]> Git Repo - linux.git/blob - mm/hugetlb.c
KVM: arm64: Sanitise ID_AA64MMFR3_EL1
[linux.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
55
56 #ifdef CONFIG_CMA
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60 {
61         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
62                                 1 << order);
63 }
64 #else
65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
66 {
67         return false;
68 }
69 #endif
70 static unsigned long hugetlb_cma_size __initdata;
71
72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
73
74 /* for command line parsing */
75 static struct hstate * __initdata parsed_hstate;
76 static unsigned long __initdata default_hstate_max_huge_pages;
77 static bool __initdata parsed_valid_hugepagesz = true;
78 static bool __initdata parsed_default_hugepagesz;
79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80
81 /*
82  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83  * free_huge_pages, and surplus_huge_pages.
84  */
85 DEFINE_SPINLOCK(hugetlb_lock);
86
87 /*
88  * Serializes faults on the same logical page.  This is used to
89  * prevent spurious OOMs when the hugepage pool is fully utilized.
90  */
91 static int num_fault_mutexes;
92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93
94 /* Forward declaration */
95 static int hugetlb_acct_memory(struct hstate *h, long delta);
96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100                 unsigned long start, unsigned long end);
101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102
103 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 {
105         if (spool->count)
106                 return false;
107         if (spool->max_hpages != -1)
108                 return spool->used_hpages == 0;
109         if (spool->min_hpages != -1)
110                 return spool->rsv_hpages == spool->min_hpages;
111
112         return true;
113 }
114
115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116                                                 unsigned long irq_flags)
117 {
118         spin_unlock_irqrestore(&spool->lock, irq_flags);
119
120         /* If no pages are used, and no other handles to the subpool
121          * remain, give up any reservations based on minimum size and
122          * free the subpool */
123         if (subpool_is_free(spool)) {
124                 if (spool->min_hpages != -1)
125                         hugetlb_acct_memory(spool->hstate,
126                                                 -spool->min_hpages);
127                 kfree(spool);
128         }
129 }
130
131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132                                                 long min_hpages)
133 {
134         struct hugepage_subpool *spool;
135
136         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137         if (!spool)
138                 return NULL;
139
140         spin_lock_init(&spool->lock);
141         spool->count = 1;
142         spool->max_hpages = max_hpages;
143         spool->hstate = h;
144         spool->min_hpages = min_hpages;
145
146         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147                 kfree(spool);
148                 return NULL;
149         }
150         spool->rsv_hpages = min_hpages;
151
152         return spool;
153 }
154
155 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 {
157         unsigned long flags;
158
159         spin_lock_irqsave(&spool->lock, flags);
160         BUG_ON(!spool->count);
161         spool->count--;
162         unlock_or_release_subpool(spool, flags);
163 }
164
165 /*
166  * Subpool accounting for allocating and reserving pages.
167  * Return -ENOMEM if there are not enough resources to satisfy the
168  * request.  Otherwise, return the number of pages by which the
169  * global pools must be adjusted (upward).  The returned value may
170  * only be different than the passed value (delta) in the case where
171  * a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
174                                       long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return ret;
180
181         spin_lock_irq(&spool->lock);
182
183         if (spool->max_hpages != -1) {          /* maximum size accounting */
184                 if ((spool->used_hpages + delta) <= spool->max_hpages)
185                         spool->used_hpages += delta;
186                 else {
187                         ret = -ENOMEM;
188                         goto unlock_ret;
189                 }
190         }
191
192         /* minimum size accounting */
193         if (spool->min_hpages != -1 && spool->rsv_hpages) {
194                 if (delta > spool->rsv_hpages) {
195                         /*
196                          * Asking for more reserves than those already taken on
197                          * behalf of subpool.  Return difference.
198                          */
199                         ret = delta - spool->rsv_hpages;
200                         spool->rsv_hpages = 0;
201                 } else {
202                         ret = 0;        /* reserves already accounted for */
203                         spool->rsv_hpages -= delta;
204                 }
205         }
206
207 unlock_ret:
208         spin_unlock_irq(&spool->lock);
209         return ret;
210 }
211
212 /*
213  * Subpool accounting for freeing and unreserving pages.
214  * Return the number of global page reservations that must be dropped.
215  * The return value may only be different than the passed value (delta)
216  * in the case where a subpool minimum size must be maintained.
217  */
218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
219                                        long delta)
220 {
221         long ret = delta;
222         unsigned long flags;
223
224         if (!spool)
225                 return delta;
226
227         spin_lock_irqsave(&spool->lock, flags);
228
229         if (spool->max_hpages != -1)            /* maximum size accounting */
230                 spool->used_hpages -= delta;
231
232          /* minimum size accounting */
233         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234                 if (spool->rsv_hpages + delta <= spool->min_hpages)
235                         ret = 0;
236                 else
237                         ret = spool->rsv_hpages + delta - spool->min_hpages;
238
239                 spool->rsv_hpages += delta;
240                 if (spool->rsv_hpages > spool->min_hpages)
241                         spool->rsv_hpages = spool->min_hpages;
242         }
243
244         /*
245          * If hugetlbfs_put_super couldn't free spool due to an outstanding
246          * quota reference, free it now.
247          */
248         unlock_or_release_subpool(spool, flags);
249
250         return ret;
251 }
252
253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254 {
255         return HUGETLBFS_SB(inode->i_sb)->spool;
256 }
257
258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259 {
260         return subpool_inode(file_inode(vma->vm_file));
261 }
262
263 /*
264  * hugetlb vma_lock helper routines
265  */
266 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267 {
268         if (__vma_shareable_lock(vma)) {
269                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270
271                 down_read(&vma_lock->rw_sema);
272         } else if (__vma_private_lock(vma)) {
273                 struct resv_map *resv_map = vma_resv_map(vma);
274
275                 down_read(&resv_map->rw_sema);
276         }
277 }
278
279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280 {
281         if (__vma_shareable_lock(vma)) {
282                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283
284                 up_read(&vma_lock->rw_sema);
285         } else if (__vma_private_lock(vma)) {
286                 struct resv_map *resv_map = vma_resv_map(vma);
287
288                 up_read(&resv_map->rw_sema);
289         }
290 }
291
292 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293 {
294         if (__vma_shareable_lock(vma)) {
295                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296
297                 down_write(&vma_lock->rw_sema);
298         } else if (__vma_private_lock(vma)) {
299                 struct resv_map *resv_map = vma_resv_map(vma);
300
301                 down_write(&resv_map->rw_sema);
302         }
303 }
304
305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306 {
307         if (__vma_shareable_lock(vma)) {
308                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309
310                 up_write(&vma_lock->rw_sema);
311         } else if (__vma_private_lock(vma)) {
312                 struct resv_map *resv_map = vma_resv_map(vma);
313
314                 up_write(&resv_map->rw_sema);
315         }
316 }
317
318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
319 {
320
321         if (__vma_shareable_lock(vma)) {
322                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323
324                 return down_write_trylock(&vma_lock->rw_sema);
325         } else if (__vma_private_lock(vma)) {
326                 struct resv_map *resv_map = vma_resv_map(vma);
327
328                 return down_write_trylock(&resv_map->rw_sema);
329         }
330
331         return 1;
332 }
333
334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335 {
336         if (__vma_shareable_lock(vma)) {
337                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338
339                 lockdep_assert_held(&vma_lock->rw_sema);
340         } else if (__vma_private_lock(vma)) {
341                 struct resv_map *resv_map = vma_resv_map(vma);
342
343                 lockdep_assert_held(&resv_map->rw_sema);
344         }
345 }
346
347 void hugetlb_vma_lock_release(struct kref *kref)
348 {
349         struct hugetlb_vma_lock *vma_lock = container_of(kref,
350                         struct hugetlb_vma_lock, refs);
351
352         kfree(vma_lock);
353 }
354
355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356 {
357         struct vm_area_struct *vma = vma_lock->vma;
358
359         /*
360          * vma_lock structure may or not be released as a result of put,
361          * it certainly will no longer be attached to vma so clear pointer.
362          * Semaphore synchronizes access to vma_lock->vma field.
363          */
364         vma_lock->vma = NULL;
365         vma->vm_private_data = NULL;
366         up_write(&vma_lock->rw_sema);
367         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
368 }
369
370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371 {
372         if (__vma_shareable_lock(vma)) {
373                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374
375                 __hugetlb_vma_unlock_write_put(vma_lock);
376         } else if (__vma_private_lock(vma)) {
377                 struct resv_map *resv_map = vma_resv_map(vma);
378
379                 /* no free for anon vmas, but still need to unlock */
380                 up_write(&resv_map->rw_sema);
381         }
382 }
383
384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
385 {
386         /*
387          * Only present in sharable vmas.
388          */
389         if (!vma || !__vma_shareable_lock(vma))
390                 return;
391
392         if (vma->vm_private_data) {
393                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394
395                 down_write(&vma_lock->rw_sema);
396                 __hugetlb_vma_unlock_write_put(vma_lock);
397         }
398 }
399
400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401 {
402         struct hugetlb_vma_lock *vma_lock;
403
404         /* Only establish in (flags) sharable vmas */
405         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
406                 return;
407
408         /* Should never get here with non-NULL vm_private_data */
409         if (vma->vm_private_data)
410                 return;
411
412         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
413         if (!vma_lock) {
414                 /*
415                  * If we can not allocate structure, then vma can not
416                  * participate in pmd sharing.  This is only a possible
417                  * performance enhancement and memory saving issue.
418                  * However, the lock is also used to synchronize page
419                  * faults with truncation.  If the lock is not present,
420                  * unlikely races could leave pages in a file past i_size
421                  * until the file is removed.  Warn in the unlikely case of
422                  * allocation failure.
423                  */
424                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
425                 return;
426         }
427
428         kref_init(&vma_lock->refs);
429         init_rwsem(&vma_lock->rw_sema);
430         vma_lock->vma = vma;
431         vma->vm_private_data = vma_lock;
432 }
433
434 /* Helper that removes a struct file_region from the resv_map cache and returns
435  * it for use.
436  */
437 static struct file_region *
438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439 {
440         struct file_region *nrg;
441
442         VM_BUG_ON(resv->region_cache_count <= 0);
443
444         resv->region_cache_count--;
445         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446         list_del(&nrg->link);
447
448         nrg->from = from;
449         nrg->to = to;
450
451         return nrg;
452 }
453
454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455                                               struct file_region *rg)
456 {
457 #ifdef CONFIG_CGROUP_HUGETLB
458         nrg->reservation_counter = rg->reservation_counter;
459         nrg->css = rg->css;
460         if (rg->css)
461                 css_get(rg->css);
462 #endif
463 }
464
465 /* Helper that records hugetlb_cgroup uncharge info. */
466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467                                                 struct hstate *h,
468                                                 struct resv_map *resv,
469                                                 struct file_region *nrg)
470 {
471 #ifdef CONFIG_CGROUP_HUGETLB
472         if (h_cg) {
473                 nrg->reservation_counter =
474                         &h_cg->rsvd_hugepage[hstate_index(h)];
475                 nrg->css = &h_cg->css;
476                 /*
477                  * The caller will hold exactly one h_cg->css reference for the
478                  * whole contiguous reservation region. But this area might be
479                  * scattered when there are already some file_regions reside in
480                  * it. As a result, many file_regions may share only one css
481                  * reference. In order to ensure that one file_region must hold
482                  * exactly one h_cg->css reference, we should do css_get for
483                  * each file_region and leave the reference held by caller
484                  * untouched.
485                  */
486                 css_get(&h_cg->css);
487                 if (!resv->pages_per_hpage)
488                         resv->pages_per_hpage = pages_per_huge_page(h);
489                 /* pages_per_hpage should be the same for all entries in
490                  * a resv_map.
491                  */
492                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493         } else {
494                 nrg->reservation_counter = NULL;
495                 nrg->css = NULL;
496         }
497 #endif
498 }
499
500 static void put_uncharge_info(struct file_region *rg)
501 {
502 #ifdef CONFIG_CGROUP_HUGETLB
503         if (rg->css)
504                 css_put(rg->css);
505 #endif
506 }
507
508 static bool has_same_uncharge_info(struct file_region *rg,
509                                    struct file_region *org)
510 {
511 #ifdef CONFIG_CGROUP_HUGETLB
512         return rg->reservation_counter == org->reservation_counter &&
513                rg->css == org->css;
514
515 #else
516         return true;
517 #endif
518 }
519
520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521 {
522         struct file_region *nrg, *prg;
523
524         prg = list_prev_entry(rg, link);
525         if (&prg->link != &resv->regions && prg->to == rg->from &&
526             has_same_uncharge_info(prg, rg)) {
527                 prg->to = rg->to;
528
529                 list_del(&rg->link);
530                 put_uncharge_info(rg);
531                 kfree(rg);
532
533                 rg = prg;
534         }
535
536         nrg = list_next_entry(rg, link);
537         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538             has_same_uncharge_info(nrg, rg)) {
539                 nrg->from = rg->from;
540
541                 list_del(&rg->link);
542                 put_uncharge_info(rg);
543                 kfree(rg);
544         }
545 }
546
547 static inline long
548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
550                      long *regions_needed)
551 {
552         struct file_region *nrg;
553
554         if (!regions_needed) {
555                 nrg = get_file_region_entry_from_cache(map, from, to);
556                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557                 list_add(&nrg->link, rg);
558                 coalesce_file_region(map, nrg);
559         } else
560                 *regions_needed += 1;
561
562         return to - from;
563 }
564
565 /*
566  * Must be called with resv->lock held.
567  *
568  * Calling this with regions_needed != NULL will count the number of pages
569  * to be added but will not modify the linked list. And regions_needed will
570  * indicate the number of file_regions needed in the cache to carry out to add
571  * the regions for this range.
572  */
573 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574                                      struct hugetlb_cgroup *h_cg,
575                                      struct hstate *h, long *regions_needed)
576 {
577         long add = 0;
578         struct list_head *head = &resv->regions;
579         long last_accounted_offset = f;
580         struct file_region *iter, *trg = NULL;
581         struct list_head *rg = NULL;
582
583         if (regions_needed)
584                 *regions_needed = 0;
585
586         /* In this loop, we essentially handle an entry for the range
587          * [last_accounted_offset, iter->from), at every iteration, with some
588          * bounds checking.
589          */
590         list_for_each_entry_safe(iter, trg, head, link) {
591                 /* Skip irrelevant regions that start before our range. */
592                 if (iter->from < f) {
593                         /* If this region ends after the last accounted offset,
594                          * then we need to update last_accounted_offset.
595                          */
596                         if (iter->to > last_accounted_offset)
597                                 last_accounted_offset = iter->to;
598                         continue;
599                 }
600
601                 /* When we find a region that starts beyond our range, we've
602                  * finished.
603                  */
604                 if (iter->from >= t) {
605                         rg = iter->link.prev;
606                         break;
607                 }
608
609                 /* Add an entry for last_accounted_offset -> iter->from, and
610                  * update last_accounted_offset.
611                  */
612                 if (iter->from > last_accounted_offset)
613                         add += hugetlb_resv_map_add(resv, iter->link.prev,
614                                                     last_accounted_offset,
615                                                     iter->from, h, h_cg,
616                                                     regions_needed);
617
618                 last_accounted_offset = iter->to;
619         }
620
621         /* Handle the case where our range extends beyond
622          * last_accounted_offset.
623          */
624         if (!rg)
625                 rg = head->prev;
626         if (last_accounted_offset < t)
627                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628                                             t, h, h_cg, regions_needed);
629
630         return add;
631 }
632
633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634  */
635 static int allocate_file_region_entries(struct resv_map *resv,
636                                         int regions_needed)
637         __must_hold(&resv->lock)
638 {
639         LIST_HEAD(allocated_regions);
640         int to_allocate = 0, i = 0;
641         struct file_region *trg = NULL, *rg = NULL;
642
643         VM_BUG_ON(regions_needed < 0);
644
645         /*
646          * Check for sufficient descriptors in the cache to accommodate
647          * the number of in progress add operations plus regions_needed.
648          *
649          * This is a while loop because when we drop the lock, some other call
650          * to region_add or region_del may have consumed some region_entries,
651          * so we keep looping here until we finally have enough entries for
652          * (adds_in_progress + regions_needed).
653          */
654         while (resv->region_cache_count <
655                (resv->adds_in_progress + regions_needed)) {
656                 to_allocate = resv->adds_in_progress + regions_needed -
657                               resv->region_cache_count;
658
659                 /* At this point, we should have enough entries in the cache
660                  * for all the existing adds_in_progress. We should only be
661                  * needing to allocate for regions_needed.
662                  */
663                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664
665                 spin_unlock(&resv->lock);
666                 for (i = 0; i < to_allocate; i++) {
667                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
668                         if (!trg)
669                                 goto out_of_memory;
670                         list_add(&trg->link, &allocated_regions);
671                 }
672
673                 spin_lock(&resv->lock);
674
675                 list_splice(&allocated_regions, &resv->region_cache);
676                 resv->region_cache_count += to_allocate;
677         }
678
679         return 0;
680
681 out_of_memory:
682         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
683                 list_del(&rg->link);
684                 kfree(rg);
685         }
686         return -ENOMEM;
687 }
688
689 /*
690  * Add the huge page range represented by [f, t) to the reserve
691  * map.  Regions will be taken from the cache to fill in this range.
692  * Sufficient regions should exist in the cache due to the previous
693  * call to region_chg with the same range, but in some cases the cache will not
694  * have sufficient entries due to races with other code doing region_add or
695  * region_del.  The extra needed entries will be allocated.
696  *
697  * regions_needed is the out value provided by a previous call to region_chg.
698  *
699  * Return the number of new huge pages added to the map.  This number is greater
700  * than or equal to zero.  If file_region entries needed to be allocated for
701  * this operation and we were not able to allocate, it returns -ENOMEM.
702  * region_add of regions of length 1 never allocate file_regions and cannot
703  * fail; region_chg will always allocate at least 1 entry and a region_add for
704  * 1 page will only require at most 1 entry.
705  */
706 static long region_add(struct resv_map *resv, long f, long t,
707                        long in_regions_needed, struct hstate *h,
708                        struct hugetlb_cgroup *h_cg)
709 {
710         long add = 0, actual_regions_needed = 0;
711
712         spin_lock(&resv->lock);
713 retry:
714
715         /* Count how many regions are actually needed to execute this add. */
716         add_reservation_in_range(resv, f, t, NULL, NULL,
717                                  &actual_regions_needed);
718
719         /*
720          * Check for sufficient descriptors in the cache to accommodate
721          * this add operation. Note that actual_regions_needed may be greater
722          * than in_regions_needed, as the resv_map may have been modified since
723          * the region_chg call. In this case, we need to make sure that we
724          * allocate extra entries, such that we have enough for all the
725          * existing adds_in_progress, plus the excess needed for this
726          * operation.
727          */
728         if (actual_regions_needed > in_regions_needed &&
729             resv->region_cache_count <
730                     resv->adds_in_progress +
731                             (actual_regions_needed - in_regions_needed)) {
732                 /* region_add operation of range 1 should never need to
733                  * allocate file_region entries.
734                  */
735                 VM_BUG_ON(t - f <= 1);
736
737                 if (allocate_file_region_entries(
738                             resv, actual_regions_needed - in_regions_needed)) {
739                         return -ENOMEM;
740                 }
741
742                 goto retry;
743         }
744
745         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746
747         resv->adds_in_progress -= in_regions_needed;
748
749         spin_unlock(&resv->lock);
750         return add;
751 }
752
753 /*
754  * Examine the existing reserve map and determine how many
755  * huge pages in the specified range [f, t) are NOT currently
756  * represented.  This routine is called before a subsequent
757  * call to region_add that will actually modify the reserve
758  * map to add the specified range [f, t).  region_chg does
759  * not change the number of huge pages represented by the
760  * map.  A number of new file_region structures is added to the cache as a
761  * placeholder, for the subsequent region_add call to use. At least 1
762  * file_region structure is added.
763  *
764  * out_regions_needed is the number of regions added to the
765  * resv->adds_in_progress.  This value needs to be provided to a follow up call
766  * to region_add or region_abort for proper accounting.
767  *
768  * Returns the number of huge pages that need to be added to the existing
769  * reservation map for the range [f, t).  This number is greater or equal to
770  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
771  * is needed and can not be allocated.
772  */
773 static long region_chg(struct resv_map *resv, long f, long t,
774                        long *out_regions_needed)
775 {
776         long chg = 0;
777
778         spin_lock(&resv->lock);
779
780         /* Count how many hugepages in this range are NOT represented. */
781         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
782                                        out_regions_needed);
783
784         if (*out_regions_needed == 0)
785                 *out_regions_needed = 1;
786
787         if (allocate_file_region_entries(resv, *out_regions_needed))
788                 return -ENOMEM;
789
790         resv->adds_in_progress += *out_regions_needed;
791
792         spin_unlock(&resv->lock);
793         return chg;
794 }
795
796 /*
797  * Abort the in progress add operation.  The adds_in_progress field
798  * of the resv_map keeps track of the operations in progress between
799  * calls to region_chg and region_add.  Operations are sometimes
800  * aborted after the call to region_chg.  In such cases, region_abort
801  * is called to decrement the adds_in_progress counter. regions_needed
802  * is the value returned by the region_chg call, it is used to decrement
803  * the adds_in_progress counter.
804  *
805  * NOTE: The range arguments [f, t) are not needed or used in this
806  * routine.  They are kept to make reading the calling code easier as
807  * arguments will match the associated region_chg call.
808  */
809 static void region_abort(struct resv_map *resv, long f, long t,
810                          long regions_needed)
811 {
812         spin_lock(&resv->lock);
813         VM_BUG_ON(!resv->region_cache_count);
814         resv->adds_in_progress -= regions_needed;
815         spin_unlock(&resv->lock);
816 }
817
818 /*
819  * Delete the specified range [f, t) from the reserve map.  If the
820  * t parameter is LONG_MAX, this indicates that ALL regions after f
821  * should be deleted.  Locate the regions which intersect [f, t)
822  * and either trim, delete or split the existing regions.
823  *
824  * Returns the number of huge pages deleted from the reserve map.
825  * In the normal case, the return value is zero or more.  In the
826  * case where a region must be split, a new region descriptor must
827  * be allocated.  If the allocation fails, -ENOMEM will be returned.
828  * NOTE: If the parameter t == LONG_MAX, then we will never split
829  * a region and possibly return -ENOMEM.  Callers specifying
830  * t == LONG_MAX do not need to check for -ENOMEM error.
831  */
832 static long region_del(struct resv_map *resv, long f, long t)
833 {
834         struct list_head *head = &resv->regions;
835         struct file_region *rg, *trg;
836         struct file_region *nrg = NULL;
837         long del = 0;
838
839 retry:
840         spin_lock(&resv->lock);
841         list_for_each_entry_safe(rg, trg, head, link) {
842                 /*
843                  * Skip regions before the range to be deleted.  file_region
844                  * ranges are normally of the form [from, to).  However, there
845                  * may be a "placeholder" entry in the map which is of the form
846                  * (from, to) with from == to.  Check for placeholder entries
847                  * at the beginning of the range to be deleted.
848                  */
849                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
850                         continue;
851
852                 if (rg->from >= t)
853                         break;
854
855                 if (f > rg->from && t < rg->to) { /* Must split region */
856                         /*
857                          * Check for an entry in the cache before dropping
858                          * lock and attempting allocation.
859                          */
860                         if (!nrg &&
861                             resv->region_cache_count > resv->adds_in_progress) {
862                                 nrg = list_first_entry(&resv->region_cache,
863                                                         struct file_region,
864                                                         link);
865                                 list_del(&nrg->link);
866                                 resv->region_cache_count--;
867                         }
868
869                         if (!nrg) {
870                                 spin_unlock(&resv->lock);
871                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
872                                 if (!nrg)
873                                         return -ENOMEM;
874                                 goto retry;
875                         }
876
877                         del += t - f;
878                         hugetlb_cgroup_uncharge_file_region(
879                                 resv, rg, t - f, false);
880
881                         /* New entry for end of split region */
882                         nrg->from = t;
883                         nrg->to = rg->to;
884
885                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886
887                         INIT_LIST_HEAD(&nrg->link);
888
889                         /* Original entry is trimmed */
890                         rg->to = f;
891
892                         list_add(&nrg->link, &rg->link);
893                         nrg = NULL;
894                         break;
895                 }
896
897                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898                         del += rg->to - rg->from;
899                         hugetlb_cgroup_uncharge_file_region(resv, rg,
900                                                             rg->to - rg->from, true);
901                         list_del(&rg->link);
902                         kfree(rg);
903                         continue;
904                 }
905
906                 if (f <= rg->from) {    /* Trim beginning of region */
907                         hugetlb_cgroup_uncharge_file_region(resv, rg,
908                                                             t - rg->from, false);
909
910                         del += t - rg->from;
911                         rg->from = t;
912                 } else {                /* Trim end of region */
913                         hugetlb_cgroup_uncharge_file_region(resv, rg,
914                                                             rg->to - f, false);
915
916                         del += rg->to - f;
917                         rg->to = f;
918                 }
919         }
920
921         spin_unlock(&resv->lock);
922         kfree(nrg);
923         return del;
924 }
925
926 /*
927  * A rare out of memory error was encountered which prevented removal of
928  * the reserve map region for a page.  The huge page itself was free'ed
929  * and removed from the page cache.  This routine will adjust the subpool
930  * usage count, and the global reserve count if needed.  By incrementing
931  * these counts, the reserve map entry which could not be deleted will
932  * appear as a "reserved" entry instead of simply dangling with incorrect
933  * counts.
934  */
935 void hugetlb_fix_reserve_counts(struct inode *inode)
936 {
937         struct hugepage_subpool *spool = subpool_inode(inode);
938         long rsv_adjust;
939         bool reserved = false;
940
941         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942         if (rsv_adjust > 0) {
943                 struct hstate *h = hstate_inode(inode);
944
945                 if (!hugetlb_acct_memory(h, 1))
946                         reserved = true;
947         } else if (!rsv_adjust) {
948                 reserved = true;
949         }
950
951         if (!reserved)
952                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
953 }
954
955 /*
956  * Count and return the number of huge pages in the reserve map
957  * that intersect with the range [f, t).
958  */
959 static long region_count(struct resv_map *resv, long f, long t)
960 {
961         struct list_head *head = &resv->regions;
962         struct file_region *rg;
963         long chg = 0;
964
965         spin_lock(&resv->lock);
966         /* Locate each segment we overlap with, and count that overlap. */
967         list_for_each_entry(rg, head, link) {
968                 long seg_from;
969                 long seg_to;
970
971                 if (rg->to <= f)
972                         continue;
973                 if (rg->from >= t)
974                         break;
975
976                 seg_from = max(rg->from, f);
977                 seg_to = min(rg->to, t);
978
979                 chg += seg_to - seg_from;
980         }
981         spin_unlock(&resv->lock);
982
983         return chg;
984 }
985
986 /*
987  * Convert the address within this vma to the page offset within
988  * the mapping, huge page units here.
989  */
990 static pgoff_t vma_hugecache_offset(struct hstate *h,
991                         struct vm_area_struct *vma, unsigned long address)
992 {
993         return ((address - vma->vm_start) >> huge_page_shift(h)) +
994                         (vma->vm_pgoff >> huge_page_order(h));
995 }
996
997 /**
998  * vma_kernel_pagesize - Page size granularity for this VMA.
999  * @vma: The user mapping.
1000  *
1001  * Folios in this VMA will be aligned to, and at least the size of the
1002  * number of bytes returned by this function.
1003  *
1004  * Return: The default size of the folios allocated when backing a VMA.
1005  */
1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007 {
1008         if (vma->vm_ops && vma->vm_ops->pagesize)
1009                 return vma->vm_ops->pagesize(vma);
1010         return PAGE_SIZE;
1011 }
1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1013
1014 /*
1015  * Return the page size being used by the MMU to back a VMA. In the majority
1016  * of cases, the page size used by the kernel matches the MMU size. On
1017  * architectures where it differs, an architecture-specific 'strong'
1018  * version of this symbol is required.
1019  */
1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1021 {
1022         return vma_kernel_pagesize(vma);
1023 }
1024
1025 /*
1026  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1027  * bits of the reservation map pointer, which are always clear due to
1028  * alignment.
1029  */
1030 #define HPAGE_RESV_OWNER    (1UL << 0)
1031 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1033
1034 /*
1035  * These helpers are used to track how many pages are reserved for
1036  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037  * is guaranteed to have their future faults succeed.
1038  *
1039  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040  * the reserve counters are updated with the hugetlb_lock held. It is safe
1041  * to reset the VMA at fork() time as it is not in use yet and there is no
1042  * chance of the global counters getting corrupted as a result of the values.
1043  *
1044  * The private mapping reservation is represented in a subtly different
1045  * manner to a shared mapping.  A shared mapping has a region map associated
1046  * with the underlying file, this region map represents the backing file
1047  * pages which have ever had a reservation assigned which this persists even
1048  * after the page is instantiated.  A private mapping has a region map
1049  * associated with the original mmap which is attached to all VMAs which
1050  * reference it, this region map represents those offsets which have consumed
1051  * reservation ie. where pages have been instantiated.
1052  */
1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054 {
1055         return (unsigned long)vma->vm_private_data;
1056 }
1057
1058 static void set_vma_private_data(struct vm_area_struct *vma,
1059                                                         unsigned long value)
1060 {
1061         vma->vm_private_data = (void *)value;
1062 }
1063
1064 static void
1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066                                           struct hugetlb_cgroup *h_cg,
1067                                           struct hstate *h)
1068 {
1069 #ifdef CONFIG_CGROUP_HUGETLB
1070         if (!h_cg || !h) {
1071                 resv_map->reservation_counter = NULL;
1072                 resv_map->pages_per_hpage = 0;
1073                 resv_map->css = NULL;
1074         } else {
1075                 resv_map->reservation_counter =
1076                         &h_cg->rsvd_hugepage[hstate_index(h)];
1077                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1078                 resv_map->css = &h_cg->css;
1079         }
1080 #endif
1081 }
1082
1083 struct resv_map *resv_map_alloc(void)
1084 {
1085         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087
1088         if (!resv_map || !rg) {
1089                 kfree(resv_map);
1090                 kfree(rg);
1091                 return NULL;
1092         }
1093
1094         kref_init(&resv_map->refs);
1095         spin_lock_init(&resv_map->lock);
1096         INIT_LIST_HEAD(&resv_map->regions);
1097         init_rwsem(&resv_map->rw_sema);
1098
1099         resv_map->adds_in_progress = 0;
1100         /*
1101          * Initialize these to 0. On shared mappings, 0's here indicate these
1102          * fields don't do cgroup accounting. On private mappings, these will be
1103          * re-initialized to the proper values, to indicate that hugetlb cgroup
1104          * reservations are to be un-charged from here.
1105          */
1106         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1107
1108         INIT_LIST_HEAD(&resv_map->region_cache);
1109         list_add(&rg->link, &resv_map->region_cache);
1110         resv_map->region_cache_count = 1;
1111
1112         return resv_map;
1113 }
1114
1115 void resv_map_release(struct kref *ref)
1116 {
1117         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118         struct list_head *head = &resv_map->region_cache;
1119         struct file_region *rg, *trg;
1120
1121         /* Clear out any active regions before we release the map. */
1122         region_del(resv_map, 0, LONG_MAX);
1123
1124         /* ... and any entries left in the cache */
1125         list_for_each_entry_safe(rg, trg, head, link) {
1126                 list_del(&rg->link);
1127                 kfree(rg);
1128         }
1129
1130         VM_BUG_ON(resv_map->adds_in_progress);
1131
1132         kfree(resv_map);
1133 }
1134
1135 static inline struct resv_map *inode_resv_map(struct inode *inode)
1136 {
1137         /*
1138          * At inode evict time, i_mapping may not point to the original
1139          * address space within the inode.  This original address space
1140          * contains the pointer to the resv_map.  So, always use the
1141          * address space embedded within the inode.
1142          * The VERY common case is inode->mapping == &inode->i_data but,
1143          * this may not be true for device special inodes.
1144          */
1145         return (struct resv_map *)(&inode->i_data)->i_private_data;
1146 }
1147
1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1149 {
1150         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151         if (vma->vm_flags & VM_MAYSHARE) {
1152                 struct address_space *mapping = vma->vm_file->f_mapping;
1153                 struct inode *inode = mapping->host;
1154
1155                 return inode_resv_map(inode);
1156
1157         } else {
1158                 return (struct resv_map *)(get_vma_private_data(vma) &
1159                                                         ~HPAGE_RESV_MASK);
1160         }
1161 }
1162
1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1164 {
1165         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1167
1168         set_vma_private_data(vma, (unsigned long)map);
1169 }
1170
1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172 {
1173         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1175
1176         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1177 }
1178
1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180 {
1181         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1182
1183         return (get_vma_private_data(vma) & flag) != 0;
1184 }
1185
1186 bool __vma_private_lock(struct vm_area_struct *vma)
1187 {
1188         return !(vma->vm_flags & VM_MAYSHARE) &&
1189                 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190                 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191 }
1192
1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194 {
1195         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196         /*
1197          * Clear vm_private_data
1198          * - For shared mappings this is a per-vma semaphore that may be
1199          *   allocated in a subsequent call to hugetlb_vm_op_open.
1200          *   Before clearing, make sure pointer is not associated with vma
1201          *   as this will leak the structure.  This is the case when called
1202          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203          *   been called to allocate a new structure.
1204          * - For MAP_PRIVATE mappings, this is the reserve map which does
1205          *   not apply to children.  Faults generated by the children are
1206          *   not guaranteed to succeed, even if read-only.
1207          */
1208         if (vma->vm_flags & VM_MAYSHARE) {
1209                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210
1211                 if (vma_lock && vma_lock->vma != vma)
1212                         vma->vm_private_data = NULL;
1213         } else
1214                 vma->vm_private_data = NULL;
1215 }
1216
1217 /*
1218  * Reset and decrement one ref on hugepage private reservation.
1219  * Called with mm->mmap_lock writer semaphore held.
1220  * This function should be only used by move_vma() and operate on
1221  * same sized vma. It should never come here with last ref on the
1222  * reservation.
1223  */
1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225 {
1226         /*
1227          * Clear the old hugetlb private page reservation.
1228          * It has already been transferred to new_vma.
1229          *
1230          * During a mremap() operation of a hugetlb vma we call move_vma()
1231          * which copies vma into new_vma and unmaps vma. After the copy
1232          * operation both new_vma and vma share a reference to the resv_map
1233          * struct, and at that point vma is about to be unmapped. We don't
1234          * want to return the reservation to the pool at unmap of vma because
1235          * the reservation still lives on in new_vma, so simply decrement the
1236          * ref here and remove the resv_map reference from this vma.
1237          */
1238         struct resv_map *reservations = vma_resv_map(vma);
1239
1240         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242                 kref_put(&reservations->refs, resv_map_release);
1243         }
1244
1245         hugetlb_dup_vma_private(vma);
1246 }
1247
1248 /* Returns true if the VMA has associated reserve pages */
1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250 {
1251         if (vma->vm_flags & VM_NORESERVE) {
1252                 /*
1253                  * This address is already reserved by other process(chg == 0),
1254                  * so, we should decrement reserved count. Without decrementing,
1255                  * reserve count remains after releasing inode, because this
1256                  * allocated page will go into page cache and is regarded as
1257                  * coming from reserved pool in releasing step.  Currently, we
1258                  * don't have any other solution to deal with this situation
1259                  * properly, so add work-around here.
1260                  */
1261                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1262                         return true;
1263                 else
1264                         return false;
1265         }
1266
1267         /* Shared mappings always use reserves */
1268         if (vma->vm_flags & VM_MAYSHARE) {
1269                 /*
1270                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1271                  * be a region map for all pages.  The only situation where
1272                  * there is no region map is if a hole was punched via
1273                  * fallocate.  In this case, there really are no reserves to
1274                  * use.  This situation is indicated if chg != 0.
1275                  */
1276                 if (chg)
1277                         return false;
1278                 else
1279                         return true;
1280         }
1281
1282         /*
1283          * Only the process that called mmap() has reserves for
1284          * private mappings.
1285          */
1286         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287                 /*
1288                  * Like the shared case above, a hole punch or truncate
1289                  * could have been performed on the private mapping.
1290                  * Examine the value of chg to determine if reserves
1291                  * actually exist or were previously consumed.
1292                  * Very Subtle - The value of chg comes from a previous
1293                  * call to vma_needs_reserves().  The reserve map for
1294                  * private mappings has different (opposite) semantics
1295                  * than that of shared mappings.  vma_needs_reserves()
1296                  * has already taken this difference in semantics into
1297                  * account.  Therefore, the meaning of chg is the same
1298                  * as in the shared case above.  Code could easily be
1299                  * combined, but keeping it separate draws attention to
1300                  * subtle differences.
1301                  */
1302                 if (chg)
1303                         return false;
1304                 else
1305                         return true;
1306         }
1307
1308         return false;
1309 }
1310
1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312 {
1313         int nid = folio_nid(folio);
1314
1315         lockdep_assert_held(&hugetlb_lock);
1316         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317
1318         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319         h->free_huge_pages++;
1320         h->free_huge_pages_node[nid]++;
1321         folio_set_hugetlb_freed(folio);
1322 }
1323
1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325                                                                 int nid)
1326 {
1327         struct folio *folio;
1328         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329
1330         lockdep_assert_held(&hugetlb_lock);
1331         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332                 if (pin && !folio_is_longterm_pinnable(folio))
1333                         continue;
1334
1335                 if (folio_test_hwpoison(folio))
1336                         continue;
1337
1338                 list_move(&folio->lru, &h->hugepage_activelist);
1339                 folio_ref_unfreeze(folio, 1);
1340                 folio_clear_hugetlb_freed(folio);
1341                 h->free_huge_pages--;
1342                 h->free_huge_pages_node[nid]--;
1343                 return folio;
1344         }
1345
1346         return NULL;
1347 }
1348
1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350                                                         int nid, nodemask_t *nmask)
1351 {
1352         unsigned int cpuset_mems_cookie;
1353         struct zonelist *zonelist;
1354         struct zone *zone;
1355         struct zoneref *z;
1356         int node = NUMA_NO_NODE;
1357
1358         /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1359         if (nid == NUMA_NO_NODE)
1360                 nid = numa_node_id();
1361
1362         zonelist = node_zonelist(nid, gfp_mask);
1363
1364 retry_cpuset:
1365         cpuset_mems_cookie = read_mems_allowed_begin();
1366         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1367                 struct folio *folio;
1368
1369                 if (!cpuset_zone_allowed(zone, gfp_mask))
1370                         continue;
1371                 /*
1372                  * no need to ask again on the same node. Pool is node rather than
1373                  * zone aware
1374                  */
1375                 if (zone_to_nid(zone) == node)
1376                         continue;
1377                 node = zone_to_nid(zone);
1378
1379                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1380                 if (folio)
1381                         return folio;
1382         }
1383         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1384                 goto retry_cpuset;
1385
1386         return NULL;
1387 }
1388
1389 static unsigned long available_huge_pages(struct hstate *h)
1390 {
1391         return h->free_huge_pages - h->resv_huge_pages;
1392 }
1393
1394 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1395                                 struct vm_area_struct *vma,
1396                                 unsigned long address, int avoid_reserve,
1397                                 long chg)
1398 {
1399         struct folio *folio = NULL;
1400         struct mempolicy *mpol;
1401         gfp_t gfp_mask;
1402         nodemask_t *nodemask;
1403         int nid;
1404
1405         /*
1406          * A child process with MAP_PRIVATE mappings created by their parent
1407          * have no page reserves. This check ensures that reservations are
1408          * not "stolen". The child may still get SIGKILLed
1409          */
1410         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1411                 goto err;
1412
1413         /* If reserves cannot be used, ensure enough pages are in the pool */
1414         if (avoid_reserve && !available_huge_pages(h))
1415                 goto err;
1416
1417         gfp_mask = htlb_alloc_mask(h);
1418         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1419
1420         if (mpol_is_preferred_many(mpol)) {
1421                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1422                                                         nid, nodemask);
1423
1424                 /* Fallback to all nodes if page==NULL */
1425                 nodemask = NULL;
1426         }
1427
1428         if (!folio)
1429                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1430                                                         nid, nodemask);
1431
1432         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1433                 folio_set_hugetlb_restore_reserve(folio);
1434                 h->resv_huge_pages--;
1435         }
1436
1437         mpol_cond_put(mpol);
1438         return folio;
1439
1440 err:
1441         return NULL;
1442 }
1443
1444 /*
1445  * common helper functions for hstate_next_node_to_{alloc|free}.
1446  * We may have allocated or freed a huge page based on a different
1447  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1448  * be outside of *nodes_allowed.  Ensure that we use an allowed
1449  * node for alloc or free.
1450  */
1451 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1452 {
1453         nid = next_node_in(nid, *nodes_allowed);
1454         VM_BUG_ON(nid >= MAX_NUMNODES);
1455
1456         return nid;
1457 }
1458
1459 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1460 {
1461         if (!node_isset(nid, *nodes_allowed))
1462                 nid = next_node_allowed(nid, nodes_allowed);
1463         return nid;
1464 }
1465
1466 /*
1467  * returns the previously saved node ["this node"] from which to
1468  * allocate a persistent huge page for the pool and advance the
1469  * next node from which to allocate, handling wrap at end of node
1470  * mask.
1471  */
1472 static int hstate_next_node_to_alloc(int *next_node,
1473                                         nodemask_t *nodes_allowed)
1474 {
1475         int nid;
1476
1477         VM_BUG_ON(!nodes_allowed);
1478
1479         nid = get_valid_node_allowed(*next_node, nodes_allowed);
1480         *next_node = next_node_allowed(nid, nodes_allowed);
1481
1482         return nid;
1483 }
1484
1485 /*
1486  * helper for remove_pool_hugetlb_folio() - return the previously saved
1487  * node ["this node"] from which to free a huge page.  Advance the
1488  * next node id whether or not we find a free huge page to free so
1489  * that the next attempt to free addresses the next node.
1490  */
1491 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1492 {
1493         int nid;
1494
1495         VM_BUG_ON(!nodes_allowed);
1496
1497         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1498         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1499
1500         return nid;
1501 }
1502
1503 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)            \
1504         for (nr_nodes = nodes_weight(*mask);                            \
1505                 nr_nodes > 0 &&                                         \
1506                 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1);     \
1507                 nr_nodes--)
1508
1509 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1510         for (nr_nodes = nodes_weight(*mask);                            \
1511                 nr_nodes > 0 &&                                         \
1512                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1513                 nr_nodes--)
1514
1515 /* used to demote non-gigantic_huge pages as well */
1516 static void __destroy_compound_gigantic_folio(struct folio *folio,
1517                                         unsigned int order, bool demote)
1518 {
1519         int i;
1520         int nr_pages = 1 << order;
1521         struct page *p;
1522
1523         atomic_set(&folio->_entire_mapcount, 0);
1524         atomic_set(&folio->_large_mapcount, 0);
1525         atomic_set(&folio->_pincount, 0);
1526
1527         for (i = 1; i < nr_pages; i++) {
1528                 p = folio_page(folio, i);
1529                 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1530                 p->mapping = NULL;
1531                 clear_compound_head(p);
1532                 if (!demote)
1533                         set_page_refcounted(p);
1534         }
1535
1536         __folio_clear_head(folio);
1537 }
1538
1539 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1540                                         unsigned int order)
1541 {
1542         __destroy_compound_gigantic_folio(folio, order, true);
1543 }
1544
1545 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1546 static void destroy_compound_gigantic_folio(struct folio *folio,
1547                                         unsigned int order)
1548 {
1549         __destroy_compound_gigantic_folio(folio, order, false);
1550 }
1551
1552 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1553 {
1554         /*
1555          * If the page isn't allocated using the cma allocator,
1556          * cma_release() returns false.
1557          */
1558 #ifdef CONFIG_CMA
1559         int nid = folio_nid(folio);
1560
1561         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1562                 return;
1563 #endif
1564
1565         free_contig_range(folio_pfn(folio), 1 << order);
1566 }
1567
1568 #ifdef CONFIG_CONTIG_ALLOC
1569 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1570                 int nid, nodemask_t *nodemask)
1571 {
1572         struct page *page;
1573         unsigned long nr_pages = pages_per_huge_page(h);
1574         if (nid == NUMA_NO_NODE)
1575                 nid = numa_mem_id();
1576
1577 #ifdef CONFIG_CMA
1578         {
1579                 int node;
1580
1581                 if (hugetlb_cma[nid]) {
1582                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1583                                         huge_page_order(h), true);
1584                         if (page)
1585                                 return page_folio(page);
1586                 }
1587
1588                 if (!(gfp_mask & __GFP_THISNODE)) {
1589                         for_each_node_mask(node, *nodemask) {
1590                                 if (node == nid || !hugetlb_cma[node])
1591                                         continue;
1592
1593                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1594                                                 huge_page_order(h), true);
1595                                 if (page)
1596                                         return page_folio(page);
1597                         }
1598                 }
1599         }
1600 #endif
1601
1602         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1603         return page ? page_folio(page) : NULL;
1604 }
1605
1606 #else /* !CONFIG_CONTIG_ALLOC */
1607 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1608                                         int nid, nodemask_t *nodemask)
1609 {
1610         return NULL;
1611 }
1612 #endif /* CONFIG_CONTIG_ALLOC */
1613
1614 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1615 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1616                                         int nid, nodemask_t *nodemask)
1617 {
1618         return NULL;
1619 }
1620 static inline void free_gigantic_folio(struct folio *folio,
1621                                                 unsigned int order) { }
1622 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1623                                                 unsigned int order) { }
1624 #endif
1625
1626 /*
1627  * Remove hugetlb folio from lists.
1628  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1629  * folio appears as just a compound page.  Otherwise, wait until after
1630  * allocating vmemmap to clear the flag.
1631  *
1632  * Must be called with hugetlb lock held.
1633  */
1634 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1635                                                         bool adjust_surplus)
1636 {
1637         int nid = folio_nid(folio);
1638
1639         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1640         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1641
1642         lockdep_assert_held(&hugetlb_lock);
1643         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1644                 return;
1645
1646         list_del(&folio->lru);
1647
1648         if (folio_test_hugetlb_freed(folio)) {
1649                 folio_clear_hugetlb_freed(folio);
1650                 h->free_huge_pages--;
1651                 h->free_huge_pages_node[nid]--;
1652         }
1653         if (adjust_surplus) {
1654                 h->surplus_huge_pages--;
1655                 h->surplus_huge_pages_node[nid]--;
1656         }
1657
1658         /*
1659          * We can only clear the hugetlb flag after allocating vmemmap
1660          * pages.  Otherwise, someone (memory error handling) may try to write
1661          * to tail struct pages.
1662          */
1663         if (!folio_test_hugetlb_vmemmap_optimized(folio))
1664                 __folio_clear_hugetlb(folio);
1665
1666         h->nr_huge_pages--;
1667         h->nr_huge_pages_node[nid]--;
1668 }
1669
1670 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1671                              bool adjust_surplus)
1672 {
1673         int nid = folio_nid(folio);
1674
1675         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1676
1677         lockdep_assert_held(&hugetlb_lock);
1678
1679         INIT_LIST_HEAD(&folio->lru);
1680         h->nr_huge_pages++;
1681         h->nr_huge_pages_node[nid]++;
1682
1683         if (adjust_surplus) {
1684                 h->surplus_huge_pages++;
1685                 h->surplus_huge_pages_node[nid]++;
1686         }
1687
1688         __folio_set_hugetlb(folio);
1689         folio_change_private(folio, NULL);
1690         /*
1691          * We have to set hugetlb_vmemmap_optimized again as above
1692          * folio_change_private(folio, NULL) cleared it.
1693          */
1694         folio_set_hugetlb_vmemmap_optimized(folio);
1695
1696         arch_clear_hugetlb_flags(folio);
1697         enqueue_hugetlb_folio(h, folio);
1698 }
1699
1700 static void __update_and_free_hugetlb_folio(struct hstate *h,
1701                                                 struct folio *folio)
1702 {
1703         bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1704
1705         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1706                 return;
1707
1708         /*
1709          * If we don't know which subpages are hwpoisoned, we can't free
1710          * the hugepage, so it's leaked intentionally.
1711          */
1712         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1713                 return;
1714
1715         /*
1716          * If folio is not vmemmap optimized (!clear_flag), then the folio
1717          * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1718          * can only be passed hugetlb pages and will BUG otherwise.
1719          */
1720         if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1721                 spin_lock_irq(&hugetlb_lock);
1722                 /*
1723                  * If we cannot allocate vmemmap pages, just refuse to free the
1724                  * page and put the page back on the hugetlb free list and treat
1725                  * as a surplus page.
1726                  */
1727                 add_hugetlb_folio(h, folio, true);
1728                 spin_unlock_irq(&hugetlb_lock);
1729                 return;
1730         }
1731
1732         /*
1733          * If vmemmap pages were allocated above, then we need to clear the
1734          * hugetlb flag under the hugetlb lock.
1735          */
1736         if (folio_test_hugetlb(folio)) {
1737                 spin_lock_irq(&hugetlb_lock);
1738                 __folio_clear_hugetlb(folio);
1739                 spin_unlock_irq(&hugetlb_lock);
1740         }
1741
1742         /*
1743          * Move PageHWPoison flag from head page to the raw error pages,
1744          * which makes any healthy subpages reusable.
1745          */
1746         if (unlikely(folio_test_hwpoison(folio)))
1747                 folio_clear_hugetlb_hwpoison(folio);
1748
1749         folio_ref_unfreeze(folio, 1);
1750
1751         /*
1752          * Non-gigantic pages demoted from CMA allocated gigantic pages
1753          * need to be given back to CMA in free_gigantic_folio.
1754          */
1755         if (hstate_is_gigantic(h) ||
1756             hugetlb_cma_folio(folio, huge_page_order(h))) {
1757                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1758                 free_gigantic_folio(folio, huge_page_order(h));
1759         } else {
1760                 INIT_LIST_HEAD(&folio->_deferred_list);
1761                 folio_put(folio);
1762         }
1763 }
1764
1765 /*
1766  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1767  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1768  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1769  * the vmemmap pages.
1770  *
1771  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1772  * freed and frees them one-by-one. As the page->mapping pointer is going
1773  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1774  * structure of a lockless linked list of huge pages to be freed.
1775  */
1776 static LLIST_HEAD(hpage_freelist);
1777
1778 static void free_hpage_workfn(struct work_struct *work)
1779 {
1780         struct llist_node *node;
1781
1782         node = llist_del_all(&hpage_freelist);
1783
1784         while (node) {
1785                 struct folio *folio;
1786                 struct hstate *h;
1787
1788                 folio = container_of((struct address_space **)node,
1789                                      struct folio, mapping);
1790                 node = node->next;
1791                 folio->mapping = NULL;
1792                 /*
1793                  * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1794                  * folio_hstate() is going to trigger because a previous call to
1795                  * remove_hugetlb_folio() will clear the hugetlb bit, so do
1796                  * not use folio_hstate() directly.
1797                  */
1798                 h = size_to_hstate(folio_size(folio));
1799
1800                 __update_and_free_hugetlb_folio(h, folio);
1801
1802                 cond_resched();
1803         }
1804 }
1805 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1806
1807 static inline void flush_free_hpage_work(struct hstate *h)
1808 {
1809         if (hugetlb_vmemmap_optimizable(h))
1810                 flush_work(&free_hpage_work);
1811 }
1812
1813 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1814                                  bool atomic)
1815 {
1816         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1817                 __update_and_free_hugetlb_folio(h, folio);
1818                 return;
1819         }
1820
1821         /*
1822          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1823          *
1824          * Only call schedule_work() if hpage_freelist is previously
1825          * empty. Otherwise, schedule_work() had been called but the workfn
1826          * hasn't retrieved the list yet.
1827          */
1828         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1829                 schedule_work(&free_hpage_work);
1830 }
1831
1832 static void bulk_vmemmap_restore_error(struct hstate *h,
1833                                         struct list_head *folio_list,
1834                                         struct list_head *non_hvo_folios)
1835 {
1836         struct folio *folio, *t_folio;
1837
1838         if (!list_empty(non_hvo_folios)) {
1839                 /*
1840                  * Free any restored hugetlb pages so that restore of the
1841                  * entire list can be retried.
1842                  * The idea is that in the common case of ENOMEM errors freeing
1843                  * hugetlb pages with vmemmap we will free up memory so that we
1844                  * can allocate vmemmap for more hugetlb pages.
1845                  */
1846                 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1847                         list_del(&folio->lru);
1848                         spin_lock_irq(&hugetlb_lock);
1849                         __folio_clear_hugetlb(folio);
1850                         spin_unlock_irq(&hugetlb_lock);
1851                         update_and_free_hugetlb_folio(h, folio, false);
1852                         cond_resched();
1853                 }
1854         } else {
1855                 /*
1856                  * In the case where there are no folios which can be
1857                  * immediately freed, we loop through the list trying to restore
1858                  * vmemmap individually in the hope that someone elsewhere may
1859                  * have done something to cause success (such as freeing some
1860                  * memory).  If unable to restore a hugetlb page, the hugetlb
1861                  * page is made a surplus page and removed from the list.
1862                  * If are able to restore vmemmap and free one hugetlb page, we
1863                  * quit processing the list to retry the bulk operation.
1864                  */
1865                 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1866                         if (hugetlb_vmemmap_restore_folio(h, folio)) {
1867                                 list_del(&folio->lru);
1868                                 spin_lock_irq(&hugetlb_lock);
1869                                 add_hugetlb_folio(h, folio, true);
1870                                 spin_unlock_irq(&hugetlb_lock);
1871                         } else {
1872                                 list_del(&folio->lru);
1873                                 spin_lock_irq(&hugetlb_lock);
1874                                 __folio_clear_hugetlb(folio);
1875                                 spin_unlock_irq(&hugetlb_lock);
1876                                 update_and_free_hugetlb_folio(h, folio, false);
1877                                 cond_resched();
1878                                 break;
1879                         }
1880         }
1881 }
1882
1883 static void update_and_free_pages_bulk(struct hstate *h,
1884                                                 struct list_head *folio_list)
1885 {
1886         long ret;
1887         struct folio *folio, *t_folio;
1888         LIST_HEAD(non_hvo_folios);
1889
1890         /*
1891          * First allocate required vmemmmap (if necessary) for all folios.
1892          * Carefully handle errors and free up any available hugetlb pages
1893          * in an effort to make forward progress.
1894          */
1895 retry:
1896         ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1897         if (ret < 0) {
1898                 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1899                 goto retry;
1900         }
1901
1902         /*
1903          * At this point, list should be empty, ret should be >= 0 and there
1904          * should only be pages on the non_hvo_folios list.
1905          * Do note that the non_hvo_folios list could be empty.
1906          * Without HVO enabled, ret will be 0 and there is no need to call
1907          * __folio_clear_hugetlb as this was done previously.
1908          */
1909         VM_WARN_ON(!list_empty(folio_list));
1910         VM_WARN_ON(ret < 0);
1911         if (!list_empty(&non_hvo_folios) && ret) {
1912                 spin_lock_irq(&hugetlb_lock);
1913                 list_for_each_entry(folio, &non_hvo_folios, lru)
1914                         __folio_clear_hugetlb(folio);
1915                 spin_unlock_irq(&hugetlb_lock);
1916         }
1917
1918         list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1919                 update_and_free_hugetlb_folio(h, folio, false);
1920                 cond_resched();
1921         }
1922 }
1923
1924 struct hstate *size_to_hstate(unsigned long size)
1925 {
1926         struct hstate *h;
1927
1928         for_each_hstate(h) {
1929                 if (huge_page_size(h) == size)
1930                         return h;
1931         }
1932         return NULL;
1933 }
1934
1935 void free_huge_folio(struct folio *folio)
1936 {
1937         /*
1938          * Can't pass hstate in here because it is called from the
1939          * generic mm code.
1940          */
1941         struct hstate *h = folio_hstate(folio);
1942         int nid = folio_nid(folio);
1943         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1944         bool restore_reserve;
1945         unsigned long flags;
1946
1947         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1948         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1949
1950         hugetlb_set_folio_subpool(folio, NULL);
1951         if (folio_test_anon(folio))
1952                 __ClearPageAnonExclusive(&folio->page);
1953         folio->mapping = NULL;
1954         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1955         folio_clear_hugetlb_restore_reserve(folio);
1956
1957         /*
1958          * If HPageRestoreReserve was set on page, page allocation consumed a
1959          * reservation.  If the page was associated with a subpool, there
1960          * would have been a page reserved in the subpool before allocation
1961          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1962          * reservation, do not call hugepage_subpool_put_pages() as this will
1963          * remove the reserved page from the subpool.
1964          */
1965         if (!restore_reserve) {
1966                 /*
1967                  * A return code of zero implies that the subpool will be
1968                  * under its minimum size if the reservation is not restored
1969                  * after page is free.  Therefore, force restore_reserve
1970                  * operation.
1971                  */
1972                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1973                         restore_reserve = true;
1974         }
1975
1976         spin_lock_irqsave(&hugetlb_lock, flags);
1977         folio_clear_hugetlb_migratable(folio);
1978         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1979                                      pages_per_huge_page(h), folio);
1980         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1981                                           pages_per_huge_page(h), folio);
1982         mem_cgroup_uncharge(folio);
1983         if (restore_reserve)
1984                 h->resv_huge_pages++;
1985
1986         if (folio_test_hugetlb_temporary(folio)) {
1987                 remove_hugetlb_folio(h, folio, false);
1988                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1989                 update_and_free_hugetlb_folio(h, folio, true);
1990         } else if (h->surplus_huge_pages_node[nid]) {
1991                 /* remove the page from active list */
1992                 remove_hugetlb_folio(h, folio, true);
1993                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1994                 update_and_free_hugetlb_folio(h, folio, true);
1995         } else {
1996                 arch_clear_hugetlb_flags(folio);
1997                 enqueue_hugetlb_folio(h, folio);
1998                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1999         }
2000 }
2001
2002 /*
2003  * Must be called with the hugetlb lock held
2004  */
2005 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2006 {
2007         lockdep_assert_held(&hugetlb_lock);
2008         h->nr_huge_pages++;
2009         h->nr_huge_pages_node[nid]++;
2010 }
2011
2012 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2013 {
2014         __folio_set_hugetlb(folio);
2015         INIT_LIST_HEAD(&folio->lru);
2016         hugetlb_set_folio_subpool(folio, NULL);
2017         set_hugetlb_cgroup(folio, NULL);
2018         set_hugetlb_cgroup_rsvd(folio, NULL);
2019 }
2020
2021 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2022 {
2023         init_new_hugetlb_folio(h, folio);
2024         hugetlb_vmemmap_optimize_folio(h, folio);
2025 }
2026
2027 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2028 {
2029         __prep_new_hugetlb_folio(h, folio);
2030         spin_lock_irq(&hugetlb_lock);
2031         __prep_account_new_huge_page(h, nid);
2032         spin_unlock_irq(&hugetlb_lock);
2033 }
2034
2035 static bool __prep_compound_gigantic_folio(struct folio *folio,
2036                                         unsigned int order, bool demote)
2037 {
2038         int i, j;
2039         int nr_pages = 1 << order;
2040         struct page *p;
2041
2042         __folio_clear_reserved(folio);
2043         for (i = 0; i < nr_pages; i++) {
2044                 p = folio_page(folio, i);
2045
2046                 /*
2047                  * For gigantic hugepages allocated through bootmem at
2048                  * boot, it's safer to be consistent with the not-gigantic
2049                  * hugepages and clear the PG_reserved bit from all tail pages
2050                  * too.  Otherwise drivers using get_user_pages() to access tail
2051                  * pages may get the reference counting wrong if they see
2052                  * PG_reserved set on a tail page (despite the head page not
2053                  * having PG_reserved set).  Enforcing this consistency between
2054                  * head and tail pages allows drivers to optimize away a check
2055                  * on the head page when they need know if put_page() is needed
2056                  * after get_user_pages().
2057                  */
2058                 if (i != 0)     /* head page cleared above */
2059                         __ClearPageReserved(p);
2060                 /*
2061                  * Subtle and very unlikely
2062                  *
2063                  * Gigantic 'page allocators' such as memblock or cma will
2064                  * return a set of pages with each page ref counted.  We need
2065                  * to turn this set of pages into a compound page with tail
2066                  * page ref counts set to zero.  Code such as speculative page
2067                  * cache adding could take a ref on a 'to be' tail page.
2068                  * We need to respect any increased ref count, and only set
2069                  * the ref count to zero if count is currently 1.  If count
2070                  * is not 1, we return an error.  An error return indicates
2071                  * the set of pages can not be converted to a gigantic page.
2072                  * The caller who allocated the pages should then discard the
2073                  * pages using the appropriate free interface.
2074                  *
2075                  * In the case of demote, the ref count will be zero.
2076                  */
2077                 if (!demote) {
2078                         if (!page_ref_freeze(p, 1)) {
2079                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2080                                 goto out_error;
2081                         }
2082                 } else {
2083                         VM_BUG_ON_PAGE(page_count(p), p);
2084                 }
2085                 if (i != 0)
2086                         set_compound_head(p, &folio->page);
2087         }
2088         __folio_set_head(folio);
2089         /* we rely on prep_new_hugetlb_folio to set the hugetlb flag */
2090         folio_set_order(folio, order);
2091         atomic_set(&folio->_entire_mapcount, -1);
2092         atomic_set(&folio->_large_mapcount, -1);
2093         atomic_set(&folio->_pincount, 0);
2094         return true;
2095
2096 out_error:
2097         /* undo page modifications made above */
2098         for (j = 0; j < i; j++) {
2099                 p = folio_page(folio, j);
2100                 if (j != 0)
2101                         clear_compound_head(p);
2102                 set_page_refcounted(p);
2103         }
2104         /* need to clear PG_reserved on remaining tail pages  */
2105         for (; j < nr_pages; j++) {
2106                 p = folio_page(folio, j);
2107                 __ClearPageReserved(p);
2108         }
2109         return false;
2110 }
2111
2112 static bool prep_compound_gigantic_folio(struct folio *folio,
2113                                                         unsigned int order)
2114 {
2115         return __prep_compound_gigantic_folio(folio, order, false);
2116 }
2117
2118 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2119                                                         unsigned int order)
2120 {
2121         return __prep_compound_gigantic_folio(folio, order, true);
2122 }
2123
2124 /*
2125  * Find and lock address space (mapping) in write mode.
2126  *
2127  * Upon entry, the folio is locked which means that folio_mapping() is
2128  * stable.  Due to locking order, we can only trylock_write.  If we can
2129  * not get the lock, simply return NULL to caller.
2130  */
2131 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
2132 {
2133         struct address_space *mapping = folio_mapping(folio);
2134
2135         if (!mapping)
2136                 return mapping;
2137
2138         if (i_mmap_trylock_write(mapping))
2139                 return mapping;
2140
2141         return NULL;
2142 }
2143
2144 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2145                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2146                 nodemask_t *node_alloc_noretry)
2147 {
2148         int order = huge_page_order(h);
2149         struct folio *folio;
2150         bool alloc_try_hard = true;
2151         bool retry = true;
2152
2153         /*
2154          * By default we always try hard to allocate the folio with
2155          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
2156          * a loop (to adjust global huge page counts) and previous allocation
2157          * failed, do not continue to try hard on the same node.  Use the
2158          * node_alloc_noretry bitmap to manage this state information.
2159          */
2160         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2161                 alloc_try_hard = false;
2162         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2163         if (alloc_try_hard)
2164                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2165         if (nid == NUMA_NO_NODE)
2166                 nid = numa_mem_id();
2167 retry:
2168         folio = __folio_alloc(gfp_mask, order, nid, nmask);
2169         /* Ensure hugetlb folio won't have large_rmappable flag set. */
2170         if (folio)
2171                 folio_clear_large_rmappable(folio);
2172
2173         if (folio && !folio_ref_freeze(folio, 1)) {
2174                 folio_put(folio);
2175                 if (retry) {    /* retry once */
2176                         retry = false;
2177                         goto retry;
2178                 }
2179                 /* WOW!  twice in a row. */
2180                 pr_warn("HugeTLB unexpected inflated folio ref count\n");
2181                 folio = NULL;
2182         }
2183
2184         /*
2185          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2186          * folio this indicates an overall state change.  Clear bit so
2187          * that we resume normal 'try hard' allocations.
2188          */
2189         if (node_alloc_noretry && folio && !alloc_try_hard)
2190                 node_clear(nid, *node_alloc_noretry);
2191
2192         /*
2193          * If we tried hard to get a folio but failed, set bit so that
2194          * subsequent attempts will not try as hard until there is an
2195          * overall state change.
2196          */
2197         if (node_alloc_noretry && !folio && alloc_try_hard)
2198                 node_set(nid, *node_alloc_noretry);
2199
2200         if (!folio) {
2201                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2202                 return NULL;
2203         }
2204
2205         __count_vm_event(HTLB_BUDDY_PGALLOC);
2206         return folio;
2207 }
2208
2209 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2210                                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2211                                 nodemask_t *node_alloc_noretry)
2212 {
2213         struct folio *folio;
2214         bool retry = false;
2215
2216 retry:
2217         if (hstate_is_gigantic(h))
2218                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2219         else
2220                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2221                                 nid, nmask, node_alloc_noretry);
2222         if (!folio)
2223                 return NULL;
2224
2225         if (hstate_is_gigantic(h)) {
2226                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2227                         /*
2228                          * Rare failure to convert pages to compound page.
2229                          * Free pages and try again - ONCE!
2230                          */
2231                         free_gigantic_folio(folio, huge_page_order(h));
2232                         if (!retry) {
2233                                 retry = true;
2234                                 goto retry;
2235                         }
2236                         return NULL;
2237                 }
2238         }
2239
2240         return folio;
2241 }
2242
2243 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2244                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2245                 nodemask_t *node_alloc_noretry)
2246 {
2247         struct folio *folio;
2248
2249         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2250                                                 node_alloc_noretry);
2251         if (folio)
2252                 init_new_hugetlb_folio(h, folio);
2253         return folio;
2254 }
2255
2256 /*
2257  * Common helper to allocate a fresh hugetlb page. All specific allocators
2258  * should use this function to get new hugetlb pages
2259  *
2260  * Note that returned page is 'frozen':  ref count of head page and all tail
2261  * pages is zero.
2262  */
2263 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2264                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2265 {
2266         struct folio *folio;
2267
2268         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2269         if (!folio)
2270                 return NULL;
2271
2272         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2273         return folio;
2274 }
2275
2276 static void prep_and_add_allocated_folios(struct hstate *h,
2277                                         struct list_head *folio_list)
2278 {
2279         unsigned long flags;
2280         struct folio *folio, *tmp_f;
2281
2282         /* Send list for bulk vmemmap optimization processing */
2283         hugetlb_vmemmap_optimize_folios(h, folio_list);
2284
2285         /* Add all new pool pages to free lists in one lock cycle */
2286         spin_lock_irqsave(&hugetlb_lock, flags);
2287         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2288                 __prep_account_new_huge_page(h, folio_nid(folio));
2289                 enqueue_hugetlb_folio(h, folio);
2290         }
2291         spin_unlock_irqrestore(&hugetlb_lock, flags);
2292 }
2293
2294 /*
2295  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2296  * will later be added to the appropriate hugetlb pool.
2297  */
2298 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2299                                         nodemask_t *nodes_allowed,
2300                                         nodemask_t *node_alloc_noretry,
2301                                         int *next_node)
2302 {
2303         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2304         int nr_nodes, node;
2305
2306         for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2307                 struct folio *folio;
2308
2309                 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2310                                         nodes_allowed, node_alloc_noretry);
2311                 if (folio)
2312                         return folio;
2313         }
2314
2315         return NULL;
2316 }
2317
2318 /*
2319  * Remove huge page from pool from next node to free.  Attempt to keep
2320  * persistent huge pages more or less balanced over allowed nodes.
2321  * This routine only 'removes' the hugetlb page.  The caller must make
2322  * an additional call to free the page to low level allocators.
2323  * Called with hugetlb_lock locked.
2324  */
2325 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2326                 nodemask_t *nodes_allowed, bool acct_surplus)
2327 {
2328         int nr_nodes, node;
2329         struct folio *folio = NULL;
2330
2331         lockdep_assert_held(&hugetlb_lock);
2332         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2333                 /*
2334                  * If we're returning unused surplus pages, only examine
2335                  * nodes with surplus pages.
2336                  */
2337                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2338                     !list_empty(&h->hugepage_freelists[node])) {
2339                         folio = list_entry(h->hugepage_freelists[node].next,
2340                                           struct folio, lru);
2341                         remove_hugetlb_folio(h, folio, acct_surplus);
2342                         break;
2343                 }
2344         }
2345
2346         return folio;
2347 }
2348
2349 /*
2350  * Dissolve a given free hugetlb folio into free buddy pages. This function
2351  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2352  * This function returns values like below:
2353  *
2354  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2355  *           when the system is under memory pressure and the feature of
2356  *           freeing unused vmemmap pages associated with each hugetlb page
2357  *           is enabled.
2358  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2359  *           (allocated or reserved.)
2360  *       0:  successfully dissolved free hugepages or the page is not a
2361  *           hugepage (considered as already dissolved)
2362  */
2363 int dissolve_free_hugetlb_folio(struct folio *folio)
2364 {
2365         int rc = -EBUSY;
2366
2367 retry:
2368         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2369         if (!folio_test_hugetlb(folio))
2370                 return 0;
2371
2372         spin_lock_irq(&hugetlb_lock);
2373         if (!folio_test_hugetlb(folio)) {
2374                 rc = 0;
2375                 goto out;
2376         }
2377
2378         if (!folio_ref_count(folio)) {
2379                 struct hstate *h = folio_hstate(folio);
2380                 if (!available_huge_pages(h))
2381                         goto out;
2382
2383                 /*
2384                  * We should make sure that the page is already on the free list
2385                  * when it is dissolved.
2386                  */
2387                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2388                         spin_unlock_irq(&hugetlb_lock);
2389                         cond_resched();
2390
2391                         /*
2392                          * Theoretically, we should return -EBUSY when we
2393                          * encounter this race. In fact, we have a chance
2394                          * to successfully dissolve the page if we do a
2395                          * retry. Because the race window is quite small.
2396                          * If we seize this opportunity, it is an optimization
2397                          * for increasing the success rate of dissolving page.
2398                          */
2399                         goto retry;
2400                 }
2401
2402                 remove_hugetlb_folio(h, folio, false);
2403                 h->max_huge_pages--;
2404                 spin_unlock_irq(&hugetlb_lock);
2405
2406                 /*
2407                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2408                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2409                  * free the page if it can not allocate required vmemmap.  We
2410                  * need to adjust max_huge_pages if the page is not freed.
2411                  * Attempt to allocate vmemmmap here so that we can take
2412                  * appropriate action on failure.
2413                  *
2414                  * The folio_test_hugetlb check here is because
2415                  * remove_hugetlb_folio will clear hugetlb folio flag for
2416                  * non-vmemmap optimized hugetlb folios.
2417                  */
2418                 if (folio_test_hugetlb(folio)) {
2419                         rc = hugetlb_vmemmap_restore_folio(h, folio);
2420                         if (rc) {
2421                                 spin_lock_irq(&hugetlb_lock);
2422                                 add_hugetlb_folio(h, folio, false);
2423                                 h->max_huge_pages++;
2424                                 goto out;
2425                         }
2426                 } else
2427                         rc = 0;
2428
2429                 update_and_free_hugetlb_folio(h, folio, false);
2430                 return rc;
2431         }
2432 out:
2433         spin_unlock_irq(&hugetlb_lock);
2434         return rc;
2435 }
2436
2437 /*
2438  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2439  * make specified memory blocks removable from the system.
2440  * Note that this will dissolve a free gigantic hugepage completely, if any
2441  * part of it lies within the given range.
2442  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2443  * free hugetlb folios that were dissolved before that error are lost.
2444  */
2445 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2446 {
2447         unsigned long pfn;
2448         struct folio *folio;
2449         int rc = 0;
2450         unsigned int order;
2451         struct hstate *h;
2452
2453         if (!hugepages_supported())
2454                 return rc;
2455
2456         order = huge_page_order(&default_hstate);
2457         for_each_hstate(h)
2458                 order = min(order, huge_page_order(h));
2459
2460         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2461                 folio = pfn_folio(pfn);
2462                 rc = dissolve_free_hugetlb_folio(folio);
2463                 if (rc)
2464                         break;
2465         }
2466
2467         return rc;
2468 }
2469
2470 /*
2471  * Allocates a fresh surplus page from the page allocator.
2472  */
2473 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2474                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2475 {
2476         struct folio *folio = NULL;
2477
2478         if (hstate_is_gigantic(h))
2479                 return NULL;
2480
2481         spin_lock_irq(&hugetlb_lock);
2482         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2483                 goto out_unlock;
2484         spin_unlock_irq(&hugetlb_lock);
2485
2486         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2487         if (!folio)
2488                 return NULL;
2489
2490         spin_lock_irq(&hugetlb_lock);
2491         /*
2492          * We could have raced with the pool size change.
2493          * Double check that and simply deallocate the new page
2494          * if we would end up overcommiting the surpluses. Abuse
2495          * temporary page to workaround the nasty free_huge_folio
2496          * codeflow
2497          */
2498         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2499                 folio_set_hugetlb_temporary(folio);
2500                 spin_unlock_irq(&hugetlb_lock);
2501                 free_huge_folio(folio);
2502                 return NULL;
2503         }
2504
2505         h->surplus_huge_pages++;
2506         h->surplus_huge_pages_node[folio_nid(folio)]++;
2507
2508 out_unlock:
2509         spin_unlock_irq(&hugetlb_lock);
2510
2511         return folio;
2512 }
2513
2514 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2515                                      int nid, nodemask_t *nmask)
2516 {
2517         struct folio *folio;
2518
2519         if (hstate_is_gigantic(h))
2520                 return NULL;
2521
2522         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2523         if (!folio)
2524                 return NULL;
2525
2526         /* fresh huge pages are frozen */
2527         folio_ref_unfreeze(folio, 1);
2528         /*
2529          * We do not account these pages as surplus because they are only
2530          * temporary and will be released properly on the last reference
2531          */
2532         folio_set_hugetlb_temporary(folio);
2533
2534         return folio;
2535 }
2536
2537 /*
2538  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2539  */
2540 static
2541 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2542                 struct vm_area_struct *vma, unsigned long addr)
2543 {
2544         struct folio *folio = NULL;
2545         struct mempolicy *mpol;
2546         gfp_t gfp_mask = htlb_alloc_mask(h);
2547         int nid;
2548         nodemask_t *nodemask;
2549
2550         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2551         if (mpol_is_preferred_many(mpol)) {
2552                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2553
2554                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2555                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2556
2557                 /* Fallback to all nodes if page==NULL */
2558                 nodemask = NULL;
2559         }
2560
2561         if (!folio)
2562                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2563         mpol_cond_put(mpol);
2564         return folio;
2565 }
2566
2567 /* folio migration callback function */
2568 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2569                 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2570 {
2571         spin_lock_irq(&hugetlb_lock);
2572         if (available_huge_pages(h)) {
2573                 struct folio *folio;
2574
2575                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2576                                                 preferred_nid, nmask);
2577                 if (folio) {
2578                         spin_unlock_irq(&hugetlb_lock);
2579                         return folio;
2580                 }
2581         }
2582         spin_unlock_irq(&hugetlb_lock);
2583
2584         /* We cannot fallback to other nodes, as we could break the per-node pool. */
2585         if (!allow_alloc_fallback)
2586                 gfp_mask |= __GFP_THISNODE;
2587
2588         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2589 }
2590
2591 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2592 {
2593 #ifdef CONFIG_NUMA
2594         struct mempolicy *mpol = get_task_policy(current);
2595
2596         /*
2597          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2598          * (from policy_nodemask) specifically for hugetlb case
2599          */
2600         if (mpol->mode == MPOL_BIND &&
2601                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2602                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2603                 return &mpol->nodes;
2604 #endif
2605         return NULL;
2606 }
2607
2608 /*
2609  * Increase the hugetlb pool such that it can accommodate a reservation
2610  * of size 'delta'.
2611  */
2612 static int gather_surplus_pages(struct hstate *h, long delta)
2613         __must_hold(&hugetlb_lock)
2614 {
2615         LIST_HEAD(surplus_list);
2616         struct folio *folio, *tmp;
2617         int ret;
2618         long i;
2619         long needed, allocated;
2620         bool alloc_ok = true;
2621         int node;
2622         nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2623
2624         lockdep_assert_held(&hugetlb_lock);
2625         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2626         if (needed <= 0) {
2627                 h->resv_huge_pages += delta;
2628                 return 0;
2629         }
2630
2631         allocated = 0;
2632
2633         ret = -ENOMEM;
2634 retry:
2635         spin_unlock_irq(&hugetlb_lock);
2636         for (i = 0; i < needed; i++) {
2637                 folio = NULL;
2638                 for_each_node_mask(node, cpuset_current_mems_allowed) {
2639                         if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2640                                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2641                                                 node, NULL);
2642                                 if (folio)
2643                                         break;
2644                         }
2645                 }
2646                 if (!folio) {
2647                         alloc_ok = false;
2648                         break;
2649                 }
2650                 list_add(&folio->lru, &surplus_list);
2651                 cond_resched();
2652         }
2653         allocated += i;
2654
2655         /*
2656          * After retaking hugetlb_lock, we need to recalculate 'needed'
2657          * because either resv_huge_pages or free_huge_pages may have changed.
2658          */
2659         spin_lock_irq(&hugetlb_lock);
2660         needed = (h->resv_huge_pages + delta) -
2661                         (h->free_huge_pages + allocated);
2662         if (needed > 0) {
2663                 if (alloc_ok)
2664                         goto retry;
2665                 /*
2666                  * We were not able to allocate enough pages to
2667                  * satisfy the entire reservation so we free what
2668                  * we've allocated so far.
2669                  */
2670                 goto free;
2671         }
2672         /*
2673          * The surplus_list now contains _at_least_ the number of extra pages
2674          * needed to accommodate the reservation.  Add the appropriate number
2675          * of pages to the hugetlb pool and free the extras back to the buddy
2676          * allocator.  Commit the entire reservation here to prevent another
2677          * process from stealing the pages as they are added to the pool but
2678          * before they are reserved.
2679          */
2680         needed += allocated;
2681         h->resv_huge_pages += delta;
2682         ret = 0;
2683
2684         /* Free the needed pages to the hugetlb pool */
2685         list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2686                 if ((--needed) < 0)
2687                         break;
2688                 /* Add the page to the hugetlb allocator */
2689                 enqueue_hugetlb_folio(h, folio);
2690         }
2691 free:
2692         spin_unlock_irq(&hugetlb_lock);
2693
2694         /*
2695          * Free unnecessary surplus pages to the buddy allocator.
2696          * Pages have no ref count, call free_huge_folio directly.
2697          */
2698         list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2699                 free_huge_folio(folio);
2700         spin_lock_irq(&hugetlb_lock);
2701
2702         return ret;
2703 }
2704
2705 /*
2706  * This routine has two main purposes:
2707  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2708  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2709  *    to the associated reservation map.
2710  * 2) Free any unused surplus pages that may have been allocated to satisfy
2711  *    the reservation.  As many as unused_resv_pages may be freed.
2712  */
2713 static void return_unused_surplus_pages(struct hstate *h,
2714                                         unsigned long unused_resv_pages)
2715 {
2716         unsigned long nr_pages;
2717         LIST_HEAD(page_list);
2718
2719         lockdep_assert_held(&hugetlb_lock);
2720         /* Uncommit the reservation */
2721         h->resv_huge_pages -= unused_resv_pages;
2722
2723         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2724                 goto out;
2725
2726         /*
2727          * Part (or even all) of the reservation could have been backed
2728          * by pre-allocated pages. Only free surplus pages.
2729          */
2730         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2731
2732         /*
2733          * We want to release as many surplus pages as possible, spread
2734          * evenly across all nodes with memory. Iterate across these nodes
2735          * until we can no longer free unreserved surplus pages. This occurs
2736          * when the nodes with surplus pages have no free pages.
2737          * remove_pool_hugetlb_folio() will balance the freed pages across the
2738          * on-line nodes with memory and will handle the hstate accounting.
2739          */
2740         while (nr_pages--) {
2741                 struct folio *folio;
2742
2743                 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2744                 if (!folio)
2745                         goto out;
2746
2747                 list_add(&folio->lru, &page_list);
2748         }
2749
2750 out:
2751         spin_unlock_irq(&hugetlb_lock);
2752         update_and_free_pages_bulk(h, &page_list);
2753         spin_lock_irq(&hugetlb_lock);
2754 }
2755
2756
2757 /*
2758  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2759  * are used by the huge page allocation routines to manage reservations.
2760  *
2761  * vma_needs_reservation is called to determine if the huge page at addr
2762  * within the vma has an associated reservation.  If a reservation is
2763  * needed, the value 1 is returned.  The caller is then responsible for
2764  * managing the global reservation and subpool usage counts.  After
2765  * the huge page has been allocated, vma_commit_reservation is called
2766  * to add the page to the reservation map.  If the page allocation fails,
2767  * the reservation must be ended instead of committed.  vma_end_reservation
2768  * is called in such cases.
2769  *
2770  * In the normal case, vma_commit_reservation returns the same value
2771  * as the preceding vma_needs_reservation call.  The only time this
2772  * is not the case is if a reserve map was changed between calls.  It
2773  * is the responsibility of the caller to notice the difference and
2774  * take appropriate action.
2775  *
2776  * vma_add_reservation is used in error paths where a reservation must
2777  * be restored when a newly allocated huge page must be freed.  It is
2778  * to be called after calling vma_needs_reservation to determine if a
2779  * reservation exists.
2780  *
2781  * vma_del_reservation is used in error paths where an entry in the reserve
2782  * map was created during huge page allocation and must be removed.  It is to
2783  * be called after calling vma_needs_reservation to determine if a reservation
2784  * exists.
2785  */
2786 enum vma_resv_mode {
2787         VMA_NEEDS_RESV,
2788         VMA_COMMIT_RESV,
2789         VMA_END_RESV,
2790         VMA_ADD_RESV,
2791         VMA_DEL_RESV,
2792 };
2793 static long __vma_reservation_common(struct hstate *h,
2794                                 struct vm_area_struct *vma, unsigned long addr,
2795                                 enum vma_resv_mode mode)
2796 {
2797         struct resv_map *resv;
2798         pgoff_t idx;
2799         long ret;
2800         long dummy_out_regions_needed;
2801
2802         resv = vma_resv_map(vma);
2803         if (!resv)
2804                 return 1;
2805
2806         idx = vma_hugecache_offset(h, vma, addr);
2807         switch (mode) {
2808         case VMA_NEEDS_RESV:
2809                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2810                 /* We assume that vma_reservation_* routines always operate on
2811                  * 1 page, and that adding to resv map a 1 page entry can only
2812                  * ever require 1 region.
2813                  */
2814                 VM_BUG_ON(dummy_out_regions_needed != 1);
2815                 break;
2816         case VMA_COMMIT_RESV:
2817                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2818                 /* region_add calls of range 1 should never fail. */
2819                 VM_BUG_ON(ret < 0);
2820                 break;
2821         case VMA_END_RESV:
2822                 region_abort(resv, idx, idx + 1, 1);
2823                 ret = 0;
2824                 break;
2825         case VMA_ADD_RESV:
2826                 if (vma->vm_flags & VM_MAYSHARE) {
2827                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2828                         /* region_add calls of range 1 should never fail. */
2829                         VM_BUG_ON(ret < 0);
2830                 } else {
2831                         region_abort(resv, idx, idx + 1, 1);
2832                         ret = region_del(resv, idx, idx + 1);
2833                 }
2834                 break;
2835         case VMA_DEL_RESV:
2836                 if (vma->vm_flags & VM_MAYSHARE) {
2837                         region_abort(resv, idx, idx + 1, 1);
2838                         ret = region_del(resv, idx, idx + 1);
2839                 } else {
2840                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2841                         /* region_add calls of range 1 should never fail. */
2842                         VM_BUG_ON(ret < 0);
2843                 }
2844                 break;
2845         default:
2846                 BUG();
2847         }
2848
2849         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2850                 return ret;
2851         /*
2852          * We know private mapping must have HPAGE_RESV_OWNER set.
2853          *
2854          * In most cases, reserves always exist for private mappings.
2855          * However, a file associated with mapping could have been
2856          * hole punched or truncated after reserves were consumed.
2857          * As subsequent fault on such a range will not use reserves.
2858          * Subtle - The reserve map for private mappings has the
2859          * opposite meaning than that of shared mappings.  If NO
2860          * entry is in the reserve map, it means a reservation exists.
2861          * If an entry exists in the reserve map, it means the
2862          * reservation has already been consumed.  As a result, the
2863          * return value of this routine is the opposite of the
2864          * value returned from reserve map manipulation routines above.
2865          */
2866         if (ret > 0)
2867                 return 0;
2868         if (ret == 0)
2869                 return 1;
2870         return ret;
2871 }
2872
2873 static long vma_needs_reservation(struct hstate *h,
2874                         struct vm_area_struct *vma, unsigned long addr)
2875 {
2876         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2877 }
2878
2879 static long vma_commit_reservation(struct hstate *h,
2880                         struct vm_area_struct *vma, unsigned long addr)
2881 {
2882         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2883 }
2884
2885 static void vma_end_reservation(struct hstate *h,
2886                         struct vm_area_struct *vma, unsigned long addr)
2887 {
2888         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2889 }
2890
2891 static long vma_add_reservation(struct hstate *h,
2892                         struct vm_area_struct *vma, unsigned long addr)
2893 {
2894         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2895 }
2896
2897 static long vma_del_reservation(struct hstate *h,
2898                         struct vm_area_struct *vma, unsigned long addr)
2899 {
2900         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2901 }
2902
2903 /*
2904  * This routine is called to restore reservation information on error paths.
2905  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2906  * and the hugetlb mutex should remain held when calling this routine.
2907  *
2908  * It handles two specific cases:
2909  * 1) A reservation was in place and the folio consumed the reservation.
2910  *    hugetlb_restore_reserve is set in the folio.
2911  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2912  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2913  *
2914  * In case 1, free_huge_folio later in the error path will increment the
2915  * global reserve count.  But, free_huge_folio does not have enough context
2916  * to adjust the reservation map.  This case deals primarily with private
2917  * mappings.  Adjust the reserve map here to be consistent with global
2918  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2919  * reserve map indicates there is a reservation present.
2920  *
2921  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2922  */
2923 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2924                         unsigned long address, struct folio *folio)
2925 {
2926         long rc = vma_needs_reservation(h, vma, address);
2927
2928         if (folio_test_hugetlb_restore_reserve(folio)) {
2929                 if (unlikely(rc < 0))
2930                         /*
2931                          * Rare out of memory condition in reserve map
2932                          * manipulation.  Clear hugetlb_restore_reserve so
2933                          * that global reserve count will not be incremented
2934                          * by free_huge_folio.  This will make it appear
2935                          * as though the reservation for this folio was
2936                          * consumed.  This may prevent the task from
2937                          * faulting in the folio at a later time.  This
2938                          * is better than inconsistent global huge page
2939                          * accounting of reserve counts.
2940                          */
2941                         folio_clear_hugetlb_restore_reserve(folio);
2942                 else if (rc)
2943                         (void)vma_add_reservation(h, vma, address);
2944                 else
2945                         vma_end_reservation(h, vma, address);
2946         } else {
2947                 if (!rc) {
2948                         /*
2949                          * This indicates there is an entry in the reserve map
2950                          * not added by alloc_hugetlb_folio.  We know it was added
2951                          * before the alloc_hugetlb_folio call, otherwise
2952                          * hugetlb_restore_reserve would be set on the folio.
2953                          * Remove the entry so that a subsequent allocation
2954                          * does not consume a reservation.
2955                          */
2956                         rc = vma_del_reservation(h, vma, address);
2957                         if (rc < 0)
2958                                 /*
2959                                  * VERY rare out of memory condition.  Since
2960                                  * we can not delete the entry, set
2961                                  * hugetlb_restore_reserve so that the reserve
2962                                  * count will be incremented when the folio
2963                                  * is freed.  This reserve will be consumed
2964                                  * on a subsequent allocation.
2965                                  */
2966                                 folio_set_hugetlb_restore_reserve(folio);
2967                 } else if (rc < 0) {
2968                         /*
2969                          * Rare out of memory condition from
2970                          * vma_needs_reservation call.  Memory allocation is
2971                          * only attempted if a new entry is needed.  Therefore,
2972                          * this implies there is not an entry in the
2973                          * reserve map.
2974                          *
2975                          * For shared mappings, no entry in the map indicates
2976                          * no reservation.  We are done.
2977                          */
2978                         if (!(vma->vm_flags & VM_MAYSHARE))
2979                                 /*
2980                                  * For private mappings, no entry indicates
2981                                  * a reservation is present.  Since we can
2982                                  * not add an entry, set hugetlb_restore_reserve
2983                                  * on the folio so reserve count will be
2984                                  * incremented when freed.  This reserve will
2985                                  * be consumed on a subsequent allocation.
2986                                  */
2987                                 folio_set_hugetlb_restore_reserve(folio);
2988                 } else
2989                         /*
2990                          * No reservation present, do nothing
2991                          */
2992                          vma_end_reservation(h, vma, address);
2993         }
2994 }
2995
2996 /*
2997  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2998  * the old one
2999  * @h: struct hstate old page belongs to
3000  * @old_folio: Old folio to dissolve
3001  * @list: List to isolate the page in case we need to
3002  * Returns 0 on success, otherwise negated error.
3003  */
3004 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3005                         struct folio *old_folio, struct list_head *list)
3006 {
3007         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3008         int nid = folio_nid(old_folio);
3009         struct folio *new_folio = NULL;
3010         int ret = 0;
3011
3012 retry:
3013         spin_lock_irq(&hugetlb_lock);
3014         if (!folio_test_hugetlb(old_folio)) {
3015                 /*
3016                  * Freed from under us. Drop new_folio too.
3017                  */
3018                 goto free_new;
3019         } else if (folio_ref_count(old_folio)) {
3020                 bool isolated;
3021
3022                 /*
3023                  * Someone has grabbed the folio, try to isolate it here.
3024                  * Fail with -EBUSY if not possible.
3025                  */
3026                 spin_unlock_irq(&hugetlb_lock);
3027                 isolated = isolate_hugetlb(old_folio, list);
3028                 ret = isolated ? 0 : -EBUSY;
3029                 spin_lock_irq(&hugetlb_lock);
3030                 goto free_new;
3031         } else if (!folio_test_hugetlb_freed(old_folio)) {
3032                 /*
3033                  * Folio's refcount is 0 but it has not been enqueued in the
3034                  * freelist yet. Race window is small, so we can succeed here if
3035                  * we retry.
3036                  */
3037                 spin_unlock_irq(&hugetlb_lock);
3038                 cond_resched();
3039                 goto retry;
3040         } else {
3041                 if (!new_folio) {
3042                         spin_unlock_irq(&hugetlb_lock);
3043                         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3044                                                               NULL, NULL);
3045                         if (!new_folio)
3046                                 return -ENOMEM;
3047                         __prep_new_hugetlb_folio(h, new_folio);
3048                         goto retry;
3049                 }
3050
3051                 /*
3052                  * Ok, old_folio is still a genuine free hugepage. Remove it from
3053                  * the freelist and decrease the counters. These will be
3054                  * incremented again when calling __prep_account_new_huge_page()
3055                  * and enqueue_hugetlb_folio() for new_folio. The counters will
3056                  * remain stable since this happens under the lock.
3057                  */
3058                 remove_hugetlb_folio(h, old_folio, false);
3059
3060                 /*
3061                  * Ref count on new_folio is already zero as it was dropped
3062                  * earlier.  It can be directly added to the pool free list.
3063                  */
3064                 __prep_account_new_huge_page(h, nid);
3065                 enqueue_hugetlb_folio(h, new_folio);
3066
3067                 /*
3068                  * Folio has been replaced, we can safely free the old one.
3069                  */
3070                 spin_unlock_irq(&hugetlb_lock);
3071                 update_and_free_hugetlb_folio(h, old_folio, false);
3072         }
3073
3074         return ret;
3075
3076 free_new:
3077         spin_unlock_irq(&hugetlb_lock);
3078         if (new_folio)
3079                 update_and_free_hugetlb_folio(h, new_folio, false);
3080
3081         return ret;
3082 }
3083
3084 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3085 {
3086         struct hstate *h;
3087         struct folio *folio = page_folio(page);
3088         int ret = -EBUSY;
3089
3090         /*
3091          * The page might have been dissolved from under our feet, so make sure
3092          * to carefully check the state under the lock.
3093          * Return success when racing as if we dissolved the page ourselves.
3094          */
3095         spin_lock_irq(&hugetlb_lock);
3096         if (folio_test_hugetlb(folio)) {
3097                 h = folio_hstate(folio);
3098         } else {
3099                 spin_unlock_irq(&hugetlb_lock);
3100                 return 0;
3101         }
3102         spin_unlock_irq(&hugetlb_lock);
3103
3104         /*
3105          * Fence off gigantic pages as there is a cyclic dependency between
3106          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3107          * of bailing out right away without further retrying.
3108          */
3109         if (hstate_is_gigantic(h))
3110                 return -ENOMEM;
3111
3112         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3113                 ret = 0;
3114         else if (!folio_ref_count(folio))
3115                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3116
3117         return ret;
3118 }
3119
3120 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3121                                     unsigned long addr, int avoid_reserve)
3122 {
3123         struct hugepage_subpool *spool = subpool_vma(vma);
3124         struct hstate *h = hstate_vma(vma);
3125         struct folio *folio;
3126         long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3127         long gbl_chg;
3128         int memcg_charge_ret, ret, idx;
3129         struct hugetlb_cgroup *h_cg = NULL;
3130         struct mem_cgroup *memcg;
3131         bool deferred_reserve;
3132         gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3133
3134         memcg = get_mem_cgroup_from_current();
3135         memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3136         if (memcg_charge_ret == -ENOMEM) {
3137                 mem_cgroup_put(memcg);
3138                 return ERR_PTR(-ENOMEM);
3139         }
3140
3141         idx = hstate_index(h);
3142         /*
3143          * Examine the region/reserve map to determine if the process
3144          * has a reservation for the page to be allocated.  A return
3145          * code of zero indicates a reservation exists (no change).
3146          */
3147         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3148         if (map_chg < 0) {
3149                 if (!memcg_charge_ret)
3150                         mem_cgroup_cancel_charge(memcg, nr_pages);
3151                 mem_cgroup_put(memcg);
3152                 return ERR_PTR(-ENOMEM);
3153         }
3154
3155         /*
3156          * Processes that did not create the mapping will have no
3157          * reserves as indicated by the region/reserve map. Check
3158          * that the allocation will not exceed the subpool limit.
3159          * Allocations for MAP_NORESERVE mappings also need to be
3160          * checked against any subpool limit.
3161          */
3162         if (map_chg || avoid_reserve) {
3163                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3164                 if (gbl_chg < 0)
3165                         goto out_end_reservation;
3166
3167                 /*
3168                  * Even though there was no reservation in the region/reserve
3169                  * map, there could be reservations associated with the
3170                  * subpool that can be used.  This would be indicated if the
3171                  * return value of hugepage_subpool_get_pages() is zero.
3172                  * However, if avoid_reserve is specified we still avoid even
3173                  * the subpool reservations.
3174                  */
3175                 if (avoid_reserve)
3176                         gbl_chg = 1;
3177         }
3178
3179         /* If this allocation is not consuming a reservation, charge it now.
3180          */
3181         deferred_reserve = map_chg || avoid_reserve;
3182         if (deferred_reserve) {
3183                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3184                         idx, pages_per_huge_page(h), &h_cg);
3185                 if (ret)
3186                         goto out_subpool_put;
3187         }
3188
3189         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3190         if (ret)
3191                 goto out_uncharge_cgroup_reservation;
3192
3193         spin_lock_irq(&hugetlb_lock);
3194         /*
3195          * glb_chg is passed to indicate whether or not a page must be taken
3196          * from the global free pool (global change).  gbl_chg == 0 indicates
3197          * a reservation exists for the allocation.
3198          */
3199         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3200         if (!folio) {
3201                 spin_unlock_irq(&hugetlb_lock);
3202                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3203                 if (!folio)
3204                         goto out_uncharge_cgroup;
3205                 spin_lock_irq(&hugetlb_lock);
3206                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3207                         folio_set_hugetlb_restore_reserve(folio);
3208                         h->resv_huge_pages--;
3209                 }
3210                 list_add(&folio->lru, &h->hugepage_activelist);
3211                 folio_ref_unfreeze(folio, 1);
3212                 /* Fall through */
3213         }
3214
3215         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3216         /* If allocation is not consuming a reservation, also store the
3217          * hugetlb_cgroup pointer on the page.
3218          */
3219         if (deferred_reserve) {
3220                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3221                                                   h_cg, folio);
3222         }
3223
3224         spin_unlock_irq(&hugetlb_lock);
3225
3226         hugetlb_set_folio_subpool(folio, spool);
3227
3228         map_commit = vma_commit_reservation(h, vma, addr);
3229         if (unlikely(map_chg > map_commit)) {
3230                 /*
3231                  * The page was added to the reservation map between
3232                  * vma_needs_reservation and vma_commit_reservation.
3233                  * This indicates a race with hugetlb_reserve_pages.
3234                  * Adjust for the subpool count incremented above AND
3235                  * in hugetlb_reserve_pages for the same page.  Also,
3236                  * the reservation count added in hugetlb_reserve_pages
3237                  * no longer applies.
3238                  */
3239                 long rsv_adjust;
3240
3241                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3242                 hugetlb_acct_memory(h, -rsv_adjust);
3243                 if (deferred_reserve) {
3244                         spin_lock_irq(&hugetlb_lock);
3245                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3246                                         pages_per_huge_page(h), folio);
3247                         spin_unlock_irq(&hugetlb_lock);
3248                 }
3249         }
3250
3251         if (!memcg_charge_ret)
3252                 mem_cgroup_commit_charge(folio, memcg);
3253         mem_cgroup_put(memcg);
3254
3255         return folio;
3256
3257 out_uncharge_cgroup:
3258         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3259 out_uncharge_cgroup_reservation:
3260         if (deferred_reserve)
3261                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3262                                                     h_cg);
3263 out_subpool_put:
3264         if (map_chg || avoid_reserve)
3265                 hugepage_subpool_put_pages(spool, 1);
3266 out_end_reservation:
3267         vma_end_reservation(h, vma, addr);
3268         if (!memcg_charge_ret)
3269                 mem_cgroup_cancel_charge(memcg, nr_pages);
3270         mem_cgroup_put(memcg);
3271         return ERR_PTR(-ENOSPC);
3272 }
3273
3274 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3275         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3276 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3277 {
3278         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3279         int nr_nodes, node = nid;
3280
3281         /* do node specific alloc */
3282         if (nid != NUMA_NO_NODE) {
3283                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3284                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3285                 if (!m)
3286                         return 0;
3287                 goto found;
3288         }
3289         /* allocate from next node when distributing huge pages */
3290         for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3291                 m = memblock_alloc_try_nid_raw(
3292                                 huge_page_size(h), huge_page_size(h),
3293                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3294                 /*
3295                  * Use the beginning of the huge page to store the
3296                  * huge_bootmem_page struct (until gather_bootmem
3297                  * puts them into the mem_map).
3298                  */
3299                 if (!m)
3300                         return 0;
3301                 goto found;
3302         }
3303
3304 found:
3305
3306         /*
3307          * Only initialize the head struct page in memmap_init_reserved_pages,
3308          * rest of the struct pages will be initialized by the HugeTLB
3309          * subsystem itself.
3310          * The head struct page is used to get folio information by the HugeTLB
3311          * subsystem like zone id and node id.
3312          */
3313         memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3314                 huge_page_size(h) - PAGE_SIZE);
3315         /* Put them into a private list first because mem_map is not up yet */
3316         INIT_LIST_HEAD(&m->list);
3317         list_add(&m->list, &huge_boot_pages[node]);
3318         m->hstate = h;
3319         return 1;
3320 }
3321
3322 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3323 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3324                                         unsigned long start_page_number,
3325                                         unsigned long end_page_number)
3326 {
3327         enum zone_type zone = zone_idx(folio_zone(folio));
3328         int nid = folio_nid(folio);
3329         unsigned long head_pfn = folio_pfn(folio);
3330         unsigned long pfn, end_pfn = head_pfn + end_page_number;
3331         int ret;
3332
3333         for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3334                 struct page *page = pfn_to_page(pfn);
3335
3336                 __init_single_page(page, pfn, zone, nid);
3337                 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3338                 ret = page_ref_freeze(page, 1);
3339                 VM_BUG_ON(!ret);
3340         }
3341 }
3342
3343 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3344                                               struct hstate *h,
3345                                               unsigned long nr_pages)
3346 {
3347         int ret;
3348
3349         /* Prepare folio head */
3350         __folio_clear_reserved(folio);
3351         __folio_set_head(folio);
3352         ret = folio_ref_freeze(folio, 1);
3353         VM_BUG_ON(!ret);
3354         /* Initialize the necessary tail struct pages */
3355         hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3356         prep_compound_head((struct page *)folio, huge_page_order(h));
3357 }
3358
3359 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3360                                         struct list_head *folio_list)
3361 {
3362         unsigned long flags;
3363         struct folio *folio, *tmp_f;
3364
3365         /* Send list for bulk vmemmap optimization processing */
3366         hugetlb_vmemmap_optimize_folios(h, folio_list);
3367
3368         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3369                 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3370                         /*
3371                          * If HVO fails, initialize all tail struct pages
3372                          * We do not worry about potential long lock hold
3373                          * time as this is early in boot and there should
3374                          * be no contention.
3375                          */
3376                         hugetlb_folio_init_tail_vmemmap(folio,
3377                                         HUGETLB_VMEMMAP_RESERVE_PAGES,
3378                                         pages_per_huge_page(h));
3379                 }
3380                 /* Subdivide locks to achieve better parallel performance */
3381                 spin_lock_irqsave(&hugetlb_lock, flags);
3382                 __prep_account_new_huge_page(h, folio_nid(folio));
3383                 enqueue_hugetlb_folio(h, folio);
3384                 spin_unlock_irqrestore(&hugetlb_lock, flags);
3385         }
3386 }
3387
3388 /*
3389  * Put bootmem huge pages into the standard lists after mem_map is up.
3390  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3391  */
3392 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3393 {
3394         LIST_HEAD(folio_list);
3395         struct huge_bootmem_page *m;
3396         struct hstate *h = NULL, *prev_h = NULL;
3397
3398         list_for_each_entry(m, &huge_boot_pages[nid], list) {
3399                 struct page *page = virt_to_page(m);
3400                 struct folio *folio = (void *)page;
3401
3402                 h = m->hstate;
3403                 /*
3404                  * It is possible to have multiple huge page sizes (hstates)
3405                  * in this list.  If so, process each size separately.
3406                  */
3407                 if (h != prev_h && prev_h != NULL)
3408                         prep_and_add_bootmem_folios(prev_h, &folio_list);
3409                 prev_h = h;
3410
3411                 VM_BUG_ON(!hstate_is_gigantic(h));
3412                 WARN_ON(folio_ref_count(folio) != 1);
3413
3414                 hugetlb_folio_init_vmemmap(folio, h,
3415                                            HUGETLB_VMEMMAP_RESERVE_PAGES);
3416                 init_new_hugetlb_folio(h, folio);
3417                 list_add(&folio->lru, &folio_list);
3418
3419                 /*
3420                  * We need to restore the 'stolen' pages to totalram_pages
3421                  * in order to fix confusing memory reports from free(1) and
3422                  * other side-effects, like CommitLimit going negative.
3423                  */
3424                 adjust_managed_page_count(page, pages_per_huge_page(h));
3425                 cond_resched();
3426         }
3427
3428         prep_and_add_bootmem_folios(h, &folio_list);
3429 }
3430
3431 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3432                                                     unsigned long end, void *arg)
3433 {
3434         int nid;
3435
3436         for (nid = start; nid < end; nid++)
3437                 gather_bootmem_prealloc_node(nid);
3438 }
3439
3440 static void __init gather_bootmem_prealloc(void)
3441 {
3442         struct padata_mt_job job = {
3443                 .thread_fn      = gather_bootmem_prealloc_parallel,
3444                 .fn_arg         = NULL,
3445                 .start          = 0,
3446                 .size           = num_node_state(N_MEMORY),
3447                 .align          = 1,
3448                 .min_chunk      = 1,
3449                 .max_threads    = num_node_state(N_MEMORY),
3450                 .numa_aware     = true,
3451         };
3452
3453         padata_do_multithreaded(&job);
3454 }
3455
3456 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3457 {
3458         unsigned long i;
3459         char buf[32];
3460
3461         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3462                 if (hstate_is_gigantic(h)) {
3463                         if (!alloc_bootmem_huge_page(h, nid))
3464                                 break;
3465                 } else {
3466                         struct folio *folio;
3467                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3468
3469                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3470                                         &node_states[N_MEMORY]);
3471                         if (!folio)
3472                                 break;
3473                         free_huge_folio(folio); /* free it into the hugepage allocator */
3474                 }
3475                 cond_resched();
3476         }
3477         if (i == h->max_huge_pages_node[nid])
3478                 return;
3479
3480         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3481         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3482                 h->max_huge_pages_node[nid], buf, nid, i);
3483         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3484         h->max_huge_pages_node[nid] = i;
3485 }
3486
3487 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3488 {
3489         int i;
3490         bool node_specific_alloc = false;
3491
3492         for_each_online_node(i) {
3493                 if (h->max_huge_pages_node[i] > 0) {
3494                         hugetlb_hstate_alloc_pages_onenode(h, i);
3495                         node_specific_alloc = true;
3496                 }
3497         }
3498
3499         return node_specific_alloc;
3500 }
3501
3502 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3503 {
3504         if (allocated < h->max_huge_pages) {
3505                 char buf[32];
3506
3507                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3508                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3509                         h->max_huge_pages, buf, allocated);
3510                 h->max_huge_pages = allocated;
3511         }
3512 }
3513
3514 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3515 {
3516         struct hstate *h = (struct hstate *)arg;
3517         int i, num = end - start;
3518         nodemask_t node_alloc_noretry;
3519         LIST_HEAD(folio_list);
3520         int next_node = first_online_node;
3521
3522         /* Bit mask controlling how hard we retry per-node allocations.*/
3523         nodes_clear(node_alloc_noretry);
3524
3525         for (i = 0; i < num; ++i) {
3526                 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3527                                                 &node_alloc_noretry, &next_node);
3528                 if (!folio)
3529                         break;
3530
3531                 list_move(&folio->lru, &folio_list);
3532                 cond_resched();
3533         }
3534
3535         prep_and_add_allocated_folios(h, &folio_list);
3536 }
3537
3538 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3539 {
3540         unsigned long i;
3541
3542         for (i = 0; i < h->max_huge_pages; ++i) {
3543                 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3544                         break;
3545                 cond_resched();
3546         }
3547
3548         return i;
3549 }
3550
3551 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3552 {
3553         struct padata_mt_job job = {
3554                 .fn_arg         = h,
3555                 .align          = 1,
3556                 .numa_aware     = true
3557         };
3558
3559         job.thread_fn   = hugetlb_pages_alloc_boot_node;
3560         job.start       = 0;
3561         job.size        = h->max_huge_pages;
3562
3563         /*
3564          * job.max_threads is twice the num_node_state(N_MEMORY),
3565          *
3566          * Tests below indicate that a multiplier of 2 significantly improves
3567          * performance, and although larger values also provide improvements,
3568          * the gains are marginal.
3569          *
3570          * Therefore, choosing 2 as the multiplier strikes a good balance between
3571          * enhancing parallel processing capabilities and maintaining efficient
3572          * resource management.
3573          *
3574          * +------------+-------+-------+-------+-------+-------+
3575          * | multiplier |   1   |   2   |   3   |   4   |   5   |
3576          * +------------+-------+-------+-------+-------+-------+
3577          * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3578          * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3579          * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3580          * +------------+-------+-------+-------+-------+-------+
3581          */
3582         job.max_threads = num_node_state(N_MEMORY) * 2;
3583         job.min_chunk   = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3584         padata_do_multithreaded(&job);
3585
3586         return h->nr_huge_pages;
3587 }
3588
3589 /*
3590  * NOTE: this routine is called in different contexts for gigantic and
3591  * non-gigantic pages.
3592  * - For gigantic pages, this is called early in the boot process and
3593  *   pages are allocated from memblock allocated or something similar.
3594  *   Gigantic pages are actually added to pools later with the routine
3595  *   gather_bootmem_prealloc.
3596  * - For non-gigantic pages, this is called later in the boot process after
3597  *   all of mm is up and functional.  Pages are allocated from buddy and
3598  *   then added to hugetlb pools.
3599  */
3600 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3601 {
3602         unsigned long allocated;
3603         static bool initialized __initdata;
3604
3605         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3606         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3607                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3608                 return;
3609         }
3610
3611         /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3612         if (!initialized) {
3613                 int i = 0;
3614
3615                 for (i = 0; i < MAX_NUMNODES; i++)
3616                         INIT_LIST_HEAD(&huge_boot_pages[i]);
3617                 initialized = true;
3618         }
3619
3620         /* do node specific alloc */
3621         if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3622                 return;
3623
3624         /* below will do all node balanced alloc */
3625         if (hstate_is_gigantic(h))
3626                 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3627         else
3628                 allocated = hugetlb_pages_alloc_boot(h);
3629
3630         hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3631 }
3632
3633 static void __init hugetlb_init_hstates(void)
3634 {
3635         struct hstate *h, *h2;
3636
3637         for_each_hstate(h) {
3638                 /* oversize hugepages were init'ed in early boot */
3639                 if (!hstate_is_gigantic(h))
3640                         hugetlb_hstate_alloc_pages(h);
3641
3642                 /*
3643                  * Set demote order for each hstate.  Note that
3644                  * h->demote_order is initially 0.
3645                  * - We can not demote gigantic pages if runtime freeing
3646                  *   is not supported, so skip this.
3647                  * - If CMA allocation is possible, we can not demote
3648                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3649                  */
3650                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3651                         continue;
3652                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3653                         continue;
3654                 for_each_hstate(h2) {
3655                         if (h2 == h)
3656                                 continue;
3657                         if (h2->order < h->order &&
3658                             h2->order > h->demote_order)
3659                                 h->demote_order = h2->order;
3660                 }
3661         }
3662 }
3663
3664 static void __init report_hugepages(void)
3665 {
3666         struct hstate *h;
3667
3668         for_each_hstate(h) {
3669                 char buf[32];
3670
3671                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3672                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3673                         buf, h->free_huge_pages);
3674                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3675                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3676         }
3677 }
3678
3679 #ifdef CONFIG_HIGHMEM
3680 static void try_to_free_low(struct hstate *h, unsigned long count,
3681                                                 nodemask_t *nodes_allowed)
3682 {
3683         int i;
3684         LIST_HEAD(page_list);
3685
3686         lockdep_assert_held(&hugetlb_lock);
3687         if (hstate_is_gigantic(h))
3688                 return;
3689
3690         /*
3691          * Collect pages to be freed on a list, and free after dropping lock
3692          */
3693         for_each_node_mask(i, *nodes_allowed) {
3694                 struct folio *folio, *next;
3695                 struct list_head *freel = &h->hugepage_freelists[i];
3696                 list_for_each_entry_safe(folio, next, freel, lru) {
3697                         if (count >= h->nr_huge_pages)
3698                                 goto out;
3699                         if (folio_test_highmem(folio))
3700                                 continue;
3701                         remove_hugetlb_folio(h, folio, false);
3702                         list_add(&folio->lru, &page_list);
3703                 }
3704         }
3705
3706 out:
3707         spin_unlock_irq(&hugetlb_lock);
3708         update_and_free_pages_bulk(h, &page_list);
3709         spin_lock_irq(&hugetlb_lock);
3710 }
3711 #else
3712 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3713                                                 nodemask_t *nodes_allowed)
3714 {
3715 }
3716 #endif
3717
3718 /*
3719  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3720  * balanced by operating on them in a round-robin fashion.
3721  * Returns 1 if an adjustment was made.
3722  */
3723 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3724                                 int delta)
3725 {
3726         int nr_nodes, node;
3727
3728         lockdep_assert_held(&hugetlb_lock);
3729         VM_BUG_ON(delta != -1 && delta != 1);
3730
3731         if (delta < 0) {
3732                 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3733                         if (h->surplus_huge_pages_node[node])
3734                                 goto found;
3735                 }
3736         } else {
3737                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3738                         if (h->surplus_huge_pages_node[node] <
3739                                         h->nr_huge_pages_node[node])
3740                                 goto found;
3741                 }
3742         }
3743         return 0;
3744
3745 found:
3746         h->surplus_huge_pages += delta;
3747         h->surplus_huge_pages_node[node] += delta;
3748         return 1;
3749 }
3750
3751 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3752 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3753                               nodemask_t *nodes_allowed)
3754 {
3755         unsigned long min_count;
3756         unsigned long allocated;
3757         struct folio *folio;
3758         LIST_HEAD(page_list);
3759         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3760
3761         /*
3762          * Bit mask controlling how hard we retry per-node allocations.
3763          * If we can not allocate the bit mask, do not attempt to allocate
3764          * the requested huge pages.
3765          */
3766         if (node_alloc_noretry)
3767                 nodes_clear(*node_alloc_noretry);
3768         else
3769                 return -ENOMEM;
3770
3771         /*
3772          * resize_lock mutex prevents concurrent adjustments to number of
3773          * pages in hstate via the proc/sysfs interfaces.
3774          */
3775         mutex_lock(&h->resize_lock);
3776         flush_free_hpage_work(h);
3777         spin_lock_irq(&hugetlb_lock);
3778
3779         /*
3780          * Check for a node specific request.
3781          * Changing node specific huge page count may require a corresponding
3782          * change to the global count.  In any case, the passed node mask
3783          * (nodes_allowed) will restrict alloc/free to the specified node.
3784          */
3785         if (nid != NUMA_NO_NODE) {
3786                 unsigned long old_count = count;
3787
3788                 count += persistent_huge_pages(h) -
3789                          (h->nr_huge_pages_node[nid] -
3790                           h->surplus_huge_pages_node[nid]);
3791                 /*
3792                  * User may have specified a large count value which caused the
3793                  * above calculation to overflow.  In this case, they wanted
3794                  * to allocate as many huge pages as possible.  Set count to
3795                  * largest possible value to align with their intention.
3796                  */
3797                 if (count < old_count)
3798                         count = ULONG_MAX;
3799         }
3800
3801         /*
3802          * Gigantic pages runtime allocation depend on the capability for large
3803          * page range allocation.
3804          * If the system does not provide this feature, return an error when
3805          * the user tries to allocate gigantic pages but let the user free the
3806          * boottime allocated gigantic pages.
3807          */
3808         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3809                 if (count > persistent_huge_pages(h)) {
3810                         spin_unlock_irq(&hugetlb_lock);
3811                         mutex_unlock(&h->resize_lock);
3812                         NODEMASK_FREE(node_alloc_noretry);
3813                         return -EINVAL;
3814                 }
3815                 /* Fall through to decrease pool */
3816         }
3817
3818         /*
3819          * Increase the pool size
3820          * First take pages out of surplus state.  Then make up the
3821          * remaining difference by allocating fresh huge pages.
3822          *
3823          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3824          * to convert a surplus huge page to a normal huge page. That is
3825          * not critical, though, it just means the overall size of the
3826          * pool might be one hugepage larger than it needs to be, but
3827          * within all the constraints specified by the sysctls.
3828          */
3829         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3830                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3831                         break;
3832         }
3833
3834         allocated = 0;
3835         while (count > (persistent_huge_pages(h) + allocated)) {
3836                 /*
3837                  * If this allocation races such that we no longer need the
3838                  * page, free_huge_folio will handle it by freeing the page
3839                  * and reducing the surplus.
3840                  */
3841                 spin_unlock_irq(&hugetlb_lock);
3842
3843                 /* yield cpu to avoid soft lockup */
3844                 cond_resched();
3845
3846                 folio = alloc_pool_huge_folio(h, nodes_allowed,
3847                                                 node_alloc_noretry,
3848                                                 &h->next_nid_to_alloc);
3849                 if (!folio) {
3850                         prep_and_add_allocated_folios(h, &page_list);
3851                         spin_lock_irq(&hugetlb_lock);
3852                         goto out;
3853                 }
3854
3855                 list_add(&folio->lru, &page_list);
3856                 allocated++;
3857
3858                 /* Bail for signals. Probably ctrl-c from user */
3859                 if (signal_pending(current)) {
3860                         prep_and_add_allocated_folios(h, &page_list);
3861                         spin_lock_irq(&hugetlb_lock);
3862                         goto out;
3863                 }
3864
3865                 spin_lock_irq(&hugetlb_lock);
3866         }
3867
3868         /* Add allocated pages to the pool */
3869         if (!list_empty(&page_list)) {
3870                 spin_unlock_irq(&hugetlb_lock);
3871                 prep_and_add_allocated_folios(h, &page_list);
3872                 spin_lock_irq(&hugetlb_lock);
3873         }
3874
3875         /*
3876          * Decrease the pool size
3877          * First return free pages to the buddy allocator (being careful
3878          * to keep enough around to satisfy reservations).  Then place
3879          * pages into surplus state as needed so the pool will shrink
3880          * to the desired size as pages become free.
3881          *
3882          * By placing pages into the surplus state independent of the
3883          * overcommit value, we are allowing the surplus pool size to
3884          * exceed overcommit. There are few sane options here. Since
3885          * alloc_surplus_hugetlb_folio() is checking the global counter,
3886          * though, we'll note that we're not allowed to exceed surplus
3887          * and won't grow the pool anywhere else. Not until one of the
3888          * sysctls are changed, or the surplus pages go out of use.
3889          */
3890         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3891         min_count = max(count, min_count);
3892         try_to_free_low(h, min_count, nodes_allowed);
3893
3894         /*
3895          * Collect pages to be removed on list without dropping lock
3896          */
3897         while (min_count < persistent_huge_pages(h)) {
3898                 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3899                 if (!folio)
3900                         break;
3901
3902                 list_add(&folio->lru, &page_list);
3903         }
3904         /* free the pages after dropping lock */
3905         spin_unlock_irq(&hugetlb_lock);
3906         update_and_free_pages_bulk(h, &page_list);
3907         flush_free_hpage_work(h);
3908         spin_lock_irq(&hugetlb_lock);
3909
3910         while (count < persistent_huge_pages(h)) {
3911                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3912                         break;
3913         }
3914 out:
3915         h->max_huge_pages = persistent_huge_pages(h);
3916         spin_unlock_irq(&hugetlb_lock);
3917         mutex_unlock(&h->resize_lock);
3918
3919         NODEMASK_FREE(node_alloc_noretry);
3920
3921         return 0;
3922 }
3923
3924 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3925 {
3926         int i, nid = folio_nid(folio);
3927         struct hstate *target_hstate;
3928         struct page *subpage;
3929         struct folio *inner_folio;
3930         int rc = 0;
3931
3932         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3933
3934         remove_hugetlb_folio(h, folio, false);
3935         spin_unlock_irq(&hugetlb_lock);
3936
3937         /*
3938          * If vmemmap already existed for folio, the remove routine above would
3939          * have cleared the hugetlb folio flag.  Hence the folio is technically
3940          * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3941          * passed hugetlb folios and will BUG otherwise.
3942          */
3943         if (folio_test_hugetlb(folio)) {
3944                 rc = hugetlb_vmemmap_restore_folio(h, folio);
3945                 if (rc) {
3946                         /* Allocation of vmemmmap failed, we can not demote folio */
3947                         spin_lock_irq(&hugetlb_lock);
3948                         add_hugetlb_folio(h, folio, false);
3949                         return rc;
3950                 }
3951         }
3952
3953         /*
3954          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3955          * sizes as it will not ref count folios.
3956          */
3957         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3958
3959         /*
3960          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3961          * Without the mutex, pages added to target hstate could be marked
3962          * as surplus.
3963          *
3964          * Note that we already hold h->resize_lock.  To prevent deadlock,
3965          * use the convention of always taking larger size hstate mutex first.
3966          */
3967         mutex_lock(&target_hstate->resize_lock);
3968         for (i = 0; i < pages_per_huge_page(h);
3969                                 i += pages_per_huge_page(target_hstate)) {
3970                 subpage = folio_page(folio, i);
3971                 inner_folio = page_folio(subpage);
3972                 if (hstate_is_gigantic(target_hstate))
3973                         prep_compound_gigantic_folio_for_demote(inner_folio,
3974                                                         target_hstate->order);
3975                 else
3976                         prep_compound_page(subpage, target_hstate->order);
3977                 folio_change_private(inner_folio, NULL);
3978                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3979                 free_huge_folio(inner_folio);
3980         }
3981         mutex_unlock(&target_hstate->resize_lock);
3982
3983         spin_lock_irq(&hugetlb_lock);
3984
3985         /*
3986          * Not absolutely necessary, but for consistency update max_huge_pages
3987          * based on pool changes for the demoted page.
3988          */
3989         h->max_huge_pages--;
3990         target_hstate->max_huge_pages +=
3991                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3992
3993         return rc;
3994 }
3995
3996 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3997         __must_hold(&hugetlb_lock)
3998 {
3999         int nr_nodes, node;
4000         struct folio *folio;
4001
4002         lockdep_assert_held(&hugetlb_lock);
4003
4004         /* We should never get here if no demote order */
4005         if (!h->demote_order) {
4006                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4007                 return -EINVAL;         /* internal error */
4008         }
4009
4010         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
4011                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
4012                         if (folio_test_hwpoison(folio))
4013                                 continue;
4014                         return demote_free_hugetlb_folio(h, folio);
4015                 }
4016         }
4017
4018         /*
4019          * Only way to get here is if all pages on free lists are poisoned.
4020          * Return -EBUSY so that caller will not retry.
4021          */
4022         return -EBUSY;
4023 }
4024
4025 #define HSTATE_ATTR_RO(_name) \
4026         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4027
4028 #define HSTATE_ATTR_WO(_name) \
4029         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4030
4031 #define HSTATE_ATTR(_name) \
4032         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4033
4034 static struct kobject *hugepages_kobj;
4035 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4036
4037 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4038
4039 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4040 {
4041         int i;
4042
4043         for (i = 0; i < HUGE_MAX_HSTATE; i++)
4044                 if (hstate_kobjs[i] == kobj) {
4045                         if (nidp)
4046                                 *nidp = NUMA_NO_NODE;
4047                         return &hstates[i];
4048                 }
4049
4050         return kobj_to_node_hstate(kobj, nidp);
4051 }
4052
4053 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4054                                         struct kobj_attribute *attr, char *buf)
4055 {
4056         struct hstate *h;
4057         unsigned long nr_huge_pages;
4058         int nid;
4059
4060         h = kobj_to_hstate(kobj, &nid);
4061         if (nid == NUMA_NO_NODE)
4062                 nr_huge_pages = h->nr_huge_pages;
4063         else
4064                 nr_huge_pages = h->nr_huge_pages_node[nid];
4065
4066         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4067 }
4068
4069 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4070                                            struct hstate *h, int nid,
4071                                            unsigned long count, size_t len)
4072 {
4073         int err;
4074         nodemask_t nodes_allowed, *n_mask;
4075
4076         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4077                 return -EINVAL;
4078
4079         if (nid == NUMA_NO_NODE) {
4080                 /*
4081                  * global hstate attribute
4082                  */
4083                 if (!(obey_mempolicy &&
4084                                 init_nodemask_of_mempolicy(&nodes_allowed)))
4085                         n_mask = &node_states[N_MEMORY];
4086                 else
4087                         n_mask = &nodes_allowed;
4088         } else {
4089                 /*
4090                  * Node specific request.  count adjustment happens in
4091                  * set_max_huge_pages() after acquiring hugetlb_lock.
4092                  */
4093                 init_nodemask_of_node(&nodes_allowed, nid);
4094                 n_mask = &nodes_allowed;
4095         }
4096
4097         err = set_max_huge_pages(h, count, nid, n_mask);
4098
4099         return err ? err : len;
4100 }
4101
4102 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4103                                          struct kobject *kobj, const char *buf,
4104                                          size_t len)
4105 {
4106         struct hstate *h;
4107         unsigned long count;
4108         int nid;
4109         int err;
4110
4111         err = kstrtoul(buf, 10, &count);
4112         if (err)
4113                 return err;
4114
4115         h = kobj_to_hstate(kobj, &nid);
4116         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4117 }
4118
4119 static ssize_t nr_hugepages_show(struct kobject *kobj,
4120                                        struct kobj_attribute *attr, char *buf)
4121 {
4122         return nr_hugepages_show_common(kobj, attr, buf);
4123 }
4124
4125 static ssize_t nr_hugepages_store(struct kobject *kobj,
4126                struct kobj_attribute *attr, const char *buf, size_t len)
4127 {
4128         return nr_hugepages_store_common(false, kobj, buf, len);
4129 }
4130 HSTATE_ATTR(nr_hugepages);
4131
4132 #ifdef CONFIG_NUMA
4133
4134 /*
4135  * hstate attribute for optionally mempolicy-based constraint on persistent
4136  * huge page alloc/free.
4137  */
4138 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4139                                            struct kobj_attribute *attr,
4140                                            char *buf)
4141 {
4142         return nr_hugepages_show_common(kobj, attr, buf);
4143 }
4144
4145 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4146                struct kobj_attribute *attr, const char *buf, size_t len)
4147 {
4148         return nr_hugepages_store_common(true, kobj, buf, len);
4149 }
4150 HSTATE_ATTR(nr_hugepages_mempolicy);
4151 #endif
4152
4153
4154 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4155                                         struct kobj_attribute *attr, char *buf)
4156 {
4157         struct hstate *h = kobj_to_hstate(kobj, NULL);
4158         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4159 }
4160
4161 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4162                 struct kobj_attribute *attr, const char *buf, size_t count)
4163 {
4164         int err;
4165         unsigned long input;
4166         struct hstate *h = kobj_to_hstate(kobj, NULL);
4167
4168         if (hstate_is_gigantic(h))
4169                 return -EINVAL;
4170
4171         err = kstrtoul(buf, 10, &input);
4172         if (err)
4173                 return err;
4174
4175         spin_lock_irq(&hugetlb_lock);
4176         h->nr_overcommit_huge_pages = input;
4177         spin_unlock_irq(&hugetlb_lock);
4178
4179         return count;
4180 }
4181 HSTATE_ATTR(nr_overcommit_hugepages);
4182
4183 static ssize_t free_hugepages_show(struct kobject *kobj,
4184                                         struct kobj_attribute *attr, char *buf)
4185 {
4186         struct hstate *h;
4187         unsigned long free_huge_pages;
4188         int nid;
4189
4190         h = kobj_to_hstate(kobj, &nid);
4191         if (nid == NUMA_NO_NODE)
4192                 free_huge_pages = h->free_huge_pages;
4193         else
4194                 free_huge_pages = h->free_huge_pages_node[nid];
4195
4196         return sysfs_emit(buf, "%lu\n", free_huge_pages);
4197 }
4198 HSTATE_ATTR_RO(free_hugepages);
4199
4200 static ssize_t resv_hugepages_show(struct kobject *kobj,
4201                                         struct kobj_attribute *attr, char *buf)
4202 {
4203         struct hstate *h = kobj_to_hstate(kobj, NULL);
4204         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4205 }
4206 HSTATE_ATTR_RO(resv_hugepages);
4207
4208 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4209                                         struct kobj_attribute *attr, char *buf)
4210 {
4211         struct hstate *h;
4212         unsigned long surplus_huge_pages;
4213         int nid;
4214
4215         h = kobj_to_hstate(kobj, &nid);
4216         if (nid == NUMA_NO_NODE)
4217                 surplus_huge_pages = h->surplus_huge_pages;
4218         else
4219                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4220
4221         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4222 }
4223 HSTATE_ATTR_RO(surplus_hugepages);
4224
4225 static ssize_t demote_store(struct kobject *kobj,
4226                struct kobj_attribute *attr, const char *buf, size_t len)
4227 {
4228         unsigned long nr_demote;
4229         unsigned long nr_available;
4230         nodemask_t nodes_allowed, *n_mask;
4231         struct hstate *h;
4232         int err;
4233         int nid;
4234
4235         err = kstrtoul(buf, 10, &nr_demote);
4236         if (err)
4237                 return err;
4238         h = kobj_to_hstate(kobj, &nid);
4239
4240         if (nid != NUMA_NO_NODE) {
4241                 init_nodemask_of_node(&nodes_allowed, nid);
4242                 n_mask = &nodes_allowed;
4243         } else {
4244                 n_mask = &node_states[N_MEMORY];
4245         }
4246
4247         /* Synchronize with other sysfs operations modifying huge pages */
4248         mutex_lock(&h->resize_lock);
4249         spin_lock_irq(&hugetlb_lock);
4250
4251         while (nr_demote) {
4252                 /*
4253                  * Check for available pages to demote each time thorough the
4254                  * loop as demote_pool_huge_page will drop hugetlb_lock.
4255                  */
4256                 if (nid != NUMA_NO_NODE)
4257                         nr_available = h->free_huge_pages_node[nid];
4258                 else
4259                         nr_available = h->free_huge_pages;
4260                 nr_available -= h->resv_huge_pages;
4261                 if (!nr_available)
4262                         break;
4263
4264                 err = demote_pool_huge_page(h, n_mask);
4265                 if (err)
4266                         break;
4267
4268                 nr_demote--;
4269         }
4270
4271         spin_unlock_irq(&hugetlb_lock);
4272         mutex_unlock(&h->resize_lock);
4273
4274         if (err)
4275                 return err;
4276         return len;
4277 }
4278 HSTATE_ATTR_WO(demote);
4279
4280 static ssize_t demote_size_show(struct kobject *kobj,
4281                                         struct kobj_attribute *attr, char *buf)
4282 {
4283         struct hstate *h = kobj_to_hstate(kobj, NULL);
4284         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4285
4286         return sysfs_emit(buf, "%lukB\n", demote_size);
4287 }
4288
4289 static ssize_t demote_size_store(struct kobject *kobj,
4290                                         struct kobj_attribute *attr,
4291                                         const char *buf, size_t count)
4292 {
4293         struct hstate *h, *demote_hstate;
4294         unsigned long demote_size;
4295         unsigned int demote_order;
4296
4297         demote_size = (unsigned long)memparse(buf, NULL);
4298
4299         demote_hstate = size_to_hstate(demote_size);
4300         if (!demote_hstate)
4301                 return -EINVAL;
4302         demote_order = demote_hstate->order;
4303         if (demote_order < HUGETLB_PAGE_ORDER)
4304                 return -EINVAL;
4305
4306         /* demote order must be smaller than hstate order */
4307         h = kobj_to_hstate(kobj, NULL);
4308         if (demote_order >= h->order)
4309                 return -EINVAL;
4310
4311         /* resize_lock synchronizes access to demote size and writes */
4312         mutex_lock(&h->resize_lock);
4313         h->demote_order = demote_order;
4314         mutex_unlock(&h->resize_lock);
4315
4316         return count;
4317 }
4318 HSTATE_ATTR(demote_size);
4319
4320 static struct attribute *hstate_attrs[] = {
4321         &nr_hugepages_attr.attr,
4322         &nr_overcommit_hugepages_attr.attr,
4323         &free_hugepages_attr.attr,
4324         &resv_hugepages_attr.attr,
4325         &surplus_hugepages_attr.attr,
4326 #ifdef CONFIG_NUMA
4327         &nr_hugepages_mempolicy_attr.attr,
4328 #endif
4329         NULL,
4330 };
4331
4332 static const struct attribute_group hstate_attr_group = {
4333         .attrs = hstate_attrs,
4334 };
4335
4336 static struct attribute *hstate_demote_attrs[] = {
4337         &demote_size_attr.attr,
4338         &demote_attr.attr,
4339         NULL,
4340 };
4341
4342 static const struct attribute_group hstate_demote_attr_group = {
4343         .attrs = hstate_demote_attrs,
4344 };
4345
4346 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4347                                     struct kobject **hstate_kobjs,
4348                                     const struct attribute_group *hstate_attr_group)
4349 {
4350         int retval;
4351         int hi = hstate_index(h);
4352
4353         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4354         if (!hstate_kobjs[hi])
4355                 return -ENOMEM;
4356
4357         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4358         if (retval) {
4359                 kobject_put(hstate_kobjs[hi]);
4360                 hstate_kobjs[hi] = NULL;
4361                 return retval;
4362         }
4363
4364         if (h->demote_order) {
4365                 retval = sysfs_create_group(hstate_kobjs[hi],
4366                                             &hstate_demote_attr_group);
4367                 if (retval) {
4368                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4369                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4370                         kobject_put(hstate_kobjs[hi]);
4371                         hstate_kobjs[hi] = NULL;
4372                         return retval;
4373                 }
4374         }
4375
4376         return 0;
4377 }
4378
4379 #ifdef CONFIG_NUMA
4380 static bool hugetlb_sysfs_initialized __ro_after_init;
4381
4382 /*
4383  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4384  * with node devices in node_devices[] using a parallel array.  The array
4385  * index of a node device or _hstate == node id.
4386  * This is here to avoid any static dependency of the node device driver, in
4387  * the base kernel, on the hugetlb module.
4388  */
4389 struct node_hstate {
4390         struct kobject          *hugepages_kobj;
4391         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4392 };
4393 static struct node_hstate node_hstates[MAX_NUMNODES];
4394
4395 /*
4396  * A subset of global hstate attributes for node devices
4397  */
4398 static struct attribute *per_node_hstate_attrs[] = {
4399         &nr_hugepages_attr.attr,
4400         &free_hugepages_attr.attr,
4401         &surplus_hugepages_attr.attr,
4402         NULL,
4403 };
4404
4405 static const struct attribute_group per_node_hstate_attr_group = {
4406         .attrs = per_node_hstate_attrs,
4407 };
4408
4409 /*
4410  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4411  * Returns node id via non-NULL nidp.
4412  */
4413 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4414 {
4415         int nid;
4416
4417         for (nid = 0; nid < nr_node_ids; nid++) {
4418                 struct node_hstate *nhs = &node_hstates[nid];
4419                 int i;
4420                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4421                         if (nhs->hstate_kobjs[i] == kobj) {
4422                                 if (nidp)
4423                                         *nidp = nid;
4424                                 return &hstates[i];
4425                         }
4426         }
4427
4428         BUG();
4429         return NULL;
4430 }
4431
4432 /*
4433  * Unregister hstate attributes from a single node device.
4434  * No-op if no hstate attributes attached.
4435  */
4436 void hugetlb_unregister_node(struct node *node)
4437 {
4438         struct hstate *h;
4439         struct node_hstate *nhs = &node_hstates[node->dev.id];
4440
4441         if (!nhs->hugepages_kobj)
4442                 return;         /* no hstate attributes */
4443
4444         for_each_hstate(h) {
4445                 int idx = hstate_index(h);
4446                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4447
4448                 if (!hstate_kobj)
4449                         continue;
4450                 if (h->demote_order)
4451                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4452                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4453                 kobject_put(hstate_kobj);
4454                 nhs->hstate_kobjs[idx] = NULL;
4455         }
4456
4457         kobject_put(nhs->hugepages_kobj);
4458         nhs->hugepages_kobj = NULL;
4459 }
4460
4461
4462 /*
4463  * Register hstate attributes for a single node device.
4464  * No-op if attributes already registered.
4465  */
4466 void hugetlb_register_node(struct node *node)
4467 {
4468         struct hstate *h;
4469         struct node_hstate *nhs = &node_hstates[node->dev.id];
4470         int err;
4471
4472         if (!hugetlb_sysfs_initialized)
4473                 return;
4474
4475         if (nhs->hugepages_kobj)
4476                 return;         /* already allocated */
4477
4478         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4479                                                         &node->dev.kobj);
4480         if (!nhs->hugepages_kobj)
4481                 return;
4482
4483         for_each_hstate(h) {
4484                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4485                                                 nhs->hstate_kobjs,
4486                                                 &per_node_hstate_attr_group);
4487                 if (err) {
4488                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4489                                 h->name, node->dev.id);
4490                         hugetlb_unregister_node(node);
4491                         break;
4492                 }
4493         }
4494 }
4495
4496 /*
4497  * hugetlb init time:  register hstate attributes for all registered node
4498  * devices of nodes that have memory.  All on-line nodes should have
4499  * registered their associated device by this time.
4500  */
4501 static void __init hugetlb_register_all_nodes(void)
4502 {
4503         int nid;
4504
4505         for_each_online_node(nid)
4506                 hugetlb_register_node(node_devices[nid]);
4507 }
4508 #else   /* !CONFIG_NUMA */
4509
4510 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4511 {
4512         BUG();
4513         if (nidp)
4514                 *nidp = -1;
4515         return NULL;
4516 }
4517
4518 static void hugetlb_register_all_nodes(void) { }
4519
4520 #endif
4521
4522 #ifdef CONFIG_CMA
4523 static void __init hugetlb_cma_check(void);
4524 #else
4525 static inline __init void hugetlb_cma_check(void)
4526 {
4527 }
4528 #endif
4529
4530 static void __init hugetlb_sysfs_init(void)
4531 {
4532         struct hstate *h;
4533         int err;
4534
4535         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4536         if (!hugepages_kobj)
4537                 return;
4538
4539         for_each_hstate(h) {
4540                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4541                                          hstate_kobjs, &hstate_attr_group);
4542                 if (err)
4543                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4544         }
4545
4546 #ifdef CONFIG_NUMA
4547         hugetlb_sysfs_initialized = true;
4548 #endif
4549         hugetlb_register_all_nodes();
4550 }
4551
4552 #ifdef CONFIG_SYSCTL
4553 static void hugetlb_sysctl_init(void);
4554 #else
4555 static inline void hugetlb_sysctl_init(void) { }
4556 #endif
4557
4558 static int __init hugetlb_init(void)
4559 {
4560         int i;
4561
4562         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4563                         __NR_HPAGEFLAGS);
4564
4565         if (!hugepages_supported()) {
4566                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4567                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4568                 return 0;
4569         }
4570
4571         /*
4572          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4573          * architectures depend on setup being done here.
4574          */
4575         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4576         if (!parsed_default_hugepagesz) {
4577                 /*
4578                  * If we did not parse a default huge page size, set
4579                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4580                  * number of huge pages for this default size was implicitly
4581                  * specified, set that here as well.
4582                  * Note that the implicit setting will overwrite an explicit
4583                  * setting.  A warning will be printed in this case.
4584                  */
4585                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4586                 if (default_hstate_max_huge_pages) {
4587                         if (default_hstate.max_huge_pages) {
4588                                 char buf[32];
4589
4590                                 string_get_size(huge_page_size(&default_hstate),
4591                                         1, STRING_UNITS_2, buf, 32);
4592                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4593                                         default_hstate.max_huge_pages, buf);
4594                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4595                                         default_hstate_max_huge_pages);
4596                         }
4597                         default_hstate.max_huge_pages =
4598                                 default_hstate_max_huge_pages;
4599
4600                         for_each_online_node(i)
4601                                 default_hstate.max_huge_pages_node[i] =
4602                                         default_hugepages_in_node[i];
4603                 }
4604         }
4605
4606         hugetlb_cma_check();
4607         hugetlb_init_hstates();
4608         gather_bootmem_prealloc();
4609         report_hugepages();
4610
4611         hugetlb_sysfs_init();
4612         hugetlb_cgroup_file_init();
4613         hugetlb_sysctl_init();
4614
4615 #ifdef CONFIG_SMP
4616         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4617 #else
4618         num_fault_mutexes = 1;
4619 #endif
4620         hugetlb_fault_mutex_table =
4621                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4622                               GFP_KERNEL);
4623         BUG_ON(!hugetlb_fault_mutex_table);
4624
4625         for (i = 0; i < num_fault_mutexes; i++)
4626                 mutex_init(&hugetlb_fault_mutex_table[i]);
4627         return 0;
4628 }
4629 subsys_initcall(hugetlb_init);
4630
4631 /* Overwritten by architectures with more huge page sizes */
4632 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4633 {
4634         return size == HPAGE_SIZE;
4635 }
4636
4637 void __init hugetlb_add_hstate(unsigned int order)
4638 {
4639         struct hstate *h;
4640         unsigned long i;
4641
4642         if (size_to_hstate(PAGE_SIZE << order)) {
4643                 return;
4644         }
4645         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4646         BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4647         h = &hstates[hugetlb_max_hstate++];
4648         __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4649         h->order = order;
4650         h->mask = ~(huge_page_size(h) - 1);
4651         for (i = 0; i < MAX_NUMNODES; ++i)
4652                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4653         INIT_LIST_HEAD(&h->hugepage_activelist);
4654         h->next_nid_to_alloc = first_memory_node;
4655         h->next_nid_to_free = first_memory_node;
4656         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4657                                         huge_page_size(h)/SZ_1K);
4658
4659         parsed_hstate = h;
4660 }
4661
4662 bool __init __weak hugetlb_node_alloc_supported(void)
4663 {
4664         return true;
4665 }
4666
4667 static void __init hugepages_clear_pages_in_node(void)
4668 {
4669         if (!hugetlb_max_hstate) {
4670                 default_hstate_max_huge_pages = 0;
4671                 memset(default_hugepages_in_node, 0,
4672                         sizeof(default_hugepages_in_node));
4673         } else {
4674                 parsed_hstate->max_huge_pages = 0;
4675                 memset(parsed_hstate->max_huge_pages_node, 0,
4676                         sizeof(parsed_hstate->max_huge_pages_node));
4677         }
4678 }
4679
4680 /*
4681  * hugepages command line processing
4682  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4683  * specification.  If not, ignore the hugepages value.  hugepages can also
4684  * be the first huge page command line  option in which case it implicitly
4685  * specifies the number of huge pages for the default size.
4686  */
4687 static int __init hugepages_setup(char *s)
4688 {
4689         unsigned long *mhp;
4690         static unsigned long *last_mhp;
4691         int node = NUMA_NO_NODE;
4692         int count;
4693         unsigned long tmp;
4694         char *p = s;
4695
4696         if (!parsed_valid_hugepagesz) {
4697                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4698                 parsed_valid_hugepagesz = true;
4699                 return 1;
4700         }
4701
4702         /*
4703          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4704          * yet, so this hugepages= parameter goes to the "default hstate".
4705          * Otherwise, it goes with the previously parsed hugepagesz or
4706          * default_hugepagesz.
4707          */
4708         else if (!hugetlb_max_hstate)
4709                 mhp = &default_hstate_max_huge_pages;
4710         else
4711                 mhp = &parsed_hstate->max_huge_pages;
4712
4713         if (mhp == last_mhp) {
4714                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4715                 return 1;
4716         }
4717
4718         while (*p) {
4719                 count = 0;
4720                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4721                         goto invalid;
4722                 /* Parameter is node format */
4723                 if (p[count] == ':') {
4724                         if (!hugetlb_node_alloc_supported()) {
4725                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4726                                 return 1;
4727                         }
4728                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4729                                 goto invalid;
4730                         node = array_index_nospec(tmp, MAX_NUMNODES);
4731                         p += count + 1;
4732                         /* Parse hugepages */
4733                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4734                                 goto invalid;
4735                         if (!hugetlb_max_hstate)
4736                                 default_hugepages_in_node[node] = tmp;
4737                         else
4738                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4739                         *mhp += tmp;
4740                         /* Go to parse next node*/
4741                         if (p[count] == ',')
4742                                 p += count + 1;
4743                         else
4744                                 break;
4745                 } else {
4746                         if (p != s)
4747                                 goto invalid;
4748                         *mhp = tmp;
4749                         break;
4750                 }
4751         }
4752
4753         /*
4754          * Global state is always initialized later in hugetlb_init.
4755          * But we need to allocate gigantic hstates here early to still
4756          * use the bootmem allocator.
4757          */
4758         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4759                 hugetlb_hstate_alloc_pages(parsed_hstate);
4760
4761         last_mhp = mhp;
4762
4763         return 1;
4764
4765 invalid:
4766         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4767         hugepages_clear_pages_in_node();
4768         return 1;
4769 }
4770 __setup("hugepages=", hugepages_setup);
4771
4772 /*
4773  * hugepagesz command line processing
4774  * A specific huge page size can only be specified once with hugepagesz.
4775  * hugepagesz is followed by hugepages on the command line.  The global
4776  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4777  * hugepagesz argument was valid.
4778  */
4779 static int __init hugepagesz_setup(char *s)
4780 {
4781         unsigned long size;
4782         struct hstate *h;
4783
4784         parsed_valid_hugepagesz = false;
4785         size = (unsigned long)memparse(s, NULL);
4786
4787         if (!arch_hugetlb_valid_size(size)) {
4788                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4789                 return 1;
4790         }
4791
4792         h = size_to_hstate(size);
4793         if (h) {
4794                 /*
4795                  * hstate for this size already exists.  This is normally
4796                  * an error, but is allowed if the existing hstate is the
4797                  * default hstate.  More specifically, it is only allowed if
4798                  * the number of huge pages for the default hstate was not
4799                  * previously specified.
4800                  */
4801                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4802                     default_hstate.max_huge_pages) {
4803                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4804                         return 1;
4805                 }
4806
4807                 /*
4808                  * No need to call hugetlb_add_hstate() as hstate already
4809                  * exists.  But, do set parsed_hstate so that a following
4810                  * hugepages= parameter will be applied to this hstate.
4811                  */
4812                 parsed_hstate = h;
4813                 parsed_valid_hugepagesz = true;
4814                 return 1;
4815         }
4816
4817         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4818         parsed_valid_hugepagesz = true;
4819         return 1;
4820 }
4821 __setup("hugepagesz=", hugepagesz_setup);
4822
4823 /*
4824  * default_hugepagesz command line input
4825  * Only one instance of default_hugepagesz allowed on command line.
4826  */
4827 static int __init default_hugepagesz_setup(char *s)
4828 {
4829         unsigned long size;
4830         int i;
4831
4832         parsed_valid_hugepagesz = false;
4833         if (parsed_default_hugepagesz) {
4834                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4835                 return 1;
4836         }
4837
4838         size = (unsigned long)memparse(s, NULL);
4839
4840         if (!arch_hugetlb_valid_size(size)) {
4841                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4842                 return 1;
4843         }
4844
4845         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4846         parsed_valid_hugepagesz = true;
4847         parsed_default_hugepagesz = true;
4848         default_hstate_idx = hstate_index(size_to_hstate(size));
4849
4850         /*
4851          * The number of default huge pages (for this size) could have been
4852          * specified as the first hugetlb parameter: hugepages=X.  If so,
4853          * then default_hstate_max_huge_pages is set.  If the default huge
4854          * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4855          * allocated here from bootmem allocator.
4856          */
4857         if (default_hstate_max_huge_pages) {
4858                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4859                 for_each_online_node(i)
4860                         default_hstate.max_huge_pages_node[i] =
4861                                 default_hugepages_in_node[i];
4862                 if (hstate_is_gigantic(&default_hstate))
4863                         hugetlb_hstate_alloc_pages(&default_hstate);
4864                 default_hstate_max_huge_pages = 0;
4865         }
4866
4867         return 1;
4868 }
4869 __setup("default_hugepagesz=", default_hugepagesz_setup);
4870
4871 static unsigned int allowed_mems_nr(struct hstate *h)
4872 {
4873         int node;
4874         unsigned int nr = 0;
4875         nodemask_t *mbind_nodemask;
4876         unsigned int *array = h->free_huge_pages_node;
4877         gfp_t gfp_mask = htlb_alloc_mask(h);
4878
4879         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4880         for_each_node_mask(node, cpuset_current_mems_allowed) {
4881                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4882                         nr += array[node];
4883         }
4884
4885         return nr;
4886 }
4887
4888 #ifdef CONFIG_SYSCTL
4889 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4890                                           void *buffer, size_t *length,
4891                                           loff_t *ppos, unsigned long *out)
4892 {
4893         struct ctl_table dup_table;
4894
4895         /*
4896          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4897          * can duplicate the @table and alter the duplicate of it.
4898          */
4899         dup_table = *table;
4900         dup_table.data = out;
4901
4902         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4903 }
4904
4905 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4906                          const struct ctl_table *table, int write,
4907                          void *buffer, size_t *length, loff_t *ppos)
4908 {
4909         struct hstate *h = &default_hstate;
4910         unsigned long tmp = h->max_huge_pages;
4911         int ret;
4912
4913         if (!hugepages_supported())
4914                 return -EOPNOTSUPP;
4915
4916         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4917                                              &tmp);
4918         if (ret)
4919                 goto out;
4920
4921         if (write)
4922                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4923                                                   NUMA_NO_NODE, tmp, *length);
4924 out:
4925         return ret;
4926 }
4927
4928 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4929                           void *buffer, size_t *length, loff_t *ppos)
4930 {
4931
4932         return hugetlb_sysctl_handler_common(false, table, write,
4933                                                         buffer, length, ppos);
4934 }
4935
4936 #ifdef CONFIG_NUMA
4937 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4938                           void *buffer, size_t *length, loff_t *ppos)
4939 {
4940         return hugetlb_sysctl_handler_common(true, table, write,
4941                                                         buffer, length, ppos);
4942 }
4943 #endif /* CONFIG_NUMA */
4944
4945 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4946                 void *buffer, size_t *length, loff_t *ppos)
4947 {
4948         struct hstate *h = &default_hstate;
4949         unsigned long tmp;
4950         int ret;
4951
4952         if (!hugepages_supported())
4953                 return -EOPNOTSUPP;
4954
4955         tmp = h->nr_overcommit_huge_pages;
4956
4957         if (write && hstate_is_gigantic(h))
4958                 return -EINVAL;
4959
4960         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4961                                              &tmp);
4962         if (ret)
4963                 goto out;
4964
4965         if (write) {
4966                 spin_lock_irq(&hugetlb_lock);
4967                 h->nr_overcommit_huge_pages = tmp;
4968                 spin_unlock_irq(&hugetlb_lock);
4969         }
4970 out:
4971         return ret;
4972 }
4973
4974 static struct ctl_table hugetlb_table[] = {
4975         {
4976                 .procname       = "nr_hugepages",
4977                 .data           = NULL,
4978                 .maxlen         = sizeof(unsigned long),
4979                 .mode           = 0644,
4980                 .proc_handler   = hugetlb_sysctl_handler,
4981         },
4982 #ifdef CONFIG_NUMA
4983         {
4984                 .procname       = "nr_hugepages_mempolicy",
4985                 .data           = NULL,
4986                 .maxlen         = sizeof(unsigned long),
4987                 .mode           = 0644,
4988                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4989         },
4990 #endif
4991         {
4992                 .procname       = "hugetlb_shm_group",
4993                 .data           = &sysctl_hugetlb_shm_group,
4994                 .maxlen         = sizeof(gid_t),
4995                 .mode           = 0644,
4996                 .proc_handler   = proc_dointvec,
4997         },
4998         {
4999                 .procname       = "nr_overcommit_hugepages",
5000                 .data           = NULL,
5001                 .maxlen         = sizeof(unsigned long),
5002                 .mode           = 0644,
5003                 .proc_handler   = hugetlb_overcommit_handler,
5004         },
5005 };
5006
5007 static void hugetlb_sysctl_init(void)
5008 {
5009         register_sysctl_init("vm", hugetlb_table);
5010 }
5011 #endif /* CONFIG_SYSCTL */
5012
5013 void hugetlb_report_meminfo(struct seq_file *m)
5014 {
5015         struct hstate *h;
5016         unsigned long total = 0;
5017
5018         if (!hugepages_supported())
5019                 return;
5020
5021         for_each_hstate(h) {
5022                 unsigned long count = h->nr_huge_pages;
5023
5024                 total += huge_page_size(h) * count;
5025
5026                 if (h == &default_hstate)
5027                         seq_printf(m,
5028                                    "HugePages_Total:   %5lu\n"
5029                                    "HugePages_Free:    %5lu\n"
5030                                    "HugePages_Rsvd:    %5lu\n"
5031                                    "HugePages_Surp:    %5lu\n"
5032                                    "Hugepagesize:   %8lu kB\n",
5033                                    count,
5034                                    h->free_huge_pages,
5035                                    h->resv_huge_pages,
5036                                    h->surplus_huge_pages,
5037                                    huge_page_size(h) / SZ_1K);
5038         }
5039
5040         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5041 }
5042
5043 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5044 {
5045         struct hstate *h = &default_hstate;
5046
5047         if (!hugepages_supported())
5048                 return 0;
5049
5050         return sysfs_emit_at(buf, len,
5051                              "Node %d HugePages_Total: %5u\n"
5052                              "Node %d HugePages_Free:  %5u\n"
5053                              "Node %d HugePages_Surp:  %5u\n",
5054                              nid, h->nr_huge_pages_node[nid],
5055                              nid, h->free_huge_pages_node[nid],
5056                              nid, h->surplus_huge_pages_node[nid]);
5057 }
5058
5059 void hugetlb_show_meminfo_node(int nid)
5060 {
5061         struct hstate *h;
5062
5063         if (!hugepages_supported())
5064                 return;
5065
5066         for_each_hstate(h)
5067                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5068                         nid,
5069                         h->nr_huge_pages_node[nid],
5070                         h->free_huge_pages_node[nid],
5071                         h->surplus_huge_pages_node[nid],
5072                         huge_page_size(h) / SZ_1K);
5073 }
5074
5075 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5076 {
5077         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5078                    K(atomic_long_read(&mm->hugetlb_usage)));
5079 }
5080
5081 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5082 unsigned long hugetlb_total_pages(void)
5083 {
5084         struct hstate *h;
5085         unsigned long nr_total_pages = 0;
5086
5087         for_each_hstate(h)
5088                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5089         return nr_total_pages;
5090 }
5091
5092 static int hugetlb_acct_memory(struct hstate *h, long delta)
5093 {
5094         int ret = -ENOMEM;
5095
5096         if (!delta)
5097                 return 0;
5098
5099         spin_lock_irq(&hugetlb_lock);
5100         /*
5101          * When cpuset is configured, it breaks the strict hugetlb page
5102          * reservation as the accounting is done on a global variable. Such
5103          * reservation is completely rubbish in the presence of cpuset because
5104          * the reservation is not checked against page availability for the
5105          * current cpuset. Application can still potentially OOM'ed by kernel
5106          * with lack of free htlb page in cpuset that the task is in.
5107          * Attempt to enforce strict accounting with cpuset is almost
5108          * impossible (or too ugly) because cpuset is too fluid that
5109          * task or memory node can be dynamically moved between cpusets.
5110          *
5111          * The change of semantics for shared hugetlb mapping with cpuset is
5112          * undesirable. However, in order to preserve some of the semantics,
5113          * we fall back to check against current free page availability as
5114          * a best attempt and hopefully to minimize the impact of changing
5115          * semantics that cpuset has.
5116          *
5117          * Apart from cpuset, we also have memory policy mechanism that
5118          * also determines from which node the kernel will allocate memory
5119          * in a NUMA system. So similar to cpuset, we also should consider
5120          * the memory policy of the current task. Similar to the description
5121          * above.
5122          */
5123         if (delta > 0) {
5124                 if (gather_surplus_pages(h, delta) < 0)
5125                         goto out;
5126
5127                 if (delta > allowed_mems_nr(h)) {
5128                         return_unused_surplus_pages(h, delta);
5129                         goto out;
5130                 }
5131         }
5132
5133         ret = 0;
5134         if (delta < 0)
5135                 return_unused_surplus_pages(h, (unsigned long) -delta);
5136
5137 out:
5138         spin_unlock_irq(&hugetlb_lock);
5139         return ret;
5140 }
5141
5142 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5143 {
5144         struct resv_map *resv = vma_resv_map(vma);
5145
5146         /*
5147          * HPAGE_RESV_OWNER indicates a private mapping.
5148          * This new VMA should share its siblings reservation map if present.
5149          * The VMA will only ever have a valid reservation map pointer where
5150          * it is being copied for another still existing VMA.  As that VMA
5151          * has a reference to the reservation map it cannot disappear until
5152          * after this open call completes.  It is therefore safe to take a
5153          * new reference here without additional locking.
5154          */
5155         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5156                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5157                 kref_get(&resv->refs);
5158         }
5159
5160         /*
5161          * vma_lock structure for sharable mappings is vma specific.
5162          * Clear old pointer (if copied via vm_area_dup) and allocate
5163          * new structure.  Before clearing, make sure vma_lock is not
5164          * for this vma.
5165          */
5166         if (vma->vm_flags & VM_MAYSHARE) {
5167                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5168
5169                 if (vma_lock) {
5170                         if (vma_lock->vma != vma) {
5171                                 vma->vm_private_data = NULL;
5172                                 hugetlb_vma_lock_alloc(vma);
5173                         } else
5174                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5175                 } else
5176                         hugetlb_vma_lock_alloc(vma);
5177         }
5178 }
5179
5180 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5181 {
5182         struct hstate *h = hstate_vma(vma);
5183         struct resv_map *resv;
5184         struct hugepage_subpool *spool = subpool_vma(vma);
5185         unsigned long reserve, start, end;
5186         long gbl_reserve;
5187
5188         hugetlb_vma_lock_free(vma);
5189
5190         resv = vma_resv_map(vma);
5191         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5192                 return;
5193
5194         start = vma_hugecache_offset(h, vma, vma->vm_start);
5195         end = vma_hugecache_offset(h, vma, vma->vm_end);
5196
5197         reserve = (end - start) - region_count(resv, start, end);
5198         hugetlb_cgroup_uncharge_counter(resv, start, end);
5199         if (reserve) {
5200                 /*
5201                  * Decrement reserve counts.  The global reserve count may be
5202                  * adjusted if the subpool has a minimum size.
5203                  */
5204                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5205                 hugetlb_acct_memory(h, -gbl_reserve);
5206         }
5207
5208         kref_put(&resv->refs, resv_map_release);
5209 }
5210
5211 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5212 {
5213         if (addr & ~(huge_page_mask(hstate_vma(vma))))
5214                 return -EINVAL;
5215
5216         /*
5217          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5218          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5219          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5220          */
5221         if (addr & ~PUD_MASK) {
5222                 /*
5223                  * hugetlb_vm_op_split is called right before we attempt to
5224                  * split the VMA. We will need to unshare PMDs in the old and
5225                  * new VMAs, so let's unshare before we split.
5226                  */
5227                 unsigned long floor = addr & PUD_MASK;
5228                 unsigned long ceil = floor + PUD_SIZE;
5229
5230                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5231                         hugetlb_unshare_pmds(vma, floor, ceil);
5232         }
5233
5234         return 0;
5235 }
5236
5237 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5238 {
5239         return huge_page_size(hstate_vma(vma));
5240 }
5241
5242 /*
5243  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5244  * handle_mm_fault() to try to instantiate regular-sized pages in the
5245  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5246  * this far.
5247  */
5248 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5249 {
5250         BUG();
5251         return 0;
5252 }
5253
5254 /*
5255  * When a new function is introduced to vm_operations_struct and added
5256  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5257  * This is because under System V memory model, mappings created via
5258  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5259  * their original vm_ops are overwritten with shm_vm_ops.
5260  */
5261 const struct vm_operations_struct hugetlb_vm_ops = {
5262         .fault = hugetlb_vm_op_fault,
5263         .open = hugetlb_vm_op_open,
5264         .close = hugetlb_vm_op_close,
5265         .may_split = hugetlb_vm_op_split,
5266         .pagesize = hugetlb_vm_op_pagesize,
5267 };
5268
5269 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5270                                 int writable)
5271 {
5272         pte_t entry;
5273         unsigned int shift = huge_page_shift(hstate_vma(vma));
5274
5275         if (writable) {
5276                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5277                                          vma->vm_page_prot)));
5278         } else {
5279                 entry = huge_pte_wrprotect(mk_huge_pte(page,
5280                                            vma->vm_page_prot));
5281         }
5282         entry = pte_mkyoung(entry);
5283         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5284
5285         return entry;
5286 }
5287
5288 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5289                                    unsigned long address, pte_t *ptep)
5290 {
5291         pte_t entry;
5292
5293         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5294         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5295                 update_mmu_cache(vma, address, ptep);
5296 }
5297
5298 bool is_hugetlb_entry_migration(pte_t pte)
5299 {
5300         swp_entry_t swp;
5301
5302         if (huge_pte_none(pte) || pte_present(pte))
5303                 return false;
5304         swp = pte_to_swp_entry(pte);
5305         if (is_migration_entry(swp))
5306                 return true;
5307         else
5308                 return false;
5309 }
5310
5311 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5312 {
5313         swp_entry_t swp;
5314
5315         if (huge_pte_none(pte) || pte_present(pte))
5316                 return false;
5317         swp = pte_to_swp_entry(pte);
5318         if (is_hwpoison_entry(swp))
5319                 return true;
5320         else
5321                 return false;
5322 }
5323
5324 static void
5325 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5326                       struct folio *new_folio, pte_t old, unsigned long sz)
5327 {
5328         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5329
5330         __folio_mark_uptodate(new_folio);
5331         hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5332         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5333                 newpte = huge_pte_mkuffd_wp(newpte);
5334         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5335         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5336         folio_set_hugetlb_migratable(new_folio);
5337 }
5338
5339 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5340                             struct vm_area_struct *dst_vma,
5341                             struct vm_area_struct *src_vma)
5342 {
5343         pte_t *src_pte, *dst_pte, entry;
5344         struct folio *pte_folio;
5345         unsigned long addr;
5346         bool cow = is_cow_mapping(src_vma->vm_flags);
5347         struct hstate *h = hstate_vma(src_vma);
5348         unsigned long sz = huge_page_size(h);
5349         unsigned long npages = pages_per_huge_page(h);
5350         struct mmu_notifier_range range;
5351         unsigned long last_addr_mask;
5352         int ret = 0;
5353
5354         if (cow) {
5355                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5356                                         src_vma->vm_start,
5357                                         src_vma->vm_end);
5358                 mmu_notifier_invalidate_range_start(&range);
5359                 vma_assert_write_locked(src_vma);
5360                 raw_write_seqcount_begin(&src->write_protect_seq);
5361         } else {
5362                 /*
5363                  * For shared mappings the vma lock must be held before
5364                  * calling hugetlb_walk() in the src vma. Otherwise, the
5365                  * returned ptep could go away if part of a shared pmd and
5366                  * another thread calls huge_pmd_unshare.
5367                  */
5368                 hugetlb_vma_lock_read(src_vma);
5369         }
5370
5371         last_addr_mask = hugetlb_mask_last_page(h);
5372         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5373                 spinlock_t *src_ptl, *dst_ptl;
5374                 src_pte = hugetlb_walk(src_vma, addr, sz);
5375                 if (!src_pte) {
5376                         addr |= last_addr_mask;
5377                         continue;
5378                 }
5379                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5380                 if (!dst_pte) {
5381                         ret = -ENOMEM;
5382                         break;
5383                 }
5384
5385                 /*
5386                  * If the pagetables are shared don't copy or take references.
5387                  *
5388                  * dst_pte == src_pte is the common case of src/dest sharing.
5389                  * However, src could have 'unshared' and dst shares with
5390                  * another vma. So page_count of ptep page is checked instead
5391                  * to reliably determine whether pte is shared.
5392                  */
5393                 if (page_count(virt_to_page(dst_pte)) > 1) {
5394                         addr |= last_addr_mask;
5395                         continue;
5396                 }
5397
5398                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5399                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5400                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5401                 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5402 again:
5403                 if (huge_pte_none(entry)) {
5404                         /*
5405                          * Skip if src entry none.
5406                          */
5407                         ;
5408                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5409                         if (!userfaultfd_wp(dst_vma))
5410                                 entry = huge_pte_clear_uffd_wp(entry);
5411                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5412                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5413                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5414                         bool uffd_wp = pte_swp_uffd_wp(entry);
5415
5416                         if (!is_readable_migration_entry(swp_entry) && cow) {
5417                                 /*
5418                                  * COW mappings require pages in both
5419                                  * parent and child to be set to read.
5420                                  */
5421                                 swp_entry = make_readable_migration_entry(
5422                                                         swp_offset(swp_entry));
5423                                 entry = swp_entry_to_pte(swp_entry);
5424                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5425                                         entry = pte_swp_mkuffd_wp(entry);
5426                                 set_huge_pte_at(src, addr, src_pte, entry, sz);
5427                         }
5428                         if (!userfaultfd_wp(dst_vma))
5429                                 entry = huge_pte_clear_uffd_wp(entry);
5430                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5431                 } else if (unlikely(is_pte_marker(entry))) {
5432                         pte_marker marker = copy_pte_marker(
5433                                 pte_to_swp_entry(entry), dst_vma);
5434
5435                         if (marker)
5436                                 set_huge_pte_at(dst, addr, dst_pte,
5437                                                 make_pte_marker(marker), sz);
5438                 } else {
5439                         entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5440                         pte_folio = page_folio(pte_page(entry));
5441                         folio_get(pte_folio);
5442
5443                         /*
5444                          * Failing to duplicate the anon rmap is a rare case
5445                          * where we see pinned hugetlb pages while they're
5446                          * prone to COW. We need to do the COW earlier during
5447                          * fork.
5448                          *
5449                          * When pre-allocating the page or copying data, we
5450                          * need to be without the pgtable locks since we could
5451                          * sleep during the process.
5452                          */
5453                         if (!folio_test_anon(pte_folio)) {
5454                                 hugetlb_add_file_rmap(pte_folio);
5455                         } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5456                                 pte_t src_pte_old = entry;
5457                                 struct folio *new_folio;
5458
5459                                 spin_unlock(src_ptl);
5460                                 spin_unlock(dst_ptl);
5461                                 /* Do not use reserve as it's private owned */
5462                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5463                                 if (IS_ERR(new_folio)) {
5464                                         folio_put(pte_folio);
5465                                         ret = PTR_ERR(new_folio);
5466                                         break;
5467                                 }
5468                                 ret = copy_user_large_folio(new_folio, pte_folio,
5469                                                 ALIGN_DOWN(addr, sz), dst_vma);
5470                                 folio_put(pte_folio);
5471                                 if (ret) {
5472                                         folio_put(new_folio);
5473                                         break;
5474                                 }
5475
5476                                 /* Install the new hugetlb folio if src pte stable */
5477                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5478                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5479                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5480                                 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5481                                 if (!pte_same(src_pte_old, entry)) {
5482                                         restore_reserve_on_error(h, dst_vma, addr,
5483                                                                 new_folio);
5484                                         folio_put(new_folio);
5485                                         /* huge_ptep of dst_pte won't change as in child */
5486                                         goto again;
5487                                 }
5488                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5489                                                       new_folio, src_pte_old, sz);
5490                                 spin_unlock(src_ptl);
5491                                 spin_unlock(dst_ptl);
5492                                 continue;
5493                         }
5494
5495                         if (cow) {
5496                                 /*
5497                                  * No need to notify as we are downgrading page
5498                                  * table protection not changing it to point
5499                                  * to a new page.
5500                                  *
5501                                  * See Documentation/mm/mmu_notifier.rst
5502                                  */
5503                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5504                                 entry = huge_pte_wrprotect(entry);
5505                         }
5506
5507                         if (!userfaultfd_wp(dst_vma))
5508                                 entry = huge_pte_clear_uffd_wp(entry);
5509
5510                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5511                         hugetlb_count_add(npages, dst);
5512                 }
5513                 spin_unlock(src_ptl);
5514                 spin_unlock(dst_ptl);
5515         }
5516
5517         if (cow) {
5518                 raw_write_seqcount_end(&src->write_protect_seq);
5519                 mmu_notifier_invalidate_range_end(&range);
5520         } else {
5521                 hugetlb_vma_unlock_read(src_vma);
5522         }
5523
5524         return ret;
5525 }
5526
5527 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5528                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5529                           unsigned long sz)
5530 {
5531         struct hstate *h = hstate_vma(vma);
5532         struct mm_struct *mm = vma->vm_mm;
5533         spinlock_t *src_ptl, *dst_ptl;
5534         pte_t pte;
5535
5536         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5537         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5538
5539         /*
5540          * We don't have to worry about the ordering of src and dst ptlocks
5541          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5542          */
5543         if (src_ptl != dst_ptl)
5544                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5545
5546         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5547         set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5548
5549         if (src_ptl != dst_ptl)
5550                 spin_unlock(src_ptl);
5551         spin_unlock(dst_ptl);
5552 }
5553
5554 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5555                              struct vm_area_struct *new_vma,
5556                              unsigned long old_addr, unsigned long new_addr,
5557                              unsigned long len)
5558 {
5559         struct hstate *h = hstate_vma(vma);
5560         struct address_space *mapping = vma->vm_file->f_mapping;
5561         unsigned long sz = huge_page_size(h);
5562         struct mm_struct *mm = vma->vm_mm;
5563         unsigned long old_end = old_addr + len;
5564         unsigned long last_addr_mask;
5565         pte_t *src_pte, *dst_pte;
5566         struct mmu_notifier_range range;
5567         bool shared_pmd = false;
5568
5569         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5570                                 old_end);
5571         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5572         /*
5573          * In case of shared PMDs, we should cover the maximum possible
5574          * range.
5575          */
5576         flush_cache_range(vma, range.start, range.end);
5577
5578         mmu_notifier_invalidate_range_start(&range);
5579         last_addr_mask = hugetlb_mask_last_page(h);
5580         /* Prevent race with file truncation */
5581         hugetlb_vma_lock_write(vma);
5582         i_mmap_lock_write(mapping);
5583         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5584                 src_pte = hugetlb_walk(vma, old_addr, sz);
5585                 if (!src_pte) {
5586                         old_addr |= last_addr_mask;
5587                         new_addr |= last_addr_mask;
5588                         continue;
5589                 }
5590                 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5591                         continue;
5592
5593                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5594                         shared_pmd = true;
5595                         old_addr |= last_addr_mask;
5596                         new_addr |= last_addr_mask;
5597                         continue;
5598                 }
5599
5600                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5601                 if (!dst_pte)
5602                         break;
5603
5604                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5605         }
5606
5607         if (shared_pmd)
5608                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5609         else
5610                 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5611         mmu_notifier_invalidate_range_end(&range);
5612         i_mmap_unlock_write(mapping);
5613         hugetlb_vma_unlock_write(vma);
5614
5615         return len + old_addr - old_end;
5616 }
5617
5618 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5619                             unsigned long start, unsigned long end,
5620                             struct page *ref_page, zap_flags_t zap_flags)
5621 {
5622         struct mm_struct *mm = vma->vm_mm;
5623         unsigned long address;
5624         pte_t *ptep;
5625         pte_t pte;
5626         spinlock_t *ptl;
5627         struct page *page;
5628         struct hstate *h = hstate_vma(vma);
5629         unsigned long sz = huge_page_size(h);
5630         bool adjust_reservation = false;
5631         unsigned long last_addr_mask;
5632         bool force_flush = false;
5633
5634         WARN_ON(!is_vm_hugetlb_page(vma));
5635         BUG_ON(start & ~huge_page_mask(h));
5636         BUG_ON(end & ~huge_page_mask(h));
5637
5638         /*
5639          * This is a hugetlb vma, all the pte entries should point
5640          * to huge page.
5641          */
5642         tlb_change_page_size(tlb, sz);
5643         tlb_start_vma(tlb, vma);
5644
5645         last_addr_mask = hugetlb_mask_last_page(h);
5646         address = start;
5647         for (; address < end; address += sz) {
5648                 ptep = hugetlb_walk(vma, address, sz);
5649                 if (!ptep) {
5650                         address |= last_addr_mask;
5651                         continue;
5652                 }
5653
5654                 ptl = huge_pte_lock(h, mm, ptep);
5655                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5656                         spin_unlock(ptl);
5657                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5658                         force_flush = true;
5659                         address |= last_addr_mask;
5660                         continue;
5661                 }
5662
5663                 pte = huge_ptep_get(mm, address, ptep);
5664                 if (huge_pte_none(pte)) {
5665                         spin_unlock(ptl);
5666                         continue;
5667                 }
5668
5669                 /*
5670                  * Migrating hugepage or HWPoisoned hugepage is already
5671                  * unmapped and its refcount is dropped, so just clear pte here.
5672                  */
5673                 if (unlikely(!pte_present(pte))) {
5674                         /*
5675                          * If the pte was wr-protected by uffd-wp in any of the
5676                          * swap forms, meanwhile the caller does not want to
5677                          * drop the uffd-wp bit in this zap, then replace the
5678                          * pte with a marker.
5679                          */
5680                         if (pte_swp_uffd_wp_any(pte) &&
5681                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5682                                 set_huge_pte_at(mm, address, ptep,
5683                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
5684                                                 sz);
5685                         else
5686                                 huge_pte_clear(mm, address, ptep, sz);
5687                         spin_unlock(ptl);
5688                         continue;
5689                 }
5690
5691                 page = pte_page(pte);
5692                 /*
5693                  * If a reference page is supplied, it is because a specific
5694                  * page is being unmapped, not a range. Ensure the page we
5695                  * are about to unmap is the actual page of interest.
5696                  */
5697                 if (ref_page) {
5698                         if (page != ref_page) {
5699                                 spin_unlock(ptl);
5700                                 continue;
5701                         }
5702                         /*
5703                          * Mark the VMA as having unmapped its page so that
5704                          * future faults in this VMA will fail rather than
5705                          * looking like data was lost
5706                          */
5707                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5708                 }
5709
5710                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5711                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5712                 if (huge_pte_dirty(pte))
5713                         set_page_dirty(page);
5714                 /* Leave a uffd-wp pte marker if needed */
5715                 if (huge_pte_uffd_wp(pte) &&
5716                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5717                         set_huge_pte_at(mm, address, ptep,
5718                                         make_pte_marker(PTE_MARKER_UFFD_WP),
5719                                         sz);
5720                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5721                 hugetlb_remove_rmap(page_folio(page));
5722
5723                 /*
5724                  * Restore the reservation for anonymous page, otherwise the
5725                  * backing page could be stolen by someone.
5726                  * If there we are freeing a surplus, do not set the restore
5727                  * reservation bit.
5728                  */
5729                 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5730                     folio_test_anon(page_folio(page))) {
5731                         folio_set_hugetlb_restore_reserve(page_folio(page));
5732                         /* Reservation to be adjusted after the spin lock */
5733                         adjust_reservation = true;
5734                 }
5735
5736                 spin_unlock(ptl);
5737
5738                 /*
5739                  * Adjust the reservation for the region that will have the
5740                  * reserve restored. Keep in mind that vma_needs_reservation() changes
5741                  * resv->adds_in_progress if it succeeds. If this is not done,
5742                  * do_exit() will not see it, and will keep the reservation
5743                  * forever.
5744                  */
5745                 if (adjust_reservation) {
5746                         int rc = vma_needs_reservation(h, vma, address);
5747
5748                         if (rc < 0)
5749                                 /* Pressumably allocate_file_region_entries failed
5750                                  * to allocate a file_region struct. Clear
5751                                  * hugetlb_restore_reserve so that global reserve
5752                                  * count will not be incremented by free_huge_folio.
5753                                  * Act as if we consumed the reservation.
5754                                  */
5755                                 folio_clear_hugetlb_restore_reserve(page_folio(page));
5756                         else if (rc)
5757                                 vma_add_reservation(h, vma, address);
5758                 }
5759
5760                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5761                 /*
5762                  * Bail out after unmapping reference page if supplied
5763                  */
5764                 if (ref_page)
5765                         break;
5766         }
5767         tlb_end_vma(tlb, vma);
5768
5769         /*
5770          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5771          * could defer the flush until now, since by holding i_mmap_rwsem we
5772          * guaranteed that the last refernece would not be dropped. But we must
5773          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5774          * dropped and the last reference to the shared PMDs page might be
5775          * dropped as well.
5776          *
5777          * In theory we could defer the freeing of the PMD pages as well, but
5778          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5779          * detect sharing, so we cannot defer the release of the page either.
5780          * Instead, do flush now.
5781          */
5782         if (force_flush)
5783                 tlb_flush_mmu_tlbonly(tlb);
5784 }
5785
5786 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5787                          unsigned long *start, unsigned long *end)
5788 {
5789         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5790                 return;
5791
5792         adjust_range_if_pmd_sharing_possible(vma, start, end);
5793         hugetlb_vma_lock_write(vma);
5794         if (vma->vm_file)
5795                 i_mmap_lock_write(vma->vm_file->f_mapping);
5796 }
5797
5798 void __hugetlb_zap_end(struct vm_area_struct *vma,
5799                        struct zap_details *details)
5800 {
5801         zap_flags_t zap_flags = details ? details->zap_flags : 0;
5802
5803         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5804                 return;
5805
5806         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5807                 /*
5808                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5809                  * When the vma_lock is freed, this makes the vma ineligible
5810                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5811                  * pmd sharing.  This is important as page tables for this
5812                  * unmapped range will be asynchrously deleted.  If the page
5813                  * tables are shared, there will be issues when accessed by
5814                  * someone else.
5815                  */
5816                 __hugetlb_vma_unlock_write_free(vma);
5817         } else {
5818                 hugetlb_vma_unlock_write(vma);
5819         }
5820
5821         if (vma->vm_file)
5822                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5823 }
5824
5825 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5826                           unsigned long end, struct page *ref_page,
5827                           zap_flags_t zap_flags)
5828 {
5829         struct mmu_notifier_range range;
5830         struct mmu_gather tlb;
5831
5832         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5833                                 start, end);
5834         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5835         mmu_notifier_invalidate_range_start(&range);
5836         tlb_gather_mmu(&tlb, vma->vm_mm);
5837
5838         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5839
5840         mmu_notifier_invalidate_range_end(&range);
5841         tlb_finish_mmu(&tlb);
5842 }
5843
5844 /*
5845  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5846  * mapping it owns the reserve page for. The intention is to unmap the page
5847  * from other VMAs and let the children be SIGKILLed if they are faulting the
5848  * same region.
5849  */
5850 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5851                               struct page *page, unsigned long address)
5852 {
5853         struct hstate *h = hstate_vma(vma);
5854         struct vm_area_struct *iter_vma;
5855         struct address_space *mapping;
5856         pgoff_t pgoff;
5857
5858         /*
5859          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5860          * from page cache lookup which is in HPAGE_SIZE units.
5861          */
5862         address = address & huge_page_mask(h);
5863         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5864                         vma->vm_pgoff;
5865         mapping = vma->vm_file->f_mapping;
5866
5867         /*
5868          * Take the mapping lock for the duration of the table walk. As
5869          * this mapping should be shared between all the VMAs,
5870          * __unmap_hugepage_range() is called as the lock is already held
5871          */
5872         i_mmap_lock_write(mapping);
5873         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5874                 /* Do not unmap the current VMA */
5875                 if (iter_vma == vma)
5876                         continue;
5877
5878                 /*
5879                  * Shared VMAs have their own reserves and do not affect
5880                  * MAP_PRIVATE accounting but it is possible that a shared
5881                  * VMA is using the same page so check and skip such VMAs.
5882                  */
5883                 if (iter_vma->vm_flags & VM_MAYSHARE)
5884                         continue;
5885
5886                 /*
5887                  * Unmap the page from other VMAs without their own reserves.
5888                  * They get marked to be SIGKILLed if they fault in these
5889                  * areas. This is because a future no-page fault on this VMA
5890                  * could insert a zeroed page instead of the data existing
5891                  * from the time of fork. This would look like data corruption
5892                  */
5893                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5894                         unmap_hugepage_range(iter_vma, address,
5895                                              address + huge_page_size(h), page, 0);
5896         }
5897         i_mmap_unlock_write(mapping);
5898 }
5899
5900 /*
5901  * hugetlb_wp() should be called with page lock of the original hugepage held.
5902  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5903  * cannot race with other handlers or page migration.
5904  * Keep the pte_same checks anyway to make transition from the mutex easier.
5905  */
5906 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5907                        struct vm_fault *vmf)
5908 {
5909         struct vm_area_struct *vma = vmf->vma;
5910         struct mm_struct *mm = vma->vm_mm;
5911         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5912         pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5913         struct hstate *h = hstate_vma(vma);
5914         struct folio *old_folio;
5915         struct folio *new_folio;
5916         int outside_reserve = 0;
5917         vm_fault_t ret = 0;
5918         struct mmu_notifier_range range;
5919
5920         /*
5921          * Never handle CoW for uffd-wp protected pages.  It should be only
5922          * handled when the uffd-wp protection is removed.
5923          *
5924          * Note that only the CoW optimization path (in hugetlb_no_page())
5925          * can trigger this, because hugetlb_fault() will always resolve
5926          * uffd-wp bit first.
5927          */
5928         if (!unshare && huge_pte_uffd_wp(pte))
5929                 return 0;
5930
5931         /*
5932          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5933          * PTE mapped R/O such as maybe_mkwrite() would do.
5934          */
5935         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5936                 return VM_FAULT_SIGSEGV;
5937
5938         /* Let's take out MAP_SHARED mappings first. */
5939         if (vma->vm_flags & VM_MAYSHARE) {
5940                 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5941                 return 0;
5942         }
5943
5944         old_folio = page_folio(pte_page(pte));
5945
5946         delayacct_wpcopy_start();
5947
5948 retry_avoidcopy:
5949         /*
5950          * If no-one else is actually using this page, we're the exclusive
5951          * owner and can reuse this page.
5952          *
5953          * Note that we don't rely on the (safer) folio refcount here, because
5954          * copying the hugetlb folio when there are unexpected (temporary)
5955          * folio references could harm simple fork()+exit() users when
5956          * we run out of free hugetlb folios: we would have to kill processes
5957          * in scenarios that used to work. As a side effect, there can still
5958          * be leaks between processes, for example, with FOLL_GET users.
5959          */
5960         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5961                 if (!PageAnonExclusive(&old_folio->page)) {
5962                         folio_move_anon_rmap(old_folio, vma);
5963                         SetPageAnonExclusive(&old_folio->page);
5964                 }
5965                 if (likely(!unshare))
5966                         set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5967
5968                 delayacct_wpcopy_end();
5969                 return 0;
5970         }
5971         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5972                        PageAnonExclusive(&old_folio->page), &old_folio->page);
5973
5974         /*
5975          * If the process that created a MAP_PRIVATE mapping is about to
5976          * perform a COW due to a shared page count, attempt to satisfy
5977          * the allocation without using the existing reserves. The pagecache
5978          * page is used to determine if the reserve at this address was
5979          * consumed or not. If reserves were used, a partial faulted mapping
5980          * at the time of fork() could consume its reserves on COW instead
5981          * of the full address range.
5982          */
5983         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5984                         old_folio != pagecache_folio)
5985                 outside_reserve = 1;
5986
5987         folio_get(old_folio);
5988
5989         /*
5990          * Drop page table lock as buddy allocator may be called. It will
5991          * be acquired again before returning to the caller, as expected.
5992          */
5993         spin_unlock(vmf->ptl);
5994         new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
5995
5996         if (IS_ERR(new_folio)) {
5997                 /*
5998                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5999                  * it is due to references held by a child and an insufficient
6000                  * huge page pool. To guarantee the original mappers
6001                  * reliability, unmap the page from child processes. The child
6002                  * may get SIGKILLed if it later faults.
6003                  */
6004                 if (outside_reserve) {
6005                         struct address_space *mapping = vma->vm_file->f_mapping;
6006                         pgoff_t idx;
6007                         u32 hash;
6008
6009                         folio_put(old_folio);
6010                         /*
6011                          * Drop hugetlb_fault_mutex and vma_lock before
6012                          * unmapping.  unmapping needs to hold vma_lock
6013                          * in write mode.  Dropping vma_lock in read mode
6014                          * here is OK as COW mappings do not interact with
6015                          * PMD sharing.
6016                          *
6017                          * Reacquire both after unmap operation.
6018                          */
6019                         idx = vma_hugecache_offset(h, vma, vmf->address);
6020                         hash = hugetlb_fault_mutex_hash(mapping, idx);
6021                         hugetlb_vma_unlock_read(vma);
6022                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6023
6024                         unmap_ref_private(mm, vma, &old_folio->page,
6025                                         vmf->address);
6026
6027                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6028                         hugetlb_vma_lock_read(vma);
6029                         spin_lock(vmf->ptl);
6030                         vmf->pte = hugetlb_walk(vma, vmf->address,
6031                                         huge_page_size(h));
6032                         if (likely(vmf->pte &&
6033                                    pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
6034                                 goto retry_avoidcopy;
6035                         /*
6036                          * race occurs while re-acquiring page table
6037                          * lock, and our job is done.
6038                          */
6039                         delayacct_wpcopy_end();
6040                         return 0;
6041                 }
6042
6043                 ret = vmf_error(PTR_ERR(new_folio));
6044                 goto out_release_old;
6045         }
6046
6047         /*
6048          * When the original hugepage is shared one, it does not have
6049          * anon_vma prepared.
6050          */
6051         ret = vmf_anon_prepare(vmf);
6052         if (unlikely(ret))
6053                 goto out_release_all;
6054
6055         if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6056                 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6057                 goto out_release_all;
6058         }
6059         __folio_mark_uptodate(new_folio);
6060
6061         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6062                                 vmf->address + huge_page_size(h));
6063         mmu_notifier_invalidate_range_start(&range);
6064
6065         /*
6066          * Retake the page table lock to check for racing updates
6067          * before the page tables are altered
6068          */
6069         spin_lock(vmf->ptl);
6070         vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6071         if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
6072                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6073
6074                 /* Break COW or unshare */
6075                 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6076                 hugetlb_remove_rmap(old_folio);
6077                 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6078                 if (huge_pte_uffd_wp(pte))
6079                         newpte = huge_pte_mkuffd_wp(newpte);
6080                 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6081                                 huge_page_size(h));
6082                 folio_set_hugetlb_migratable(new_folio);
6083                 /* Make the old page be freed below */
6084                 new_folio = old_folio;
6085         }
6086         spin_unlock(vmf->ptl);
6087         mmu_notifier_invalidate_range_end(&range);
6088 out_release_all:
6089         /*
6090          * No restore in case of successful pagetable update (Break COW or
6091          * unshare)
6092          */
6093         if (new_folio != old_folio)
6094                 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6095         folio_put(new_folio);
6096 out_release_old:
6097         folio_put(old_folio);
6098
6099         spin_lock(vmf->ptl); /* Caller expects lock to be held */
6100
6101         delayacct_wpcopy_end();
6102         return ret;
6103 }
6104
6105 /*
6106  * Return whether there is a pagecache page to back given address within VMA.
6107  */
6108 bool hugetlbfs_pagecache_present(struct hstate *h,
6109                                  struct vm_area_struct *vma, unsigned long address)
6110 {
6111         struct address_space *mapping = vma->vm_file->f_mapping;
6112         pgoff_t idx = linear_page_index(vma, address);
6113         struct folio *folio;
6114
6115         folio = filemap_get_folio(mapping, idx);
6116         if (IS_ERR(folio))
6117                 return false;
6118         folio_put(folio);
6119         return true;
6120 }
6121
6122 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6123                            pgoff_t idx)
6124 {
6125         struct inode *inode = mapping->host;
6126         struct hstate *h = hstate_inode(inode);
6127         int err;
6128
6129         idx <<= huge_page_order(h);
6130         __folio_set_locked(folio);
6131         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6132
6133         if (unlikely(err)) {
6134                 __folio_clear_locked(folio);
6135                 return err;
6136         }
6137         folio_clear_hugetlb_restore_reserve(folio);
6138
6139         /*
6140          * mark folio dirty so that it will not be removed from cache/file
6141          * by non-hugetlbfs specific code paths.
6142          */
6143         folio_mark_dirty(folio);
6144
6145         spin_lock(&inode->i_lock);
6146         inode->i_blocks += blocks_per_huge_page(h);
6147         spin_unlock(&inode->i_lock);
6148         return 0;
6149 }
6150
6151 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6152                                                   struct address_space *mapping,
6153                                                   unsigned long reason)
6154 {
6155         u32 hash;
6156
6157         /*
6158          * vma_lock and hugetlb_fault_mutex must be dropped before handling
6159          * userfault. Also mmap_lock could be dropped due to handling
6160          * userfault, any vma operation should be careful from here.
6161          */
6162         hugetlb_vma_unlock_read(vmf->vma);
6163         hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6164         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6165         return handle_userfault(vmf, reason);
6166 }
6167
6168 /*
6169  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6170  * false if pte changed or is changing.
6171  */
6172 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6173                                pte_t *ptep, pte_t old_pte)
6174 {
6175         spinlock_t *ptl;
6176         bool same;
6177
6178         ptl = huge_pte_lock(h, mm, ptep);
6179         same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6180         spin_unlock(ptl);
6181
6182         return same;
6183 }
6184
6185 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6186                         struct vm_fault *vmf)
6187 {
6188         struct vm_area_struct *vma = vmf->vma;
6189         struct mm_struct *mm = vma->vm_mm;
6190         struct hstate *h = hstate_vma(vma);
6191         vm_fault_t ret = VM_FAULT_SIGBUS;
6192         int anon_rmap = 0;
6193         unsigned long size;
6194         struct folio *folio;
6195         pte_t new_pte;
6196         bool new_folio, new_pagecache_folio = false;
6197         u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6198
6199         /*
6200          * Currently, we are forced to kill the process in the event the
6201          * original mapper has unmapped pages from the child due to a failed
6202          * COW/unsharing. Warn that such a situation has occurred as it may not
6203          * be obvious.
6204          */
6205         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6206                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6207                            current->pid);
6208                 goto out;
6209         }
6210
6211         /*
6212          * Use page lock to guard against racing truncation
6213          * before we get page_table_lock.
6214          */
6215         new_folio = false;
6216         folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6217         if (IS_ERR(folio)) {
6218                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6219                 if (vmf->pgoff >= size)
6220                         goto out;
6221                 /* Check for page in userfault range */
6222                 if (userfaultfd_missing(vma)) {
6223                         /*
6224                          * Since hugetlb_no_page() was examining pte
6225                          * without pgtable lock, we need to re-test under
6226                          * lock because the pte may not be stable and could
6227                          * have changed from under us.  Try to detect
6228                          * either changed or during-changing ptes and retry
6229                          * properly when needed.
6230                          *
6231                          * Note that userfaultfd is actually fine with
6232                          * false positives (e.g. caused by pte changed),
6233                          * but not wrong logical events (e.g. caused by
6234                          * reading a pte during changing).  The latter can
6235                          * confuse the userspace, so the strictness is very
6236                          * much preferred.  E.g., MISSING event should
6237                          * never happen on the page after UFFDIO_COPY has
6238                          * correctly installed the page and returned.
6239                          */
6240                         if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6241                                 ret = 0;
6242                                 goto out;
6243                         }
6244
6245                         return hugetlb_handle_userfault(vmf, mapping,
6246                                                         VM_UFFD_MISSING);
6247                 }
6248
6249                 if (!(vma->vm_flags & VM_MAYSHARE)) {
6250                         ret = vmf_anon_prepare(vmf);
6251                         if (unlikely(ret))
6252                                 goto out;
6253                 }
6254
6255                 folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6256                 if (IS_ERR(folio)) {
6257                         /*
6258                          * Returning error will result in faulting task being
6259                          * sent SIGBUS.  The hugetlb fault mutex prevents two
6260                          * tasks from racing to fault in the same page which
6261                          * could result in false unable to allocate errors.
6262                          * Page migration does not take the fault mutex, but
6263                          * does a clear then write of pte's under page table
6264                          * lock.  Page fault code could race with migration,
6265                          * notice the clear pte and try to allocate a page
6266                          * here.  Before returning error, get ptl and make
6267                          * sure there really is no pte entry.
6268                          */
6269                         if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6270                                 ret = vmf_error(PTR_ERR(folio));
6271                         else
6272                                 ret = 0;
6273                         goto out;
6274                 }
6275                 folio_zero_user(folio, vmf->real_address);
6276                 __folio_mark_uptodate(folio);
6277                 new_folio = true;
6278
6279                 if (vma->vm_flags & VM_MAYSHARE) {
6280                         int err = hugetlb_add_to_page_cache(folio, mapping,
6281                                                         vmf->pgoff);
6282                         if (err) {
6283                                 /*
6284                                  * err can't be -EEXIST which implies someone
6285                                  * else consumed the reservation since hugetlb
6286                                  * fault mutex is held when add a hugetlb page
6287                                  * to the page cache. So it's safe to call
6288                                  * restore_reserve_on_error() here.
6289                                  */
6290                                 restore_reserve_on_error(h, vma, vmf->address,
6291                                                         folio);
6292                                 folio_put(folio);
6293                                 ret = VM_FAULT_SIGBUS;
6294                                 goto out;
6295                         }
6296                         new_pagecache_folio = true;
6297                 } else {
6298                         folio_lock(folio);
6299                         anon_rmap = 1;
6300                 }
6301         } else {
6302                 /*
6303                  * If memory error occurs between mmap() and fault, some process
6304                  * don't have hwpoisoned swap entry for errored virtual address.
6305                  * So we need to block hugepage fault by PG_hwpoison bit check.
6306                  */
6307                 if (unlikely(folio_test_hwpoison(folio))) {
6308                         ret = VM_FAULT_HWPOISON_LARGE |
6309                                 VM_FAULT_SET_HINDEX(hstate_index(h));
6310                         goto backout_unlocked;
6311                 }
6312
6313                 /* Check for page in userfault range. */
6314                 if (userfaultfd_minor(vma)) {
6315                         folio_unlock(folio);
6316                         folio_put(folio);
6317                         /* See comment in userfaultfd_missing() block above */
6318                         if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6319                                 ret = 0;
6320                                 goto out;
6321                         }
6322                         return hugetlb_handle_userfault(vmf, mapping,
6323                                                         VM_UFFD_MINOR);
6324                 }
6325         }
6326
6327         /*
6328          * If we are going to COW a private mapping later, we examine the
6329          * pending reservations for this page now. This will ensure that
6330          * any allocations necessary to record that reservation occur outside
6331          * the spinlock.
6332          */
6333         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6334                 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6335                         ret = VM_FAULT_OOM;
6336                         goto backout_unlocked;
6337                 }
6338                 /* Just decrements count, does not deallocate */
6339                 vma_end_reservation(h, vma, vmf->address);
6340         }
6341
6342         vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6343         ret = 0;
6344         /* If pte changed from under us, retry */
6345         if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6346                 goto backout;
6347
6348         if (anon_rmap)
6349                 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6350         else
6351                 hugetlb_add_file_rmap(folio);
6352         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6353                                 && (vma->vm_flags & VM_SHARED)));
6354         /*
6355          * If this pte was previously wr-protected, keep it wr-protected even
6356          * if populated.
6357          */
6358         if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6359                 new_pte = huge_pte_mkuffd_wp(new_pte);
6360         set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6361
6362         hugetlb_count_add(pages_per_huge_page(h), mm);
6363         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6364                 /* Optimization, do the COW without a second fault */
6365                 ret = hugetlb_wp(folio, vmf);
6366         }
6367
6368         spin_unlock(vmf->ptl);
6369
6370         /*
6371          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6372          * found in the pagecache may not have hugetlb_migratable if they have
6373          * been isolated for migration.
6374          */
6375         if (new_folio)
6376                 folio_set_hugetlb_migratable(folio);
6377
6378         folio_unlock(folio);
6379 out:
6380         hugetlb_vma_unlock_read(vma);
6381         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6382         return ret;
6383
6384 backout:
6385         spin_unlock(vmf->ptl);
6386 backout_unlocked:
6387         if (new_folio && !new_pagecache_folio)
6388                 restore_reserve_on_error(h, vma, vmf->address, folio);
6389
6390         folio_unlock(folio);
6391         folio_put(folio);
6392         goto out;
6393 }
6394
6395 #ifdef CONFIG_SMP
6396 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6397 {
6398         unsigned long key[2];
6399         u32 hash;
6400
6401         key[0] = (unsigned long) mapping;
6402         key[1] = idx;
6403
6404         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6405
6406         return hash & (num_fault_mutexes - 1);
6407 }
6408 #else
6409 /*
6410  * For uniprocessor systems we always use a single mutex, so just
6411  * return 0 and avoid the hashing overhead.
6412  */
6413 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6414 {
6415         return 0;
6416 }
6417 #endif
6418
6419 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6420                         unsigned long address, unsigned int flags)
6421 {
6422         vm_fault_t ret;
6423         u32 hash;
6424         struct folio *folio = NULL;
6425         struct folio *pagecache_folio = NULL;
6426         struct hstate *h = hstate_vma(vma);
6427         struct address_space *mapping;
6428         int need_wait_lock = 0;
6429         struct vm_fault vmf = {
6430                 .vma = vma,
6431                 .address = address & huge_page_mask(h),
6432                 .real_address = address,
6433                 .flags = flags,
6434                 .pgoff = vma_hugecache_offset(h, vma,
6435                                 address & huge_page_mask(h)),
6436                 /* TODO: Track hugetlb faults using vm_fault */
6437
6438                 /*
6439                  * Some fields may not be initialized, be careful as it may
6440                  * be hard to debug if called functions make assumptions
6441                  */
6442         };
6443
6444         /*
6445          * Serialize hugepage allocation and instantiation, so that we don't
6446          * get spurious allocation failures if two CPUs race to instantiate
6447          * the same page in the page cache.
6448          */
6449         mapping = vma->vm_file->f_mapping;
6450         hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6451         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6452
6453         /*
6454          * Acquire vma lock before calling huge_pte_alloc and hold
6455          * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6456          * being called elsewhere and making the vmf.pte no longer valid.
6457          */
6458         hugetlb_vma_lock_read(vma);
6459         vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6460         if (!vmf.pte) {
6461                 hugetlb_vma_unlock_read(vma);
6462                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6463                 return VM_FAULT_OOM;
6464         }
6465
6466         vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6467         if (huge_pte_none_mostly(vmf.orig_pte)) {
6468                 if (is_pte_marker(vmf.orig_pte)) {
6469                         pte_marker marker =
6470                                 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6471
6472                         if (marker & PTE_MARKER_POISONED) {
6473                                 ret = VM_FAULT_HWPOISON_LARGE |
6474                                       VM_FAULT_SET_HINDEX(hstate_index(h));
6475                                 goto out_mutex;
6476                         }
6477                 }
6478
6479                 /*
6480                  * Other PTE markers should be handled the same way as none PTE.
6481                  *
6482                  * hugetlb_no_page will drop vma lock and hugetlb fault
6483                  * mutex internally, which make us return immediately.
6484                  */
6485                 return hugetlb_no_page(mapping, &vmf);
6486         }
6487
6488         ret = 0;
6489
6490         /*
6491          * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6492          * point, so this check prevents the kernel from going below assuming
6493          * that we have an active hugepage in pagecache. This goto expects
6494          * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6495          * check will properly handle it.
6496          */
6497         if (!pte_present(vmf.orig_pte)) {
6498                 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6499                         /*
6500                          * Release the hugetlb fault lock now, but retain
6501                          * the vma lock, because it is needed to guard the
6502                          * huge_pte_lockptr() later in
6503                          * migration_entry_wait_huge(). The vma lock will
6504                          * be released there.
6505                          */
6506                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6507                         migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6508                         return 0;
6509                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6510                         ret = VM_FAULT_HWPOISON_LARGE |
6511                             VM_FAULT_SET_HINDEX(hstate_index(h));
6512                 goto out_mutex;
6513         }
6514
6515         /*
6516          * If we are going to COW/unshare the mapping later, we examine the
6517          * pending reservations for this page now. This will ensure that any
6518          * allocations necessary to record that reservation occur outside the
6519          * spinlock. Also lookup the pagecache page now as it is used to
6520          * determine if a reservation has been consumed.
6521          */
6522         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6523             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6524                 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6525                         ret = VM_FAULT_OOM;
6526                         goto out_mutex;
6527                 }
6528                 /* Just decrements count, does not deallocate */
6529                 vma_end_reservation(h, vma, vmf.address);
6530
6531                 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6532                                                              vmf.pgoff);
6533                 if (IS_ERR(pagecache_folio))
6534                         pagecache_folio = NULL;
6535         }
6536
6537         vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6538
6539         /* Check for a racing update before calling hugetlb_wp() */
6540         if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6541                 goto out_ptl;
6542
6543         /* Handle userfault-wp first, before trying to lock more pages */
6544         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6545             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6546                 if (!userfaultfd_wp_async(vma)) {
6547                         spin_unlock(vmf.ptl);
6548                         if (pagecache_folio) {
6549                                 folio_unlock(pagecache_folio);
6550                                 folio_put(pagecache_folio);
6551                         }
6552                         hugetlb_vma_unlock_read(vma);
6553                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6554                         return handle_userfault(&vmf, VM_UFFD_WP);
6555                 }
6556
6557                 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6558                 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6559                                 huge_page_size(hstate_vma(vma)));
6560                 /* Fallthrough to CoW */
6561         }
6562
6563         /*
6564          * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6565          * pagecache_folio, so here we need take the former one
6566          * when folio != pagecache_folio or !pagecache_folio.
6567          */
6568         folio = page_folio(pte_page(vmf.orig_pte));
6569         if (folio != pagecache_folio)
6570                 if (!folio_trylock(folio)) {
6571                         need_wait_lock = 1;
6572                         goto out_ptl;
6573                 }
6574
6575         folio_get(folio);
6576
6577         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6578                 if (!huge_pte_write(vmf.orig_pte)) {
6579                         ret = hugetlb_wp(pagecache_folio, &vmf);
6580                         goto out_put_page;
6581                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6582                         vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6583                 }
6584         }
6585         vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6586         if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6587                                                 flags & FAULT_FLAG_WRITE))
6588                 update_mmu_cache(vma, vmf.address, vmf.pte);
6589 out_put_page:
6590         if (folio != pagecache_folio)
6591                 folio_unlock(folio);
6592         folio_put(folio);
6593 out_ptl:
6594         spin_unlock(vmf.ptl);
6595
6596         if (pagecache_folio) {
6597                 folio_unlock(pagecache_folio);
6598                 folio_put(pagecache_folio);
6599         }
6600 out_mutex:
6601         hugetlb_vma_unlock_read(vma);
6602         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6603         /*
6604          * Generally it's safe to hold refcount during waiting page lock. But
6605          * here we just wait to defer the next page fault to avoid busy loop and
6606          * the page is not used after unlocked before returning from the current
6607          * page fault. So we are safe from accessing freed page, even if we wait
6608          * here without taking refcount.
6609          */
6610         if (need_wait_lock)
6611                 folio_wait_locked(folio);
6612         return ret;
6613 }
6614
6615 #ifdef CONFIG_USERFAULTFD
6616 /*
6617  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6618  */
6619 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6620                 struct vm_area_struct *vma, unsigned long address)
6621 {
6622         struct mempolicy *mpol;
6623         nodemask_t *nodemask;
6624         struct folio *folio;
6625         gfp_t gfp_mask;
6626         int node;
6627
6628         gfp_mask = htlb_alloc_mask(h);
6629         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6630         /*
6631          * This is used to allocate a temporary hugetlb to hold the copied
6632          * content, which will then be copied again to the final hugetlb
6633          * consuming a reservation. Set the alloc_fallback to false to indicate
6634          * that breaking the per-node hugetlb pool is not allowed in this case.
6635          */
6636         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6637         mpol_cond_put(mpol);
6638
6639         return folio;
6640 }
6641
6642 /*
6643  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6644  * with modifications for hugetlb pages.
6645  */
6646 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6647                              struct vm_area_struct *dst_vma,
6648                              unsigned long dst_addr,
6649                              unsigned long src_addr,
6650                              uffd_flags_t flags,
6651                              struct folio **foliop)
6652 {
6653         struct mm_struct *dst_mm = dst_vma->vm_mm;
6654         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6655         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6656         struct hstate *h = hstate_vma(dst_vma);
6657         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6658         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6659         unsigned long size = huge_page_size(h);
6660         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6661         pte_t _dst_pte;
6662         spinlock_t *ptl;
6663         int ret = -ENOMEM;
6664         struct folio *folio;
6665         int writable;
6666         bool folio_in_pagecache = false;
6667
6668         if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6669                 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6670
6671                 /* Don't overwrite any existing PTEs (even markers) */
6672                 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6673                         spin_unlock(ptl);
6674                         return -EEXIST;
6675                 }
6676
6677                 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6678                 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6679
6680                 /* No need to invalidate - it was non-present before */
6681                 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6682
6683                 spin_unlock(ptl);
6684                 return 0;
6685         }
6686
6687         if (is_continue) {
6688                 ret = -EFAULT;
6689                 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6690                 if (IS_ERR(folio))
6691                         goto out;
6692                 folio_in_pagecache = true;
6693         } else if (!*foliop) {
6694                 /* If a folio already exists, then it's UFFDIO_COPY for
6695                  * a non-missing case. Return -EEXIST.
6696                  */
6697                 if (vm_shared &&
6698                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6699                         ret = -EEXIST;
6700                         goto out;
6701                 }
6702
6703                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6704                 if (IS_ERR(folio)) {
6705                         ret = -ENOMEM;
6706                         goto out;
6707                 }
6708
6709                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6710                                            false);
6711
6712                 /* fallback to copy_from_user outside mmap_lock */
6713                 if (unlikely(ret)) {
6714                         ret = -ENOENT;
6715                         /* Free the allocated folio which may have
6716                          * consumed a reservation.
6717                          */
6718                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6719                         folio_put(folio);
6720
6721                         /* Allocate a temporary folio to hold the copied
6722                          * contents.
6723                          */
6724                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6725                         if (!folio) {
6726                                 ret = -ENOMEM;
6727                                 goto out;
6728                         }
6729                         *foliop = folio;
6730                         /* Set the outparam foliop and return to the caller to
6731                          * copy the contents outside the lock. Don't free the
6732                          * folio.
6733                          */
6734                         goto out;
6735                 }
6736         } else {
6737                 if (vm_shared &&
6738                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6739                         folio_put(*foliop);
6740                         ret = -EEXIST;
6741                         *foliop = NULL;
6742                         goto out;
6743                 }
6744
6745                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6746                 if (IS_ERR(folio)) {
6747                         folio_put(*foliop);
6748                         ret = -ENOMEM;
6749                         *foliop = NULL;
6750                         goto out;
6751                 }
6752                 ret = copy_user_large_folio(folio, *foliop,
6753                                             ALIGN_DOWN(dst_addr, size), dst_vma);
6754                 folio_put(*foliop);
6755                 *foliop = NULL;
6756                 if (ret) {
6757                         folio_put(folio);
6758                         goto out;
6759                 }
6760         }
6761
6762         /*
6763          * If we just allocated a new page, we need a memory barrier to ensure
6764          * that preceding stores to the page become visible before the
6765          * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6766          * is what we need.
6767          *
6768          * In the case where we have not allocated a new page (is_continue),
6769          * the page must already be uptodate. UFFDIO_CONTINUE already includes
6770          * an earlier smp_wmb() to ensure that prior stores will be visible
6771          * before the set_pte_at() write.
6772          */
6773         if (!is_continue)
6774                 __folio_mark_uptodate(folio);
6775         else
6776                 WARN_ON_ONCE(!folio_test_uptodate(folio));
6777
6778         /* Add shared, newly allocated pages to the page cache. */
6779         if (vm_shared && !is_continue) {
6780                 ret = -EFAULT;
6781                 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6782                         goto out_release_nounlock;
6783
6784                 /*
6785                  * Serialization between remove_inode_hugepages() and
6786                  * hugetlb_add_to_page_cache() below happens through the
6787                  * hugetlb_fault_mutex_table that here must be hold by
6788                  * the caller.
6789                  */
6790                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6791                 if (ret)
6792                         goto out_release_nounlock;
6793                 folio_in_pagecache = true;
6794         }
6795
6796         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6797
6798         ret = -EIO;
6799         if (folio_test_hwpoison(folio))
6800                 goto out_release_unlock;
6801
6802         /*
6803          * We allow to overwrite a pte marker: consider when both MISSING|WP
6804          * registered, we firstly wr-protect a none pte which has no page cache
6805          * page backing it, then access the page.
6806          */
6807         ret = -EEXIST;
6808         if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6809                 goto out_release_unlock;
6810
6811         if (folio_in_pagecache)
6812                 hugetlb_add_file_rmap(folio);
6813         else
6814                 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6815
6816         /*
6817          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6818          * with wp flag set, don't set pte write bit.
6819          */
6820         if (wp_enabled || (is_continue && !vm_shared))
6821                 writable = 0;
6822         else
6823                 writable = dst_vma->vm_flags & VM_WRITE;
6824
6825         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6826         /*
6827          * Always mark UFFDIO_COPY page dirty; note that this may not be
6828          * extremely important for hugetlbfs for now since swapping is not
6829          * supported, but we should still be clear in that this page cannot be
6830          * thrown away at will, even if write bit not set.
6831          */
6832         _dst_pte = huge_pte_mkdirty(_dst_pte);
6833         _dst_pte = pte_mkyoung(_dst_pte);
6834
6835         if (wp_enabled)
6836                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6837
6838         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6839
6840         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6841
6842         /* No need to invalidate - it was non-present before */
6843         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6844
6845         spin_unlock(ptl);
6846         if (!is_continue)
6847                 folio_set_hugetlb_migratable(folio);
6848         if (vm_shared || is_continue)
6849                 folio_unlock(folio);
6850         ret = 0;
6851 out:
6852         return ret;
6853 out_release_unlock:
6854         spin_unlock(ptl);
6855         if (vm_shared || is_continue)
6856                 folio_unlock(folio);
6857 out_release_nounlock:
6858         if (!folio_in_pagecache)
6859                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6860         folio_put(folio);
6861         goto out;
6862 }
6863 #endif /* CONFIG_USERFAULTFD */
6864
6865 long hugetlb_change_protection(struct vm_area_struct *vma,
6866                 unsigned long address, unsigned long end,
6867                 pgprot_t newprot, unsigned long cp_flags)
6868 {
6869         struct mm_struct *mm = vma->vm_mm;
6870         unsigned long start = address;
6871         pte_t *ptep;
6872         pte_t pte;
6873         struct hstate *h = hstate_vma(vma);
6874         long pages = 0, psize = huge_page_size(h);
6875         bool shared_pmd = false;
6876         struct mmu_notifier_range range;
6877         unsigned long last_addr_mask;
6878         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6879         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6880
6881         /*
6882          * In the case of shared PMDs, the area to flush could be beyond
6883          * start/end.  Set range.start/range.end to cover the maximum possible
6884          * range if PMD sharing is possible.
6885          */
6886         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6887                                 0, mm, start, end);
6888         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6889
6890         BUG_ON(address >= end);
6891         flush_cache_range(vma, range.start, range.end);
6892
6893         mmu_notifier_invalidate_range_start(&range);
6894         hugetlb_vma_lock_write(vma);
6895         i_mmap_lock_write(vma->vm_file->f_mapping);
6896         last_addr_mask = hugetlb_mask_last_page(h);
6897         for (; address < end; address += psize) {
6898                 spinlock_t *ptl;
6899                 ptep = hugetlb_walk(vma, address, psize);
6900                 if (!ptep) {
6901                         if (!uffd_wp) {
6902                                 address |= last_addr_mask;
6903                                 continue;
6904                         }
6905                         /*
6906                          * Userfaultfd wr-protect requires pgtable
6907                          * pre-allocations to install pte markers.
6908                          */
6909                         ptep = huge_pte_alloc(mm, vma, address, psize);
6910                         if (!ptep) {
6911                                 pages = -ENOMEM;
6912                                 break;
6913                         }
6914                 }
6915                 ptl = huge_pte_lock(h, mm, ptep);
6916                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6917                         /*
6918                          * When uffd-wp is enabled on the vma, unshare
6919                          * shouldn't happen at all.  Warn about it if it
6920                          * happened due to some reason.
6921                          */
6922                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6923                         pages++;
6924                         spin_unlock(ptl);
6925                         shared_pmd = true;
6926                         address |= last_addr_mask;
6927                         continue;
6928                 }
6929                 pte = huge_ptep_get(mm, address, ptep);
6930                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6931                         /* Nothing to do. */
6932                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6933                         swp_entry_t entry = pte_to_swp_entry(pte);
6934                         struct page *page = pfn_swap_entry_to_page(entry);
6935                         pte_t newpte = pte;
6936
6937                         if (is_writable_migration_entry(entry)) {
6938                                 if (PageAnon(page))
6939                                         entry = make_readable_exclusive_migration_entry(
6940                                                                 swp_offset(entry));
6941                                 else
6942                                         entry = make_readable_migration_entry(
6943                                                                 swp_offset(entry));
6944                                 newpte = swp_entry_to_pte(entry);
6945                                 pages++;
6946                         }
6947
6948                         if (uffd_wp)
6949                                 newpte = pte_swp_mkuffd_wp(newpte);
6950                         else if (uffd_wp_resolve)
6951                                 newpte = pte_swp_clear_uffd_wp(newpte);
6952                         if (!pte_same(pte, newpte))
6953                                 set_huge_pte_at(mm, address, ptep, newpte, psize);
6954                 } else if (unlikely(is_pte_marker(pte))) {
6955                         /*
6956                          * Do nothing on a poison marker; page is
6957                          * corrupted, permissons do not apply.  Here
6958                          * pte_marker_uffd_wp()==true implies !poison
6959                          * because they're mutual exclusive.
6960                          */
6961                         if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6962                                 /* Safe to modify directly (non-present->none). */
6963                                 huge_pte_clear(mm, address, ptep, psize);
6964                 } else if (!huge_pte_none(pte)) {
6965                         pte_t old_pte;
6966                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6967
6968                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6969                         pte = huge_pte_modify(old_pte, newprot);
6970                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6971                         if (uffd_wp)
6972                                 pte = huge_pte_mkuffd_wp(pte);
6973                         else if (uffd_wp_resolve)
6974                                 pte = huge_pte_clear_uffd_wp(pte);
6975                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6976                         pages++;
6977                 } else {
6978                         /* None pte */
6979                         if (unlikely(uffd_wp))
6980                                 /* Safe to modify directly (none->non-present). */
6981                                 set_huge_pte_at(mm, address, ptep,
6982                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
6983                                                 psize);
6984                 }
6985                 spin_unlock(ptl);
6986         }
6987         /*
6988          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6989          * may have cleared our pud entry and done put_page on the page table:
6990          * once we release i_mmap_rwsem, another task can do the final put_page
6991          * and that page table be reused and filled with junk.  If we actually
6992          * did unshare a page of pmds, flush the range corresponding to the pud.
6993          */
6994         if (shared_pmd)
6995                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6996         else
6997                 flush_hugetlb_tlb_range(vma, start, end);
6998         /*
6999          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7000          * downgrading page table protection not changing it to point to a new
7001          * page.
7002          *
7003          * See Documentation/mm/mmu_notifier.rst
7004          */
7005         i_mmap_unlock_write(vma->vm_file->f_mapping);
7006         hugetlb_vma_unlock_write(vma);
7007         mmu_notifier_invalidate_range_end(&range);
7008
7009         return pages > 0 ? (pages << h->order) : pages;
7010 }
7011
7012 /* Return true if reservation was successful, false otherwise.  */
7013 bool hugetlb_reserve_pages(struct inode *inode,
7014                                         long from, long to,
7015                                         struct vm_area_struct *vma,
7016                                         vm_flags_t vm_flags)
7017 {
7018         long chg = -1, add = -1;
7019         struct hstate *h = hstate_inode(inode);
7020         struct hugepage_subpool *spool = subpool_inode(inode);
7021         struct resv_map *resv_map;
7022         struct hugetlb_cgroup *h_cg = NULL;
7023         long gbl_reserve, regions_needed = 0;
7024
7025         /* This should never happen */
7026         if (from > to) {
7027                 VM_WARN(1, "%s called with a negative range\n", __func__);
7028                 return false;
7029         }
7030
7031         /*
7032          * vma specific semaphore used for pmd sharing and fault/truncation
7033          * synchronization
7034          */
7035         hugetlb_vma_lock_alloc(vma);
7036
7037         /*
7038          * Only apply hugepage reservation if asked. At fault time, an
7039          * attempt will be made for VM_NORESERVE to allocate a page
7040          * without using reserves
7041          */
7042         if (vm_flags & VM_NORESERVE)
7043                 return true;
7044
7045         /*
7046          * Shared mappings base their reservation on the number of pages that
7047          * are already allocated on behalf of the file. Private mappings need
7048          * to reserve the full area even if read-only as mprotect() may be
7049          * called to make the mapping read-write. Assume !vma is a shm mapping
7050          */
7051         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7052                 /*
7053                  * resv_map can not be NULL as hugetlb_reserve_pages is only
7054                  * called for inodes for which resv_maps were created (see
7055                  * hugetlbfs_get_inode).
7056                  */
7057                 resv_map = inode_resv_map(inode);
7058
7059                 chg = region_chg(resv_map, from, to, &regions_needed);
7060         } else {
7061                 /* Private mapping. */
7062                 resv_map = resv_map_alloc();
7063                 if (!resv_map)
7064                         goto out_err;
7065
7066                 chg = to - from;
7067
7068                 set_vma_resv_map(vma, resv_map);
7069                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7070         }
7071
7072         if (chg < 0)
7073                 goto out_err;
7074
7075         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7076                                 chg * pages_per_huge_page(h), &h_cg) < 0)
7077                 goto out_err;
7078
7079         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7080                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7081                  * of the resv_map.
7082                  */
7083                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7084         }
7085
7086         /*
7087          * There must be enough pages in the subpool for the mapping. If
7088          * the subpool has a minimum size, there may be some global
7089          * reservations already in place (gbl_reserve).
7090          */
7091         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7092         if (gbl_reserve < 0)
7093                 goto out_uncharge_cgroup;
7094
7095         /*
7096          * Check enough hugepages are available for the reservation.
7097          * Hand the pages back to the subpool if there are not
7098          */
7099         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7100                 goto out_put_pages;
7101
7102         /*
7103          * Account for the reservations made. Shared mappings record regions
7104          * that have reservations as they are shared by multiple VMAs.
7105          * When the last VMA disappears, the region map says how much
7106          * the reservation was and the page cache tells how much of
7107          * the reservation was consumed. Private mappings are per-VMA and
7108          * only the consumed reservations are tracked. When the VMA
7109          * disappears, the original reservation is the VMA size and the
7110          * consumed reservations are stored in the map. Hence, nothing
7111          * else has to be done for private mappings here
7112          */
7113         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7114                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7115
7116                 if (unlikely(add < 0)) {
7117                         hugetlb_acct_memory(h, -gbl_reserve);
7118                         goto out_put_pages;
7119                 } else if (unlikely(chg > add)) {
7120                         /*
7121                          * pages in this range were added to the reserve
7122                          * map between region_chg and region_add.  This
7123                          * indicates a race with alloc_hugetlb_folio.  Adjust
7124                          * the subpool and reserve counts modified above
7125                          * based on the difference.
7126                          */
7127                         long rsv_adjust;
7128
7129                         /*
7130                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7131                          * reference to h_cg->css. See comment below for detail.
7132                          */
7133                         hugetlb_cgroup_uncharge_cgroup_rsvd(
7134                                 hstate_index(h),
7135                                 (chg - add) * pages_per_huge_page(h), h_cg);
7136
7137                         rsv_adjust = hugepage_subpool_put_pages(spool,
7138                                                                 chg - add);
7139                         hugetlb_acct_memory(h, -rsv_adjust);
7140                 } else if (h_cg) {
7141                         /*
7142                          * The file_regions will hold their own reference to
7143                          * h_cg->css. So we should release the reference held
7144                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7145                          * done.
7146                          */
7147                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7148                 }
7149         }
7150         return true;
7151
7152 out_put_pages:
7153         /* put back original number of pages, chg */
7154         (void)hugepage_subpool_put_pages(spool, chg);
7155 out_uncharge_cgroup:
7156         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7157                                             chg * pages_per_huge_page(h), h_cg);
7158 out_err:
7159         hugetlb_vma_lock_free(vma);
7160         if (!vma || vma->vm_flags & VM_MAYSHARE)
7161                 /* Only call region_abort if the region_chg succeeded but the
7162                  * region_add failed or didn't run.
7163                  */
7164                 if (chg >= 0 && add < 0)
7165                         region_abort(resv_map, from, to, regions_needed);
7166         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7167                 kref_put(&resv_map->refs, resv_map_release);
7168                 set_vma_resv_map(vma, NULL);
7169         }
7170         return false;
7171 }
7172
7173 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7174                                                                 long freed)
7175 {
7176         struct hstate *h = hstate_inode(inode);
7177         struct resv_map *resv_map = inode_resv_map(inode);
7178         long chg = 0;
7179         struct hugepage_subpool *spool = subpool_inode(inode);
7180         long gbl_reserve;
7181
7182         /*
7183          * Since this routine can be called in the evict inode path for all
7184          * hugetlbfs inodes, resv_map could be NULL.
7185          */
7186         if (resv_map) {
7187                 chg = region_del(resv_map, start, end);
7188                 /*
7189                  * region_del() can fail in the rare case where a region
7190                  * must be split and another region descriptor can not be
7191                  * allocated.  If end == LONG_MAX, it will not fail.
7192                  */
7193                 if (chg < 0)
7194                         return chg;
7195         }
7196
7197         spin_lock(&inode->i_lock);
7198         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7199         spin_unlock(&inode->i_lock);
7200
7201         /*
7202          * If the subpool has a minimum size, the number of global
7203          * reservations to be released may be adjusted.
7204          *
7205          * Note that !resv_map implies freed == 0. So (chg - freed)
7206          * won't go negative.
7207          */
7208         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7209         hugetlb_acct_memory(h, -gbl_reserve);
7210
7211         return 0;
7212 }
7213
7214 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7215 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7216                                 struct vm_area_struct *vma,
7217                                 unsigned long addr, pgoff_t idx)
7218 {
7219         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7220                                 svma->vm_start;
7221         unsigned long sbase = saddr & PUD_MASK;
7222         unsigned long s_end = sbase + PUD_SIZE;
7223
7224         /* Allow segments to share if only one is marked locked */
7225         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7226         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7227
7228         /*
7229          * match the virtual addresses, permission and the alignment of the
7230          * page table page.
7231          *
7232          * Also, vma_lock (vm_private_data) is required for sharing.
7233          */
7234         if (pmd_index(addr) != pmd_index(saddr) ||
7235             vm_flags != svm_flags ||
7236             !range_in_vma(svma, sbase, s_end) ||
7237             !svma->vm_private_data)
7238                 return 0;
7239
7240         return saddr;
7241 }
7242
7243 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7244 {
7245         unsigned long start = addr & PUD_MASK;
7246         unsigned long end = start + PUD_SIZE;
7247
7248 #ifdef CONFIG_USERFAULTFD
7249         if (uffd_disable_huge_pmd_share(vma))
7250                 return false;
7251 #endif
7252         /*
7253          * check on proper vm_flags and page table alignment
7254          */
7255         if (!(vma->vm_flags & VM_MAYSHARE))
7256                 return false;
7257         if (!vma->vm_private_data)      /* vma lock required for sharing */
7258                 return false;
7259         if (!range_in_vma(vma, start, end))
7260                 return false;
7261         return true;
7262 }
7263
7264 /*
7265  * Determine if start,end range within vma could be mapped by shared pmd.
7266  * If yes, adjust start and end to cover range associated with possible
7267  * shared pmd mappings.
7268  */
7269 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7270                                 unsigned long *start, unsigned long *end)
7271 {
7272         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7273                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7274
7275         /*
7276          * vma needs to span at least one aligned PUD size, and the range
7277          * must be at least partially within in.
7278          */
7279         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7280                 (*end <= v_start) || (*start >= v_end))
7281                 return;
7282
7283         /* Extend the range to be PUD aligned for a worst case scenario */
7284         if (*start > v_start)
7285                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7286
7287         if (*end < v_end)
7288                 *end = ALIGN(*end, PUD_SIZE);
7289 }
7290
7291 /*
7292  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7293  * and returns the corresponding pte. While this is not necessary for the
7294  * !shared pmd case because we can allocate the pmd later as well, it makes the
7295  * code much cleaner. pmd allocation is essential for the shared case because
7296  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7297  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7298  * bad pmd for sharing.
7299  */
7300 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7301                       unsigned long addr, pud_t *pud)
7302 {
7303         struct address_space *mapping = vma->vm_file->f_mapping;
7304         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7305                         vma->vm_pgoff;
7306         struct vm_area_struct *svma;
7307         unsigned long saddr;
7308         pte_t *spte = NULL;
7309         pte_t *pte;
7310
7311         i_mmap_lock_read(mapping);
7312         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7313                 if (svma == vma)
7314                         continue;
7315
7316                 saddr = page_table_shareable(svma, vma, addr, idx);
7317                 if (saddr) {
7318                         spte = hugetlb_walk(svma, saddr,
7319                                             vma_mmu_pagesize(svma));
7320                         if (spte) {
7321                                 get_page(virt_to_page(spte));
7322                                 break;
7323                         }
7324                 }
7325         }
7326
7327         if (!spte)
7328                 goto out;
7329
7330         spin_lock(&mm->page_table_lock);
7331         if (pud_none(*pud)) {
7332                 pud_populate(mm, pud,
7333                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7334                 mm_inc_nr_pmds(mm);
7335         } else {
7336                 put_page(virt_to_page(spte));
7337         }
7338         spin_unlock(&mm->page_table_lock);
7339 out:
7340         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7341         i_mmap_unlock_read(mapping);
7342         return pte;
7343 }
7344
7345 /*
7346  * unmap huge page backed by shared pte.
7347  *
7348  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7349  * indicated by page_count > 1, unmap is achieved by clearing pud and
7350  * decrementing the ref count. If count == 1, the pte page is not shared.
7351  *
7352  * Called with page table lock held.
7353  *
7354  * returns: 1 successfully unmapped a shared pte page
7355  *          0 the underlying pte page is not shared, or it is the last user
7356  */
7357 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7358                                         unsigned long addr, pte_t *ptep)
7359 {
7360         pgd_t *pgd = pgd_offset(mm, addr);
7361         p4d_t *p4d = p4d_offset(pgd, addr);
7362         pud_t *pud = pud_offset(p4d, addr);
7363
7364         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7365         hugetlb_vma_assert_locked(vma);
7366         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7367         if (page_count(virt_to_page(ptep)) == 1)
7368                 return 0;
7369
7370         pud_clear(pud);
7371         put_page(virt_to_page(ptep));
7372         mm_dec_nr_pmds(mm);
7373         return 1;
7374 }
7375
7376 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7377
7378 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7379                       unsigned long addr, pud_t *pud)
7380 {
7381         return NULL;
7382 }
7383
7384 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7385                                 unsigned long addr, pte_t *ptep)
7386 {
7387         return 0;
7388 }
7389
7390 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7391                                 unsigned long *start, unsigned long *end)
7392 {
7393 }
7394
7395 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7396 {
7397         return false;
7398 }
7399 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7400
7401 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7402 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7403                         unsigned long addr, unsigned long sz)
7404 {
7405         pgd_t *pgd;
7406         p4d_t *p4d;
7407         pud_t *pud;
7408         pte_t *pte = NULL;
7409
7410         pgd = pgd_offset(mm, addr);
7411         p4d = p4d_alloc(mm, pgd, addr);
7412         if (!p4d)
7413                 return NULL;
7414         pud = pud_alloc(mm, p4d, addr);
7415         if (pud) {
7416                 if (sz == PUD_SIZE) {
7417                         pte = (pte_t *)pud;
7418                 } else {
7419                         BUG_ON(sz != PMD_SIZE);
7420                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7421                                 pte = huge_pmd_share(mm, vma, addr, pud);
7422                         else
7423                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7424                 }
7425         }
7426
7427         if (pte) {
7428                 pte_t pteval = ptep_get_lockless(pte);
7429
7430                 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7431         }
7432
7433         return pte;
7434 }
7435
7436 /*
7437  * huge_pte_offset() - Walk the page table to resolve the hugepage
7438  * entry at address @addr
7439  *
7440  * Return: Pointer to page table entry (PUD or PMD) for
7441  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7442  * size @sz doesn't match the hugepage size at this level of the page
7443  * table.
7444  */
7445 pte_t *huge_pte_offset(struct mm_struct *mm,
7446                        unsigned long addr, unsigned long sz)
7447 {
7448         pgd_t *pgd;
7449         p4d_t *p4d;
7450         pud_t *pud;
7451         pmd_t *pmd;
7452
7453         pgd = pgd_offset(mm, addr);
7454         if (!pgd_present(*pgd))
7455                 return NULL;
7456         p4d = p4d_offset(pgd, addr);
7457         if (!p4d_present(*p4d))
7458                 return NULL;
7459
7460         pud = pud_offset(p4d, addr);
7461         if (sz == PUD_SIZE)
7462                 /* must be pud huge, non-present or none */
7463                 return (pte_t *)pud;
7464         if (!pud_present(*pud))
7465                 return NULL;
7466         /* must have a valid entry and size to go further */
7467
7468         pmd = pmd_offset(pud, addr);
7469         /* must be pmd huge, non-present or none */
7470         return (pte_t *)pmd;
7471 }
7472
7473 /*
7474  * Return a mask that can be used to update an address to the last huge
7475  * page in a page table page mapping size.  Used to skip non-present
7476  * page table entries when linearly scanning address ranges.  Architectures
7477  * with unique huge page to page table relationships can define their own
7478  * version of this routine.
7479  */
7480 unsigned long hugetlb_mask_last_page(struct hstate *h)
7481 {
7482         unsigned long hp_size = huge_page_size(h);
7483
7484         if (hp_size == PUD_SIZE)
7485                 return P4D_SIZE - PUD_SIZE;
7486         else if (hp_size == PMD_SIZE)
7487                 return PUD_SIZE - PMD_SIZE;
7488         else
7489                 return 0UL;
7490 }
7491
7492 #else
7493
7494 /* See description above.  Architectures can provide their own version. */
7495 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7496 {
7497 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7498         if (huge_page_size(h) == PMD_SIZE)
7499                 return PUD_SIZE - PMD_SIZE;
7500 #endif
7501         return 0UL;
7502 }
7503
7504 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7505
7506 /*
7507  * These functions are overwritable if your architecture needs its own
7508  * behavior.
7509  */
7510 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7511 {
7512         bool ret = true;
7513
7514         spin_lock_irq(&hugetlb_lock);
7515         if (!folio_test_hugetlb(folio) ||
7516             !folio_test_hugetlb_migratable(folio) ||
7517             !folio_try_get(folio)) {
7518                 ret = false;
7519                 goto unlock;
7520         }
7521         folio_clear_hugetlb_migratable(folio);
7522         list_move_tail(&folio->lru, list);
7523 unlock:
7524         spin_unlock_irq(&hugetlb_lock);
7525         return ret;
7526 }
7527
7528 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7529 {
7530         int ret = 0;
7531
7532         *hugetlb = false;
7533         spin_lock_irq(&hugetlb_lock);
7534         if (folio_test_hugetlb(folio)) {
7535                 *hugetlb = true;
7536                 if (folio_test_hugetlb_freed(folio))
7537                         ret = 0;
7538                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7539                         ret = folio_try_get(folio);
7540                 else
7541                         ret = -EBUSY;
7542         }
7543         spin_unlock_irq(&hugetlb_lock);
7544         return ret;
7545 }
7546
7547 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7548                                 bool *migratable_cleared)
7549 {
7550         int ret;
7551
7552         spin_lock_irq(&hugetlb_lock);
7553         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7554         spin_unlock_irq(&hugetlb_lock);
7555         return ret;
7556 }
7557
7558 void folio_putback_active_hugetlb(struct folio *folio)
7559 {
7560         spin_lock_irq(&hugetlb_lock);
7561         folio_set_hugetlb_migratable(folio);
7562         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7563         spin_unlock_irq(&hugetlb_lock);
7564         folio_put(folio);
7565 }
7566
7567 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7568 {
7569         struct hstate *h = folio_hstate(old_folio);
7570
7571         hugetlb_cgroup_migrate(old_folio, new_folio);
7572         set_page_owner_migrate_reason(&new_folio->page, reason);
7573
7574         /*
7575          * transfer temporary state of the new hugetlb folio. This is
7576          * reverse to other transitions because the newpage is going to
7577          * be final while the old one will be freed so it takes over
7578          * the temporary status.
7579          *
7580          * Also note that we have to transfer the per-node surplus state
7581          * here as well otherwise the global surplus count will not match
7582          * the per-node's.
7583          */
7584         if (folio_test_hugetlb_temporary(new_folio)) {
7585                 int old_nid = folio_nid(old_folio);
7586                 int new_nid = folio_nid(new_folio);
7587
7588                 folio_set_hugetlb_temporary(old_folio);
7589                 folio_clear_hugetlb_temporary(new_folio);
7590
7591
7592                 /*
7593                  * There is no need to transfer the per-node surplus state
7594                  * when we do not cross the node.
7595                  */
7596                 if (new_nid == old_nid)
7597                         return;
7598                 spin_lock_irq(&hugetlb_lock);
7599                 if (h->surplus_huge_pages_node[old_nid]) {
7600                         h->surplus_huge_pages_node[old_nid]--;
7601                         h->surplus_huge_pages_node[new_nid]++;
7602                 }
7603                 spin_unlock_irq(&hugetlb_lock);
7604         }
7605 }
7606
7607 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7608                                    unsigned long start,
7609                                    unsigned long end)
7610 {
7611         struct hstate *h = hstate_vma(vma);
7612         unsigned long sz = huge_page_size(h);
7613         struct mm_struct *mm = vma->vm_mm;
7614         struct mmu_notifier_range range;
7615         unsigned long address;
7616         spinlock_t *ptl;
7617         pte_t *ptep;
7618
7619         if (!(vma->vm_flags & VM_MAYSHARE))
7620                 return;
7621
7622         if (start >= end)
7623                 return;
7624
7625         flush_cache_range(vma, start, end);
7626         /*
7627          * No need to call adjust_range_if_pmd_sharing_possible(), because
7628          * we have already done the PUD_SIZE alignment.
7629          */
7630         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7631                                 start, end);
7632         mmu_notifier_invalidate_range_start(&range);
7633         hugetlb_vma_lock_write(vma);
7634         i_mmap_lock_write(vma->vm_file->f_mapping);
7635         for (address = start; address < end; address += PUD_SIZE) {
7636                 ptep = hugetlb_walk(vma, address, sz);
7637                 if (!ptep)
7638                         continue;
7639                 ptl = huge_pte_lock(h, mm, ptep);
7640                 huge_pmd_unshare(mm, vma, address, ptep);
7641                 spin_unlock(ptl);
7642         }
7643         flush_hugetlb_tlb_range(vma, start, end);
7644         i_mmap_unlock_write(vma->vm_file->f_mapping);
7645         hugetlb_vma_unlock_write(vma);
7646         /*
7647          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7648          * Documentation/mm/mmu_notifier.rst.
7649          */
7650         mmu_notifier_invalidate_range_end(&range);
7651 }
7652
7653 /*
7654  * This function will unconditionally remove all the shared pmd pgtable entries
7655  * within the specific vma for a hugetlbfs memory range.
7656  */
7657 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7658 {
7659         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7660                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7661 }
7662
7663 #ifdef CONFIG_CMA
7664 static bool cma_reserve_called __initdata;
7665
7666 static int __init cmdline_parse_hugetlb_cma(char *p)
7667 {
7668         int nid, count = 0;
7669         unsigned long tmp;
7670         char *s = p;
7671
7672         while (*s) {
7673                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7674                         break;
7675
7676                 if (s[count] == ':') {
7677                         if (tmp >= MAX_NUMNODES)
7678                                 break;
7679                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7680
7681                         s += count + 1;
7682                         tmp = memparse(s, &s);
7683                         hugetlb_cma_size_in_node[nid] = tmp;
7684                         hugetlb_cma_size += tmp;
7685
7686                         /*
7687                          * Skip the separator if have one, otherwise
7688                          * break the parsing.
7689                          */
7690                         if (*s == ',')
7691                                 s++;
7692                         else
7693                                 break;
7694                 } else {
7695                         hugetlb_cma_size = memparse(p, &p);
7696                         break;
7697                 }
7698         }
7699
7700         return 0;
7701 }
7702
7703 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7704
7705 void __init hugetlb_cma_reserve(int order)
7706 {
7707         unsigned long size, reserved, per_node;
7708         bool node_specific_cma_alloc = false;
7709         int nid;
7710
7711         /*
7712          * HugeTLB CMA reservation is required for gigantic
7713          * huge pages which could not be allocated via the
7714          * page allocator. Just warn if there is any change
7715          * breaking this assumption.
7716          */
7717         VM_WARN_ON(order <= MAX_PAGE_ORDER);
7718         cma_reserve_called = true;
7719
7720         if (!hugetlb_cma_size)
7721                 return;
7722
7723         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7724                 if (hugetlb_cma_size_in_node[nid] == 0)
7725                         continue;
7726
7727                 if (!node_online(nid)) {
7728                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7729                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7730                         hugetlb_cma_size_in_node[nid] = 0;
7731                         continue;
7732                 }
7733
7734                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7735                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7736                                 nid, (PAGE_SIZE << order) / SZ_1M);
7737                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7738                         hugetlb_cma_size_in_node[nid] = 0;
7739                 } else {
7740                         node_specific_cma_alloc = true;
7741                 }
7742         }
7743
7744         /* Validate the CMA size again in case some invalid nodes specified. */
7745         if (!hugetlb_cma_size)
7746                 return;
7747
7748         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7749                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7750                         (PAGE_SIZE << order) / SZ_1M);
7751                 hugetlb_cma_size = 0;
7752                 return;
7753         }
7754
7755         if (!node_specific_cma_alloc) {
7756                 /*
7757                  * If 3 GB area is requested on a machine with 4 numa nodes,
7758                  * let's allocate 1 GB on first three nodes and ignore the last one.
7759                  */
7760                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7761                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7762                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7763         }
7764
7765         reserved = 0;
7766         for_each_online_node(nid) {
7767                 int res;
7768                 char name[CMA_MAX_NAME];
7769
7770                 if (node_specific_cma_alloc) {
7771                         if (hugetlb_cma_size_in_node[nid] == 0)
7772                                 continue;
7773
7774                         size = hugetlb_cma_size_in_node[nid];
7775                 } else {
7776                         size = min(per_node, hugetlb_cma_size - reserved);
7777                 }
7778
7779                 size = round_up(size, PAGE_SIZE << order);
7780
7781                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7782                 /*
7783                  * Note that 'order per bit' is based on smallest size that
7784                  * may be returned to CMA allocator in the case of
7785                  * huge page demotion.
7786                  */
7787                 res = cma_declare_contiguous_nid(0, size, 0,
7788                                         PAGE_SIZE << order,
7789                                         HUGETLB_PAGE_ORDER, false, name,
7790                                         &hugetlb_cma[nid], nid);
7791                 if (res) {
7792                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7793                                 res, nid);
7794                         continue;
7795                 }
7796
7797                 reserved += size;
7798                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7799                         size / SZ_1M, nid);
7800
7801                 if (reserved >= hugetlb_cma_size)
7802                         break;
7803         }
7804
7805         if (!reserved)
7806                 /*
7807                  * hugetlb_cma_size is used to determine if allocations from
7808                  * cma are possible.  Set to zero if no cma regions are set up.
7809                  */
7810                 hugetlb_cma_size = 0;
7811 }
7812
7813 static void __init hugetlb_cma_check(void)
7814 {
7815         if (!hugetlb_cma_size || cma_reserve_called)
7816                 return;
7817
7818         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7819 }
7820
7821 #endif /* CONFIG_CMA */
This page took 0.490549 seconds and 4 git commands to generate.