 | bytes = info->src_bytes; |
f6511935 JR |
6126 | } |
6127 | ||
6128 | if (info->intercept == x86_intercept_outs || | |
6129 | info->intercept == x86_intercept_ins) | |
6130 | exit_info |= SVM_IOIO_STR_MASK; | |
6131 | ||
6132 | if (info->rep_prefix) | |
6133 | exit_info |= SVM_IOIO_REP_MASK; | |
6134 | ||
6135 | bytes = min(bytes, 4u); | |
6136 | ||
6137 | exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; | |
6138 | ||
6139 | exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); | |
6140 | ||
6141 | vmcb->control.exit_info_1 = exit_info; | |
6142 | vmcb->control.exit_info_2 = info->next_rip; | |
6143 | ||
6144 | break; | |
6145 | } | |
cfec82cb JR |
6146 | default: |
6147 | break; | |
6148 | } | |
6149 | ||
f104765b BD |
6150 | /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ |
6151 | if (static_cpu_has(X86_FEATURE_NRIPS)) | |
6152 | vmcb->control.next_rip = info->next_rip; | |
cfec82cb JR |
6153 | vmcb->control.exit_code = icpt_info.exit_code; |
6154 | vmexit = nested_svm_exit_handled(svm); | |
6155 | ||
6156 | ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED | |
6157 | : X86EMUL_CONTINUE; | |
6158 | ||
6159 | out: | |
6160 | return ret; | |
8a76d7f2 JR |
6161 | } |
6162 | ||
a547c6db YZ |
6163 | static void svm_handle_external_intr(struct kvm_vcpu *vcpu) |
6164 | { | |
6165 | local_irq_enable(); | |
f2485b3e PB |
6166 | /* |
6167 | * We must have an instruction with interrupts enabled, so | |
6168 | * the timer interrupt isn't delayed by the interrupt shadow. | |
6169 | */ | |
6170 | asm("nop"); | |
6171 | local_irq_disable(); | |
a547c6db YZ |
6172 | } |
6173 | ||
ae97a3b8 RK |
6174 | static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) |
6175 | { | |
8566ac8b BM |
6176 | if (pause_filter_thresh) |
6177 | shrink_ple_window(vcpu); | |
ae97a3b8 RK |
6178 | } |
6179 | ||
be8ca170 SS |
6180 | static inline void avic_post_state_restore(struct kvm_vcpu *vcpu) |
6181 | { | |
6182 | if (avic_handle_apic_id_update(vcpu) != 0) | |
6183 | return; | |
98d90582 | 6184 | avic_handle_dfr_update(vcpu); |
be8ca170 SS |
6185 | avic_handle_ldr_update(vcpu); |
6186 | } | |
6187 | ||
74f16909 BP |
6188 | static void svm_setup_mce(struct kvm_vcpu *vcpu) |
6189 | { | |
6190 | /* [63:9] are reserved. */ | |
6191 | vcpu->arch.mcg_cap &= 0x1ff; | |
6192 | } | |
6193 | ||
72d7b374 LP |
6194 | static int svm_smi_allowed(struct kvm_vcpu *vcpu) |
6195 | { | |
05cade71 LP |
6196 | struct vcpu_svm *svm = to_svm(vcpu); |
6197 | ||
6198 | /* Per APM Vol.2 15.22.2 "Response to SMI" */ | |
6199 | if (!gif_set(svm)) | |
6200 | return 0; | |
6201 | ||
6202 | if (is_guest_mode(&svm->vcpu) && | |
6203 | svm->nested.intercept & (1ULL << INTERCEPT_SMI)) { | |
6204 | /* TODO: Might need to set exit_info_1 and exit_info_2 here */ | |
6205 | svm->vmcb->control.exit_code = SVM_EXIT_SMI; | |
6206 | svm->nested.exit_required = true; | |
6207 | return 0; | |
6208 | } | |
6209 | ||
72d7b374 LP |
6210 | return 1; |
6211 | } | |
6212 | ||
0234bf88 LP |
6213 | static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) |
6214 | { | |
05cade71 LP |
6215 | struct vcpu_svm *svm = to_svm(vcpu); |
6216 | int ret; | |
6217 | ||
6218 | if (is_guest_mode(vcpu)) { | |
6219 | /* FED8h - SVM Guest */ | |
6220 | put_smstate(u64, smstate, 0x7ed8, 1); | |
6221 | /* FEE0h - SVM Guest VMCB Physical Address */ | |
6222 | put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb); | |
6223 | ||
6224 | svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; | |
6225 | svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; | |
6226 | svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; | |
6227 | ||
6228 | ret = nested_svm_vmexit(svm); | |
6229 | if (ret) | |
6230 | return ret; | |
6231 | } | |
0234bf88 LP |
6232 | return 0; |
6233 | } | |
6234 | ||
ed19321f | 6235 | static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) |
0234bf88 | 6236 | { |
05cade71 LP |
6237 | struct vcpu_svm *svm = to_svm(vcpu); |
6238 | struct vmcb *nested_vmcb; | |
6239 | struct page *page; | |
ed19321f SC |
6240 | u64 guest; |
6241 | u64 vmcb; | |
05cade71 | 6242 | |
ed19321f SC |
6243 | guest = GET_SMSTATE(u64, smstate, 0x7ed8); |
6244 | vmcb = GET_SMSTATE(u64, smstate, 0x7ee0); | |
05cade71 | 6245 | |
ed19321f | 6246 | if (guest) { |
ed19321f | 6247 | nested_vmcb = nested_svm_map(svm, vmcb, &page); |
9ec19493 SC |
6248 | if (!nested_vmcb) |
6249 | return 1; | |
6250 | enter_svm_guest_mode(svm, vmcb, nested_vmcb, page); | |
05cade71 | 6251 | } |
9ec19493 | 6252 | return 0; |
0234bf88 LP |
6253 | } |
6254 | ||
cc3d967f LP |
6255 | static int enable_smi_window(struct kvm_vcpu *vcpu) |
6256 | { | |
6257 | struct vcpu_svm *svm = to_svm(vcpu); | |
6258 | ||
6259 | if (!gif_set(svm)) { | |
6260 | if (vgif_enabled(svm)) | |
6261 | set_intercept(svm, INTERCEPT_STGI); | |
6262 | /* STGI will cause a vm exit */ | |
6263 | return 1; | |
6264 | } | |
6265 | return 0; | |
6266 | } | |
6267 | ||
1654efcb BS |
6268 | static int sev_asid_new(void) |
6269 | { | |
6270 | int pos; | |
6271 | ||
6272 | /* | |
6273 | * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid. | |
6274 | */ | |
6275 | pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1); | |
6276 | if (pos >= max_sev_asid) | |
6277 | return -EBUSY; | |
6278 | ||
6279 | set_bit(pos, sev_asid_bitmap); | |
6280 | return pos + 1; | |
6281 | } | |
6282 | ||
6283 | static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) | |
6284 | { | |
81811c16 | 6285 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
1654efcb BS |
6286 | int asid, ret; |
6287 | ||
6288 | ret = -EBUSY; | |
3f14a89d DR |
6289 | if (unlikely(sev->active)) |
6290 | return ret; | |
6291 | ||
1654efcb BS |
6292 | asid = sev_asid_new(); |
6293 | if (asid < 0) | |
6294 | return ret; | |
6295 | ||
6296 | ret = sev_platform_init(&argp->error); | |
6297 | if (ret) | |
6298 | goto e_free; | |
6299 | ||
6300 | sev->active = true; | |
6301 | sev->asid = asid; | |
1e80fdc0 | 6302 | INIT_LIST_HEAD(&sev->regions_list); |
1654efcb BS |
6303 | |
6304 | return 0; | |
6305 | ||
6306 | e_free: | |
6307 | __sev_asid_free(asid); | |
6308 | return ret; | |
6309 | } | |
6310 | ||
59414c98 BS |
6311 | static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) |
6312 | { | |
6313 | struct sev_data_activate *data; | |
6314 | int asid = sev_get_asid(kvm); | |
6315 | int ret; | |
6316 | ||
6317 | wbinvd_on_all_cpus(); | |
6318 | ||
6319 | ret = sev_guest_df_flush(error); | |
6320 | if (ret) | |
6321 | return ret; | |
6322 | ||
1ec69647 | 6323 | data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
59414c98 BS |
6324 | if (!data) |
6325 | return -ENOMEM; | |
6326 | ||
6327 | /* activate ASID on the given handle */ | |
6328 | data->handle = handle; | |
6329 | data->asid = asid; | |
6330 | ret = sev_guest_activate(data, error); | |
6331 | kfree(data); | |
6332 | ||
6333 | return ret; | |
6334 | } | |
6335 | ||
89c50580 | 6336 | static int __sev_issue_cmd(int fd, int id, void *data, int *error) |
59414c98 BS |
6337 | { |
6338 | struct fd f; | |
6339 | int ret; | |
6340 | ||
6341 | f = fdget(fd); | |
6342 | if (!f.file) | |
6343 | return -EBADF; | |
6344 | ||
6345 | ret = sev_issue_cmd_external_user(f.file, id, data, error); | |
6346 | ||
6347 | fdput(f); | |
6348 | return ret; | |
6349 | } | |
6350 | ||
89c50580 BS |
6351 | static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) |
6352 | { | |
81811c16 | 6353 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
89c50580 BS |
6354 | |
6355 | return __sev_issue_cmd(sev->fd, id, data, error); | |
6356 | } | |
6357 | ||
59414c98 BS |
6358 | static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) |
6359 | { | |
81811c16 | 6360 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
59414c98 BS |
6361 | struct sev_data_launch_start *start; |
6362 | struct kvm_sev_launch_start params; | |
6363 | void *dh_blob, *session_blob; | |
6364 | int *error = &argp->error; | |
6365 | int ret; | |
6366 | ||
6367 | if (!sev_guest(kvm)) | |
6368 | return -ENOTTY; | |
6369 | ||
6370 | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) | |
6371 | return -EFAULT; | |
6372 | ||
1ec69647 | 6373 | start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT); |
59414c98 BS |
6374 | if (!start) |
6375 | return -ENOMEM; | |
6376 | ||
6377 | dh_blob = NULL; | |
6378 | if (params.dh_uaddr) { | |
6379 | dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); | |
6380 | if (IS_ERR(dh_blob)) { | |
6381 | ret = PTR_ERR(dh_blob); | |
6382 | goto e_free; | |
6383 | } | |
6384 | ||
6385 | start->dh_cert_address = __sme_set(__pa(dh_blob)); | |
6386 | start->dh_cert_len = params.dh_len; | |
6387 | } | |
6388 | ||
6389 | session_blob = NULL; | |
6390 | if (params.session_uaddr) { | |
6391 | session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); | |
6392 | if (IS_ERR(session_blob)) { | |
6393 | ret = PTR_ERR(session_blob); | |
6394 | goto e_free_dh; | |
6395 | } | |
6396 | ||
6397 | start->session_address = __sme_set(__pa(session_blob)); | |
6398 | start->session_len = params.session_len; | |
6399 | } | |
6400 | ||
6401 | start->handle = params.handle; | |
6402 | start->policy = params.policy; | |
6403 | ||
6404 | /* create memory encryption context */ | |
89c50580 | 6405 | ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error); |
59414c98 BS |
6406 | if (ret) |
6407 | goto e_free_session; | |
6408 | ||
6409 | /* Bind ASID to this guest */ | |
6410 | ret = sev_bind_asid(kvm, start->handle, error); | |
6411 | if (ret) | |
6412 | goto e_free_session; | |
6413 | ||
6414 | /* return handle to userspace */ | |
6415 | params.handle = start->handle; | |
6416 | if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { | |
6417 | sev_unbind_asid(kvm, start->handle); | |
6418 | ret = -EFAULT; | |
6419 | goto e_free_session; | |
6420 | } | |
6421 | ||
6422 | sev->handle = start->handle; | |
6423 | sev->fd = argp->sev_fd; | |
6424 | ||
6425 | e_free_session: | |
6426 | kfree(session_blob); | |
6427 | e_free_dh: | |
6428 | kfree(dh_blob); | |
6429 | e_free: | |
6430 | kfree(start); | |
6431 | return ret; | |
6432 | } | |
6433 | ||
ede885ec DR |
6434 | static unsigned long get_num_contig_pages(unsigned long idx, |
6435 | struct page **inpages, unsigned long npages) | |
89c50580 BS |
6436 | { |
6437 | unsigned long paddr, next_paddr; | |
ede885ec | 6438 | unsigned long i = idx + 1, pages = 1; |
89c50580 BS |
6439 | |
6440 | /* find the number of contiguous pages starting from idx */ | |
6441 | paddr = __sme_page_pa(inpages[idx]); | |
6442 | while (i < npages) { | |
6443 | next_paddr = __sme_page_pa(inpages[i++]); | |
6444 | if ((paddr + PAGE_SIZE) == next_paddr) { | |
6445 | pages++; | |
6446 | paddr = next_paddr; | |
6447 | continue; | |
6448 | } | |
6449 | break; | |
6450 | } | |
6451 | ||
6452 | return pages; | |
6453 | } | |
6454 | ||
6455 | static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) | |
6456 | { | |
ede885ec | 6457 | unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; |
81811c16 | 6458 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
89c50580 BS |
6459 | struct kvm_sev_launch_update_data params; |
6460 | struct sev_data_launch_update_data *data; | |
6461 | struct page **inpages; | |
ede885ec | 6462 | int ret; |
89c50580 BS |
6463 | |
6464 | if (!sev_guest(kvm)) | |
6465 | return -ENOTTY; | |
6466 | ||
6467 | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) | |
6468 | return -EFAULT; | |
6469 | ||
1ec69647 | 6470 | data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
89c50580 BS |
6471 | if (!data) |
6472 | return -ENOMEM; | |
6473 | ||
6474 | vaddr = params.uaddr; | |
6475 | size = params.len; | |
6476 | vaddr_end = vaddr + size; | |
6477 | ||
6478 | /* Lock the user memory. */ | |
6479 | inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); | |
6480 | if (!inpages) { | |
6481 | ret = -ENOMEM; | |
6482 | goto e_free; | |
6483 | } | |
6484 | ||
6485 | /* | |
6486 | * The LAUNCH_UPDATE command will perform in-place encryption of the | |
6487 | * memory content (i.e it will write the same memory region with C=1). | |
6488 | * It's possible that the cache may contain the data with C=0, i.e., | |
6489 | * unencrypted so invalidate it first. | |
6490 | */ | |
6491 | sev_clflush_pages(inpages, npages); | |
6492 | ||
6493 | for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { | |
6494 | int offset, len; | |
6495 | ||
6496 | /* | |
6497 | * If the user buffer is not page-aligned, calculate the offset | |
6498 | * within the page. | |
6499 | */ | |
6500 | offset = vaddr & (PAGE_SIZE - 1); | |
6501 | ||
6502 | /* Calculate the number of pages that can be encrypted in one go. */ | |
6503 | pages = get_num_contig_pages(i, inpages, npages); | |
6504 | ||
6505 | len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); | |
6506 | ||
6507 | data->handle = sev->handle; | |
6508 | data->len = len; | |
6509 | data->address = __sme_page_pa(inpages[i]) + offset; | |
6510 | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error); | |
6511 | if (ret) | |
6512 | goto e_unpin; | |
6513 | ||
6514 | size -= len; | |
6515 | next_vaddr = vaddr + len; | |
6516 | } | |
6517 | ||
6518 | e_unpin: | |
6519 | /* content of memory is updated, mark pages dirty */ | |
6520 | for (i = 0; i < npages; i++) { | |
6521 | set_page_dirty_lock(inpages[i]); | |
6522 | mark_page_accessed(inpages[i]); | |
6523 | } | |
6524 | /* unlock the user pages */ | |
6525 | sev_unpin_memory(kvm, inpages, npages); | |
6526 | e_free: | |
6527 | kfree(data); | |
6528 | return ret; | |
6529 | } | |
6530 | ||
0d0736f7 BS |
6531 | static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) |
6532 | { | |
3e233385 | 6533 | void __user *measure = (void __user *)(uintptr_t)argp->data; |
81811c16 | 6534 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
0d0736f7 BS |
6535 | struct sev_data_launch_measure *data; |
6536 | struct kvm_sev_launch_measure params; | |
3e233385 | 6537 | void __user *p = NULL; |
0d0736f7 BS |
6538 | void *blob = NULL; |
6539 | int ret; | |
6540 | ||
6541 | if (!sev_guest(kvm)) | |
6542 | return -ENOTTY; | |
6543 | ||
3e233385 | 6544 | if (copy_from_user(¶ms, measure, sizeof(params))) |
0d0736f7 BS |
6545 | return -EFAULT; |
6546 | ||
1ec69647 | 6547 | data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
0d0736f7 BS |
6548 | if (!data) |
6549 | return -ENOMEM; | |
6550 | ||
6551 | /* User wants to query the blob length */ | |
6552 | if (!params.len) | |
6553 | goto cmd; | |
6554 | ||
3e233385 BS |
6555 | p = (void __user *)(uintptr_t)params.uaddr; |
6556 | if (p) { | |
0d0736f7 BS |
6557 | if (params.len > SEV_FW_BLOB_MAX_SIZE) { |
6558 | ret = -EINVAL; | |
6559 | goto e_free; | |
6560 | } | |
6561 | ||
0d0736f7 BS |
6562 | ret = -ENOMEM; |
6563 | blob = kmalloc(params.len, GFP_KERNEL); | |
6564 | if (!blob) | |
6565 | goto e_free; | |
6566 | ||
6567 | data->address = __psp_pa(blob); | |
6568 | data->len = params.len; | |
6569 | } | |
6570 | ||
6571 | cmd: | |
6572 | data->handle = sev->handle; | |
6573 | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error); | |
6574 | ||
6575 | /* | |
6576 | * If we query the session length, FW responded with expected data. | |
6577 | */ | |
6578 | if (!params.len) | |
6579 | goto done; | |
6580 | ||
6581 | if (ret) | |
6582 | goto e_free_blob; | |
6583 | ||
6584 | if (blob) { | |
3e233385 | 6585 | if (copy_to_user(p, blob, params.len)) |
0d0736f7 BS |
6586 | ret = -EFAULT; |
6587 | } | |
6588 | ||
6589 | done: | |
6590 | params.len = data->len; | |
3e233385 | 6591 | if (copy_to_user(measure, ¶ms, sizeof(params))) |
0d0736f7 BS |
6592 | ret = -EFAULT; |
6593 | e_free_blob: | |
6594 | kfree(blob); | |
6595 | e_free: | |
6596 | kfree(data); | |
6597 | return ret; | |
6598 | } | |
6599 | ||
5bdb0e2f BS |
6600 | static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) |
6601 | { | |
81811c16 | 6602 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
5bdb0e2f BS |
6603 | struct sev_data_launch_finish *data; |
6604 | int ret; | |
6605 | ||
6606 | if (!sev_guest(kvm)) | |
6607 | return -ENOTTY; | |
6608 | ||
1ec69647 | 6609 | data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
5bdb0e2f BS |
6610 | if (!data) |
6611 | return -ENOMEM; | |
6612 | ||
6613 | data->handle = sev->handle; | |
6614 | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error); | |
6615 | ||
6616 | kfree(data); | |
6617 | return ret; | |
6618 | } | |
6619 | ||
255d9e75 BS |
6620 | static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) |
6621 | { | |
81811c16 | 6622 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
255d9e75 BS |
6623 | struct kvm_sev_guest_status params; |
6624 | struct sev_data_guest_status *data; | |
6625 | int ret; | |
6626 | ||
6627 | if (!sev_guest(kvm)) | |
6628 | return -ENOTTY; | |
6629 | ||
1ec69647 | 6630 | data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
255d9e75 BS |
6631 | if (!data) |
6632 | return -ENOMEM; | |
6633 | ||
6634 | data->handle = sev->handle; | |
6635 | ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error); | |
6636 | if (ret) | |
6637 | goto e_free; | |
6638 | ||
6639 | params.policy = data->policy; | |
6640 | params.state = data->state; | |
6641 | params.handle = data->handle; | |
6642 | ||
6643 | if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) | |
6644 | ret = -EFAULT; | |
6645 | e_free: | |
6646 | kfree(data); | |
6647 | return ret; | |
6648 | } | |
6649 | ||
24f41fb2 BS |
6650 | static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, |
6651 | unsigned long dst, int size, | |
6652 | int *error, bool enc) | |
6653 | { | |
81811c16 | 6654 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
24f41fb2 BS |
6655 | struct sev_data_dbg *data; |
6656 | int ret; | |
6657 | ||
1ec69647 | 6658 | data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
24f41fb2 BS |
6659 | if (!data) |
6660 | return -ENOMEM; | |
6661 | ||
6662 | data->handle = sev->handle; | |
6663 | data->dst_addr = dst; | |
6664 | data->src_addr = src; | |
6665 | data->len = size; | |
6666 | ||
6667 | ret = sev_issue_cmd(kvm, | |
6668 | enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, | |
6669 | data, error); | |
6670 | kfree(data); | |
6671 | return ret; | |
6672 | } | |
6673 | ||
6674 | static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, | |
6675 | unsigned long dst_paddr, int sz, int *err) | |
6676 | { | |
6677 | int offset; | |
6678 | ||
6679 | /* | |
6680 | * Its safe to read more than we are asked, caller should ensure that | |
6681 | * destination has enough space. | |
6682 | */ | |
6683 | src_paddr = round_down(src_paddr, 16); | |
6684 | offset = src_paddr & 15; | |
6685 | sz = round_up(sz + offset, 16); | |
6686 | ||
6687 | return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); | |
6688 | } | |
6689 | ||
6690 | static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, | |
6691 | unsigned long __user dst_uaddr, | |
6692 | unsigned long dst_paddr, | |
6693 | int size, int *err) | |
6694 | { | |
6695 | struct page *tpage = NULL; | |
6696 | int ret, offset; | |
6697 | ||
6698 | /* if inputs are not 16-byte then use intermediate buffer */ | |
6699 | if (!IS_ALIGNED(dst_paddr, 16) || | |
6700 | !IS_ALIGNED(paddr, 16) || | |
6701 | !IS_ALIGNED(size, 16)) { | |
6702 | tpage = (void *)alloc_page(GFP_KERNEL); | |
6703 | if (!tpage) | |
6704 | return -ENOMEM; | |
6705 | ||
6706 | dst_paddr = __sme_page_pa(tpage); | |
6707 | } | |
6708 | ||
6709 | ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); | |
6710 | if (ret) | |
6711 | goto e_free; | |
6712 | ||
6713 | if (tpage) { | |
6714 | offset = paddr & 15; | |
6715 | if (copy_to_user((void __user *)(uintptr_t)dst_uaddr, | |
6716 | page_address(tpage) + offset, size)) | |
6717 | ret = -EFAULT; | |
6718 | } | |
6719 | ||
6720 | e_free: | |
6721 | if (tpage) | |
6722 | __free_page(tpage); | |
6723 | ||
6724 | return ret; | |
6725 | } | |
6726 | ||
7d1594f5 BS |
6727 | static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, |
6728 | unsigned long __user vaddr, | |
6729 | unsigned long dst_paddr, | |
6730 | unsigned long __user dst_vaddr, | |
6731 | int size, int *error) | |
6732 | { | |
6733 | struct page *src_tpage = NULL; | |
6734 | struct page *dst_tpage = NULL; | |
6735 | int ret, len = size; | |
6736 | ||
6737 | /* If source buffer is not aligned then use an intermediate buffer */ | |
6738 | if (!IS_ALIGNED(vaddr, 16)) { | |
6739 | src_tpage = alloc_page(GFP_KERNEL); | |
6740 | if (!src_tpage) | |
6741 | return -ENOMEM; | |
6742 | ||
6743 | if (copy_from_user(page_address(src_tpage), | |
6744 | (void __user *)(uintptr_t)vaddr, size)) { | |
6745 | __free_page(src_tpage); | |
6746 | return -EFAULT; | |
6747 | } | |
6748 | ||
6749 | paddr = __sme_page_pa(src_tpage); | |
6750 | } | |
6751 | ||
6752 | /* | |
6753 | * If destination buffer or length is not aligned then do read-modify-write: | |
6754 | * - decrypt destination in an intermediate buffer | |
6755 | * - copy the source buffer in an intermediate buffer | |
6756 | * - use the intermediate buffer as source buffer | |
6757 | */ | |
6758 | if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { | |
6759 | int dst_offset; | |
6760 | ||
6761 | dst_tpage = alloc_page(GFP_KERNEL); | |
6762 | if (!dst_tpage) { | |
6763 | ret = -ENOMEM; | |
6764 | goto e_free; | |
6765 | } | |
6766 | ||
6767 | ret = __sev_dbg_decrypt(kvm, dst_paddr, | |
6768 | __sme_page_pa(dst_tpage), size, error); | |
6769 | if (ret) | |
6770 | goto e_free; | |
6771 | ||
6772 | /* | |
6773 | * If source is kernel buffer then use memcpy() otherwise | |
6774 | * copy_from_user(). | |
6775 | */ | |
6776 | dst_offset = dst_paddr & 15; | |
6777 | ||
6778 | if (src_tpage) | |
6779 | memcpy(page_address(dst_tpage) + dst_offset, | |
6780 | page_address(src_tpage), size); | |
6781 | else { | |
6782 | if (copy_from_user(page_address(dst_tpage) + dst_offset, | |
6783 | (void __user *)(uintptr_t)vaddr, size)) { | |
6784 | ret = -EFAULT; | |
6785 | goto e_free; | |
6786 | } | |
6787 | } | |
6788 | ||
6789 | paddr = __sme_page_pa(dst_tpage); | |
6790 | dst_paddr = round_down(dst_paddr, 16); | |
6791 | len = round_up(size, 16); | |
6792 | } | |
6793 | ||
6794 | ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); | |
6795 | ||
6796 | e_free: | |
6797 | if (src_tpage) | |
6798 | __free_page(src_tpage); | |
6799 | if (dst_tpage) | |
6800 | __free_page(dst_tpage); | |
6801 | return ret; | |
6802 | } | |
6803 | ||
24f41fb2 BS |
6804 | static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) |
6805 | { | |
6806 | unsigned long vaddr, vaddr_end, next_vaddr; | |
0186ec82 | 6807 | unsigned long dst_vaddr; |
24f41fb2 BS |
6808 | struct page **src_p, **dst_p; |
6809 | struct kvm_sev_dbg debug; | |
6810 | unsigned long n; | |
b86bc285 DR |
6811 | unsigned int size; |
6812 | int ret; | |
24f41fb2 BS |
6813 | |
6814 | if (!sev_guest(kvm)) | |
6815 | return -ENOTTY; | |
6816 | ||
6817 | if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) | |
6818 | return -EFAULT; | |
6819 | ||
b86bc285 DR |
6820 | if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) |
6821 | return -EINVAL; | |
6822 | if (!debug.dst_uaddr) | |
6823 | return -EINVAL; | |
6824 | ||
24f41fb2 BS |
6825 | vaddr = debug.src_uaddr; |
6826 | size = debug.len; | |
6827 | vaddr_end = vaddr + size; | |
6828 | dst_vaddr = debug.dst_uaddr; | |
24f41fb2 BS |
6829 | |
6830 | for (; vaddr < vaddr_end; vaddr = next_vaddr) { | |
6831 | int len, s_off, d_off; | |
6832 | ||
6833 | /* lock userspace source and destination page */ | |
6834 | src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); | |
6835 | if (!src_p) | |
6836 | return -EFAULT; | |
6837 | ||
6838 | dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); | |
6839 | if (!dst_p) { | |
6840 | sev_unpin_memory(kvm, src_p, n); | |
6841 | return -EFAULT; | |
6842 | } | |
6843 | ||
6844 | /* | |
6845 | * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the | |
6846 | * memory content (i.e it will write the same memory region with C=1). | |
6847 | * It's possible that the cache may contain the data with C=0, i.e., | |
6848 | * unencrypted so invalidate it first. | |
6849 | */ | |
6850 | sev_clflush_pages(src_p, 1); | |
6851 | sev_clflush_pages(dst_p, 1); | |
6852 | ||
6853 | /* | |
6854 | * Since user buffer may not be page aligned, calculate the | |
6855 | * offset within the page. | |
6856 | */ | |
6857 | s_off = vaddr & ~PAGE_MASK; | |
6858 | d_off = dst_vaddr & ~PAGE_MASK; | |
6859 | len = min_t(size_t, (PAGE_SIZE - s_off), size); | |
6860 | ||
7d1594f5 BS |
6861 | if (dec) |
6862 | ret = __sev_dbg_decrypt_user(kvm, | |
6863 | __sme_page_pa(src_p[0]) + s_off, | |
6864 | dst_vaddr, | |
6865 | __sme_page_pa(dst_p[0]) + d_off, | |
6866 | len, &argp->error); | |
6867 | else | |
6868 | ret = __sev_dbg_encrypt_user(kvm, | |
6869 | __sme_page_pa(src_p[0]) + s_off, | |
6870 | vaddr, | |
6871 | __sme_page_pa(dst_p[0]) + d_off, | |
6872 | dst_vaddr, | |
6873 | len, &argp->error); | |
24f41fb2 | 6874 | |
b86bc285 DR |
6875 | sev_unpin_memory(kvm, src_p, n); |
6876 | sev_unpin_memory(kvm, dst_p, n); | |
24f41fb2 BS |
6877 | |
6878 | if (ret) | |
6879 | goto err; | |
6880 | ||
6881 | next_vaddr = vaddr + len; | |
6882 | dst_vaddr = dst_vaddr + len; | |
6883 | size -= len; | |
6884 | } | |
6885 | err: | |
6886 | return ret; | |
6887 | } | |
6888 | ||
9f5b5b95 BS |
6889 | static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) |
6890 | { | |
81811c16 | 6891 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
9f5b5b95 BS |
6892 | struct sev_data_launch_secret *data; |
6893 | struct kvm_sev_launch_secret params; | |
6894 | struct page **pages; | |
6895 | void *blob, *hdr; | |
6896 | unsigned long n; | |
9c5e0afa | 6897 | int ret, offset; |
9f5b5b95 BS |
6898 | |
6899 | if (!sev_guest(kvm)) | |
6900 | return -ENOTTY; | |
6901 | ||
6902 | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) | |
6903 | return -EFAULT; | |
6904 | ||
6905 | pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); | |
6906 | if (!pages) | |
6907 | return -ENOMEM; | |
6908 | ||
6909 | /* | |
6910 | * The secret must be copied into contiguous memory region, lets verify | |
6911 | * that userspace memory pages are contiguous before we issue command. | |
6912 | */ | |
6913 | if (get_num_contig_pages(0, pages, n) != n) { | |
6914 | ret = -EINVAL; | |
6915 | goto e_unpin_memory; | |
6916 | } | |
6917 | ||
6918 | ret = -ENOMEM; | |
1ec69647 | 6919 | data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
9f5b5b95 BS |
6920 | if (!data) |
6921 | goto e_unpin_memory; | |
6922 | ||
9c5e0afa BS |
6923 | offset = params.guest_uaddr & (PAGE_SIZE - 1); |
6924 | data->guest_address = __sme_page_pa(pages[0]) + offset; | |
6925 | data->guest_len = params.guest_len; | |
6926 | ||
9f5b5b95 BS |
6927 | blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); |
6928 | if (IS_ERR(blob)) { | |
6929 | ret = PTR_ERR(blob); | |
6930 | goto e_free; | |
6931 | } | |
6932 | ||
6933 | data->trans_address = __psp_pa(blob); | |
6934 | data->trans_len = params.trans_len; | |
6935 | ||
6936 | hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); | |
6937 | if (IS_ERR(hdr)) { | |
6938 | ret = PTR_ERR(hdr); | |
6939 | goto e_free_blob; | |
6940 | } | |
9c5e0afa BS |
6941 | data->hdr_address = __psp_pa(hdr); |
6942 | data->hdr_len = params.hdr_len; | |
9f5b5b95 BS |
6943 | |
6944 | data->handle = sev->handle; | |
6945 | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error); | |
6946 | ||
6947 | kfree(hdr); | |
6948 | ||
6949 | e_free_blob: | |
6950 | kfree(blob); | |
6951 | e_free: | |
6952 | kfree(data); | |
6953 | e_unpin_memory: | |
6954 | sev_unpin_memory(kvm, pages, n); | |
6955 | return ret; | |
6956 | } | |
6957 | ||
1654efcb BS |
6958 | static int svm_mem_enc_op(struct kvm *kvm, void __user *argp) |
6959 | { | |
6960 | struct kvm_sev_cmd sev_cmd; | |
6961 | int r; | |
6962 | ||
6963 | if (!svm_sev_enabled()) | |
6964 | return -ENOTTY; | |
6965 | ||
6966 | if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) | |
6967 | return -EFAULT; | |
6968 | ||
6969 | mutex_lock(&kvm->lock); | |
6970 | ||
6971 | switch (sev_cmd.id) { | |
6972 | case KVM_SEV_INIT: | |
6973 | r = sev_guest_init(kvm, &sev_cmd); | |
6974 | break; | |
59414c98 BS |
6975 | case KVM_SEV_LAUNCH_START: |
6976 | r = sev_launch_start(kvm, &sev_cmd); | |
6977 | break; | |
89c50580 BS |
6978 | case KVM_SEV_LAUNCH_UPDATE_DATA: |
6979 | r = sev_launch_update_data(kvm, &sev_cmd); | |
6980 | break; | |
0d0736f7 BS |
6981 | case KVM_SEV_LAUNCH_MEASURE: |
6982 | r = sev_launch_measure(kvm, &sev_cmd); | |
6983 | break; | |
5bdb0e2f BS |
6984 | case KVM_SEV_LAUNCH_FINISH: |
6985 | r = sev_launch_finish(kvm, &sev_cmd); | |
6986 | break; | |
255d9e75 BS |
6987 | case KVM_SEV_GUEST_STATUS: |
6988 | r = sev_guest_status(kvm, &sev_cmd); | |
6989 | break; | |
24f41fb2 BS |
6990 | case KVM_SEV_DBG_DECRYPT: |
6991 | r = sev_dbg_crypt(kvm, &sev_cmd, true); | |
6992 | break; | |
7d1594f5 BS |
6993 | case KVM_SEV_DBG_ENCRYPT: |
6994 | r = sev_dbg_crypt(kvm, &sev_cmd, false); | |
6995 | break; | |
9f5b5b95 BS |
6996 | case KVM_SEV_LAUNCH_SECRET: |
6997 | r = sev_launch_secret(kvm, &sev_cmd); | |
6998 | break; | |
1654efcb BS |
6999 | default: |
7000 | r = -EINVAL; | |
7001 | goto out; | |
7002 | } | |
7003 | ||
7004 | if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) | |
7005 | r = -EFAULT; | |
7006 | ||
7007 | out: | |
7008 | mutex_unlock(&kvm->lock); | |
7009 | return r; | |
7010 | } | |
7011 | ||
1e80fdc0 BS |
7012 | static int svm_register_enc_region(struct kvm *kvm, |
7013 | struct kvm_enc_region *range) | |
7014 | { | |
81811c16 | 7015 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
1e80fdc0 BS |
7016 | struct enc_region *region; |
7017 | int ret = 0; | |
7018 | ||
7019 | if (!sev_guest(kvm)) | |
7020 | return -ENOTTY; | |
7021 | ||
86bf20cb DC |
7022 | if (range->addr > ULONG_MAX || range->size > ULONG_MAX) |
7023 | return -EINVAL; | |
7024 | ||
1ec69647 | 7025 | region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); |
1e80fdc0 BS |
7026 | if (!region) |
7027 | return -ENOMEM; | |
7028 | ||
7029 | region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); | |
7030 | if (!region->pages) { | |
7031 | ret = -ENOMEM; | |
7032 | goto e_free; | |
7033 | } | |
7034 | ||
7035 | /* | |
7036 | * The guest may change the memory encryption attribute from C=0 -> C=1 | |
7037 | * or vice versa for this memory range. Lets make sure caches are | |
7038 | * flushed to ensure that guest data gets written into memory with | |
7039 | * correct C-bit. | |
7040 | */ | |
7041 | sev_clflush_pages(region->pages, region->npages); | |
7042 | ||
7043 | region->uaddr = range->addr; | |
7044 | region->size = range->size; | |
7045 | ||
7046 | mutex_lock(&kvm->lock); | |
7047 | list_add_tail(®ion->list, &sev->regions_list); | |
7048 | mutex_unlock(&kvm->lock); | |
7049 | ||
7050 | return ret; | |
7051 | ||
7052 | e_free: | |
7053 | kfree(region); | |
7054 | return ret; | |
7055 | } | |
7056 | ||
7057 | static struct enc_region * | |
7058 | find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) | |
7059 | { | |
81811c16 | 7060 | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
1e80fdc0 BS |
7061 | struct list_head *head = &sev->regions_list; |
7062 | struct enc_region *i; | |
7063 | ||
7064 | list_for_each_entry(i, head, list) { | |
7065 | if (i->uaddr == range->addr && | |
7066 | i->size == range->size) | |
7067 | return i; | |
7068 | } | |
7069 | ||
7070 | return NULL; | |
7071 | } | |
7072 | ||
7073 | ||
7074 | static int svm_unregister_enc_region(struct kvm *kvm, | |
7075 | struct kvm_enc_region *range) | |
7076 | { | |
7077 | struct enc_region *region; | |
7078 | int ret; | |
7079 | ||
7080 | mutex_lock(&kvm->lock); | |
7081 | ||
7082 | if (!sev_guest(kvm)) { | |
7083 | ret = -ENOTTY; | |
7084 | goto failed; | |
7085 | } | |
7086 | ||
7087 | region = find_enc_region(kvm, range); | |
7088 | if (!region) { | |
7089 | ret = -EINVAL; | |
7090 | goto failed; | |
7091 | } | |
7092 | ||
7093 | __unregister_enc_region_locked(kvm, region); | |
7094 | ||
7095 | mutex_unlock(&kvm->lock); | |
7096 | return 0; | |
7097 | ||
7098 | failed: | |
7099 | mutex_unlock(&kvm->lock); | |
7100 | return ret; | |
7101 | } | |
7102 | ||
e2e871ab VK |
7103 | static uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu) |
7104 | { | |
7105 | /* Not supported */ | |
7106 | return 0; | |
7107 | } | |
7108 | ||
57b119da VK |
7109 | static int nested_enable_evmcs(struct kvm_vcpu *vcpu, |
7110 | uint16_t *vmcs_version) | |
7111 | { | |
7112 | /* Intel-only feature */ | |
7113 | return -ENODEV; | |
7114 | } | |
7115 | ||
05d5a486 SB |
7116 | static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu) |
7117 | { | |
7118 | bool is_user, smap; | |
7119 | ||
7120 | is_user = svm_get_cpl(vcpu) == 3; | |
7121 | smap = !kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); | |
7122 | ||
7123 | /* | |
7124 | * Detect and workaround Errata 1096 Fam_17h_00_0Fh | |
7125 | * | |
7126 | * In non SEV guest, hypervisor will be able to read the guest | |
7127 | * memory to decode the instruction pointer when insn_len is zero | |
7128 | * so we return true to indicate that decoding is possible. | |
7129 | * | |
7130 | * But in the SEV guest, the guest memory is encrypted with the | |
7131 | * guest specific key and hypervisor will not be able to decode the | |
7132 | * instruction pointer so we will not able to workaround it. Lets | |
7133 | * print the error and request to kill the guest. | |
7134 | */ | |
7135 | if (is_user && smap) { | |
7136 | if (!sev_guest(vcpu->kvm)) | |
7137 | return true; | |
7138 | ||
7139 | pr_err_ratelimited("KVM: Guest triggered AMD Erratum 1096\n"); | |
7140 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | |
7141 | } | |
7142 | ||
7143 | return false; | |
7144 | } | |
7145 | ||
404f6aac | 7146 | static struct kvm_x86_ops svm_x86_ops __ro_after_init = { |
6aa8b732 AK |
7147 | .cpu_has_kvm_support = has_svm, |
7148 | .disabled_by_bios = is_disabled, | |
7149 | .hardware_setup = svm_hardware_setup, | |
7150 | .hardware_unsetup = svm_hardware_unsetup, | |
002c7f7c | 7151 | .check_processor_compatibility = svm_check_processor_compat, |
6aa8b732 AK |
7152 | .hardware_enable = svm_hardware_enable, |
7153 | .hardware_disable = svm_hardware_disable, | |
774ead3a | 7154 | .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, |
bc226f07 | 7155 | .has_emulated_msr = svm_has_emulated_msr, |
6aa8b732 AK |
7156 | |
7157 | .vcpu_create = svm_create_vcpu, | |
7158 | .vcpu_free = svm_free_vcpu, | |
04d2cc77 | 7159 | .vcpu_reset = svm_vcpu_reset, |
6aa8b732 | 7160 | |
434a1e94 SC |
7161 | .vm_alloc = svm_vm_alloc, |
7162 | .vm_free = svm_vm_free, | |
44a95dae | 7163 | .vm_init = avic_vm_init, |
1654efcb | 7164 | .vm_destroy = svm_vm_destroy, |
44a95dae | 7165 | |
04d2cc77 | 7166 | .prepare_guest_switch = svm_prepare_guest_switch, |
6aa8b732 AK |
7167 | .vcpu_load = svm_vcpu_load, |
7168 | .vcpu_put = svm_vcpu_put, | |
8221c137 SS |
7169 | .vcpu_blocking = svm_vcpu_blocking, |
7170 | .vcpu_unblocking = svm_vcpu_unblocking, | |
6aa8b732 | 7171 | |
a96036b8 | 7172 | .update_bp_intercept = update_bp_intercept, |
801e459a | 7173 | .get_msr_feature = svm_get_msr_feature, |
6aa8b732 AK |
7174 | .get_msr = svm_get_msr, |
7175 | .set_msr = svm_set_msr, | |
7176 | .get_segment_base = svm_get_segment_base, | |
7177 | .get_segment = svm_get_segment, | |
7178 | .set_segment = svm_set_segment, | |
2e4d2653 | 7179 | .get_cpl = svm_get_cpl, |
1747fb71 | 7180 | .get_cs_db_l_bits = kvm_get_cs_db_l_bits, |
e8467fda | 7181 | .decache_cr0_guest_bits = svm_decache_cr0_guest_bits, |
aff48baa | 7182 | .decache_cr3 = svm_decache_cr3, |
25c4c276 | 7183 | .decache_cr4_guest_bits = svm_decache_cr4_guest_bits, |
6aa8b732 | 7184 | .set_cr0 = svm_set_cr0, |
6aa8b732 AK |
7185 | .set_cr3 = svm_set_cr3, |
7186 | .set_cr4 = svm_set_cr4, | |
7187 | .set_efer = svm_set_efer, | |
7188 | .get_idt = svm_get_idt, | |
7189 | .set_idt = svm_set_idt, | |
7190 | .get_gdt = svm_get_gdt, | |
7191 | .set_gdt = svm_set_gdt, | |
73aaf249 JK |
7192 | .get_dr6 = svm_get_dr6, |
7193 | .set_dr6 = svm_set_dr6, | |
020df079 | 7194 | .set_dr7 = svm_set_dr7, |
facb0139 | 7195 | .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, |
6de4f3ad | 7196 | .cache_reg = svm_cache_reg, |
6aa8b732 AK |
7197 | .get_rflags = svm_get_rflags, |
7198 | .set_rflags = svm_set_rflags, | |
be94f6b7 | 7199 | |
6aa8b732 | 7200 | .tlb_flush = svm_flush_tlb, |
faff8758 | 7201 | .tlb_flush_gva = svm_flush_tlb_gva, |
6aa8b732 | 7202 | |
6aa8b732 | 7203 | .run = svm_vcpu_run, |
04d2cc77 | 7204 | .handle_exit = handle_exit, |
6aa8b732 | 7205 | .skip_emulated_instruction = skip_emulated_instruction, |
2809f5d2 GC |
7206 | .set_interrupt_shadow = svm_set_interrupt_shadow, |
7207 | .get_interrupt_shadow = svm_get_interrupt_shadow, | |
102d8325 | 7208 | .patch_hypercall = svm_patch_hypercall, |
2a8067f1 | 7209 | .set_irq = svm_set_irq, |
95ba8273 | 7210 | .set_nmi = svm_inject_nmi, |
298101da | 7211 | .queue_exception = svm_queue_exception, |
b463a6f7 | 7212 | .cancel_injection = svm_cancel_injection, |
78646121 | 7213 | .interrupt_allowed = svm_interrupt_allowed, |
95ba8273 | 7214 | .nmi_allowed = svm_nmi_allowed, |
3cfc3092 JK |
7215 | .get_nmi_mask = svm_get_nmi_mask, |
7216 | .set_nmi_mask = svm_set_nmi_mask, | |
95ba8273 GN |
7217 | .enable_nmi_window = enable_nmi_window, |
7218 | .enable_irq_window = enable_irq_window, | |
7219 | .update_cr8_intercept = update_cr8_intercept, | |
8d860bbe | 7220 | .set_virtual_apic_mode = svm_set_virtual_apic_mode, |
d62caabb AS |
7221 | .get_enable_apicv = svm_get_enable_apicv, |
7222 | .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, | |
c7c9c56c | 7223 | .load_eoi_exitmap = svm_load_eoi_exitmap, |
44a95dae SS |
7224 | .hwapic_irr_update = svm_hwapic_irr_update, |
7225 | .hwapic_isr_update = svm_hwapic_isr_update, | |
fa59cc00 | 7226 | .sync_pir_to_irr = kvm_lapic_find_highest_irr, |
be8ca170 | 7227 | .apicv_post_state_restore = avic_post_state_restore, |
cbc94022 IE |
7228 | |
7229 | .set_tss_addr = svm_set_tss_addr, | |
2ac52ab8 | 7230 | .set_identity_map_addr = svm_set_identity_map_addr, |
67253af5 | 7231 | .get_tdp_level = get_npt_level, |
4b12f0de | 7232 | .get_mt_mask = svm_get_mt_mask, |
229456fc | 7233 | |
586f9607 | 7234 | .get_exit_info = svm_get_exit_info, |
586f9607 | 7235 | |
17cc3935 | 7236 | .get_lpage_level = svm_get_lpage_level, |
0e851880 SY |
7237 | |
7238 | .cpuid_update = svm_cpuid_update, | |
4e47c7a6 SY |
7239 | |
7240 | .rdtscp_supported = svm_rdtscp_supported, | |
ad756a16 | 7241 | .invpcid_supported = svm_invpcid_supported, |
93c4adc7 | 7242 | .mpx_supported = svm_mpx_supported, |
55412b2e | 7243 | .xsaves_supported = svm_xsaves_supported, |
66336cab | 7244 | .umip_emulated = svm_umip_emulated, |
86f5201d | 7245 | .pt_supported = svm_pt_supported, |
d4330ef2 JR |
7246 | |
7247 | .set_supported_cpuid = svm_set_supported_cpuid, | |
f5f48ee1 SY |
7248 | |
7249 | .has_wbinvd_exit = svm_has_wbinvd_exit, | |
99e3e30a | 7250 | |
e79f245d | 7251 | .read_l1_tsc_offset = svm_read_l1_tsc_offset, |
326e7425 | 7252 | .write_l1_tsc_offset = svm_write_l1_tsc_offset, |
1c97f0a0 JR |
7253 | |
7254 | .set_tdp_cr3 = set_tdp_cr3, | |
8a76d7f2 JR |
7255 | |
7256 | .check_intercept = svm_check_intercept, | |
a547c6db | 7257 | .handle_external_intr = svm_handle_external_intr, |
ae97a3b8 | 7258 | |
d264ee0c SC |
7259 | .request_immediate_exit = __kvm_request_immediate_exit, |
7260 | ||
ae97a3b8 | 7261 | .sched_in = svm_sched_in, |
25462f7f WH |
7262 | |
7263 | .pmu_ops = &amd_pmu_ops, | |
340d3bc3 | 7264 | .deliver_posted_interrupt = svm_deliver_avic_intr, |
411b44ba | 7265 | .update_pi_irte = svm_update_pi_irte, |
74f16909 | 7266 | .setup_mce = svm_setup_mce, |
0234bf88 | 7267 | |
72d7b374 | 7268 | .smi_allowed = svm_smi_allowed, |
0234bf88 LP |
7269 | .pre_enter_smm = svm_pre_enter_smm, |
7270 | .pre_leave_smm = svm_pre_leave_smm, | |
cc3d967f | 7271 | .enable_smi_window = enable_smi_window, |
1654efcb BS |
7272 | |
7273 | .mem_enc_op = svm_mem_enc_op, | |
1e80fdc0 BS |
7274 | .mem_enc_reg_region = svm_register_enc_region, |
7275 | .mem_enc_unreg_region = svm_unregister_enc_region, | |
57b119da VK |
7276 | |
7277 | .nested_enable_evmcs = nested_enable_evmcs, | |
e2e871ab | 7278 | .nested_get_evmcs_version = nested_get_evmcs_version, |
05d5a486 SB |
7279 | |
7280 | .need_emulation_on_page_fault = svm_need_emulation_on_page_fault, | |
6aa8b732 AK |
7281 | }; |
7282 | ||
7283 | static int __init svm_init(void) | |
7284 | { | |
cb498ea2 | 7285 | return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm), |
0ee75bea | 7286 | __alignof__(struct vcpu_svm), THIS_MODULE); |
6aa8b732 AK |
7287 | } |
7288 | ||
7289 | static void __exit svm_exit(void) | |
7290 | { | |
cb498ea2 | 7291 | kvm_exit(); |
6aa8b732 AK |
7292 | } |
7293 | ||
7294 | module_init(svm_init) | |
7295 | module_exit(svm_exit) |