1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
41 #include <asm/pgalloc.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
50 #include "hugetlb_vmemmap.h"
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
61 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
70 static unsigned long hugetlb_cma_size __initdata;
72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
74 /* for command line parsing */
75 static struct hstate * __initdata parsed_hstate;
76 static unsigned long __initdata default_hstate_max_huge_pages;
77 static bool __initdata parsed_valid_hugepagesz = true;
78 static bool __initdata parsed_default_hugepagesz;
79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83 * free_huge_pages, and surplus_huge_pages.
85 DEFINE_SPINLOCK(hugetlb_lock);
88 * Serializes faults on the same logical page. This is used to
89 * prevent spurious OOMs when the hugepage pool is fully utilized.
91 static int num_fault_mutexes;
92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
94 /* Forward declaration */
95 static int hugetlb_acct_memory(struct hstate *h, long delta);
96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100 unsigned long start, unsigned long end);
101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
103 static inline bool subpool_is_free(struct hugepage_subpool *spool)
107 if (spool->max_hpages != -1)
108 return spool->used_hpages == 0;
109 if (spool->min_hpages != -1)
110 return spool->rsv_hpages == spool->min_hpages;
115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116 unsigned long irq_flags)
118 spin_unlock_irqrestore(&spool->lock, irq_flags);
120 /* If no pages are used, and no other handles to the subpool
121 * remain, give up any reservations based on minimum size and
122 * free the subpool */
123 if (subpool_is_free(spool)) {
124 if (spool->min_hpages != -1)
125 hugetlb_acct_memory(spool->hstate,
131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
134 struct hugepage_subpool *spool;
136 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
140 spin_lock_init(&spool->lock);
142 spool->max_hpages = max_hpages;
144 spool->min_hpages = min_hpages;
146 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
150 spool->rsv_hpages = min_hpages;
155 void hugepage_put_subpool(struct hugepage_subpool *spool)
159 spin_lock_irqsave(&spool->lock, flags);
160 BUG_ON(!spool->count);
162 unlock_or_release_subpool(spool, flags);
166 * Subpool accounting for allocating and reserving pages.
167 * Return -ENOMEM if there are not enough resources to satisfy the
168 * request. Otherwise, return the number of pages by which the
169 * global pools must be adjusted (upward). The returned value may
170 * only be different than the passed value (delta) in the case where
171 * a subpool minimum size must be maintained.
173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
181 spin_lock_irq(&spool->lock);
183 if (spool->max_hpages != -1) { /* maximum size accounting */
184 if ((spool->used_hpages + delta) <= spool->max_hpages)
185 spool->used_hpages += delta;
192 /* minimum size accounting */
193 if (spool->min_hpages != -1 && spool->rsv_hpages) {
194 if (delta > spool->rsv_hpages) {
196 * Asking for more reserves than those already taken on
197 * behalf of subpool. Return difference.
199 ret = delta - spool->rsv_hpages;
200 spool->rsv_hpages = 0;
202 ret = 0; /* reserves already accounted for */
203 spool->rsv_hpages -= delta;
208 spin_unlock_irq(&spool->lock);
213 * Subpool accounting for freeing and unreserving pages.
214 * Return the number of global page reservations that must be dropped.
215 * The return value may only be different than the passed value (delta)
216 * in the case where a subpool minimum size must be maintained.
218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
227 spin_lock_irqsave(&spool->lock, flags);
229 if (spool->max_hpages != -1) /* maximum size accounting */
230 spool->used_hpages -= delta;
232 /* minimum size accounting */
233 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234 if (spool->rsv_hpages + delta <= spool->min_hpages)
237 ret = spool->rsv_hpages + delta - spool->min_hpages;
239 spool->rsv_hpages += delta;
240 if (spool->rsv_hpages > spool->min_hpages)
241 spool->rsv_hpages = spool->min_hpages;
245 * If hugetlbfs_put_super couldn't free spool due to an outstanding
246 * quota reference, free it now.
248 unlock_or_release_subpool(spool, flags);
253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
255 return HUGETLBFS_SB(inode->i_sb)->spool;
258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
260 return subpool_inode(file_inode(vma->vm_file));
264 * hugetlb vma_lock helper routines
266 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
268 if (__vma_shareable_lock(vma)) {
269 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
271 down_read(&vma_lock->rw_sema);
272 } else if (__vma_private_lock(vma)) {
273 struct resv_map *resv_map = vma_resv_map(vma);
275 down_read(&resv_map->rw_sema);
279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
281 if (__vma_shareable_lock(vma)) {
282 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
284 up_read(&vma_lock->rw_sema);
285 } else if (__vma_private_lock(vma)) {
286 struct resv_map *resv_map = vma_resv_map(vma);
288 up_read(&resv_map->rw_sema);
292 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
294 if (__vma_shareable_lock(vma)) {
295 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
297 down_write(&vma_lock->rw_sema);
298 } else if (__vma_private_lock(vma)) {
299 struct resv_map *resv_map = vma_resv_map(vma);
301 down_write(&resv_map->rw_sema);
305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
307 if (__vma_shareable_lock(vma)) {
308 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
310 up_write(&vma_lock->rw_sema);
311 } else if (__vma_private_lock(vma)) {
312 struct resv_map *resv_map = vma_resv_map(vma);
314 up_write(&resv_map->rw_sema);
318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
321 if (__vma_shareable_lock(vma)) {
322 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
324 return down_write_trylock(&vma_lock->rw_sema);
325 } else if (__vma_private_lock(vma)) {
326 struct resv_map *resv_map = vma_resv_map(vma);
328 return down_write_trylock(&resv_map->rw_sema);
334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
336 if (__vma_shareable_lock(vma)) {
337 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
339 lockdep_assert_held(&vma_lock->rw_sema);
340 } else if (__vma_private_lock(vma)) {
341 struct resv_map *resv_map = vma_resv_map(vma);
343 lockdep_assert_held(&resv_map->rw_sema);
347 void hugetlb_vma_lock_release(struct kref *kref)
349 struct hugetlb_vma_lock *vma_lock = container_of(kref,
350 struct hugetlb_vma_lock, refs);
355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
357 struct vm_area_struct *vma = vma_lock->vma;
360 * vma_lock structure may or not be released as a result of put,
361 * it certainly will no longer be attached to vma so clear pointer.
362 * Semaphore synchronizes access to vma_lock->vma field.
364 vma_lock->vma = NULL;
365 vma->vm_private_data = NULL;
366 up_write(&vma_lock->rw_sema);
367 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
372 if (__vma_shareable_lock(vma)) {
373 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
375 __hugetlb_vma_unlock_write_put(vma_lock);
376 } else if (__vma_private_lock(vma)) {
377 struct resv_map *resv_map = vma_resv_map(vma);
379 /* no free for anon vmas, but still need to unlock */
380 up_write(&resv_map->rw_sema);
384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
387 * Only present in sharable vmas.
389 if (!vma || !__vma_shareable_lock(vma))
392 if (vma->vm_private_data) {
393 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
395 down_write(&vma_lock->rw_sema);
396 __hugetlb_vma_unlock_write_put(vma_lock);
400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
402 struct hugetlb_vma_lock *vma_lock;
404 /* Only establish in (flags) sharable vmas */
405 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
408 /* Should never get here with non-NULL vm_private_data */
409 if (vma->vm_private_data)
412 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
415 * If we can not allocate structure, then vma can not
416 * participate in pmd sharing. This is only a possible
417 * performance enhancement and memory saving issue.
418 * However, the lock is also used to synchronize page
419 * faults with truncation. If the lock is not present,
420 * unlikely races could leave pages in a file past i_size
421 * until the file is removed. Warn in the unlikely case of
422 * allocation failure.
424 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
428 kref_init(&vma_lock->refs);
429 init_rwsem(&vma_lock->rw_sema);
431 vma->vm_private_data = vma_lock;
434 /* Helper that removes a struct file_region from the resv_map cache and returns
437 static struct file_region *
438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
440 struct file_region *nrg;
442 VM_BUG_ON(resv->region_cache_count <= 0);
444 resv->region_cache_count--;
445 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446 list_del(&nrg->link);
454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455 struct file_region *rg)
457 #ifdef CONFIG_CGROUP_HUGETLB
458 nrg->reservation_counter = rg->reservation_counter;
465 /* Helper that records hugetlb_cgroup uncharge info. */
466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
468 struct resv_map *resv,
469 struct file_region *nrg)
471 #ifdef CONFIG_CGROUP_HUGETLB
473 nrg->reservation_counter =
474 &h_cg->rsvd_hugepage[hstate_index(h)];
475 nrg->css = &h_cg->css;
477 * The caller will hold exactly one h_cg->css reference for the
478 * whole contiguous reservation region. But this area might be
479 * scattered when there are already some file_regions reside in
480 * it. As a result, many file_regions may share only one css
481 * reference. In order to ensure that one file_region must hold
482 * exactly one h_cg->css reference, we should do css_get for
483 * each file_region and leave the reference held by caller
487 if (!resv->pages_per_hpage)
488 resv->pages_per_hpage = pages_per_huge_page(h);
489 /* pages_per_hpage should be the same for all entries in
492 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
494 nrg->reservation_counter = NULL;
500 static void put_uncharge_info(struct file_region *rg)
502 #ifdef CONFIG_CGROUP_HUGETLB
508 static bool has_same_uncharge_info(struct file_region *rg,
509 struct file_region *org)
511 #ifdef CONFIG_CGROUP_HUGETLB
512 return rg->reservation_counter == org->reservation_counter &&
520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
522 struct file_region *nrg, *prg;
524 prg = list_prev_entry(rg, link);
525 if (&prg->link != &resv->regions && prg->to == rg->from &&
526 has_same_uncharge_info(prg, rg)) {
530 put_uncharge_info(rg);
536 nrg = list_next_entry(rg, link);
537 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538 has_same_uncharge_info(nrg, rg)) {
539 nrg->from = rg->from;
542 put_uncharge_info(rg);
548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549 long to, struct hstate *h, struct hugetlb_cgroup *cg,
550 long *regions_needed)
552 struct file_region *nrg;
554 if (!regions_needed) {
555 nrg = get_file_region_entry_from_cache(map, from, to);
556 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557 list_add(&nrg->link, rg);
558 coalesce_file_region(map, nrg);
560 *regions_needed += 1;
566 * Must be called with resv->lock held.
568 * Calling this with regions_needed != NULL will count the number of pages
569 * to be added but will not modify the linked list. And regions_needed will
570 * indicate the number of file_regions needed in the cache to carry out to add
571 * the regions for this range.
573 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574 struct hugetlb_cgroup *h_cg,
575 struct hstate *h, long *regions_needed)
578 struct list_head *head = &resv->regions;
579 long last_accounted_offset = f;
580 struct file_region *iter, *trg = NULL;
581 struct list_head *rg = NULL;
586 /* In this loop, we essentially handle an entry for the range
587 * [last_accounted_offset, iter->from), at every iteration, with some
590 list_for_each_entry_safe(iter, trg, head, link) {
591 /* Skip irrelevant regions that start before our range. */
592 if (iter->from < f) {
593 /* If this region ends after the last accounted offset,
594 * then we need to update last_accounted_offset.
596 if (iter->to > last_accounted_offset)
597 last_accounted_offset = iter->to;
601 /* When we find a region that starts beyond our range, we've
604 if (iter->from >= t) {
605 rg = iter->link.prev;
609 /* Add an entry for last_accounted_offset -> iter->from, and
610 * update last_accounted_offset.
612 if (iter->from > last_accounted_offset)
613 add += hugetlb_resv_map_add(resv, iter->link.prev,
614 last_accounted_offset,
618 last_accounted_offset = iter->to;
621 /* Handle the case where our range extends beyond
622 * last_accounted_offset.
626 if (last_accounted_offset < t)
627 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628 t, h, h_cg, regions_needed);
633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
635 static int allocate_file_region_entries(struct resv_map *resv,
637 __must_hold(&resv->lock)
639 LIST_HEAD(allocated_regions);
640 int to_allocate = 0, i = 0;
641 struct file_region *trg = NULL, *rg = NULL;
643 VM_BUG_ON(regions_needed < 0);
646 * Check for sufficient descriptors in the cache to accommodate
647 * the number of in progress add operations plus regions_needed.
649 * This is a while loop because when we drop the lock, some other call
650 * to region_add or region_del may have consumed some region_entries,
651 * so we keep looping here until we finally have enough entries for
652 * (adds_in_progress + regions_needed).
654 while (resv->region_cache_count <
655 (resv->adds_in_progress + regions_needed)) {
656 to_allocate = resv->adds_in_progress + regions_needed -
657 resv->region_cache_count;
659 /* At this point, we should have enough entries in the cache
660 * for all the existing adds_in_progress. We should only be
661 * needing to allocate for regions_needed.
663 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
665 spin_unlock(&resv->lock);
666 for (i = 0; i < to_allocate; i++) {
667 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
670 list_add(&trg->link, &allocated_regions);
673 spin_lock(&resv->lock);
675 list_splice(&allocated_regions, &resv->region_cache);
676 resv->region_cache_count += to_allocate;
682 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
690 * Add the huge page range represented by [f, t) to the reserve
691 * map. Regions will be taken from the cache to fill in this range.
692 * Sufficient regions should exist in the cache due to the previous
693 * call to region_chg with the same range, but in some cases the cache will not
694 * have sufficient entries due to races with other code doing region_add or
695 * region_del. The extra needed entries will be allocated.
697 * regions_needed is the out value provided by a previous call to region_chg.
699 * Return the number of new huge pages added to the map. This number is greater
700 * than or equal to zero. If file_region entries needed to be allocated for
701 * this operation and we were not able to allocate, it returns -ENOMEM.
702 * region_add of regions of length 1 never allocate file_regions and cannot
703 * fail; region_chg will always allocate at least 1 entry and a region_add for
704 * 1 page will only require at most 1 entry.
706 static long region_add(struct resv_map *resv, long f, long t,
707 long in_regions_needed, struct hstate *h,
708 struct hugetlb_cgroup *h_cg)
710 long add = 0, actual_regions_needed = 0;
712 spin_lock(&resv->lock);
715 /* Count how many regions are actually needed to execute this add. */
716 add_reservation_in_range(resv, f, t, NULL, NULL,
717 &actual_regions_needed);
720 * Check for sufficient descriptors in the cache to accommodate
721 * this add operation. Note that actual_regions_needed may be greater
722 * than in_regions_needed, as the resv_map may have been modified since
723 * the region_chg call. In this case, we need to make sure that we
724 * allocate extra entries, such that we have enough for all the
725 * existing adds_in_progress, plus the excess needed for this
728 if (actual_regions_needed > in_regions_needed &&
729 resv->region_cache_count <
730 resv->adds_in_progress +
731 (actual_regions_needed - in_regions_needed)) {
732 /* region_add operation of range 1 should never need to
733 * allocate file_region entries.
735 VM_BUG_ON(t - f <= 1);
737 if (allocate_file_region_entries(
738 resv, actual_regions_needed - in_regions_needed)) {
745 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
747 resv->adds_in_progress -= in_regions_needed;
749 spin_unlock(&resv->lock);
754 * Examine the existing reserve map and determine how many
755 * huge pages in the specified range [f, t) are NOT currently
756 * represented. This routine is called before a subsequent
757 * call to region_add that will actually modify the reserve
758 * map to add the specified range [f, t). region_chg does
759 * not change the number of huge pages represented by the
760 * map. A number of new file_region structures is added to the cache as a
761 * placeholder, for the subsequent region_add call to use. At least 1
762 * file_region structure is added.
764 * out_regions_needed is the number of regions added to the
765 * resv->adds_in_progress. This value needs to be provided to a follow up call
766 * to region_add or region_abort for proper accounting.
768 * Returns the number of huge pages that need to be added to the existing
769 * reservation map for the range [f, t). This number is greater or equal to
770 * zero. -ENOMEM is returned if a new file_region structure or cache entry
771 * is needed and can not be allocated.
773 static long region_chg(struct resv_map *resv, long f, long t,
774 long *out_regions_needed)
778 spin_lock(&resv->lock);
780 /* Count how many hugepages in this range are NOT represented. */
781 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
784 if (*out_regions_needed == 0)
785 *out_regions_needed = 1;
787 if (allocate_file_region_entries(resv, *out_regions_needed))
790 resv->adds_in_progress += *out_regions_needed;
792 spin_unlock(&resv->lock);
797 * Abort the in progress add operation. The adds_in_progress field
798 * of the resv_map keeps track of the operations in progress between
799 * calls to region_chg and region_add. Operations are sometimes
800 * aborted after the call to region_chg. In such cases, region_abort
801 * is called to decrement the adds_in_progress counter. regions_needed
802 * is the value returned by the region_chg call, it is used to decrement
803 * the adds_in_progress counter.
805 * NOTE: The range arguments [f, t) are not needed or used in this
806 * routine. They are kept to make reading the calling code easier as
807 * arguments will match the associated region_chg call.
809 static void region_abort(struct resv_map *resv, long f, long t,
812 spin_lock(&resv->lock);
813 VM_BUG_ON(!resv->region_cache_count);
814 resv->adds_in_progress -= regions_needed;
815 spin_unlock(&resv->lock);
819 * Delete the specified range [f, t) from the reserve map. If the
820 * t parameter is LONG_MAX, this indicates that ALL regions after f
821 * should be deleted. Locate the regions which intersect [f, t)
822 * and either trim, delete or split the existing regions.
824 * Returns the number of huge pages deleted from the reserve map.
825 * In the normal case, the return value is zero or more. In the
826 * case where a region must be split, a new region descriptor must
827 * be allocated. If the allocation fails, -ENOMEM will be returned.
828 * NOTE: If the parameter t == LONG_MAX, then we will never split
829 * a region and possibly return -ENOMEM. Callers specifying
830 * t == LONG_MAX do not need to check for -ENOMEM error.
832 static long region_del(struct resv_map *resv, long f, long t)
834 struct list_head *head = &resv->regions;
835 struct file_region *rg, *trg;
836 struct file_region *nrg = NULL;
840 spin_lock(&resv->lock);
841 list_for_each_entry_safe(rg, trg, head, link) {
843 * Skip regions before the range to be deleted. file_region
844 * ranges are normally of the form [from, to). However, there
845 * may be a "placeholder" entry in the map which is of the form
846 * (from, to) with from == to. Check for placeholder entries
847 * at the beginning of the range to be deleted.
849 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
855 if (f > rg->from && t < rg->to) { /* Must split region */
857 * Check for an entry in the cache before dropping
858 * lock and attempting allocation.
861 resv->region_cache_count > resv->adds_in_progress) {
862 nrg = list_first_entry(&resv->region_cache,
865 list_del(&nrg->link);
866 resv->region_cache_count--;
870 spin_unlock(&resv->lock);
871 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
878 hugetlb_cgroup_uncharge_file_region(
879 resv, rg, t - f, false);
881 /* New entry for end of split region */
885 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
887 INIT_LIST_HEAD(&nrg->link);
889 /* Original entry is trimmed */
892 list_add(&nrg->link, &rg->link);
897 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898 del += rg->to - rg->from;
899 hugetlb_cgroup_uncharge_file_region(resv, rg,
900 rg->to - rg->from, true);
906 if (f <= rg->from) { /* Trim beginning of region */
907 hugetlb_cgroup_uncharge_file_region(resv, rg,
908 t - rg->from, false);
912 } else { /* Trim end of region */
913 hugetlb_cgroup_uncharge_file_region(resv, rg,
921 spin_unlock(&resv->lock);
927 * A rare out of memory error was encountered which prevented removal of
928 * the reserve map region for a page. The huge page itself was free'ed
929 * and removed from the page cache. This routine will adjust the subpool
930 * usage count, and the global reserve count if needed. By incrementing
931 * these counts, the reserve map entry which could not be deleted will
932 * appear as a "reserved" entry instead of simply dangling with incorrect
935 void hugetlb_fix_reserve_counts(struct inode *inode)
937 struct hugepage_subpool *spool = subpool_inode(inode);
939 bool reserved = false;
941 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942 if (rsv_adjust > 0) {
943 struct hstate *h = hstate_inode(inode);
945 if (!hugetlb_acct_memory(h, 1))
947 } else if (!rsv_adjust) {
952 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
956 * Count and return the number of huge pages in the reserve map
957 * that intersect with the range [f, t).
959 static long region_count(struct resv_map *resv, long f, long t)
961 struct list_head *head = &resv->regions;
962 struct file_region *rg;
965 spin_lock(&resv->lock);
966 /* Locate each segment we overlap with, and count that overlap. */
967 list_for_each_entry(rg, head, link) {
976 seg_from = max(rg->from, f);
977 seg_to = min(rg->to, t);
979 chg += seg_to - seg_from;
981 spin_unlock(&resv->lock);
987 * Convert the address within this vma to the page offset within
988 * the mapping, huge page units here.
990 static pgoff_t vma_hugecache_offset(struct hstate *h,
991 struct vm_area_struct *vma, unsigned long address)
993 return ((address - vma->vm_start) >> huge_page_shift(h)) +
994 (vma->vm_pgoff >> huge_page_order(h));
998 * vma_kernel_pagesize - Page size granularity for this VMA.
999 * @vma: The user mapping.
1001 * Folios in this VMA will be aligned to, and at least the size of the
1002 * number of bytes returned by this function.
1004 * Return: The default size of the folios allocated when backing a VMA.
1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1008 if (vma->vm_ops && vma->vm_ops->pagesize)
1009 return vma->vm_ops->pagesize(vma);
1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1015 * Return the page size being used by the MMU to back a VMA. In the majority
1016 * of cases, the page size used by the kernel matches the MMU size. On
1017 * architectures where it differs, an architecture-specific 'strong'
1018 * version of this symbol is required.
1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1022 return vma_kernel_pagesize(vma);
1026 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1027 * bits of the reservation map pointer, which are always clear due to
1030 #define HPAGE_RESV_OWNER (1UL << 0)
1031 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1035 * These helpers are used to track how many pages are reserved for
1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037 * is guaranteed to have their future faults succeed.
1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040 * the reserve counters are updated with the hugetlb_lock held. It is safe
1041 * to reset the VMA at fork() time as it is not in use yet and there is no
1042 * chance of the global counters getting corrupted as a result of the values.
1044 * The private mapping reservation is represented in a subtly different
1045 * manner to a shared mapping. A shared mapping has a region map associated
1046 * with the underlying file, this region map represents the backing file
1047 * pages which have ever had a reservation assigned which this persists even
1048 * after the page is instantiated. A private mapping has a region map
1049 * associated with the original mmap which is attached to all VMAs which
1050 * reference it, this region map represents those offsets which have consumed
1051 * reservation ie. where pages have been instantiated.
1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1055 return (unsigned long)vma->vm_private_data;
1058 static void set_vma_private_data(struct vm_area_struct *vma,
1059 unsigned long value)
1061 vma->vm_private_data = (void *)value;
1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066 struct hugetlb_cgroup *h_cg,
1069 #ifdef CONFIG_CGROUP_HUGETLB
1071 resv_map->reservation_counter = NULL;
1072 resv_map->pages_per_hpage = 0;
1073 resv_map->css = NULL;
1075 resv_map->reservation_counter =
1076 &h_cg->rsvd_hugepage[hstate_index(h)];
1077 resv_map->pages_per_hpage = pages_per_huge_page(h);
1078 resv_map->css = &h_cg->css;
1083 struct resv_map *resv_map_alloc(void)
1085 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1088 if (!resv_map || !rg) {
1094 kref_init(&resv_map->refs);
1095 spin_lock_init(&resv_map->lock);
1096 INIT_LIST_HEAD(&resv_map->regions);
1097 init_rwsem(&resv_map->rw_sema);
1099 resv_map->adds_in_progress = 0;
1101 * Initialize these to 0. On shared mappings, 0's here indicate these
1102 * fields don't do cgroup accounting. On private mappings, these will be
1103 * re-initialized to the proper values, to indicate that hugetlb cgroup
1104 * reservations are to be un-charged from here.
1106 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1108 INIT_LIST_HEAD(&resv_map->region_cache);
1109 list_add(&rg->link, &resv_map->region_cache);
1110 resv_map->region_cache_count = 1;
1115 void resv_map_release(struct kref *ref)
1117 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118 struct list_head *head = &resv_map->region_cache;
1119 struct file_region *rg, *trg;
1121 /* Clear out any active regions before we release the map. */
1122 region_del(resv_map, 0, LONG_MAX);
1124 /* ... and any entries left in the cache */
1125 list_for_each_entry_safe(rg, trg, head, link) {
1126 list_del(&rg->link);
1130 VM_BUG_ON(resv_map->adds_in_progress);
1135 static inline struct resv_map *inode_resv_map(struct inode *inode)
1138 * At inode evict time, i_mapping may not point to the original
1139 * address space within the inode. This original address space
1140 * contains the pointer to the resv_map. So, always use the
1141 * address space embedded within the inode.
1142 * The VERY common case is inode->mapping == &inode->i_data but,
1143 * this may not be true for device special inodes.
1145 return (struct resv_map *)(&inode->i_data)->i_private_data;
1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 if (vma->vm_flags & VM_MAYSHARE) {
1152 struct address_space *mapping = vma->vm_file->f_mapping;
1153 struct inode *inode = mapping->host;
1155 return inode_resv_map(inode);
1158 return (struct resv_map *)(get_vma_private_data(vma) &
1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1165 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1168 set_vma_private_data(vma, (unsigned long)map);
1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1176 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1181 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1183 return (get_vma_private_data(vma) & flag) != 0;
1186 bool __vma_private_lock(struct vm_area_struct *vma)
1188 return !(vma->vm_flags & VM_MAYSHARE) &&
1189 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1197 * Clear vm_private_data
1198 * - For shared mappings this is a per-vma semaphore that may be
1199 * allocated in a subsequent call to hugetlb_vm_op_open.
1200 * Before clearing, make sure pointer is not associated with vma
1201 * as this will leak the structure. This is the case when called
1202 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203 * been called to allocate a new structure.
1204 * - For MAP_PRIVATE mappings, this is the reserve map which does
1205 * not apply to children. Faults generated by the children are
1206 * not guaranteed to succeed, even if read-only.
1208 if (vma->vm_flags & VM_MAYSHARE) {
1209 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1211 if (vma_lock && vma_lock->vma != vma)
1212 vma->vm_private_data = NULL;
1214 vma->vm_private_data = NULL;
1218 * Reset and decrement one ref on hugepage private reservation.
1219 * Called with mm->mmap_lock writer semaphore held.
1220 * This function should be only used by move_vma() and operate on
1221 * same sized vma. It should never come here with last ref on the
1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1227 * Clear the old hugetlb private page reservation.
1228 * It has already been transferred to new_vma.
1230 * During a mremap() operation of a hugetlb vma we call move_vma()
1231 * which copies vma into new_vma and unmaps vma. After the copy
1232 * operation both new_vma and vma share a reference to the resv_map
1233 * struct, and at that point vma is about to be unmapped. We don't
1234 * want to return the reservation to the pool at unmap of vma because
1235 * the reservation still lives on in new_vma, so simply decrement the
1236 * ref here and remove the resv_map reference from this vma.
1238 struct resv_map *reservations = vma_resv_map(vma);
1240 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242 kref_put(&reservations->refs, resv_map_release);
1245 hugetlb_dup_vma_private(vma);
1248 /* Returns true if the VMA has associated reserve pages */
1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1251 if (vma->vm_flags & VM_NORESERVE) {
1253 * This address is already reserved by other process(chg == 0),
1254 * so, we should decrement reserved count. Without decrementing,
1255 * reserve count remains after releasing inode, because this
1256 * allocated page will go into page cache and is regarded as
1257 * coming from reserved pool in releasing step. Currently, we
1258 * don't have any other solution to deal with this situation
1259 * properly, so add work-around here.
1261 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1267 /* Shared mappings always use reserves */
1268 if (vma->vm_flags & VM_MAYSHARE) {
1270 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1271 * be a region map for all pages. The only situation where
1272 * there is no region map is if a hole was punched via
1273 * fallocate. In this case, there really are no reserves to
1274 * use. This situation is indicated if chg != 0.
1283 * Only the process that called mmap() has reserves for
1286 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1288 * Like the shared case above, a hole punch or truncate
1289 * could have been performed on the private mapping.
1290 * Examine the value of chg to determine if reserves
1291 * actually exist or were previously consumed.
1292 * Very Subtle - The value of chg comes from a previous
1293 * call to vma_needs_reserves(). The reserve map for
1294 * private mappings has different (opposite) semantics
1295 * than that of shared mappings. vma_needs_reserves()
1296 * has already taken this difference in semantics into
1297 * account. Therefore, the meaning of chg is the same
1298 * as in the shared case above. Code could easily be
1299 * combined, but keeping it separate draws attention to
1300 * subtle differences.
1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1313 int nid = folio_nid(folio);
1315 lockdep_assert_held(&hugetlb_lock);
1316 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1318 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319 h->free_huge_pages++;
1320 h->free_huge_pages_node[nid]++;
1321 folio_set_hugetlb_freed(folio);
1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1327 struct folio *folio;
1328 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1330 lockdep_assert_held(&hugetlb_lock);
1331 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332 if (pin && !folio_is_longterm_pinnable(folio))
1335 if (folio_test_hwpoison(folio))
1338 list_move(&folio->lru, &h->hugepage_activelist);
1339 folio_ref_unfreeze(folio, 1);
1340 folio_clear_hugetlb_freed(folio);
1341 h->free_huge_pages--;
1342 h->free_huge_pages_node[nid]--;
1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350 int nid, nodemask_t *nmask)
1352 unsigned int cpuset_mems_cookie;
1353 struct zonelist *zonelist;
1356 int node = NUMA_NO_NODE;
1358 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1359 if (nid == NUMA_NO_NODE)
1360 nid = numa_node_id();
1362 zonelist = node_zonelist(nid, gfp_mask);
1365 cpuset_mems_cookie = read_mems_allowed_begin();
1366 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1367 struct folio *folio;
1369 if (!cpuset_zone_allowed(zone, gfp_mask))
1372 * no need to ask again on the same node. Pool is node rather than
1375 if (zone_to_nid(zone) == node)
1377 node = zone_to_nid(zone);
1379 folio = dequeue_hugetlb_folio_node_exact(h, node);
1383 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1389 static unsigned long available_huge_pages(struct hstate *h)
1391 return h->free_huge_pages - h->resv_huge_pages;
1394 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1395 struct vm_area_struct *vma,
1396 unsigned long address, int avoid_reserve,
1399 struct folio *folio = NULL;
1400 struct mempolicy *mpol;
1402 nodemask_t *nodemask;
1406 * A child process with MAP_PRIVATE mappings created by their parent
1407 * have no page reserves. This check ensures that reservations are
1408 * not "stolen". The child may still get SIGKILLed
1410 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1413 /* If reserves cannot be used, ensure enough pages are in the pool */
1414 if (avoid_reserve && !available_huge_pages(h))
1417 gfp_mask = htlb_alloc_mask(h);
1418 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1420 if (mpol_is_preferred_many(mpol)) {
1421 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1424 /* Fallback to all nodes if page==NULL */
1429 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1432 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1433 folio_set_hugetlb_restore_reserve(folio);
1434 h->resv_huge_pages--;
1437 mpol_cond_put(mpol);
1445 * common helper functions for hstate_next_node_to_{alloc|free}.
1446 * We may have allocated or freed a huge page based on a different
1447 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1448 * be outside of *nodes_allowed. Ensure that we use an allowed
1449 * node for alloc or free.
1451 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1453 nid = next_node_in(nid, *nodes_allowed);
1454 VM_BUG_ON(nid >= MAX_NUMNODES);
1459 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1461 if (!node_isset(nid, *nodes_allowed))
1462 nid = next_node_allowed(nid, nodes_allowed);
1467 * returns the previously saved node ["this node"] from which to
1468 * allocate a persistent huge page for the pool and advance the
1469 * next node from which to allocate, handling wrap at end of node
1472 static int hstate_next_node_to_alloc(int *next_node,
1473 nodemask_t *nodes_allowed)
1477 VM_BUG_ON(!nodes_allowed);
1479 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1480 *next_node = next_node_allowed(nid, nodes_allowed);
1486 * helper for remove_pool_hugetlb_folio() - return the previously saved
1487 * node ["this node"] from which to free a huge page. Advance the
1488 * next node id whether or not we find a free huge page to free so
1489 * that the next attempt to free addresses the next node.
1491 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1495 VM_BUG_ON(!nodes_allowed);
1497 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1498 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1503 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1504 for (nr_nodes = nodes_weight(*mask); \
1506 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1509 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1510 for (nr_nodes = nodes_weight(*mask); \
1512 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1515 /* used to demote non-gigantic_huge pages as well */
1516 static void __destroy_compound_gigantic_folio(struct folio *folio,
1517 unsigned int order, bool demote)
1520 int nr_pages = 1 << order;
1523 atomic_set(&folio->_entire_mapcount, 0);
1524 atomic_set(&folio->_large_mapcount, 0);
1525 atomic_set(&folio->_pincount, 0);
1527 for (i = 1; i < nr_pages; i++) {
1528 p = folio_page(folio, i);
1529 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1531 clear_compound_head(p);
1533 set_page_refcounted(p);
1536 __folio_clear_head(folio);
1539 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1542 __destroy_compound_gigantic_folio(folio, order, true);
1545 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1546 static void destroy_compound_gigantic_folio(struct folio *folio,
1549 __destroy_compound_gigantic_folio(folio, order, false);
1552 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1555 * If the page isn't allocated using the cma allocator,
1556 * cma_release() returns false.
1559 int nid = folio_nid(folio);
1561 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1565 free_contig_range(folio_pfn(folio), 1 << order);
1568 #ifdef CONFIG_CONTIG_ALLOC
1569 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1570 int nid, nodemask_t *nodemask)
1573 unsigned long nr_pages = pages_per_huge_page(h);
1574 if (nid == NUMA_NO_NODE)
1575 nid = numa_mem_id();
1581 if (hugetlb_cma[nid]) {
1582 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1583 huge_page_order(h), true);
1585 return page_folio(page);
1588 if (!(gfp_mask & __GFP_THISNODE)) {
1589 for_each_node_mask(node, *nodemask) {
1590 if (node == nid || !hugetlb_cma[node])
1593 page = cma_alloc(hugetlb_cma[node], nr_pages,
1594 huge_page_order(h), true);
1596 return page_folio(page);
1602 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1603 return page ? page_folio(page) : NULL;
1606 #else /* !CONFIG_CONTIG_ALLOC */
1607 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1608 int nid, nodemask_t *nodemask)
1612 #endif /* CONFIG_CONTIG_ALLOC */
1614 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1615 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1616 int nid, nodemask_t *nodemask)
1620 static inline void free_gigantic_folio(struct folio *folio,
1621 unsigned int order) { }
1622 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1623 unsigned int order) { }
1627 * Remove hugetlb folio from lists.
1628 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1629 * folio appears as just a compound page. Otherwise, wait until after
1630 * allocating vmemmap to clear the flag.
1632 * Must be called with hugetlb lock held.
1634 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1635 bool adjust_surplus)
1637 int nid = folio_nid(folio);
1639 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1640 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1642 lockdep_assert_held(&hugetlb_lock);
1643 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1646 list_del(&folio->lru);
1648 if (folio_test_hugetlb_freed(folio)) {
1649 folio_clear_hugetlb_freed(folio);
1650 h->free_huge_pages--;
1651 h->free_huge_pages_node[nid]--;
1653 if (adjust_surplus) {
1654 h->surplus_huge_pages--;
1655 h->surplus_huge_pages_node[nid]--;
1659 * We can only clear the hugetlb flag after allocating vmemmap
1660 * pages. Otherwise, someone (memory error handling) may try to write
1661 * to tail struct pages.
1663 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1664 __folio_clear_hugetlb(folio);
1667 h->nr_huge_pages_node[nid]--;
1670 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1671 bool adjust_surplus)
1673 int nid = folio_nid(folio);
1675 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1677 lockdep_assert_held(&hugetlb_lock);
1679 INIT_LIST_HEAD(&folio->lru);
1681 h->nr_huge_pages_node[nid]++;
1683 if (adjust_surplus) {
1684 h->surplus_huge_pages++;
1685 h->surplus_huge_pages_node[nid]++;
1688 __folio_set_hugetlb(folio);
1689 folio_change_private(folio, NULL);
1691 * We have to set hugetlb_vmemmap_optimized again as above
1692 * folio_change_private(folio, NULL) cleared it.
1694 folio_set_hugetlb_vmemmap_optimized(folio);
1696 arch_clear_hugetlb_flags(folio);
1697 enqueue_hugetlb_folio(h, folio);
1700 static void __update_and_free_hugetlb_folio(struct hstate *h,
1701 struct folio *folio)
1703 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1705 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1709 * If we don't know which subpages are hwpoisoned, we can't free
1710 * the hugepage, so it's leaked intentionally.
1712 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1716 * If folio is not vmemmap optimized (!clear_flag), then the folio
1717 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1718 * can only be passed hugetlb pages and will BUG otherwise.
1720 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1721 spin_lock_irq(&hugetlb_lock);
1723 * If we cannot allocate vmemmap pages, just refuse to free the
1724 * page and put the page back on the hugetlb free list and treat
1725 * as a surplus page.
1727 add_hugetlb_folio(h, folio, true);
1728 spin_unlock_irq(&hugetlb_lock);
1733 * If vmemmap pages were allocated above, then we need to clear the
1734 * hugetlb flag under the hugetlb lock.
1736 if (folio_test_hugetlb(folio)) {
1737 spin_lock_irq(&hugetlb_lock);
1738 __folio_clear_hugetlb(folio);
1739 spin_unlock_irq(&hugetlb_lock);
1743 * Move PageHWPoison flag from head page to the raw error pages,
1744 * which makes any healthy subpages reusable.
1746 if (unlikely(folio_test_hwpoison(folio)))
1747 folio_clear_hugetlb_hwpoison(folio);
1749 folio_ref_unfreeze(folio, 1);
1752 * Non-gigantic pages demoted from CMA allocated gigantic pages
1753 * need to be given back to CMA in free_gigantic_folio.
1755 if (hstate_is_gigantic(h) ||
1756 hugetlb_cma_folio(folio, huge_page_order(h))) {
1757 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1758 free_gigantic_folio(folio, huge_page_order(h));
1760 INIT_LIST_HEAD(&folio->_deferred_list);
1766 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1767 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1768 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1769 * the vmemmap pages.
1771 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1772 * freed and frees them one-by-one. As the page->mapping pointer is going
1773 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1774 * structure of a lockless linked list of huge pages to be freed.
1776 static LLIST_HEAD(hpage_freelist);
1778 static void free_hpage_workfn(struct work_struct *work)
1780 struct llist_node *node;
1782 node = llist_del_all(&hpage_freelist);
1785 struct folio *folio;
1788 folio = container_of((struct address_space **)node,
1789 struct folio, mapping);
1791 folio->mapping = NULL;
1793 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1794 * folio_hstate() is going to trigger because a previous call to
1795 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1796 * not use folio_hstate() directly.
1798 h = size_to_hstate(folio_size(folio));
1800 __update_and_free_hugetlb_folio(h, folio);
1805 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1807 static inline void flush_free_hpage_work(struct hstate *h)
1809 if (hugetlb_vmemmap_optimizable(h))
1810 flush_work(&free_hpage_work);
1813 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1816 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1817 __update_and_free_hugetlb_folio(h, folio);
1822 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1824 * Only call schedule_work() if hpage_freelist is previously
1825 * empty. Otherwise, schedule_work() had been called but the workfn
1826 * hasn't retrieved the list yet.
1828 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1829 schedule_work(&free_hpage_work);
1832 static void bulk_vmemmap_restore_error(struct hstate *h,
1833 struct list_head *folio_list,
1834 struct list_head *non_hvo_folios)
1836 struct folio *folio, *t_folio;
1838 if (!list_empty(non_hvo_folios)) {
1840 * Free any restored hugetlb pages so that restore of the
1841 * entire list can be retried.
1842 * The idea is that in the common case of ENOMEM errors freeing
1843 * hugetlb pages with vmemmap we will free up memory so that we
1844 * can allocate vmemmap for more hugetlb pages.
1846 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1847 list_del(&folio->lru);
1848 spin_lock_irq(&hugetlb_lock);
1849 __folio_clear_hugetlb(folio);
1850 spin_unlock_irq(&hugetlb_lock);
1851 update_and_free_hugetlb_folio(h, folio, false);
1856 * In the case where there are no folios which can be
1857 * immediately freed, we loop through the list trying to restore
1858 * vmemmap individually in the hope that someone elsewhere may
1859 * have done something to cause success (such as freeing some
1860 * memory). If unable to restore a hugetlb page, the hugetlb
1861 * page is made a surplus page and removed from the list.
1862 * If are able to restore vmemmap and free one hugetlb page, we
1863 * quit processing the list to retry the bulk operation.
1865 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1866 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1867 list_del(&folio->lru);
1868 spin_lock_irq(&hugetlb_lock);
1869 add_hugetlb_folio(h, folio, true);
1870 spin_unlock_irq(&hugetlb_lock);
1872 list_del(&folio->lru);
1873 spin_lock_irq(&hugetlb_lock);
1874 __folio_clear_hugetlb(folio);
1875 spin_unlock_irq(&hugetlb_lock);
1876 update_and_free_hugetlb_folio(h, folio, false);
1883 static void update_and_free_pages_bulk(struct hstate *h,
1884 struct list_head *folio_list)
1887 struct folio *folio, *t_folio;
1888 LIST_HEAD(non_hvo_folios);
1891 * First allocate required vmemmmap (if necessary) for all folios.
1892 * Carefully handle errors and free up any available hugetlb pages
1893 * in an effort to make forward progress.
1896 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1898 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1903 * At this point, list should be empty, ret should be >= 0 and there
1904 * should only be pages on the non_hvo_folios list.
1905 * Do note that the non_hvo_folios list could be empty.
1906 * Without HVO enabled, ret will be 0 and there is no need to call
1907 * __folio_clear_hugetlb as this was done previously.
1909 VM_WARN_ON(!list_empty(folio_list));
1910 VM_WARN_ON(ret < 0);
1911 if (!list_empty(&non_hvo_folios) && ret) {
1912 spin_lock_irq(&hugetlb_lock);
1913 list_for_each_entry(folio, &non_hvo_folios, lru)
1914 __folio_clear_hugetlb(folio);
1915 spin_unlock_irq(&hugetlb_lock);
1918 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1919 update_and_free_hugetlb_folio(h, folio, false);
1924 struct hstate *size_to_hstate(unsigned long size)
1928 for_each_hstate(h) {
1929 if (huge_page_size(h) == size)
1935 void free_huge_folio(struct folio *folio)
1938 * Can't pass hstate in here because it is called from the
1941 struct hstate *h = folio_hstate(folio);
1942 int nid = folio_nid(folio);
1943 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1944 bool restore_reserve;
1945 unsigned long flags;
1947 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1948 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1950 hugetlb_set_folio_subpool(folio, NULL);
1951 if (folio_test_anon(folio))
1952 __ClearPageAnonExclusive(&folio->page);
1953 folio->mapping = NULL;
1954 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1955 folio_clear_hugetlb_restore_reserve(folio);
1958 * If HPageRestoreReserve was set on page, page allocation consumed a
1959 * reservation. If the page was associated with a subpool, there
1960 * would have been a page reserved in the subpool before allocation
1961 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1962 * reservation, do not call hugepage_subpool_put_pages() as this will
1963 * remove the reserved page from the subpool.
1965 if (!restore_reserve) {
1967 * A return code of zero implies that the subpool will be
1968 * under its minimum size if the reservation is not restored
1969 * after page is free. Therefore, force restore_reserve
1972 if (hugepage_subpool_put_pages(spool, 1) == 0)
1973 restore_reserve = true;
1976 spin_lock_irqsave(&hugetlb_lock, flags);
1977 folio_clear_hugetlb_migratable(folio);
1978 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1979 pages_per_huge_page(h), folio);
1980 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1981 pages_per_huge_page(h), folio);
1982 mem_cgroup_uncharge(folio);
1983 if (restore_reserve)
1984 h->resv_huge_pages++;
1986 if (folio_test_hugetlb_temporary(folio)) {
1987 remove_hugetlb_folio(h, folio, false);
1988 spin_unlock_irqrestore(&hugetlb_lock, flags);
1989 update_and_free_hugetlb_folio(h, folio, true);
1990 } else if (h->surplus_huge_pages_node[nid]) {
1991 /* remove the page from active list */
1992 remove_hugetlb_folio(h, folio, true);
1993 spin_unlock_irqrestore(&hugetlb_lock, flags);
1994 update_and_free_hugetlb_folio(h, folio, true);
1996 arch_clear_hugetlb_flags(folio);
1997 enqueue_hugetlb_folio(h, folio);
1998 spin_unlock_irqrestore(&hugetlb_lock, flags);
2003 * Must be called with the hugetlb lock held
2005 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2007 lockdep_assert_held(&hugetlb_lock);
2009 h->nr_huge_pages_node[nid]++;
2012 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2014 __folio_set_hugetlb(folio);
2015 INIT_LIST_HEAD(&folio->lru);
2016 hugetlb_set_folio_subpool(folio, NULL);
2017 set_hugetlb_cgroup(folio, NULL);
2018 set_hugetlb_cgroup_rsvd(folio, NULL);
2021 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2023 init_new_hugetlb_folio(h, folio);
2024 hugetlb_vmemmap_optimize_folio(h, folio);
2027 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2029 __prep_new_hugetlb_folio(h, folio);
2030 spin_lock_irq(&hugetlb_lock);
2031 __prep_account_new_huge_page(h, nid);
2032 spin_unlock_irq(&hugetlb_lock);
2035 static bool __prep_compound_gigantic_folio(struct folio *folio,
2036 unsigned int order, bool demote)
2039 int nr_pages = 1 << order;
2042 __folio_clear_reserved(folio);
2043 for (i = 0; i < nr_pages; i++) {
2044 p = folio_page(folio, i);
2047 * For gigantic hugepages allocated through bootmem at
2048 * boot, it's safer to be consistent with the not-gigantic
2049 * hugepages and clear the PG_reserved bit from all tail pages
2050 * too. Otherwise drivers using get_user_pages() to access tail
2051 * pages may get the reference counting wrong if they see
2052 * PG_reserved set on a tail page (despite the head page not
2053 * having PG_reserved set). Enforcing this consistency between
2054 * head and tail pages allows drivers to optimize away a check
2055 * on the head page when they need know if put_page() is needed
2056 * after get_user_pages().
2058 if (i != 0) /* head page cleared above */
2059 __ClearPageReserved(p);
2061 * Subtle and very unlikely
2063 * Gigantic 'page allocators' such as memblock or cma will
2064 * return a set of pages with each page ref counted. We need
2065 * to turn this set of pages into a compound page with tail
2066 * page ref counts set to zero. Code such as speculative page
2067 * cache adding could take a ref on a 'to be' tail page.
2068 * We need to respect any increased ref count, and only set
2069 * the ref count to zero if count is currently 1. If count
2070 * is not 1, we return an error. An error return indicates
2071 * the set of pages can not be converted to a gigantic page.
2072 * The caller who allocated the pages should then discard the
2073 * pages using the appropriate free interface.
2075 * In the case of demote, the ref count will be zero.
2078 if (!page_ref_freeze(p, 1)) {
2079 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2083 VM_BUG_ON_PAGE(page_count(p), p);
2086 set_compound_head(p, &folio->page);
2088 __folio_set_head(folio);
2089 /* we rely on prep_new_hugetlb_folio to set the hugetlb flag */
2090 folio_set_order(folio, order);
2091 atomic_set(&folio->_entire_mapcount, -1);
2092 atomic_set(&folio->_large_mapcount, -1);
2093 atomic_set(&folio->_pincount, 0);
2097 /* undo page modifications made above */
2098 for (j = 0; j < i; j++) {
2099 p = folio_page(folio, j);
2101 clear_compound_head(p);
2102 set_page_refcounted(p);
2104 /* need to clear PG_reserved on remaining tail pages */
2105 for (; j < nr_pages; j++) {
2106 p = folio_page(folio, j);
2107 __ClearPageReserved(p);
2112 static bool prep_compound_gigantic_folio(struct folio *folio,
2115 return __prep_compound_gigantic_folio(folio, order, false);
2118 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2121 return __prep_compound_gigantic_folio(folio, order, true);
2125 * Find and lock address space (mapping) in write mode.
2127 * Upon entry, the folio is locked which means that folio_mapping() is
2128 * stable. Due to locking order, we can only trylock_write. If we can
2129 * not get the lock, simply return NULL to caller.
2131 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
2133 struct address_space *mapping = folio_mapping(folio);
2138 if (i_mmap_trylock_write(mapping))
2144 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2145 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2146 nodemask_t *node_alloc_noretry)
2148 int order = huge_page_order(h);
2149 struct folio *folio;
2150 bool alloc_try_hard = true;
2154 * By default we always try hard to allocate the folio with
2155 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
2156 * a loop (to adjust global huge page counts) and previous allocation
2157 * failed, do not continue to try hard on the same node. Use the
2158 * node_alloc_noretry bitmap to manage this state information.
2160 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2161 alloc_try_hard = false;
2162 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2164 gfp_mask |= __GFP_RETRY_MAYFAIL;
2165 if (nid == NUMA_NO_NODE)
2166 nid = numa_mem_id();
2168 folio = __folio_alloc(gfp_mask, order, nid, nmask);
2169 /* Ensure hugetlb folio won't have large_rmappable flag set. */
2171 folio_clear_large_rmappable(folio);
2173 if (folio && !folio_ref_freeze(folio, 1)) {
2175 if (retry) { /* retry once */
2179 /* WOW! twice in a row. */
2180 pr_warn("HugeTLB unexpected inflated folio ref count\n");
2185 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2186 * folio this indicates an overall state change. Clear bit so
2187 * that we resume normal 'try hard' allocations.
2189 if (node_alloc_noretry && folio && !alloc_try_hard)
2190 node_clear(nid, *node_alloc_noretry);
2193 * If we tried hard to get a folio but failed, set bit so that
2194 * subsequent attempts will not try as hard until there is an
2195 * overall state change.
2197 if (node_alloc_noretry && !folio && alloc_try_hard)
2198 node_set(nid, *node_alloc_noretry);
2201 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2205 __count_vm_event(HTLB_BUDDY_PGALLOC);
2209 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2210 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2211 nodemask_t *node_alloc_noretry)
2213 struct folio *folio;
2217 if (hstate_is_gigantic(h))
2218 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2220 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2221 nid, nmask, node_alloc_noretry);
2225 if (hstate_is_gigantic(h)) {
2226 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2228 * Rare failure to convert pages to compound page.
2229 * Free pages and try again - ONCE!
2231 free_gigantic_folio(folio, huge_page_order(h));
2243 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2244 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2245 nodemask_t *node_alloc_noretry)
2247 struct folio *folio;
2249 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2250 node_alloc_noretry);
2252 init_new_hugetlb_folio(h, folio);
2257 * Common helper to allocate a fresh hugetlb page. All specific allocators
2258 * should use this function to get new hugetlb pages
2260 * Note that returned page is 'frozen': ref count of head page and all tail
2263 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2264 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2266 struct folio *folio;
2268 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2272 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2276 static void prep_and_add_allocated_folios(struct hstate *h,
2277 struct list_head *folio_list)
2279 unsigned long flags;
2280 struct folio *folio, *tmp_f;
2282 /* Send list for bulk vmemmap optimization processing */
2283 hugetlb_vmemmap_optimize_folios(h, folio_list);
2285 /* Add all new pool pages to free lists in one lock cycle */
2286 spin_lock_irqsave(&hugetlb_lock, flags);
2287 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2288 __prep_account_new_huge_page(h, folio_nid(folio));
2289 enqueue_hugetlb_folio(h, folio);
2291 spin_unlock_irqrestore(&hugetlb_lock, flags);
2295 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2296 * will later be added to the appropriate hugetlb pool.
2298 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2299 nodemask_t *nodes_allowed,
2300 nodemask_t *node_alloc_noretry,
2303 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2306 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2307 struct folio *folio;
2309 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2310 nodes_allowed, node_alloc_noretry);
2319 * Remove huge page from pool from next node to free. Attempt to keep
2320 * persistent huge pages more or less balanced over allowed nodes.
2321 * This routine only 'removes' the hugetlb page. The caller must make
2322 * an additional call to free the page to low level allocators.
2323 * Called with hugetlb_lock locked.
2325 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2326 nodemask_t *nodes_allowed, bool acct_surplus)
2329 struct folio *folio = NULL;
2331 lockdep_assert_held(&hugetlb_lock);
2332 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2334 * If we're returning unused surplus pages, only examine
2335 * nodes with surplus pages.
2337 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2338 !list_empty(&h->hugepage_freelists[node])) {
2339 folio = list_entry(h->hugepage_freelists[node].next,
2341 remove_hugetlb_folio(h, folio, acct_surplus);
2350 * Dissolve a given free hugetlb folio into free buddy pages. This function
2351 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2352 * This function returns values like below:
2354 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2355 * when the system is under memory pressure and the feature of
2356 * freeing unused vmemmap pages associated with each hugetlb page
2358 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2359 * (allocated or reserved.)
2360 * 0: successfully dissolved free hugepages or the page is not a
2361 * hugepage (considered as already dissolved)
2363 int dissolve_free_hugetlb_folio(struct folio *folio)
2368 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2369 if (!folio_test_hugetlb(folio))
2372 spin_lock_irq(&hugetlb_lock);
2373 if (!folio_test_hugetlb(folio)) {
2378 if (!folio_ref_count(folio)) {
2379 struct hstate *h = folio_hstate(folio);
2380 if (!available_huge_pages(h))
2384 * We should make sure that the page is already on the free list
2385 * when it is dissolved.
2387 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2388 spin_unlock_irq(&hugetlb_lock);
2392 * Theoretically, we should return -EBUSY when we
2393 * encounter this race. In fact, we have a chance
2394 * to successfully dissolve the page if we do a
2395 * retry. Because the race window is quite small.
2396 * If we seize this opportunity, it is an optimization
2397 * for increasing the success rate of dissolving page.
2402 remove_hugetlb_folio(h, folio, false);
2403 h->max_huge_pages--;
2404 spin_unlock_irq(&hugetlb_lock);
2407 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2408 * before freeing the page. update_and_free_hugtlb_folio will fail to
2409 * free the page if it can not allocate required vmemmap. We
2410 * need to adjust max_huge_pages if the page is not freed.
2411 * Attempt to allocate vmemmmap here so that we can take
2412 * appropriate action on failure.
2414 * The folio_test_hugetlb check here is because
2415 * remove_hugetlb_folio will clear hugetlb folio flag for
2416 * non-vmemmap optimized hugetlb folios.
2418 if (folio_test_hugetlb(folio)) {
2419 rc = hugetlb_vmemmap_restore_folio(h, folio);
2421 spin_lock_irq(&hugetlb_lock);
2422 add_hugetlb_folio(h, folio, false);
2423 h->max_huge_pages++;
2429 update_and_free_hugetlb_folio(h, folio, false);
2433 spin_unlock_irq(&hugetlb_lock);
2438 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2439 * make specified memory blocks removable from the system.
2440 * Note that this will dissolve a free gigantic hugepage completely, if any
2441 * part of it lies within the given range.
2442 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2443 * free hugetlb folios that were dissolved before that error are lost.
2445 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2448 struct folio *folio;
2453 if (!hugepages_supported())
2456 order = huge_page_order(&default_hstate);
2458 order = min(order, huge_page_order(h));
2460 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2461 folio = pfn_folio(pfn);
2462 rc = dissolve_free_hugetlb_folio(folio);
2471 * Allocates a fresh surplus page from the page allocator.
2473 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2474 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2476 struct folio *folio = NULL;
2478 if (hstate_is_gigantic(h))
2481 spin_lock_irq(&hugetlb_lock);
2482 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2484 spin_unlock_irq(&hugetlb_lock);
2486 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2490 spin_lock_irq(&hugetlb_lock);
2492 * We could have raced with the pool size change.
2493 * Double check that and simply deallocate the new page
2494 * if we would end up overcommiting the surpluses. Abuse
2495 * temporary page to workaround the nasty free_huge_folio
2498 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2499 folio_set_hugetlb_temporary(folio);
2500 spin_unlock_irq(&hugetlb_lock);
2501 free_huge_folio(folio);
2505 h->surplus_huge_pages++;
2506 h->surplus_huge_pages_node[folio_nid(folio)]++;
2509 spin_unlock_irq(&hugetlb_lock);
2514 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2515 int nid, nodemask_t *nmask)
2517 struct folio *folio;
2519 if (hstate_is_gigantic(h))
2522 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2526 /* fresh huge pages are frozen */
2527 folio_ref_unfreeze(folio, 1);
2529 * We do not account these pages as surplus because they are only
2530 * temporary and will be released properly on the last reference
2532 folio_set_hugetlb_temporary(folio);
2538 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2541 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2542 struct vm_area_struct *vma, unsigned long addr)
2544 struct folio *folio = NULL;
2545 struct mempolicy *mpol;
2546 gfp_t gfp_mask = htlb_alloc_mask(h);
2548 nodemask_t *nodemask;
2550 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2551 if (mpol_is_preferred_many(mpol)) {
2552 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2554 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2555 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2557 /* Fallback to all nodes if page==NULL */
2562 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2563 mpol_cond_put(mpol);
2567 /* folio migration callback function */
2568 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2569 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2571 spin_lock_irq(&hugetlb_lock);
2572 if (available_huge_pages(h)) {
2573 struct folio *folio;
2575 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2576 preferred_nid, nmask);
2578 spin_unlock_irq(&hugetlb_lock);
2582 spin_unlock_irq(&hugetlb_lock);
2584 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2585 if (!allow_alloc_fallback)
2586 gfp_mask |= __GFP_THISNODE;
2588 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2591 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2594 struct mempolicy *mpol = get_task_policy(current);
2597 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2598 * (from policy_nodemask) specifically for hugetlb case
2600 if (mpol->mode == MPOL_BIND &&
2601 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2602 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2603 return &mpol->nodes;
2609 * Increase the hugetlb pool such that it can accommodate a reservation
2612 static int gather_surplus_pages(struct hstate *h, long delta)
2613 __must_hold(&hugetlb_lock)
2615 LIST_HEAD(surplus_list);
2616 struct folio *folio, *tmp;
2619 long needed, allocated;
2620 bool alloc_ok = true;
2622 nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2624 lockdep_assert_held(&hugetlb_lock);
2625 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2627 h->resv_huge_pages += delta;
2635 spin_unlock_irq(&hugetlb_lock);
2636 for (i = 0; i < needed; i++) {
2638 for_each_node_mask(node, cpuset_current_mems_allowed) {
2639 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2640 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2650 list_add(&folio->lru, &surplus_list);
2656 * After retaking hugetlb_lock, we need to recalculate 'needed'
2657 * because either resv_huge_pages or free_huge_pages may have changed.
2659 spin_lock_irq(&hugetlb_lock);
2660 needed = (h->resv_huge_pages + delta) -
2661 (h->free_huge_pages + allocated);
2666 * We were not able to allocate enough pages to
2667 * satisfy the entire reservation so we free what
2668 * we've allocated so far.
2673 * The surplus_list now contains _at_least_ the number of extra pages
2674 * needed to accommodate the reservation. Add the appropriate number
2675 * of pages to the hugetlb pool and free the extras back to the buddy
2676 * allocator. Commit the entire reservation here to prevent another
2677 * process from stealing the pages as they are added to the pool but
2678 * before they are reserved.
2680 needed += allocated;
2681 h->resv_huge_pages += delta;
2684 /* Free the needed pages to the hugetlb pool */
2685 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2688 /* Add the page to the hugetlb allocator */
2689 enqueue_hugetlb_folio(h, folio);
2692 spin_unlock_irq(&hugetlb_lock);
2695 * Free unnecessary surplus pages to the buddy allocator.
2696 * Pages have no ref count, call free_huge_folio directly.
2698 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2699 free_huge_folio(folio);
2700 spin_lock_irq(&hugetlb_lock);
2706 * This routine has two main purposes:
2707 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2708 * in unused_resv_pages. This corresponds to the prior adjustments made
2709 * to the associated reservation map.
2710 * 2) Free any unused surplus pages that may have been allocated to satisfy
2711 * the reservation. As many as unused_resv_pages may be freed.
2713 static void return_unused_surplus_pages(struct hstate *h,
2714 unsigned long unused_resv_pages)
2716 unsigned long nr_pages;
2717 LIST_HEAD(page_list);
2719 lockdep_assert_held(&hugetlb_lock);
2720 /* Uncommit the reservation */
2721 h->resv_huge_pages -= unused_resv_pages;
2723 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2727 * Part (or even all) of the reservation could have been backed
2728 * by pre-allocated pages. Only free surplus pages.
2730 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2733 * We want to release as many surplus pages as possible, spread
2734 * evenly across all nodes with memory. Iterate across these nodes
2735 * until we can no longer free unreserved surplus pages. This occurs
2736 * when the nodes with surplus pages have no free pages.
2737 * remove_pool_hugetlb_folio() will balance the freed pages across the
2738 * on-line nodes with memory and will handle the hstate accounting.
2740 while (nr_pages--) {
2741 struct folio *folio;
2743 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2747 list_add(&folio->lru, &page_list);
2751 spin_unlock_irq(&hugetlb_lock);
2752 update_and_free_pages_bulk(h, &page_list);
2753 spin_lock_irq(&hugetlb_lock);
2758 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2759 * are used by the huge page allocation routines to manage reservations.
2761 * vma_needs_reservation is called to determine if the huge page at addr
2762 * within the vma has an associated reservation. If a reservation is
2763 * needed, the value 1 is returned. The caller is then responsible for
2764 * managing the global reservation and subpool usage counts. After
2765 * the huge page has been allocated, vma_commit_reservation is called
2766 * to add the page to the reservation map. If the page allocation fails,
2767 * the reservation must be ended instead of committed. vma_end_reservation
2768 * is called in such cases.
2770 * In the normal case, vma_commit_reservation returns the same value
2771 * as the preceding vma_needs_reservation call. The only time this
2772 * is not the case is if a reserve map was changed between calls. It
2773 * is the responsibility of the caller to notice the difference and
2774 * take appropriate action.
2776 * vma_add_reservation is used in error paths where a reservation must
2777 * be restored when a newly allocated huge page must be freed. It is
2778 * to be called after calling vma_needs_reservation to determine if a
2779 * reservation exists.
2781 * vma_del_reservation is used in error paths where an entry in the reserve
2782 * map was created during huge page allocation and must be removed. It is to
2783 * be called after calling vma_needs_reservation to determine if a reservation
2786 enum vma_resv_mode {
2793 static long __vma_reservation_common(struct hstate *h,
2794 struct vm_area_struct *vma, unsigned long addr,
2795 enum vma_resv_mode mode)
2797 struct resv_map *resv;
2800 long dummy_out_regions_needed;
2802 resv = vma_resv_map(vma);
2806 idx = vma_hugecache_offset(h, vma, addr);
2808 case VMA_NEEDS_RESV:
2809 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2810 /* We assume that vma_reservation_* routines always operate on
2811 * 1 page, and that adding to resv map a 1 page entry can only
2812 * ever require 1 region.
2814 VM_BUG_ON(dummy_out_regions_needed != 1);
2816 case VMA_COMMIT_RESV:
2817 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2818 /* region_add calls of range 1 should never fail. */
2822 region_abort(resv, idx, idx + 1, 1);
2826 if (vma->vm_flags & VM_MAYSHARE) {
2827 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2828 /* region_add calls of range 1 should never fail. */
2831 region_abort(resv, idx, idx + 1, 1);
2832 ret = region_del(resv, idx, idx + 1);
2836 if (vma->vm_flags & VM_MAYSHARE) {
2837 region_abort(resv, idx, idx + 1, 1);
2838 ret = region_del(resv, idx, idx + 1);
2840 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2841 /* region_add calls of range 1 should never fail. */
2849 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2852 * We know private mapping must have HPAGE_RESV_OWNER set.
2854 * In most cases, reserves always exist for private mappings.
2855 * However, a file associated with mapping could have been
2856 * hole punched or truncated after reserves were consumed.
2857 * As subsequent fault on such a range will not use reserves.
2858 * Subtle - The reserve map for private mappings has the
2859 * opposite meaning than that of shared mappings. If NO
2860 * entry is in the reserve map, it means a reservation exists.
2861 * If an entry exists in the reserve map, it means the
2862 * reservation has already been consumed. As a result, the
2863 * return value of this routine is the opposite of the
2864 * value returned from reserve map manipulation routines above.
2873 static long vma_needs_reservation(struct hstate *h,
2874 struct vm_area_struct *vma, unsigned long addr)
2876 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2879 static long vma_commit_reservation(struct hstate *h,
2880 struct vm_area_struct *vma, unsigned long addr)
2882 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2885 static void vma_end_reservation(struct hstate *h,
2886 struct vm_area_struct *vma, unsigned long addr)
2888 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2891 static long vma_add_reservation(struct hstate *h,
2892 struct vm_area_struct *vma, unsigned long addr)
2894 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2897 static long vma_del_reservation(struct hstate *h,
2898 struct vm_area_struct *vma, unsigned long addr)
2900 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2904 * This routine is called to restore reservation information on error paths.
2905 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2906 * and the hugetlb mutex should remain held when calling this routine.
2908 * It handles two specific cases:
2909 * 1) A reservation was in place and the folio consumed the reservation.
2910 * hugetlb_restore_reserve is set in the folio.
2911 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2912 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2914 * In case 1, free_huge_folio later in the error path will increment the
2915 * global reserve count. But, free_huge_folio does not have enough context
2916 * to adjust the reservation map. This case deals primarily with private
2917 * mappings. Adjust the reserve map here to be consistent with global
2918 * reserve count adjustments to be made by free_huge_folio. Make sure the
2919 * reserve map indicates there is a reservation present.
2921 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2923 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2924 unsigned long address, struct folio *folio)
2926 long rc = vma_needs_reservation(h, vma, address);
2928 if (folio_test_hugetlb_restore_reserve(folio)) {
2929 if (unlikely(rc < 0))
2931 * Rare out of memory condition in reserve map
2932 * manipulation. Clear hugetlb_restore_reserve so
2933 * that global reserve count will not be incremented
2934 * by free_huge_folio. This will make it appear
2935 * as though the reservation for this folio was
2936 * consumed. This may prevent the task from
2937 * faulting in the folio at a later time. This
2938 * is better than inconsistent global huge page
2939 * accounting of reserve counts.
2941 folio_clear_hugetlb_restore_reserve(folio);
2943 (void)vma_add_reservation(h, vma, address);
2945 vma_end_reservation(h, vma, address);
2949 * This indicates there is an entry in the reserve map
2950 * not added by alloc_hugetlb_folio. We know it was added
2951 * before the alloc_hugetlb_folio call, otherwise
2952 * hugetlb_restore_reserve would be set on the folio.
2953 * Remove the entry so that a subsequent allocation
2954 * does not consume a reservation.
2956 rc = vma_del_reservation(h, vma, address);
2959 * VERY rare out of memory condition. Since
2960 * we can not delete the entry, set
2961 * hugetlb_restore_reserve so that the reserve
2962 * count will be incremented when the folio
2963 * is freed. This reserve will be consumed
2964 * on a subsequent allocation.
2966 folio_set_hugetlb_restore_reserve(folio);
2967 } else if (rc < 0) {
2969 * Rare out of memory condition from
2970 * vma_needs_reservation call. Memory allocation is
2971 * only attempted if a new entry is needed. Therefore,
2972 * this implies there is not an entry in the
2975 * For shared mappings, no entry in the map indicates
2976 * no reservation. We are done.
2978 if (!(vma->vm_flags & VM_MAYSHARE))
2980 * For private mappings, no entry indicates
2981 * a reservation is present. Since we can
2982 * not add an entry, set hugetlb_restore_reserve
2983 * on the folio so reserve count will be
2984 * incremented when freed. This reserve will
2985 * be consumed on a subsequent allocation.
2987 folio_set_hugetlb_restore_reserve(folio);
2990 * No reservation present, do nothing
2992 vma_end_reservation(h, vma, address);
2997 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2999 * @h: struct hstate old page belongs to
3000 * @old_folio: Old folio to dissolve
3001 * @list: List to isolate the page in case we need to
3002 * Returns 0 on success, otherwise negated error.
3004 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3005 struct folio *old_folio, struct list_head *list)
3007 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3008 int nid = folio_nid(old_folio);
3009 struct folio *new_folio = NULL;
3013 spin_lock_irq(&hugetlb_lock);
3014 if (!folio_test_hugetlb(old_folio)) {
3016 * Freed from under us. Drop new_folio too.
3019 } else if (folio_ref_count(old_folio)) {
3023 * Someone has grabbed the folio, try to isolate it here.
3024 * Fail with -EBUSY if not possible.
3026 spin_unlock_irq(&hugetlb_lock);
3027 isolated = isolate_hugetlb(old_folio, list);
3028 ret = isolated ? 0 : -EBUSY;
3029 spin_lock_irq(&hugetlb_lock);
3031 } else if (!folio_test_hugetlb_freed(old_folio)) {
3033 * Folio's refcount is 0 but it has not been enqueued in the
3034 * freelist yet. Race window is small, so we can succeed here if
3037 spin_unlock_irq(&hugetlb_lock);
3042 spin_unlock_irq(&hugetlb_lock);
3043 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3047 __prep_new_hugetlb_folio(h, new_folio);
3052 * Ok, old_folio is still a genuine free hugepage. Remove it from
3053 * the freelist and decrease the counters. These will be
3054 * incremented again when calling __prep_account_new_huge_page()
3055 * and enqueue_hugetlb_folio() for new_folio. The counters will
3056 * remain stable since this happens under the lock.
3058 remove_hugetlb_folio(h, old_folio, false);
3061 * Ref count on new_folio is already zero as it was dropped
3062 * earlier. It can be directly added to the pool free list.
3064 __prep_account_new_huge_page(h, nid);
3065 enqueue_hugetlb_folio(h, new_folio);
3068 * Folio has been replaced, we can safely free the old one.
3070 spin_unlock_irq(&hugetlb_lock);
3071 update_and_free_hugetlb_folio(h, old_folio, false);
3077 spin_unlock_irq(&hugetlb_lock);
3079 update_and_free_hugetlb_folio(h, new_folio, false);
3084 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3087 struct folio *folio = page_folio(page);
3091 * The page might have been dissolved from under our feet, so make sure
3092 * to carefully check the state under the lock.
3093 * Return success when racing as if we dissolved the page ourselves.
3095 spin_lock_irq(&hugetlb_lock);
3096 if (folio_test_hugetlb(folio)) {
3097 h = folio_hstate(folio);
3099 spin_unlock_irq(&hugetlb_lock);
3102 spin_unlock_irq(&hugetlb_lock);
3105 * Fence off gigantic pages as there is a cyclic dependency between
3106 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3107 * of bailing out right away without further retrying.
3109 if (hstate_is_gigantic(h))
3112 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3114 else if (!folio_ref_count(folio))
3115 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3120 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3121 unsigned long addr, int avoid_reserve)
3123 struct hugepage_subpool *spool = subpool_vma(vma);
3124 struct hstate *h = hstate_vma(vma);
3125 struct folio *folio;
3126 long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3128 int memcg_charge_ret, ret, idx;
3129 struct hugetlb_cgroup *h_cg = NULL;
3130 struct mem_cgroup *memcg;
3131 bool deferred_reserve;
3132 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3134 memcg = get_mem_cgroup_from_current();
3135 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3136 if (memcg_charge_ret == -ENOMEM) {
3137 mem_cgroup_put(memcg);
3138 return ERR_PTR(-ENOMEM);
3141 idx = hstate_index(h);
3143 * Examine the region/reserve map to determine if the process
3144 * has a reservation for the page to be allocated. A return
3145 * code of zero indicates a reservation exists (no change).
3147 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3149 if (!memcg_charge_ret)
3150 mem_cgroup_cancel_charge(memcg, nr_pages);
3151 mem_cgroup_put(memcg);
3152 return ERR_PTR(-ENOMEM);
3156 * Processes that did not create the mapping will have no
3157 * reserves as indicated by the region/reserve map. Check
3158 * that the allocation will not exceed the subpool limit.
3159 * Allocations for MAP_NORESERVE mappings also need to be
3160 * checked against any subpool limit.
3162 if (map_chg || avoid_reserve) {
3163 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3165 goto out_end_reservation;
3168 * Even though there was no reservation in the region/reserve
3169 * map, there could be reservations associated with the
3170 * subpool that can be used. This would be indicated if the
3171 * return value of hugepage_subpool_get_pages() is zero.
3172 * However, if avoid_reserve is specified we still avoid even
3173 * the subpool reservations.
3179 /* If this allocation is not consuming a reservation, charge it now.
3181 deferred_reserve = map_chg || avoid_reserve;
3182 if (deferred_reserve) {
3183 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3184 idx, pages_per_huge_page(h), &h_cg);
3186 goto out_subpool_put;
3189 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3191 goto out_uncharge_cgroup_reservation;
3193 spin_lock_irq(&hugetlb_lock);
3195 * glb_chg is passed to indicate whether or not a page must be taken
3196 * from the global free pool (global change). gbl_chg == 0 indicates
3197 * a reservation exists for the allocation.
3199 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3201 spin_unlock_irq(&hugetlb_lock);
3202 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3204 goto out_uncharge_cgroup;
3205 spin_lock_irq(&hugetlb_lock);
3206 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3207 folio_set_hugetlb_restore_reserve(folio);
3208 h->resv_huge_pages--;
3210 list_add(&folio->lru, &h->hugepage_activelist);
3211 folio_ref_unfreeze(folio, 1);
3215 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3216 /* If allocation is not consuming a reservation, also store the
3217 * hugetlb_cgroup pointer on the page.
3219 if (deferred_reserve) {
3220 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3224 spin_unlock_irq(&hugetlb_lock);
3226 hugetlb_set_folio_subpool(folio, spool);
3228 map_commit = vma_commit_reservation(h, vma, addr);
3229 if (unlikely(map_chg > map_commit)) {
3231 * The page was added to the reservation map between
3232 * vma_needs_reservation and vma_commit_reservation.
3233 * This indicates a race with hugetlb_reserve_pages.
3234 * Adjust for the subpool count incremented above AND
3235 * in hugetlb_reserve_pages for the same page. Also,
3236 * the reservation count added in hugetlb_reserve_pages
3237 * no longer applies.
3241 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3242 hugetlb_acct_memory(h, -rsv_adjust);
3243 if (deferred_reserve) {
3244 spin_lock_irq(&hugetlb_lock);
3245 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3246 pages_per_huge_page(h), folio);
3247 spin_unlock_irq(&hugetlb_lock);
3251 if (!memcg_charge_ret)
3252 mem_cgroup_commit_charge(folio, memcg);
3253 mem_cgroup_put(memcg);
3257 out_uncharge_cgroup:
3258 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3259 out_uncharge_cgroup_reservation:
3260 if (deferred_reserve)
3261 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3264 if (map_chg || avoid_reserve)
3265 hugepage_subpool_put_pages(spool, 1);
3266 out_end_reservation:
3267 vma_end_reservation(h, vma, addr);
3268 if (!memcg_charge_ret)
3269 mem_cgroup_cancel_charge(memcg, nr_pages);
3270 mem_cgroup_put(memcg);
3271 return ERR_PTR(-ENOSPC);
3274 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3275 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3276 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3278 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3279 int nr_nodes, node = nid;
3281 /* do node specific alloc */
3282 if (nid != NUMA_NO_NODE) {
3283 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3284 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3289 /* allocate from next node when distributing huge pages */
3290 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3291 m = memblock_alloc_try_nid_raw(
3292 huge_page_size(h), huge_page_size(h),
3293 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3295 * Use the beginning of the huge page to store the
3296 * huge_bootmem_page struct (until gather_bootmem
3297 * puts them into the mem_map).
3307 * Only initialize the head struct page in memmap_init_reserved_pages,
3308 * rest of the struct pages will be initialized by the HugeTLB
3310 * The head struct page is used to get folio information by the HugeTLB
3311 * subsystem like zone id and node id.
3313 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3314 huge_page_size(h) - PAGE_SIZE);
3315 /* Put them into a private list first because mem_map is not up yet */
3316 INIT_LIST_HEAD(&m->list);
3317 list_add(&m->list, &huge_boot_pages[node]);
3322 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3323 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3324 unsigned long start_page_number,
3325 unsigned long end_page_number)
3327 enum zone_type zone = zone_idx(folio_zone(folio));
3328 int nid = folio_nid(folio);
3329 unsigned long head_pfn = folio_pfn(folio);
3330 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3333 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3334 struct page *page = pfn_to_page(pfn);
3336 __init_single_page(page, pfn, zone, nid);
3337 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3338 ret = page_ref_freeze(page, 1);
3343 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3345 unsigned long nr_pages)
3349 /* Prepare folio head */
3350 __folio_clear_reserved(folio);
3351 __folio_set_head(folio);
3352 ret = folio_ref_freeze(folio, 1);
3354 /* Initialize the necessary tail struct pages */
3355 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3356 prep_compound_head((struct page *)folio, huge_page_order(h));
3359 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3360 struct list_head *folio_list)
3362 unsigned long flags;
3363 struct folio *folio, *tmp_f;
3365 /* Send list for bulk vmemmap optimization processing */
3366 hugetlb_vmemmap_optimize_folios(h, folio_list);
3368 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3369 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3371 * If HVO fails, initialize all tail struct pages
3372 * We do not worry about potential long lock hold
3373 * time as this is early in boot and there should
3376 hugetlb_folio_init_tail_vmemmap(folio,
3377 HUGETLB_VMEMMAP_RESERVE_PAGES,
3378 pages_per_huge_page(h));
3380 /* Subdivide locks to achieve better parallel performance */
3381 spin_lock_irqsave(&hugetlb_lock, flags);
3382 __prep_account_new_huge_page(h, folio_nid(folio));
3383 enqueue_hugetlb_folio(h, folio);
3384 spin_unlock_irqrestore(&hugetlb_lock, flags);
3389 * Put bootmem huge pages into the standard lists after mem_map is up.
3390 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3392 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3394 LIST_HEAD(folio_list);
3395 struct huge_bootmem_page *m;
3396 struct hstate *h = NULL, *prev_h = NULL;
3398 list_for_each_entry(m, &huge_boot_pages[nid], list) {
3399 struct page *page = virt_to_page(m);
3400 struct folio *folio = (void *)page;
3404 * It is possible to have multiple huge page sizes (hstates)
3405 * in this list. If so, process each size separately.
3407 if (h != prev_h && prev_h != NULL)
3408 prep_and_add_bootmem_folios(prev_h, &folio_list);
3411 VM_BUG_ON(!hstate_is_gigantic(h));
3412 WARN_ON(folio_ref_count(folio) != 1);
3414 hugetlb_folio_init_vmemmap(folio, h,
3415 HUGETLB_VMEMMAP_RESERVE_PAGES);
3416 init_new_hugetlb_folio(h, folio);
3417 list_add(&folio->lru, &folio_list);
3420 * We need to restore the 'stolen' pages to totalram_pages
3421 * in order to fix confusing memory reports from free(1) and
3422 * other side-effects, like CommitLimit going negative.
3424 adjust_managed_page_count(page, pages_per_huge_page(h));
3428 prep_and_add_bootmem_folios(h, &folio_list);
3431 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3432 unsigned long end, void *arg)
3436 for (nid = start; nid < end; nid++)
3437 gather_bootmem_prealloc_node(nid);
3440 static void __init gather_bootmem_prealloc(void)
3442 struct padata_mt_job job = {
3443 .thread_fn = gather_bootmem_prealloc_parallel,
3446 .size = num_node_state(N_MEMORY),
3449 .max_threads = num_node_state(N_MEMORY),
3453 padata_do_multithreaded(&job);
3456 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3461 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3462 if (hstate_is_gigantic(h)) {
3463 if (!alloc_bootmem_huge_page(h, nid))
3466 struct folio *folio;
3467 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3469 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3470 &node_states[N_MEMORY]);
3473 free_huge_folio(folio); /* free it into the hugepage allocator */
3477 if (i == h->max_huge_pages_node[nid])
3480 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3481 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3482 h->max_huge_pages_node[nid], buf, nid, i);
3483 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3484 h->max_huge_pages_node[nid] = i;
3487 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3490 bool node_specific_alloc = false;
3492 for_each_online_node(i) {
3493 if (h->max_huge_pages_node[i] > 0) {
3494 hugetlb_hstate_alloc_pages_onenode(h, i);
3495 node_specific_alloc = true;
3499 return node_specific_alloc;
3502 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3504 if (allocated < h->max_huge_pages) {
3507 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3508 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3509 h->max_huge_pages, buf, allocated);
3510 h->max_huge_pages = allocated;
3514 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3516 struct hstate *h = (struct hstate *)arg;
3517 int i, num = end - start;
3518 nodemask_t node_alloc_noretry;
3519 LIST_HEAD(folio_list);
3520 int next_node = first_online_node;
3522 /* Bit mask controlling how hard we retry per-node allocations.*/
3523 nodes_clear(node_alloc_noretry);
3525 for (i = 0; i < num; ++i) {
3526 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3527 &node_alloc_noretry, &next_node);
3531 list_move(&folio->lru, &folio_list);
3535 prep_and_add_allocated_folios(h, &folio_list);
3538 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3542 for (i = 0; i < h->max_huge_pages; ++i) {
3543 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3551 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3553 struct padata_mt_job job = {
3559 job.thread_fn = hugetlb_pages_alloc_boot_node;
3561 job.size = h->max_huge_pages;
3564 * job.max_threads is twice the num_node_state(N_MEMORY),
3566 * Tests below indicate that a multiplier of 2 significantly improves
3567 * performance, and although larger values also provide improvements,
3568 * the gains are marginal.
3570 * Therefore, choosing 2 as the multiplier strikes a good balance between
3571 * enhancing parallel processing capabilities and maintaining efficient
3572 * resource management.
3574 * +------------+-------+-------+-------+-------+-------+
3575 * | multiplier | 1 | 2 | 3 | 4 | 5 |
3576 * +------------+-------+-------+-------+-------+-------+
3577 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3578 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3579 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms |
3580 * +------------+-------+-------+-------+-------+-------+
3582 job.max_threads = num_node_state(N_MEMORY) * 2;
3583 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3584 padata_do_multithreaded(&job);
3586 return h->nr_huge_pages;
3590 * NOTE: this routine is called in different contexts for gigantic and
3591 * non-gigantic pages.
3592 * - For gigantic pages, this is called early in the boot process and
3593 * pages are allocated from memblock allocated or something similar.
3594 * Gigantic pages are actually added to pools later with the routine
3595 * gather_bootmem_prealloc.
3596 * - For non-gigantic pages, this is called later in the boot process after
3597 * all of mm is up and functional. Pages are allocated from buddy and
3598 * then added to hugetlb pools.
3600 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3602 unsigned long allocated;
3603 static bool initialized __initdata;
3605 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3606 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3607 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3611 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3615 for (i = 0; i < MAX_NUMNODES; i++)
3616 INIT_LIST_HEAD(&huge_boot_pages[i]);
3620 /* do node specific alloc */
3621 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3624 /* below will do all node balanced alloc */
3625 if (hstate_is_gigantic(h))
3626 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3628 allocated = hugetlb_pages_alloc_boot(h);
3630 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3633 static void __init hugetlb_init_hstates(void)
3635 struct hstate *h, *h2;
3637 for_each_hstate(h) {
3638 /* oversize hugepages were init'ed in early boot */
3639 if (!hstate_is_gigantic(h))
3640 hugetlb_hstate_alloc_pages(h);
3643 * Set demote order for each hstate. Note that
3644 * h->demote_order is initially 0.
3645 * - We can not demote gigantic pages if runtime freeing
3646 * is not supported, so skip this.
3647 * - If CMA allocation is possible, we can not demote
3648 * HUGETLB_PAGE_ORDER or smaller size pages.
3650 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3652 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3654 for_each_hstate(h2) {
3657 if (h2->order < h->order &&
3658 h2->order > h->demote_order)
3659 h->demote_order = h2->order;
3664 static void __init report_hugepages(void)
3668 for_each_hstate(h) {
3671 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3672 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3673 buf, h->free_huge_pages);
3674 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3675 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3679 #ifdef CONFIG_HIGHMEM
3680 static void try_to_free_low(struct hstate *h, unsigned long count,
3681 nodemask_t *nodes_allowed)
3684 LIST_HEAD(page_list);
3686 lockdep_assert_held(&hugetlb_lock);
3687 if (hstate_is_gigantic(h))
3691 * Collect pages to be freed on a list, and free after dropping lock
3693 for_each_node_mask(i, *nodes_allowed) {
3694 struct folio *folio, *next;
3695 struct list_head *freel = &h->hugepage_freelists[i];
3696 list_for_each_entry_safe(folio, next, freel, lru) {
3697 if (count >= h->nr_huge_pages)
3699 if (folio_test_highmem(folio))
3701 remove_hugetlb_folio(h, folio, false);
3702 list_add(&folio->lru, &page_list);
3707 spin_unlock_irq(&hugetlb_lock);
3708 update_and_free_pages_bulk(h, &page_list);
3709 spin_lock_irq(&hugetlb_lock);
3712 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3713 nodemask_t *nodes_allowed)
3719 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3720 * balanced by operating on them in a round-robin fashion.
3721 * Returns 1 if an adjustment was made.
3723 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3728 lockdep_assert_held(&hugetlb_lock);
3729 VM_BUG_ON(delta != -1 && delta != 1);
3732 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3733 if (h->surplus_huge_pages_node[node])
3737 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3738 if (h->surplus_huge_pages_node[node] <
3739 h->nr_huge_pages_node[node])
3746 h->surplus_huge_pages += delta;
3747 h->surplus_huge_pages_node[node] += delta;
3751 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3752 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3753 nodemask_t *nodes_allowed)
3755 unsigned long min_count;
3756 unsigned long allocated;
3757 struct folio *folio;
3758 LIST_HEAD(page_list);
3759 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3762 * Bit mask controlling how hard we retry per-node allocations.
3763 * If we can not allocate the bit mask, do not attempt to allocate
3764 * the requested huge pages.
3766 if (node_alloc_noretry)
3767 nodes_clear(*node_alloc_noretry);
3772 * resize_lock mutex prevents concurrent adjustments to number of
3773 * pages in hstate via the proc/sysfs interfaces.
3775 mutex_lock(&h->resize_lock);
3776 flush_free_hpage_work(h);
3777 spin_lock_irq(&hugetlb_lock);
3780 * Check for a node specific request.
3781 * Changing node specific huge page count may require a corresponding
3782 * change to the global count. In any case, the passed node mask
3783 * (nodes_allowed) will restrict alloc/free to the specified node.
3785 if (nid != NUMA_NO_NODE) {
3786 unsigned long old_count = count;
3788 count += persistent_huge_pages(h) -
3789 (h->nr_huge_pages_node[nid] -
3790 h->surplus_huge_pages_node[nid]);
3792 * User may have specified a large count value which caused the
3793 * above calculation to overflow. In this case, they wanted
3794 * to allocate as many huge pages as possible. Set count to
3795 * largest possible value to align with their intention.
3797 if (count < old_count)
3802 * Gigantic pages runtime allocation depend on the capability for large
3803 * page range allocation.
3804 * If the system does not provide this feature, return an error when
3805 * the user tries to allocate gigantic pages but let the user free the
3806 * boottime allocated gigantic pages.
3808 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3809 if (count > persistent_huge_pages(h)) {
3810 spin_unlock_irq(&hugetlb_lock);
3811 mutex_unlock(&h->resize_lock);
3812 NODEMASK_FREE(node_alloc_noretry);
3815 /* Fall through to decrease pool */
3819 * Increase the pool size
3820 * First take pages out of surplus state. Then make up the
3821 * remaining difference by allocating fresh huge pages.
3823 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3824 * to convert a surplus huge page to a normal huge page. That is
3825 * not critical, though, it just means the overall size of the
3826 * pool might be one hugepage larger than it needs to be, but
3827 * within all the constraints specified by the sysctls.
3829 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3830 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3835 while (count > (persistent_huge_pages(h) + allocated)) {
3837 * If this allocation races such that we no longer need the
3838 * page, free_huge_folio will handle it by freeing the page
3839 * and reducing the surplus.
3841 spin_unlock_irq(&hugetlb_lock);
3843 /* yield cpu to avoid soft lockup */
3846 folio = alloc_pool_huge_folio(h, nodes_allowed,
3848 &h->next_nid_to_alloc);
3850 prep_and_add_allocated_folios(h, &page_list);
3851 spin_lock_irq(&hugetlb_lock);
3855 list_add(&folio->lru, &page_list);
3858 /* Bail for signals. Probably ctrl-c from user */
3859 if (signal_pending(current)) {
3860 prep_and_add_allocated_folios(h, &page_list);
3861 spin_lock_irq(&hugetlb_lock);
3865 spin_lock_irq(&hugetlb_lock);
3868 /* Add allocated pages to the pool */
3869 if (!list_empty(&page_list)) {
3870 spin_unlock_irq(&hugetlb_lock);
3871 prep_and_add_allocated_folios(h, &page_list);
3872 spin_lock_irq(&hugetlb_lock);
3876 * Decrease the pool size
3877 * First return free pages to the buddy allocator (being careful
3878 * to keep enough around to satisfy reservations). Then place
3879 * pages into surplus state as needed so the pool will shrink
3880 * to the desired size as pages become free.
3882 * By placing pages into the surplus state independent of the
3883 * overcommit value, we are allowing the surplus pool size to
3884 * exceed overcommit. There are few sane options here. Since
3885 * alloc_surplus_hugetlb_folio() is checking the global counter,
3886 * though, we'll note that we're not allowed to exceed surplus
3887 * and won't grow the pool anywhere else. Not until one of the
3888 * sysctls are changed, or the surplus pages go out of use.
3890 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3891 min_count = max(count, min_count);
3892 try_to_free_low(h, min_count, nodes_allowed);
3895 * Collect pages to be removed on list without dropping lock
3897 while (min_count < persistent_huge_pages(h)) {
3898 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3902 list_add(&folio->lru, &page_list);
3904 /* free the pages after dropping lock */
3905 spin_unlock_irq(&hugetlb_lock);
3906 update_and_free_pages_bulk(h, &page_list);
3907 flush_free_hpage_work(h);
3908 spin_lock_irq(&hugetlb_lock);
3910 while (count < persistent_huge_pages(h)) {
3911 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3915 h->max_huge_pages = persistent_huge_pages(h);
3916 spin_unlock_irq(&hugetlb_lock);
3917 mutex_unlock(&h->resize_lock);
3919 NODEMASK_FREE(node_alloc_noretry);
3924 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3926 int i, nid = folio_nid(folio);
3927 struct hstate *target_hstate;
3928 struct page *subpage;
3929 struct folio *inner_folio;
3932 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3934 remove_hugetlb_folio(h, folio, false);
3935 spin_unlock_irq(&hugetlb_lock);
3938 * If vmemmap already existed for folio, the remove routine above would
3939 * have cleared the hugetlb folio flag. Hence the folio is technically
3940 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be
3941 * passed hugetlb folios and will BUG otherwise.
3943 if (folio_test_hugetlb(folio)) {
3944 rc = hugetlb_vmemmap_restore_folio(h, folio);
3946 /* Allocation of vmemmmap failed, we can not demote folio */
3947 spin_lock_irq(&hugetlb_lock);
3948 add_hugetlb_folio(h, folio, false);
3954 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3955 * sizes as it will not ref count folios.
3957 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3960 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3961 * Without the mutex, pages added to target hstate could be marked
3964 * Note that we already hold h->resize_lock. To prevent deadlock,
3965 * use the convention of always taking larger size hstate mutex first.
3967 mutex_lock(&target_hstate->resize_lock);
3968 for (i = 0; i < pages_per_huge_page(h);
3969 i += pages_per_huge_page(target_hstate)) {
3970 subpage = folio_page(folio, i);
3971 inner_folio = page_folio(subpage);
3972 if (hstate_is_gigantic(target_hstate))
3973 prep_compound_gigantic_folio_for_demote(inner_folio,
3974 target_hstate->order);
3976 prep_compound_page(subpage, target_hstate->order);
3977 folio_change_private(inner_folio, NULL);
3978 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3979 free_huge_folio(inner_folio);
3981 mutex_unlock(&target_hstate->resize_lock);
3983 spin_lock_irq(&hugetlb_lock);
3986 * Not absolutely necessary, but for consistency update max_huge_pages
3987 * based on pool changes for the demoted page.
3989 h->max_huge_pages--;
3990 target_hstate->max_huge_pages +=
3991 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3996 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3997 __must_hold(&hugetlb_lock)
4000 struct folio *folio;
4002 lockdep_assert_held(&hugetlb_lock);
4004 /* We should never get here if no demote order */
4005 if (!h->demote_order) {
4006 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4007 return -EINVAL; /* internal error */
4010 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
4011 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
4012 if (folio_test_hwpoison(folio))
4014 return demote_free_hugetlb_folio(h, folio);
4019 * Only way to get here is if all pages on free lists are poisoned.
4020 * Return -EBUSY so that caller will not retry.
4025 #define HSTATE_ATTR_RO(_name) \
4026 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4028 #define HSTATE_ATTR_WO(_name) \
4029 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4031 #define HSTATE_ATTR(_name) \
4032 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4034 static struct kobject *hugepages_kobj;
4035 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4037 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4039 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4043 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4044 if (hstate_kobjs[i] == kobj) {
4046 *nidp = NUMA_NO_NODE;
4050 return kobj_to_node_hstate(kobj, nidp);
4053 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4054 struct kobj_attribute *attr, char *buf)
4057 unsigned long nr_huge_pages;
4060 h = kobj_to_hstate(kobj, &nid);
4061 if (nid == NUMA_NO_NODE)
4062 nr_huge_pages = h->nr_huge_pages;
4064 nr_huge_pages = h->nr_huge_pages_node[nid];
4066 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4069 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4070 struct hstate *h, int nid,
4071 unsigned long count, size_t len)
4074 nodemask_t nodes_allowed, *n_mask;
4076 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4079 if (nid == NUMA_NO_NODE) {
4081 * global hstate attribute
4083 if (!(obey_mempolicy &&
4084 init_nodemask_of_mempolicy(&nodes_allowed)))
4085 n_mask = &node_states[N_MEMORY];
4087 n_mask = &nodes_allowed;
4090 * Node specific request. count adjustment happens in
4091 * set_max_huge_pages() after acquiring hugetlb_lock.
4093 init_nodemask_of_node(&nodes_allowed, nid);
4094 n_mask = &nodes_allowed;
4097 err = set_max_huge_pages(h, count, nid, n_mask);
4099 return err ? err : len;
4102 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4103 struct kobject *kobj, const char *buf,
4107 unsigned long count;
4111 err = kstrtoul(buf, 10, &count);
4115 h = kobj_to_hstate(kobj, &nid);
4116 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4119 static ssize_t nr_hugepages_show(struct kobject *kobj,
4120 struct kobj_attribute *attr, char *buf)
4122 return nr_hugepages_show_common(kobj, attr, buf);
4125 static ssize_t nr_hugepages_store(struct kobject *kobj,
4126 struct kobj_attribute *attr, const char *buf, size_t len)
4128 return nr_hugepages_store_common(false, kobj, buf, len);
4130 HSTATE_ATTR(nr_hugepages);
4135 * hstate attribute for optionally mempolicy-based constraint on persistent
4136 * huge page alloc/free.
4138 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4139 struct kobj_attribute *attr,
4142 return nr_hugepages_show_common(kobj, attr, buf);
4145 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4146 struct kobj_attribute *attr, const char *buf, size_t len)
4148 return nr_hugepages_store_common(true, kobj, buf, len);
4150 HSTATE_ATTR(nr_hugepages_mempolicy);
4154 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4155 struct kobj_attribute *attr, char *buf)
4157 struct hstate *h = kobj_to_hstate(kobj, NULL);
4158 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4161 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4162 struct kobj_attribute *attr, const char *buf, size_t count)
4165 unsigned long input;
4166 struct hstate *h = kobj_to_hstate(kobj, NULL);
4168 if (hstate_is_gigantic(h))
4171 err = kstrtoul(buf, 10, &input);
4175 spin_lock_irq(&hugetlb_lock);
4176 h->nr_overcommit_huge_pages = input;
4177 spin_unlock_irq(&hugetlb_lock);
4181 HSTATE_ATTR(nr_overcommit_hugepages);
4183 static ssize_t free_hugepages_show(struct kobject *kobj,
4184 struct kobj_attribute *attr, char *buf)
4187 unsigned long free_huge_pages;
4190 h = kobj_to_hstate(kobj, &nid);
4191 if (nid == NUMA_NO_NODE)
4192 free_huge_pages = h->free_huge_pages;
4194 free_huge_pages = h->free_huge_pages_node[nid];
4196 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4198 HSTATE_ATTR_RO(free_hugepages);
4200 static ssize_t resv_hugepages_show(struct kobject *kobj,
4201 struct kobj_attribute *attr, char *buf)
4203 struct hstate *h = kobj_to_hstate(kobj, NULL);
4204 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4206 HSTATE_ATTR_RO(resv_hugepages);
4208 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4209 struct kobj_attribute *attr, char *buf)
4212 unsigned long surplus_huge_pages;
4215 h = kobj_to_hstate(kobj, &nid);
4216 if (nid == NUMA_NO_NODE)
4217 surplus_huge_pages = h->surplus_huge_pages;
4219 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4221 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4223 HSTATE_ATTR_RO(surplus_hugepages);
4225 static ssize_t demote_store(struct kobject *kobj,
4226 struct kobj_attribute *attr, const char *buf, size_t len)
4228 unsigned long nr_demote;
4229 unsigned long nr_available;
4230 nodemask_t nodes_allowed, *n_mask;
4235 err = kstrtoul(buf, 10, &nr_demote);
4238 h = kobj_to_hstate(kobj, &nid);
4240 if (nid != NUMA_NO_NODE) {
4241 init_nodemask_of_node(&nodes_allowed, nid);
4242 n_mask = &nodes_allowed;
4244 n_mask = &node_states[N_MEMORY];
4247 /* Synchronize with other sysfs operations modifying huge pages */
4248 mutex_lock(&h->resize_lock);
4249 spin_lock_irq(&hugetlb_lock);
4253 * Check for available pages to demote each time thorough the
4254 * loop as demote_pool_huge_page will drop hugetlb_lock.
4256 if (nid != NUMA_NO_NODE)
4257 nr_available = h->free_huge_pages_node[nid];
4259 nr_available = h->free_huge_pages;
4260 nr_available -= h->resv_huge_pages;
4264 err = demote_pool_huge_page(h, n_mask);
4271 spin_unlock_irq(&hugetlb_lock);
4272 mutex_unlock(&h->resize_lock);
4278 HSTATE_ATTR_WO(demote);
4280 static ssize_t demote_size_show(struct kobject *kobj,
4281 struct kobj_attribute *attr, char *buf)
4283 struct hstate *h = kobj_to_hstate(kobj, NULL);
4284 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4286 return sysfs_emit(buf, "%lukB\n", demote_size);
4289 static ssize_t demote_size_store(struct kobject *kobj,
4290 struct kobj_attribute *attr,
4291 const char *buf, size_t count)
4293 struct hstate *h, *demote_hstate;
4294 unsigned long demote_size;
4295 unsigned int demote_order;
4297 demote_size = (unsigned long)memparse(buf, NULL);
4299 demote_hstate = size_to_hstate(demote_size);
4302 demote_order = demote_hstate->order;
4303 if (demote_order < HUGETLB_PAGE_ORDER)
4306 /* demote order must be smaller than hstate order */
4307 h = kobj_to_hstate(kobj, NULL);
4308 if (demote_order >= h->order)
4311 /* resize_lock synchronizes access to demote size and writes */
4312 mutex_lock(&h->resize_lock);
4313 h->demote_order = demote_order;
4314 mutex_unlock(&h->resize_lock);
4318 HSTATE_ATTR(demote_size);
4320 static struct attribute *hstate_attrs[] = {
4321 &nr_hugepages_attr.attr,
4322 &nr_overcommit_hugepages_attr.attr,
4323 &free_hugepages_attr.attr,
4324 &resv_hugepages_attr.attr,
4325 &surplus_hugepages_attr.attr,
4327 &nr_hugepages_mempolicy_attr.attr,
4332 static const struct attribute_group hstate_attr_group = {
4333 .attrs = hstate_attrs,
4336 static struct attribute *hstate_demote_attrs[] = {
4337 &demote_size_attr.attr,
4342 static const struct attribute_group hstate_demote_attr_group = {
4343 .attrs = hstate_demote_attrs,
4346 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4347 struct kobject **hstate_kobjs,
4348 const struct attribute_group *hstate_attr_group)
4351 int hi = hstate_index(h);
4353 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4354 if (!hstate_kobjs[hi])
4357 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4359 kobject_put(hstate_kobjs[hi]);
4360 hstate_kobjs[hi] = NULL;
4364 if (h->demote_order) {
4365 retval = sysfs_create_group(hstate_kobjs[hi],
4366 &hstate_demote_attr_group);
4368 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4369 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4370 kobject_put(hstate_kobjs[hi]);
4371 hstate_kobjs[hi] = NULL;
4380 static bool hugetlb_sysfs_initialized __ro_after_init;
4383 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4384 * with node devices in node_devices[] using a parallel array. The array
4385 * index of a node device or _hstate == node id.
4386 * This is here to avoid any static dependency of the node device driver, in
4387 * the base kernel, on the hugetlb module.
4389 struct node_hstate {
4390 struct kobject *hugepages_kobj;
4391 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4393 static struct node_hstate node_hstates[MAX_NUMNODES];
4396 * A subset of global hstate attributes for node devices
4398 static struct attribute *per_node_hstate_attrs[] = {
4399 &nr_hugepages_attr.attr,
4400 &free_hugepages_attr.attr,
4401 &surplus_hugepages_attr.attr,
4405 static const struct attribute_group per_node_hstate_attr_group = {
4406 .attrs = per_node_hstate_attrs,
4410 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4411 * Returns node id via non-NULL nidp.
4413 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4417 for (nid = 0; nid < nr_node_ids; nid++) {
4418 struct node_hstate *nhs = &node_hstates[nid];
4420 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4421 if (nhs->hstate_kobjs[i] == kobj) {
4433 * Unregister hstate attributes from a single node device.
4434 * No-op if no hstate attributes attached.
4436 void hugetlb_unregister_node(struct node *node)
4439 struct node_hstate *nhs = &node_hstates[node->dev.id];
4441 if (!nhs->hugepages_kobj)
4442 return; /* no hstate attributes */
4444 for_each_hstate(h) {
4445 int idx = hstate_index(h);
4446 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4450 if (h->demote_order)
4451 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4452 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4453 kobject_put(hstate_kobj);
4454 nhs->hstate_kobjs[idx] = NULL;
4457 kobject_put(nhs->hugepages_kobj);
4458 nhs->hugepages_kobj = NULL;
4463 * Register hstate attributes for a single node device.
4464 * No-op if attributes already registered.
4466 void hugetlb_register_node(struct node *node)
4469 struct node_hstate *nhs = &node_hstates[node->dev.id];
4472 if (!hugetlb_sysfs_initialized)
4475 if (nhs->hugepages_kobj)
4476 return; /* already allocated */
4478 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4480 if (!nhs->hugepages_kobj)
4483 for_each_hstate(h) {
4484 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4486 &per_node_hstate_attr_group);
4488 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4489 h->name, node->dev.id);
4490 hugetlb_unregister_node(node);
4497 * hugetlb init time: register hstate attributes for all registered node
4498 * devices of nodes that have memory. All on-line nodes should have
4499 * registered their associated device by this time.
4501 static void __init hugetlb_register_all_nodes(void)
4505 for_each_online_node(nid)
4506 hugetlb_register_node(node_devices[nid]);
4508 #else /* !CONFIG_NUMA */
4510 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4518 static void hugetlb_register_all_nodes(void) { }
4523 static void __init hugetlb_cma_check(void);
4525 static inline __init void hugetlb_cma_check(void)
4530 static void __init hugetlb_sysfs_init(void)
4535 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4536 if (!hugepages_kobj)
4539 for_each_hstate(h) {
4540 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4541 hstate_kobjs, &hstate_attr_group);
4543 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4547 hugetlb_sysfs_initialized = true;
4549 hugetlb_register_all_nodes();
4552 #ifdef CONFIG_SYSCTL
4553 static void hugetlb_sysctl_init(void);
4555 static inline void hugetlb_sysctl_init(void) { }
4558 static int __init hugetlb_init(void)
4562 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4565 if (!hugepages_supported()) {
4566 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4567 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4572 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4573 * architectures depend on setup being done here.
4575 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4576 if (!parsed_default_hugepagesz) {
4578 * If we did not parse a default huge page size, set
4579 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4580 * number of huge pages for this default size was implicitly
4581 * specified, set that here as well.
4582 * Note that the implicit setting will overwrite an explicit
4583 * setting. A warning will be printed in this case.
4585 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4586 if (default_hstate_max_huge_pages) {
4587 if (default_hstate.max_huge_pages) {
4590 string_get_size(huge_page_size(&default_hstate),
4591 1, STRING_UNITS_2, buf, 32);
4592 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4593 default_hstate.max_huge_pages, buf);
4594 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4595 default_hstate_max_huge_pages);
4597 default_hstate.max_huge_pages =
4598 default_hstate_max_huge_pages;
4600 for_each_online_node(i)
4601 default_hstate.max_huge_pages_node[i] =
4602 default_hugepages_in_node[i];
4606 hugetlb_cma_check();
4607 hugetlb_init_hstates();
4608 gather_bootmem_prealloc();
4611 hugetlb_sysfs_init();
4612 hugetlb_cgroup_file_init();
4613 hugetlb_sysctl_init();
4616 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4618 num_fault_mutexes = 1;
4620 hugetlb_fault_mutex_table =
4621 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4623 BUG_ON(!hugetlb_fault_mutex_table);
4625 for (i = 0; i < num_fault_mutexes; i++)
4626 mutex_init(&hugetlb_fault_mutex_table[i]);
4629 subsys_initcall(hugetlb_init);
4631 /* Overwritten by architectures with more huge page sizes */
4632 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4634 return size == HPAGE_SIZE;
4637 void __init hugetlb_add_hstate(unsigned int order)
4642 if (size_to_hstate(PAGE_SIZE << order)) {
4645 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4646 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4647 h = &hstates[hugetlb_max_hstate++];
4648 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4650 h->mask = ~(huge_page_size(h) - 1);
4651 for (i = 0; i < MAX_NUMNODES; ++i)
4652 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4653 INIT_LIST_HEAD(&h->hugepage_activelist);
4654 h->next_nid_to_alloc = first_memory_node;
4655 h->next_nid_to_free = first_memory_node;
4656 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4657 huge_page_size(h)/SZ_1K);
4662 bool __init __weak hugetlb_node_alloc_supported(void)
4667 static void __init hugepages_clear_pages_in_node(void)
4669 if (!hugetlb_max_hstate) {
4670 default_hstate_max_huge_pages = 0;
4671 memset(default_hugepages_in_node, 0,
4672 sizeof(default_hugepages_in_node));
4674 parsed_hstate->max_huge_pages = 0;
4675 memset(parsed_hstate->max_huge_pages_node, 0,
4676 sizeof(parsed_hstate->max_huge_pages_node));
4681 * hugepages command line processing
4682 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4683 * specification. If not, ignore the hugepages value. hugepages can also
4684 * be the first huge page command line option in which case it implicitly
4685 * specifies the number of huge pages for the default size.
4687 static int __init hugepages_setup(char *s)
4690 static unsigned long *last_mhp;
4691 int node = NUMA_NO_NODE;
4696 if (!parsed_valid_hugepagesz) {
4697 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4698 parsed_valid_hugepagesz = true;
4703 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4704 * yet, so this hugepages= parameter goes to the "default hstate".
4705 * Otherwise, it goes with the previously parsed hugepagesz or
4706 * default_hugepagesz.
4708 else if (!hugetlb_max_hstate)
4709 mhp = &default_hstate_max_huge_pages;
4711 mhp = &parsed_hstate->max_huge_pages;
4713 if (mhp == last_mhp) {
4714 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4720 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4722 /* Parameter is node format */
4723 if (p[count] == ':') {
4724 if (!hugetlb_node_alloc_supported()) {
4725 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4728 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4730 node = array_index_nospec(tmp, MAX_NUMNODES);
4732 /* Parse hugepages */
4733 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4735 if (!hugetlb_max_hstate)
4736 default_hugepages_in_node[node] = tmp;
4738 parsed_hstate->max_huge_pages_node[node] = tmp;
4740 /* Go to parse next node*/
4741 if (p[count] == ',')
4754 * Global state is always initialized later in hugetlb_init.
4755 * But we need to allocate gigantic hstates here early to still
4756 * use the bootmem allocator.
4758 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4759 hugetlb_hstate_alloc_pages(parsed_hstate);
4766 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4767 hugepages_clear_pages_in_node();
4770 __setup("hugepages=", hugepages_setup);
4773 * hugepagesz command line processing
4774 * A specific huge page size can only be specified once with hugepagesz.
4775 * hugepagesz is followed by hugepages on the command line. The global
4776 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4777 * hugepagesz argument was valid.
4779 static int __init hugepagesz_setup(char *s)
4784 parsed_valid_hugepagesz = false;
4785 size = (unsigned long)memparse(s, NULL);
4787 if (!arch_hugetlb_valid_size(size)) {
4788 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4792 h = size_to_hstate(size);
4795 * hstate for this size already exists. This is normally
4796 * an error, but is allowed if the existing hstate is the
4797 * default hstate. More specifically, it is only allowed if
4798 * the number of huge pages for the default hstate was not
4799 * previously specified.
4801 if (!parsed_default_hugepagesz || h != &default_hstate ||
4802 default_hstate.max_huge_pages) {
4803 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4808 * No need to call hugetlb_add_hstate() as hstate already
4809 * exists. But, do set parsed_hstate so that a following
4810 * hugepages= parameter will be applied to this hstate.
4813 parsed_valid_hugepagesz = true;
4817 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4818 parsed_valid_hugepagesz = true;
4821 __setup("hugepagesz=", hugepagesz_setup);
4824 * default_hugepagesz command line input
4825 * Only one instance of default_hugepagesz allowed on command line.
4827 static int __init default_hugepagesz_setup(char *s)
4832 parsed_valid_hugepagesz = false;
4833 if (parsed_default_hugepagesz) {
4834 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4838 size = (unsigned long)memparse(s, NULL);
4840 if (!arch_hugetlb_valid_size(size)) {
4841 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4845 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4846 parsed_valid_hugepagesz = true;
4847 parsed_default_hugepagesz = true;
4848 default_hstate_idx = hstate_index(size_to_hstate(size));
4851 * The number of default huge pages (for this size) could have been
4852 * specified as the first hugetlb parameter: hugepages=X. If so,
4853 * then default_hstate_max_huge_pages is set. If the default huge
4854 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4855 * allocated here from bootmem allocator.
4857 if (default_hstate_max_huge_pages) {
4858 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4859 for_each_online_node(i)
4860 default_hstate.max_huge_pages_node[i] =
4861 default_hugepages_in_node[i];
4862 if (hstate_is_gigantic(&default_hstate))
4863 hugetlb_hstate_alloc_pages(&default_hstate);
4864 default_hstate_max_huge_pages = 0;
4869 __setup("default_hugepagesz=", default_hugepagesz_setup);
4871 static unsigned int allowed_mems_nr(struct hstate *h)
4874 unsigned int nr = 0;
4875 nodemask_t *mbind_nodemask;
4876 unsigned int *array = h->free_huge_pages_node;
4877 gfp_t gfp_mask = htlb_alloc_mask(h);
4879 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4880 for_each_node_mask(node, cpuset_current_mems_allowed) {
4881 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4888 #ifdef CONFIG_SYSCTL
4889 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4890 void *buffer, size_t *length,
4891 loff_t *ppos, unsigned long *out)
4893 struct ctl_table dup_table;
4896 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4897 * can duplicate the @table and alter the duplicate of it.
4900 dup_table.data = out;
4902 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4905 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4906 const struct ctl_table *table, int write,
4907 void *buffer, size_t *length, loff_t *ppos)
4909 struct hstate *h = &default_hstate;
4910 unsigned long tmp = h->max_huge_pages;
4913 if (!hugepages_supported())
4916 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4922 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4923 NUMA_NO_NODE, tmp, *length);
4928 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4929 void *buffer, size_t *length, loff_t *ppos)
4932 return hugetlb_sysctl_handler_common(false, table, write,
4933 buffer, length, ppos);
4937 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4938 void *buffer, size_t *length, loff_t *ppos)
4940 return hugetlb_sysctl_handler_common(true, table, write,
4941 buffer, length, ppos);
4943 #endif /* CONFIG_NUMA */
4945 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4946 void *buffer, size_t *length, loff_t *ppos)
4948 struct hstate *h = &default_hstate;
4952 if (!hugepages_supported())
4955 tmp = h->nr_overcommit_huge_pages;
4957 if (write && hstate_is_gigantic(h))
4960 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4966 spin_lock_irq(&hugetlb_lock);
4967 h->nr_overcommit_huge_pages = tmp;
4968 spin_unlock_irq(&hugetlb_lock);
4974 static struct ctl_table hugetlb_table[] = {
4976 .procname = "nr_hugepages",
4978 .maxlen = sizeof(unsigned long),
4980 .proc_handler = hugetlb_sysctl_handler,
4984 .procname = "nr_hugepages_mempolicy",
4986 .maxlen = sizeof(unsigned long),
4988 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4992 .procname = "hugetlb_shm_group",
4993 .data = &sysctl_hugetlb_shm_group,
4994 .maxlen = sizeof(gid_t),
4996 .proc_handler = proc_dointvec,
4999 .procname = "nr_overcommit_hugepages",
5001 .maxlen = sizeof(unsigned long),
5003 .proc_handler = hugetlb_overcommit_handler,
5007 static void hugetlb_sysctl_init(void)
5009 register_sysctl_init("vm", hugetlb_table);
5011 #endif /* CONFIG_SYSCTL */
5013 void hugetlb_report_meminfo(struct seq_file *m)
5016 unsigned long total = 0;
5018 if (!hugepages_supported())
5021 for_each_hstate(h) {
5022 unsigned long count = h->nr_huge_pages;
5024 total += huge_page_size(h) * count;
5026 if (h == &default_hstate)
5028 "HugePages_Total: %5lu\n"
5029 "HugePages_Free: %5lu\n"
5030 "HugePages_Rsvd: %5lu\n"
5031 "HugePages_Surp: %5lu\n"
5032 "Hugepagesize: %8lu kB\n",
5036 h->surplus_huge_pages,
5037 huge_page_size(h) / SZ_1K);
5040 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
5043 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5045 struct hstate *h = &default_hstate;
5047 if (!hugepages_supported())
5050 return sysfs_emit_at(buf, len,
5051 "Node %d HugePages_Total: %5u\n"
5052 "Node %d HugePages_Free: %5u\n"
5053 "Node %d HugePages_Surp: %5u\n",
5054 nid, h->nr_huge_pages_node[nid],
5055 nid, h->free_huge_pages_node[nid],
5056 nid, h->surplus_huge_pages_node[nid]);
5059 void hugetlb_show_meminfo_node(int nid)
5063 if (!hugepages_supported())
5067 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5069 h->nr_huge_pages_node[nid],
5070 h->free_huge_pages_node[nid],
5071 h->surplus_huge_pages_node[nid],
5072 huge_page_size(h) / SZ_1K);
5075 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5077 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5078 K(atomic_long_read(&mm->hugetlb_usage)));
5081 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5082 unsigned long hugetlb_total_pages(void)
5085 unsigned long nr_total_pages = 0;
5088 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5089 return nr_total_pages;
5092 static int hugetlb_acct_memory(struct hstate *h, long delta)
5099 spin_lock_irq(&hugetlb_lock);
5101 * When cpuset is configured, it breaks the strict hugetlb page
5102 * reservation as the accounting is done on a global variable. Such
5103 * reservation is completely rubbish in the presence of cpuset because
5104 * the reservation is not checked against page availability for the
5105 * current cpuset. Application can still potentially OOM'ed by kernel
5106 * with lack of free htlb page in cpuset that the task is in.
5107 * Attempt to enforce strict accounting with cpuset is almost
5108 * impossible (or too ugly) because cpuset is too fluid that
5109 * task or memory node can be dynamically moved between cpusets.
5111 * The change of semantics for shared hugetlb mapping with cpuset is
5112 * undesirable. However, in order to preserve some of the semantics,
5113 * we fall back to check against current free page availability as
5114 * a best attempt and hopefully to minimize the impact of changing
5115 * semantics that cpuset has.
5117 * Apart from cpuset, we also have memory policy mechanism that
5118 * also determines from which node the kernel will allocate memory
5119 * in a NUMA system. So similar to cpuset, we also should consider
5120 * the memory policy of the current task. Similar to the description
5124 if (gather_surplus_pages(h, delta) < 0)
5127 if (delta > allowed_mems_nr(h)) {
5128 return_unused_surplus_pages(h, delta);
5135 return_unused_surplus_pages(h, (unsigned long) -delta);
5138 spin_unlock_irq(&hugetlb_lock);
5142 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5144 struct resv_map *resv = vma_resv_map(vma);
5147 * HPAGE_RESV_OWNER indicates a private mapping.
5148 * This new VMA should share its siblings reservation map if present.
5149 * The VMA will only ever have a valid reservation map pointer where
5150 * it is being copied for another still existing VMA. As that VMA
5151 * has a reference to the reservation map it cannot disappear until
5152 * after this open call completes. It is therefore safe to take a
5153 * new reference here without additional locking.
5155 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5156 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5157 kref_get(&resv->refs);
5161 * vma_lock structure for sharable mappings is vma specific.
5162 * Clear old pointer (if copied via vm_area_dup) and allocate
5163 * new structure. Before clearing, make sure vma_lock is not
5166 if (vma->vm_flags & VM_MAYSHARE) {
5167 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5170 if (vma_lock->vma != vma) {
5171 vma->vm_private_data = NULL;
5172 hugetlb_vma_lock_alloc(vma);
5174 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5176 hugetlb_vma_lock_alloc(vma);
5180 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5182 struct hstate *h = hstate_vma(vma);
5183 struct resv_map *resv;
5184 struct hugepage_subpool *spool = subpool_vma(vma);
5185 unsigned long reserve, start, end;
5188 hugetlb_vma_lock_free(vma);
5190 resv = vma_resv_map(vma);
5191 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5194 start = vma_hugecache_offset(h, vma, vma->vm_start);
5195 end = vma_hugecache_offset(h, vma, vma->vm_end);
5197 reserve = (end - start) - region_count(resv, start, end);
5198 hugetlb_cgroup_uncharge_counter(resv, start, end);
5201 * Decrement reserve counts. The global reserve count may be
5202 * adjusted if the subpool has a minimum size.
5204 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5205 hugetlb_acct_memory(h, -gbl_reserve);
5208 kref_put(&resv->refs, resv_map_release);
5211 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5213 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5217 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5218 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5219 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5221 if (addr & ~PUD_MASK) {
5223 * hugetlb_vm_op_split is called right before we attempt to
5224 * split the VMA. We will need to unshare PMDs in the old and
5225 * new VMAs, so let's unshare before we split.
5227 unsigned long floor = addr & PUD_MASK;
5228 unsigned long ceil = floor + PUD_SIZE;
5230 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5231 hugetlb_unshare_pmds(vma, floor, ceil);
5237 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5239 return huge_page_size(hstate_vma(vma));
5243 * We cannot handle pagefaults against hugetlb pages at all. They cause
5244 * handle_mm_fault() to try to instantiate regular-sized pages in the
5245 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5248 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5255 * When a new function is introduced to vm_operations_struct and added
5256 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5257 * This is because under System V memory model, mappings created via
5258 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5259 * their original vm_ops are overwritten with shm_vm_ops.
5261 const struct vm_operations_struct hugetlb_vm_ops = {
5262 .fault = hugetlb_vm_op_fault,
5263 .open = hugetlb_vm_op_open,
5264 .close = hugetlb_vm_op_close,
5265 .may_split = hugetlb_vm_op_split,
5266 .pagesize = hugetlb_vm_op_pagesize,
5269 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5273 unsigned int shift = huge_page_shift(hstate_vma(vma));
5276 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5277 vma->vm_page_prot)));
5279 entry = huge_pte_wrprotect(mk_huge_pte(page,
5280 vma->vm_page_prot));
5282 entry = pte_mkyoung(entry);
5283 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5288 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5289 unsigned long address, pte_t *ptep)
5293 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5294 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5295 update_mmu_cache(vma, address, ptep);
5298 bool is_hugetlb_entry_migration(pte_t pte)
5302 if (huge_pte_none(pte) || pte_present(pte))
5304 swp = pte_to_swp_entry(pte);
5305 if (is_migration_entry(swp))
5311 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5315 if (huge_pte_none(pte) || pte_present(pte))
5317 swp = pte_to_swp_entry(pte);
5318 if (is_hwpoison_entry(swp))
5325 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5326 struct folio *new_folio, pte_t old, unsigned long sz)
5328 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5330 __folio_mark_uptodate(new_folio);
5331 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5332 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5333 newpte = huge_pte_mkuffd_wp(newpte);
5334 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5335 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5336 folio_set_hugetlb_migratable(new_folio);
5339 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5340 struct vm_area_struct *dst_vma,
5341 struct vm_area_struct *src_vma)
5343 pte_t *src_pte, *dst_pte, entry;
5344 struct folio *pte_folio;
5346 bool cow = is_cow_mapping(src_vma->vm_flags);
5347 struct hstate *h = hstate_vma(src_vma);
5348 unsigned long sz = huge_page_size(h);
5349 unsigned long npages = pages_per_huge_page(h);
5350 struct mmu_notifier_range range;
5351 unsigned long last_addr_mask;
5355 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5358 mmu_notifier_invalidate_range_start(&range);
5359 vma_assert_write_locked(src_vma);
5360 raw_write_seqcount_begin(&src->write_protect_seq);
5363 * For shared mappings the vma lock must be held before
5364 * calling hugetlb_walk() in the src vma. Otherwise, the
5365 * returned ptep could go away if part of a shared pmd and
5366 * another thread calls huge_pmd_unshare.
5368 hugetlb_vma_lock_read(src_vma);
5371 last_addr_mask = hugetlb_mask_last_page(h);
5372 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5373 spinlock_t *src_ptl, *dst_ptl;
5374 src_pte = hugetlb_walk(src_vma, addr, sz);
5376 addr |= last_addr_mask;
5379 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5386 * If the pagetables are shared don't copy or take references.
5388 * dst_pte == src_pte is the common case of src/dest sharing.
5389 * However, src could have 'unshared' and dst shares with
5390 * another vma. So page_count of ptep page is checked instead
5391 * to reliably determine whether pte is shared.
5393 if (page_count(virt_to_page(dst_pte)) > 1) {
5394 addr |= last_addr_mask;
5398 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5399 src_ptl = huge_pte_lockptr(h, src, src_pte);
5400 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5401 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5403 if (huge_pte_none(entry)) {
5405 * Skip if src entry none.
5408 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5409 if (!userfaultfd_wp(dst_vma))
5410 entry = huge_pte_clear_uffd_wp(entry);
5411 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5412 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5413 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5414 bool uffd_wp = pte_swp_uffd_wp(entry);
5416 if (!is_readable_migration_entry(swp_entry) && cow) {
5418 * COW mappings require pages in both
5419 * parent and child to be set to read.
5421 swp_entry = make_readable_migration_entry(
5422 swp_offset(swp_entry));
5423 entry = swp_entry_to_pte(swp_entry);
5424 if (userfaultfd_wp(src_vma) && uffd_wp)
5425 entry = pte_swp_mkuffd_wp(entry);
5426 set_huge_pte_at(src, addr, src_pte, entry, sz);
5428 if (!userfaultfd_wp(dst_vma))
5429 entry = huge_pte_clear_uffd_wp(entry);
5430 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5431 } else if (unlikely(is_pte_marker(entry))) {
5432 pte_marker marker = copy_pte_marker(
5433 pte_to_swp_entry(entry), dst_vma);
5436 set_huge_pte_at(dst, addr, dst_pte,
5437 make_pte_marker(marker), sz);
5439 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5440 pte_folio = page_folio(pte_page(entry));
5441 folio_get(pte_folio);
5444 * Failing to duplicate the anon rmap is a rare case
5445 * where we see pinned hugetlb pages while they're
5446 * prone to COW. We need to do the COW earlier during
5449 * When pre-allocating the page or copying data, we
5450 * need to be without the pgtable locks since we could
5451 * sleep during the process.
5453 if (!folio_test_anon(pte_folio)) {
5454 hugetlb_add_file_rmap(pte_folio);
5455 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5456 pte_t src_pte_old = entry;
5457 struct folio *new_folio;
5459 spin_unlock(src_ptl);
5460 spin_unlock(dst_ptl);
5461 /* Do not use reserve as it's private owned */
5462 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5463 if (IS_ERR(new_folio)) {
5464 folio_put(pte_folio);
5465 ret = PTR_ERR(new_folio);
5468 ret = copy_user_large_folio(new_folio, pte_folio,
5469 ALIGN_DOWN(addr, sz), dst_vma);
5470 folio_put(pte_folio);
5472 folio_put(new_folio);
5476 /* Install the new hugetlb folio if src pte stable */
5477 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5478 src_ptl = huge_pte_lockptr(h, src, src_pte);
5479 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5480 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5481 if (!pte_same(src_pte_old, entry)) {
5482 restore_reserve_on_error(h, dst_vma, addr,
5484 folio_put(new_folio);
5485 /* huge_ptep of dst_pte won't change as in child */
5488 hugetlb_install_folio(dst_vma, dst_pte, addr,
5489 new_folio, src_pte_old, sz);
5490 spin_unlock(src_ptl);
5491 spin_unlock(dst_ptl);
5497 * No need to notify as we are downgrading page
5498 * table protection not changing it to point
5501 * See Documentation/mm/mmu_notifier.rst
5503 huge_ptep_set_wrprotect(src, addr, src_pte);
5504 entry = huge_pte_wrprotect(entry);
5507 if (!userfaultfd_wp(dst_vma))
5508 entry = huge_pte_clear_uffd_wp(entry);
5510 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5511 hugetlb_count_add(npages, dst);
5513 spin_unlock(src_ptl);
5514 spin_unlock(dst_ptl);
5518 raw_write_seqcount_end(&src->write_protect_seq);
5519 mmu_notifier_invalidate_range_end(&range);
5521 hugetlb_vma_unlock_read(src_vma);
5527 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5528 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5531 struct hstate *h = hstate_vma(vma);
5532 struct mm_struct *mm = vma->vm_mm;
5533 spinlock_t *src_ptl, *dst_ptl;
5536 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5537 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5540 * We don't have to worry about the ordering of src and dst ptlocks
5541 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5543 if (src_ptl != dst_ptl)
5544 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5546 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5547 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5549 if (src_ptl != dst_ptl)
5550 spin_unlock(src_ptl);
5551 spin_unlock(dst_ptl);
5554 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5555 struct vm_area_struct *new_vma,
5556 unsigned long old_addr, unsigned long new_addr,
5559 struct hstate *h = hstate_vma(vma);
5560 struct address_space *mapping = vma->vm_file->f_mapping;
5561 unsigned long sz = huge_page_size(h);
5562 struct mm_struct *mm = vma->vm_mm;
5563 unsigned long old_end = old_addr + len;
5564 unsigned long last_addr_mask;
5565 pte_t *src_pte, *dst_pte;
5566 struct mmu_notifier_range range;
5567 bool shared_pmd = false;
5569 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5571 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5573 * In case of shared PMDs, we should cover the maximum possible
5576 flush_cache_range(vma, range.start, range.end);
5578 mmu_notifier_invalidate_range_start(&range);
5579 last_addr_mask = hugetlb_mask_last_page(h);
5580 /* Prevent race with file truncation */
5581 hugetlb_vma_lock_write(vma);
5582 i_mmap_lock_write(mapping);
5583 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5584 src_pte = hugetlb_walk(vma, old_addr, sz);
5586 old_addr |= last_addr_mask;
5587 new_addr |= last_addr_mask;
5590 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5593 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5595 old_addr |= last_addr_mask;
5596 new_addr |= last_addr_mask;
5600 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5604 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5608 flush_hugetlb_tlb_range(vma, range.start, range.end);
5610 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5611 mmu_notifier_invalidate_range_end(&range);
5612 i_mmap_unlock_write(mapping);
5613 hugetlb_vma_unlock_write(vma);
5615 return len + old_addr - old_end;
5618 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5619 unsigned long start, unsigned long end,
5620 struct page *ref_page, zap_flags_t zap_flags)
5622 struct mm_struct *mm = vma->vm_mm;
5623 unsigned long address;
5628 struct hstate *h = hstate_vma(vma);
5629 unsigned long sz = huge_page_size(h);
5630 bool adjust_reservation = false;
5631 unsigned long last_addr_mask;
5632 bool force_flush = false;
5634 WARN_ON(!is_vm_hugetlb_page(vma));
5635 BUG_ON(start & ~huge_page_mask(h));
5636 BUG_ON(end & ~huge_page_mask(h));
5639 * This is a hugetlb vma, all the pte entries should point
5642 tlb_change_page_size(tlb, sz);
5643 tlb_start_vma(tlb, vma);
5645 last_addr_mask = hugetlb_mask_last_page(h);
5647 for (; address < end; address += sz) {
5648 ptep = hugetlb_walk(vma, address, sz);
5650 address |= last_addr_mask;
5654 ptl = huge_pte_lock(h, mm, ptep);
5655 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5657 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5659 address |= last_addr_mask;
5663 pte = huge_ptep_get(mm, address, ptep);
5664 if (huge_pte_none(pte)) {
5670 * Migrating hugepage or HWPoisoned hugepage is already
5671 * unmapped and its refcount is dropped, so just clear pte here.
5673 if (unlikely(!pte_present(pte))) {
5675 * If the pte was wr-protected by uffd-wp in any of the
5676 * swap forms, meanwhile the caller does not want to
5677 * drop the uffd-wp bit in this zap, then replace the
5678 * pte with a marker.
5680 if (pte_swp_uffd_wp_any(pte) &&
5681 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5682 set_huge_pte_at(mm, address, ptep,
5683 make_pte_marker(PTE_MARKER_UFFD_WP),
5686 huge_pte_clear(mm, address, ptep, sz);
5691 page = pte_page(pte);
5693 * If a reference page is supplied, it is because a specific
5694 * page is being unmapped, not a range. Ensure the page we
5695 * are about to unmap is the actual page of interest.
5698 if (page != ref_page) {
5703 * Mark the VMA as having unmapped its page so that
5704 * future faults in this VMA will fail rather than
5705 * looking like data was lost
5707 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5710 pte = huge_ptep_get_and_clear(mm, address, ptep);
5711 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5712 if (huge_pte_dirty(pte))
5713 set_page_dirty(page);
5714 /* Leave a uffd-wp pte marker if needed */
5715 if (huge_pte_uffd_wp(pte) &&
5716 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5717 set_huge_pte_at(mm, address, ptep,
5718 make_pte_marker(PTE_MARKER_UFFD_WP),
5720 hugetlb_count_sub(pages_per_huge_page(h), mm);
5721 hugetlb_remove_rmap(page_folio(page));
5724 * Restore the reservation for anonymous page, otherwise the
5725 * backing page could be stolen by someone.
5726 * If there we are freeing a surplus, do not set the restore
5729 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5730 folio_test_anon(page_folio(page))) {
5731 folio_set_hugetlb_restore_reserve(page_folio(page));
5732 /* Reservation to be adjusted after the spin lock */
5733 adjust_reservation = true;
5739 * Adjust the reservation for the region that will have the
5740 * reserve restored. Keep in mind that vma_needs_reservation() changes
5741 * resv->adds_in_progress if it succeeds. If this is not done,
5742 * do_exit() will not see it, and will keep the reservation
5745 if (adjust_reservation) {
5746 int rc = vma_needs_reservation(h, vma, address);
5749 /* Pressumably allocate_file_region_entries failed
5750 * to allocate a file_region struct. Clear
5751 * hugetlb_restore_reserve so that global reserve
5752 * count will not be incremented by free_huge_folio.
5753 * Act as if we consumed the reservation.
5755 folio_clear_hugetlb_restore_reserve(page_folio(page));
5757 vma_add_reservation(h, vma, address);
5760 tlb_remove_page_size(tlb, page, huge_page_size(h));
5762 * Bail out after unmapping reference page if supplied
5767 tlb_end_vma(tlb, vma);
5770 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5771 * could defer the flush until now, since by holding i_mmap_rwsem we
5772 * guaranteed that the last refernece would not be dropped. But we must
5773 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5774 * dropped and the last reference to the shared PMDs page might be
5777 * In theory we could defer the freeing of the PMD pages as well, but
5778 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5779 * detect sharing, so we cannot defer the release of the page either.
5780 * Instead, do flush now.
5783 tlb_flush_mmu_tlbonly(tlb);
5786 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5787 unsigned long *start, unsigned long *end)
5789 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5792 adjust_range_if_pmd_sharing_possible(vma, start, end);
5793 hugetlb_vma_lock_write(vma);
5795 i_mmap_lock_write(vma->vm_file->f_mapping);
5798 void __hugetlb_zap_end(struct vm_area_struct *vma,
5799 struct zap_details *details)
5801 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5803 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5806 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5808 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5809 * When the vma_lock is freed, this makes the vma ineligible
5810 * for pmd sharing. And, i_mmap_rwsem is required to set up
5811 * pmd sharing. This is important as page tables for this
5812 * unmapped range will be asynchrously deleted. If the page
5813 * tables are shared, there will be issues when accessed by
5816 __hugetlb_vma_unlock_write_free(vma);
5818 hugetlb_vma_unlock_write(vma);
5822 i_mmap_unlock_write(vma->vm_file->f_mapping);
5825 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5826 unsigned long end, struct page *ref_page,
5827 zap_flags_t zap_flags)
5829 struct mmu_notifier_range range;
5830 struct mmu_gather tlb;
5832 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5834 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5835 mmu_notifier_invalidate_range_start(&range);
5836 tlb_gather_mmu(&tlb, vma->vm_mm);
5838 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5840 mmu_notifier_invalidate_range_end(&range);
5841 tlb_finish_mmu(&tlb);
5845 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5846 * mapping it owns the reserve page for. The intention is to unmap the page
5847 * from other VMAs and let the children be SIGKILLed if they are faulting the
5850 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5851 struct page *page, unsigned long address)
5853 struct hstate *h = hstate_vma(vma);
5854 struct vm_area_struct *iter_vma;
5855 struct address_space *mapping;
5859 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5860 * from page cache lookup which is in HPAGE_SIZE units.
5862 address = address & huge_page_mask(h);
5863 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5865 mapping = vma->vm_file->f_mapping;
5868 * Take the mapping lock for the duration of the table walk. As
5869 * this mapping should be shared between all the VMAs,
5870 * __unmap_hugepage_range() is called as the lock is already held
5872 i_mmap_lock_write(mapping);
5873 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5874 /* Do not unmap the current VMA */
5875 if (iter_vma == vma)
5879 * Shared VMAs have their own reserves and do not affect
5880 * MAP_PRIVATE accounting but it is possible that a shared
5881 * VMA is using the same page so check and skip such VMAs.
5883 if (iter_vma->vm_flags & VM_MAYSHARE)
5887 * Unmap the page from other VMAs without their own reserves.
5888 * They get marked to be SIGKILLed if they fault in these
5889 * areas. This is because a future no-page fault on this VMA
5890 * could insert a zeroed page instead of the data existing
5891 * from the time of fork. This would look like data corruption
5893 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5894 unmap_hugepage_range(iter_vma, address,
5895 address + huge_page_size(h), page, 0);
5897 i_mmap_unlock_write(mapping);
5901 * hugetlb_wp() should be called with page lock of the original hugepage held.
5902 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5903 * cannot race with other handlers or page migration.
5904 * Keep the pte_same checks anyway to make transition from the mutex easier.
5906 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5907 struct vm_fault *vmf)
5909 struct vm_area_struct *vma = vmf->vma;
5910 struct mm_struct *mm = vma->vm_mm;
5911 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5912 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5913 struct hstate *h = hstate_vma(vma);
5914 struct folio *old_folio;
5915 struct folio *new_folio;
5916 int outside_reserve = 0;
5918 struct mmu_notifier_range range;
5921 * Never handle CoW for uffd-wp protected pages. It should be only
5922 * handled when the uffd-wp protection is removed.
5924 * Note that only the CoW optimization path (in hugetlb_no_page())
5925 * can trigger this, because hugetlb_fault() will always resolve
5926 * uffd-wp bit first.
5928 if (!unshare && huge_pte_uffd_wp(pte))
5932 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5933 * PTE mapped R/O such as maybe_mkwrite() would do.
5935 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5936 return VM_FAULT_SIGSEGV;
5938 /* Let's take out MAP_SHARED mappings first. */
5939 if (vma->vm_flags & VM_MAYSHARE) {
5940 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5944 old_folio = page_folio(pte_page(pte));
5946 delayacct_wpcopy_start();
5950 * If no-one else is actually using this page, we're the exclusive
5951 * owner and can reuse this page.
5953 * Note that we don't rely on the (safer) folio refcount here, because
5954 * copying the hugetlb folio when there are unexpected (temporary)
5955 * folio references could harm simple fork()+exit() users when
5956 * we run out of free hugetlb folios: we would have to kill processes
5957 * in scenarios that used to work. As a side effect, there can still
5958 * be leaks between processes, for example, with FOLL_GET users.
5960 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5961 if (!PageAnonExclusive(&old_folio->page)) {
5962 folio_move_anon_rmap(old_folio, vma);
5963 SetPageAnonExclusive(&old_folio->page);
5965 if (likely(!unshare))
5966 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5968 delayacct_wpcopy_end();
5971 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5972 PageAnonExclusive(&old_folio->page), &old_folio->page);
5975 * If the process that created a MAP_PRIVATE mapping is about to
5976 * perform a COW due to a shared page count, attempt to satisfy
5977 * the allocation without using the existing reserves. The pagecache
5978 * page is used to determine if the reserve at this address was
5979 * consumed or not. If reserves were used, a partial faulted mapping
5980 * at the time of fork() could consume its reserves on COW instead
5981 * of the full address range.
5983 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5984 old_folio != pagecache_folio)
5985 outside_reserve = 1;
5987 folio_get(old_folio);
5990 * Drop page table lock as buddy allocator may be called. It will
5991 * be acquired again before returning to the caller, as expected.
5993 spin_unlock(vmf->ptl);
5994 new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
5996 if (IS_ERR(new_folio)) {
5998 * If a process owning a MAP_PRIVATE mapping fails to COW,
5999 * it is due to references held by a child and an insufficient
6000 * huge page pool. To guarantee the original mappers
6001 * reliability, unmap the page from child processes. The child
6002 * may get SIGKILLed if it later faults.
6004 if (outside_reserve) {
6005 struct address_space *mapping = vma->vm_file->f_mapping;
6009 folio_put(old_folio);
6011 * Drop hugetlb_fault_mutex and vma_lock before
6012 * unmapping. unmapping needs to hold vma_lock
6013 * in write mode. Dropping vma_lock in read mode
6014 * here is OK as COW mappings do not interact with
6017 * Reacquire both after unmap operation.
6019 idx = vma_hugecache_offset(h, vma, vmf->address);
6020 hash = hugetlb_fault_mutex_hash(mapping, idx);
6021 hugetlb_vma_unlock_read(vma);
6022 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6024 unmap_ref_private(mm, vma, &old_folio->page,
6027 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6028 hugetlb_vma_lock_read(vma);
6029 spin_lock(vmf->ptl);
6030 vmf->pte = hugetlb_walk(vma, vmf->address,
6032 if (likely(vmf->pte &&
6033 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
6034 goto retry_avoidcopy;
6036 * race occurs while re-acquiring page table
6037 * lock, and our job is done.
6039 delayacct_wpcopy_end();
6043 ret = vmf_error(PTR_ERR(new_folio));
6044 goto out_release_old;
6048 * When the original hugepage is shared one, it does not have
6049 * anon_vma prepared.
6051 ret = vmf_anon_prepare(vmf);
6053 goto out_release_all;
6055 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6056 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6057 goto out_release_all;
6059 __folio_mark_uptodate(new_folio);
6061 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6062 vmf->address + huge_page_size(h));
6063 mmu_notifier_invalidate_range_start(&range);
6066 * Retake the page table lock to check for racing updates
6067 * before the page tables are altered
6069 spin_lock(vmf->ptl);
6070 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6071 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
6072 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6074 /* Break COW or unshare */
6075 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6076 hugetlb_remove_rmap(old_folio);
6077 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6078 if (huge_pte_uffd_wp(pte))
6079 newpte = huge_pte_mkuffd_wp(newpte);
6080 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6082 folio_set_hugetlb_migratable(new_folio);
6083 /* Make the old page be freed below */
6084 new_folio = old_folio;
6086 spin_unlock(vmf->ptl);
6087 mmu_notifier_invalidate_range_end(&range);
6090 * No restore in case of successful pagetable update (Break COW or
6093 if (new_folio != old_folio)
6094 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6095 folio_put(new_folio);
6097 folio_put(old_folio);
6099 spin_lock(vmf->ptl); /* Caller expects lock to be held */
6101 delayacct_wpcopy_end();
6106 * Return whether there is a pagecache page to back given address within VMA.
6108 bool hugetlbfs_pagecache_present(struct hstate *h,
6109 struct vm_area_struct *vma, unsigned long address)
6111 struct address_space *mapping = vma->vm_file->f_mapping;
6112 pgoff_t idx = linear_page_index(vma, address);
6113 struct folio *folio;
6115 folio = filemap_get_folio(mapping, idx);
6122 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6125 struct inode *inode = mapping->host;
6126 struct hstate *h = hstate_inode(inode);
6129 idx <<= huge_page_order(h);
6130 __folio_set_locked(folio);
6131 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6133 if (unlikely(err)) {
6134 __folio_clear_locked(folio);
6137 folio_clear_hugetlb_restore_reserve(folio);
6140 * mark folio dirty so that it will not be removed from cache/file
6141 * by non-hugetlbfs specific code paths.
6143 folio_mark_dirty(folio);
6145 spin_lock(&inode->i_lock);
6146 inode->i_blocks += blocks_per_huge_page(h);
6147 spin_unlock(&inode->i_lock);
6151 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6152 struct address_space *mapping,
6153 unsigned long reason)
6158 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6159 * userfault. Also mmap_lock could be dropped due to handling
6160 * userfault, any vma operation should be careful from here.
6162 hugetlb_vma_unlock_read(vmf->vma);
6163 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6164 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6165 return handle_userfault(vmf, reason);
6169 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6170 * false if pte changed or is changing.
6172 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6173 pte_t *ptep, pte_t old_pte)
6178 ptl = huge_pte_lock(h, mm, ptep);
6179 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6185 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6186 struct vm_fault *vmf)
6188 struct vm_area_struct *vma = vmf->vma;
6189 struct mm_struct *mm = vma->vm_mm;
6190 struct hstate *h = hstate_vma(vma);
6191 vm_fault_t ret = VM_FAULT_SIGBUS;
6194 struct folio *folio;
6196 bool new_folio, new_pagecache_folio = false;
6197 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6200 * Currently, we are forced to kill the process in the event the
6201 * original mapper has unmapped pages from the child due to a failed
6202 * COW/unsharing. Warn that such a situation has occurred as it may not
6205 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6206 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6212 * Use page lock to guard against racing truncation
6213 * before we get page_table_lock.
6216 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6217 if (IS_ERR(folio)) {
6218 size = i_size_read(mapping->host) >> huge_page_shift(h);
6219 if (vmf->pgoff >= size)
6221 /* Check for page in userfault range */
6222 if (userfaultfd_missing(vma)) {
6224 * Since hugetlb_no_page() was examining pte
6225 * without pgtable lock, we need to re-test under
6226 * lock because the pte may not be stable and could
6227 * have changed from under us. Try to detect
6228 * either changed or during-changing ptes and retry
6229 * properly when needed.
6231 * Note that userfaultfd is actually fine with
6232 * false positives (e.g. caused by pte changed),
6233 * but not wrong logical events (e.g. caused by
6234 * reading a pte during changing). The latter can
6235 * confuse the userspace, so the strictness is very
6236 * much preferred. E.g., MISSING event should
6237 * never happen on the page after UFFDIO_COPY has
6238 * correctly installed the page and returned.
6240 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6245 return hugetlb_handle_userfault(vmf, mapping,
6249 if (!(vma->vm_flags & VM_MAYSHARE)) {
6250 ret = vmf_anon_prepare(vmf);
6255 folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6256 if (IS_ERR(folio)) {
6258 * Returning error will result in faulting task being
6259 * sent SIGBUS. The hugetlb fault mutex prevents two
6260 * tasks from racing to fault in the same page which
6261 * could result in false unable to allocate errors.
6262 * Page migration does not take the fault mutex, but
6263 * does a clear then write of pte's under page table
6264 * lock. Page fault code could race with migration,
6265 * notice the clear pte and try to allocate a page
6266 * here. Before returning error, get ptl and make
6267 * sure there really is no pte entry.
6269 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6270 ret = vmf_error(PTR_ERR(folio));
6275 folio_zero_user(folio, vmf->real_address);
6276 __folio_mark_uptodate(folio);
6279 if (vma->vm_flags & VM_MAYSHARE) {
6280 int err = hugetlb_add_to_page_cache(folio, mapping,
6284 * err can't be -EEXIST which implies someone
6285 * else consumed the reservation since hugetlb
6286 * fault mutex is held when add a hugetlb page
6287 * to the page cache. So it's safe to call
6288 * restore_reserve_on_error() here.
6290 restore_reserve_on_error(h, vma, vmf->address,
6293 ret = VM_FAULT_SIGBUS;
6296 new_pagecache_folio = true;
6303 * If memory error occurs between mmap() and fault, some process
6304 * don't have hwpoisoned swap entry for errored virtual address.
6305 * So we need to block hugepage fault by PG_hwpoison bit check.
6307 if (unlikely(folio_test_hwpoison(folio))) {
6308 ret = VM_FAULT_HWPOISON_LARGE |
6309 VM_FAULT_SET_HINDEX(hstate_index(h));
6310 goto backout_unlocked;
6313 /* Check for page in userfault range. */
6314 if (userfaultfd_minor(vma)) {
6315 folio_unlock(folio);
6317 /* See comment in userfaultfd_missing() block above */
6318 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6322 return hugetlb_handle_userfault(vmf, mapping,
6328 * If we are going to COW a private mapping later, we examine the
6329 * pending reservations for this page now. This will ensure that
6330 * any allocations necessary to record that reservation occur outside
6333 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6334 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6336 goto backout_unlocked;
6338 /* Just decrements count, does not deallocate */
6339 vma_end_reservation(h, vma, vmf->address);
6342 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6344 /* If pte changed from under us, retry */
6345 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6349 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6351 hugetlb_add_file_rmap(folio);
6352 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6353 && (vma->vm_flags & VM_SHARED)));
6355 * If this pte was previously wr-protected, keep it wr-protected even
6358 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6359 new_pte = huge_pte_mkuffd_wp(new_pte);
6360 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6362 hugetlb_count_add(pages_per_huge_page(h), mm);
6363 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6364 /* Optimization, do the COW without a second fault */
6365 ret = hugetlb_wp(folio, vmf);
6368 spin_unlock(vmf->ptl);
6371 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6372 * found in the pagecache may not have hugetlb_migratable if they have
6373 * been isolated for migration.
6376 folio_set_hugetlb_migratable(folio);
6378 folio_unlock(folio);
6380 hugetlb_vma_unlock_read(vma);
6381 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6385 spin_unlock(vmf->ptl);
6387 if (new_folio && !new_pagecache_folio)
6388 restore_reserve_on_error(h, vma, vmf->address, folio);
6390 folio_unlock(folio);
6396 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6398 unsigned long key[2];
6401 key[0] = (unsigned long) mapping;
6404 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6406 return hash & (num_fault_mutexes - 1);
6410 * For uniprocessor systems we always use a single mutex, so just
6411 * return 0 and avoid the hashing overhead.
6413 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6419 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6420 unsigned long address, unsigned int flags)
6424 struct folio *folio = NULL;
6425 struct folio *pagecache_folio = NULL;
6426 struct hstate *h = hstate_vma(vma);
6427 struct address_space *mapping;
6428 int need_wait_lock = 0;
6429 struct vm_fault vmf = {
6431 .address = address & huge_page_mask(h),
6432 .real_address = address,
6434 .pgoff = vma_hugecache_offset(h, vma,
6435 address & huge_page_mask(h)),
6436 /* TODO: Track hugetlb faults using vm_fault */
6439 * Some fields may not be initialized, be careful as it may
6440 * be hard to debug if called functions make assumptions
6445 * Serialize hugepage allocation and instantiation, so that we don't
6446 * get spurious allocation failures if two CPUs race to instantiate
6447 * the same page in the page cache.
6449 mapping = vma->vm_file->f_mapping;
6450 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6451 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6454 * Acquire vma lock before calling huge_pte_alloc and hold
6455 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6456 * being called elsewhere and making the vmf.pte no longer valid.
6458 hugetlb_vma_lock_read(vma);
6459 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6461 hugetlb_vma_unlock_read(vma);
6462 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6463 return VM_FAULT_OOM;
6466 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6467 if (huge_pte_none_mostly(vmf.orig_pte)) {
6468 if (is_pte_marker(vmf.orig_pte)) {
6470 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6472 if (marker & PTE_MARKER_POISONED) {
6473 ret = VM_FAULT_HWPOISON_LARGE |
6474 VM_FAULT_SET_HINDEX(hstate_index(h));
6480 * Other PTE markers should be handled the same way as none PTE.
6482 * hugetlb_no_page will drop vma lock and hugetlb fault
6483 * mutex internally, which make us return immediately.
6485 return hugetlb_no_page(mapping, &vmf);
6491 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6492 * point, so this check prevents the kernel from going below assuming
6493 * that we have an active hugepage in pagecache. This goto expects
6494 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6495 * check will properly handle it.
6497 if (!pte_present(vmf.orig_pte)) {
6498 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6500 * Release the hugetlb fault lock now, but retain
6501 * the vma lock, because it is needed to guard the
6502 * huge_pte_lockptr() later in
6503 * migration_entry_wait_huge(). The vma lock will
6504 * be released there.
6506 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6507 migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6509 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6510 ret = VM_FAULT_HWPOISON_LARGE |
6511 VM_FAULT_SET_HINDEX(hstate_index(h));
6516 * If we are going to COW/unshare the mapping later, we examine the
6517 * pending reservations for this page now. This will ensure that any
6518 * allocations necessary to record that reservation occur outside the
6519 * spinlock. Also lookup the pagecache page now as it is used to
6520 * determine if a reservation has been consumed.
6522 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6523 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6524 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6528 /* Just decrements count, does not deallocate */
6529 vma_end_reservation(h, vma, vmf.address);
6531 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6533 if (IS_ERR(pagecache_folio))
6534 pagecache_folio = NULL;
6537 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6539 /* Check for a racing update before calling hugetlb_wp() */
6540 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6543 /* Handle userfault-wp first, before trying to lock more pages */
6544 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6545 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6546 if (!userfaultfd_wp_async(vma)) {
6547 spin_unlock(vmf.ptl);
6548 if (pagecache_folio) {
6549 folio_unlock(pagecache_folio);
6550 folio_put(pagecache_folio);
6552 hugetlb_vma_unlock_read(vma);
6553 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6554 return handle_userfault(&vmf, VM_UFFD_WP);
6557 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6558 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6559 huge_page_size(hstate_vma(vma)));
6560 /* Fallthrough to CoW */
6564 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6565 * pagecache_folio, so here we need take the former one
6566 * when folio != pagecache_folio or !pagecache_folio.
6568 folio = page_folio(pte_page(vmf.orig_pte));
6569 if (folio != pagecache_folio)
6570 if (!folio_trylock(folio)) {
6577 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6578 if (!huge_pte_write(vmf.orig_pte)) {
6579 ret = hugetlb_wp(pagecache_folio, &vmf);
6581 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6582 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6585 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6586 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6587 flags & FAULT_FLAG_WRITE))
6588 update_mmu_cache(vma, vmf.address, vmf.pte);
6590 if (folio != pagecache_folio)
6591 folio_unlock(folio);
6594 spin_unlock(vmf.ptl);
6596 if (pagecache_folio) {
6597 folio_unlock(pagecache_folio);
6598 folio_put(pagecache_folio);
6601 hugetlb_vma_unlock_read(vma);
6602 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6604 * Generally it's safe to hold refcount during waiting page lock. But
6605 * here we just wait to defer the next page fault to avoid busy loop and
6606 * the page is not used after unlocked before returning from the current
6607 * page fault. So we are safe from accessing freed page, even if we wait
6608 * here without taking refcount.
6611 folio_wait_locked(folio);
6615 #ifdef CONFIG_USERFAULTFD
6617 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6619 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6620 struct vm_area_struct *vma, unsigned long address)
6622 struct mempolicy *mpol;
6623 nodemask_t *nodemask;
6624 struct folio *folio;
6628 gfp_mask = htlb_alloc_mask(h);
6629 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6631 * This is used to allocate a temporary hugetlb to hold the copied
6632 * content, which will then be copied again to the final hugetlb
6633 * consuming a reservation. Set the alloc_fallback to false to indicate
6634 * that breaking the per-node hugetlb pool is not allowed in this case.
6636 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6637 mpol_cond_put(mpol);
6643 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6644 * with modifications for hugetlb pages.
6646 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6647 struct vm_area_struct *dst_vma,
6648 unsigned long dst_addr,
6649 unsigned long src_addr,
6651 struct folio **foliop)
6653 struct mm_struct *dst_mm = dst_vma->vm_mm;
6654 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6655 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6656 struct hstate *h = hstate_vma(dst_vma);
6657 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6658 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6659 unsigned long size = huge_page_size(h);
6660 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6664 struct folio *folio;
6666 bool folio_in_pagecache = false;
6668 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6669 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6671 /* Don't overwrite any existing PTEs (even markers) */
6672 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6677 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6678 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6680 /* No need to invalidate - it was non-present before */
6681 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6689 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6692 folio_in_pagecache = true;
6693 } else if (!*foliop) {
6694 /* If a folio already exists, then it's UFFDIO_COPY for
6695 * a non-missing case. Return -EEXIST.
6698 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6703 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6704 if (IS_ERR(folio)) {
6709 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6712 /* fallback to copy_from_user outside mmap_lock */
6713 if (unlikely(ret)) {
6715 /* Free the allocated folio which may have
6716 * consumed a reservation.
6718 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6721 /* Allocate a temporary folio to hold the copied
6724 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6730 /* Set the outparam foliop and return to the caller to
6731 * copy the contents outside the lock. Don't free the
6738 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6745 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6746 if (IS_ERR(folio)) {
6752 ret = copy_user_large_folio(folio, *foliop,
6753 ALIGN_DOWN(dst_addr, size), dst_vma);
6763 * If we just allocated a new page, we need a memory barrier to ensure
6764 * that preceding stores to the page become visible before the
6765 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6768 * In the case where we have not allocated a new page (is_continue),
6769 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6770 * an earlier smp_wmb() to ensure that prior stores will be visible
6771 * before the set_pte_at() write.
6774 __folio_mark_uptodate(folio);
6776 WARN_ON_ONCE(!folio_test_uptodate(folio));
6778 /* Add shared, newly allocated pages to the page cache. */
6779 if (vm_shared && !is_continue) {
6781 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6782 goto out_release_nounlock;
6785 * Serialization between remove_inode_hugepages() and
6786 * hugetlb_add_to_page_cache() below happens through the
6787 * hugetlb_fault_mutex_table that here must be hold by
6790 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6792 goto out_release_nounlock;
6793 folio_in_pagecache = true;
6796 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6799 if (folio_test_hwpoison(folio))
6800 goto out_release_unlock;
6803 * We allow to overwrite a pte marker: consider when both MISSING|WP
6804 * registered, we firstly wr-protect a none pte which has no page cache
6805 * page backing it, then access the page.
6808 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6809 goto out_release_unlock;
6811 if (folio_in_pagecache)
6812 hugetlb_add_file_rmap(folio);
6814 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6817 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6818 * with wp flag set, don't set pte write bit.
6820 if (wp_enabled || (is_continue && !vm_shared))
6823 writable = dst_vma->vm_flags & VM_WRITE;
6825 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6827 * Always mark UFFDIO_COPY page dirty; note that this may not be
6828 * extremely important for hugetlbfs for now since swapping is not
6829 * supported, but we should still be clear in that this page cannot be
6830 * thrown away at will, even if write bit not set.
6832 _dst_pte = huge_pte_mkdirty(_dst_pte);
6833 _dst_pte = pte_mkyoung(_dst_pte);
6836 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6838 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6840 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6842 /* No need to invalidate - it was non-present before */
6843 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6847 folio_set_hugetlb_migratable(folio);
6848 if (vm_shared || is_continue)
6849 folio_unlock(folio);
6855 if (vm_shared || is_continue)
6856 folio_unlock(folio);
6857 out_release_nounlock:
6858 if (!folio_in_pagecache)
6859 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6863 #endif /* CONFIG_USERFAULTFD */
6865 long hugetlb_change_protection(struct vm_area_struct *vma,
6866 unsigned long address, unsigned long end,
6867 pgprot_t newprot, unsigned long cp_flags)
6869 struct mm_struct *mm = vma->vm_mm;
6870 unsigned long start = address;
6873 struct hstate *h = hstate_vma(vma);
6874 long pages = 0, psize = huge_page_size(h);
6875 bool shared_pmd = false;
6876 struct mmu_notifier_range range;
6877 unsigned long last_addr_mask;
6878 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6879 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6882 * In the case of shared PMDs, the area to flush could be beyond
6883 * start/end. Set range.start/range.end to cover the maximum possible
6884 * range if PMD sharing is possible.
6886 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6888 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6890 BUG_ON(address >= end);
6891 flush_cache_range(vma, range.start, range.end);
6893 mmu_notifier_invalidate_range_start(&range);
6894 hugetlb_vma_lock_write(vma);
6895 i_mmap_lock_write(vma->vm_file->f_mapping);
6896 last_addr_mask = hugetlb_mask_last_page(h);
6897 for (; address < end; address += psize) {
6899 ptep = hugetlb_walk(vma, address, psize);
6902 address |= last_addr_mask;
6906 * Userfaultfd wr-protect requires pgtable
6907 * pre-allocations to install pte markers.
6909 ptep = huge_pte_alloc(mm, vma, address, psize);
6915 ptl = huge_pte_lock(h, mm, ptep);
6916 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6918 * When uffd-wp is enabled on the vma, unshare
6919 * shouldn't happen at all. Warn about it if it
6920 * happened due to some reason.
6922 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6926 address |= last_addr_mask;
6929 pte = huge_ptep_get(mm, address, ptep);
6930 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6931 /* Nothing to do. */
6932 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6933 swp_entry_t entry = pte_to_swp_entry(pte);
6934 struct page *page = pfn_swap_entry_to_page(entry);
6937 if (is_writable_migration_entry(entry)) {
6939 entry = make_readable_exclusive_migration_entry(
6942 entry = make_readable_migration_entry(
6944 newpte = swp_entry_to_pte(entry);
6949 newpte = pte_swp_mkuffd_wp(newpte);
6950 else if (uffd_wp_resolve)
6951 newpte = pte_swp_clear_uffd_wp(newpte);
6952 if (!pte_same(pte, newpte))
6953 set_huge_pte_at(mm, address, ptep, newpte, psize);
6954 } else if (unlikely(is_pte_marker(pte))) {
6956 * Do nothing on a poison marker; page is
6957 * corrupted, permissons do not apply. Here
6958 * pte_marker_uffd_wp()==true implies !poison
6959 * because they're mutual exclusive.
6961 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6962 /* Safe to modify directly (non-present->none). */
6963 huge_pte_clear(mm, address, ptep, psize);
6964 } else if (!huge_pte_none(pte)) {
6966 unsigned int shift = huge_page_shift(hstate_vma(vma));
6968 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6969 pte = huge_pte_modify(old_pte, newprot);
6970 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6972 pte = huge_pte_mkuffd_wp(pte);
6973 else if (uffd_wp_resolve)
6974 pte = huge_pte_clear_uffd_wp(pte);
6975 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6979 if (unlikely(uffd_wp))
6980 /* Safe to modify directly (none->non-present). */
6981 set_huge_pte_at(mm, address, ptep,
6982 make_pte_marker(PTE_MARKER_UFFD_WP),
6988 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6989 * may have cleared our pud entry and done put_page on the page table:
6990 * once we release i_mmap_rwsem, another task can do the final put_page
6991 * and that page table be reused and filled with junk. If we actually
6992 * did unshare a page of pmds, flush the range corresponding to the pud.
6995 flush_hugetlb_tlb_range(vma, range.start, range.end);
6997 flush_hugetlb_tlb_range(vma, start, end);
6999 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7000 * downgrading page table protection not changing it to point to a new
7003 * See Documentation/mm/mmu_notifier.rst
7005 i_mmap_unlock_write(vma->vm_file->f_mapping);
7006 hugetlb_vma_unlock_write(vma);
7007 mmu_notifier_invalidate_range_end(&range);
7009 return pages > 0 ? (pages << h->order) : pages;
7012 /* Return true if reservation was successful, false otherwise. */
7013 bool hugetlb_reserve_pages(struct inode *inode,
7015 struct vm_area_struct *vma,
7016 vm_flags_t vm_flags)
7018 long chg = -1, add = -1;
7019 struct hstate *h = hstate_inode(inode);
7020 struct hugepage_subpool *spool = subpool_inode(inode);
7021 struct resv_map *resv_map;
7022 struct hugetlb_cgroup *h_cg = NULL;
7023 long gbl_reserve, regions_needed = 0;
7025 /* This should never happen */
7027 VM_WARN(1, "%s called with a negative range\n", __func__);
7032 * vma specific semaphore used for pmd sharing and fault/truncation
7035 hugetlb_vma_lock_alloc(vma);
7038 * Only apply hugepage reservation if asked. At fault time, an
7039 * attempt will be made for VM_NORESERVE to allocate a page
7040 * without using reserves
7042 if (vm_flags & VM_NORESERVE)
7046 * Shared mappings base their reservation on the number of pages that
7047 * are already allocated on behalf of the file. Private mappings need
7048 * to reserve the full area even if read-only as mprotect() may be
7049 * called to make the mapping read-write. Assume !vma is a shm mapping
7051 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7053 * resv_map can not be NULL as hugetlb_reserve_pages is only
7054 * called for inodes for which resv_maps were created (see
7055 * hugetlbfs_get_inode).
7057 resv_map = inode_resv_map(inode);
7059 chg = region_chg(resv_map, from, to, ®ions_needed);
7061 /* Private mapping. */
7062 resv_map = resv_map_alloc();
7068 set_vma_resv_map(vma, resv_map);
7069 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7075 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7076 chg * pages_per_huge_page(h), &h_cg) < 0)
7079 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7080 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7083 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7087 * There must be enough pages in the subpool for the mapping. If
7088 * the subpool has a minimum size, there may be some global
7089 * reservations already in place (gbl_reserve).
7091 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7092 if (gbl_reserve < 0)
7093 goto out_uncharge_cgroup;
7096 * Check enough hugepages are available for the reservation.
7097 * Hand the pages back to the subpool if there are not
7099 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7103 * Account for the reservations made. Shared mappings record regions
7104 * that have reservations as they are shared by multiple VMAs.
7105 * When the last VMA disappears, the region map says how much
7106 * the reservation was and the page cache tells how much of
7107 * the reservation was consumed. Private mappings are per-VMA and
7108 * only the consumed reservations are tracked. When the VMA
7109 * disappears, the original reservation is the VMA size and the
7110 * consumed reservations are stored in the map. Hence, nothing
7111 * else has to be done for private mappings here
7113 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7114 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7116 if (unlikely(add < 0)) {
7117 hugetlb_acct_memory(h, -gbl_reserve);
7119 } else if (unlikely(chg > add)) {
7121 * pages in this range were added to the reserve
7122 * map between region_chg and region_add. This
7123 * indicates a race with alloc_hugetlb_folio. Adjust
7124 * the subpool and reserve counts modified above
7125 * based on the difference.
7130 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7131 * reference to h_cg->css. See comment below for detail.
7133 hugetlb_cgroup_uncharge_cgroup_rsvd(
7135 (chg - add) * pages_per_huge_page(h), h_cg);
7137 rsv_adjust = hugepage_subpool_put_pages(spool,
7139 hugetlb_acct_memory(h, -rsv_adjust);
7142 * The file_regions will hold their own reference to
7143 * h_cg->css. So we should release the reference held
7144 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7147 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7153 /* put back original number of pages, chg */
7154 (void)hugepage_subpool_put_pages(spool, chg);
7155 out_uncharge_cgroup:
7156 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7157 chg * pages_per_huge_page(h), h_cg);
7159 hugetlb_vma_lock_free(vma);
7160 if (!vma || vma->vm_flags & VM_MAYSHARE)
7161 /* Only call region_abort if the region_chg succeeded but the
7162 * region_add failed or didn't run.
7164 if (chg >= 0 && add < 0)
7165 region_abort(resv_map, from, to, regions_needed);
7166 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7167 kref_put(&resv_map->refs, resv_map_release);
7168 set_vma_resv_map(vma, NULL);
7173 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7176 struct hstate *h = hstate_inode(inode);
7177 struct resv_map *resv_map = inode_resv_map(inode);
7179 struct hugepage_subpool *spool = subpool_inode(inode);
7183 * Since this routine can be called in the evict inode path for all
7184 * hugetlbfs inodes, resv_map could be NULL.
7187 chg = region_del(resv_map, start, end);
7189 * region_del() can fail in the rare case where a region
7190 * must be split and another region descriptor can not be
7191 * allocated. If end == LONG_MAX, it will not fail.
7197 spin_lock(&inode->i_lock);
7198 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7199 spin_unlock(&inode->i_lock);
7202 * If the subpool has a minimum size, the number of global
7203 * reservations to be released may be adjusted.
7205 * Note that !resv_map implies freed == 0. So (chg - freed)
7206 * won't go negative.
7208 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7209 hugetlb_acct_memory(h, -gbl_reserve);
7214 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7215 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7216 struct vm_area_struct *vma,
7217 unsigned long addr, pgoff_t idx)
7219 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7221 unsigned long sbase = saddr & PUD_MASK;
7222 unsigned long s_end = sbase + PUD_SIZE;
7224 /* Allow segments to share if only one is marked locked */
7225 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7226 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7229 * match the virtual addresses, permission and the alignment of the
7232 * Also, vma_lock (vm_private_data) is required for sharing.
7234 if (pmd_index(addr) != pmd_index(saddr) ||
7235 vm_flags != svm_flags ||
7236 !range_in_vma(svma, sbase, s_end) ||
7237 !svma->vm_private_data)
7243 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7245 unsigned long start = addr & PUD_MASK;
7246 unsigned long end = start + PUD_SIZE;
7248 #ifdef CONFIG_USERFAULTFD
7249 if (uffd_disable_huge_pmd_share(vma))
7253 * check on proper vm_flags and page table alignment
7255 if (!(vma->vm_flags & VM_MAYSHARE))
7257 if (!vma->vm_private_data) /* vma lock required for sharing */
7259 if (!range_in_vma(vma, start, end))
7265 * Determine if start,end range within vma could be mapped by shared pmd.
7266 * If yes, adjust start and end to cover range associated with possible
7267 * shared pmd mappings.
7269 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7270 unsigned long *start, unsigned long *end)
7272 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7273 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7276 * vma needs to span at least one aligned PUD size, and the range
7277 * must be at least partially within in.
7279 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7280 (*end <= v_start) || (*start >= v_end))
7283 /* Extend the range to be PUD aligned for a worst case scenario */
7284 if (*start > v_start)
7285 *start = ALIGN_DOWN(*start, PUD_SIZE);
7288 *end = ALIGN(*end, PUD_SIZE);
7292 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7293 * and returns the corresponding pte. While this is not necessary for the
7294 * !shared pmd case because we can allocate the pmd later as well, it makes the
7295 * code much cleaner. pmd allocation is essential for the shared case because
7296 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7297 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7298 * bad pmd for sharing.
7300 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7301 unsigned long addr, pud_t *pud)
7303 struct address_space *mapping = vma->vm_file->f_mapping;
7304 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7306 struct vm_area_struct *svma;
7307 unsigned long saddr;
7311 i_mmap_lock_read(mapping);
7312 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7316 saddr = page_table_shareable(svma, vma, addr, idx);
7318 spte = hugetlb_walk(svma, saddr,
7319 vma_mmu_pagesize(svma));
7321 get_page(virt_to_page(spte));
7330 spin_lock(&mm->page_table_lock);
7331 if (pud_none(*pud)) {
7332 pud_populate(mm, pud,
7333 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7336 put_page(virt_to_page(spte));
7338 spin_unlock(&mm->page_table_lock);
7340 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7341 i_mmap_unlock_read(mapping);
7346 * unmap huge page backed by shared pte.
7348 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7349 * indicated by page_count > 1, unmap is achieved by clearing pud and
7350 * decrementing the ref count. If count == 1, the pte page is not shared.
7352 * Called with page table lock held.
7354 * returns: 1 successfully unmapped a shared pte page
7355 * 0 the underlying pte page is not shared, or it is the last user
7357 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7358 unsigned long addr, pte_t *ptep)
7360 pgd_t *pgd = pgd_offset(mm, addr);
7361 p4d_t *p4d = p4d_offset(pgd, addr);
7362 pud_t *pud = pud_offset(p4d, addr);
7364 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7365 hugetlb_vma_assert_locked(vma);
7366 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7367 if (page_count(virt_to_page(ptep)) == 1)
7371 put_page(virt_to_page(ptep));
7376 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7378 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7379 unsigned long addr, pud_t *pud)
7384 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7385 unsigned long addr, pte_t *ptep)
7390 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7391 unsigned long *start, unsigned long *end)
7395 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7399 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7401 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7402 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7403 unsigned long addr, unsigned long sz)
7410 pgd = pgd_offset(mm, addr);
7411 p4d = p4d_alloc(mm, pgd, addr);
7414 pud = pud_alloc(mm, p4d, addr);
7416 if (sz == PUD_SIZE) {
7419 BUG_ON(sz != PMD_SIZE);
7420 if (want_pmd_share(vma, addr) && pud_none(*pud))
7421 pte = huge_pmd_share(mm, vma, addr, pud);
7423 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7428 pte_t pteval = ptep_get_lockless(pte);
7430 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7437 * huge_pte_offset() - Walk the page table to resolve the hugepage
7438 * entry at address @addr
7440 * Return: Pointer to page table entry (PUD or PMD) for
7441 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7442 * size @sz doesn't match the hugepage size at this level of the page
7445 pte_t *huge_pte_offset(struct mm_struct *mm,
7446 unsigned long addr, unsigned long sz)
7453 pgd = pgd_offset(mm, addr);
7454 if (!pgd_present(*pgd))
7456 p4d = p4d_offset(pgd, addr);
7457 if (!p4d_present(*p4d))
7460 pud = pud_offset(p4d, addr);
7462 /* must be pud huge, non-present or none */
7463 return (pte_t *)pud;
7464 if (!pud_present(*pud))
7466 /* must have a valid entry and size to go further */
7468 pmd = pmd_offset(pud, addr);
7469 /* must be pmd huge, non-present or none */
7470 return (pte_t *)pmd;
7474 * Return a mask that can be used to update an address to the last huge
7475 * page in a page table page mapping size. Used to skip non-present
7476 * page table entries when linearly scanning address ranges. Architectures
7477 * with unique huge page to page table relationships can define their own
7478 * version of this routine.
7480 unsigned long hugetlb_mask_last_page(struct hstate *h)
7482 unsigned long hp_size = huge_page_size(h);
7484 if (hp_size == PUD_SIZE)
7485 return P4D_SIZE - PUD_SIZE;
7486 else if (hp_size == PMD_SIZE)
7487 return PUD_SIZE - PMD_SIZE;
7494 /* See description above. Architectures can provide their own version. */
7495 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7497 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7498 if (huge_page_size(h) == PMD_SIZE)
7499 return PUD_SIZE - PMD_SIZE;
7504 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7507 * These functions are overwritable if your architecture needs its own
7510 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7514 spin_lock_irq(&hugetlb_lock);
7515 if (!folio_test_hugetlb(folio) ||
7516 !folio_test_hugetlb_migratable(folio) ||
7517 !folio_try_get(folio)) {
7521 folio_clear_hugetlb_migratable(folio);
7522 list_move_tail(&folio->lru, list);
7524 spin_unlock_irq(&hugetlb_lock);
7528 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7533 spin_lock_irq(&hugetlb_lock);
7534 if (folio_test_hugetlb(folio)) {
7536 if (folio_test_hugetlb_freed(folio))
7538 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7539 ret = folio_try_get(folio);
7543 spin_unlock_irq(&hugetlb_lock);
7547 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7548 bool *migratable_cleared)
7552 spin_lock_irq(&hugetlb_lock);
7553 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7554 spin_unlock_irq(&hugetlb_lock);
7558 void folio_putback_active_hugetlb(struct folio *folio)
7560 spin_lock_irq(&hugetlb_lock);
7561 folio_set_hugetlb_migratable(folio);
7562 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7563 spin_unlock_irq(&hugetlb_lock);
7567 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7569 struct hstate *h = folio_hstate(old_folio);
7571 hugetlb_cgroup_migrate(old_folio, new_folio);
7572 set_page_owner_migrate_reason(&new_folio->page, reason);
7575 * transfer temporary state of the new hugetlb folio. This is
7576 * reverse to other transitions because the newpage is going to
7577 * be final while the old one will be freed so it takes over
7578 * the temporary status.
7580 * Also note that we have to transfer the per-node surplus state
7581 * here as well otherwise the global surplus count will not match
7584 if (folio_test_hugetlb_temporary(new_folio)) {
7585 int old_nid = folio_nid(old_folio);
7586 int new_nid = folio_nid(new_folio);
7588 folio_set_hugetlb_temporary(old_folio);
7589 folio_clear_hugetlb_temporary(new_folio);
7593 * There is no need to transfer the per-node surplus state
7594 * when we do not cross the node.
7596 if (new_nid == old_nid)
7598 spin_lock_irq(&hugetlb_lock);
7599 if (h->surplus_huge_pages_node[old_nid]) {
7600 h->surplus_huge_pages_node[old_nid]--;
7601 h->surplus_huge_pages_node[new_nid]++;
7603 spin_unlock_irq(&hugetlb_lock);
7607 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7608 unsigned long start,
7611 struct hstate *h = hstate_vma(vma);
7612 unsigned long sz = huge_page_size(h);
7613 struct mm_struct *mm = vma->vm_mm;
7614 struct mmu_notifier_range range;
7615 unsigned long address;
7619 if (!(vma->vm_flags & VM_MAYSHARE))
7625 flush_cache_range(vma, start, end);
7627 * No need to call adjust_range_if_pmd_sharing_possible(), because
7628 * we have already done the PUD_SIZE alignment.
7630 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7632 mmu_notifier_invalidate_range_start(&range);
7633 hugetlb_vma_lock_write(vma);
7634 i_mmap_lock_write(vma->vm_file->f_mapping);
7635 for (address = start; address < end; address += PUD_SIZE) {
7636 ptep = hugetlb_walk(vma, address, sz);
7639 ptl = huge_pte_lock(h, mm, ptep);
7640 huge_pmd_unshare(mm, vma, address, ptep);
7643 flush_hugetlb_tlb_range(vma, start, end);
7644 i_mmap_unlock_write(vma->vm_file->f_mapping);
7645 hugetlb_vma_unlock_write(vma);
7647 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7648 * Documentation/mm/mmu_notifier.rst.
7650 mmu_notifier_invalidate_range_end(&range);
7654 * This function will unconditionally remove all the shared pmd pgtable entries
7655 * within the specific vma for a hugetlbfs memory range.
7657 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7659 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7660 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7664 static bool cma_reserve_called __initdata;
7666 static int __init cmdline_parse_hugetlb_cma(char *p)
7673 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7676 if (s[count] == ':') {
7677 if (tmp >= MAX_NUMNODES)
7679 nid = array_index_nospec(tmp, MAX_NUMNODES);
7682 tmp = memparse(s, &s);
7683 hugetlb_cma_size_in_node[nid] = tmp;
7684 hugetlb_cma_size += tmp;
7687 * Skip the separator if have one, otherwise
7688 * break the parsing.
7695 hugetlb_cma_size = memparse(p, &p);
7703 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7705 void __init hugetlb_cma_reserve(int order)
7707 unsigned long size, reserved, per_node;
7708 bool node_specific_cma_alloc = false;
7712 * HugeTLB CMA reservation is required for gigantic
7713 * huge pages which could not be allocated via the
7714 * page allocator. Just warn if there is any change
7715 * breaking this assumption.
7717 VM_WARN_ON(order <= MAX_PAGE_ORDER);
7718 cma_reserve_called = true;
7720 if (!hugetlb_cma_size)
7723 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7724 if (hugetlb_cma_size_in_node[nid] == 0)
7727 if (!node_online(nid)) {
7728 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7729 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7730 hugetlb_cma_size_in_node[nid] = 0;
7734 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7735 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7736 nid, (PAGE_SIZE << order) / SZ_1M);
7737 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7738 hugetlb_cma_size_in_node[nid] = 0;
7740 node_specific_cma_alloc = true;
7744 /* Validate the CMA size again in case some invalid nodes specified. */
7745 if (!hugetlb_cma_size)
7748 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7749 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7750 (PAGE_SIZE << order) / SZ_1M);
7751 hugetlb_cma_size = 0;
7755 if (!node_specific_cma_alloc) {
7757 * If 3 GB area is requested on a machine with 4 numa nodes,
7758 * let's allocate 1 GB on first three nodes and ignore the last one.
7760 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7761 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7762 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7766 for_each_online_node(nid) {
7768 char name[CMA_MAX_NAME];
7770 if (node_specific_cma_alloc) {
7771 if (hugetlb_cma_size_in_node[nid] == 0)
7774 size = hugetlb_cma_size_in_node[nid];
7776 size = min(per_node, hugetlb_cma_size - reserved);
7779 size = round_up(size, PAGE_SIZE << order);
7781 snprintf(name, sizeof(name), "hugetlb%d", nid);
7783 * Note that 'order per bit' is based on smallest size that
7784 * may be returned to CMA allocator in the case of
7785 * huge page demotion.
7787 res = cma_declare_contiguous_nid(0, size, 0,
7789 HUGETLB_PAGE_ORDER, false, name,
7790 &hugetlb_cma[nid], nid);
7792 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7798 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7801 if (reserved >= hugetlb_cma_size)
7807 * hugetlb_cma_size is used to determine if allocations from
7808 * cma are possible. Set to zero if no cma regions are set up.
7810 hugetlb_cma_size = 0;
7813 static void __init hugetlb_cma_check(void)
7815 if (!hugetlb_cma_size || cma_reserve_called)
7818 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7821 #endif /* CONFIG_CMA */