1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2012 - 2014 Allwinner Tech
6 * Copyright (C) 2014 Maxime Ripard
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
22 #include <linux/spi/spi.h>
24 #define SUN6I_FIFO_DEPTH 128
25 #define SUN8I_FIFO_DEPTH 64
27 #define SUN6I_GBL_CTL_REG 0x04
28 #define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
29 #define SUN6I_GBL_CTL_MASTER BIT(1)
30 #define SUN6I_GBL_CTL_TP BIT(7)
31 #define SUN6I_GBL_CTL_RST BIT(31)
33 #define SUN6I_TFR_CTL_REG 0x08
34 #define SUN6I_TFR_CTL_CPHA BIT(0)
35 #define SUN6I_TFR_CTL_CPOL BIT(1)
36 #define SUN6I_TFR_CTL_SPOL BIT(2)
37 #define SUN6I_TFR_CTL_CS_MASK 0x30
38 #define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
39 #define SUN6I_TFR_CTL_CS_MANUAL BIT(6)
40 #define SUN6I_TFR_CTL_CS_LEVEL BIT(7)
41 #define SUN6I_TFR_CTL_DHB BIT(8)
42 #define SUN6I_TFR_CTL_FBS BIT(12)
43 #define SUN6I_TFR_CTL_XCH BIT(31)
45 #define SUN6I_INT_CTL_REG 0x10
46 #define SUN6I_INT_CTL_RF_RDY BIT(0)
47 #define SUN6I_INT_CTL_TF_ERQ BIT(4)
48 #define SUN6I_INT_CTL_RF_OVF BIT(8)
49 #define SUN6I_INT_CTL_TC BIT(12)
51 #define SUN6I_INT_STA_REG 0x14
53 #define SUN6I_FIFO_CTL_REG 0x18
54 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK 0xff
55 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS 0
56 #define SUN6I_FIFO_CTL_RF_RST BIT(15)
57 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK 0xff
58 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS 16
59 #define SUN6I_FIFO_CTL_TF_RST BIT(31)
61 #define SUN6I_FIFO_STA_REG 0x1c
62 #define SUN6I_FIFO_STA_RF_CNT_MASK GENMASK(7, 0)
63 #define SUN6I_FIFO_STA_TF_CNT_MASK GENMASK(23, 16)
65 #define SUN6I_CLK_CTL_REG 0x24
66 #define SUN6I_CLK_CTL_CDR2_MASK 0xff
67 #define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
68 #define SUN6I_CLK_CTL_CDR1_MASK 0xf
69 #define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
70 #define SUN6I_CLK_CTL_DRS BIT(12)
72 #define SUN6I_MAX_XFER_SIZE 0xffffff
74 #define SUN6I_BURST_CNT_REG 0x30
76 #define SUN6I_XMIT_CNT_REG 0x34
78 #define SUN6I_BURST_CTL_CNT_REG 0x38
80 #define SUN6I_TXDATA_REG 0x200
81 #define SUN6I_RXDATA_REG 0x300
84 struct spi_master *master;
85 void __iomem *base_addr;
88 struct reset_control *rstc;
90 struct completion done;
95 unsigned long fifo_depth;
98 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
100 return readl(sspi->base_addr + reg);
103 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
105 writel(value, sspi->base_addr + reg);
108 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
110 u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
112 return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
115 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
117 u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
119 return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
122 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
124 u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
127 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
130 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
135 /* See how much data is available */
136 len = sun6i_spi_get_rx_fifo_count(sspi);
139 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
141 *sspi->rx_buf++ = byte;
145 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
151 /* See how much data we can fit */
152 cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
154 len = min((int)cnt, sspi->len);
157 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
158 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
163 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
165 struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
168 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
169 reg &= ~SUN6I_TFR_CTL_CS_MASK;
170 reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
173 reg |= SUN6I_TFR_CTL_CS_LEVEL;
175 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
177 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
180 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
182 return SUN6I_MAX_XFER_SIZE - 1;
185 static int sun6i_spi_transfer_one(struct spi_master *master,
186 struct spi_device *spi,
187 struct spi_transfer *tfr)
189 struct sun6i_spi *sspi = spi_master_get_devdata(master);
190 unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
191 unsigned int start, end, tx_time;
192 unsigned int trig_level;
193 unsigned int tx_len = 0, rx_len = 0;
197 if (tfr->len > SUN6I_MAX_XFER_SIZE)
200 reinit_completion(&sspi->done);
201 sspi->tx_buf = tfr->tx_buf;
202 sspi->rx_buf = tfr->rx_buf;
203 sspi->len = tfr->len;
205 /* Clear pending interrupts */
206 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
209 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
210 SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
213 * Setup FIFO interrupt trigger level
214 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
215 * value used in old generation of Allwinner SPI controller.
218 trig_level = sspi->fifo_depth / 4 * 3;
219 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
220 (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
221 (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
224 * Setup the transfer control register: Chip Select,
227 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
229 if (spi->mode & SPI_CPOL)
230 reg |= SUN6I_TFR_CTL_CPOL;
232 reg &= ~SUN6I_TFR_CTL_CPOL;
234 if (spi->mode & SPI_CPHA)
235 reg |= SUN6I_TFR_CTL_CPHA;
237 reg &= ~SUN6I_TFR_CTL_CPHA;
239 if (spi->mode & SPI_LSB_FIRST)
240 reg |= SUN6I_TFR_CTL_FBS;
242 reg &= ~SUN6I_TFR_CTL_FBS;
245 * If it's a TX only transfer, we don't want to fill the RX
246 * FIFO with bogus data
249 reg &= ~SUN6I_TFR_CTL_DHB;
252 reg |= SUN6I_TFR_CTL_DHB;
255 /* We want to control the chip select manually */
256 reg |= SUN6I_TFR_CTL_CS_MANUAL;
258 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
260 /* Ensure that we have a parent clock fast enough */
261 mclk_rate = clk_get_rate(sspi->mclk);
262 if (mclk_rate < (2 * tfr->speed_hz)) {
263 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
264 mclk_rate = clk_get_rate(sspi->mclk);
268 * Setup clock divider.
270 * We have two choices there. Either we can use the clock
271 * divide rate 1, which is calculated thanks to this formula:
272 * SPI_CLK = MOD_CLK / (2 ^ cdr)
273 * Or we can use CDR2, which is calculated with the formula:
274 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
275 * Wether we use the former or the latter is set through the
278 * First try CDR2, and if we can't reach the expected
279 * frequency, fall back to CDR1.
281 div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
282 div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
283 if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
284 reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
285 tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
287 div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
288 reg = SUN6I_CLK_CTL_CDR1(div);
289 tfr->effective_speed_hz = mclk_rate / (1 << div);
292 sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
294 /* Setup the transfer now... */
298 /* Setup the counters */
299 sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
300 sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
301 sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
303 /* Fill the TX FIFO */
304 sun6i_spi_fill_fifo(sspi);
306 /* Enable the interrupts */
307 reg = SUN6I_INT_CTL_TC;
309 if (rx_len > sspi->fifo_depth)
310 reg |= SUN6I_INT_CTL_RF_RDY;
311 if (tx_len > sspi->fifo_depth)
312 reg |= SUN6I_INT_CTL_TF_ERQ;
314 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
316 /* Start the transfer */
317 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
318 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
320 tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
322 timeout = wait_for_completion_timeout(&sspi->done,
323 msecs_to_jiffies(tx_time));
326 dev_warn(&master->dev,
327 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
328 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
329 jiffies_to_msecs(end - start), tx_time);
333 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
338 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
340 struct sun6i_spi *sspi = dev_id;
341 u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
343 /* Transfer complete */
344 if (status & SUN6I_INT_CTL_TC) {
345 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
346 sun6i_spi_drain_fifo(sspi);
347 complete(&sspi->done);
351 /* Receive FIFO 3/4 full */
352 if (status & SUN6I_INT_CTL_RF_RDY) {
353 sun6i_spi_drain_fifo(sspi);
354 /* Only clear the interrupt _after_ draining the FIFO */
355 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
359 /* Transmit FIFO 3/4 empty */
360 if (status & SUN6I_INT_CTL_TF_ERQ) {
361 sun6i_spi_fill_fifo(sspi);
364 /* nothing left to transmit */
365 sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
367 /* Only clear the interrupt _after_ re-seeding the FIFO */
368 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
376 static int sun6i_spi_runtime_resume(struct device *dev)
378 struct spi_master *master = dev_get_drvdata(dev);
379 struct sun6i_spi *sspi = spi_master_get_devdata(master);
382 ret = clk_prepare_enable(sspi->hclk);
384 dev_err(dev, "Couldn't enable AHB clock\n");
388 ret = clk_prepare_enable(sspi->mclk);
390 dev_err(dev, "Couldn't enable module clock\n");
394 ret = reset_control_deassert(sspi->rstc);
396 dev_err(dev, "Couldn't deassert the device from reset\n");
400 sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
401 SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
406 clk_disable_unprepare(sspi->mclk);
408 clk_disable_unprepare(sspi->hclk);
413 static int sun6i_spi_runtime_suspend(struct device *dev)
415 struct spi_master *master = dev_get_drvdata(dev);
416 struct sun6i_spi *sspi = spi_master_get_devdata(master);
418 reset_control_assert(sspi->rstc);
419 clk_disable_unprepare(sspi->mclk);
420 clk_disable_unprepare(sspi->hclk);
425 static int sun6i_spi_probe(struct platform_device *pdev)
427 struct spi_master *master;
428 struct sun6i_spi *sspi;
431 master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
433 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
437 platform_set_drvdata(pdev, master);
438 sspi = spi_master_get_devdata(master);
440 sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
441 if (IS_ERR(sspi->base_addr)) {
442 ret = PTR_ERR(sspi->base_addr);
443 goto err_free_master;
446 irq = platform_get_irq(pdev, 0);
449 goto err_free_master;
452 ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
453 0, "sun6i-spi", sspi);
455 dev_err(&pdev->dev, "Cannot request IRQ\n");
456 goto err_free_master;
459 sspi->master = master;
460 sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
462 master->max_speed_hz = 100 * 1000 * 1000;
463 master->min_speed_hz = 3 * 1000;
464 master->use_gpio_descriptors = true;
465 master->set_cs = sun6i_spi_set_cs;
466 master->transfer_one = sun6i_spi_transfer_one;
467 master->num_chipselect = 4;
468 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
469 master->bits_per_word_mask = SPI_BPW_MASK(8);
470 master->dev.of_node = pdev->dev.of_node;
471 master->auto_runtime_pm = true;
472 master->max_transfer_size = sun6i_spi_max_transfer_size;
474 sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
475 if (IS_ERR(sspi->hclk)) {
476 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
477 ret = PTR_ERR(sspi->hclk);
478 goto err_free_master;
481 sspi->mclk = devm_clk_get(&pdev->dev, "mod");
482 if (IS_ERR(sspi->mclk)) {
483 dev_err(&pdev->dev, "Unable to acquire module clock\n");
484 ret = PTR_ERR(sspi->mclk);
485 goto err_free_master;
488 init_completion(&sspi->done);
490 sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
491 if (IS_ERR(sspi->rstc)) {
492 dev_err(&pdev->dev, "Couldn't get reset controller\n");
493 ret = PTR_ERR(sspi->rstc);
494 goto err_free_master;
498 * This wake-up/shutdown pattern is to be able to have the
499 * device woken up, even if runtime_pm is disabled
501 ret = sun6i_spi_runtime_resume(&pdev->dev);
503 dev_err(&pdev->dev, "Couldn't resume the device\n");
504 goto err_free_master;
507 pm_runtime_set_active(&pdev->dev);
508 pm_runtime_enable(&pdev->dev);
509 pm_runtime_idle(&pdev->dev);
511 ret = devm_spi_register_master(&pdev->dev, master);
513 dev_err(&pdev->dev, "cannot register SPI master\n");
520 pm_runtime_disable(&pdev->dev);
521 sun6i_spi_runtime_suspend(&pdev->dev);
523 spi_master_put(master);
527 static int sun6i_spi_remove(struct platform_device *pdev)
529 pm_runtime_force_suspend(&pdev->dev);
534 static const struct of_device_id sun6i_spi_match[] = {
535 { .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
536 { .compatible = "allwinner,sun8i-h3-spi", .data = (void *)SUN8I_FIFO_DEPTH },
539 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
541 static const struct dev_pm_ops sun6i_spi_pm_ops = {
542 .runtime_resume = sun6i_spi_runtime_resume,
543 .runtime_suspend = sun6i_spi_runtime_suspend,
546 static struct platform_driver sun6i_spi_driver = {
547 .probe = sun6i_spi_probe,
548 .remove = sun6i_spi_remove,
551 .of_match_table = sun6i_spi_match,
552 .pm = &sun6i_spi_pm_ops,
555 module_platform_driver(sun6i_spi_driver);
559 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
560 MODULE_LICENSE("GPL");