]> Git Repo - linux.git/blob - drivers/spi/spi-sun6i.c
Linux 6.14-rc3
[linux.git] / drivers / spi / spi-sun6i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <[email protected]>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <[email protected]>
8  */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/dmaengine.h>
22
23 #include <linux/spi/spi.h>
24
25 #define SUN6I_AUTOSUSPEND_TIMEOUT       2000
26
27 #define SUN6I_FIFO_DEPTH                128
28 #define SUN8I_FIFO_DEPTH                64
29
30 #define SUN6I_GBL_CTL_REG               0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE                BIT(0)
32 #define SUN6I_GBL_CTL_MASTER                    BIT(1)
33 #define SUN6I_GBL_CTL_TP                        BIT(7)
34 #define SUN6I_GBL_CTL_RST                       BIT(31)
35
36 #define SUN6I_TFR_CTL_REG               0x08
37 #define SUN6I_TFR_CTL_CPHA                      BIT(0)
38 #define SUN6I_TFR_CTL_CPOL                      BIT(1)
39 #define SUN6I_TFR_CTL_SPOL                      BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK                   0x30
41 #define SUN6I_TFR_CTL_CS(cs)                    (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL                 BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL                  BIT(7)
44 #define SUN6I_TFR_CTL_DHB                       BIT(8)
45 #define SUN6I_TFR_CTL_SDC                       BIT(11)
46 #define SUN6I_TFR_CTL_FBS                       BIT(12)
47 #define SUN6I_TFR_CTL_SDM                       BIT(13)
48 #define SUN6I_TFR_CTL_XCH                       BIT(31)
49
50 #define SUN6I_INT_CTL_REG               0x10
51 #define SUN6I_INT_CTL_RF_RDY                    BIT(0)
52 #define SUN6I_INT_CTL_TF_ERQ                    BIT(4)
53 #define SUN6I_INT_CTL_RF_OVF                    BIT(8)
54 #define SUN6I_INT_CTL_TC                        BIT(12)
55
56 #define SUN6I_INT_STA_REG               0x14
57
58 #define SUN6I_FIFO_CTL_REG              0x18
59 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK   0xff
60 #define SUN6I_FIFO_CTL_RF_DRQ_EN                BIT(8)
61 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS   0
62 #define SUN6I_FIFO_CTL_RF_RST                   BIT(15)
63 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK   0xff
64 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS   16
65 #define SUN6I_FIFO_CTL_TF_DRQ_EN                BIT(24)
66 #define SUN6I_FIFO_CTL_TF_RST                   BIT(31)
67
68 #define SUN6I_FIFO_STA_REG              0x1c
69 #define SUN6I_FIFO_STA_RF_CNT_MASK              GENMASK(7, 0)
70 #define SUN6I_FIFO_STA_TF_CNT_MASK              GENMASK(23, 16)
71
72 #define SUN6I_CLK_CTL_REG               0x24
73 #define SUN6I_CLK_CTL_CDR2_MASK                 0xff
74 #define SUN6I_CLK_CTL_CDR2(div)                 (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
75 #define SUN6I_CLK_CTL_CDR1_MASK                 0xf
76 #define SUN6I_CLK_CTL_CDR1(div)                 (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
77 #define SUN6I_CLK_CTL_DRS                       BIT(12)
78
79 #define SUN6I_MAX_XFER_SIZE             0xffffff
80
81 #define SUN6I_BURST_CNT_REG             0x30
82
83 #define SUN6I_XMIT_CNT_REG              0x34
84
85 #define SUN6I_BURST_CTL_CNT_REG         0x38
86 #define SUN6I_BURST_CTL_CNT_STC_MASK            GENMASK(23, 0)
87 #define SUN6I_BURST_CTL_CNT_DRM                 BIT(28)
88 #define SUN6I_BURST_CTL_CNT_QUAD_EN             BIT(29)
89
90 #define SUN6I_TXDATA_REG                0x200
91 #define SUN6I_RXDATA_REG                0x300
92
93 struct sun6i_spi_cfg {
94         unsigned long           fifo_depth;
95         bool                    has_clk_ctl;
96         u32                     mode_bits;
97 };
98
99 struct sun6i_spi {
100         struct spi_controller   *host;
101         void __iomem            *base_addr;
102         dma_addr_t              dma_addr_rx;
103         dma_addr_t              dma_addr_tx;
104         struct clk              *hclk;
105         struct clk              *mclk;
106         struct reset_control    *rstc;
107
108         struct completion       done;
109         struct completion       dma_rx_done;
110
111         const u8                *tx_buf;
112         u8                      *rx_buf;
113         int                     len;
114         const struct sun6i_spi_cfg *cfg;
115 };
116
117 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
118 {
119         return readl(sspi->base_addr + reg);
120 }
121
122 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
123 {
124         writel(value, sspi->base_addr + reg);
125 }
126
127 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
128 {
129         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
130
131         return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
132 }
133
134 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
135 {
136         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
137
138         return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
139 }
140
141 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
142 {
143         u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
144
145         reg &= ~mask;
146         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
147 }
148
149 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
150 {
151         u32 len;
152         u8 byte;
153
154         /* See how much data is available */
155         len = sun6i_spi_get_rx_fifo_count(sspi);
156
157         while (len--) {
158                 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
159                 if (sspi->rx_buf)
160                         *sspi->rx_buf++ = byte;
161         }
162 }
163
164 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
165 {
166         u32 cnt;
167         int len;
168         u8 byte;
169
170         /* See how much data we can fit */
171         cnt = sspi->cfg->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
172
173         len = min((int)cnt, sspi->len);
174
175         while (len--) {
176                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
177                 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
178                 sspi->len--;
179         }
180 }
181
182 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
183 {
184         struct sun6i_spi *sspi = spi_controller_get_devdata(spi->controller);
185         u32 reg;
186
187         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
188         reg &= ~SUN6I_TFR_CTL_CS_MASK;
189         reg |= SUN6I_TFR_CTL_CS(spi_get_chipselect(spi, 0));
190
191         if (enable)
192                 reg |= SUN6I_TFR_CTL_CS_LEVEL;
193         else
194                 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
195
196         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
197 }
198
199 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
200 {
201         return SUN6I_MAX_XFER_SIZE - 1;
202 }
203
204 static void sun6i_spi_dma_rx_cb(void *param)
205 {
206         struct sun6i_spi *sspi = param;
207
208         complete(&sspi->dma_rx_done);
209 }
210
211 static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
212                                  struct spi_transfer *tfr)
213 {
214         struct dma_async_tx_descriptor *rxdesc, *txdesc;
215         struct spi_controller *host = sspi->host;
216
217         rxdesc = NULL;
218         if (tfr->rx_buf) {
219                 struct dma_slave_config rxconf = {
220                         .direction = DMA_DEV_TO_MEM,
221                         .src_addr = sspi->dma_addr_rx,
222                         .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
223                         .src_maxburst = 8,
224                 };
225
226                 dmaengine_slave_config(host->dma_rx, &rxconf);
227
228                 rxdesc = dmaengine_prep_slave_sg(host->dma_rx,
229                                                  tfr->rx_sg.sgl,
230                                                  tfr->rx_sg.nents,
231                                                  DMA_DEV_TO_MEM,
232                                                  DMA_PREP_INTERRUPT);
233                 if (!rxdesc)
234                         return -EINVAL;
235                 rxdesc->callback_param = sspi;
236                 rxdesc->callback = sun6i_spi_dma_rx_cb;
237         }
238
239         txdesc = NULL;
240         if (tfr->tx_buf) {
241                 struct dma_slave_config txconf = {
242                         .direction = DMA_MEM_TO_DEV,
243                         .dst_addr = sspi->dma_addr_tx,
244                         .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
245                         .dst_maxburst = 8,
246                 };
247
248                 dmaengine_slave_config(host->dma_tx, &txconf);
249
250                 txdesc = dmaengine_prep_slave_sg(host->dma_tx,
251                                                  tfr->tx_sg.sgl,
252                                                  tfr->tx_sg.nents,
253                                                  DMA_MEM_TO_DEV,
254                                                  DMA_PREP_INTERRUPT);
255                 if (!txdesc) {
256                         if (rxdesc)
257                                 dmaengine_terminate_sync(host->dma_rx);
258                         return -EINVAL;
259                 }
260         }
261
262         if (tfr->rx_buf) {
263                 dmaengine_submit(rxdesc);
264                 dma_async_issue_pending(host->dma_rx);
265         }
266
267         if (tfr->tx_buf) {
268                 dmaengine_submit(txdesc);
269                 dma_async_issue_pending(host->dma_tx);
270         }
271
272         return 0;
273 }
274
275 static int sun6i_spi_transfer_one(struct spi_controller *host,
276                                   struct spi_device *spi,
277                                   struct spi_transfer *tfr)
278 {
279         struct sun6i_spi *sspi = spi_controller_get_devdata(host);
280         unsigned int div, div_cdr1, div_cdr2;
281         unsigned long time_left;
282         unsigned int start, end, tx_time;
283         unsigned int trig_level;
284         unsigned int tx_len = 0, rx_len = 0, nbits = 0;
285         bool use_dma;
286         int ret = 0;
287         u32 reg;
288
289         if (tfr->len > SUN6I_MAX_XFER_SIZE)
290                 return -EINVAL;
291
292         reinit_completion(&sspi->done);
293         reinit_completion(&sspi->dma_rx_done);
294         sspi->tx_buf = tfr->tx_buf;
295         sspi->rx_buf = tfr->rx_buf;
296         sspi->len = tfr->len;
297         use_dma = host->can_dma ? host->can_dma(host, spi, tfr) : false;
298
299         /* Clear pending interrupts */
300         sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
301
302         /* Reset FIFO */
303         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
304                         SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
305
306         reg = 0;
307
308         if (!use_dma) {
309                 /*
310                  * Setup FIFO interrupt trigger level
311                  * Here we choose 3/4 of the full fifo depth, as it's
312                  * the hardcoded value used in old generation of Allwinner
313                  * SPI controller. (See spi-sun4i.c)
314                  */
315                 trig_level = sspi->cfg->fifo_depth / 4 * 3;
316         } else {
317                 /*
318                  * Setup FIFO DMA request trigger level
319                  * We choose 1/2 of the full fifo depth, that value will
320                  * be used as DMA burst length.
321                  */
322                 trig_level = sspi->cfg->fifo_depth / 2;
323
324                 if (tfr->tx_buf)
325                         reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
326                 if (tfr->rx_buf)
327                         reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
328         }
329
330         reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
331                (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
332
333         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
334
335         /*
336          * Setup the transfer control register: Chip Select,
337          * polarities, etc.
338          */
339         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
340
341         if (spi->mode & SPI_CPOL)
342                 reg |= SUN6I_TFR_CTL_CPOL;
343         else
344                 reg &= ~SUN6I_TFR_CTL_CPOL;
345
346         if (spi->mode & SPI_CPHA)
347                 reg |= SUN6I_TFR_CTL_CPHA;
348         else
349                 reg &= ~SUN6I_TFR_CTL_CPHA;
350
351         if (spi->mode & SPI_LSB_FIRST)
352                 reg |= SUN6I_TFR_CTL_FBS;
353         else
354                 reg &= ~SUN6I_TFR_CTL_FBS;
355
356         /*
357          * If it's a TX only transfer, we don't want to fill the RX
358          * FIFO with bogus data
359          */
360         if (sspi->rx_buf) {
361                 reg &= ~SUN6I_TFR_CTL_DHB;
362                 rx_len = tfr->len;
363         } else {
364                 reg |= SUN6I_TFR_CTL_DHB;
365         }
366
367         /* We want to control the chip select manually */
368         reg |= SUN6I_TFR_CTL_CS_MANUAL;
369
370         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
371
372         if (sspi->cfg->has_clk_ctl) {
373                 unsigned int mclk_rate = clk_get_rate(sspi->mclk);
374
375                 /* Ensure that we have a parent clock fast enough */
376                 if (mclk_rate < (2 * tfr->speed_hz)) {
377                         clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
378                         mclk_rate = clk_get_rate(sspi->mclk);
379                 }
380
381                 /*
382                  * Setup clock divider.
383                  *
384                  * We have two choices there. Either we can use the clock
385                  * divide rate 1, which is calculated thanks to this formula:
386                  * SPI_CLK = MOD_CLK / (2 ^ cdr)
387                  * Or we can use CDR2, which is calculated with the formula:
388                  * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
389                  * Wether we use the former or the latter is set through the
390                  * DRS bit.
391                  *
392                  * First try CDR2, and if we can't reach the expected
393                  * frequency, fall back to CDR1.
394                  */
395                 div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
396                 div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
397                 if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
398                         reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
399                         tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
400                 } else {
401                         div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
402                         reg = SUN6I_CLK_CTL_CDR1(div);
403                         tfr->effective_speed_hz = mclk_rate / (1 << div);
404                 }
405
406                 sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
407         } else {
408                 clk_set_rate(sspi->mclk, tfr->speed_hz);
409                 tfr->effective_speed_hz = clk_get_rate(sspi->mclk);
410
411                 /*
412                  * Configure work mode.
413                  *
414                  * There are three work modes depending on the controller clock
415                  * frequency:
416                  * - normal sample mode           : CLK <= 24MHz SDM=1 SDC=0
417                  * - delay half-cycle sample mode : CLK <= 40MHz SDM=0 SDC=0
418                  * - delay one-cycle sample mode  : CLK >= 80MHz SDM=0 SDC=1
419                  */
420                 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
421                 reg &= ~(SUN6I_TFR_CTL_SDM | SUN6I_TFR_CTL_SDC);
422
423                 if (tfr->effective_speed_hz <= 24000000)
424                         reg |= SUN6I_TFR_CTL_SDM;
425                 else if (tfr->effective_speed_hz >= 80000000)
426                         reg |= SUN6I_TFR_CTL_SDC;
427
428                 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
429         }
430
431         /* Finally enable the bus - doing so before might raise SCK to HIGH */
432         reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
433         reg |= SUN6I_GBL_CTL_BUS_ENABLE;
434         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
435
436         /* Setup the transfer now... */
437         if (sspi->tx_buf) {
438                 tx_len = tfr->len;
439                 nbits = tfr->tx_nbits;
440         } else if (tfr->rx_buf) {
441                 nbits = tfr->rx_nbits;
442         }
443
444         switch (nbits) {
445         case SPI_NBITS_DUAL:
446                 reg = SUN6I_BURST_CTL_CNT_DRM;
447                 break;
448         case SPI_NBITS_QUAD:
449                 reg = SUN6I_BURST_CTL_CNT_QUAD_EN;
450                 break;
451         case SPI_NBITS_SINGLE:
452         default:
453                 reg = FIELD_PREP(SUN6I_BURST_CTL_CNT_STC_MASK, tx_len);
454         }
455
456         /* Setup the counters */
457         sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, reg);
458         sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
459         sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
460
461         if (!use_dma) {
462                 /* Fill the TX FIFO */
463                 sun6i_spi_fill_fifo(sspi);
464         } else {
465                 ret = sun6i_spi_prepare_dma(sspi, tfr);
466                 if (ret) {
467                         dev_warn(&host->dev,
468                                  "%s: prepare DMA failed, ret=%d",
469                                  dev_name(&spi->dev), ret);
470                         return ret;
471                 }
472         }
473
474         /* Enable the interrupts */
475         reg = SUN6I_INT_CTL_TC;
476
477         if (!use_dma) {
478                 if (rx_len > sspi->cfg->fifo_depth)
479                         reg |= SUN6I_INT_CTL_RF_RDY;
480                 if (tx_len > sspi->cfg->fifo_depth)
481                         reg |= SUN6I_INT_CTL_TF_ERQ;
482         }
483
484         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
485
486         /* Start the transfer */
487         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
488         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
489
490         tx_time = spi_controller_xfer_timeout(host, tfr);
491         start = jiffies;
492         time_left = wait_for_completion_timeout(&sspi->done,
493                                                 msecs_to_jiffies(tx_time));
494
495         if (!use_dma) {
496                 sun6i_spi_drain_fifo(sspi);
497         } else {
498                 if (time_left && rx_len) {
499                         /*
500                          * Even though RX on the peripheral side has finished
501                          * RX DMA might still be in flight
502                          */
503                         time_left = wait_for_completion_timeout(&sspi->dma_rx_done,
504                                                                 time_left);
505                         if (!time_left)
506                                 dev_warn(&host->dev, "RX DMA timeout\n");
507                 }
508         }
509
510         end = jiffies;
511         if (!time_left) {
512                 dev_warn(&host->dev,
513                          "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
514                          dev_name(&spi->dev), tfr->len, tfr->speed_hz,
515                          jiffies_to_msecs(end - start), tx_time);
516                 ret = -ETIMEDOUT;
517         }
518
519         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
520
521         if (ret && use_dma) {
522                 dmaengine_terminate_sync(host->dma_rx);
523                 dmaengine_terminate_sync(host->dma_tx);
524         }
525
526         return ret;
527 }
528
529 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
530 {
531         struct sun6i_spi *sspi = dev_id;
532         u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
533
534         /* Transfer complete */
535         if (status & SUN6I_INT_CTL_TC) {
536                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
537                 complete(&sspi->done);
538                 return IRQ_HANDLED;
539         }
540
541         /* Receive FIFO 3/4 full */
542         if (status & SUN6I_INT_CTL_RF_RDY) {
543                 sun6i_spi_drain_fifo(sspi);
544                 /* Only clear the interrupt _after_ draining the FIFO */
545                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
546                 return IRQ_HANDLED;
547         }
548
549         /* Transmit FIFO 3/4 empty */
550         if (status & SUN6I_INT_CTL_TF_ERQ) {
551                 sun6i_spi_fill_fifo(sspi);
552
553                 if (!sspi->len)
554                         /* nothing left to transmit */
555                         sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
556
557                 /* Only clear the interrupt _after_ re-seeding the FIFO */
558                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
559
560                 return IRQ_HANDLED;
561         }
562
563         return IRQ_NONE;
564 }
565
566 static int sun6i_spi_runtime_resume(struct device *dev)
567 {
568         struct spi_controller *host = dev_get_drvdata(dev);
569         struct sun6i_spi *sspi = spi_controller_get_devdata(host);
570         int ret;
571
572         ret = clk_prepare_enable(sspi->hclk);
573         if (ret) {
574                 dev_err(dev, "Couldn't enable AHB clock\n");
575                 goto out;
576         }
577
578         ret = clk_prepare_enable(sspi->mclk);
579         if (ret) {
580                 dev_err(dev, "Couldn't enable module clock\n");
581                 goto err;
582         }
583
584         ret = reset_control_deassert(sspi->rstc);
585         if (ret) {
586                 dev_err(dev, "Couldn't deassert the device from reset\n");
587                 goto err2;
588         }
589
590         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
591                         SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
592
593         return 0;
594
595 err2:
596         clk_disable_unprepare(sspi->mclk);
597 err:
598         clk_disable_unprepare(sspi->hclk);
599 out:
600         return ret;
601 }
602
603 static int sun6i_spi_runtime_suspend(struct device *dev)
604 {
605         struct spi_controller *host = dev_get_drvdata(dev);
606         struct sun6i_spi *sspi = spi_controller_get_devdata(host);
607
608         reset_control_assert(sspi->rstc);
609         clk_disable_unprepare(sspi->mclk);
610         clk_disable_unprepare(sspi->hclk);
611
612         return 0;
613 }
614
615 static bool sun6i_spi_can_dma(struct spi_controller *host,
616                               struct spi_device *spi,
617                               struct spi_transfer *xfer)
618 {
619         struct sun6i_spi *sspi = spi_controller_get_devdata(host);
620
621         /*
622          * If the number of spi words to transfer is less or equal than
623          * the fifo length we can just fill the fifo and wait for a single
624          * irq, so don't bother setting up dma
625          */
626         return xfer->len > sspi->cfg->fifo_depth;
627 }
628
629 static int sun6i_spi_probe(struct platform_device *pdev)
630 {
631         struct spi_controller *host;
632         struct sun6i_spi *sspi;
633         struct resource *mem;
634         int ret = 0, irq;
635
636         host = spi_alloc_host(&pdev->dev, sizeof(struct sun6i_spi));
637         if (!host) {
638                 dev_err(&pdev->dev, "Unable to allocate SPI Host\n");
639                 return -ENOMEM;
640         }
641
642         platform_set_drvdata(pdev, host);
643         sspi = spi_controller_get_devdata(host);
644
645         sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
646         if (IS_ERR(sspi->base_addr)) {
647                 ret = PTR_ERR(sspi->base_addr);
648                 goto err_free_host;
649         }
650
651         irq = platform_get_irq(pdev, 0);
652         if (irq < 0) {
653                 ret = -ENXIO;
654                 goto err_free_host;
655         }
656
657         ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
658                                0, "sun6i-spi", sspi);
659         if (ret) {
660                 dev_err(&pdev->dev, "Cannot request IRQ\n");
661                 goto err_free_host;
662         }
663
664         sspi->host = host;
665         sspi->cfg = of_device_get_match_data(&pdev->dev);
666
667         host->max_speed_hz = 100 * 1000 * 1000;
668         host->min_speed_hz = 3 * 1000;
669         host->use_gpio_descriptors = true;
670         host->set_cs = sun6i_spi_set_cs;
671         host->transfer_one = sun6i_spi_transfer_one;
672         host->num_chipselect = 4;
673         host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
674                           sspi->cfg->mode_bits;
675         host->bits_per_word_mask = SPI_BPW_MASK(8);
676         host->dev.of_node = pdev->dev.of_node;
677         host->auto_runtime_pm = true;
678         host->max_transfer_size = sun6i_spi_max_transfer_size;
679
680         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
681         if (IS_ERR(sspi->hclk)) {
682                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
683                 ret = PTR_ERR(sspi->hclk);
684                 goto err_free_host;
685         }
686
687         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
688         if (IS_ERR(sspi->mclk)) {
689                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
690                 ret = PTR_ERR(sspi->mclk);
691                 goto err_free_host;
692         }
693
694         init_completion(&sspi->done);
695         init_completion(&sspi->dma_rx_done);
696
697         sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
698         if (IS_ERR(sspi->rstc)) {
699                 dev_err(&pdev->dev, "Couldn't get reset controller\n");
700                 ret = PTR_ERR(sspi->rstc);
701                 goto err_free_host;
702         }
703
704         host->dma_tx = dma_request_chan(&pdev->dev, "tx");
705         if (IS_ERR(host->dma_tx)) {
706                 /* Check tx to see if we need defer probing driver */
707                 if (PTR_ERR(host->dma_tx) == -EPROBE_DEFER) {
708                         ret = -EPROBE_DEFER;
709                         goto err_free_host;
710                 }
711                 dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
712                 host->dma_tx = NULL;
713         }
714
715         host->dma_rx = dma_request_chan(&pdev->dev, "rx");
716         if (IS_ERR(host->dma_rx)) {
717                 if (PTR_ERR(host->dma_rx) == -EPROBE_DEFER) {
718                         ret = -EPROBE_DEFER;
719                         goto err_free_dma_tx;
720                 }
721                 dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
722                 host->dma_rx = NULL;
723         }
724
725         if (host->dma_tx && host->dma_rx) {
726                 sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
727                 sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
728                 host->can_dma = sun6i_spi_can_dma;
729         }
730
731         /*
732          * This wake-up/shutdown pattern is to be able to have the
733          * device woken up, even if runtime_pm is disabled
734          */
735         ret = sun6i_spi_runtime_resume(&pdev->dev);
736         if (ret) {
737                 dev_err(&pdev->dev, "Couldn't resume the device\n");
738                 goto err_free_dma_rx;
739         }
740
741         pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
742         pm_runtime_use_autosuspend(&pdev->dev);
743         pm_runtime_set_active(&pdev->dev);
744         pm_runtime_enable(&pdev->dev);
745
746         ret = devm_spi_register_controller(&pdev->dev, host);
747         if (ret) {
748                 dev_err(&pdev->dev, "cannot register SPI host\n");
749                 goto err_pm_disable;
750         }
751
752         return 0;
753
754 err_pm_disable:
755         pm_runtime_disable(&pdev->dev);
756         sun6i_spi_runtime_suspend(&pdev->dev);
757 err_free_dma_rx:
758         if (host->dma_rx)
759                 dma_release_channel(host->dma_rx);
760 err_free_dma_tx:
761         if (host->dma_tx)
762                 dma_release_channel(host->dma_tx);
763 err_free_host:
764         spi_controller_put(host);
765         return ret;
766 }
767
768 static void sun6i_spi_remove(struct platform_device *pdev)
769 {
770         struct spi_controller *host = platform_get_drvdata(pdev);
771
772         pm_runtime_force_suspend(&pdev->dev);
773
774         if (host->dma_tx)
775                 dma_release_channel(host->dma_tx);
776         if (host->dma_rx)
777                 dma_release_channel(host->dma_rx);
778 }
779
780 static const struct sun6i_spi_cfg sun6i_a31_spi_cfg = {
781         .fifo_depth     = SUN6I_FIFO_DEPTH,
782         .has_clk_ctl    = true,
783 };
784
785 static const struct sun6i_spi_cfg sun8i_h3_spi_cfg = {
786         .fifo_depth     = SUN8I_FIFO_DEPTH,
787         .has_clk_ctl    = true,
788 };
789
790 static const struct sun6i_spi_cfg sun50i_r329_spi_cfg = {
791         .fifo_depth     = SUN8I_FIFO_DEPTH,
792         .mode_bits      = SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD,
793 };
794
795 static const struct of_device_id sun6i_spi_match[] = {
796         { .compatible = "allwinner,sun6i-a31-spi", .data = &sun6i_a31_spi_cfg },
797         { .compatible = "allwinner,sun8i-h3-spi",  .data = &sun8i_h3_spi_cfg },
798         {
799                 .compatible = "allwinner,sun50i-r329-spi",
800                 .data = &sun50i_r329_spi_cfg
801         },
802         {}
803 };
804 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
805
806 static const struct dev_pm_ops sun6i_spi_pm_ops = {
807         .runtime_resume         = sun6i_spi_runtime_resume,
808         .runtime_suspend        = sun6i_spi_runtime_suspend,
809 };
810
811 static struct platform_driver sun6i_spi_driver = {
812         .probe  = sun6i_spi_probe,
813         .remove = sun6i_spi_remove,
814         .driver = {
815                 .name           = "sun6i-spi",
816                 .of_match_table = sun6i_spi_match,
817                 .pm             = &sun6i_spi_pm_ops,
818         },
819 };
820 module_platform_driver(sun6i_spi_driver);
821
822 MODULE_AUTHOR("Pan Nan <[email protected]>");
823 MODULE_AUTHOR("Maxime Ripard <[email protected]>");
824 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
825 MODULE_LICENSE("GPL");
This page took 0.089502 seconds and 4 git commands to generate.