]> Git Repo - linux.git/blob - mm/hugetlb.c
mm: remember exclusively mapped anonymous pages with PG_anon_exclusive
[linux.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/tlb.h>
39
40 #include <linux/io.h>
41 #include <linux/hugetlb.h>
42 #include <linux/hugetlb_cgroup.h>
43 #include <linux/node.h>
44 #include <linux/page_owner.h>
45 #include "internal.h"
46 #include "hugetlb_vmemmap.h"
47
48 int hugetlb_max_hstate __read_mostly;
49 unsigned int default_hstate_idx;
50 struct hstate hstates[HUGE_MAX_HSTATE];
51
52 #ifdef CONFIG_CMA
53 static struct cma *hugetlb_cma[MAX_NUMNODES];
54 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
55 static bool hugetlb_cma_page(struct page *page, unsigned int order)
56 {
57         return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
58                                 1 << order);
59 }
60 #else
61 static bool hugetlb_cma_page(struct page *page, unsigned int order)
62 {
63         return false;
64 }
65 #endif
66 static unsigned long hugetlb_cma_size __initdata;
67
68 /*
69  * Minimum page order among possible hugepage sizes, set to a proper value
70  * at boot time.
71  */
72 static unsigned int minimum_order __read_mostly = UINT_MAX;
73
74 __initdata LIST_HEAD(huge_boot_pages);
75
76 /* for command line parsing */
77 static struct hstate * __initdata parsed_hstate;
78 static unsigned long __initdata default_hstate_max_huge_pages;
79 static bool __initdata parsed_valid_hugepagesz = true;
80 static bool __initdata parsed_default_hugepagesz;
81 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
82
83 /*
84  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
85  * free_huge_pages, and surplus_huge_pages.
86  */
87 DEFINE_SPINLOCK(hugetlb_lock);
88
89 /*
90  * Serializes faults on the same logical page.  This is used to
91  * prevent spurious OOMs when the hugepage pool is fully utilized.
92  */
93 static int num_fault_mutexes;
94 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
95
96 /* Forward declaration */
97 static int hugetlb_acct_memory(struct hstate *h, long delta);
98
99 static inline bool subpool_is_free(struct hugepage_subpool *spool)
100 {
101         if (spool->count)
102                 return false;
103         if (spool->max_hpages != -1)
104                 return spool->used_hpages == 0;
105         if (spool->min_hpages != -1)
106                 return spool->rsv_hpages == spool->min_hpages;
107
108         return true;
109 }
110
111 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
112                                                 unsigned long irq_flags)
113 {
114         spin_unlock_irqrestore(&spool->lock, irq_flags);
115
116         /* If no pages are used, and no other handles to the subpool
117          * remain, give up any reservations based on minimum size and
118          * free the subpool */
119         if (subpool_is_free(spool)) {
120                 if (spool->min_hpages != -1)
121                         hugetlb_acct_memory(spool->hstate,
122                                                 -spool->min_hpages);
123                 kfree(spool);
124         }
125 }
126
127 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
128                                                 long min_hpages)
129 {
130         struct hugepage_subpool *spool;
131
132         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
133         if (!spool)
134                 return NULL;
135
136         spin_lock_init(&spool->lock);
137         spool->count = 1;
138         spool->max_hpages = max_hpages;
139         spool->hstate = h;
140         spool->min_hpages = min_hpages;
141
142         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
143                 kfree(spool);
144                 return NULL;
145         }
146         spool->rsv_hpages = min_hpages;
147
148         return spool;
149 }
150
151 void hugepage_put_subpool(struct hugepage_subpool *spool)
152 {
153         unsigned long flags;
154
155         spin_lock_irqsave(&spool->lock, flags);
156         BUG_ON(!spool->count);
157         spool->count--;
158         unlock_or_release_subpool(spool, flags);
159 }
160
161 /*
162  * Subpool accounting for allocating and reserving pages.
163  * Return -ENOMEM if there are not enough resources to satisfy the
164  * request.  Otherwise, return the number of pages by which the
165  * global pools must be adjusted (upward).  The returned value may
166  * only be different than the passed value (delta) in the case where
167  * a subpool minimum size must be maintained.
168  */
169 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
170                                       long delta)
171 {
172         long ret = delta;
173
174         if (!spool)
175                 return ret;
176
177         spin_lock_irq(&spool->lock);
178
179         if (spool->max_hpages != -1) {          /* maximum size accounting */
180                 if ((spool->used_hpages + delta) <= spool->max_hpages)
181                         spool->used_hpages += delta;
182                 else {
183                         ret = -ENOMEM;
184                         goto unlock_ret;
185                 }
186         }
187
188         /* minimum size accounting */
189         if (spool->min_hpages != -1 && spool->rsv_hpages) {
190                 if (delta > spool->rsv_hpages) {
191                         /*
192                          * Asking for more reserves than those already taken on
193                          * behalf of subpool.  Return difference.
194                          */
195                         ret = delta - spool->rsv_hpages;
196                         spool->rsv_hpages = 0;
197                 } else {
198                         ret = 0;        /* reserves already accounted for */
199                         spool->rsv_hpages -= delta;
200                 }
201         }
202
203 unlock_ret:
204         spin_unlock_irq(&spool->lock);
205         return ret;
206 }
207
208 /*
209  * Subpool accounting for freeing and unreserving pages.
210  * Return the number of global page reservations that must be dropped.
211  * The return value may only be different than the passed value (delta)
212  * in the case where a subpool minimum size must be maintained.
213  */
214 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
215                                        long delta)
216 {
217         long ret = delta;
218         unsigned long flags;
219
220         if (!spool)
221                 return delta;
222
223         spin_lock_irqsave(&spool->lock, flags);
224
225         if (spool->max_hpages != -1)            /* maximum size accounting */
226                 spool->used_hpages -= delta;
227
228          /* minimum size accounting */
229         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
230                 if (spool->rsv_hpages + delta <= spool->min_hpages)
231                         ret = 0;
232                 else
233                         ret = spool->rsv_hpages + delta - spool->min_hpages;
234
235                 spool->rsv_hpages += delta;
236                 if (spool->rsv_hpages > spool->min_hpages)
237                         spool->rsv_hpages = spool->min_hpages;
238         }
239
240         /*
241          * If hugetlbfs_put_super couldn't free spool due to an outstanding
242          * quota reference, free it now.
243          */
244         unlock_or_release_subpool(spool, flags);
245
246         return ret;
247 }
248
249 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
250 {
251         return HUGETLBFS_SB(inode->i_sb)->spool;
252 }
253
254 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
255 {
256         return subpool_inode(file_inode(vma->vm_file));
257 }
258
259 /* Helper that removes a struct file_region from the resv_map cache and returns
260  * it for use.
261  */
262 static struct file_region *
263 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
264 {
265         struct file_region *nrg = NULL;
266
267         VM_BUG_ON(resv->region_cache_count <= 0);
268
269         resv->region_cache_count--;
270         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
271         list_del(&nrg->link);
272
273         nrg->from = from;
274         nrg->to = to;
275
276         return nrg;
277 }
278
279 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
280                                               struct file_region *rg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283         nrg->reservation_counter = rg->reservation_counter;
284         nrg->css = rg->css;
285         if (rg->css)
286                 css_get(rg->css);
287 #endif
288 }
289
290 /* Helper that records hugetlb_cgroup uncharge info. */
291 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
292                                                 struct hstate *h,
293                                                 struct resv_map *resv,
294                                                 struct file_region *nrg)
295 {
296 #ifdef CONFIG_CGROUP_HUGETLB
297         if (h_cg) {
298                 nrg->reservation_counter =
299                         &h_cg->rsvd_hugepage[hstate_index(h)];
300                 nrg->css = &h_cg->css;
301                 /*
302                  * The caller will hold exactly one h_cg->css reference for the
303                  * whole contiguous reservation region. But this area might be
304                  * scattered when there are already some file_regions reside in
305                  * it. As a result, many file_regions may share only one css
306                  * reference. In order to ensure that one file_region must hold
307                  * exactly one h_cg->css reference, we should do css_get for
308                  * each file_region and leave the reference held by caller
309                  * untouched.
310                  */
311                 css_get(&h_cg->css);
312                 if (!resv->pages_per_hpage)
313                         resv->pages_per_hpage = pages_per_huge_page(h);
314                 /* pages_per_hpage should be the same for all entries in
315                  * a resv_map.
316                  */
317                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
318         } else {
319                 nrg->reservation_counter = NULL;
320                 nrg->css = NULL;
321         }
322 #endif
323 }
324
325 static void put_uncharge_info(struct file_region *rg)
326 {
327 #ifdef CONFIG_CGROUP_HUGETLB
328         if (rg->css)
329                 css_put(rg->css);
330 #endif
331 }
332
333 static bool has_same_uncharge_info(struct file_region *rg,
334                                    struct file_region *org)
335 {
336 #ifdef CONFIG_CGROUP_HUGETLB
337         return rg->reservation_counter == org->reservation_counter &&
338                rg->css == org->css;
339
340 #else
341         return true;
342 #endif
343 }
344
345 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
346 {
347         struct file_region *nrg = NULL, *prg = NULL;
348
349         prg = list_prev_entry(rg, link);
350         if (&prg->link != &resv->regions && prg->to == rg->from &&
351             has_same_uncharge_info(prg, rg)) {
352                 prg->to = rg->to;
353
354                 list_del(&rg->link);
355                 put_uncharge_info(rg);
356                 kfree(rg);
357
358                 rg = prg;
359         }
360
361         nrg = list_next_entry(rg, link);
362         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
363             has_same_uncharge_info(nrg, rg)) {
364                 nrg->from = rg->from;
365
366                 list_del(&rg->link);
367                 put_uncharge_info(rg);
368                 kfree(rg);
369         }
370 }
371
372 static inline long
373 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
374                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
375                      long *regions_needed)
376 {
377         struct file_region *nrg;
378
379         if (!regions_needed) {
380                 nrg = get_file_region_entry_from_cache(map, from, to);
381                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
382                 list_add(&nrg->link, rg);
383                 coalesce_file_region(map, nrg);
384         } else
385                 *regions_needed += 1;
386
387         return to - from;
388 }
389
390 /*
391  * Must be called with resv->lock held.
392  *
393  * Calling this with regions_needed != NULL will count the number of pages
394  * to be added but will not modify the linked list. And regions_needed will
395  * indicate the number of file_regions needed in the cache to carry out to add
396  * the regions for this range.
397  */
398 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
399                                      struct hugetlb_cgroup *h_cg,
400                                      struct hstate *h, long *regions_needed)
401 {
402         long add = 0;
403         struct list_head *head = &resv->regions;
404         long last_accounted_offset = f;
405         struct file_region *iter, *trg = NULL;
406         struct list_head *rg = NULL;
407
408         if (regions_needed)
409                 *regions_needed = 0;
410
411         /* In this loop, we essentially handle an entry for the range
412          * [last_accounted_offset, iter->from), at every iteration, with some
413          * bounds checking.
414          */
415         list_for_each_entry_safe(iter, trg, head, link) {
416                 /* Skip irrelevant regions that start before our range. */
417                 if (iter->from < f) {
418                         /* If this region ends after the last accounted offset,
419                          * then we need to update last_accounted_offset.
420                          */
421                         if (iter->to > last_accounted_offset)
422                                 last_accounted_offset = iter->to;
423                         continue;
424                 }
425
426                 /* When we find a region that starts beyond our range, we've
427                  * finished.
428                  */
429                 if (iter->from >= t) {
430                         rg = iter->link.prev;
431                         break;
432                 }
433
434                 /* Add an entry for last_accounted_offset -> iter->from, and
435                  * update last_accounted_offset.
436                  */
437                 if (iter->from > last_accounted_offset)
438                         add += hugetlb_resv_map_add(resv, iter->link.prev,
439                                                     last_accounted_offset,
440                                                     iter->from, h, h_cg,
441                                                     regions_needed);
442
443                 last_accounted_offset = iter->to;
444         }
445
446         /* Handle the case where our range extends beyond
447          * last_accounted_offset.
448          */
449         if (!rg)
450                 rg = head->prev;
451         if (last_accounted_offset < t)
452                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
453                                             t, h, h_cg, regions_needed);
454
455         return add;
456 }
457
458 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
459  */
460 static int allocate_file_region_entries(struct resv_map *resv,
461                                         int regions_needed)
462         __must_hold(&resv->lock)
463 {
464         struct list_head allocated_regions;
465         int to_allocate = 0, i = 0;
466         struct file_region *trg = NULL, *rg = NULL;
467
468         VM_BUG_ON(regions_needed < 0);
469
470         INIT_LIST_HEAD(&allocated_regions);
471
472         /*
473          * Check for sufficient descriptors in the cache to accommodate
474          * the number of in progress add operations plus regions_needed.
475          *
476          * This is a while loop because when we drop the lock, some other call
477          * to region_add or region_del may have consumed some region_entries,
478          * so we keep looping here until we finally have enough entries for
479          * (adds_in_progress + regions_needed).
480          */
481         while (resv->region_cache_count <
482                (resv->adds_in_progress + regions_needed)) {
483                 to_allocate = resv->adds_in_progress + regions_needed -
484                               resv->region_cache_count;
485
486                 /* At this point, we should have enough entries in the cache
487                  * for all the existing adds_in_progress. We should only be
488                  * needing to allocate for regions_needed.
489                  */
490                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
491
492                 spin_unlock(&resv->lock);
493                 for (i = 0; i < to_allocate; i++) {
494                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
495                         if (!trg)
496                                 goto out_of_memory;
497                         list_add(&trg->link, &allocated_regions);
498                 }
499
500                 spin_lock(&resv->lock);
501
502                 list_splice(&allocated_regions, &resv->region_cache);
503                 resv->region_cache_count += to_allocate;
504         }
505
506         return 0;
507
508 out_of_memory:
509         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
510                 list_del(&rg->link);
511                 kfree(rg);
512         }
513         return -ENOMEM;
514 }
515
516 /*
517  * Add the huge page range represented by [f, t) to the reserve
518  * map.  Regions will be taken from the cache to fill in this range.
519  * Sufficient regions should exist in the cache due to the previous
520  * call to region_chg with the same range, but in some cases the cache will not
521  * have sufficient entries due to races with other code doing region_add or
522  * region_del.  The extra needed entries will be allocated.
523  *
524  * regions_needed is the out value provided by a previous call to region_chg.
525  *
526  * Return the number of new huge pages added to the map.  This number is greater
527  * than or equal to zero.  If file_region entries needed to be allocated for
528  * this operation and we were not able to allocate, it returns -ENOMEM.
529  * region_add of regions of length 1 never allocate file_regions and cannot
530  * fail; region_chg will always allocate at least 1 entry and a region_add for
531  * 1 page will only require at most 1 entry.
532  */
533 static long region_add(struct resv_map *resv, long f, long t,
534                        long in_regions_needed, struct hstate *h,
535                        struct hugetlb_cgroup *h_cg)
536 {
537         long add = 0, actual_regions_needed = 0;
538
539         spin_lock(&resv->lock);
540 retry:
541
542         /* Count how many regions are actually needed to execute this add. */
543         add_reservation_in_range(resv, f, t, NULL, NULL,
544                                  &actual_regions_needed);
545
546         /*
547          * Check for sufficient descriptors in the cache to accommodate
548          * this add operation. Note that actual_regions_needed may be greater
549          * than in_regions_needed, as the resv_map may have been modified since
550          * the region_chg call. In this case, we need to make sure that we
551          * allocate extra entries, such that we have enough for all the
552          * existing adds_in_progress, plus the excess needed for this
553          * operation.
554          */
555         if (actual_regions_needed > in_regions_needed &&
556             resv->region_cache_count <
557                     resv->adds_in_progress +
558                             (actual_regions_needed - in_regions_needed)) {
559                 /* region_add operation of range 1 should never need to
560                  * allocate file_region entries.
561                  */
562                 VM_BUG_ON(t - f <= 1);
563
564                 if (allocate_file_region_entries(
565                             resv, actual_regions_needed - in_regions_needed)) {
566                         return -ENOMEM;
567                 }
568
569                 goto retry;
570         }
571
572         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
573
574         resv->adds_in_progress -= in_regions_needed;
575
576         spin_unlock(&resv->lock);
577         return add;
578 }
579
580 /*
581  * Examine the existing reserve map and determine how many
582  * huge pages in the specified range [f, t) are NOT currently
583  * represented.  This routine is called before a subsequent
584  * call to region_add that will actually modify the reserve
585  * map to add the specified range [f, t).  region_chg does
586  * not change the number of huge pages represented by the
587  * map.  A number of new file_region structures is added to the cache as a
588  * placeholder, for the subsequent region_add call to use. At least 1
589  * file_region structure is added.
590  *
591  * out_regions_needed is the number of regions added to the
592  * resv->adds_in_progress.  This value needs to be provided to a follow up call
593  * to region_add or region_abort for proper accounting.
594  *
595  * Returns the number of huge pages that need to be added to the existing
596  * reservation map for the range [f, t).  This number is greater or equal to
597  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
598  * is needed and can not be allocated.
599  */
600 static long region_chg(struct resv_map *resv, long f, long t,
601                        long *out_regions_needed)
602 {
603         long chg = 0;
604
605         spin_lock(&resv->lock);
606
607         /* Count how many hugepages in this range are NOT represented. */
608         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
609                                        out_regions_needed);
610
611         if (*out_regions_needed == 0)
612                 *out_regions_needed = 1;
613
614         if (allocate_file_region_entries(resv, *out_regions_needed))
615                 return -ENOMEM;
616
617         resv->adds_in_progress += *out_regions_needed;
618
619         spin_unlock(&resv->lock);
620         return chg;
621 }
622
623 /*
624  * Abort the in progress add operation.  The adds_in_progress field
625  * of the resv_map keeps track of the operations in progress between
626  * calls to region_chg and region_add.  Operations are sometimes
627  * aborted after the call to region_chg.  In such cases, region_abort
628  * is called to decrement the adds_in_progress counter. regions_needed
629  * is the value returned by the region_chg call, it is used to decrement
630  * the adds_in_progress counter.
631  *
632  * NOTE: The range arguments [f, t) are not needed or used in this
633  * routine.  They are kept to make reading the calling code easier as
634  * arguments will match the associated region_chg call.
635  */
636 static void region_abort(struct resv_map *resv, long f, long t,
637                          long regions_needed)
638 {
639         spin_lock(&resv->lock);
640         VM_BUG_ON(!resv->region_cache_count);
641         resv->adds_in_progress -= regions_needed;
642         spin_unlock(&resv->lock);
643 }
644
645 /*
646  * Delete the specified range [f, t) from the reserve map.  If the
647  * t parameter is LONG_MAX, this indicates that ALL regions after f
648  * should be deleted.  Locate the regions which intersect [f, t)
649  * and either trim, delete or split the existing regions.
650  *
651  * Returns the number of huge pages deleted from the reserve map.
652  * In the normal case, the return value is zero or more.  In the
653  * case where a region must be split, a new region descriptor must
654  * be allocated.  If the allocation fails, -ENOMEM will be returned.
655  * NOTE: If the parameter t == LONG_MAX, then we will never split
656  * a region and possibly return -ENOMEM.  Callers specifying
657  * t == LONG_MAX do not need to check for -ENOMEM error.
658  */
659 static long region_del(struct resv_map *resv, long f, long t)
660 {
661         struct list_head *head = &resv->regions;
662         struct file_region *rg, *trg;
663         struct file_region *nrg = NULL;
664         long del = 0;
665
666 retry:
667         spin_lock(&resv->lock);
668         list_for_each_entry_safe(rg, trg, head, link) {
669                 /*
670                  * Skip regions before the range to be deleted.  file_region
671                  * ranges are normally of the form [from, to).  However, there
672                  * may be a "placeholder" entry in the map which is of the form
673                  * (from, to) with from == to.  Check for placeholder entries
674                  * at the beginning of the range to be deleted.
675                  */
676                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
677                         continue;
678
679                 if (rg->from >= t)
680                         break;
681
682                 if (f > rg->from && t < rg->to) { /* Must split region */
683                         /*
684                          * Check for an entry in the cache before dropping
685                          * lock and attempting allocation.
686                          */
687                         if (!nrg &&
688                             resv->region_cache_count > resv->adds_in_progress) {
689                                 nrg = list_first_entry(&resv->region_cache,
690                                                         struct file_region,
691                                                         link);
692                                 list_del(&nrg->link);
693                                 resv->region_cache_count--;
694                         }
695
696                         if (!nrg) {
697                                 spin_unlock(&resv->lock);
698                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
699                                 if (!nrg)
700                                         return -ENOMEM;
701                                 goto retry;
702                         }
703
704                         del += t - f;
705                         hugetlb_cgroup_uncharge_file_region(
706                                 resv, rg, t - f, false);
707
708                         /* New entry for end of split region */
709                         nrg->from = t;
710                         nrg->to = rg->to;
711
712                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
713
714                         INIT_LIST_HEAD(&nrg->link);
715
716                         /* Original entry is trimmed */
717                         rg->to = f;
718
719                         list_add(&nrg->link, &rg->link);
720                         nrg = NULL;
721                         break;
722                 }
723
724                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
725                         del += rg->to - rg->from;
726                         hugetlb_cgroup_uncharge_file_region(resv, rg,
727                                                             rg->to - rg->from, true);
728                         list_del(&rg->link);
729                         kfree(rg);
730                         continue;
731                 }
732
733                 if (f <= rg->from) {    /* Trim beginning of region */
734                         hugetlb_cgroup_uncharge_file_region(resv, rg,
735                                                             t - rg->from, false);
736
737                         del += t - rg->from;
738                         rg->from = t;
739                 } else {                /* Trim end of region */
740                         hugetlb_cgroup_uncharge_file_region(resv, rg,
741                                                             rg->to - f, false);
742
743                         del += rg->to - f;
744                         rg->to = f;
745                 }
746         }
747
748         spin_unlock(&resv->lock);
749         kfree(nrg);
750         return del;
751 }
752
753 /*
754  * A rare out of memory error was encountered which prevented removal of
755  * the reserve map region for a page.  The huge page itself was free'ed
756  * and removed from the page cache.  This routine will adjust the subpool
757  * usage count, and the global reserve count if needed.  By incrementing
758  * these counts, the reserve map entry which could not be deleted will
759  * appear as a "reserved" entry instead of simply dangling with incorrect
760  * counts.
761  */
762 void hugetlb_fix_reserve_counts(struct inode *inode)
763 {
764         struct hugepage_subpool *spool = subpool_inode(inode);
765         long rsv_adjust;
766         bool reserved = false;
767
768         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
769         if (rsv_adjust > 0) {
770                 struct hstate *h = hstate_inode(inode);
771
772                 if (!hugetlb_acct_memory(h, 1))
773                         reserved = true;
774         } else if (!rsv_adjust) {
775                 reserved = true;
776         }
777
778         if (!reserved)
779                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
780 }
781
782 /*
783  * Count and return the number of huge pages in the reserve map
784  * that intersect with the range [f, t).
785  */
786 static long region_count(struct resv_map *resv, long f, long t)
787 {
788         struct list_head *head = &resv->regions;
789         struct file_region *rg;
790         long chg = 0;
791
792         spin_lock(&resv->lock);
793         /* Locate each segment we overlap with, and count that overlap. */
794         list_for_each_entry(rg, head, link) {
795                 long seg_from;
796                 long seg_to;
797
798                 if (rg->to <= f)
799                         continue;
800                 if (rg->from >= t)
801                         break;
802
803                 seg_from = max(rg->from, f);
804                 seg_to = min(rg->to, t);
805
806                 chg += seg_to - seg_from;
807         }
808         spin_unlock(&resv->lock);
809
810         return chg;
811 }
812
813 /*
814  * Convert the address within this vma to the page offset within
815  * the mapping, in pagecache page units; huge pages here.
816  */
817 static pgoff_t vma_hugecache_offset(struct hstate *h,
818                         struct vm_area_struct *vma, unsigned long address)
819 {
820         return ((address - vma->vm_start) >> huge_page_shift(h)) +
821                         (vma->vm_pgoff >> huge_page_order(h));
822 }
823
824 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
825                                      unsigned long address)
826 {
827         return vma_hugecache_offset(hstate_vma(vma), vma, address);
828 }
829 EXPORT_SYMBOL_GPL(linear_hugepage_index);
830
831 /*
832  * Return the size of the pages allocated when backing a VMA. In the majority
833  * cases this will be same size as used by the page table entries.
834  */
835 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
836 {
837         if (vma->vm_ops && vma->vm_ops->pagesize)
838                 return vma->vm_ops->pagesize(vma);
839         return PAGE_SIZE;
840 }
841 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
842
843 /*
844  * Return the page size being used by the MMU to back a VMA. In the majority
845  * of cases, the page size used by the kernel matches the MMU size. On
846  * architectures where it differs, an architecture-specific 'strong'
847  * version of this symbol is required.
848  */
849 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
850 {
851         return vma_kernel_pagesize(vma);
852 }
853
854 /*
855  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
856  * bits of the reservation map pointer, which are always clear due to
857  * alignment.
858  */
859 #define HPAGE_RESV_OWNER    (1UL << 0)
860 #define HPAGE_RESV_UNMAPPED (1UL << 1)
861 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
862
863 /*
864  * These helpers are used to track how many pages are reserved for
865  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
866  * is guaranteed to have their future faults succeed.
867  *
868  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
869  * the reserve counters are updated with the hugetlb_lock held. It is safe
870  * to reset the VMA at fork() time as it is not in use yet and there is no
871  * chance of the global counters getting corrupted as a result of the values.
872  *
873  * The private mapping reservation is represented in a subtly different
874  * manner to a shared mapping.  A shared mapping has a region map associated
875  * with the underlying file, this region map represents the backing file
876  * pages which have ever had a reservation assigned which this persists even
877  * after the page is instantiated.  A private mapping has a region map
878  * associated with the original mmap which is attached to all VMAs which
879  * reference it, this region map represents those offsets which have consumed
880  * reservation ie. where pages have been instantiated.
881  */
882 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
883 {
884         return (unsigned long)vma->vm_private_data;
885 }
886
887 static void set_vma_private_data(struct vm_area_struct *vma,
888                                                         unsigned long value)
889 {
890         vma->vm_private_data = (void *)value;
891 }
892
893 static void
894 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
895                                           struct hugetlb_cgroup *h_cg,
896                                           struct hstate *h)
897 {
898 #ifdef CONFIG_CGROUP_HUGETLB
899         if (!h_cg || !h) {
900                 resv_map->reservation_counter = NULL;
901                 resv_map->pages_per_hpage = 0;
902                 resv_map->css = NULL;
903         } else {
904                 resv_map->reservation_counter =
905                         &h_cg->rsvd_hugepage[hstate_index(h)];
906                 resv_map->pages_per_hpage = pages_per_huge_page(h);
907                 resv_map->css = &h_cg->css;
908         }
909 #endif
910 }
911
912 struct resv_map *resv_map_alloc(void)
913 {
914         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
915         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
916
917         if (!resv_map || !rg) {
918                 kfree(resv_map);
919                 kfree(rg);
920                 return NULL;
921         }
922
923         kref_init(&resv_map->refs);
924         spin_lock_init(&resv_map->lock);
925         INIT_LIST_HEAD(&resv_map->regions);
926
927         resv_map->adds_in_progress = 0;
928         /*
929          * Initialize these to 0. On shared mappings, 0's here indicate these
930          * fields don't do cgroup accounting. On private mappings, these will be
931          * re-initialized to the proper values, to indicate that hugetlb cgroup
932          * reservations are to be un-charged from here.
933          */
934         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
935
936         INIT_LIST_HEAD(&resv_map->region_cache);
937         list_add(&rg->link, &resv_map->region_cache);
938         resv_map->region_cache_count = 1;
939
940         return resv_map;
941 }
942
943 void resv_map_release(struct kref *ref)
944 {
945         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
946         struct list_head *head = &resv_map->region_cache;
947         struct file_region *rg, *trg;
948
949         /* Clear out any active regions before we release the map. */
950         region_del(resv_map, 0, LONG_MAX);
951
952         /* ... and any entries left in the cache */
953         list_for_each_entry_safe(rg, trg, head, link) {
954                 list_del(&rg->link);
955                 kfree(rg);
956         }
957
958         VM_BUG_ON(resv_map->adds_in_progress);
959
960         kfree(resv_map);
961 }
962
963 static inline struct resv_map *inode_resv_map(struct inode *inode)
964 {
965         /*
966          * At inode evict time, i_mapping may not point to the original
967          * address space within the inode.  This original address space
968          * contains the pointer to the resv_map.  So, always use the
969          * address space embedded within the inode.
970          * The VERY common case is inode->mapping == &inode->i_data but,
971          * this may not be true for device special inodes.
972          */
973         return (struct resv_map *)(&inode->i_data)->private_data;
974 }
975
976 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
977 {
978         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
979         if (vma->vm_flags & VM_MAYSHARE) {
980                 struct address_space *mapping = vma->vm_file->f_mapping;
981                 struct inode *inode = mapping->host;
982
983                 return inode_resv_map(inode);
984
985         } else {
986                 return (struct resv_map *)(get_vma_private_data(vma) &
987                                                         ~HPAGE_RESV_MASK);
988         }
989 }
990
991 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
992 {
993         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
994         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
995
996         set_vma_private_data(vma, (get_vma_private_data(vma) &
997                                 HPAGE_RESV_MASK) | (unsigned long)map);
998 }
999
1000 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1001 {
1002         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1004
1005         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1006 }
1007
1008 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1009 {
1010         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1011
1012         return (get_vma_private_data(vma) & flag) != 0;
1013 }
1014
1015 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1016 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1017 {
1018         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1019         if (!(vma->vm_flags & VM_MAYSHARE))
1020                 vma->vm_private_data = (void *)0;
1021 }
1022
1023 /*
1024  * Reset and decrement one ref on hugepage private reservation.
1025  * Called with mm->mmap_sem writer semaphore held.
1026  * This function should be only used by move_vma() and operate on
1027  * same sized vma. It should never come here with last ref on the
1028  * reservation.
1029  */
1030 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1031 {
1032         /*
1033          * Clear the old hugetlb private page reservation.
1034          * It has already been transferred to new_vma.
1035          *
1036          * During a mremap() operation of a hugetlb vma we call move_vma()
1037          * which copies vma into new_vma and unmaps vma. After the copy
1038          * operation both new_vma and vma share a reference to the resv_map
1039          * struct, and at that point vma is about to be unmapped. We don't
1040          * want to return the reservation to the pool at unmap of vma because
1041          * the reservation still lives on in new_vma, so simply decrement the
1042          * ref here and remove the resv_map reference from this vma.
1043          */
1044         struct resv_map *reservations = vma_resv_map(vma);
1045
1046         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1047                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1048                 kref_put(&reservations->refs, resv_map_release);
1049         }
1050
1051         reset_vma_resv_huge_pages(vma);
1052 }
1053
1054 /* Returns true if the VMA has associated reserve pages */
1055 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1056 {
1057         if (vma->vm_flags & VM_NORESERVE) {
1058                 /*
1059                  * This address is already reserved by other process(chg == 0),
1060                  * so, we should decrement reserved count. Without decrementing,
1061                  * reserve count remains after releasing inode, because this
1062                  * allocated page will go into page cache and is regarded as
1063                  * coming from reserved pool in releasing step.  Currently, we
1064                  * don't have any other solution to deal with this situation
1065                  * properly, so add work-around here.
1066                  */
1067                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1068                         return true;
1069                 else
1070                         return false;
1071         }
1072
1073         /* Shared mappings always use reserves */
1074         if (vma->vm_flags & VM_MAYSHARE) {
1075                 /*
1076                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1077                  * be a region map for all pages.  The only situation where
1078                  * there is no region map is if a hole was punched via
1079                  * fallocate.  In this case, there really are no reserves to
1080                  * use.  This situation is indicated if chg != 0.
1081                  */
1082                 if (chg)
1083                         return false;
1084                 else
1085                         return true;
1086         }
1087
1088         /*
1089          * Only the process that called mmap() has reserves for
1090          * private mappings.
1091          */
1092         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1093                 /*
1094                  * Like the shared case above, a hole punch or truncate
1095                  * could have been performed on the private mapping.
1096                  * Examine the value of chg to determine if reserves
1097                  * actually exist or were previously consumed.
1098                  * Very Subtle - The value of chg comes from a previous
1099                  * call to vma_needs_reserves().  The reserve map for
1100                  * private mappings has different (opposite) semantics
1101                  * than that of shared mappings.  vma_needs_reserves()
1102                  * has already taken this difference in semantics into
1103                  * account.  Therefore, the meaning of chg is the same
1104                  * as in the shared case above.  Code could easily be
1105                  * combined, but keeping it separate draws attention to
1106                  * subtle differences.
1107                  */
1108                 if (chg)
1109                         return false;
1110                 else
1111                         return true;
1112         }
1113
1114         return false;
1115 }
1116
1117 static void enqueue_huge_page(struct hstate *h, struct page *page)
1118 {
1119         int nid = page_to_nid(page);
1120
1121         lockdep_assert_held(&hugetlb_lock);
1122         VM_BUG_ON_PAGE(page_count(page), page);
1123
1124         list_move(&page->lru, &h->hugepage_freelists[nid]);
1125         h->free_huge_pages++;
1126         h->free_huge_pages_node[nid]++;
1127         SetHPageFreed(page);
1128 }
1129
1130 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1131 {
1132         struct page *page;
1133         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1134
1135         lockdep_assert_held(&hugetlb_lock);
1136         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1137                 if (pin && !is_pinnable_page(page))
1138                         continue;
1139
1140                 if (PageHWPoison(page))
1141                         continue;
1142
1143                 list_move(&page->lru, &h->hugepage_activelist);
1144                 set_page_refcounted(page);
1145                 ClearHPageFreed(page);
1146                 h->free_huge_pages--;
1147                 h->free_huge_pages_node[nid]--;
1148                 return page;
1149         }
1150
1151         return NULL;
1152 }
1153
1154 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1155                 nodemask_t *nmask)
1156 {
1157         unsigned int cpuset_mems_cookie;
1158         struct zonelist *zonelist;
1159         struct zone *zone;
1160         struct zoneref *z;
1161         int node = NUMA_NO_NODE;
1162
1163         zonelist = node_zonelist(nid, gfp_mask);
1164
1165 retry_cpuset:
1166         cpuset_mems_cookie = read_mems_allowed_begin();
1167         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1168                 struct page *page;
1169
1170                 if (!cpuset_zone_allowed(zone, gfp_mask))
1171                         continue;
1172                 /*
1173                  * no need to ask again on the same node. Pool is node rather than
1174                  * zone aware
1175                  */
1176                 if (zone_to_nid(zone) == node)
1177                         continue;
1178                 node = zone_to_nid(zone);
1179
1180                 page = dequeue_huge_page_node_exact(h, node);
1181                 if (page)
1182                         return page;
1183         }
1184         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1185                 goto retry_cpuset;
1186
1187         return NULL;
1188 }
1189
1190 static struct page *dequeue_huge_page_vma(struct hstate *h,
1191                                 struct vm_area_struct *vma,
1192                                 unsigned long address, int avoid_reserve,
1193                                 long chg)
1194 {
1195         struct page *page = NULL;
1196         struct mempolicy *mpol;
1197         gfp_t gfp_mask;
1198         nodemask_t *nodemask;
1199         int nid;
1200
1201         /*
1202          * A child process with MAP_PRIVATE mappings created by their parent
1203          * have no page reserves. This check ensures that reservations are
1204          * not "stolen". The child may still get SIGKILLed
1205          */
1206         if (!vma_has_reserves(vma, chg) &&
1207                         h->free_huge_pages - h->resv_huge_pages == 0)
1208                 goto err;
1209
1210         /* If reserves cannot be used, ensure enough pages are in the pool */
1211         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1212                 goto err;
1213
1214         gfp_mask = htlb_alloc_mask(h);
1215         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1216
1217         if (mpol_is_preferred_many(mpol)) {
1218                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1219
1220                 /* Fallback to all nodes if page==NULL */
1221                 nodemask = NULL;
1222         }
1223
1224         if (!page)
1225                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1226
1227         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1228                 SetHPageRestoreReserve(page);
1229                 h->resv_huge_pages--;
1230         }
1231
1232         mpol_cond_put(mpol);
1233         return page;
1234
1235 err:
1236         return NULL;
1237 }
1238
1239 /*
1240  * common helper functions for hstate_next_node_to_{alloc|free}.
1241  * We may have allocated or freed a huge page based on a different
1242  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1243  * be outside of *nodes_allowed.  Ensure that we use an allowed
1244  * node for alloc or free.
1245  */
1246 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1247 {
1248         nid = next_node_in(nid, *nodes_allowed);
1249         VM_BUG_ON(nid >= MAX_NUMNODES);
1250
1251         return nid;
1252 }
1253
1254 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1255 {
1256         if (!node_isset(nid, *nodes_allowed))
1257                 nid = next_node_allowed(nid, nodes_allowed);
1258         return nid;
1259 }
1260
1261 /*
1262  * returns the previously saved node ["this node"] from which to
1263  * allocate a persistent huge page for the pool and advance the
1264  * next node from which to allocate, handling wrap at end of node
1265  * mask.
1266  */
1267 static int hstate_next_node_to_alloc(struct hstate *h,
1268                                         nodemask_t *nodes_allowed)
1269 {
1270         int nid;
1271
1272         VM_BUG_ON(!nodes_allowed);
1273
1274         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1275         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1276
1277         return nid;
1278 }
1279
1280 /*
1281  * helper for remove_pool_huge_page() - return the previously saved
1282  * node ["this node"] from which to free a huge page.  Advance the
1283  * next node id whether or not we find a free huge page to free so
1284  * that the next attempt to free addresses the next node.
1285  */
1286 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1287 {
1288         int nid;
1289
1290         VM_BUG_ON(!nodes_allowed);
1291
1292         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1293         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1294
1295         return nid;
1296 }
1297
1298 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1299         for (nr_nodes = nodes_weight(*mask);                            \
1300                 nr_nodes > 0 &&                                         \
1301                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1302                 nr_nodes--)
1303
1304 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1305         for (nr_nodes = nodes_weight(*mask);                            \
1306                 nr_nodes > 0 &&                                         \
1307                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1308                 nr_nodes--)
1309
1310 /* used to demote non-gigantic_huge pages as well */
1311 static void __destroy_compound_gigantic_page(struct page *page,
1312                                         unsigned int order, bool demote)
1313 {
1314         int i;
1315         int nr_pages = 1 << order;
1316         struct page *p = page + 1;
1317
1318         atomic_set(compound_mapcount_ptr(page), 0);
1319         atomic_set(compound_pincount_ptr(page), 0);
1320
1321         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1322                 p->mapping = NULL;
1323                 clear_compound_head(p);
1324                 if (!demote)
1325                         set_page_refcounted(p);
1326         }
1327
1328         set_compound_order(page, 0);
1329 #ifdef CONFIG_64BIT
1330         page[1].compound_nr = 0;
1331 #endif
1332         __ClearPageHead(page);
1333 }
1334
1335 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1336                                         unsigned int order)
1337 {
1338         __destroy_compound_gigantic_page(page, order, true);
1339 }
1340
1341 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1342 static void destroy_compound_gigantic_page(struct page *page,
1343                                         unsigned int order)
1344 {
1345         __destroy_compound_gigantic_page(page, order, false);
1346 }
1347
1348 static void free_gigantic_page(struct page *page, unsigned int order)
1349 {
1350         /*
1351          * If the page isn't allocated using the cma allocator,
1352          * cma_release() returns false.
1353          */
1354 #ifdef CONFIG_CMA
1355         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1356                 return;
1357 #endif
1358
1359         free_contig_range(page_to_pfn(page), 1 << order);
1360 }
1361
1362 #ifdef CONFIG_CONTIG_ALLOC
1363 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1364                 int nid, nodemask_t *nodemask)
1365 {
1366         unsigned long nr_pages = pages_per_huge_page(h);
1367         if (nid == NUMA_NO_NODE)
1368                 nid = numa_mem_id();
1369
1370 #ifdef CONFIG_CMA
1371         {
1372                 struct page *page;
1373                 int node;
1374
1375                 if (hugetlb_cma[nid]) {
1376                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1377                                         huge_page_order(h), true);
1378                         if (page)
1379                                 return page;
1380                 }
1381
1382                 if (!(gfp_mask & __GFP_THISNODE)) {
1383                         for_each_node_mask(node, *nodemask) {
1384                                 if (node == nid || !hugetlb_cma[node])
1385                                         continue;
1386
1387                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1388                                                 huge_page_order(h), true);
1389                                 if (page)
1390                                         return page;
1391                         }
1392                 }
1393         }
1394 #endif
1395
1396         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1397 }
1398
1399 #else /* !CONFIG_CONTIG_ALLOC */
1400 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1401                                         int nid, nodemask_t *nodemask)
1402 {
1403         return NULL;
1404 }
1405 #endif /* CONFIG_CONTIG_ALLOC */
1406
1407 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1408 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1409                                         int nid, nodemask_t *nodemask)
1410 {
1411         return NULL;
1412 }
1413 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1414 static inline void destroy_compound_gigantic_page(struct page *page,
1415                                                 unsigned int order) { }
1416 #endif
1417
1418 /*
1419  * Remove hugetlb page from lists, and update dtor so that page appears
1420  * as just a compound page.
1421  *
1422  * A reference is held on the page, except in the case of demote.
1423  *
1424  * Must be called with hugetlb lock held.
1425  */
1426 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1427                                                         bool adjust_surplus,
1428                                                         bool demote)
1429 {
1430         int nid = page_to_nid(page);
1431
1432         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1433         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1434
1435         lockdep_assert_held(&hugetlb_lock);
1436         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1437                 return;
1438
1439         list_del(&page->lru);
1440
1441         if (HPageFreed(page)) {
1442                 h->free_huge_pages--;
1443                 h->free_huge_pages_node[nid]--;
1444         }
1445         if (adjust_surplus) {
1446                 h->surplus_huge_pages--;
1447                 h->surplus_huge_pages_node[nid]--;
1448         }
1449
1450         /*
1451          * Very subtle
1452          *
1453          * For non-gigantic pages set the destructor to the normal compound
1454          * page dtor.  This is needed in case someone takes an additional
1455          * temporary ref to the page, and freeing is delayed until they drop
1456          * their reference.
1457          *
1458          * For gigantic pages set the destructor to the null dtor.  This
1459          * destructor will never be called.  Before freeing the gigantic
1460          * page destroy_compound_gigantic_page will turn the compound page
1461          * into a simple group of pages.  After this the destructor does not
1462          * apply.
1463          *
1464          * This handles the case where more than one ref is held when and
1465          * after update_and_free_page is called.
1466          *
1467          * In the case of demote we do not ref count the page as it will soon
1468          * be turned into a page of smaller size.
1469          */
1470         if (!demote)
1471                 set_page_refcounted(page);
1472         if (hstate_is_gigantic(h))
1473                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1474         else
1475                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1476
1477         h->nr_huge_pages--;
1478         h->nr_huge_pages_node[nid]--;
1479 }
1480
1481 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1482                                                         bool adjust_surplus)
1483 {
1484         __remove_hugetlb_page(h, page, adjust_surplus, false);
1485 }
1486
1487 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1488                                                         bool adjust_surplus)
1489 {
1490         __remove_hugetlb_page(h, page, adjust_surplus, true);
1491 }
1492
1493 static void add_hugetlb_page(struct hstate *h, struct page *page,
1494                              bool adjust_surplus)
1495 {
1496         int zeroed;
1497         int nid = page_to_nid(page);
1498
1499         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1500
1501         lockdep_assert_held(&hugetlb_lock);
1502
1503         INIT_LIST_HEAD(&page->lru);
1504         h->nr_huge_pages++;
1505         h->nr_huge_pages_node[nid]++;
1506
1507         if (adjust_surplus) {
1508                 h->surplus_huge_pages++;
1509                 h->surplus_huge_pages_node[nid]++;
1510         }
1511
1512         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1513         set_page_private(page, 0);
1514         SetHPageVmemmapOptimized(page);
1515
1516         /*
1517          * This page is about to be managed by the hugetlb allocator and
1518          * should have no users.  Drop our reference, and check for others
1519          * just in case.
1520          */
1521         zeroed = put_page_testzero(page);
1522         if (!zeroed)
1523                 /*
1524                  * It is VERY unlikely soneone else has taken a ref on
1525                  * the page.  In this case, we simply return as the
1526                  * hugetlb destructor (free_huge_page) will be called
1527                  * when this other ref is dropped.
1528                  */
1529                 return;
1530
1531         arch_clear_hugepage_flags(page);
1532         enqueue_huge_page(h, page);
1533 }
1534
1535 static void __update_and_free_page(struct hstate *h, struct page *page)
1536 {
1537         int i;
1538         struct page *subpage = page;
1539
1540         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1541                 return;
1542
1543         if (hugetlb_vmemmap_alloc(h, page)) {
1544                 spin_lock_irq(&hugetlb_lock);
1545                 /*
1546                  * If we cannot allocate vmemmap pages, just refuse to free the
1547                  * page and put the page back on the hugetlb free list and treat
1548                  * as a surplus page.
1549                  */
1550                 add_hugetlb_page(h, page, true);
1551                 spin_unlock_irq(&hugetlb_lock);
1552                 return;
1553         }
1554
1555         for (i = 0; i < pages_per_huge_page(h);
1556              i++, subpage = mem_map_next(subpage, page, i)) {
1557                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1558                                 1 << PG_referenced | 1 << PG_dirty |
1559                                 1 << PG_active | 1 << PG_private |
1560                                 1 << PG_writeback);
1561         }
1562
1563         /*
1564          * Non-gigantic pages demoted from CMA allocated gigantic pages
1565          * need to be given back to CMA in free_gigantic_page.
1566          */
1567         if (hstate_is_gigantic(h) ||
1568             hugetlb_cma_page(page, huge_page_order(h))) {
1569                 destroy_compound_gigantic_page(page, huge_page_order(h));
1570                 free_gigantic_page(page, huge_page_order(h));
1571         } else {
1572                 __free_pages(page, huge_page_order(h));
1573         }
1574 }
1575
1576 /*
1577  * As update_and_free_page() can be called under any context, so we cannot
1578  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1579  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1580  * the vmemmap pages.
1581  *
1582  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1583  * freed and frees them one-by-one. As the page->mapping pointer is going
1584  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1585  * structure of a lockless linked list of huge pages to be freed.
1586  */
1587 static LLIST_HEAD(hpage_freelist);
1588
1589 static void free_hpage_workfn(struct work_struct *work)
1590 {
1591         struct llist_node *node;
1592
1593         node = llist_del_all(&hpage_freelist);
1594
1595         while (node) {
1596                 struct page *page;
1597                 struct hstate *h;
1598
1599                 page = container_of((struct address_space **)node,
1600                                      struct page, mapping);
1601                 node = node->next;
1602                 page->mapping = NULL;
1603                 /*
1604                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1605                  * is going to trigger because a previous call to
1606                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1607                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1608                  */
1609                 h = size_to_hstate(page_size(page));
1610
1611                 __update_and_free_page(h, page);
1612
1613                 cond_resched();
1614         }
1615 }
1616 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1617
1618 static inline void flush_free_hpage_work(struct hstate *h)
1619 {
1620         if (hugetlb_optimize_vmemmap_pages(h))
1621                 flush_work(&free_hpage_work);
1622 }
1623
1624 static void update_and_free_page(struct hstate *h, struct page *page,
1625                                  bool atomic)
1626 {
1627         if (!HPageVmemmapOptimized(page) || !atomic) {
1628                 __update_and_free_page(h, page);
1629                 return;
1630         }
1631
1632         /*
1633          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1634          *
1635          * Only call schedule_work() if hpage_freelist is previously
1636          * empty. Otherwise, schedule_work() had been called but the workfn
1637          * hasn't retrieved the list yet.
1638          */
1639         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1640                 schedule_work(&free_hpage_work);
1641 }
1642
1643 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1644 {
1645         struct page *page, *t_page;
1646
1647         list_for_each_entry_safe(page, t_page, list, lru) {
1648                 update_and_free_page(h, page, false);
1649                 cond_resched();
1650         }
1651 }
1652
1653 struct hstate *size_to_hstate(unsigned long size)
1654 {
1655         struct hstate *h;
1656
1657         for_each_hstate(h) {
1658                 if (huge_page_size(h) == size)
1659                         return h;
1660         }
1661         return NULL;
1662 }
1663
1664 void free_huge_page(struct page *page)
1665 {
1666         /*
1667          * Can't pass hstate in here because it is called from the
1668          * compound page destructor.
1669          */
1670         struct hstate *h = page_hstate(page);
1671         int nid = page_to_nid(page);
1672         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1673         bool restore_reserve;
1674         unsigned long flags;
1675
1676         VM_BUG_ON_PAGE(page_count(page), page);
1677         VM_BUG_ON_PAGE(page_mapcount(page), page);
1678
1679         hugetlb_set_page_subpool(page, NULL);
1680         if (PageAnon(page))
1681                 __ClearPageAnonExclusive(page);
1682         page->mapping = NULL;
1683         restore_reserve = HPageRestoreReserve(page);
1684         ClearHPageRestoreReserve(page);
1685
1686         /*
1687          * If HPageRestoreReserve was set on page, page allocation consumed a
1688          * reservation.  If the page was associated with a subpool, there
1689          * would have been a page reserved in the subpool before allocation
1690          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1691          * reservation, do not call hugepage_subpool_put_pages() as this will
1692          * remove the reserved page from the subpool.
1693          */
1694         if (!restore_reserve) {
1695                 /*
1696                  * A return code of zero implies that the subpool will be
1697                  * under its minimum size if the reservation is not restored
1698                  * after page is free.  Therefore, force restore_reserve
1699                  * operation.
1700                  */
1701                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1702                         restore_reserve = true;
1703         }
1704
1705         spin_lock_irqsave(&hugetlb_lock, flags);
1706         ClearHPageMigratable(page);
1707         hugetlb_cgroup_uncharge_page(hstate_index(h),
1708                                      pages_per_huge_page(h), page);
1709         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1710                                           pages_per_huge_page(h), page);
1711         if (restore_reserve)
1712                 h->resv_huge_pages++;
1713
1714         if (HPageTemporary(page)) {
1715                 remove_hugetlb_page(h, page, false);
1716                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1717                 update_and_free_page(h, page, true);
1718         } else if (h->surplus_huge_pages_node[nid]) {
1719                 /* remove the page from active list */
1720                 remove_hugetlb_page(h, page, true);
1721                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1722                 update_and_free_page(h, page, true);
1723         } else {
1724                 arch_clear_hugepage_flags(page);
1725                 enqueue_huge_page(h, page);
1726                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1727         }
1728 }
1729
1730 /*
1731  * Must be called with the hugetlb lock held
1732  */
1733 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1734 {
1735         lockdep_assert_held(&hugetlb_lock);
1736         h->nr_huge_pages++;
1737         h->nr_huge_pages_node[nid]++;
1738 }
1739
1740 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1741 {
1742         hugetlb_vmemmap_free(h, page);
1743         INIT_LIST_HEAD(&page->lru);
1744         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1745         hugetlb_set_page_subpool(page, NULL);
1746         set_hugetlb_cgroup(page, NULL);
1747         set_hugetlb_cgroup_rsvd(page, NULL);
1748 }
1749
1750 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1751 {
1752         __prep_new_huge_page(h, page);
1753         spin_lock_irq(&hugetlb_lock);
1754         __prep_account_new_huge_page(h, nid);
1755         spin_unlock_irq(&hugetlb_lock);
1756 }
1757
1758 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1759                                                                 bool demote)
1760 {
1761         int i, j;
1762         int nr_pages = 1 << order;
1763         struct page *p = page + 1;
1764
1765         /* we rely on prep_new_huge_page to set the destructor */
1766         set_compound_order(page, order);
1767         __ClearPageReserved(page);
1768         __SetPageHead(page);
1769         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1770                 /*
1771                  * For gigantic hugepages allocated through bootmem at
1772                  * boot, it's safer to be consistent with the not-gigantic
1773                  * hugepages and clear the PG_reserved bit from all tail pages
1774                  * too.  Otherwise drivers using get_user_pages() to access tail
1775                  * pages may get the reference counting wrong if they see
1776                  * PG_reserved set on a tail page (despite the head page not
1777                  * having PG_reserved set).  Enforcing this consistency between
1778                  * head and tail pages allows drivers to optimize away a check
1779                  * on the head page when they need know if put_page() is needed
1780                  * after get_user_pages().
1781                  */
1782                 __ClearPageReserved(p);
1783                 /*
1784                  * Subtle and very unlikely
1785                  *
1786                  * Gigantic 'page allocators' such as memblock or cma will
1787                  * return a set of pages with each page ref counted.  We need
1788                  * to turn this set of pages into a compound page with tail
1789                  * page ref counts set to zero.  Code such as speculative page
1790                  * cache adding could take a ref on a 'to be' tail page.
1791                  * We need to respect any increased ref count, and only set
1792                  * the ref count to zero if count is currently 1.  If count
1793                  * is not 1, we return an error.  An error return indicates
1794                  * the set of pages can not be converted to a gigantic page.
1795                  * The caller who allocated the pages should then discard the
1796                  * pages using the appropriate free interface.
1797                  *
1798                  * In the case of demote, the ref count will be zero.
1799                  */
1800                 if (!demote) {
1801                         if (!page_ref_freeze(p, 1)) {
1802                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1803                                 goto out_error;
1804                         }
1805                 } else {
1806                         VM_BUG_ON_PAGE(page_count(p), p);
1807                 }
1808                 set_compound_head(p, page);
1809         }
1810         atomic_set(compound_mapcount_ptr(page), -1);
1811         atomic_set(compound_pincount_ptr(page), 0);
1812         return true;
1813
1814 out_error:
1815         /* undo tail page modifications made above */
1816         p = page + 1;
1817         for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1818                 clear_compound_head(p);
1819                 set_page_refcounted(p);
1820         }
1821         /* need to clear PG_reserved on remaining tail pages  */
1822         for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1823                 __ClearPageReserved(p);
1824         set_compound_order(page, 0);
1825 #ifdef CONFIG_64BIT
1826         page[1].compound_nr = 0;
1827 #endif
1828         __ClearPageHead(page);
1829         return false;
1830 }
1831
1832 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1833 {
1834         return __prep_compound_gigantic_page(page, order, false);
1835 }
1836
1837 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1838                                                         unsigned int order)
1839 {
1840         return __prep_compound_gigantic_page(page, order, true);
1841 }
1842
1843 /*
1844  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1845  * transparent huge pages.  See the PageTransHuge() documentation for more
1846  * details.
1847  */
1848 int PageHuge(struct page *page)
1849 {
1850         if (!PageCompound(page))
1851                 return 0;
1852
1853         page = compound_head(page);
1854         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1855 }
1856 EXPORT_SYMBOL_GPL(PageHuge);
1857
1858 /*
1859  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1860  * normal or transparent huge pages.
1861  */
1862 int PageHeadHuge(struct page *page_head)
1863 {
1864         if (!PageHead(page_head))
1865                 return 0;
1866
1867         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1868 }
1869 EXPORT_SYMBOL_GPL(PageHeadHuge);
1870
1871 /*
1872  * Find and lock address space (mapping) in write mode.
1873  *
1874  * Upon entry, the page is locked which means that page_mapping() is
1875  * stable.  Due to locking order, we can only trylock_write.  If we can
1876  * not get the lock, simply return NULL to caller.
1877  */
1878 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1879 {
1880         struct address_space *mapping = page_mapping(hpage);
1881
1882         if (!mapping)
1883                 return mapping;
1884
1885         if (i_mmap_trylock_write(mapping))
1886                 return mapping;
1887
1888         return NULL;
1889 }
1890
1891 pgoff_t hugetlb_basepage_index(struct page *page)
1892 {
1893         struct page *page_head = compound_head(page);
1894         pgoff_t index = page_index(page_head);
1895         unsigned long compound_idx;
1896
1897         if (compound_order(page_head) >= MAX_ORDER)
1898                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1899         else
1900                 compound_idx = page - page_head;
1901
1902         return (index << compound_order(page_head)) + compound_idx;
1903 }
1904
1905 static struct page *alloc_buddy_huge_page(struct hstate *h,
1906                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1907                 nodemask_t *node_alloc_noretry)
1908 {
1909         int order = huge_page_order(h);
1910         struct page *page;
1911         bool alloc_try_hard = true;
1912
1913         /*
1914          * By default we always try hard to allocate the page with
1915          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1916          * a loop (to adjust global huge page counts) and previous allocation
1917          * failed, do not continue to try hard on the same node.  Use the
1918          * node_alloc_noretry bitmap to manage this state information.
1919          */
1920         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1921                 alloc_try_hard = false;
1922         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1923         if (alloc_try_hard)
1924                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1925         if (nid == NUMA_NO_NODE)
1926                 nid = numa_mem_id();
1927         page = __alloc_pages(gfp_mask, order, nid, nmask);
1928         if (page)
1929                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1930         else
1931                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1932
1933         /*
1934          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1935          * indicates an overall state change.  Clear bit so that we resume
1936          * normal 'try hard' allocations.
1937          */
1938         if (node_alloc_noretry && page && !alloc_try_hard)
1939                 node_clear(nid, *node_alloc_noretry);
1940
1941         /*
1942          * If we tried hard to get a page but failed, set bit so that
1943          * subsequent attempts will not try as hard until there is an
1944          * overall state change.
1945          */
1946         if (node_alloc_noretry && !page && alloc_try_hard)
1947                 node_set(nid, *node_alloc_noretry);
1948
1949         return page;
1950 }
1951
1952 /*
1953  * Common helper to allocate a fresh hugetlb page. All specific allocators
1954  * should use this function to get new hugetlb pages
1955  */
1956 static struct page *alloc_fresh_huge_page(struct hstate *h,
1957                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1958                 nodemask_t *node_alloc_noretry)
1959 {
1960         struct page *page;
1961         bool retry = false;
1962
1963 retry:
1964         if (hstate_is_gigantic(h))
1965                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1966         else
1967                 page = alloc_buddy_huge_page(h, gfp_mask,
1968                                 nid, nmask, node_alloc_noretry);
1969         if (!page)
1970                 return NULL;
1971
1972         if (hstate_is_gigantic(h)) {
1973                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1974                         /*
1975                          * Rare failure to convert pages to compound page.
1976                          * Free pages and try again - ONCE!
1977                          */
1978                         free_gigantic_page(page, huge_page_order(h));
1979                         if (!retry) {
1980                                 retry = true;
1981                                 goto retry;
1982                         }
1983                         return NULL;
1984                 }
1985         }
1986         prep_new_huge_page(h, page, page_to_nid(page));
1987
1988         return page;
1989 }
1990
1991 /*
1992  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1993  * manner.
1994  */
1995 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1996                                 nodemask_t *node_alloc_noretry)
1997 {
1998         struct page *page;
1999         int nr_nodes, node;
2000         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2001
2002         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2003                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2004                                                 node_alloc_noretry);
2005                 if (page)
2006                         break;
2007         }
2008
2009         if (!page)
2010                 return 0;
2011
2012         put_page(page); /* free it into the hugepage allocator */
2013
2014         return 1;
2015 }
2016
2017 /*
2018  * Remove huge page from pool from next node to free.  Attempt to keep
2019  * persistent huge pages more or less balanced over allowed nodes.
2020  * This routine only 'removes' the hugetlb page.  The caller must make
2021  * an additional call to free the page to low level allocators.
2022  * Called with hugetlb_lock locked.
2023  */
2024 static struct page *remove_pool_huge_page(struct hstate *h,
2025                                                 nodemask_t *nodes_allowed,
2026                                                  bool acct_surplus)
2027 {
2028         int nr_nodes, node;
2029         struct page *page = NULL;
2030
2031         lockdep_assert_held(&hugetlb_lock);
2032         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2033                 /*
2034                  * If we're returning unused surplus pages, only examine
2035                  * nodes with surplus pages.
2036                  */
2037                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2038                     !list_empty(&h->hugepage_freelists[node])) {
2039                         page = list_entry(h->hugepage_freelists[node].next,
2040                                           struct page, lru);
2041                         remove_hugetlb_page(h, page, acct_surplus);
2042                         break;
2043                 }
2044         }
2045
2046         return page;
2047 }
2048
2049 /*
2050  * Dissolve a given free hugepage into free buddy pages. This function does
2051  * nothing for in-use hugepages and non-hugepages.
2052  * This function returns values like below:
2053  *
2054  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2055  *           when the system is under memory pressure and the feature of
2056  *           freeing unused vmemmap pages associated with each hugetlb page
2057  *           is enabled.
2058  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2059  *           (allocated or reserved.)
2060  *       0:  successfully dissolved free hugepages or the page is not a
2061  *           hugepage (considered as already dissolved)
2062  */
2063 int dissolve_free_huge_page(struct page *page)
2064 {
2065         int rc = -EBUSY;
2066
2067 retry:
2068         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2069         if (!PageHuge(page))
2070                 return 0;
2071
2072         spin_lock_irq(&hugetlb_lock);
2073         if (!PageHuge(page)) {
2074                 rc = 0;
2075                 goto out;
2076         }
2077
2078         if (!page_count(page)) {
2079                 struct page *head = compound_head(page);
2080                 struct hstate *h = page_hstate(head);
2081                 if (h->free_huge_pages - h->resv_huge_pages == 0)
2082                         goto out;
2083
2084                 /*
2085                  * We should make sure that the page is already on the free list
2086                  * when it is dissolved.
2087                  */
2088                 if (unlikely(!HPageFreed(head))) {
2089                         spin_unlock_irq(&hugetlb_lock);
2090                         cond_resched();
2091
2092                         /*
2093                          * Theoretically, we should return -EBUSY when we
2094                          * encounter this race. In fact, we have a chance
2095                          * to successfully dissolve the page if we do a
2096                          * retry. Because the race window is quite small.
2097                          * If we seize this opportunity, it is an optimization
2098                          * for increasing the success rate of dissolving page.
2099                          */
2100                         goto retry;
2101                 }
2102
2103                 remove_hugetlb_page(h, head, false);
2104                 h->max_huge_pages--;
2105                 spin_unlock_irq(&hugetlb_lock);
2106
2107                 /*
2108                  * Normally update_and_free_page will allocate required vmemmmap
2109                  * before freeing the page.  update_and_free_page will fail to
2110                  * free the page if it can not allocate required vmemmap.  We
2111                  * need to adjust max_huge_pages if the page is not freed.
2112                  * Attempt to allocate vmemmmap here so that we can take
2113                  * appropriate action on failure.
2114                  */
2115                 rc = hugetlb_vmemmap_alloc(h, head);
2116                 if (!rc) {
2117                         /*
2118                          * Move PageHWPoison flag from head page to the raw
2119                          * error page, which makes any subpages rather than
2120                          * the error page reusable.
2121                          */
2122                         if (PageHWPoison(head) && page != head) {
2123                                 SetPageHWPoison(page);
2124                                 ClearPageHWPoison(head);
2125                         }
2126                         update_and_free_page(h, head, false);
2127                 } else {
2128                         spin_lock_irq(&hugetlb_lock);
2129                         add_hugetlb_page(h, head, false);
2130                         h->max_huge_pages++;
2131                         spin_unlock_irq(&hugetlb_lock);
2132                 }
2133
2134                 return rc;
2135         }
2136 out:
2137         spin_unlock_irq(&hugetlb_lock);
2138         return rc;
2139 }
2140
2141 /*
2142  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2143  * make specified memory blocks removable from the system.
2144  * Note that this will dissolve a free gigantic hugepage completely, if any
2145  * part of it lies within the given range.
2146  * Also note that if dissolve_free_huge_page() returns with an error, all
2147  * free hugepages that were dissolved before that error are lost.
2148  */
2149 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2150 {
2151         unsigned long pfn;
2152         struct page *page;
2153         int rc = 0;
2154
2155         if (!hugepages_supported())
2156                 return rc;
2157
2158         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2159                 page = pfn_to_page(pfn);
2160                 rc = dissolve_free_huge_page(page);
2161                 if (rc)
2162                         break;
2163         }
2164
2165         return rc;
2166 }
2167
2168 /*
2169  * Allocates a fresh surplus page from the page allocator.
2170  */
2171 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2172                 int nid, nodemask_t *nmask, bool zero_ref)
2173 {
2174         struct page *page = NULL;
2175         bool retry = false;
2176
2177         if (hstate_is_gigantic(h))
2178                 return NULL;
2179
2180         spin_lock_irq(&hugetlb_lock);
2181         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2182                 goto out_unlock;
2183         spin_unlock_irq(&hugetlb_lock);
2184
2185 retry:
2186         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2187         if (!page)
2188                 return NULL;
2189
2190         spin_lock_irq(&hugetlb_lock);
2191         /*
2192          * We could have raced with the pool size change.
2193          * Double check that and simply deallocate the new page
2194          * if we would end up overcommiting the surpluses. Abuse
2195          * temporary page to workaround the nasty free_huge_page
2196          * codeflow
2197          */
2198         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2199                 SetHPageTemporary(page);
2200                 spin_unlock_irq(&hugetlb_lock);
2201                 put_page(page);
2202                 return NULL;
2203         }
2204
2205         if (zero_ref) {
2206                 /*
2207                  * Caller requires a page with zero ref count.
2208                  * We will drop ref count here.  If someone else is holding
2209                  * a ref, the page will be freed when they drop it.  Abuse
2210                  * temporary page flag to accomplish this.
2211                  */
2212                 SetHPageTemporary(page);
2213                 if (!put_page_testzero(page)) {
2214                         /*
2215                          * Unexpected inflated ref count on freshly allocated
2216                          * huge.  Retry once.
2217                          */
2218                         pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2219                         spin_unlock_irq(&hugetlb_lock);
2220                         if (retry)
2221                                 return NULL;
2222
2223                         retry = true;
2224                         goto retry;
2225                 }
2226                 ClearHPageTemporary(page);
2227         }
2228
2229         h->surplus_huge_pages++;
2230         h->surplus_huge_pages_node[page_to_nid(page)]++;
2231
2232 out_unlock:
2233         spin_unlock_irq(&hugetlb_lock);
2234
2235         return page;
2236 }
2237
2238 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2239                                      int nid, nodemask_t *nmask)
2240 {
2241         struct page *page;
2242
2243         if (hstate_is_gigantic(h))
2244                 return NULL;
2245
2246         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2247         if (!page)
2248                 return NULL;
2249
2250         /*
2251          * We do not account these pages as surplus because they are only
2252          * temporary and will be released properly on the last reference
2253          */
2254         SetHPageTemporary(page);
2255
2256         return page;
2257 }
2258
2259 /*
2260  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2261  */
2262 static
2263 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2264                 struct vm_area_struct *vma, unsigned long addr)
2265 {
2266         struct page *page = NULL;
2267         struct mempolicy *mpol;
2268         gfp_t gfp_mask = htlb_alloc_mask(h);
2269         int nid;
2270         nodemask_t *nodemask;
2271
2272         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2273         if (mpol_is_preferred_many(mpol)) {
2274                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2275
2276                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2277                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2278
2279                 /* Fallback to all nodes if page==NULL */
2280                 nodemask = NULL;
2281         }
2282
2283         if (!page)
2284                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2285         mpol_cond_put(mpol);
2286         return page;
2287 }
2288
2289 /* page migration callback function */
2290 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2291                 nodemask_t *nmask, gfp_t gfp_mask)
2292 {
2293         spin_lock_irq(&hugetlb_lock);
2294         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2295                 struct page *page;
2296
2297                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2298                 if (page) {
2299                         spin_unlock_irq(&hugetlb_lock);
2300                         return page;
2301                 }
2302         }
2303         spin_unlock_irq(&hugetlb_lock);
2304
2305         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2306 }
2307
2308 /* mempolicy aware migration callback */
2309 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2310                 unsigned long address)
2311 {
2312         struct mempolicy *mpol;
2313         nodemask_t *nodemask;
2314         struct page *page;
2315         gfp_t gfp_mask;
2316         int node;
2317
2318         gfp_mask = htlb_alloc_mask(h);
2319         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2320         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2321         mpol_cond_put(mpol);
2322
2323         return page;
2324 }
2325
2326 /*
2327  * Increase the hugetlb pool such that it can accommodate a reservation
2328  * of size 'delta'.
2329  */
2330 static int gather_surplus_pages(struct hstate *h, long delta)
2331         __must_hold(&hugetlb_lock)
2332 {
2333         struct list_head surplus_list;
2334         struct page *page, *tmp;
2335         int ret;
2336         long i;
2337         long needed, allocated;
2338         bool alloc_ok = true;
2339
2340         lockdep_assert_held(&hugetlb_lock);
2341         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2342         if (needed <= 0) {
2343                 h->resv_huge_pages += delta;
2344                 return 0;
2345         }
2346
2347         allocated = 0;
2348         INIT_LIST_HEAD(&surplus_list);
2349
2350         ret = -ENOMEM;
2351 retry:
2352         spin_unlock_irq(&hugetlb_lock);
2353         for (i = 0; i < needed; i++) {
2354                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2355                                 NUMA_NO_NODE, NULL, true);
2356                 if (!page) {
2357                         alloc_ok = false;
2358                         break;
2359                 }
2360                 list_add(&page->lru, &surplus_list);
2361                 cond_resched();
2362         }
2363         allocated += i;
2364
2365         /*
2366          * After retaking hugetlb_lock, we need to recalculate 'needed'
2367          * because either resv_huge_pages or free_huge_pages may have changed.
2368          */
2369         spin_lock_irq(&hugetlb_lock);
2370         needed = (h->resv_huge_pages + delta) -
2371                         (h->free_huge_pages + allocated);
2372         if (needed > 0) {
2373                 if (alloc_ok)
2374                         goto retry;
2375                 /*
2376                  * We were not able to allocate enough pages to
2377                  * satisfy the entire reservation so we free what
2378                  * we've allocated so far.
2379                  */
2380                 goto free;
2381         }
2382         /*
2383          * The surplus_list now contains _at_least_ the number of extra pages
2384          * needed to accommodate the reservation.  Add the appropriate number
2385          * of pages to the hugetlb pool and free the extras back to the buddy
2386          * allocator.  Commit the entire reservation here to prevent another
2387          * process from stealing the pages as they are added to the pool but
2388          * before they are reserved.
2389          */
2390         needed += allocated;
2391         h->resv_huge_pages += delta;
2392         ret = 0;
2393
2394         /* Free the needed pages to the hugetlb pool */
2395         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2396                 if ((--needed) < 0)
2397                         break;
2398                 /* Add the page to the hugetlb allocator */
2399                 enqueue_huge_page(h, page);
2400         }
2401 free:
2402         spin_unlock_irq(&hugetlb_lock);
2403
2404         /*
2405          * Free unnecessary surplus pages to the buddy allocator.
2406          * Pages have no ref count, call free_huge_page directly.
2407          */
2408         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2409                 free_huge_page(page);
2410         spin_lock_irq(&hugetlb_lock);
2411
2412         return ret;
2413 }
2414
2415 /*
2416  * This routine has two main purposes:
2417  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2418  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2419  *    to the associated reservation map.
2420  * 2) Free any unused surplus pages that may have been allocated to satisfy
2421  *    the reservation.  As many as unused_resv_pages may be freed.
2422  */
2423 static void return_unused_surplus_pages(struct hstate *h,
2424                                         unsigned long unused_resv_pages)
2425 {
2426         unsigned long nr_pages;
2427         struct page *page;
2428         LIST_HEAD(page_list);
2429
2430         lockdep_assert_held(&hugetlb_lock);
2431         /* Uncommit the reservation */
2432         h->resv_huge_pages -= unused_resv_pages;
2433
2434         /* Cannot return gigantic pages currently */
2435         if (hstate_is_gigantic(h))
2436                 goto out;
2437
2438         /*
2439          * Part (or even all) of the reservation could have been backed
2440          * by pre-allocated pages. Only free surplus pages.
2441          */
2442         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2443
2444         /*
2445          * We want to release as many surplus pages as possible, spread
2446          * evenly across all nodes with memory. Iterate across these nodes
2447          * until we can no longer free unreserved surplus pages. This occurs
2448          * when the nodes with surplus pages have no free pages.
2449          * remove_pool_huge_page() will balance the freed pages across the
2450          * on-line nodes with memory and will handle the hstate accounting.
2451          */
2452         while (nr_pages--) {
2453                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2454                 if (!page)
2455                         goto out;
2456
2457                 list_add(&page->lru, &page_list);
2458         }
2459
2460 out:
2461         spin_unlock_irq(&hugetlb_lock);
2462         update_and_free_pages_bulk(h, &page_list);
2463         spin_lock_irq(&hugetlb_lock);
2464 }
2465
2466
2467 /*
2468  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2469  * are used by the huge page allocation routines to manage reservations.
2470  *
2471  * vma_needs_reservation is called to determine if the huge page at addr
2472  * within the vma has an associated reservation.  If a reservation is
2473  * needed, the value 1 is returned.  The caller is then responsible for
2474  * managing the global reservation and subpool usage counts.  After
2475  * the huge page has been allocated, vma_commit_reservation is called
2476  * to add the page to the reservation map.  If the page allocation fails,
2477  * the reservation must be ended instead of committed.  vma_end_reservation
2478  * is called in such cases.
2479  *
2480  * In the normal case, vma_commit_reservation returns the same value
2481  * as the preceding vma_needs_reservation call.  The only time this
2482  * is not the case is if a reserve map was changed between calls.  It
2483  * is the responsibility of the caller to notice the difference and
2484  * take appropriate action.
2485  *
2486  * vma_add_reservation is used in error paths where a reservation must
2487  * be restored when a newly allocated huge page must be freed.  It is
2488  * to be called after calling vma_needs_reservation to determine if a
2489  * reservation exists.
2490  *
2491  * vma_del_reservation is used in error paths where an entry in the reserve
2492  * map was created during huge page allocation and must be removed.  It is to
2493  * be called after calling vma_needs_reservation to determine if a reservation
2494  * exists.
2495  */
2496 enum vma_resv_mode {
2497         VMA_NEEDS_RESV,
2498         VMA_COMMIT_RESV,
2499         VMA_END_RESV,
2500         VMA_ADD_RESV,
2501         VMA_DEL_RESV,
2502 };
2503 static long __vma_reservation_common(struct hstate *h,
2504                                 struct vm_area_struct *vma, unsigned long addr,
2505                                 enum vma_resv_mode mode)
2506 {
2507         struct resv_map *resv;
2508         pgoff_t idx;
2509         long ret;
2510         long dummy_out_regions_needed;
2511
2512         resv = vma_resv_map(vma);
2513         if (!resv)
2514                 return 1;
2515
2516         idx = vma_hugecache_offset(h, vma, addr);
2517         switch (mode) {
2518         case VMA_NEEDS_RESV:
2519                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2520                 /* We assume that vma_reservation_* routines always operate on
2521                  * 1 page, and that adding to resv map a 1 page entry can only
2522                  * ever require 1 region.
2523                  */
2524                 VM_BUG_ON(dummy_out_regions_needed != 1);
2525                 break;
2526         case VMA_COMMIT_RESV:
2527                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2528                 /* region_add calls of range 1 should never fail. */
2529                 VM_BUG_ON(ret < 0);
2530                 break;
2531         case VMA_END_RESV:
2532                 region_abort(resv, idx, idx + 1, 1);
2533                 ret = 0;
2534                 break;
2535         case VMA_ADD_RESV:
2536                 if (vma->vm_flags & VM_MAYSHARE) {
2537                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2538                         /* region_add calls of range 1 should never fail. */
2539                         VM_BUG_ON(ret < 0);
2540                 } else {
2541                         region_abort(resv, idx, idx + 1, 1);
2542                         ret = region_del(resv, idx, idx + 1);
2543                 }
2544                 break;
2545         case VMA_DEL_RESV:
2546                 if (vma->vm_flags & VM_MAYSHARE) {
2547                         region_abort(resv, idx, idx + 1, 1);
2548                         ret = region_del(resv, idx, idx + 1);
2549                 } else {
2550                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2551                         /* region_add calls of range 1 should never fail. */
2552                         VM_BUG_ON(ret < 0);
2553                 }
2554                 break;
2555         default:
2556                 BUG();
2557         }
2558
2559         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2560                 return ret;
2561         /*
2562          * We know private mapping must have HPAGE_RESV_OWNER set.
2563          *
2564          * In most cases, reserves always exist for private mappings.
2565          * However, a file associated with mapping could have been
2566          * hole punched or truncated after reserves were consumed.
2567          * As subsequent fault on such a range will not use reserves.
2568          * Subtle - The reserve map for private mappings has the
2569          * opposite meaning than that of shared mappings.  If NO
2570          * entry is in the reserve map, it means a reservation exists.
2571          * If an entry exists in the reserve map, it means the
2572          * reservation has already been consumed.  As a result, the
2573          * return value of this routine is the opposite of the
2574          * value returned from reserve map manipulation routines above.
2575          */
2576         if (ret > 0)
2577                 return 0;
2578         if (ret == 0)
2579                 return 1;
2580         return ret;
2581 }
2582
2583 static long vma_needs_reservation(struct hstate *h,
2584                         struct vm_area_struct *vma, unsigned long addr)
2585 {
2586         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2587 }
2588
2589 static long vma_commit_reservation(struct hstate *h,
2590                         struct vm_area_struct *vma, unsigned long addr)
2591 {
2592         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2593 }
2594
2595 static void vma_end_reservation(struct hstate *h,
2596                         struct vm_area_struct *vma, unsigned long addr)
2597 {
2598         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2599 }
2600
2601 static long vma_add_reservation(struct hstate *h,
2602                         struct vm_area_struct *vma, unsigned long addr)
2603 {
2604         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2605 }
2606
2607 static long vma_del_reservation(struct hstate *h,
2608                         struct vm_area_struct *vma, unsigned long addr)
2609 {
2610         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2611 }
2612
2613 /*
2614  * This routine is called to restore reservation information on error paths.
2615  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2616  * the hugetlb mutex should remain held when calling this routine.
2617  *
2618  * It handles two specific cases:
2619  * 1) A reservation was in place and the page consumed the reservation.
2620  *    HPageRestoreReserve is set in the page.
2621  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2622  *    not set.  However, alloc_huge_page always updates the reserve map.
2623  *
2624  * In case 1, free_huge_page later in the error path will increment the
2625  * global reserve count.  But, free_huge_page does not have enough context
2626  * to adjust the reservation map.  This case deals primarily with private
2627  * mappings.  Adjust the reserve map here to be consistent with global
2628  * reserve count adjustments to be made by free_huge_page.  Make sure the
2629  * reserve map indicates there is a reservation present.
2630  *
2631  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2632  */
2633 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2634                         unsigned long address, struct page *page)
2635 {
2636         long rc = vma_needs_reservation(h, vma, address);
2637
2638         if (HPageRestoreReserve(page)) {
2639                 if (unlikely(rc < 0))
2640                         /*
2641                          * Rare out of memory condition in reserve map
2642                          * manipulation.  Clear HPageRestoreReserve so that
2643                          * global reserve count will not be incremented
2644                          * by free_huge_page.  This will make it appear
2645                          * as though the reservation for this page was
2646                          * consumed.  This may prevent the task from
2647                          * faulting in the page at a later time.  This
2648                          * is better than inconsistent global huge page
2649                          * accounting of reserve counts.
2650                          */
2651                         ClearHPageRestoreReserve(page);
2652                 else if (rc)
2653                         (void)vma_add_reservation(h, vma, address);
2654                 else
2655                         vma_end_reservation(h, vma, address);
2656         } else {
2657                 if (!rc) {
2658                         /*
2659                          * This indicates there is an entry in the reserve map
2660                          * not added by alloc_huge_page.  We know it was added
2661                          * before the alloc_huge_page call, otherwise
2662                          * HPageRestoreReserve would be set on the page.
2663                          * Remove the entry so that a subsequent allocation
2664                          * does not consume a reservation.
2665                          */
2666                         rc = vma_del_reservation(h, vma, address);
2667                         if (rc < 0)
2668                                 /*
2669                                  * VERY rare out of memory condition.  Since
2670                                  * we can not delete the entry, set
2671                                  * HPageRestoreReserve so that the reserve
2672                                  * count will be incremented when the page
2673                                  * is freed.  This reserve will be consumed
2674                                  * on a subsequent allocation.
2675                                  */
2676                                 SetHPageRestoreReserve(page);
2677                 } else if (rc < 0) {
2678                         /*
2679                          * Rare out of memory condition from
2680                          * vma_needs_reservation call.  Memory allocation is
2681                          * only attempted if a new entry is needed.  Therefore,
2682                          * this implies there is not an entry in the
2683                          * reserve map.
2684                          *
2685                          * For shared mappings, no entry in the map indicates
2686                          * no reservation.  We are done.
2687                          */
2688                         if (!(vma->vm_flags & VM_MAYSHARE))
2689                                 /*
2690                                  * For private mappings, no entry indicates
2691                                  * a reservation is present.  Since we can
2692                                  * not add an entry, set SetHPageRestoreReserve
2693                                  * on the page so reserve count will be
2694                                  * incremented when freed.  This reserve will
2695                                  * be consumed on a subsequent allocation.
2696                                  */
2697                                 SetHPageRestoreReserve(page);
2698                 } else
2699                         /*
2700                          * No reservation present, do nothing
2701                          */
2702                          vma_end_reservation(h, vma, address);
2703         }
2704 }
2705
2706 /*
2707  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2708  * @h: struct hstate old page belongs to
2709  * @old_page: Old page to dissolve
2710  * @list: List to isolate the page in case we need to
2711  * Returns 0 on success, otherwise negated error.
2712  */
2713 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2714                                         struct list_head *list)
2715 {
2716         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2717         int nid = page_to_nid(old_page);
2718         bool alloc_retry = false;
2719         struct page *new_page;
2720         int ret = 0;
2721
2722         /*
2723          * Before dissolving the page, we need to allocate a new one for the
2724          * pool to remain stable.  Here, we allocate the page and 'prep' it
2725          * by doing everything but actually updating counters and adding to
2726          * the pool.  This simplifies and let us do most of the processing
2727          * under the lock.
2728          */
2729 alloc_retry:
2730         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2731         if (!new_page)
2732                 return -ENOMEM;
2733         /*
2734          * If all goes well, this page will be directly added to the free
2735          * list in the pool.  For this the ref count needs to be zero.
2736          * Attempt to drop now, and retry once if needed.  It is VERY
2737          * unlikely there is another ref on the page.
2738          *
2739          * If someone else has a reference to the page, it will be freed
2740          * when they drop their ref.  Abuse temporary page flag to accomplish
2741          * this.  Retry once if there is an inflated ref count.
2742          */
2743         SetHPageTemporary(new_page);
2744         if (!put_page_testzero(new_page)) {
2745                 if (alloc_retry)
2746                         return -EBUSY;
2747
2748                 alloc_retry = true;
2749                 goto alloc_retry;
2750         }
2751         ClearHPageTemporary(new_page);
2752
2753         __prep_new_huge_page(h, new_page);
2754
2755 retry:
2756         spin_lock_irq(&hugetlb_lock);
2757         if (!PageHuge(old_page)) {
2758                 /*
2759                  * Freed from under us. Drop new_page too.
2760                  */
2761                 goto free_new;
2762         } else if (page_count(old_page)) {
2763                 /*
2764                  * Someone has grabbed the page, try to isolate it here.
2765                  * Fail with -EBUSY if not possible.
2766                  */
2767                 spin_unlock_irq(&hugetlb_lock);
2768                 if (!isolate_huge_page(old_page, list))
2769                         ret = -EBUSY;
2770                 spin_lock_irq(&hugetlb_lock);
2771                 goto free_new;
2772         } else if (!HPageFreed(old_page)) {
2773                 /*
2774                  * Page's refcount is 0 but it has not been enqueued in the
2775                  * freelist yet. Race window is small, so we can succeed here if
2776                  * we retry.
2777                  */
2778                 spin_unlock_irq(&hugetlb_lock);
2779                 cond_resched();
2780                 goto retry;
2781         } else {
2782                 /*
2783                  * Ok, old_page is still a genuine free hugepage. Remove it from
2784                  * the freelist and decrease the counters. These will be
2785                  * incremented again when calling __prep_account_new_huge_page()
2786                  * and enqueue_huge_page() for new_page. The counters will remain
2787                  * stable since this happens under the lock.
2788                  */
2789                 remove_hugetlb_page(h, old_page, false);
2790
2791                 /*
2792                  * Ref count on new page is already zero as it was dropped
2793                  * earlier.  It can be directly added to the pool free list.
2794                  */
2795                 __prep_account_new_huge_page(h, nid);
2796                 enqueue_huge_page(h, new_page);
2797
2798                 /*
2799                  * Pages have been replaced, we can safely free the old one.
2800                  */
2801                 spin_unlock_irq(&hugetlb_lock);
2802                 update_and_free_page(h, old_page, false);
2803         }
2804
2805         return ret;
2806
2807 free_new:
2808         spin_unlock_irq(&hugetlb_lock);
2809         /* Page has a zero ref count, but needs a ref to be freed */
2810         set_page_refcounted(new_page);
2811         update_and_free_page(h, new_page, false);
2812
2813         return ret;
2814 }
2815
2816 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2817 {
2818         struct hstate *h;
2819         struct page *head;
2820         int ret = -EBUSY;
2821
2822         /*
2823          * The page might have been dissolved from under our feet, so make sure
2824          * to carefully check the state under the lock.
2825          * Return success when racing as if we dissolved the page ourselves.
2826          */
2827         spin_lock_irq(&hugetlb_lock);
2828         if (PageHuge(page)) {
2829                 head = compound_head(page);
2830                 h = page_hstate(head);
2831         } else {
2832                 spin_unlock_irq(&hugetlb_lock);
2833                 return 0;
2834         }
2835         spin_unlock_irq(&hugetlb_lock);
2836
2837         /*
2838          * Fence off gigantic pages as there is a cyclic dependency between
2839          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2840          * of bailing out right away without further retrying.
2841          */
2842         if (hstate_is_gigantic(h))
2843                 return -ENOMEM;
2844
2845         if (page_count(head) && isolate_huge_page(head, list))
2846                 ret = 0;
2847         else if (!page_count(head))
2848                 ret = alloc_and_dissolve_huge_page(h, head, list);
2849
2850         return ret;
2851 }
2852
2853 struct page *alloc_huge_page(struct vm_area_struct *vma,
2854                                     unsigned long addr, int avoid_reserve)
2855 {
2856         struct hugepage_subpool *spool = subpool_vma(vma);
2857         struct hstate *h = hstate_vma(vma);
2858         struct page *page;
2859         long map_chg, map_commit;
2860         long gbl_chg;
2861         int ret, idx;
2862         struct hugetlb_cgroup *h_cg;
2863         bool deferred_reserve;
2864
2865         idx = hstate_index(h);
2866         /*
2867          * Examine the region/reserve map to determine if the process
2868          * has a reservation for the page to be allocated.  A return
2869          * code of zero indicates a reservation exists (no change).
2870          */
2871         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2872         if (map_chg < 0)
2873                 return ERR_PTR(-ENOMEM);
2874
2875         /*
2876          * Processes that did not create the mapping will have no
2877          * reserves as indicated by the region/reserve map. Check
2878          * that the allocation will not exceed the subpool limit.
2879          * Allocations for MAP_NORESERVE mappings also need to be
2880          * checked against any subpool limit.
2881          */
2882         if (map_chg || avoid_reserve) {
2883                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2884                 if (gbl_chg < 0) {
2885                         vma_end_reservation(h, vma, addr);
2886                         return ERR_PTR(-ENOSPC);
2887                 }
2888
2889                 /*
2890                  * Even though there was no reservation in the region/reserve
2891                  * map, there could be reservations associated with the
2892                  * subpool that can be used.  This would be indicated if the
2893                  * return value of hugepage_subpool_get_pages() is zero.
2894                  * However, if avoid_reserve is specified we still avoid even
2895                  * the subpool reservations.
2896                  */
2897                 if (avoid_reserve)
2898                         gbl_chg = 1;
2899         }
2900
2901         /* If this allocation is not consuming a reservation, charge it now.
2902          */
2903         deferred_reserve = map_chg || avoid_reserve;
2904         if (deferred_reserve) {
2905                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2906                         idx, pages_per_huge_page(h), &h_cg);
2907                 if (ret)
2908                         goto out_subpool_put;
2909         }
2910
2911         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2912         if (ret)
2913                 goto out_uncharge_cgroup_reservation;
2914
2915         spin_lock_irq(&hugetlb_lock);
2916         /*
2917          * glb_chg is passed to indicate whether or not a page must be taken
2918          * from the global free pool (global change).  gbl_chg == 0 indicates
2919          * a reservation exists for the allocation.
2920          */
2921         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2922         if (!page) {
2923                 spin_unlock_irq(&hugetlb_lock);
2924                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2925                 if (!page)
2926                         goto out_uncharge_cgroup;
2927                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2928                         SetHPageRestoreReserve(page);
2929                         h->resv_huge_pages--;
2930                 }
2931                 spin_lock_irq(&hugetlb_lock);
2932                 list_add(&page->lru, &h->hugepage_activelist);
2933                 /* Fall through */
2934         }
2935         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2936         /* If allocation is not consuming a reservation, also store the
2937          * hugetlb_cgroup pointer on the page.
2938          */
2939         if (deferred_reserve) {
2940                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2941                                                   h_cg, page);
2942         }
2943
2944         spin_unlock_irq(&hugetlb_lock);
2945
2946         hugetlb_set_page_subpool(page, spool);
2947
2948         map_commit = vma_commit_reservation(h, vma, addr);
2949         if (unlikely(map_chg > map_commit)) {
2950                 /*
2951                  * The page was added to the reservation map between
2952                  * vma_needs_reservation and vma_commit_reservation.
2953                  * This indicates a race with hugetlb_reserve_pages.
2954                  * Adjust for the subpool count incremented above AND
2955                  * in hugetlb_reserve_pages for the same page.  Also,
2956                  * the reservation count added in hugetlb_reserve_pages
2957                  * no longer applies.
2958                  */
2959                 long rsv_adjust;
2960
2961                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2962                 hugetlb_acct_memory(h, -rsv_adjust);
2963                 if (deferred_reserve)
2964                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2965                                         pages_per_huge_page(h), page);
2966         }
2967         return page;
2968
2969 out_uncharge_cgroup:
2970         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2971 out_uncharge_cgroup_reservation:
2972         if (deferred_reserve)
2973                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2974                                                     h_cg);
2975 out_subpool_put:
2976         if (map_chg || avoid_reserve)
2977                 hugepage_subpool_put_pages(spool, 1);
2978         vma_end_reservation(h, vma, addr);
2979         return ERR_PTR(-ENOSPC);
2980 }
2981
2982 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2983         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2984 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2985 {
2986         struct huge_bootmem_page *m = NULL; /* initialize for clang */
2987         int nr_nodes, node;
2988
2989         /* do node specific alloc */
2990         if (nid != NUMA_NO_NODE) {
2991                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2992                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2993                 if (!m)
2994                         return 0;
2995                 goto found;
2996         }
2997         /* allocate from next node when distributing huge pages */
2998         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2999                 m = memblock_alloc_try_nid_raw(
3000                                 huge_page_size(h), huge_page_size(h),
3001                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3002                 /*
3003                  * Use the beginning of the huge page to store the
3004                  * huge_bootmem_page struct (until gather_bootmem
3005                  * puts them into the mem_map).
3006                  */
3007                 if (!m)
3008                         return 0;
3009                 goto found;
3010         }
3011
3012 found:
3013         /* Put them into a private list first because mem_map is not up yet */
3014         INIT_LIST_HEAD(&m->list);
3015         list_add(&m->list, &huge_boot_pages);
3016         m->hstate = h;
3017         return 1;
3018 }
3019
3020 /*
3021  * Put bootmem huge pages into the standard lists after mem_map is up.
3022  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3023  */
3024 static void __init gather_bootmem_prealloc(void)
3025 {
3026         struct huge_bootmem_page *m;
3027
3028         list_for_each_entry(m, &huge_boot_pages, list) {
3029                 struct page *page = virt_to_page(m);
3030                 struct hstate *h = m->hstate;
3031
3032                 VM_BUG_ON(!hstate_is_gigantic(h));
3033                 WARN_ON(page_count(page) != 1);
3034                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3035                         WARN_ON(PageReserved(page));
3036                         prep_new_huge_page(h, page, page_to_nid(page));
3037                         put_page(page); /* add to the hugepage allocator */
3038                 } else {
3039                         /* VERY unlikely inflated ref count on a tail page */
3040                         free_gigantic_page(page, huge_page_order(h));
3041                 }
3042
3043                 /*
3044                  * We need to restore the 'stolen' pages to totalram_pages
3045                  * in order to fix confusing memory reports from free(1) and
3046                  * other side-effects, like CommitLimit going negative.
3047                  */
3048                 adjust_managed_page_count(page, pages_per_huge_page(h));
3049                 cond_resched();
3050         }
3051 }
3052 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3053 {
3054         unsigned long i;
3055         char buf[32];
3056
3057         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3058                 if (hstate_is_gigantic(h)) {
3059                         if (!alloc_bootmem_huge_page(h, nid))
3060                                 break;
3061                 } else {
3062                         struct page *page;
3063                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3064
3065                         page = alloc_fresh_huge_page(h, gfp_mask, nid,
3066                                         &node_states[N_MEMORY], NULL);
3067                         if (!page)
3068                                 break;
3069                         put_page(page); /* free it into the hugepage allocator */
3070                 }
3071                 cond_resched();
3072         }
3073         if (i == h->max_huge_pages_node[nid])
3074                 return;
3075
3076         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3077         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3078                 h->max_huge_pages_node[nid], buf, nid, i);
3079         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3080         h->max_huge_pages_node[nid] = i;
3081 }
3082
3083 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3084 {
3085         unsigned long i;
3086         nodemask_t *node_alloc_noretry;
3087         bool node_specific_alloc = false;
3088
3089         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3090         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3091                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3092                 return;
3093         }
3094
3095         /* do node specific alloc */
3096         for_each_online_node(i) {
3097                 if (h->max_huge_pages_node[i] > 0) {
3098                         hugetlb_hstate_alloc_pages_onenode(h, i);
3099                         node_specific_alloc = true;
3100                 }
3101         }
3102
3103         if (node_specific_alloc)
3104                 return;
3105
3106         /* below will do all node balanced alloc */
3107         if (!hstate_is_gigantic(h)) {
3108                 /*
3109                  * Bit mask controlling how hard we retry per-node allocations.
3110                  * Ignore errors as lower level routines can deal with
3111                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3112                  * time, we are likely in bigger trouble.
3113                  */
3114                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3115                                                 GFP_KERNEL);
3116         } else {
3117                 /* allocations done at boot time */
3118                 node_alloc_noretry = NULL;
3119         }
3120
3121         /* bit mask controlling how hard we retry per-node allocations */
3122         if (node_alloc_noretry)
3123                 nodes_clear(*node_alloc_noretry);
3124
3125         for (i = 0; i < h->max_huge_pages; ++i) {
3126                 if (hstate_is_gigantic(h)) {
3127                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3128                                 break;
3129                 } else if (!alloc_pool_huge_page(h,
3130                                          &node_states[N_MEMORY],
3131                                          node_alloc_noretry))
3132                         break;
3133                 cond_resched();
3134         }
3135         if (i < h->max_huge_pages) {
3136                 char buf[32];
3137
3138                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3139                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3140                         h->max_huge_pages, buf, i);
3141                 h->max_huge_pages = i;
3142         }
3143         kfree(node_alloc_noretry);
3144 }
3145
3146 static void __init hugetlb_init_hstates(void)
3147 {
3148         struct hstate *h, *h2;
3149
3150         for_each_hstate(h) {
3151                 if (minimum_order > huge_page_order(h))
3152                         minimum_order = huge_page_order(h);
3153
3154                 /* oversize hugepages were init'ed in early boot */
3155                 if (!hstate_is_gigantic(h))
3156                         hugetlb_hstate_alloc_pages(h);
3157
3158                 /*
3159                  * Set demote order for each hstate.  Note that
3160                  * h->demote_order is initially 0.
3161                  * - We can not demote gigantic pages if runtime freeing
3162                  *   is not supported, so skip this.
3163                  * - If CMA allocation is possible, we can not demote
3164                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3165                  */
3166                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3167                         continue;
3168                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3169                         continue;
3170                 for_each_hstate(h2) {
3171                         if (h2 == h)
3172                                 continue;
3173                         if (h2->order < h->order &&
3174                             h2->order > h->demote_order)
3175                                 h->demote_order = h2->order;
3176                 }
3177         }
3178         VM_BUG_ON(minimum_order == UINT_MAX);
3179 }
3180
3181 static void __init report_hugepages(void)
3182 {
3183         struct hstate *h;
3184
3185         for_each_hstate(h) {
3186                 char buf[32];
3187
3188                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3189                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3190                         buf, h->free_huge_pages);
3191         }
3192 }
3193
3194 #ifdef CONFIG_HIGHMEM
3195 static void try_to_free_low(struct hstate *h, unsigned long count,
3196                                                 nodemask_t *nodes_allowed)
3197 {
3198         int i;
3199         LIST_HEAD(page_list);
3200
3201         lockdep_assert_held(&hugetlb_lock);
3202         if (hstate_is_gigantic(h))
3203                 return;
3204
3205         /*
3206          * Collect pages to be freed on a list, and free after dropping lock
3207          */
3208         for_each_node_mask(i, *nodes_allowed) {
3209                 struct page *page, *next;
3210                 struct list_head *freel = &h->hugepage_freelists[i];
3211                 list_for_each_entry_safe(page, next, freel, lru) {
3212                         if (count >= h->nr_huge_pages)
3213                                 goto out;
3214                         if (PageHighMem(page))
3215                                 continue;
3216                         remove_hugetlb_page(h, page, false);
3217                         list_add(&page->lru, &page_list);
3218                 }
3219         }
3220
3221 out:
3222         spin_unlock_irq(&hugetlb_lock);
3223         update_and_free_pages_bulk(h, &page_list);
3224         spin_lock_irq(&hugetlb_lock);
3225 }
3226 #else
3227 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3228                                                 nodemask_t *nodes_allowed)
3229 {
3230 }
3231 #endif
3232
3233 /*
3234  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3235  * balanced by operating on them in a round-robin fashion.
3236  * Returns 1 if an adjustment was made.
3237  */
3238 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3239                                 int delta)
3240 {
3241         int nr_nodes, node;
3242
3243         lockdep_assert_held(&hugetlb_lock);
3244         VM_BUG_ON(delta != -1 && delta != 1);
3245
3246         if (delta < 0) {
3247                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3248                         if (h->surplus_huge_pages_node[node])
3249                                 goto found;
3250                 }
3251         } else {
3252                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3253                         if (h->surplus_huge_pages_node[node] <
3254                                         h->nr_huge_pages_node[node])
3255                                 goto found;
3256                 }
3257         }
3258         return 0;
3259
3260 found:
3261         h->surplus_huge_pages += delta;
3262         h->surplus_huge_pages_node[node] += delta;
3263         return 1;
3264 }
3265
3266 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3267 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3268                               nodemask_t *nodes_allowed)
3269 {
3270         unsigned long min_count, ret;
3271         struct page *page;
3272         LIST_HEAD(page_list);
3273         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3274
3275         /*
3276          * Bit mask controlling how hard we retry per-node allocations.
3277          * If we can not allocate the bit mask, do not attempt to allocate
3278          * the requested huge pages.
3279          */
3280         if (node_alloc_noretry)
3281                 nodes_clear(*node_alloc_noretry);
3282         else
3283                 return -ENOMEM;
3284
3285         /*
3286          * resize_lock mutex prevents concurrent adjustments to number of
3287          * pages in hstate via the proc/sysfs interfaces.
3288          */
3289         mutex_lock(&h->resize_lock);
3290         flush_free_hpage_work(h);
3291         spin_lock_irq(&hugetlb_lock);
3292
3293         /*
3294          * Check for a node specific request.
3295          * Changing node specific huge page count may require a corresponding
3296          * change to the global count.  In any case, the passed node mask
3297          * (nodes_allowed) will restrict alloc/free to the specified node.
3298          */
3299         if (nid != NUMA_NO_NODE) {
3300                 unsigned long old_count = count;
3301
3302                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3303                 /*
3304                  * User may have specified a large count value which caused the
3305                  * above calculation to overflow.  In this case, they wanted
3306                  * to allocate as many huge pages as possible.  Set count to
3307                  * largest possible value to align with their intention.
3308                  */
3309                 if (count < old_count)
3310                         count = ULONG_MAX;
3311         }
3312
3313         /*
3314          * Gigantic pages runtime allocation depend on the capability for large
3315          * page range allocation.
3316          * If the system does not provide this feature, return an error when
3317          * the user tries to allocate gigantic pages but let the user free the
3318          * boottime allocated gigantic pages.
3319          */
3320         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3321                 if (count > persistent_huge_pages(h)) {
3322                         spin_unlock_irq(&hugetlb_lock);
3323                         mutex_unlock(&h->resize_lock);
3324                         NODEMASK_FREE(node_alloc_noretry);
3325                         return -EINVAL;
3326                 }
3327                 /* Fall through to decrease pool */
3328         }
3329
3330         /*
3331          * Increase the pool size
3332          * First take pages out of surplus state.  Then make up the
3333          * remaining difference by allocating fresh huge pages.
3334          *
3335          * We might race with alloc_surplus_huge_page() here and be unable
3336          * to convert a surplus huge page to a normal huge page. That is
3337          * not critical, though, it just means the overall size of the
3338          * pool might be one hugepage larger than it needs to be, but
3339          * within all the constraints specified by the sysctls.
3340          */
3341         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3342                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3343                         break;
3344         }
3345
3346         while (count > persistent_huge_pages(h)) {
3347                 /*
3348                  * If this allocation races such that we no longer need the
3349                  * page, free_huge_page will handle it by freeing the page
3350                  * and reducing the surplus.
3351                  */
3352                 spin_unlock_irq(&hugetlb_lock);
3353
3354                 /* yield cpu to avoid soft lockup */
3355                 cond_resched();
3356
3357                 ret = alloc_pool_huge_page(h, nodes_allowed,
3358                                                 node_alloc_noretry);
3359                 spin_lock_irq(&hugetlb_lock);
3360                 if (!ret)
3361                         goto out;
3362
3363                 /* Bail for signals. Probably ctrl-c from user */
3364                 if (signal_pending(current))
3365                         goto out;
3366         }
3367
3368         /*
3369          * Decrease the pool size
3370          * First return free pages to the buddy allocator (being careful
3371          * to keep enough around to satisfy reservations).  Then place
3372          * pages into surplus state as needed so the pool will shrink
3373          * to the desired size as pages become free.
3374          *
3375          * By placing pages into the surplus state independent of the
3376          * overcommit value, we are allowing the surplus pool size to
3377          * exceed overcommit. There are few sane options here. Since
3378          * alloc_surplus_huge_page() is checking the global counter,
3379          * though, we'll note that we're not allowed to exceed surplus
3380          * and won't grow the pool anywhere else. Not until one of the
3381          * sysctls are changed, or the surplus pages go out of use.
3382          */
3383         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3384         min_count = max(count, min_count);
3385         try_to_free_low(h, min_count, nodes_allowed);
3386
3387         /*
3388          * Collect pages to be removed on list without dropping lock
3389          */
3390         while (min_count < persistent_huge_pages(h)) {
3391                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3392                 if (!page)
3393                         break;
3394
3395                 list_add(&page->lru, &page_list);
3396         }
3397         /* free the pages after dropping lock */
3398         spin_unlock_irq(&hugetlb_lock);
3399         update_and_free_pages_bulk(h, &page_list);
3400         flush_free_hpage_work(h);
3401         spin_lock_irq(&hugetlb_lock);
3402
3403         while (count < persistent_huge_pages(h)) {
3404                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3405                         break;
3406         }
3407 out:
3408         h->max_huge_pages = persistent_huge_pages(h);
3409         spin_unlock_irq(&hugetlb_lock);
3410         mutex_unlock(&h->resize_lock);
3411
3412         NODEMASK_FREE(node_alloc_noretry);
3413
3414         return 0;
3415 }
3416
3417 static int demote_free_huge_page(struct hstate *h, struct page *page)
3418 {
3419         int i, nid = page_to_nid(page);
3420         struct hstate *target_hstate;
3421         int rc = 0;
3422
3423         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3424
3425         remove_hugetlb_page_for_demote(h, page, false);
3426         spin_unlock_irq(&hugetlb_lock);
3427
3428         rc = hugetlb_vmemmap_alloc(h, page);
3429         if (rc) {
3430                 /* Allocation of vmemmmap failed, we can not demote page */
3431                 spin_lock_irq(&hugetlb_lock);
3432                 set_page_refcounted(page);
3433                 add_hugetlb_page(h, page, false);
3434                 return rc;
3435         }
3436
3437         /*
3438          * Use destroy_compound_hugetlb_page_for_demote for all huge page
3439          * sizes as it will not ref count pages.
3440          */
3441         destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3442
3443         /*
3444          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3445          * Without the mutex, pages added to target hstate could be marked
3446          * as surplus.
3447          *
3448          * Note that we already hold h->resize_lock.  To prevent deadlock,
3449          * use the convention of always taking larger size hstate mutex first.
3450          */
3451         mutex_lock(&target_hstate->resize_lock);
3452         for (i = 0; i < pages_per_huge_page(h);
3453                                 i += pages_per_huge_page(target_hstate)) {
3454                 if (hstate_is_gigantic(target_hstate))
3455                         prep_compound_gigantic_page_for_demote(page + i,
3456                                                         target_hstate->order);
3457                 else
3458                         prep_compound_page(page + i, target_hstate->order);
3459                 set_page_private(page + i, 0);
3460                 set_page_refcounted(page + i);
3461                 prep_new_huge_page(target_hstate, page + i, nid);
3462                 put_page(page + i);
3463         }
3464         mutex_unlock(&target_hstate->resize_lock);
3465
3466         spin_lock_irq(&hugetlb_lock);
3467
3468         /*
3469          * Not absolutely necessary, but for consistency update max_huge_pages
3470          * based on pool changes for the demoted page.
3471          */
3472         h->max_huge_pages--;
3473         target_hstate->max_huge_pages += pages_per_huge_page(h);
3474
3475         return rc;
3476 }
3477
3478 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3479         __must_hold(&hugetlb_lock)
3480 {
3481         int nr_nodes, node;
3482         struct page *page;
3483
3484         lockdep_assert_held(&hugetlb_lock);
3485
3486         /* We should never get here if no demote order */
3487         if (!h->demote_order) {
3488                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3489                 return -EINVAL;         /* internal error */
3490         }
3491
3492         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3493                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3494                         if (PageHWPoison(page))
3495                                 continue;
3496
3497                         return demote_free_huge_page(h, page);
3498                 }
3499         }
3500
3501         /*
3502          * Only way to get here is if all pages on free lists are poisoned.
3503          * Return -EBUSY so that caller will not retry.
3504          */
3505         return -EBUSY;
3506 }
3507
3508 #define HSTATE_ATTR_RO(_name) \
3509         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3510
3511 #define HSTATE_ATTR_WO(_name) \
3512         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3513
3514 #define HSTATE_ATTR(_name) \
3515         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3516
3517 static struct kobject *hugepages_kobj;
3518 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3519
3520 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3521
3522 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3523 {
3524         int i;
3525
3526         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3527                 if (hstate_kobjs[i] == kobj) {
3528                         if (nidp)
3529                                 *nidp = NUMA_NO_NODE;
3530                         return &hstates[i];
3531                 }
3532
3533         return kobj_to_node_hstate(kobj, nidp);
3534 }
3535
3536 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3537                                         struct kobj_attribute *attr, char *buf)
3538 {
3539         struct hstate *h;
3540         unsigned long nr_huge_pages;
3541         int nid;
3542
3543         h = kobj_to_hstate(kobj, &nid);
3544         if (nid == NUMA_NO_NODE)
3545                 nr_huge_pages = h->nr_huge_pages;
3546         else
3547                 nr_huge_pages = h->nr_huge_pages_node[nid];
3548
3549         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3550 }
3551
3552 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3553                                            struct hstate *h, int nid,
3554                                            unsigned long count, size_t len)
3555 {
3556         int err;
3557         nodemask_t nodes_allowed, *n_mask;
3558
3559         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3560                 return -EINVAL;
3561
3562         if (nid == NUMA_NO_NODE) {
3563                 /*
3564                  * global hstate attribute
3565                  */
3566                 if (!(obey_mempolicy &&
3567                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3568                         n_mask = &node_states[N_MEMORY];
3569                 else
3570                         n_mask = &nodes_allowed;
3571         } else {
3572                 /*
3573                  * Node specific request.  count adjustment happens in
3574                  * set_max_huge_pages() after acquiring hugetlb_lock.
3575                  */
3576                 init_nodemask_of_node(&nodes_allowed, nid);
3577                 n_mask = &nodes_allowed;
3578         }
3579
3580         err = set_max_huge_pages(h, count, nid, n_mask);
3581
3582         return err ? err : len;
3583 }
3584
3585 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3586                                          struct kobject *kobj, const char *buf,
3587                                          size_t len)
3588 {
3589         struct hstate *h;
3590         unsigned long count;
3591         int nid;
3592         int err;
3593
3594         err = kstrtoul(buf, 10, &count);
3595         if (err)
3596                 return err;
3597
3598         h = kobj_to_hstate(kobj, &nid);
3599         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3600 }
3601
3602 static ssize_t nr_hugepages_show(struct kobject *kobj,
3603                                        struct kobj_attribute *attr, char *buf)
3604 {
3605         return nr_hugepages_show_common(kobj, attr, buf);
3606 }
3607
3608 static ssize_t nr_hugepages_store(struct kobject *kobj,
3609                struct kobj_attribute *attr, const char *buf, size_t len)
3610 {
3611         return nr_hugepages_store_common(false, kobj, buf, len);
3612 }
3613 HSTATE_ATTR(nr_hugepages);
3614
3615 #ifdef CONFIG_NUMA
3616
3617 /*
3618  * hstate attribute for optionally mempolicy-based constraint on persistent
3619  * huge page alloc/free.
3620  */
3621 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3622                                            struct kobj_attribute *attr,
3623                                            char *buf)
3624 {
3625         return nr_hugepages_show_common(kobj, attr, buf);
3626 }
3627
3628 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3629                struct kobj_attribute *attr, const char *buf, size_t len)
3630 {
3631         return nr_hugepages_store_common(true, kobj, buf, len);
3632 }
3633 HSTATE_ATTR(nr_hugepages_mempolicy);
3634 #endif
3635
3636
3637 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3638                                         struct kobj_attribute *attr, char *buf)
3639 {
3640         struct hstate *h = kobj_to_hstate(kobj, NULL);
3641         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3642 }
3643
3644 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3645                 struct kobj_attribute *attr, const char *buf, size_t count)
3646 {
3647         int err;
3648         unsigned long input;
3649         struct hstate *h = kobj_to_hstate(kobj, NULL);
3650
3651         if (hstate_is_gigantic(h))
3652                 return -EINVAL;
3653
3654         err = kstrtoul(buf, 10, &input);
3655         if (err)
3656                 return err;
3657
3658         spin_lock_irq(&hugetlb_lock);
3659         h->nr_overcommit_huge_pages = input;
3660         spin_unlock_irq(&hugetlb_lock);
3661
3662         return count;
3663 }
3664 HSTATE_ATTR(nr_overcommit_hugepages);
3665
3666 static ssize_t free_hugepages_show(struct kobject *kobj,
3667                                         struct kobj_attribute *attr, char *buf)
3668 {
3669         struct hstate *h;
3670         unsigned long free_huge_pages;
3671         int nid;
3672
3673         h = kobj_to_hstate(kobj, &nid);
3674         if (nid == NUMA_NO_NODE)
3675                 free_huge_pages = h->free_huge_pages;
3676         else
3677                 free_huge_pages = h->free_huge_pages_node[nid];
3678
3679         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3680 }
3681 HSTATE_ATTR_RO(free_hugepages);
3682
3683 static ssize_t resv_hugepages_show(struct kobject *kobj,
3684                                         struct kobj_attribute *attr, char *buf)
3685 {
3686         struct hstate *h = kobj_to_hstate(kobj, NULL);
3687         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3688 }
3689 HSTATE_ATTR_RO(resv_hugepages);
3690
3691 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3692                                         struct kobj_attribute *attr, char *buf)
3693 {
3694         struct hstate *h;
3695         unsigned long surplus_huge_pages;
3696         int nid;
3697
3698         h = kobj_to_hstate(kobj, &nid);
3699         if (nid == NUMA_NO_NODE)
3700                 surplus_huge_pages = h->surplus_huge_pages;
3701         else
3702                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3703
3704         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3705 }
3706 HSTATE_ATTR_RO(surplus_hugepages);
3707
3708 static ssize_t demote_store(struct kobject *kobj,
3709                struct kobj_attribute *attr, const char *buf, size_t len)
3710 {
3711         unsigned long nr_demote;
3712         unsigned long nr_available;
3713         nodemask_t nodes_allowed, *n_mask;
3714         struct hstate *h;
3715         int err = 0;
3716         int nid;
3717
3718         err = kstrtoul(buf, 10, &nr_demote);
3719         if (err)
3720                 return err;
3721         h = kobj_to_hstate(kobj, &nid);
3722
3723         if (nid != NUMA_NO_NODE) {
3724                 init_nodemask_of_node(&nodes_allowed, nid);
3725                 n_mask = &nodes_allowed;
3726         } else {
3727                 n_mask = &node_states[N_MEMORY];
3728         }
3729
3730         /* Synchronize with other sysfs operations modifying huge pages */
3731         mutex_lock(&h->resize_lock);
3732         spin_lock_irq(&hugetlb_lock);
3733
3734         while (nr_demote) {
3735                 /*
3736                  * Check for available pages to demote each time thorough the
3737                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3738                  */
3739                 if (nid != NUMA_NO_NODE)
3740                         nr_available = h->free_huge_pages_node[nid];
3741                 else
3742                         nr_available = h->free_huge_pages;
3743                 nr_available -= h->resv_huge_pages;
3744                 if (!nr_available)
3745                         break;
3746
3747                 err = demote_pool_huge_page(h, n_mask);
3748                 if (err)
3749                         break;
3750
3751                 nr_demote--;
3752         }
3753
3754         spin_unlock_irq(&hugetlb_lock);
3755         mutex_unlock(&h->resize_lock);
3756
3757         if (err)
3758                 return err;
3759         return len;
3760 }
3761 HSTATE_ATTR_WO(demote);
3762
3763 static ssize_t demote_size_show(struct kobject *kobj,
3764                                         struct kobj_attribute *attr, char *buf)
3765 {
3766         int nid;
3767         struct hstate *h = kobj_to_hstate(kobj, &nid);
3768         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3769
3770         return sysfs_emit(buf, "%lukB\n", demote_size);
3771 }
3772
3773 static ssize_t demote_size_store(struct kobject *kobj,
3774                                         struct kobj_attribute *attr,
3775                                         const char *buf, size_t count)
3776 {
3777         struct hstate *h, *demote_hstate;
3778         unsigned long demote_size;
3779         unsigned int demote_order;
3780         int nid;
3781
3782         demote_size = (unsigned long)memparse(buf, NULL);
3783
3784         demote_hstate = size_to_hstate(demote_size);
3785         if (!demote_hstate)
3786                 return -EINVAL;
3787         demote_order = demote_hstate->order;
3788         if (demote_order < HUGETLB_PAGE_ORDER)
3789                 return -EINVAL;
3790
3791         /* demote order must be smaller than hstate order */
3792         h = kobj_to_hstate(kobj, &nid);
3793         if (demote_order >= h->order)
3794                 return -EINVAL;
3795
3796         /* resize_lock synchronizes access to demote size and writes */
3797         mutex_lock(&h->resize_lock);
3798         h->demote_order = demote_order;
3799         mutex_unlock(&h->resize_lock);
3800
3801         return count;
3802 }
3803 HSTATE_ATTR(demote_size);
3804
3805 static struct attribute *hstate_attrs[] = {
3806         &nr_hugepages_attr.attr,
3807         &nr_overcommit_hugepages_attr.attr,
3808         &free_hugepages_attr.attr,
3809         &resv_hugepages_attr.attr,
3810         &surplus_hugepages_attr.attr,
3811 #ifdef CONFIG_NUMA
3812         &nr_hugepages_mempolicy_attr.attr,
3813 #endif
3814         NULL,
3815 };
3816
3817 static const struct attribute_group hstate_attr_group = {
3818         .attrs = hstate_attrs,
3819 };
3820
3821 static struct attribute *hstate_demote_attrs[] = {
3822         &demote_size_attr.attr,
3823         &demote_attr.attr,
3824         NULL,
3825 };
3826
3827 static const struct attribute_group hstate_demote_attr_group = {
3828         .attrs = hstate_demote_attrs,
3829 };
3830
3831 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3832                                     struct kobject **hstate_kobjs,
3833                                     const struct attribute_group *hstate_attr_group)
3834 {
3835         int retval;
3836         int hi = hstate_index(h);
3837
3838         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3839         if (!hstate_kobjs[hi])
3840                 return -ENOMEM;
3841
3842         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3843         if (retval) {
3844                 kobject_put(hstate_kobjs[hi]);
3845                 hstate_kobjs[hi] = NULL;
3846         }
3847
3848         if (h->demote_order) {
3849                 if (sysfs_create_group(hstate_kobjs[hi],
3850                                         &hstate_demote_attr_group))
3851                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3852         }
3853
3854         return retval;
3855 }
3856
3857 static void __init hugetlb_sysfs_init(void)
3858 {
3859         struct hstate *h;
3860         int err;
3861
3862         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3863         if (!hugepages_kobj)
3864                 return;
3865
3866         for_each_hstate(h) {
3867                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3868                                          hstate_kobjs, &hstate_attr_group);
3869                 if (err)
3870                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3871         }
3872 }
3873
3874 #ifdef CONFIG_NUMA
3875
3876 /*
3877  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3878  * with node devices in node_devices[] using a parallel array.  The array
3879  * index of a node device or _hstate == node id.
3880  * This is here to avoid any static dependency of the node device driver, in
3881  * the base kernel, on the hugetlb module.
3882  */
3883 struct node_hstate {
3884         struct kobject          *hugepages_kobj;
3885         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3886 };
3887 static struct node_hstate node_hstates[MAX_NUMNODES];
3888
3889 /*
3890  * A subset of global hstate attributes for node devices
3891  */
3892 static struct attribute *per_node_hstate_attrs[] = {
3893         &nr_hugepages_attr.attr,
3894         &free_hugepages_attr.attr,
3895         &surplus_hugepages_attr.attr,
3896         NULL,
3897 };
3898
3899 static const struct attribute_group per_node_hstate_attr_group = {
3900         .attrs = per_node_hstate_attrs,
3901 };
3902
3903 /*
3904  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3905  * Returns node id via non-NULL nidp.
3906  */
3907 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3908 {
3909         int nid;
3910
3911         for (nid = 0; nid < nr_node_ids; nid++) {
3912                 struct node_hstate *nhs = &node_hstates[nid];
3913                 int i;
3914                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3915                         if (nhs->hstate_kobjs[i] == kobj) {
3916                                 if (nidp)
3917                                         *nidp = nid;
3918                                 return &hstates[i];
3919                         }
3920         }
3921
3922         BUG();
3923         return NULL;
3924 }
3925
3926 /*
3927  * Unregister hstate attributes from a single node device.
3928  * No-op if no hstate attributes attached.
3929  */
3930 static void hugetlb_unregister_node(struct node *node)
3931 {
3932         struct hstate *h;
3933         struct node_hstate *nhs = &node_hstates[node->dev.id];
3934
3935         if (!nhs->hugepages_kobj)
3936                 return;         /* no hstate attributes */
3937
3938         for_each_hstate(h) {
3939                 int idx = hstate_index(h);
3940                 if (nhs->hstate_kobjs[idx]) {
3941                         kobject_put(nhs->hstate_kobjs[idx]);
3942                         nhs->hstate_kobjs[idx] = NULL;
3943                 }
3944         }
3945
3946         kobject_put(nhs->hugepages_kobj);
3947         nhs->hugepages_kobj = NULL;
3948 }
3949
3950
3951 /*
3952  * Register hstate attributes for a single node device.
3953  * No-op if attributes already registered.
3954  */
3955 static void hugetlb_register_node(struct node *node)
3956 {
3957         struct hstate *h;
3958         struct node_hstate *nhs = &node_hstates[node->dev.id];
3959         int err;
3960
3961         if (nhs->hugepages_kobj)
3962                 return;         /* already allocated */
3963
3964         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3965                                                         &node->dev.kobj);
3966         if (!nhs->hugepages_kobj)
3967                 return;
3968
3969         for_each_hstate(h) {
3970                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3971                                                 nhs->hstate_kobjs,
3972                                                 &per_node_hstate_attr_group);
3973                 if (err) {
3974                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3975                                 h->name, node->dev.id);
3976                         hugetlb_unregister_node(node);
3977                         break;
3978                 }
3979         }
3980 }
3981
3982 /*
3983  * hugetlb init time:  register hstate attributes for all registered node
3984  * devices of nodes that have memory.  All on-line nodes should have
3985  * registered their associated device by this time.
3986  */
3987 static void __init hugetlb_register_all_nodes(void)
3988 {
3989         int nid;
3990
3991         for_each_node_state(nid, N_MEMORY) {
3992                 struct node *node = node_devices[nid];
3993                 if (node->dev.id == nid)
3994                         hugetlb_register_node(node);
3995         }
3996
3997         /*
3998          * Let the node device driver know we're here so it can
3999          * [un]register hstate attributes on node hotplug.
4000          */
4001         register_hugetlbfs_with_node(hugetlb_register_node,
4002                                      hugetlb_unregister_node);
4003 }
4004 #else   /* !CONFIG_NUMA */
4005
4006 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4007 {
4008         BUG();
4009         if (nidp)
4010                 *nidp = -1;
4011         return NULL;
4012 }
4013
4014 static void hugetlb_register_all_nodes(void) { }
4015
4016 #endif
4017
4018 static int __init hugetlb_init(void)
4019 {
4020         int i;
4021
4022         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4023                         __NR_HPAGEFLAGS);
4024
4025         if (!hugepages_supported()) {
4026                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4027                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4028                 return 0;
4029         }
4030
4031         /*
4032          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4033          * architectures depend on setup being done here.
4034          */
4035         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4036         if (!parsed_default_hugepagesz) {
4037                 /*
4038                  * If we did not parse a default huge page size, set
4039                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4040                  * number of huge pages for this default size was implicitly
4041                  * specified, set that here as well.
4042                  * Note that the implicit setting will overwrite an explicit
4043                  * setting.  A warning will be printed in this case.
4044                  */
4045                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4046                 if (default_hstate_max_huge_pages) {
4047                         if (default_hstate.max_huge_pages) {
4048                                 char buf[32];
4049
4050                                 string_get_size(huge_page_size(&default_hstate),
4051                                         1, STRING_UNITS_2, buf, 32);
4052                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4053                                         default_hstate.max_huge_pages, buf);
4054                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4055                                         default_hstate_max_huge_pages);
4056                         }
4057                         default_hstate.max_huge_pages =
4058                                 default_hstate_max_huge_pages;
4059
4060                         for_each_online_node(i)
4061                                 default_hstate.max_huge_pages_node[i] =
4062                                         default_hugepages_in_node[i];
4063                 }
4064         }
4065
4066         hugetlb_cma_check();
4067         hugetlb_init_hstates();
4068         gather_bootmem_prealloc();
4069         report_hugepages();
4070
4071         hugetlb_sysfs_init();
4072         hugetlb_register_all_nodes();
4073         hugetlb_cgroup_file_init();
4074
4075 #ifdef CONFIG_SMP
4076         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4077 #else
4078         num_fault_mutexes = 1;
4079 #endif
4080         hugetlb_fault_mutex_table =
4081                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4082                               GFP_KERNEL);
4083         BUG_ON(!hugetlb_fault_mutex_table);
4084
4085         for (i = 0; i < num_fault_mutexes; i++)
4086                 mutex_init(&hugetlb_fault_mutex_table[i]);
4087         return 0;
4088 }
4089 subsys_initcall(hugetlb_init);
4090
4091 /* Overwritten by architectures with more huge page sizes */
4092 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4093 {
4094         return size == HPAGE_SIZE;
4095 }
4096
4097 void __init hugetlb_add_hstate(unsigned int order)
4098 {
4099         struct hstate *h;
4100         unsigned long i;
4101
4102         if (size_to_hstate(PAGE_SIZE << order)) {
4103                 return;
4104         }
4105         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4106         BUG_ON(order == 0);
4107         h = &hstates[hugetlb_max_hstate++];
4108         mutex_init(&h->resize_lock);
4109         h->order = order;
4110         h->mask = ~(huge_page_size(h) - 1);
4111         for (i = 0; i < MAX_NUMNODES; ++i)
4112                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4113         INIT_LIST_HEAD(&h->hugepage_activelist);
4114         h->next_nid_to_alloc = first_memory_node;
4115         h->next_nid_to_free = first_memory_node;
4116         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4117                                         huge_page_size(h)/1024);
4118         hugetlb_vmemmap_init(h);
4119
4120         parsed_hstate = h;
4121 }
4122
4123 bool __init __weak hugetlb_node_alloc_supported(void)
4124 {
4125         return true;
4126 }
4127
4128 static void __init hugepages_clear_pages_in_node(void)
4129 {
4130         if (!hugetlb_max_hstate) {
4131                 default_hstate_max_huge_pages = 0;
4132                 memset(default_hugepages_in_node, 0,
4133                         MAX_NUMNODES * sizeof(unsigned int));
4134         } else {
4135                 parsed_hstate->max_huge_pages = 0;
4136                 memset(parsed_hstate->max_huge_pages_node, 0,
4137                         MAX_NUMNODES * sizeof(unsigned int));
4138         }
4139 }
4140
4141 /*
4142  * hugepages command line processing
4143  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4144  * specification.  If not, ignore the hugepages value.  hugepages can also
4145  * be the first huge page command line  option in which case it implicitly
4146  * specifies the number of huge pages for the default size.
4147  */
4148 static int __init hugepages_setup(char *s)
4149 {
4150         unsigned long *mhp;
4151         static unsigned long *last_mhp;
4152         int node = NUMA_NO_NODE;
4153         int count;
4154         unsigned long tmp;
4155         char *p = s;
4156
4157         if (!parsed_valid_hugepagesz) {
4158                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4159                 parsed_valid_hugepagesz = true;
4160                 return 1;
4161         }
4162
4163         /*
4164          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4165          * yet, so this hugepages= parameter goes to the "default hstate".
4166          * Otherwise, it goes with the previously parsed hugepagesz or
4167          * default_hugepagesz.
4168          */
4169         else if (!hugetlb_max_hstate)
4170                 mhp = &default_hstate_max_huge_pages;
4171         else
4172                 mhp = &parsed_hstate->max_huge_pages;
4173
4174         if (mhp == last_mhp) {
4175                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4176                 return 1;
4177         }
4178
4179         while (*p) {
4180                 count = 0;
4181                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4182                         goto invalid;
4183                 /* Parameter is node format */
4184                 if (p[count] == ':') {
4185                         if (!hugetlb_node_alloc_supported()) {
4186                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4187                                 return 1;
4188                         }
4189                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4190                                 goto invalid;
4191                         node = array_index_nospec(tmp, MAX_NUMNODES);
4192                         p += count + 1;
4193                         /* Parse hugepages */
4194                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4195                                 goto invalid;
4196                         if (!hugetlb_max_hstate)
4197                                 default_hugepages_in_node[node] = tmp;
4198                         else
4199                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4200                         *mhp += tmp;
4201                         /* Go to parse next node*/
4202                         if (p[count] == ',')
4203                                 p += count + 1;
4204                         else
4205                                 break;
4206                 } else {
4207                         if (p != s)
4208                                 goto invalid;
4209                         *mhp = tmp;
4210                         break;
4211                 }
4212         }
4213
4214         /*
4215          * Global state is always initialized later in hugetlb_init.
4216          * But we need to allocate gigantic hstates here early to still
4217          * use the bootmem allocator.
4218          */
4219         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4220                 hugetlb_hstate_alloc_pages(parsed_hstate);
4221
4222         last_mhp = mhp;
4223
4224         return 1;
4225
4226 invalid:
4227         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4228         hugepages_clear_pages_in_node();
4229         return 1;
4230 }
4231 __setup("hugepages=", hugepages_setup);
4232
4233 /*
4234  * hugepagesz command line processing
4235  * A specific huge page size can only be specified once with hugepagesz.
4236  * hugepagesz is followed by hugepages on the command line.  The global
4237  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4238  * hugepagesz argument was valid.
4239  */
4240 static int __init hugepagesz_setup(char *s)
4241 {
4242         unsigned long size;
4243         struct hstate *h;
4244
4245         parsed_valid_hugepagesz = false;
4246         size = (unsigned long)memparse(s, NULL);
4247
4248         if (!arch_hugetlb_valid_size(size)) {
4249                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4250                 return 1;
4251         }
4252
4253         h = size_to_hstate(size);
4254         if (h) {
4255                 /*
4256                  * hstate for this size already exists.  This is normally
4257                  * an error, but is allowed if the existing hstate is the
4258                  * default hstate.  More specifically, it is only allowed if
4259                  * the number of huge pages for the default hstate was not
4260                  * previously specified.
4261                  */
4262                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4263                     default_hstate.max_huge_pages) {
4264                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4265                         return 1;
4266                 }
4267
4268                 /*
4269                  * No need to call hugetlb_add_hstate() as hstate already
4270                  * exists.  But, do set parsed_hstate so that a following
4271                  * hugepages= parameter will be applied to this hstate.
4272                  */
4273                 parsed_hstate = h;
4274                 parsed_valid_hugepagesz = true;
4275                 return 1;
4276         }
4277
4278         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4279         parsed_valid_hugepagesz = true;
4280         return 1;
4281 }
4282 __setup("hugepagesz=", hugepagesz_setup);
4283
4284 /*
4285  * default_hugepagesz command line input
4286  * Only one instance of default_hugepagesz allowed on command line.
4287  */
4288 static int __init default_hugepagesz_setup(char *s)
4289 {
4290         unsigned long size;
4291         int i;
4292
4293         parsed_valid_hugepagesz = false;
4294         if (parsed_default_hugepagesz) {
4295                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4296                 return 1;
4297         }
4298
4299         size = (unsigned long)memparse(s, NULL);
4300
4301         if (!arch_hugetlb_valid_size(size)) {
4302                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4303                 return 1;
4304         }
4305
4306         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4307         parsed_valid_hugepagesz = true;
4308         parsed_default_hugepagesz = true;
4309         default_hstate_idx = hstate_index(size_to_hstate(size));
4310
4311         /*
4312          * The number of default huge pages (for this size) could have been
4313          * specified as the first hugetlb parameter: hugepages=X.  If so,
4314          * then default_hstate_max_huge_pages is set.  If the default huge
4315          * page size is gigantic (>= MAX_ORDER), then the pages must be
4316          * allocated here from bootmem allocator.
4317          */
4318         if (default_hstate_max_huge_pages) {
4319                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4320                 for_each_online_node(i)
4321                         default_hstate.max_huge_pages_node[i] =
4322                                 default_hugepages_in_node[i];
4323                 if (hstate_is_gigantic(&default_hstate))
4324                         hugetlb_hstate_alloc_pages(&default_hstate);
4325                 default_hstate_max_huge_pages = 0;
4326         }
4327
4328         return 1;
4329 }
4330 __setup("default_hugepagesz=", default_hugepagesz_setup);
4331
4332 static unsigned int allowed_mems_nr(struct hstate *h)
4333 {
4334         int node;
4335         unsigned int nr = 0;
4336         nodemask_t *mpol_allowed;
4337         unsigned int *array = h->free_huge_pages_node;
4338         gfp_t gfp_mask = htlb_alloc_mask(h);
4339
4340         mpol_allowed = policy_nodemask_current(gfp_mask);
4341
4342         for_each_node_mask(node, cpuset_current_mems_allowed) {
4343                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
4344                         nr += array[node];
4345         }
4346
4347         return nr;
4348 }
4349
4350 #ifdef CONFIG_SYSCTL
4351 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4352                                           void *buffer, size_t *length,
4353                                           loff_t *ppos, unsigned long *out)
4354 {
4355         struct ctl_table dup_table;
4356
4357         /*
4358          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4359          * can duplicate the @table and alter the duplicate of it.
4360          */
4361         dup_table = *table;
4362         dup_table.data = out;
4363
4364         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4365 }
4366
4367 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4368                          struct ctl_table *table, int write,
4369                          void *buffer, size_t *length, loff_t *ppos)
4370 {
4371         struct hstate *h = &default_hstate;
4372         unsigned long tmp = h->max_huge_pages;
4373         int ret;
4374
4375         if (!hugepages_supported())
4376                 return -EOPNOTSUPP;
4377
4378         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4379                                              &tmp);
4380         if (ret)
4381                 goto out;
4382
4383         if (write)
4384                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4385                                                   NUMA_NO_NODE, tmp, *length);
4386 out:
4387         return ret;
4388 }
4389
4390 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4391                           void *buffer, size_t *length, loff_t *ppos)
4392 {
4393
4394         return hugetlb_sysctl_handler_common(false, table, write,
4395                                                         buffer, length, ppos);
4396 }
4397
4398 #ifdef CONFIG_NUMA
4399 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4400                           void *buffer, size_t *length, loff_t *ppos)
4401 {
4402         return hugetlb_sysctl_handler_common(true, table, write,
4403                                                         buffer, length, ppos);
4404 }
4405 #endif /* CONFIG_NUMA */
4406
4407 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4408                 void *buffer, size_t *length, loff_t *ppos)
4409 {
4410         struct hstate *h = &default_hstate;
4411         unsigned long tmp;
4412         int ret;
4413
4414         if (!hugepages_supported())
4415                 return -EOPNOTSUPP;
4416
4417         tmp = h->nr_overcommit_huge_pages;
4418
4419         if (write && hstate_is_gigantic(h))
4420                 return -EINVAL;
4421
4422         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4423                                              &tmp);
4424         if (ret)
4425                 goto out;
4426
4427         if (write) {
4428                 spin_lock_irq(&hugetlb_lock);
4429                 h->nr_overcommit_huge_pages = tmp;
4430                 spin_unlock_irq(&hugetlb_lock);
4431         }
4432 out:
4433         return ret;
4434 }
4435
4436 #endif /* CONFIG_SYSCTL */
4437
4438 void hugetlb_report_meminfo(struct seq_file *m)
4439 {
4440         struct hstate *h;
4441         unsigned long total = 0;
4442
4443         if (!hugepages_supported())
4444                 return;
4445
4446         for_each_hstate(h) {
4447                 unsigned long count = h->nr_huge_pages;
4448
4449                 total += huge_page_size(h) * count;
4450
4451                 if (h == &default_hstate)
4452                         seq_printf(m,
4453                                    "HugePages_Total:   %5lu\n"
4454                                    "HugePages_Free:    %5lu\n"
4455                                    "HugePages_Rsvd:    %5lu\n"
4456                                    "HugePages_Surp:    %5lu\n"
4457                                    "Hugepagesize:   %8lu kB\n",
4458                                    count,
4459                                    h->free_huge_pages,
4460                                    h->resv_huge_pages,
4461                                    h->surplus_huge_pages,
4462                                    huge_page_size(h) / SZ_1K);
4463         }
4464
4465         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4466 }
4467
4468 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4469 {
4470         struct hstate *h = &default_hstate;
4471
4472         if (!hugepages_supported())
4473                 return 0;
4474
4475         return sysfs_emit_at(buf, len,
4476                              "Node %d HugePages_Total: %5u\n"
4477                              "Node %d HugePages_Free:  %5u\n"
4478                              "Node %d HugePages_Surp:  %5u\n",
4479                              nid, h->nr_huge_pages_node[nid],
4480                              nid, h->free_huge_pages_node[nid],
4481                              nid, h->surplus_huge_pages_node[nid]);
4482 }
4483
4484 void hugetlb_show_meminfo(void)
4485 {
4486         struct hstate *h;
4487         int nid;
4488
4489         if (!hugepages_supported())
4490                 return;
4491
4492         for_each_node_state(nid, N_MEMORY)
4493                 for_each_hstate(h)
4494                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4495                                 nid,
4496                                 h->nr_huge_pages_node[nid],
4497                                 h->free_huge_pages_node[nid],
4498                                 h->surplus_huge_pages_node[nid],
4499                                 huge_page_size(h) / SZ_1K);
4500 }
4501
4502 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4503 {
4504         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4505                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4506 }
4507
4508 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4509 unsigned long hugetlb_total_pages(void)
4510 {
4511         struct hstate *h;
4512         unsigned long nr_total_pages = 0;
4513
4514         for_each_hstate(h)
4515                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4516         return nr_total_pages;
4517 }
4518
4519 static int hugetlb_acct_memory(struct hstate *h, long delta)
4520 {
4521         int ret = -ENOMEM;
4522
4523         if (!delta)
4524                 return 0;
4525
4526         spin_lock_irq(&hugetlb_lock);
4527         /*
4528          * When cpuset is configured, it breaks the strict hugetlb page
4529          * reservation as the accounting is done on a global variable. Such
4530          * reservation is completely rubbish in the presence of cpuset because
4531          * the reservation is not checked against page availability for the
4532          * current cpuset. Application can still potentially OOM'ed by kernel
4533          * with lack of free htlb page in cpuset that the task is in.
4534          * Attempt to enforce strict accounting with cpuset is almost
4535          * impossible (or too ugly) because cpuset is too fluid that
4536          * task or memory node can be dynamically moved between cpusets.
4537          *
4538          * The change of semantics for shared hugetlb mapping with cpuset is
4539          * undesirable. However, in order to preserve some of the semantics,
4540          * we fall back to check against current free page availability as
4541          * a best attempt and hopefully to minimize the impact of changing
4542          * semantics that cpuset has.
4543          *
4544          * Apart from cpuset, we also have memory policy mechanism that
4545          * also determines from which node the kernel will allocate memory
4546          * in a NUMA system. So similar to cpuset, we also should consider
4547          * the memory policy of the current task. Similar to the description
4548          * above.
4549          */
4550         if (delta > 0) {
4551                 if (gather_surplus_pages(h, delta) < 0)
4552                         goto out;
4553
4554                 if (delta > allowed_mems_nr(h)) {
4555                         return_unused_surplus_pages(h, delta);
4556                         goto out;
4557                 }
4558         }
4559
4560         ret = 0;
4561         if (delta < 0)
4562                 return_unused_surplus_pages(h, (unsigned long) -delta);
4563
4564 out:
4565         spin_unlock_irq(&hugetlb_lock);
4566         return ret;
4567 }
4568
4569 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4570 {
4571         struct resv_map *resv = vma_resv_map(vma);
4572
4573         /*
4574          * This new VMA should share its siblings reservation map if present.
4575          * The VMA will only ever have a valid reservation map pointer where
4576          * it is being copied for another still existing VMA.  As that VMA
4577          * has a reference to the reservation map it cannot disappear until
4578          * after this open call completes.  It is therefore safe to take a
4579          * new reference here without additional locking.
4580          */
4581         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4582                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4583                 kref_get(&resv->refs);
4584         }
4585 }
4586
4587 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4588 {
4589         struct hstate *h = hstate_vma(vma);
4590         struct resv_map *resv = vma_resv_map(vma);
4591         struct hugepage_subpool *spool = subpool_vma(vma);
4592         unsigned long reserve, start, end;
4593         long gbl_reserve;
4594
4595         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4596                 return;
4597
4598         start = vma_hugecache_offset(h, vma, vma->vm_start);
4599         end = vma_hugecache_offset(h, vma, vma->vm_end);
4600
4601         reserve = (end - start) - region_count(resv, start, end);
4602         hugetlb_cgroup_uncharge_counter(resv, start, end);
4603         if (reserve) {
4604                 /*
4605                  * Decrement reserve counts.  The global reserve count may be
4606                  * adjusted if the subpool has a minimum size.
4607                  */
4608                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4609                 hugetlb_acct_memory(h, -gbl_reserve);
4610         }
4611
4612         kref_put(&resv->refs, resv_map_release);
4613 }
4614
4615 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4616 {
4617         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4618                 return -EINVAL;
4619         return 0;
4620 }
4621
4622 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4623 {
4624         return huge_page_size(hstate_vma(vma));
4625 }
4626
4627 /*
4628  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4629  * handle_mm_fault() to try to instantiate regular-sized pages in the
4630  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4631  * this far.
4632  */
4633 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4634 {
4635         BUG();
4636         return 0;
4637 }
4638
4639 /*
4640  * When a new function is introduced to vm_operations_struct and added
4641  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4642  * This is because under System V memory model, mappings created via
4643  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4644  * their original vm_ops are overwritten with shm_vm_ops.
4645  */
4646 const struct vm_operations_struct hugetlb_vm_ops = {
4647         .fault = hugetlb_vm_op_fault,
4648         .open = hugetlb_vm_op_open,
4649         .close = hugetlb_vm_op_close,
4650         .may_split = hugetlb_vm_op_split,
4651         .pagesize = hugetlb_vm_op_pagesize,
4652 };
4653
4654 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4655                                 int writable)
4656 {
4657         pte_t entry;
4658         unsigned int shift = huge_page_shift(hstate_vma(vma));
4659
4660         if (writable) {
4661                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4662                                          vma->vm_page_prot)));
4663         } else {
4664                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4665                                            vma->vm_page_prot));
4666         }
4667         entry = pte_mkyoung(entry);
4668         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4669
4670         return entry;
4671 }
4672
4673 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4674                                    unsigned long address, pte_t *ptep)
4675 {
4676         pte_t entry;
4677
4678         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4679         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4680                 update_mmu_cache(vma, address, ptep);
4681 }
4682
4683 bool is_hugetlb_entry_migration(pte_t pte)
4684 {
4685         swp_entry_t swp;
4686
4687         if (huge_pte_none(pte) || pte_present(pte))
4688                 return false;
4689         swp = pte_to_swp_entry(pte);
4690         if (is_migration_entry(swp))
4691                 return true;
4692         else
4693                 return false;
4694 }
4695
4696 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4697 {
4698         swp_entry_t swp;
4699
4700         if (huge_pte_none(pte) || pte_present(pte))
4701                 return false;
4702         swp = pte_to_swp_entry(pte);
4703         if (is_hwpoison_entry(swp))
4704                 return true;
4705         else
4706                 return false;
4707 }
4708
4709 static void
4710 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4711                      struct page *new_page)
4712 {
4713         __SetPageUptodate(new_page);
4714         hugepage_add_new_anon_rmap(new_page, vma, addr);
4715         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4716         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4717         ClearHPageRestoreReserve(new_page);
4718         SetHPageMigratable(new_page);
4719 }
4720
4721 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4722                             struct vm_area_struct *vma)
4723 {
4724         pte_t *src_pte, *dst_pte, entry, dst_entry;
4725         struct page *ptepage;
4726         unsigned long addr;
4727         bool cow = is_cow_mapping(vma->vm_flags);
4728         struct hstate *h = hstate_vma(vma);
4729         unsigned long sz = huge_page_size(h);
4730         unsigned long npages = pages_per_huge_page(h);
4731         struct address_space *mapping = vma->vm_file->f_mapping;
4732         struct mmu_notifier_range range;
4733         int ret = 0;
4734
4735         if (cow) {
4736                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4737                                         vma->vm_start,
4738                                         vma->vm_end);
4739                 mmu_notifier_invalidate_range_start(&range);
4740                 mmap_assert_write_locked(src);
4741                 raw_write_seqcount_begin(&src->write_protect_seq);
4742         } else {
4743                 /*
4744                  * For shared mappings i_mmap_rwsem must be held to call
4745                  * huge_pte_alloc, otherwise the returned ptep could go
4746                  * away if part of a shared pmd and another thread calls
4747                  * huge_pmd_unshare.
4748                  */
4749                 i_mmap_lock_read(mapping);
4750         }
4751
4752         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4753                 spinlock_t *src_ptl, *dst_ptl;
4754                 src_pte = huge_pte_offset(src, addr, sz);
4755                 if (!src_pte)
4756                         continue;
4757                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4758                 if (!dst_pte) {
4759                         ret = -ENOMEM;
4760                         break;
4761                 }
4762
4763                 /*
4764                  * If the pagetables are shared don't copy or take references.
4765                  * dst_pte == src_pte is the common case of src/dest sharing.
4766                  *
4767                  * However, src could have 'unshared' and dst shares with
4768                  * another vma.  If dst_pte !none, this implies sharing.
4769                  * Check here before taking page table lock, and once again
4770                  * after taking the lock below.
4771                  */
4772                 dst_entry = huge_ptep_get(dst_pte);
4773                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4774                         continue;
4775
4776                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4777                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4778                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4779                 entry = huge_ptep_get(src_pte);
4780                 dst_entry = huge_ptep_get(dst_pte);
4781 again:
4782                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4783                         /*
4784                          * Skip if src entry none.  Also, skip in the
4785                          * unlikely case dst entry !none as this implies
4786                          * sharing with another vma.
4787                          */
4788                         ;
4789                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4790                                     is_hugetlb_entry_hwpoisoned(entry))) {
4791                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4792
4793                         if (!is_readable_migration_entry(swp_entry) && cow) {
4794                                 /*
4795                                  * COW mappings require pages in both
4796                                  * parent and child to be set to read.
4797                                  */
4798                                 swp_entry = make_readable_migration_entry(
4799                                                         swp_offset(swp_entry));
4800                                 entry = swp_entry_to_pte(swp_entry);
4801                                 set_huge_swap_pte_at(src, addr, src_pte,
4802                                                      entry, sz);
4803                         }
4804                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4805                 } else {
4806                         entry = huge_ptep_get(src_pte);
4807                         ptepage = pte_page(entry);
4808                         get_page(ptepage);
4809
4810                         /*
4811                          * Failing to duplicate the anon rmap is a rare case
4812                          * where we see pinned hugetlb pages while they're
4813                          * prone to COW. We need to do the COW earlier during
4814                          * fork.
4815                          *
4816                          * When pre-allocating the page or copying data, we
4817                          * need to be without the pgtable locks since we could
4818                          * sleep during the process.
4819                          */
4820                         if (!PageAnon(ptepage)) {
4821                                 page_dup_file_rmap(ptepage, true);
4822                         } else if (page_try_dup_anon_rmap(ptepage, true, vma)) {
4823                                 pte_t src_pte_old = entry;
4824                                 struct page *new;
4825
4826                                 spin_unlock(src_ptl);
4827                                 spin_unlock(dst_ptl);
4828                                 /* Do not use reserve as it's private owned */
4829                                 new = alloc_huge_page(vma, addr, 1);
4830                                 if (IS_ERR(new)) {
4831                                         put_page(ptepage);
4832                                         ret = PTR_ERR(new);
4833                                         break;
4834                                 }
4835                                 copy_user_huge_page(new, ptepage, addr, vma,
4836                                                     npages);
4837                                 put_page(ptepage);
4838
4839                                 /* Install the new huge page if src pte stable */
4840                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4841                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4842                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4843                                 entry = huge_ptep_get(src_pte);
4844                                 if (!pte_same(src_pte_old, entry)) {
4845                                         restore_reserve_on_error(h, vma, addr,
4846                                                                 new);
4847                                         put_page(new);
4848                                         /* dst_entry won't change as in child */
4849                                         goto again;
4850                                 }
4851                                 hugetlb_install_page(vma, dst_pte, addr, new);
4852                                 spin_unlock(src_ptl);
4853                                 spin_unlock(dst_ptl);
4854                                 continue;
4855                         }
4856
4857                         if (cow) {
4858                                 /*
4859                                  * No need to notify as we are downgrading page
4860                                  * table protection not changing it to point
4861                                  * to a new page.
4862                                  *
4863                                  * See Documentation/vm/mmu_notifier.rst
4864                                  */
4865                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4866                                 entry = huge_pte_wrprotect(entry);
4867                         }
4868
4869                         set_huge_pte_at(dst, addr, dst_pte, entry);
4870                         hugetlb_count_add(npages, dst);
4871                 }
4872                 spin_unlock(src_ptl);
4873                 spin_unlock(dst_ptl);
4874         }
4875
4876         if (cow) {
4877                 raw_write_seqcount_end(&src->write_protect_seq);
4878                 mmu_notifier_invalidate_range_end(&range);
4879         } else {
4880                 i_mmap_unlock_read(mapping);
4881         }
4882
4883         return ret;
4884 }
4885
4886 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4887                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4888 {
4889         struct hstate *h = hstate_vma(vma);
4890         struct mm_struct *mm = vma->vm_mm;
4891         spinlock_t *src_ptl, *dst_ptl;
4892         pte_t pte;
4893
4894         dst_ptl = huge_pte_lock(h, mm, dst_pte);
4895         src_ptl = huge_pte_lockptr(h, mm, src_pte);
4896
4897         /*
4898          * We don't have to worry about the ordering of src and dst ptlocks
4899          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4900          */
4901         if (src_ptl != dst_ptl)
4902                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4903
4904         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4905         set_huge_pte_at(mm, new_addr, dst_pte, pte);
4906
4907         if (src_ptl != dst_ptl)
4908                 spin_unlock(src_ptl);
4909         spin_unlock(dst_ptl);
4910 }
4911
4912 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4913                              struct vm_area_struct *new_vma,
4914                              unsigned long old_addr, unsigned long new_addr,
4915                              unsigned long len)
4916 {
4917         struct hstate *h = hstate_vma(vma);
4918         struct address_space *mapping = vma->vm_file->f_mapping;
4919         unsigned long sz = huge_page_size(h);
4920         struct mm_struct *mm = vma->vm_mm;
4921         unsigned long old_end = old_addr + len;
4922         unsigned long old_addr_copy;
4923         pte_t *src_pte, *dst_pte;
4924         struct mmu_notifier_range range;
4925
4926         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4927                                 old_end);
4928         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4929         mmu_notifier_invalidate_range_start(&range);
4930         /* Prevent race with file truncation */
4931         i_mmap_lock_write(mapping);
4932         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4933                 src_pte = huge_pte_offset(mm, old_addr, sz);
4934                 if (!src_pte)
4935                         continue;
4936                 if (huge_pte_none(huge_ptep_get(src_pte)))
4937                         continue;
4938
4939                 /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4940                  * arg may be modified. Pass a copy instead to preserve the
4941                  * value in old_addr.
4942                  */
4943                 old_addr_copy = old_addr;
4944
4945                 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
4946                         continue;
4947
4948                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4949                 if (!dst_pte)
4950                         break;
4951
4952                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4953         }
4954         flush_tlb_range(vma, old_end - len, old_end);
4955         mmu_notifier_invalidate_range_end(&range);
4956         i_mmap_unlock_write(mapping);
4957
4958         return len + old_addr - old_end;
4959 }
4960
4961 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4962                                    unsigned long start, unsigned long end,
4963                                    struct page *ref_page)
4964 {
4965         struct mm_struct *mm = vma->vm_mm;
4966         unsigned long address;
4967         pte_t *ptep;
4968         pte_t pte;
4969         spinlock_t *ptl;
4970         struct page *page;
4971         struct hstate *h = hstate_vma(vma);
4972         unsigned long sz = huge_page_size(h);
4973         struct mmu_notifier_range range;
4974         bool force_flush = false;
4975
4976         WARN_ON(!is_vm_hugetlb_page(vma));
4977         BUG_ON(start & ~huge_page_mask(h));
4978         BUG_ON(end & ~huge_page_mask(h));
4979
4980         /*
4981          * This is a hugetlb vma, all the pte entries should point
4982          * to huge page.
4983          */
4984         tlb_change_page_size(tlb, sz);
4985         tlb_start_vma(tlb, vma);
4986
4987         /*
4988          * If sharing possible, alert mmu notifiers of worst case.
4989          */
4990         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4991                                 end);
4992         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4993         mmu_notifier_invalidate_range_start(&range);
4994         address = start;
4995         for (; address < end; address += sz) {
4996                 ptep = huge_pte_offset(mm, address, sz);
4997                 if (!ptep)
4998                         continue;
4999
5000                 ptl = huge_pte_lock(h, mm, ptep);
5001                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5002                         spin_unlock(ptl);
5003                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5004                         force_flush = true;
5005                         continue;
5006                 }
5007
5008                 pte = huge_ptep_get(ptep);
5009                 if (huge_pte_none(pte)) {
5010                         spin_unlock(ptl);
5011                         continue;
5012                 }
5013
5014                 /*
5015                  * Migrating hugepage or HWPoisoned hugepage is already
5016                  * unmapped and its refcount is dropped, so just clear pte here.
5017                  */
5018                 if (unlikely(!pte_present(pte))) {
5019                         huge_pte_clear(mm, address, ptep, sz);
5020                         spin_unlock(ptl);
5021                         continue;
5022                 }
5023
5024                 page = pte_page(pte);
5025                 /*
5026                  * If a reference page is supplied, it is because a specific
5027                  * page is being unmapped, not a range. Ensure the page we
5028                  * are about to unmap is the actual page of interest.
5029                  */
5030                 if (ref_page) {
5031                         if (page != ref_page) {
5032                                 spin_unlock(ptl);
5033                                 continue;
5034                         }
5035                         /*
5036                          * Mark the VMA as having unmapped its page so that
5037                          * future faults in this VMA will fail rather than
5038                          * looking like data was lost
5039                          */
5040                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5041                 }
5042
5043                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5044                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5045                 if (huge_pte_dirty(pte))
5046                         set_page_dirty(page);
5047
5048                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5049                 page_remove_rmap(page, vma, true);
5050
5051                 spin_unlock(ptl);
5052                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5053                 /*
5054                  * Bail out after unmapping reference page if supplied
5055                  */
5056                 if (ref_page)
5057                         break;
5058         }
5059         mmu_notifier_invalidate_range_end(&range);
5060         tlb_end_vma(tlb, vma);
5061
5062         /*
5063          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5064          * could defer the flush until now, since by holding i_mmap_rwsem we
5065          * guaranteed that the last refernece would not be dropped. But we must
5066          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5067          * dropped and the last reference to the shared PMDs page might be
5068          * dropped as well.
5069          *
5070          * In theory we could defer the freeing of the PMD pages as well, but
5071          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5072          * detect sharing, so we cannot defer the release of the page either.
5073          * Instead, do flush now.
5074          */
5075         if (force_flush)
5076                 tlb_flush_mmu_tlbonly(tlb);
5077 }
5078
5079 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5080                           struct vm_area_struct *vma, unsigned long start,
5081                           unsigned long end, struct page *ref_page)
5082 {
5083         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
5084
5085         /*
5086          * Clear this flag so that x86's huge_pmd_share page_table_shareable
5087          * test will fail on a vma being torn down, and not grab a page table
5088          * on its way out.  We're lucky that the flag has such an appropriate
5089          * name, and can in fact be safely cleared here. We could clear it
5090          * before the __unmap_hugepage_range above, but all that's necessary
5091          * is to clear it before releasing the i_mmap_rwsem. This works
5092          * because in the context this is called, the VMA is about to be
5093          * destroyed and the i_mmap_rwsem is held.
5094          */
5095         vma->vm_flags &= ~VM_MAYSHARE;
5096 }
5097
5098 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5099                           unsigned long end, struct page *ref_page)
5100 {
5101         struct mmu_gather tlb;
5102
5103         tlb_gather_mmu(&tlb, vma->vm_mm);
5104         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
5105         tlb_finish_mmu(&tlb);
5106 }
5107
5108 /*
5109  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5110  * mapping it owns the reserve page for. The intention is to unmap the page
5111  * from other VMAs and let the children be SIGKILLed if they are faulting the
5112  * same region.
5113  */
5114 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5115                               struct page *page, unsigned long address)
5116 {
5117         struct hstate *h = hstate_vma(vma);
5118         struct vm_area_struct *iter_vma;
5119         struct address_space *mapping;
5120         pgoff_t pgoff;
5121
5122         /*
5123          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5124          * from page cache lookup which is in HPAGE_SIZE units.
5125          */
5126         address = address & huge_page_mask(h);
5127         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5128                         vma->vm_pgoff;
5129         mapping = vma->vm_file->f_mapping;
5130
5131         /*
5132          * Take the mapping lock for the duration of the table walk. As
5133          * this mapping should be shared between all the VMAs,
5134          * __unmap_hugepage_range() is called as the lock is already held
5135          */
5136         i_mmap_lock_write(mapping);
5137         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5138                 /* Do not unmap the current VMA */
5139                 if (iter_vma == vma)
5140                         continue;
5141
5142                 /*
5143                  * Shared VMAs have their own reserves and do not affect
5144                  * MAP_PRIVATE accounting but it is possible that a shared
5145                  * VMA is using the same page so check and skip such VMAs.
5146                  */
5147                 if (iter_vma->vm_flags & VM_MAYSHARE)
5148                         continue;
5149
5150                 /*
5151                  * Unmap the page from other VMAs without their own reserves.
5152                  * They get marked to be SIGKILLed if they fault in these
5153                  * areas. This is because a future no-page fault on this VMA
5154                  * could insert a zeroed page instead of the data existing
5155                  * from the time of fork. This would look like data corruption
5156                  */
5157                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5158                         unmap_hugepage_range(iter_vma, address,
5159                                              address + huge_page_size(h), page);
5160         }
5161         i_mmap_unlock_write(mapping);
5162 }
5163
5164 /*
5165  * Hugetlb_cow() should be called with page lock of the original hugepage held.
5166  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5167  * cannot race with other handlers or page migration.
5168  * Keep the pte_same checks anyway to make transition from the mutex easier.
5169  */
5170 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
5171                        unsigned long address, pte_t *ptep,
5172                        struct page *pagecache_page, spinlock_t *ptl)
5173 {
5174         pte_t pte;
5175         struct hstate *h = hstate_vma(vma);
5176         struct page *old_page, *new_page;
5177         int outside_reserve = 0;
5178         vm_fault_t ret = 0;
5179         unsigned long haddr = address & huge_page_mask(h);
5180         struct mmu_notifier_range range;
5181
5182         pte = huge_ptep_get(ptep);
5183         old_page = pte_page(pte);
5184
5185 retry_avoidcopy:
5186         /* If no-one else is actually using this page, avoid the copy
5187          * and just make the page writable */
5188         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5189                 page_move_anon_rmap(old_page, vma);
5190                 set_huge_ptep_writable(vma, haddr, ptep);
5191                 return 0;
5192         }
5193         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5194                        old_page);
5195
5196         /*
5197          * If the process that created a MAP_PRIVATE mapping is about to
5198          * perform a COW due to a shared page count, attempt to satisfy
5199          * the allocation without using the existing reserves. The pagecache
5200          * page is used to determine if the reserve at this address was
5201          * consumed or not. If reserves were used, a partial faulted mapping
5202          * at the time of fork() could consume its reserves on COW instead
5203          * of the full address range.
5204          */
5205         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5206                         old_page != pagecache_page)
5207                 outside_reserve = 1;
5208
5209         get_page(old_page);
5210
5211         /*
5212          * Drop page table lock as buddy allocator may be called. It will
5213          * be acquired again before returning to the caller, as expected.
5214          */
5215         spin_unlock(ptl);
5216         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5217
5218         if (IS_ERR(new_page)) {
5219                 /*
5220                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5221                  * it is due to references held by a child and an insufficient
5222                  * huge page pool. To guarantee the original mappers
5223                  * reliability, unmap the page from child processes. The child
5224                  * may get SIGKILLed if it later faults.
5225                  */
5226                 if (outside_reserve) {
5227                         struct address_space *mapping = vma->vm_file->f_mapping;
5228                         pgoff_t idx;
5229                         u32 hash;
5230
5231                         put_page(old_page);
5232                         BUG_ON(huge_pte_none(pte));
5233                         /*
5234                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5235                          * unmapping.  unmapping needs to hold i_mmap_rwsem
5236                          * in write mode.  Dropping i_mmap_rwsem in read mode
5237                          * here is OK as COW mappings do not interact with
5238                          * PMD sharing.
5239                          *
5240                          * Reacquire both after unmap operation.
5241                          */
5242                         idx = vma_hugecache_offset(h, vma, haddr);
5243                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5244                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5245                         i_mmap_unlock_read(mapping);
5246
5247                         unmap_ref_private(mm, vma, old_page, haddr);
5248
5249                         i_mmap_lock_read(mapping);
5250                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5251                         spin_lock(ptl);
5252                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5253                         if (likely(ptep &&
5254                                    pte_same(huge_ptep_get(ptep), pte)))
5255                                 goto retry_avoidcopy;
5256                         /*
5257                          * race occurs while re-acquiring page table
5258                          * lock, and our job is done.
5259                          */
5260                         return 0;
5261                 }
5262
5263                 ret = vmf_error(PTR_ERR(new_page));
5264                 goto out_release_old;
5265         }
5266
5267         /*
5268          * When the original hugepage is shared one, it does not have
5269          * anon_vma prepared.
5270          */
5271         if (unlikely(anon_vma_prepare(vma))) {
5272                 ret = VM_FAULT_OOM;
5273                 goto out_release_all;
5274         }
5275
5276         copy_user_huge_page(new_page, old_page, address, vma,
5277                             pages_per_huge_page(h));
5278         __SetPageUptodate(new_page);
5279
5280         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5281                                 haddr + huge_page_size(h));
5282         mmu_notifier_invalidate_range_start(&range);
5283
5284         /*
5285          * Retake the page table lock to check for racing updates
5286          * before the page tables are altered
5287          */
5288         spin_lock(ptl);
5289         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5290         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5291                 ClearHPageRestoreReserve(new_page);
5292
5293                 /* Break COW */
5294                 huge_ptep_clear_flush(vma, haddr, ptep);
5295                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5296                 page_remove_rmap(old_page, vma, true);
5297                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5298                 set_huge_pte_at(mm, haddr, ptep,
5299                                 make_huge_pte(vma, new_page, 1));
5300                 SetHPageMigratable(new_page);
5301                 /* Make the old page be freed below */
5302                 new_page = old_page;
5303         }
5304         spin_unlock(ptl);
5305         mmu_notifier_invalidate_range_end(&range);
5306 out_release_all:
5307         /* No restore in case of successful pagetable update (Break COW) */
5308         if (new_page != old_page)
5309                 restore_reserve_on_error(h, vma, haddr, new_page);
5310         put_page(new_page);
5311 out_release_old:
5312         put_page(old_page);
5313
5314         spin_lock(ptl); /* Caller expects lock to be held */
5315         return ret;
5316 }
5317
5318 /* Return the pagecache page at a given address within a VMA */
5319 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5320                         struct vm_area_struct *vma, unsigned long address)
5321 {
5322         struct address_space *mapping;
5323         pgoff_t idx;
5324
5325         mapping = vma->vm_file->f_mapping;
5326         idx = vma_hugecache_offset(h, vma, address);
5327
5328         return find_lock_page(mapping, idx);
5329 }
5330
5331 /*
5332  * Return whether there is a pagecache page to back given address within VMA.
5333  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5334  */
5335 static bool hugetlbfs_pagecache_present(struct hstate *h,
5336                         struct vm_area_struct *vma, unsigned long address)
5337 {
5338         struct address_space *mapping;
5339         pgoff_t idx;
5340         struct page *page;
5341
5342         mapping = vma->vm_file->f_mapping;
5343         idx = vma_hugecache_offset(h, vma, address);
5344
5345         page = find_get_page(mapping, idx);
5346         if (page)
5347                 put_page(page);
5348         return page != NULL;
5349 }
5350
5351 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5352                            pgoff_t idx)
5353 {
5354         struct inode *inode = mapping->host;
5355         struct hstate *h = hstate_inode(inode);
5356         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5357
5358         if (err)
5359                 return err;
5360         ClearHPageRestoreReserve(page);
5361
5362         /*
5363          * set page dirty so that it will not be removed from cache/file
5364          * by non-hugetlbfs specific code paths.
5365          */
5366         set_page_dirty(page);
5367
5368         spin_lock(&inode->i_lock);
5369         inode->i_blocks += blocks_per_huge_page(h);
5370         spin_unlock(&inode->i_lock);
5371         return 0;
5372 }
5373
5374 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5375                                                   struct address_space *mapping,
5376                                                   pgoff_t idx,
5377                                                   unsigned int flags,
5378                                                   unsigned long haddr,
5379                                                   unsigned long addr,
5380                                                   unsigned long reason)
5381 {
5382         vm_fault_t ret;
5383         u32 hash;
5384         struct vm_fault vmf = {
5385                 .vma = vma,
5386                 .address = haddr,
5387                 .real_address = addr,
5388                 .flags = flags,
5389
5390                 /*
5391                  * Hard to debug if it ends up being
5392                  * used by a callee that assumes
5393                  * something about the other
5394                  * uninitialized fields... same as in
5395                  * memory.c
5396                  */
5397         };
5398
5399         /*
5400          * hugetlb_fault_mutex and i_mmap_rwsem must be
5401          * dropped before handling userfault.  Reacquire
5402          * after handling fault to make calling code simpler.
5403          */
5404         hash = hugetlb_fault_mutex_hash(mapping, idx);
5405         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5406         i_mmap_unlock_read(mapping);
5407         ret = handle_userfault(&vmf, reason);
5408         i_mmap_lock_read(mapping);
5409         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5410
5411         return ret;
5412 }
5413
5414 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5415                         struct vm_area_struct *vma,
5416                         struct address_space *mapping, pgoff_t idx,
5417                         unsigned long address, pte_t *ptep, unsigned int flags)
5418 {
5419         struct hstate *h = hstate_vma(vma);
5420         vm_fault_t ret = VM_FAULT_SIGBUS;
5421         int anon_rmap = 0;
5422         unsigned long size;
5423         struct page *page;
5424         pte_t new_pte;
5425         spinlock_t *ptl;
5426         unsigned long haddr = address & huge_page_mask(h);
5427         bool new_page, new_pagecache_page = false;
5428
5429         /*
5430          * Currently, we are forced to kill the process in the event the
5431          * original mapper has unmapped pages from the child due to a failed
5432          * COW. Warn that such a situation has occurred as it may not be obvious
5433          */
5434         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5435                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5436                            current->pid);
5437                 return ret;
5438         }
5439
5440         /*
5441          * We can not race with truncation due to holding i_mmap_rwsem.
5442          * i_size is modified when holding i_mmap_rwsem, so check here
5443          * once for faults beyond end of file.
5444          */
5445         size = i_size_read(mapping->host) >> huge_page_shift(h);
5446         if (idx >= size)
5447                 goto out;
5448
5449 retry:
5450         new_page = false;
5451         page = find_lock_page(mapping, idx);
5452         if (!page) {
5453                 /* Check for page in userfault range */
5454                 if (userfaultfd_missing(vma)) {
5455                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5456                                                        flags, haddr, address,
5457                                                        VM_UFFD_MISSING);
5458                         goto out;
5459                 }
5460
5461                 page = alloc_huge_page(vma, haddr, 0);
5462                 if (IS_ERR(page)) {
5463                         /*
5464                          * Returning error will result in faulting task being
5465                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5466                          * tasks from racing to fault in the same page which
5467                          * could result in false unable to allocate errors.
5468                          * Page migration does not take the fault mutex, but
5469                          * does a clear then write of pte's under page table
5470                          * lock.  Page fault code could race with migration,
5471                          * notice the clear pte and try to allocate a page
5472                          * here.  Before returning error, get ptl and make
5473                          * sure there really is no pte entry.
5474                          */
5475                         ptl = huge_pte_lock(h, mm, ptep);
5476                         ret = 0;
5477                         if (huge_pte_none(huge_ptep_get(ptep)))
5478                                 ret = vmf_error(PTR_ERR(page));
5479                         spin_unlock(ptl);
5480                         goto out;
5481                 }
5482                 clear_huge_page(page, address, pages_per_huge_page(h));
5483                 __SetPageUptodate(page);
5484                 new_page = true;
5485
5486                 if (vma->vm_flags & VM_MAYSHARE) {
5487                         int err = huge_add_to_page_cache(page, mapping, idx);
5488                         if (err) {
5489                                 put_page(page);
5490                                 if (err == -EEXIST)
5491                                         goto retry;
5492                                 goto out;
5493                         }
5494                         new_pagecache_page = true;
5495                 } else {
5496                         lock_page(page);
5497                         if (unlikely(anon_vma_prepare(vma))) {
5498                                 ret = VM_FAULT_OOM;
5499                                 goto backout_unlocked;
5500                         }
5501                         anon_rmap = 1;
5502                 }
5503         } else {
5504                 /*
5505                  * If memory error occurs between mmap() and fault, some process
5506                  * don't have hwpoisoned swap entry for errored virtual address.
5507                  * So we need to block hugepage fault by PG_hwpoison bit check.
5508                  */
5509                 if (unlikely(PageHWPoison(page))) {
5510                         ret = VM_FAULT_HWPOISON_LARGE |
5511                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5512                         goto backout_unlocked;
5513                 }
5514
5515                 /* Check for page in userfault range. */
5516                 if (userfaultfd_minor(vma)) {
5517                         unlock_page(page);
5518                         put_page(page);
5519                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5520                                                        flags, haddr, address,
5521                                                        VM_UFFD_MINOR);
5522                         goto out;
5523                 }
5524         }
5525
5526         /*
5527          * If we are going to COW a private mapping later, we examine the
5528          * pending reservations for this page now. This will ensure that
5529          * any allocations necessary to record that reservation occur outside
5530          * the spinlock.
5531          */
5532         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5533                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5534                         ret = VM_FAULT_OOM;
5535                         goto backout_unlocked;
5536                 }
5537                 /* Just decrements count, does not deallocate */
5538                 vma_end_reservation(h, vma, haddr);
5539         }
5540
5541         ptl = huge_pte_lock(h, mm, ptep);
5542         ret = 0;
5543         if (!huge_pte_none(huge_ptep_get(ptep)))
5544                 goto backout;
5545
5546         if (anon_rmap) {
5547                 ClearHPageRestoreReserve(page);
5548                 hugepage_add_new_anon_rmap(page, vma, haddr);
5549         } else
5550                 page_dup_file_rmap(page, true);
5551         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5552                                 && (vma->vm_flags & VM_SHARED)));
5553         set_huge_pte_at(mm, haddr, ptep, new_pte);
5554
5555         hugetlb_count_add(pages_per_huge_page(h), mm);
5556         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5557                 /* Optimization, do the COW without a second fault */
5558                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5559         }
5560
5561         spin_unlock(ptl);
5562
5563         /*
5564          * Only set HPageMigratable in newly allocated pages.  Existing pages
5565          * found in the pagecache may not have HPageMigratableset if they have
5566          * been isolated for migration.
5567          */
5568         if (new_page)
5569                 SetHPageMigratable(page);
5570
5571         unlock_page(page);
5572 out:
5573         return ret;
5574
5575 backout:
5576         spin_unlock(ptl);
5577 backout_unlocked:
5578         unlock_page(page);
5579         /* restore reserve for newly allocated pages not in page cache */
5580         if (new_page && !new_pagecache_page)
5581                 restore_reserve_on_error(h, vma, haddr, page);
5582         put_page(page);
5583         goto out;
5584 }
5585
5586 #ifdef CONFIG_SMP
5587 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5588 {
5589         unsigned long key[2];
5590         u32 hash;
5591
5592         key[0] = (unsigned long) mapping;
5593         key[1] = idx;
5594
5595         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5596
5597         return hash & (num_fault_mutexes - 1);
5598 }
5599 #else
5600 /*
5601  * For uniprocessor systems we always use a single mutex, so just
5602  * return 0 and avoid the hashing overhead.
5603  */
5604 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5605 {
5606         return 0;
5607 }
5608 #endif
5609
5610 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5611                         unsigned long address, unsigned int flags)
5612 {
5613         pte_t *ptep, entry;
5614         spinlock_t *ptl;
5615         vm_fault_t ret;
5616         u32 hash;
5617         pgoff_t idx;
5618         struct page *page = NULL;
5619         struct page *pagecache_page = NULL;
5620         struct hstate *h = hstate_vma(vma);
5621         struct address_space *mapping;
5622         int need_wait_lock = 0;
5623         unsigned long haddr = address & huge_page_mask(h);
5624
5625         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5626         if (ptep) {
5627                 /*
5628                  * Since we hold no locks, ptep could be stale.  That is
5629                  * OK as we are only making decisions based on content and
5630                  * not actually modifying content here.
5631                  */
5632                 entry = huge_ptep_get(ptep);
5633                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5634                         migration_entry_wait_huge(vma, mm, ptep);
5635                         return 0;
5636                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5637                         return VM_FAULT_HWPOISON_LARGE |
5638                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5639         }
5640
5641         /*
5642          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5643          * until finished with ptep.  This serves two purposes:
5644          * 1) It prevents huge_pmd_unshare from being called elsewhere
5645          *    and making the ptep no longer valid.
5646          * 2) It synchronizes us with i_size modifications during truncation.
5647          *
5648          * ptep could have already be assigned via huge_pte_offset.  That
5649          * is OK, as huge_pte_alloc will return the same value unless
5650          * something has changed.
5651          */
5652         mapping = vma->vm_file->f_mapping;
5653         i_mmap_lock_read(mapping);
5654         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5655         if (!ptep) {
5656                 i_mmap_unlock_read(mapping);
5657                 return VM_FAULT_OOM;
5658         }
5659
5660         /*
5661          * Serialize hugepage allocation and instantiation, so that we don't
5662          * get spurious allocation failures if two CPUs race to instantiate
5663          * the same page in the page cache.
5664          */
5665         idx = vma_hugecache_offset(h, vma, haddr);
5666         hash = hugetlb_fault_mutex_hash(mapping, idx);
5667         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5668
5669         entry = huge_ptep_get(ptep);
5670         if (huge_pte_none(entry)) {
5671                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5672                 goto out_mutex;
5673         }
5674
5675         ret = 0;
5676
5677         /*
5678          * entry could be a migration/hwpoison entry at this point, so this
5679          * check prevents the kernel from going below assuming that we have
5680          * an active hugepage in pagecache. This goto expects the 2nd page
5681          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5682          * properly handle it.
5683          */
5684         if (!pte_present(entry))
5685                 goto out_mutex;
5686
5687         /*
5688          * If we are going to COW the mapping later, we examine the pending
5689          * reservations for this page now. This will ensure that any
5690          * allocations necessary to record that reservation occur outside the
5691          * spinlock. For private mappings, we also lookup the pagecache
5692          * page now as it is used to determine if a reservation has been
5693          * consumed.
5694          */
5695         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5696                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5697                         ret = VM_FAULT_OOM;
5698                         goto out_mutex;
5699                 }
5700                 /* Just decrements count, does not deallocate */
5701                 vma_end_reservation(h, vma, haddr);
5702
5703                 if (!(vma->vm_flags & VM_MAYSHARE))
5704                         pagecache_page = hugetlbfs_pagecache_page(h,
5705                                                                 vma, haddr);
5706         }
5707
5708         ptl = huge_pte_lock(h, mm, ptep);
5709
5710         /* Check for a racing update before calling hugetlb_cow */
5711         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5712                 goto out_ptl;
5713
5714         /*
5715          * hugetlb_cow() requires page locks of pte_page(entry) and
5716          * pagecache_page, so here we need take the former one
5717          * when page != pagecache_page or !pagecache_page.
5718          */
5719         page = pte_page(entry);
5720         if (page != pagecache_page)
5721                 if (!trylock_page(page)) {
5722                         need_wait_lock = 1;
5723                         goto out_ptl;
5724                 }
5725
5726         get_page(page);
5727
5728         if (flags & FAULT_FLAG_WRITE) {
5729                 if (!huge_pte_write(entry)) {
5730                         ret = hugetlb_cow(mm, vma, address, ptep,
5731                                           pagecache_page, ptl);
5732                         goto out_put_page;
5733                 }
5734                 entry = huge_pte_mkdirty(entry);
5735         }
5736         entry = pte_mkyoung(entry);
5737         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5738                                                 flags & FAULT_FLAG_WRITE))
5739                 update_mmu_cache(vma, haddr, ptep);
5740 out_put_page:
5741         if (page != pagecache_page)
5742                 unlock_page(page);
5743         put_page(page);
5744 out_ptl:
5745         spin_unlock(ptl);
5746
5747         if (pagecache_page) {
5748                 unlock_page(pagecache_page);
5749                 put_page(pagecache_page);
5750         }
5751 out_mutex:
5752         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5753         i_mmap_unlock_read(mapping);
5754         /*
5755          * Generally it's safe to hold refcount during waiting page lock. But
5756          * here we just wait to defer the next page fault to avoid busy loop and
5757          * the page is not used after unlocked before returning from the current
5758          * page fault. So we are safe from accessing freed page, even if we wait
5759          * here without taking refcount.
5760          */
5761         if (need_wait_lock)
5762                 wait_on_page_locked(page);
5763         return ret;
5764 }
5765
5766 #ifdef CONFIG_USERFAULTFD
5767 /*
5768  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5769  * modifications for huge pages.
5770  */
5771 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5772                             pte_t *dst_pte,
5773                             struct vm_area_struct *dst_vma,
5774                             unsigned long dst_addr,
5775                             unsigned long src_addr,
5776                             enum mcopy_atomic_mode mode,
5777                             struct page **pagep)
5778 {
5779         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5780         struct hstate *h = hstate_vma(dst_vma);
5781         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5782         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5783         unsigned long size;
5784         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5785         pte_t _dst_pte;
5786         spinlock_t *ptl;
5787         int ret = -ENOMEM;
5788         struct page *page;
5789         int writable;
5790         bool page_in_pagecache = false;
5791
5792         if (is_continue) {
5793                 ret = -EFAULT;
5794                 page = find_lock_page(mapping, idx);
5795                 if (!page)
5796                         goto out;
5797                 page_in_pagecache = true;
5798         } else if (!*pagep) {
5799                 /* If a page already exists, then it's UFFDIO_COPY for
5800                  * a non-missing case. Return -EEXIST.
5801                  */
5802                 if (vm_shared &&
5803                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5804                         ret = -EEXIST;
5805                         goto out;
5806                 }
5807
5808                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5809                 if (IS_ERR(page)) {
5810                         ret = -ENOMEM;
5811                         goto out;
5812                 }
5813
5814                 ret = copy_huge_page_from_user(page,
5815                                                 (const void __user *) src_addr,
5816                                                 pages_per_huge_page(h), false);
5817
5818                 /* fallback to copy_from_user outside mmap_lock */
5819                 if (unlikely(ret)) {
5820                         ret = -ENOENT;
5821                         /* Free the allocated page which may have
5822                          * consumed a reservation.
5823                          */
5824                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5825                         put_page(page);
5826
5827                         /* Allocate a temporary page to hold the copied
5828                          * contents.
5829                          */
5830                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5831                         if (!page) {
5832                                 ret = -ENOMEM;
5833                                 goto out;
5834                         }
5835                         *pagep = page;
5836                         /* Set the outparam pagep and return to the caller to
5837                          * copy the contents outside the lock. Don't free the
5838                          * page.
5839                          */
5840                         goto out;
5841                 }
5842         } else {
5843                 if (vm_shared &&
5844                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5845                         put_page(*pagep);
5846                         ret = -EEXIST;
5847                         *pagep = NULL;
5848                         goto out;
5849                 }
5850
5851                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5852                 if (IS_ERR(page)) {
5853                         ret = -ENOMEM;
5854                         *pagep = NULL;
5855                         goto out;
5856                 }
5857                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5858                                     pages_per_huge_page(h));
5859                 put_page(*pagep);
5860                 *pagep = NULL;
5861         }
5862
5863         /*
5864          * The memory barrier inside __SetPageUptodate makes sure that
5865          * preceding stores to the page contents become visible before
5866          * the set_pte_at() write.
5867          */
5868         __SetPageUptodate(page);
5869
5870         /* Add shared, newly allocated pages to the page cache. */
5871         if (vm_shared && !is_continue) {
5872                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5873                 ret = -EFAULT;
5874                 if (idx >= size)
5875                         goto out_release_nounlock;
5876
5877                 /*
5878                  * Serialization between remove_inode_hugepages() and
5879                  * huge_add_to_page_cache() below happens through the
5880                  * hugetlb_fault_mutex_table that here must be hold by
5881                  * the caller.
5882                  */
5883                 ret = huge_add_to_page_cache(page, mapping, idx);
5884                 if (ret)
5885                         goto out_release_nounlock;
5886                 page_in_pagecache = true;
5887         }
5888
5889         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5890         spin_lock(ptl);
5891
5892         /*
5893          * Recheck the i_size after holding PT lock to make sure not
5894          * to leave any page mapped (as page_mapped()) beyond the end
5895          * of the i_size (remove_inode_hugepages() is strict about
5896          * enforcing that). If we bail out here, we'll also leave a
5897          * page in the radix tree in the vm_shared case beyond the end
5898          * of the i_size, but remove_inode_hugepages() will take care
5899          * of it as soon as we drop the hugetlb_fault_mutex_table.
5900          */
5901         size = i_size_read(mapping->host) >> huge_page_shift(h);
5902         ret = -EFAULT;
5903         if (idx >= size)
5904                 goto out_release_unlock;
5905
5906         ret = -EEXIST;
5907         if (!huge_pte_none(huge_ptep_get(dst_pte)))
5908                 goto out_release_unlock;
5909
5910         if (vm_shared) {
5911                 page_dup_file_rmap(page, true);
5912         } else {
5913                 ClearHPageRestoreReserve(page);
5914                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5915         }
5916
5917         /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5918         if (is_continue && !vm_shared)
5919                 writable = 0;
5920         else
5921                 writable = dst_vma->vm_flags & VM_WRITE;
5922
5923         _dst_pte = make_huge_pte(dst_vma, page, writable);
5924         if (writable)
5925                 _dst_pte = huge_pte_mkdirty(_dst_pte);
5926         _dst_pte = pte_mkyoung(_dst_pte);
5927
5928         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5929
5930         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5931                                         dst_vma->vm_flags & VM_WRITE);
5932         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5933
5934         /* No need to invalidate - it was non-present before */
5935         update_mmu_cache(dst_vma, dst_addr, dst_pte);
5936
5937         spin_unlock(ptl);
5938         if (!is_continue)
5939                 SetHPageMigratable(page);
5940         if (vm_shared || is_continue)
5941                 unlock_page(page);
5942         ret = 0;
5943 out:
5944         return ret;
5945 out_release_unlock:
5946         spin_unlock(ptl);
5947         if (vm_shared || is_continue)
5948                 unlock_page(page);
5949 out_release_nounlock:
5950         if (!page_in_pagecache)
5951                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5952         put_page(page);
5953         goto out;
5954 }
5955 #endif /* CONFIG_USERFAULTFD */
5956
5957 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5958                                  int refs, struct page **pages,
5959                                  struct vm_area_struct **vmas)
5960 {
5961         int nr;
5962
5963         for (nr = 0; nr < refs; nr++) {
5964                 if (likely(pages))
5965                         pages[nr] = mem_map_offset(page, nr);
5966                 if (vmas)
5967                         vmas[nr] = vma;
5968         }
5969 }
5970
5971 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5972                          struct page **pages, struct vm_area_struct **vmas,
5973                          unsigned long *position, unsigned long *nr_pages,
5974                          long i, unsigned int flags, int *locked)
5975 {
5976         unsigned long pfn_offset;
5977         unsigned long vaddr = *position;
5978         unsigned long remainder = *nr_pages;
5979         struct hstate *h = hstate_vma(vma);
5980         int err = -EFAULT, refs;
5981
5982         while (vaddr < vma->vm_end && remainder) {
5983                 pte_t *pte;
5984                 spinlock_t *ptl = NULL;
5985                 int absent;
5986                 struct page *page;
5987
5988                 /*
5989                  * If we have a pending SIGKILL, don't keep faulting pages and
5990                  * potentially allocating memory.
5991                  */
5992                 if (fatal_signal_pending(current)) {
5993                         remainder = 0;
5994                         break;
5995                 }
5996
5997                 /*
5998                  * Some archs (sparc64, sh*) have multiple pte_ts to
5999                  * each hugepage.  We have to make sure we get the
6000                  * first, for the page indexing below to work.
6001                  *
6002                  * Note that page table lock is not held when pte is null.
6003                  */
6004                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6005                                       huge_page_size(h));
6006                 if (pte)
6007                         ptl = huge_pte_lock(h, mm, pte);
6008                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6009
6010                 /*
6011                  * When coredumping, it suits get_dump_page if we just return
6012                  * an error where there's an empty slot with no huge pagecache
6013                  * to back it.  This way, we avoid allocating a hugepage, and
6014                  * the sparse dumpfile avoids allocating disk blocks, but its
6015                  * huge holes still show up with zeroes where they need to be.
6016                  */
6017                 if (absent && (flags & FOLL_DUMP) &&
6018                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6019                         if (pte)
6020                                 spin_unlock(ptl);
6021                         remainder = 0;
6022                         break;
6023                 }
6024
6025                 /*
6026                  * We need call hugetlb_fault for both hugepages under migration
6027                  * (in which case hugetlb_fault waits for the migration,) and
6028                  * hwpoisoned hugepages (in which case we need to prevent the
6029                  * caller from accessing to them.) In order to do this, we use
6030                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6031                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6032                  * both cases, and because we can't follow correct pages
6033                  * directly from any kind of swap entries.
6034                  */
6035                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
6036                     ((flags & FOLL_WRITE) &&
6037                       !huge_pte_write(huge_ptep_get(pte)))) {
6038                         vm_fault_t ret;
6039                         unsigned int fault_flags = 0;
6040
6041                         if (pte)
6042                                 spin_unlock(ptl);
6043                         if (flags & FOLL_WRITE)
6044                                 fault_flags |= FAULT_FLAG_WRITE;
6045                         if (locked)
6046                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6047                                         FAULT_FLAG_KILLABLE;
6048                         if (flags & FOLL_NOWAIT)
6049                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6050                                         FAULT_FLAG_RETRY_NOWAIT;
6051                         if (flags & FOLL_TRIED) {
6052                                 /*
6053                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6054                                  * FAULT_FLAG_TRIED can co-exist
6055                                  */
6056                                 fault_flags |= FAULT_FLAG_TRIED;
6057                         }
6058                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6059                         if (ret & VM_FAULT_ERROR) {
6060                                 err = vm_fault_to_errno(ret, flags);
6061                                 remainder = 0;
6062                                 break;
6063                         }
6064                         if (ret & VM_FAULT_RETRY) {
6065                                 if (locked &&
6066                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6067                                         *locked = 0;
6068                                 *nr_pages = 0;
6069                                 /*
6070                                  * VM_FAULT_RETRY must not return an
6071                                  * error, it will return zero
6072                                  * instead.
6073                                  *
6074                                  * No need to update "position" as the
6075                                  * caller will not check it after
6076                                  * *nr_pages is set to 0.
6077                                  */
6078                                 return i;
6079                         }
6080                         continue;
6081                 }
6082
6083                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6084                 page = pte_page(huge_ptep_get(pte));
6085
6086                 /*
6087                  * If subpage information not requested, update counters
6088                  * and skip the same_page loop below.
6089                  */
6090                 if (!pages && !vmas && !pfn_offset &&
6091                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6092                     (remainder >= pages_per_huge_page(h))) {
6093                         vaddr += huge_page_size(h);
6094                         remainder -= pages_per_huge_page(h);
6095                         i += pages_per_huge_page(h);
6096                         spin_unlock(ptl);
6097                         continue;
6098                 }
6099
6100                 /* vaddr may not be aligned to PAGE_SIZE */
6101                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6102                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6103
6104                 if (pages || vmas)
6105                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
6106                                              vma, refs,
6107                                              likely(pages) ? pages + i : NULL,
6108                                              vmas ? vmas + i : NULL);
6109
6110                 if (pages) {
6111                         /*
6112                          * try_grab_folio() should always succeed here,
6113                          * because: a) we hold the ptl lock, and b) we've just
6114                          * checked that the huge page is present in the page
6115                          * tables. If the huge page is present, then the tail
6116                          * pages must also be present. The ptl prevents the
6117                          * head page and tail pages from being rearranged in
6118                          * any way. So this page must be available at this
6119                          * point, unless the page refcount overflowed:
6120                          */
6121                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6122                                                          flags))) {
6123                                 spin_unlock(ptl);
6124                                 remainder = 0;
6125                                 err = -ENOMEM;
6126                                 break;
6127                         }
6128                 }
6129
6130                 vaddr += (refs << PAGE_SHIFT);
6131                 remainder -= refs;
6132                 i += refs;
6133
6134                 spin_unlock(ptl);
6135         }
6136         *nr_pages = remainder;
6137         /*
6138          * setting position is actually required only if remainder is
6139          * not zero but it's faster not to add a "if (remainder)"
6140          * branch.
6141          */
6142         *position = vaddr;
6143
6144         return i ? i : err;
6145 }
6146
6147 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6148                 unsigned long address, unsigned long end, pgprot_t newprot)
6149 {
6150         struct mm_struct *mm = vma->vm_mm;
6151         unsigned long start = address;
6152         pte_t *ptep;
6153         pte_t pte;
6154         struct hstate *h = hstate_vma(vma);
6155         unsigned long pages = 0;
6156         bool shared_pmd = false;
6157         struct mmu_notifier_range range;
6158
6159         /*
6160          * In the case of shared PMDs, the area to flush could be beyond
6161          * start/end.  Set range.start/range.end to cover the maximum possible
6162          * range if PMD sharing is possible.
6163          */
6164         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6165                                 0, vma, mm, start, end);
6166         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6167
6168         BUG_ON(address >= end);
6169         flush_cache_range(vma, range.start, range.end);
6170
6171         mmu_notifier_invalidate_range_start(&range);
6172         i_mmap_lock_write(vma->vm_file->f_mapping);
6173         for (; address < end; address += huge_page_size(h)) {
6174                 spinlock_t *ptl;
6175                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
6176                 if (!ptep)
6177                         continue;
6178                 ptl = huge_pte_lock(h, mm, ptep);
6179                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6180                         pages++;
6181                         spin_unlock(ptl);
6182                         shared_pmd = true;
6183                         continue;
6184                 }
6185                 pte = huge_ptep_get(ptep);
6186                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6187                         spin_unlock(ptl);
6188                         continue;
6189                 }
6190                 if (unlikely(is_hugetlb_entry_migration(pte))) {
6191                         swp_entry_t entry = pte_to_swp_entry(pte);
6192                         struct page *page = pfn_swap_entry_to_page(entry);
6193
6194                         if (!is_readable_migration_entry(entry)) {
6195                                 pte_t newpte;
6196
6197                                 if (PageAnon(page))
6198                                         entry = make_readable_exclusive_migration_entry(
6199                                                                 swp_offset(entry));
6200                                 else
6201                                         entry = make_readable_migration_entry(
6202                                                                 swp_offset(entry));
6203                                 newpte = swp_entry_to_pte(entry);
6204                                 set_huge_swap_pte_at(mm, address, ptep,
6205                                                      newpte, huge_page_size(h));
6206                                 pages++;
6207                         }
6208                         spin_unlock(ptl);
6209                         continue;
6210                 }
6211                 if (!huge_pte_none(pte)) {
6212                         pte_t old_pte;
6213                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6214
6215                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6216                         pte = huge_pte_modify(old_pte, newprot);
6217                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6218                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6219                         pages++;
6220                 }
6221                 spin_unlock(ptl);
6222         }
6223         /*
6224          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6225          * may have cleared our pud entry and done put_page on the page table:
6226          * once we release i_mmap_rwsem, another task can do the final put_page
6227          * and that page table be reused and filled with junk.  If we actually
6228          * did unshare a page of pmds, flush the range corresponding to the pud.
6229          */
6230         if (shared_pmd)
6231                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6232         else
6233                 flush_hugetlb_tlb_range(vma, start, end);
6234         /*
6235          * No need to call mmu_notifier_invalidate_range() we are downgrading
6236          * page table protection not changing it to point to a new page.
6237          *
6238          * See Documentation/vm/mmu_notifier.rst
6239          */
6240         i_mmap_unlock_write(vma->vm_file->f_mapping);
6241         mmu_notifier_invalidate_range_end(&range);
6242
6243         return pages << h->order;
6244 }
6245
6246 /* Return true if reservation was successful, false otherwise.  */
6247 bool hugetlb_reserve_pages(struct inode *inode,
6248                                         long from, long to,
6249                                         struct vm_area_struct *vma,
6250                                         vm_flags_t vm_flags)
6251 {
6252         long chg, add = -1;
6253         struct hstate *h = hstate_inode(inode);
6254         struct hugepage_subpool *spool = subpool_inode(inode);
6255         struct resv_map *resv_map;
6256         struct hugetlb_cgroup *h_cg = NULL;
6257         long gbl_reserve, regions_needed = 0;
6258
6259         /* This should never happen */
6260         if (from > to) {
6261                 VM_WARN(1, "%s called with a negative range\n", __func__);
6262                 return false;
6263         }
6264
6265         /*
6266          * Only apply hugepage reservation if asked. At fault time, an
6267          * attempt will be made for VM_NORESERVE to allocate a page
6268          * without using reserves
6269          */
6270         if (vm_flags & VM_NORESERVE)
6271                 return true;
6272
6273         /*
6274          * Shared mappings base their reservation on the number of pages that
6275          * are already allocated on behalf of the file. Private mappings need
6276          * to reserve the full area even if read-only as mprotect() may be
6277          * called to make the mapping read-write. Assume !vma is a shm mapping
6278          */
6279         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6280                 /*
6281                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6282                  * called for inodes for which resv_maps were created (see
6283                  * hugetlbfs_get_inode).
6284                  */
6285                 resv_map = inode_resv_map(inode);
6286
6287                 chg = region_chg(resv_map, from, to, &regions_needed);
6288
6289         } else {
6290                 /* Private mapping. */
6291                 resv_map = resv_map_alloc();
6292                 if (!resv_map)
6293                         return false;
6294
6295                 chg = to - from;
6296
6297                 set_vma_resv_map(vma, resv_map);
6298                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6299         }
6300
6301         if (chg < 0)
6302                 goto out_err;
6303
6304         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6305                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6306                 goto out_err;
6307
6308         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6309                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6310                  * of the resv_map.
6311                  */
6312                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6313         }
6314
6315         /*
6316          * There must be enough pages in the subpool for the mapping. If
6317          * the subpool has a minimum size, there may be some global
6318          * reservations already in place (gbl_reserve).
6319          */
6320         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6321         if (gbl_reserve < 0)
6322                 goto out_uncharge_cgroup;
6323
6324         /*
6325          * Check enough hugepages are available for the reservation.
6326          * Hand the pages back to the subpool if there are not
6327          */
6328         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6329                 goto out_put_pages;
6330
6331         /*
6332          * Account for the reservations made. Shared mappings record regions
6333          * that have reservations as they are shared by multiple VMAs.
6334          * When the last VMA disappears, the region map says how much
6335          * the reservation was and the page cache tells how much of
6336          * the reservation was consumed. Private mappings are per-VMA and
6337          * only the consumed reservations are tracked. When the VMA
6338          * disappears, the original reservation is the VMA size and the
6339          * consumed reservations are stored in the map. Hence, nothing
6340          * else has to be done for private mappings here
6341          */
6342         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6343                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6344
6345                 if (unlikely(add < 0)) {
6346                         hugetlb_acct_memory(h, -gbl_reserve);
6347                         goto out_put_pages;
6348                 } else if (unlikely(chg > add)) {
6349                         /*
6350                          * pages in this range were added to the reserve
6351                          * map between region_chg and region_add.  This
6352                          * indicates a race with alloc_huge_page.  Adjust
6353                          * the subpool and reserve counts modified above
6354                          * based on the difference.
6355                          */
6356                         long rsv_adjust;
6357
6358                         /*
6359                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6360                          * reference to h_cg->css. See comment below for detail.
6361                          */
6362                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6363                                 hstate_index(h),
6364                                 (chg - add) * pages_per_huge_page(h), h_cg);
6365
6366                         rsv_adjust = hugepage_subpool_put_pages(spool,
6367                                                                 chg - add);
6368                         hugetlb_acct_memory(h, -rsv_adjust);
6369                 } else if (h_cg) {
6370                         /*
6371                          * The file_regions will hold their own reference to
6372                          * h_cg->css. So we should release the reference held
6373                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6374                          * done.
6375                          */
6376                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6377                 }
6378         }
6379         return true;
6380
6381 out_put_pages:
6382         /* put back original number of pages, chg */
6383         (void)hugepage_subpool_put_pages(spool, chg);
6384 out_uncharge_cgroup:
6385         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6386                                             chg * pages_per_huge_page(h), h_cg);
6387 out_err:
6388         if (!vma || vma->vm_flags & VM_MAYSHARE)
6389                 /* Only call region_abort if the region_chg succeeded but the
6390                  * region_add failed or didn't run.
6391                  */
6392                 if (chg >= 0 && add < 0)
6393                         region_abort(resv_map, from, to, regions_needed);
6394         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6395                 kref_put(&resv_map->refs, resv_map_release);
6396         return false;
6397 }
6398
6399 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6400                                                                 long freed)
6401 {
6402         struct hstate *h = hstate_inode(inode);
6403         struct resv_map *resv_map = inode_resv_map(inode);
6404         long chg = 0;
6405         struct hugepage_subpool *spool = subpool_inode(inode);
6406         long gbl_reserve;
6407
6408         /*
6409          * Since this routine can be called in the evict inode path for all
6410          * hugetlbfs inodes, resv_map could be NULL.
6411          */
6412         if (resv_map) {
6413                 chg = region_del(resv_map, start, end);
6414                 /*
6415                  * region_del() can fail in the rare case where a region
6416                  * must be split and another region descriptor can not be
6417                  * allocated.  If end == LONG_MAX, it will not fail.
6418                  */
6419                 if (chg < 0)
6420                         return chg;
6421         }
6422
6423         spin_lock(&inode->i_lock);
6424         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6425         spin_unlock(&inode->i_lock);
6426
6427         /*
6428          * If the subpool has a minimum size, the number of global
6429          * reservations to be released may be adjusted.
6430          *
6431          * Note that !resv_map implies freed == 0. So (chg - freed)
6432          * won't go negative.
6433          */
6434         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6435         hugetlb_acct_memory(h, -gbl_reserve);
6436
6437         return 0;
6438 }
6439
6440 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6441 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6442                                 struct vm_area_struct *vma,
6443                                 unsigned long addr, pgoff_t idx)
6444 {
6445         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6446                                 svma->vm_start;
6447         unsigned long sbase = saddr & PUD_MASK;
6448         unsigned long s_end = sbase + PUD_SIZE;
6449
6450         /* Allow segments to share if only one is marked locked */
6451         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6452         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6453
6454         /*
6455          * match the virtual addresses, permission and the alignment of the
6456          * page table page.
6457          */
6458         if (pmd_index(addr) != pmd_index(saddr) ||
6459             vm_flags != svm_flags ||
6460             !range_in_vma(svma, sbase, s_end))
6461                 return 0;
6462
6463         return saddr;
6464 }
6465
6466 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6467 {
6468         unsigned long base = addr & PUD_MASK;
6469         unsigned long end = base + PUD_SIZE;
6470
6471         /*
6472          * check on proper vm_flags and page table alignment
6473          */
6474         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6475                 return true;
6476         return false;
6477 }
6478
6479 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6480 {
6481 #ifdef CONFIG_USERFAULTFD
6482         if (uffd_disable_huge_pmd_share(vma))
6483                 return false;
6484 #endif
6485         return vma_shareable(vma, addr);
6486 }
6487
6488 /*
6489  * Determine if start,end range within vma could be mapped by shared pmd.
6490  * If yes, adjust start and end to cover range associated with possible
6491  * shared pmd mappings.
6492  */
6493 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6494                                 unsigned long *start, unsigned long *end)
6495 {
6496         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6497                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6498
6499         /*
6500          * vma needs to span at least one aligned PUD size, and the range
6501          * must be at least partially within in.
6502          */
6503         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6504                 (*end <= v_start) || (*start >= v_end))
6505                 return;
6506
6507         /* Extend the range to be PUD aligned for a worst case scenario */
6508         if (*start > v_start)
6509                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6510
6511         if (*end < v_end)
6512                 *end = ALIGN(*end, PUD_SIZE);
6513 }
6514
6515 /*
6516  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6517  * and returns the corresponding pte. While this is not necessary for the
6518  * !shared pmd case because we can allocate the pmd later as well, it makes the
6519  * code much cleaner.
6520  *
6521  * This routine must be called with i_mmap_rwsem held in at least read mode if
6522  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6523  * table entries associated with the address space.  This is important as we
6524  * are setting up sharing based on existing page table entries (mappings).
6525  */
6526 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6527                       unsigned long addr, pud_t *pud)
6528 {
6529         struct address_space *mapping = vma->vm_file->f_mapping;
6530         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6531                         vma->vm_pgoff;
6532         struct vm_area_struct *svma;
6533         unsigned long saddr;
6534         pte_t *spte = NULL;
6535         pte_t *pte;
6536         spinlock_t *ptl;
6537
6538         i_mmap_assert_locked(mapping);
6539         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6540                 if (svma == vma)
6541                         continue;
6542
6543                 saddr = page_table_shareable(svma, vma, addr, idx);
6544                 if (saddr) {
6545                         spte = huge_pte_offset(svma->vm_mm, saddr,
6546                                                vma_mmu_pagesize(svma));
6547                         if (spte) {
6548                                 get_page(virt_to_page(spte));
6549                                 break;
6550                         }
6551                 }
6552         }
6553
6554         if (!spte)
6555                 goto out;
6556
6557         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6558         if (pud_none(*pud)) {
6559                 pud_populate(mm, pud,
6560                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6561                 mm_inc_nr_pmds(mm);
6562         } else {
6563                 put_page(virt_to_page(spte));
6564         }
6565         spin_unlock(ptl);
6566 out:
6567         pte = (pte_t *)pmd_alloc(mm, pud, addr);
6568         return pte;
6569 }
6570
6571 /*
6572  * unmap huge page backed by shared pte.
6573  *
6574  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6575  * indicated by page_count > 1, unmap is achieved by clearing pud and
6576  * decrementing the ref count. If count == 1, the pte page is not shared.
6577  *
6578  * Called with page table lock held and i_mmap_rwsem held in write mode.
6579  *
6580  * returns: 1 successfully unmapped a shared pte page
6581  *          0 the underlying pte page is not shared, or it is the last user
6582  */
6583 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6584                                         unsigned long *addr, pte_t *ptep)
6585 {
6586         pgd_t *pgd = pgd_offset(mm, *addr);
6587         p4d_t *p4d = p4d_offset(pgd, *addr);
6588         pud_t *pud = pud_offset(p4d, *addr);
6589
6590         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6591         BUG_ON(page_count(virt_to_page(ptep)) == 0);
6592         if (page_count(virt_to_page(ptep)) == 1)
6593                 return 0;
6594
6595         pud_clear(pud);
6596         put_page(virt_to_page(ptep));
6597         mm_dec_nr_pmds(mm);
6598         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6599         return 1;
6600 }
6601
6602 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6603 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6604                       unsigned long addr, pud_t *pud)
6605 {
6606         return NULL;
6607 }
6608
6609 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6610                                 unsigned long *addr, pte_t *ptep)
6611 {
6612         return 0;
6613 }
6614
6615 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6616                                 unsigned long *start, unsigned long *end)
6617 {
6618 }
6619
6620 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6621 {
6622         return false;
6623 }
6624 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6625
6626 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6627 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6628                         unsigned long addr, unsigned long sz)
6629 {
6630         pgd_t *pgd;
6631         p4d_t *p4d;
6632         pud_t *pud;
6633         pte_t *pte = NULL;
6634
6635         pgd = pgd_offset(mm, addr);
6636         p4d = p4d_alloc(mm, pgd, addr);
6637         if (!p4d)
6638                 return NULL;
6639         pud = pud_alloc(mm, p4d, addr);
6640         if (pud) {
6641                 if (sz == PUD_SIZE) {
6642                         pte = (pte_t *)pud;
6643                 } else {
6644                         BUG_ON(sz != PMD_SIZE);
6645                         if (want_pmd_share(vma, addr) && pud_none(*pud))
6646                                 pte = huge_pmd_share(mm, vma, addr, pud);
6647                         else
6648                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6649                 }
6650         }
6651         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6652
6653         return pte;
6654 }
6655
6656 /*
6657  * huge_pte_offset() - Walk the page table to resolve the hugepage
6658  * entry at address @addr
6659  *
6660  * Return: Pointer to page table entry (PUD or PMD) for
6661  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6662  * size @sz doesn't match the hugepage size at this level of the page
6663  * table.
6664  */
6665 pte_t *huge_pte_offset(struct mm_struct *mm,
6666                        unsigned long addr, unsigned long sz)
6667 {
6668         pgd_t *pgd;
6669         p4d_t *p4d;
6670         pud_t *pud;
6671         pmd_t *pmd;
6672
6673         pgd = pgd_offset(mm, addr);
6674         if (!pgd_present(*pgd))
6675                 return NULL;
6676         p4d = p4d_offset(pgd, addr);
6677         if (!p4d_present(*p4d))
6678                 return NULL;
6679
6680         pud = pud_offset(p4d, addr);
6681         if (sz == PUD_SIZE)
6682                 /* must be pud huge, non-present or none */
6683                 return (pte_t *)pud;
6684         if (!pud_present(*pud))
6685                 return NULL;
6686         /* must have a valid entry and size to go further */
6687
6688         pmd = pmd_offset(pud, addr);
6689         /* must be pmd huge, non-present or none */
6690         return (pte_t *)pmd;
6691 }
6692
6693 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6694
6695 /*
6696  * These functions are overwritable if your architecture needs its own
6697  * behavior.
6698  */
6699 struct page * __weak
6700 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6701                               int write)
6702 {
6703         return ERR_PTR(-EINVAL);
6704 }
6705
6706 struct page * __weak
6707 follow_huge_pd(struct vm_area_struct *vma,
6708                unsigned long address, hugepd_t hpd, int flags, int pdshift)
6709 {
6710         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6711         return NULL;
6712 }
6713
6714 struct page * __weak
6715 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6716                 pmd_t *pmd, int flags)
6717 {
6718         struct page *page = NULL;
6719         spinlock_t *ptl;
6720         pte_t pte;
6721
6722         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6723         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6724                          (FOLL_PIN | FOLL_GET)))
6725                 return NULL;
6726
6727 retry:
6728         ptl = pmd_lockptr(mm, pmd);
6729         spin_lock(ptl);
6730         /*
6731          * make sure that the address range covered by this pmd is not
6732          * unmapped from other threads.
6733          */
6734         if (!pmd_huge(*pmd))
6735                 goto out;
6736         pte = huge_ptep_get((pte_t *)pmd);
6737         if (pte_present(pte)) {
6738                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6739                 /*
6740                  * try_grab_page() should always succeed here, because: a) we
6741                  * hold the pmd (ptl) lock, and b) we've just checked that the
6742                  * huge pmd (head) page is present in the page tables. The ptl
6743                  * prevents the head page and tail pages from being rearranged
6744                  * in any way. So this page must be available at this point,
6745                  * unless the page refcount overflowed:
6746                  */
6747                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6748                         page = NULL;
6749                         goto out;
6750                 }
6751         } else {
6752                 if (is_hugetlb_entry_migration(pte)) {
6753                         spin_unlock(ptl);
6754                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6755                         goto retry;
6756                 }
6757                 /*
6758                  * hwpoisoned entry is treated as no_page_table in
6759                  * follow_page_mask().
6760                  */
6761         }
6762 out:
6763         spin_unlock(ptl);
6764         return page;
6765 }
6766
6767 struct page * __weak
6768 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6769                 pud_t *pud, int flags)
6770 {
6771         if (flags & (FOLL_GET | FOLL_PIN))
6772                 return NULL;
6773
6774         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6775 }
6776
6777 struct page * __weak
6778 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6779 {
6780         if (flags & (FOLL_GET | FOLL_PIN))
6781                 return NULL;
6782
6783         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6784 }
6785
6786 bool isolate_huge_page(struct page *page, struct list_head *list)
6787 {
6788         bool ret = true;
6789
6790         spin_lock_irq(&hugetlb_lock);
6791         if (!PageHeadHuge(page) ||
6792             !HPageMigratable(page) ||
6793             !get_page_unless_zero(page)) {
6794                 ret = false;
6795                 goto unlock;
6796         }
6797         ClearHPageMigratable(page);
6798         list_move_tail(&page->lru, list);
6799 unlock:
6800         spin_unlock_irq(&hugetlb_lock);
6801         return ret;
6802 }
6803
6804 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6805 {
6806         int ret = 0;
6807
6808         *hugetlb = false;
6809         spin_lock_irq(&hugetlb_lock);
6810         if (PageHeadHuge(page)) {
6811                 *hugetlb = true;
6812                 if (HPageFreed(page))
6813                         ret = 0;
6814                 else if (HPageMigratable(page))
6815                         ret = get_page_unless_zero(page);
6816                 else
6817                         ret = -EBUSY;
6818         }
6819         spin_unlock_irq(&hugetlb_lock);
6820         return ret;
6821 }
6822
6823 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
6824 {
6825         int ret;
6826
6827         spin_lock_irq(&hugetlb_lock);
6828         ret = __get_huge_page_for_hwpoison(pfn, flags);
6829         spin_unlock_irq(&hugetlb_lock);
6830         return ret;
6831 }
6832
6833 void putback_active_hugepage(struct page *page)
6834 {
6835         spin_lock_irq(&hugetlb_lock);
6836         SetHPageMigratable(page);
6837         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6838         spin_unlock_irq(&hugetlb_lock);
6839         put_page(page);
6840 }
6841
6842 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6843 {
6844         struct hstate *h = page_hstate(oldpage);
6845
6846         hugetlb_cgroup_migrate(oldpage, newpage);
6847         set_page_owner_migrate_reason(newpage, reason);
6848
6849         /*
6850          * transfer temporary state of the new huge page. This is
6851          * reverse to other transitions because the newpage is going to
6852          * be final while the old one will be freed so it takes over
6853          * the temporary status.
6854          *
6855          * Also note that we have to transfer the per-node surplus state
6856          * here as well otherwise the global surplus count will not match
6857          * the per-node's.
6858          */
6859         if (HPageTemporary(newpage)) {
6860                 int old_nid = page_to_nid(oldpage);
6861                 int new_nid = page_to_nid(newpage);
6862
6863                 SetHPageTemporary(oldpage);
6864                 ClearHPageTemporary(newpage);
6865
6866                 /*
6867                  * There is no need to transfer the per-node surplus state
6868                  * when we do not cross the node.
6869                  */
6870                 if (new_nid == old_nid)
6871                         return;
6872                 spin_lock_irq(&hugetlb_lock);
6873                 if (h->surplus_huge_pages_node[old_nid]) {
6874                         h->surplus_huge_pages_node[old_nid]--;
6875                         h->surplus_huge_pages_node[new_nid]++;
6876                 }
6877                 spin_unlock_irq(&hugetlb_lock);
6878         }
6879 }
6880
6881 /*
6882  * This function will unconditionally remove all the shared pmd pgtable entries
6883  * within the specific vma for a hugetlbfs memory range.
6884  */
6885 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6886 {
6887         struct hstate *h = hstate_vma(vma);
6888         unsigned long sz = huge_page_size(h);
6889         struct mm_struct *mm = vma->vm_mm;
6890         struct mmu_notifier_range range;
6891         unsigned long address, start, end;
6892         spinlock_t *ptl;
6893         pte_t *ptep;
6894
6895         if (!(vma->vm_flags & VM_MAYSHARE))
6896                 return;
6897
6898         start = ALIGN(vma->vm_start, PUD_SIZE);
6899         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6900
6901         if (start >= end)
6902                 return;
6903
6904         flush_cache_range(vma, start, end);
6905         /*
6906          * No need to call adjust_range_if_pmd_sharing_possible(), because
6907          * we have already done the PUD_SIZE alignment.
6908          */
6909         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6910                                 start, end);
6911         mmu_notifier_invalidate_range_start(&range);
6912         i_mmap_lock_write(vma->vm_file->f_mapping);
6913         for (address = start; address < end; address += PUD_SIZE) {
6914                 unsigned long tmp = address;
6915
6916                 ptep = huge_pte_offset(mm, address, sz);
6917                 if (!ptep)
6918                         continue;
6919                 ptl = huge_pte_lock(h, mm, ptep);
6920                 /* We don't want 'address' to be changed */
6921                 huge_pmd_unshare(mm, vma, &tmp, ptep);
6922                 spin_unlock(ptl);
6923         }
6924         flush_hugetlb_tlb_range(vma, start, end);
6925         i_mmap_unlock_write(vma->vm_file->f_mapping);
6926         /*
6927          * No need to call mmu_notifier_invalidate_range(), see
6928          * Documentation/vm/mmu_notifier.rst.
6929          */
6930         mmu_notifier_invalidate_range_end(&range);
6931 }
6932
6933 #ifdef CONFIG_CMA
6934 static bool cma_reserve_called __initdata;
6935
6936 static int __init cmdline_parse_hugetlb_cma(char *p)
6937 {
6938         int nid, count = 0;
6939         unsigned long tmp;
6940         char *s = p;
6941
6942         while (*s) {
6943                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
6944                         break;
6945
6946                 if (s[count] == ':') {
6947                         if (tmp >= MAX_NUMNODES)
6948                                 break;
6949                         nid = array_index_nospec(tmp, MAX_NUMNODES);
6950
6951                         s += count + 1;
6952                         tmp = memparse(s, &s);
6953                         hugetlb_cma_size_in_node[nid] = tmp;
6954                         hugetlb_cma_size += tmp;
6955
6956                         /*
6957                          * Skip the separator if have one, otherwise
6958                          * break the parsing.
6959                          */
6960                         if (*s == ',')
6961                                 s++;
6962                         else
6963                                 break;
6964                 } else {
6965                         hugetlb_cma_size = memparse(p, &p);
6966                         break;
6967                 }
6968         }
6969
6970         return 0;
6971 }
6972
6973 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6974
6975 void __init hugetlb_cma_reserve(int order)
6976 {
6977         unsigned long size, reserved, per_node;
6978         bool node_specific_cma_alloc = false;
6979         int nid;
6980
6981         cma_reserve_called = true;
6982
6983         if (!hugetlb_cma_size)
6984                 return;
6985
6986         for (nid = 0; nid < MAX_NUMNODES; nid++) {
6987                 if (hugetlb_cma_size_in_node[nid] == 0)
6988                         continue;
6989
6990                 if (!node_online(nid)) {
6991                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
6992                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6993                         hugetlb_cma_size_in_node[nid] = 0;
6994                         continue;
6995                 }
6996
6997                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
6998                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
6999                                 nid, (PAGE_SIZE << order) / SZ_1M);
7000                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7001                         hugetlb_cma_size_in_node[nid] = 0;
7002                 } else {
7003                         node_specific_cma_alloc = true;
7004                 }
7005         }
7006
7007         /* Validate the CMA size again in case some invalid nodes specified. */
7008         if (!hugetlb_cma_size)
7009                 return;
7010
7011         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7012                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7013                         (PAGE_SIZE << order) / SZ_1M);
7014                 hugetlb_cma_size = 0;
7015                 return;
7016         }
7017
7018         if (!node_specific_cma_alloc) {
7019                 /*
7020                  * If 3 GB area is requested on a machine with 4 numa nodes,
7021                  * let's allocate 1 GB on first three nodes and ignore the last one.
7022                  */
7023                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7024                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7025                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7026         }
7027
7028         reserved = 0;
7029         for_each_online_node(nid) {
7030                 int res;
7031                 char name[CMA_MAX_NAME];
7032
7033                 if (node_specific_cma_alloc) {
7034                         if (hugetlb_cma_size_in_node[nid] == 0)
7035                                 continue;
7036
7037                         size = hugetlb_cma_size_in_node[nid];
7038                 } else {
7039                         size = min(per_node, hugetlb_cma_size - reserved);
7040                 }
7041
7042                 size = round_up(size, PAGE_SIZE << order);
7043
7044                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7045                 /*
7046                  * Note that 'order per bit' is based on smallest size that
7047                  * may be returned to CMA allocator in the case of
7048                  * huge page demotion.
7049                  */
7050                 res = cma_declare_contiguous_nid(0, size, 0,
7051                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7052                                                  0, false, name,
7053                                                  &hugetlb_cma[nid], nid);
7054                 if (res) {
7055                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7056                                 res, nid);
7057                         continue;
7058                 }
7059
7060                 reserved += size;
7061                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7062                         size / SZ_1M, nid);
7063
7064                 if (reserved >= hugetlb_cma_size)
7065                         break;
7066         }
7067
7068         if (!reserved)
7069                 /*
7070                  * hugetlb_cma_size is used to determine if allocations from
7071                  * cma are possible.  Set to zero if no cma regions are set up.
7072                  */
7073                 hugetlb_cma_size = 0;
7074 }
7075
7076 void __init hugetlb_cma_check(void)
7077 {
7078         if (!hugetlb_cma_size || cma_reserve_called)
7079                 return;
7080
7081         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7082 }
7083
7084 #endif /* CONFIG_CMA */
This page took 0.472384 seconds and 4 git commands to generate.