1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
37 #include <asm/pgalloc.h>
41 #include <linux/hugetlb.h>
42 #include <linux/hugetlb_cgroup.h>
43 #include <linux/node.h>
44 #include <linux/page_owner.h>
46 #include "hugetlb_vmemmap.h"
48 int hugetlb_max_hstate __read_mostly;
49 unsigned int default_hstate_idx;
50 struct hstate hstates[HUGE_MAX_HSTATE];
53 static struct cma *hugetlb_cma[MAX_NUMNODES];
54 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
55 static bool hugetlb_cma_page(struct page *page, unsigned int order)
57 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
61 static bool hugetlb_cma_page(struct page *page, unsigned int order)
66 static unsigned long hugetlb_cma_size __initdata;
69 * Minimum page order among possible hugepage sizes, set to a proper value
72 static unsigned int minimum_order __read_mostly = UINT_MAX;
74 __initdata LIST_HEAD(huge_boot_pages);
76 /* for command line parsing */
77 static struct hstate * __initdata parsed_hstate;
78 static unsigned long __initdata default_hstate_max_huge_pages;
79 static bool __initdata parsed_valid_hugepagesz = true;
80 static bool __initdata parsed_default_hugepagesz;
81 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
84 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
85 * free_huge_pages, and surplus_huge_pages.
87 DEFINE_SPINLOCK(hugetlb_lock);
90 * Serializes faults on the same logical page. This is used to
91 * prevent spurious OOMs when the hugepage pool is fully utilized.
93 static int num_fault_mutexes;
94 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
96 /* Forward declaration */
97 static int hugetlb_acct_memory(struct hstate *h, long delta);
99 static inline bool subpool_is_free(struct hugepage_subpool *spool)
103 if (spool->max_hpages != -1)
104 return spool->used_hpages == 0;
105 if (spool->min_hpages != -1)
106 return spool->rsv_hpages == spool->min_hpages;
111 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
112 unsigned long irq_flags)
114 spin_unlock_irqrestore(&spool->lock, irq_flags);
116 /* If no pages are used, and no other handles to the subpool
117 * remain, give up any reservations based on minimum size and
118 * free the subpool */
119 if (subpool_is_free(spool)) {
120 if (spool->min_hpages != -1)
121 hugetlb_acct_memory(spool->hstate,
127 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
130 struct hugepage_subpool *spool;
132 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136 spin_lock_init(&spool->lock);
138 spool->max_hpages = max_hpages;
140 spool->min_hpages = min_hpages;
142 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146 spool->rsv_hpages = min_hpages;
151 void hugepage_put_subpool(struct hugepage_subpool *spool)
155 spin_lock_irqsave(&spool->lock, flags);
156 BUG_ON(!spool->count);
158 unlock_or_release_subpool(spool, flags);
162 * Subpool accounting for allocating and reserving pages.
163 * Return -ENOMEM if there are not enough resources to satisfy the
164 * request. Otherwise, return the number of pages by which the
165 * global pools must be adjusted (upward). The returned value may
166 * only be different than the passed value (delta) in the case where
167 * a subpool minimum size must be maintained.
169 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
177 spin_lock_irq(&spool->lock);
179 if (spool->max_hpages != -1) { /* maximum size accounting */
180 if ((spool->used_hpages + delta) <= spool->max_hpages)
181 spool->used_hpages += delta;
188 /* minimum size accounting */
189 if (spool->min_hpages != -1 && spool->rsv_hpages) {
190 if (delta > spool->rsv_hpages) {
192 * Asking for more reserves than those already taken on
193 * behalf of subpool. Return difference.
195 ret = delta - spool->rsv_hpages;
196 spool->rsv_hpages = 0;
198 ret = 0; /* reserves already accounted for */
199 spool->rsv_hpages -= delta;
204 spin_unlock_irq(&spool->lock);
209 * Subpool accounting for freeing and unreserving pages.
210 * Return the number of global page reservations that must be dropped.
211 * The return value may only be different than the passed value (delta)
212 * in the case where a subpool minimum size must be maintained.
214 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
223 spin_lock_irqsave(&spool->lock, flags);
225 if (spool->max_hpages != -1) /* maximum size accounting */
226 spool->used_hpages -= delta;
228 /* minimum size accounting */
229 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
230 if (spool->rsv_hpages + delta <= spool->min_hpages)
233 ret = spool->rsv_hpages + delta - spool->min_hpages;
235 spool->rsv_hpages += delta;
236 if (spool->rsv_hpages > spool->min_hpages)
237 spool->rsv_hpages = spool->min_hpages;
241 * If hugetlbfs_put_super couldn't free spool due to an outstanding
242 * quota reference, free it now.
244 unlock_or_release_subpool(spool, flags);
249 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 return HUGETLBFS_SB(inode->i_sb)->spool;
254 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 return subpool_inode(file_inode(vma->vm_file));
259 /* Helper that removes a struct file_region from the resv_map cache and returns
262 static struct file_region *
263 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
265 struct file_region *nrg = NULL;
267 VM_BUG_ON(resv->region_cache_count <= 0);
269 resv->region_cache_count--;
270 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
271 list_del(&nrg->link);
279 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
280 struct file_region *rg)
282 #ifdef CONFIG_CGROUP_HUGETLB
283 nrg->reservation_counter = rg->reservation_counter;
290 /* Helper that records hugetlb_cgroup uncharge info. */
291 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
293 struct resv_map *resv,
294 struct file_region *nrg)
296 #ifdef CONFIG_CGROUP_HUGETLB
298 nrg->reservation_counter =
299 &h_cg->rsvd_hugepage[hstate_index(h)];
300 nrg->css = &h_cg->css;
302 * The caller will hold exactly one h_cg->css reference for the
303 * whole contiguous reservation region. But this area might be
304 * scattered when there are already some file_regions reside in
305 * it. As a result, many file_regions may share only one css
306 * reference. In order to ensure that one file_region must hold
307 * exactly one h_cg->css reference, we should do css_get for
308 * each file_region and leave the reference held by caller
312 if (!resv->pages_per_hpage)
313 resv->pages_per_hpage = pages_per_huge_page(h);
314 /* pages_per_hpage should be the same for all entries in
317 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
319 nrg->reservation_counter = NULL;
325 static void put_uncharge_info(struct file_region *rg)
327 #ifdef CONFIG_CGROUP_HUGETLB
333 static bool has_same_uncharge_info(struct file_region *rg,
334 struct file_region *org)
336 #ifdef CONFIG_CGROUP_HUGETLB
337 return rg->reservation_counter == org->reservation_counter &&
345 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
347 struct file_region *nrg = NULL, *prg = NULL;
349 prg = list_prev_entry(rg, link);
350 if (&prg->link != &resv->regions && prg->to == rg->from &&
351 has_same_uncharge_info(prg, rg)) {
355 put_uncharge_info(rg);
361 nrg = list_next_entry(rg, link);
362 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
363 has_same_uncharge_info(nrg, rg)) {
364 nrg->from = rg->from;
367 put_uncharge_info(rg);
373 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
374 long to, struct hstate *h, struct hugetlb_cgroup *cg,
375 long *regions_needed)
377 struct file_region *nrg;
379 if (!regions_needed) {
380 nrg = get_file_region_entry_from_cache(map, from, to);
381 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
382 list_add(&nrg->link, rg);
383 coalesce_file_region(map, nrg);
385 *regions_needed += 1;
391 * Must be called with resv->lock held.
393 * Calling this with regions_needed != NULL will count the number of pages
394 * to be added but will not modify the linked list. And regions_needed will
395 * indicate the number of file_regions needed in the cache to carry out to add
396 * the regions for this range.
398 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
399 struct hugetlb_cgroup *h_cg,
400 struct hstate *h, long *regions_needed)
403 struct list_head *head = &resv->regions;
404 long last_accounted_offset = f;
405 struct file_region *iter, *trg = NULL;
406 struct list_head *rg = NULL;
411 /* In this loop, we essentially handle an entry for the range
412 * [last_accounted_offset, iter->from), at every iteration, with some
415 list_for_each_entry_safe(iter, trg, head, link) {
416 /* Skip irrelevant regions that start before our range. */
417 if (iter->from < f) {
418 /* If this region ends after the last accounted offset,
419 * then we need to update last_accounted_offset.
421 if (iter->to > last_accounted_offset)
422 last_accounted_offset = iter->to;
426 /* When we find a region that starts beyond our range, we've
429 if (iter->from >= t) {
430 rg = iter->link.prev;
434 /* Add an entry for last_accounted_offset -> iter->from, and
435 * update last_accounted_offset.
437 if (iter->from > last_accounted_offset)
438 add += hugetlb_resv_map_add(resv, iter->link.prev,
439 last_accounted_offset,
443 last_accounted_offset = iter->to;
446 /* Handle the case where our range extends beyond
447 * last_accounted_offset.
451 if (last_accounted_offset < t)
452 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
453 t, h, h_cg, regions_needed);
458 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
460 static int allocate_file_region_entries(struct resv_map *resv,
462 __must_hold(&resv->lock)
464 struct list_head allocated_regions;
465 int to_allocate = 0, i = 0;
466 struct file_region *trg = NULL, *rg = NULL;
468 VM_BUG_ON(regions_needed < 0);
470 INIT_LIST_HEAD(&allocated_regions);
473 * Check for sufficient descriptors in the cache to accommodate
474 * the number of in progress add operations plus regions_needed.
476 * This is a while loop because when we drop the lock, some other call
477 * to region_add or region_del may have consumed some region_entries,
478 * so we keep looping here until we finally have enough entries for
479 * (adds_in_progress + regions_needed).
481 while (resv->region_cache_count <
482 (resv->adds_in_progress + regions_needed)) {
483 to_allocate = resv->adds_in_progress + regions_needed -
484 resv->region_cache_count;
486 /* At this point, we should have enough entries in the cache
487 * for all the existing adds_in_progress. We should only be
488 * needing to allocate for regions_needed.
490 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
492 spin_unlock(&resv->lock);
493 for (i = 0; i < to_allocate; i++) {
494 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
497 list_add(&trg->link, &allocated_regions);
500 spin_lock(&resv->lock);
502 list_splice(&allocated_regions, &resv->region_cache);
503 resv->region_cache_count += to_allocate;
509 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
517 * Add the huge page range represented by [f, t) to the reserve
518 * map. Regions will be taken from the cache to fill in this range.
519 * Sufficient regions should exist in the cache due to the previous
520 * call to region_chg with the same range, but in some cases the cache will not
521 * have sufficient entries due to races with other code doing region_add or
522 * region_del. The extra needed entries will be allocated.
524 * regions_needed is the out value provided by a previous call to region_chg.
526 * Return the number of new huge pages added to the map. This number is greater
527 * than or equal to zero. If file_region entries needed to be allocated for
528 * this operation and we were not able to allocate, it returns -ENOMEM.
529 * region_add of regions of length 1 never allocate file_regions and cannot
530 * fail; region_chg will always allocate at least 1 entry and a region_add for
531 * 1 page will only require at most 1 entry.
533 static long region_add(struct resv_map *resv, long f, long t,
534 long in_regions_needed, struct hstate *h,
535 struct hugetlb_cgroup *h_cg)
537 long add = 0, actual_regions_needed = 0;
539 spin_lock(&resv->lock);
542 /* Count how many regions are actually needed to execute this add. */
543 add_reservation_in_range(resv, f, t, NULL, NULL,
544 &actual_regions_needed);
547 * Check for sufficient descriptors in the cache to accommodate
548 * this add operation. Note that actual_regions_needed may be greater
549 * than in_regions_needed, as the resv_map may have been modified since
550 * the region_chg call. In this case, we need to make sure that we
551 * allocate extra entries, such that we have enough for all the
552 * existing adds_in_progress, plus the excess needed for this
555 if (actual_regions_needed > in_regions_needed &&
556 resv->region_cache_count <
557 resv->adds_in_progress +
558 (actual_regions_needed - in_regions_needed)) {
559 /* region_add operation of range 1 should never need to
560 * allocate file_region entries.
562 VM_BUG_ON(t - f <= 1);
564 if (allocate_file_region_entries(
565 resv, actual_regions_needed - in_regions_needed)) {
572 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
574 resv->adds_in_progress -= in_regions_needed;
576 spin_unlock(&resv->lock);
581 * Examine the existing reserve map and determine how many
582 * huge pages in the specified range [f, t) are NOT currently
583 * represented. This routine is called before a subsequent
584 * call to region_add that will actually modify the reserve
585 * map to add the specified range [f, t). region_chg does
586 * not change the number of huge pages represented by the
587 * map. A number of new file_region structures is added to the cache as a
588 * placeholder, for the subsequent region_add call to use. At least 1
589 * file_region structure is added.
591 * out_regions_needed is the number of regions added to the
592 * resv->adds_in_progress. This value needs to be provided to a follow up call
593 * to region_add or region_abort for proper accounting.
595 * Returns the number of huge pages that need to be added to the existing
596 * reservation map for the range [f, t). This number is greater or equal to
597 * zero. -ENOMEM is returned if a new file_region structure or cache entry
598 * is needed and can not be allocated.
600 static long region_chg(struct resv_map *resv, long f, long t,
601 long *out_regions_needed)
605 spin_lock(&resv->lock);
607 /* Count how many hugepages in this range are NOT represented. */
608 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
611 if (*out_regions_needed == 0)
612 *out_regions_needed = 1;
614 if (allocate_file_region_entries(resv, *out_regions_needed))
617 resv->adds_in_progress += *out_regions_needed;
619 spin_unlock(&resv->lock);
624 * Abort the in progress add operation. The adds_in_progress field
625 * of the resv_map keeps track of the operations in progress between
626 * calls to region_chg and region_add. Operations are sometimes
627 * aborted after the call to region_chg. In such cases, region_abort
628 * is called to decrement the adds_in_progress counter. regions_needed
629 * is the value returned by the region_chg call, it is used to decrement
630 * the adds_in_progress counter.
632 * NOTE: The range arguments [f, t) are not needed or used in this
633 * routine. They are kept to make reading the calling code easier as
634 * arguments will match the associated region_chg call.
636 static void region_abort(struct resv_map *resv, long f, long t,
639 spin_lock(&resv->lock);
640 VM_BUG_ON(!resv->region_cache_count);
641 resv->adds_in_progress -= regions_needed;
642 spin_unlock(&resv->lock);
646 * Delete the specified range [f, t) from the reserve map. If the
647 * t parameter is LONG_MAX, this indicates that ALL regions after f
648 * should be deleted. Locate the regions which intersect [f, t)
649 * and either trim, delete or split the existing regions.
651 * Returns the number of huge pages deleted from the reserve map.
652 * In the normal case, the return value is zero or more. In the
653 * case where a region must be split, a new region descriptor must
654 * be allocated. If the allocation fails, -ENOMEM will be returned.
655 * NOTE: If the parameter t == LONG_MAX, then we will never split
656 * a region and possibly return -ENOMEM. Callers specifying
657 * t == LONG_MAX do not need to check for -ENOMEM error.
659 static long region_del(struct resv_map *resv, long f, long t)
661 struct list_head *head = &resv->regions;
662 struct file_region *rg, *trg;
663 struct file_region *nrg = NULL;
667 spin_lock(&resv->lock);
668 list_for_each_entry_safe(rg, trg, head, link) {
670 * Skip regions before the range to be deleted. file_region
671 * ranges are normally of the form [from, to). However, there
672 * may be a "placeholder" entry in the map which is of the form
673 * (from, to) with from == to. Check for placeholder entries
674 * at the beginning of the range to be deleted.
676 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
682 if (f > rg->from && t < rg->to) { /* Must split region */
684 * Check for an entry in the cache before dropping
685 * lock and attempting allocation.
688 resv->region_cache_count > resv->adds_in_progress) {
689 nrg = list_first_entry(&resv->region_cache,
692 list_del(&nrg->link);
693 resv->region_cache_count--;
697 spin_unlock(&resv->lock);
698 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
705 hugetlb_cgroup_uncharge_file_region(
706 resv, rg, t - f, false);
708 /* New entry for end of split region */
712 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
714 INIT_LIST_HEAD(&nrg->link);
716 /* Original entry is trimmed */
719 list_add(&nrg->link, &rg->link);
724 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
725 del += rg->to - rg->from;
726 hugetlb_cgroup_uncharge_file_region(resv, rg,
727 rg->to - rg->from, true);
733 if (f <= rg->from) { /* Trim beginning of region */
734 hugetlb_cgroup_uncharge_file_region(resv, rg,
735 t - rg->from, false);
739 } else { /* Trim end of region */
740 hugetlb_cgroup_uncharge_file_region(resv, rg,
748 spin_unlock(&resv->lock);
754 * A rare out of memory error was encountered which prevented removal of
755 * the reserve map region for a page. The huge page itself was free'ed
756 * and removed from the page cache. This routine will adjust the subpool
757 * usage count, and the global reserve count if needed. By incrementing
758 * these counts, the reserve map entry which could not be deleted will
759 * appear as a "reserved" entry instead of simply dangling with incorrect
762 void hugetlb_fix_reserve_counts(struct inode *inode)
764 struct hugepage_subpool *spool = subpool_inode(inode);
766 bool reserved = false;
768 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
769 if (rsv_adjust > 0) {
770 struct hstate *h = hstate_inode(inode);
772 if (!hugetlb_acct_memory(h, 1))
774 } else if (!rsv_adjust) {
779 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
783 * Count and return the number of huge pages in the reserve map
784 * that intersect with the range [f, t).
786 static long region_count(struct resv_map *resv, long f, long t)
788 struct list_head *head = &resv->regions;
789 struct file_region *rg;
792 spin_lock(&resv->lock);
793 /* Locate each segment we overlap with, and count that overlap. */
794 list_for_each_entry(rg, head, link) {
803 seg_from = max(rg->from, f);
804 seg_to = min(rg->to, t);
806 chg += seg_to - seg_from;
808 spin_unlock(&resv->lock);
814 * Convert the address within this vma to the page offset within
815 * the mapping, in pagecache page units; huge pages here.
817 static pgoff_t vma_hugecache_offset(struct hstate *h,
818 struct vm_area_struct *vma, unsigned long address)
820 return ((address - vma->vm_start) >> huge_page_shift(h)) +
821 (vma->vm_pgoff >> huge_page_order(h));
824 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
825 unsigned long address)
827 return vma_hugecache_offset(hstate_vma(vma), vma, address);
829 EXPORT_SYMBOL_GPL(linear_hugepage_index);
832 * Return the size of the pages allocated when backing a VMA. In the majority
833 * cases this will be same size as used by the page table entries.
835 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
837 if (vma->vm_ops && vma->vm_ops->pagesize)
838 return vma->vm_ops->pagesize(vma);
841 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
844 * Return the page size being used by the MMU to back a VMA. In the majority
845 * of cases, the page size used by the kernel matches the MMU size. On
846 * architectures where it differs, an architecture-specific 'strong'
847 * version of this symbol is required.
849 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
851 return vma_kernel_pagesize(vma);
855 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
856 * bits of the reservation map pointer, which are always clear due to
859 #define HPAGE_RESV_OWNER (1UL << 0)
860 #define HPAGE_RESV_UNMAPPED (1UL << 1)
861 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
864 * These helpers are used to track how many pages are reserved for
865 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
866 * is guaranteed to have their future faults succeed.
868 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
869 * the reserve counters are updated with the hugetlb_lock held. It is safe
870 * to reset the VMA at fork() time as it is not in use yet and there is no
871 * chance of the global counters getting corrupted as a result of the values.
873 * The private mapping reservation is represented in a subtly different
874 * manner to a shared mapping. A shared mapping has a region map associated
875 * with the underlying file, this region map represents the backing file
876 * pages which have ever had a reservation assigned which this persists even
877 * after the page is instantiated. A private mapping has a region map
878 * associated with the original mmap which is attached to all VMAs which
879 * reference it, this region map represents those offsets which have consumed
880 * reservation ie. where pages have been instantiated.
882 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
884 return (unsigned long)vma->vm_private_data;
887 static void set_vma_private_data(struct vm_area_struct *vma,
890 vma->vm_private_data = (void *)value;
894 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
895 struct hugetlb_cgroup *h_cg,
898 #ifdef CONFIG_CGROUP_HUGETLB
900 resv_map->reservation_counter = NULL;
901 resv_map->pages_per_hpage = 0;
902 resv_map->css = NULL;
904 resv_map->reservation_counter =
905 &h_cg->rsvd_hugepage[hstate_index(h)];
906 resv_map->pages_per_hpage = pages_per_huge_page(h);
907 resv_map->css = &h_cg->css;
912 struct resv_map *resv_map_alloc(void)
914 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
915 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
917 if (!resv_map || !rg) {
923 kref_init(&resv_map->refs);
924 spin_lock_init(&resv_map->lock);
925 INIT_LIST_HEAD(&resv_map->regions);
927 resv_map->adds_in_progress = 0;
929 * Initialize these to 0. On shared mappings, 0's here indicate these
930 * fields don't do cgroup accounting. On private mappings, these will be
931 * re-initialized to the proper values, to indicate that hugetlb cgroup
932 * reservations are to be un-charged from here.
934 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
936 INIT_LIST_HEAD(&resv_map->region_cache);
937 list_add(&rg->link, &resv_map->region_cache);
938 resv_map->region_cache_count = 1;
943 void resv_map_release(struct kref *ref)
945 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
946 struct list_head *head = &resv_map->region_cache;
947 struct file_region *rg, *trg;
949 /* Clear out any active regions before we release the map. */
950 region_del(resv_map, 0, LONG_MAX);
952 /* ... and any entries left in the cache */
953 list_for_each_entry_safe(rg, trg, head, link) {
958 VM_BUG_ON(resv_map->adds_in_progress);
963 static inline struct resv_map *inode_resv_map(struct inode *inode)
966 * At inode evict time, i_mapping may not point to the original
967 * address space within the inode. This original address space
968 * contains the pointer to the resv_map. So, always use the
969 * address space embedded within the inode.
970 * The VERY common case is inode->mapping == &inode->i_data but,
971 * this may not be true for device special inodes.
973 return (struct resv_map *)(&inode->i_data)->private_data;
976 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
978 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
979 if (vma->vm_flags & VM_MAYSHARE) {
980 struct address_space *mapping = vma->vm_file->f_mapping;
981 struct inode *inode = mapping->host;
983 return inode_resv_map(inode);
986 return (struct resv_map *)(get_vma_private_data(vma) &
991 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
993 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
994 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
996 set_vma_private_data(vma, (get_vma_private_data(vma) &
997 HPAGE_RESV_MASK) | (unsigned long)map);
1000 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1002 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1005 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1008 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1010 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1012 return (get_vma_private_data(vma) & flag) != 0;
1015 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1016 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1018 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1019 if (!(vma->vm_flags & VM_MAYSHARE))
1020 vma->vm_private_data = (void *)0;
1024 * Reset and decrement one ref on hugepage private reservation.
1025 * Called with mm->mmap_sem writer semaphore held.
1026 * This function should be only used by move_vma() and operate on
1027 * same sized vma. It should never come here with last ref on the
1030 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1033 * Clear the old hugetlb private page reservation.
1034 * It has already been transferred to new_vma.
1036 * During a mremap() operation of a hugetlb vma we call move_vma()
1037 * which copies vma into new_vma and unmaps vma. After the copy
1038 * operation both new_vma and vma share a reference to the resv_map
1039 * struct, and at that point vma is about to be unmapped. We don't
1040 * want to return the reservation to the pool at unmap of vma because
1041 * the reservation still lives on in new_vma, so simply decrement the
1042 * ref here and remove the resv_map reference from this vma.
1044 struct resv_map *reservations = vma_resv_map(vma);
1046 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1047 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1048 kref_put(&reservations->refs, resv_map_release);
1051 reset_vma_resv_huge_pages(vma);
1054 /* Returns true if the VMA has associated reserve pages */
1055 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1057 if (vma->vm_flags & VM_NORESERVE) {
1059 * This address is already reserved by other process(chg == 0),
1060 * so, we should decrement reserved count. Without decrementing,
1061 * reserve count remains after releasing inode, because this
1062 * allocated page will go into page cache and is regarded as
1063 * coming from reserved pool in releasing step. Currently, we
1064 * don't have any other solution to deal with this situation
1065 * properly, so add work-around here.
1067 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1073 /* Shared mappings always use reserves */
1074 if (vma->vm_flags & VM_MAYSHARE) {
1076 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1077 * be a region map for all pages. The only situation where
1078 * there is no region map is if a hole was punched via
1079 * fallocate. In this case, there really are no reserves to
1080 * use. This situation is indicated if chg != 0.
1089 * Only the process that called mmap() has reserves for
1092 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1094 * Like the shared case above, a hole punch or truncate
1095 * could have been performed on the private mapping.
1096 * Examine the value of chg to determine if reserves
1097 * actually exist or were previously consumed.
1098 * Very Subtle - The value of chg comes from a previous
1099 * call to vma_needs_reserves(). The reserve map for
1100 * private mappings has different (opposite) semantics
1101 * than that of shared mappings. vma_needs_reserves()
1102 * has already taken this difference in semantics into
1103 * account. Therefore, the meaning of chg is the same
1104 * as in the shared case above. Code could easily be
1105 * combined, but keeping it separate draws attention to
1106 * subtle differences.
1117 static void enqueue_huge_page(struct hstate *h, struct page *page)
1119 int nid = page_to_nid(page);
1121 lockdep_assert_held(&hugetlb_lock);
1122 VM_BUG_ON_PAGE(page_count(page), page);
1124 list_move(&page->lru, &h->hugepage_freelists[nid]);
1125 h->free_huge_pages++;
1126 h->free_huge_pages_node[nid]++;
1127 SetHPageFreed(page);
1130 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1133 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1135 lockdep_assert_held(&hugetlb_lock);
1136 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1137 if (pin && !is_pinnable_page(page))
1140 if (PageHWPoison(page))
1143 list_move(&page->lru, &h->hugepage_activelist);
1144 set_page_refcounted(page);
1145 ClearHPageFreed(page);
1146 h->free_huge_pages--;
1147 h->free_huge_pages_node[nid]--;
1154 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1157 unsigned int cpuset_mems_cookie;
1158 struct zonelist *zonelist;
1161 int node = NUMA_NO_NODE;
1163 zonelist = node_zonelist(nid, gfp_mask);
1166 cpuset_mems_cookie = read_mems_allowed_begin();
1167 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1170 if (!cpuset_zone_allowed(zone, gfp_mask))
1173 * no need to ask again on the same node. Pool is node rather than
1176 if (zone_to_nid(zone) == node)
1178 node = zone_to_nid(zone);
1180 page = dequeue_huge_page_node_exact(h, node);
1184 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1190 static struct page *dequeue_huge_page_vma(struct hstate *h,
1191 struct vm_area_struct *vma,
1192 unsigned long address, int avoid_reserve,
1195 struct page *page = NULL;
1196 struct mempolicy *mpol;
1198 nodemask_t *nodemask;
1202 * A child process with MAP_PRIVATE mappings created by their parent
1203 * have no page reserves. This check ensures that reservations are
1204 * not "stolen". The child may still get SIGKILLed
1206 if (!vma_has_reserves(vma, chg) &&
1207 h->free_huge_pages - h->resv_huge_pages == 0)
1210 /* If reserves cannot be used, ensure enough pages are in the pool */
1211 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1214 gfp_mask = htlb_alloc_mask(h);
1215 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1217 if (mpol_is_preferred_many(mpol)) {
1218 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1220 /* Fallback to all nodes if page==NULL */
1225 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1227 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1228 SetHPageRestoreReserve(page);
1229 h->resv_huge_pages--;
1232 mpol_cond_put(mpol);
1240 * common helper functions for hstate_next_node_to_{alloc|free}.
1241 * We may have allocated or freed a huge page based on a different
1242 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1243 * be outside of *nodes_allowed. Ensure that we use an allowed
1244 * node for alloc or free.
1246 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1248 nid = next_node_in(nid, *nodes_allowed);
1249 VM_BUG_ON(nid >= MAX_NUMNODES);
1254 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1256 if (!node_isset(nid, *nodes_allowed))
1257 nid = next_node_allowed(nid, nodes_allowed);
1262 * returns the previously saved node ["this node"] from which to
1263 * allocate a persistent huge page for the pool and advance the
1264 * next node from which to allocate, handling wrap at end of node
1267 static int hstate_next_node_to_alloc(struct hstate *h,
1268 nodemask_t *nodes_allowed)
1272 VM_BUG_ON(!nodes_allowed);
1274 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1275 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1281 * helper for remove_pool_huge_page() - return the previously saved
1282 * node ["this node"] from which to free a huge page. Advance the
1283 * next node id whether or not we find a free huge page to free so
1284 * that the next attempt to free addresses the next node.
1286 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1290 VM_BUG_ON(!nodes_allowed);
1292 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1293 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1298 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1299 for (nr_nodes = nodes_weight(*mask); \
1301 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1304 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1305 for (nr_nodes = nodes_weight(*mask); \
1307 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1310 /* used to demote non-gigantic_huge pages as well */
1311 static void __destroy_compound_gigantic_page(struct page *page,
1312 unsigned int order, bool demote)
1315 int nr_pages = 1 << order;
1316 struct page *p = page + 1;
1318 atomic_set(compound_mapcount_ptr(page), 0);
1319 atomic_set(compound_pincount_ptr(page), 0);
1321 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1323 clear_compound_head(p);
1325 set_page_refcounted(p);
1328 set_compound_order(page, 0);
1330 page[1].compound_nr = 0;
1332 __ClearPageHead(page);
1335 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1338 __destroy_compound_gigantic_page(page, order, true);
1341 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1342 static void destroy_compound_gigantic_page(struct page *page,
1345 __destroy_compound_gigantic_page(page, order, false);
1348 static void free_gigantic_page(struct page *page, unsigned int order)
1351 * If the page isn't allocated using the cma allocator,
1352 * cma_release() returns false.
1355 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1359 free_contig_range(page_to_pfn(page), 1 << order);
1362 #ifdef CONFIG_CONTIG_ALLOC
1363 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1364 int nid, nodemask_t *nodemask)
1366 unsigned long nr_pages = pages_per_huge_page(h);
1367 if (nid == NUMA_NO_NODE)
1368 nid = numa_mem_id();
1375 if (hugetlb_cma[nid]) {
1376 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1377 huge_page_order(h), true);
1382 if (!(gfp_mask & __GFP_THISNODE)) {
1383 for_each_node_mask(node, *nodemask) {
1384 if (node == nid || !hugetlb_cma[node])
1387 page = cma_alloc(hugetlb_cma[node], nr_pages,
1388 huge_page_order(h), true);
1396 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1399 #else /* !CONFIG_CONTIG_ALLOC */
1400 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1401 int nid, nodemask_t *nodemask)
1405 #endif /* CONFIG_CONTIG_ALLOC */
1407 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1408 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1409 int nid, nodemask_t *nodemask)
1413 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1414 static inline void destroy_compound_gigantic_page(struct page *page,
1415 unsigned int order) { }
1419 * Remove hugetlb page from lists, and update dtor so that page appears
1420 * as just a compound page.
1422 * A reference is held on the page, except in the case of demote.
1424 * Must be called with hugetlb lock held.
1426 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1427 bool adjust_surplus,
1430 int nid = page_to_nid(page);
1432 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1433 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1435 lockdep_assert_held(&hugetlb_lock);
1436 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1439 list_del(&page->lru);
1441 if (HPageFreed(page)) {
1442 h->free_huge_pages--;
1443 h->free_huge_pages_node[nid]--;
1445 if (adjust_surplus) {
1446 h->surplus_huge_pages--;
1447 h->surplus_huge_pages_node[nid]--;
1453 * For non-gigantic pages set the destructor to the normal compound
1454 * page dtor. This is needed in case someone takes an additional
1455 * temporary ref to the page, and freeing is delayed until they drop
1458 * For gigantic pages set the destructor to the null dtor. This
1459 * destructor will never be called. Before freeing the gigantic
1460 * page destroy_compound_gigantic_page will turn the compound page
1461 * into a simple group of pages. After this the destructor does not
1464 * This handles the case where more than one ref is held when and
1465 * after update_and_free_page is called.
1467 * In the case of demote we do not ref count the page as it will soon
1468 * be turned into a page of smaller size.
1471 set_page_refcounted(page);
1472 if (hstate_is_gigantic(h))
1473 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1475 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1478 h->nr_huge_pages_node[nid]--;
1481 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1482 bool adjust_surplus)
1484 __remove_hugetlb_page(h, page, adjust_surplus, false);
1487 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1488 bool adjust_surplus)
1490 __remove_hugetlb_page(h, page, adjust_surplus, true);
1493 static void add_hugetlb_page(struct hstate *h, struct page *page,
1494 bool adjust_surplus)
1497 int nid = page_to_nid(page);
1499 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1501 lockdep_assert_held(&hugetlb_lock);
1503 INIT_LIST_HEAD(&page->lru);
1505 h->nr_huge_pages_node[nid]++;
1507 if (adjust_surplus) {
1508 h->surplus_huge_pages++;
1509 h->surplus_huge_pages_node[nid]++;
1512 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1513 set_page_private(page, 0);
1514 SetHPageVmemmapOptimized(page);
1517 * This page is about to be managed by the hugetlb allocator and
1518 * should have no users. Drop our reference, and check for others
1521 zeroed = put_page_testzero(page);
1524 * It is VERY unlikely soneone else has taken a ref on
1525 * the page. In this case, we simply return as the
1526 * hugetlb destructor (free_huge_page) will be called
1527 * when this other ref is dropped.
1531 arch_clear_hugepage_flags(page);
1532 enqueue_huge_page(h, page);
1535 static void __update_and_free_page(struct hstate *h, struct page *page)
1538 struct page *subpage = page;
1540 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1543 if (hugetlb_vmemmap_alloc(h, page)) {
1544 spin_lock_irq(&hugetlb_lock);
1546 * If we cannot allocate vmemmap pages, just refuse to free the
1547 * page and put the page back on the hugetlb free list and treat
1548 * as a surplus page.
1550 add_hugetlb_page(h, page, true);
1551 spin_unlock_irq(&hugetlb_lock);
1555 for (i = 0; i < pages_per_huge_page(h);
1556 i++, subpage = mem_map_next(subpage, page, i)) {
1557 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1558 1 << PG_referenced | 1 << PG_dirty |
1559 1 << PG_active | 1 << PG_private |
1564 * Non-gigantic pages demoted from CMA allocated gigantic pages
1565 * need to be given back to CMA in free_gigantic_page.
1567 if (hstate_is_gigantic(h) ||
1568 hugetlb_cma_page(page, huge_page_order(h))) {
1569 destroy_compound_gigantic_page(page, huge_page_order(h));
1570 free_gigantic_page(page, huge_page_order(h));
1572 __free_pages(page, huge_page_order(h));
1577 * As update_and_free_page() can be called under any context, so we cannot
1578 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1579 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1580 * the vmemmap pages.
1582 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1583 * freed and frees them one-by-one. As the page->mapping pointer is going
1584 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1585 * structure of a lockless linked list of huge pages to be freed.
1587 static LLIST_HEAD(hpage_freelist);
1589 static void free_hpage_workfn(struct work_struct *work)
1591 struct llist_node *node;
1593 node = llist_del_all(&hpage_freelist);
1599 page = container_of((struct address_space **)node,
1600 struct page, mapping);
1602 page->mapping = NULL;
1604 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1605 * is going to trigger because a previous call to
1606 * remove_hugetlb_page() will set_compound_page_dtor(page,
1607 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1609 h = size_to_hstate(page_size(page));
1611 __update_and_free_page(h, page);
1616 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1618 static inline void flush_free_hpage_work(struct hstate *h)
1620 if (hugetlb_optimize_vmemmap_pages(h))
1621 flush_work(&free_hpage_work);
1624 static void update_and_free_page(struct hstate *h, struct page *page,
1627 if (!HPageVmemmapOptimized(page) || !atomic) {
1628 __update_and_free_page(h, page);
1633 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1635 * Only call schedule_work() if hpage_freelist is previously
1636 * empty. Otherwise, schedule_work() had been called but the workfn
1637 * hasn't retrieved the list yet.
1639 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1640 schedule_work(&free_hpage_work);
1643 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1645 struct page *page, *t_page;
1647 list_for_each_entry_safe(page, t_page, list, lru) {
1648 update_and_free_page(h, page, false);
1653 struct hstate *size_to_hstate(unsigned long size)
1657 for_each_hstate(h) {
1658 if (huge_page_size(h) == size)
1664 void free_huge_page(struct page *page)
1667 * Can't pass hstate in here because it is called from the
1668 * compound page destructor.
1670 struct hstate *h = page_hstate(page);
1671 int nid = page_to_nid(page);
1672 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1673 bool restore_reserve;
1674 unsigned long flags;
1676 VM_BUG_ON_PAGE(page_count(page), page);
1677 VM_BUG_ON_PAGE(page_mapcount(page), page);
1679 hugetlb_set_page_subpool(page, NULL);
1681 __ClearPageAnonExclusive(page);
1682 page->mapping = NULL;
1683 restore_reserve = HPageRestoreReserve(page);
1684 ClearHPageRestoreReserve(page);
1687 * If HPageRestoreReserve was set on page, page allocation consumed a
1688 * reservation. If the page was associated with a subpool, there
1689 * would have been a page reserved in the subpool before allocation
1690 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1691 * reservation, do not call hugepage_subpool_put_pages() as this will
1692 * remove the reserved page from the subpool.
1694 if (!restore_reserve) {
1696 * A return code of zero implies that the subpool will be
1697 * under its minimum size if the reservation is not restored
1698 * after page is free. Therefore, force restore_reserve
1701 if (hugepage_subpool_put_pages(spool, 1) == 0)
1702 restore_reserve = true;
1705 spin_lock_irqsave(&hugetlb_lock, flags);
1706 ClearHPageMigratable(page);
1707 hugetlb_cgroup_uncharge_page(hstate_index(h),
1708 pages_per_huge_page(h), page);
1709 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1710 pages_per_huge_page(h), page);
1711 if (restore_reserve)
1712 h->resv_huge_pages++;
1714 if (HPageTemporary(page)) {
1715 remove_hugetlb_page(h, page, false);
1716 spin_unlock_irqrestore(&hugetlb_lock, flags);
1717 update_and_free_page(h, page, true);
1718 } else if (h->surplus_huge_pages_node[nid]) {
1719 /* remove the page from active list */
1720 remove_hugetlb_page(h, page, true);
1721 spin_unlock_irqrestore(&hugetlb_lock, flags);
1722 update_and_free_page(h, page, true);
1724 arch_clear_hugepage_flags(page);
1725 enqueue_huge_page(h, page);
1726 spin_unlock_irqrestore(&hugetlb_lock, flags);
1731 * Must be called with the hugetlb lock held
1733 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1735 lockdep_assert_held(&hugetlb_lock);
1737 h->nr_huge_pages_node[nid]++;
1740 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1742 hugetlb_vmemmap_free(h, page);
1743 INIT_LIST_HEAD(&page->lru);
1744 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1745 hugetlb_set_page_subpool(page, NULL);
1746 set_hugetlb_cgroup(page, NULL);
1747 set_hugetlb_cgroup_rsvd(page, NULL);
1750 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1752 __prep_new_huge_page(h, page);
1753 spin_lock_irq(&hugetlb_lock);
1754 __prep_account_new_huge_page(h, nid);
1755 spin_unlock_irq(&hugetlb_lock);
1758 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1762 int nr_pages = 1 << order;
1763 struct page *p = page + 1;
1765 /* we rely on prep_new_huge_page to set the destructor */
1766 set_compound_order(page, order);
1767 __ClearPageReserved(page);
1768 __SetPageHead(page);
1769 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1771 * For gigantic hugepages allocated through bootmem at
1772 * boot, it's safer to be consistent with the not-gigantic
1773 * hugepages and clear the PG_reserved bit from all tail pages
1774 * too. Otherwise drivers using get_user_pages() to access tail
1775 * pages may get the reference counting wrong if they see
1776 * PG_reserved set on a tail page (despite the head page not
1777 * having PG_reserved set). Enforcing this consistency between
1778 * head and tail pages allows drivers to optimize away a check
1779 * on the head page when they need know if put_page() is needed
1780 * after get_user_pages().
1782 __ClearPageReserved(p);
1784 * Subtle and very unlikely
1786 * Gigantic 'page allocators' such as memblock or cma will
1787 * return a set of pages with each page ref counted. We need
1788 * to turn this set of pages into a compound page with tail
1789 * page ref counts set to zero. Code such as speculative page
1790 * cache adding could take a ref on a 'to be' tail page.
1791 * We need to respect any increased ref count, and only set
1792 * the ref count to zero if count is currently 1. If count
1793 * is not 1, we return an error. An error return indicates
1794 * the set of pages can not be converted to a gigantic page.
1795 * The caller who allocated the pages should then discard the
1796 * pages using the appropriate free interface.
1798 * In the case of demote, the ref count will be zero.
1801 if (!page_ref_freeze(p, 1)) {
1802 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1806 VM_BUG_ON_PAGE(page_count(p), p);
1808 set_compound_head(p, page);
1810 atomic_set(compound_mapcount_ptr(page), -1);
1811 atomic_set(compound_pincount_ptr(page), 0);
1815 /* undo tail page modifications made above */
1817 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1818 clear_compound_head(p);
1819 set_page_refcounted(p);
1821 /* need to clear PG_reserved on remaining tail pages */
1822 for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1823 __ClearPageReserved(p);
1824 set_compound_order(page, 0);
1826 page[1].compound_nr = 0;
1828 __ClearPageHead(page);
1832 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1834 return __prep_compound_gigantic_page(page, order, false);
1837 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1840 return __prep_compound_gigantic_page(page, order, true);
1844 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1845 * transparent huge pages. See the PageTransHuge() documentation for more
1848 int PageHuge(struct page *page)
1850 if (!PageCompound(page))
1853 page = compound_head(page);
1854 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1856 EXPORT_SYMBOL_GPL(PageHuge);
1859 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1860 * normal or transparent huge pages.
1862 int PageHeadHuge(struct page *page_head)
1864 if (!PageHead(page_head))
1867 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1869 EXPORT_SYMBOL_GPL(PageHeadHuge);
1872 * Find and lock address space (mapping) in write mode.
1874 * Upon entry, the page is locked which means that page_mapping() is
1875 * stable. Due to locking order, we can only trylock_write. If we can
1876 * not get the lock, simply return NULL to caller.
1878 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1880 struct address_space *mapping = page_mapping(hpage);
1885 if (i_mmap_trylock_write(mapping))
1891 pgoff_t hugetlb_basepage_index(struct page *page)
1893 struct page *page_head = compound_head(page);
1894 pgoff_t index = page_index(page_head);
1895 unsigned long compound_idx;
1897 if (compound_order(page_head) >= MAX_ORDER)
1898 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1900 compound_idx = page - page_head;
1902 return (index << compound_order(page_head)) + compound_idx;
1905 static struct page *alloc_buddy_huge_page(struct hstate *h,
1906 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1907 nodemask_t *node_alloc_noretry)
1909 int order = huge_page_order(h);
1911 bool alloc_try_hard = true;
1914 * By default we always try hard to allocate the page with
1915 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1916 * a loop (to adjust global huge page counts) and previous allocation
1917 * failed, do not continue to try hard on the same node. Use the
1918 * node_alloc_noretry bitmap to manage this state information.
1920 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1921 alloc_try_hard = false;
1922 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1924 gfp_mask |= __GFP_RETRY_MAYFAIL;
1925 if (nid == NUMA_NO_NODE)
1926 nid = numa_mem_id();
1927 page = __alloc_pages(gfp_mask, order, nid, nmask);
1929 __count_vm_event(HTLB_BUDDY_PGALLOC);
1931 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1934 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1935 * indicates an overall state change. Clear bit so that we resume
1936 * normal 'try hard' allocations.
1938 if (node_alloc_noretry && page && !alloc_try_hard)
1939 node_clear(nid, *node_alloc_noretry);
1942 * If we tried hard to get a page but failed, set bit so that
1943 * subsequent attempts will not try as hard until there is an
1944 * overall state change.
1946 if (node_alloc_noretry && !page && alloc_try_hard)
1947 node_set(nid, *node_alloc_noretry);
1953 * Common helper to allocate a fresh hugetlb page. All specific allocators
1954 * should use this function to get new hugetlb pages
1956 static struct page *alloc_fresh_huge_page(struct hstate *h,
1957 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1958 nodemask_t *node_alloc_noretry)
1964 if (hstate_is_gigantic(h))
1965 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1967 page = alloc_buddy_huge_page(h, gfp_mask,
1968 nid, nmask, node_alloc_noretry);
1972 if (hstate_is_gigantic(h)) {
1973 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1975 * Rare failure to convert pages to compound page.
1976 * Free pages and try again - ONCE!
1978 free_gigantic_page(page, huge_page_order(h));
1986 prep_new_huge_page(h, page, page_to_nid(page));
1992 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1995 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1996 nodemask_t *node_alloc_noretry)
2000 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2002 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2003 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2004 node_alloc_noretry);
2012 put_page(page); /* free it into the hugepage allocator */
2018 * Remove huge page from pool from next node to free. Attempt to keep
2019 * persistent huge pages more or less balanced over allowed nodes.
2020 * This routine only 'removes' the hugetlb page. The caller must make
2021 * an additional call to free the page to low level allocators.
2022 * Called with hugetlb_lock locked.
2024 static struct page *remove_pool_huge_page(struct hstate *h,
2025 nodemask_t *nodes_allowed,
2029 struct page *page = NULL;
2031 lockdep_assert_held(&hugetlb_lock);
2032 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2034 * If we're returning unused surplus pages, only examine
2035 * nodes with surplus pages.
2037 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2038 !list_empty(&h->hugepage_freelists[node])) {
2039 page = list_entry(h->hugepage_freelists[node].next,
2041 remove_hugetlb_page(h, page, acct_surplus);
2050 * Dissolve a given free hugepage into free buddy pages. This function does
2051 * nothing for in-use hugepages and non-hugepages.
2052 * This function returns values like below:
2054 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2055 * when the system is under memory pressure and the feature of
2056 * freeing unused vmemmap pages associated with each hugetlb page
2058 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2059 * (allocated or reserved.)
2060 * 0: successfully dissolved free hugepages or the page is not a
2061 * hugepage (considered as already dissolved)
2063 int dissolve_free_huge_page(struct page *page)
2068 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2069 if (!PageHuge(page))
2072 spin_lock_irq(&hugetlb_lock);
2073 if (!PageHuge(page)) {
2078 if (!page_count(page)) {
2079 struct page *head = compound_head(page);
2080 struct hstate *h = page_hstate(head);
2081 if (h->free_huge_pages - h->resv_huge_pages == 0)
2085 * We should make sure that the page is already on the free list
2086 * when it is dissolved.
2088 if (unlikely(!HPageFreed(head))) {
2089 spin_unlock_irq(&hugetlb_lock);
2093 * Theoretically, we should return -EBUSY when we
2094 * encounter this race. In fact, we have a chance
2095 * to successfully dissolve the page if we do a
2096 * retry. Because the race window is quite small.
2097 * If we seize this opportunity, it is an optimization
2098 * for increasing the success rate of dissolving page.
2103 remove_hugetlb_page(h, head, false);
2104 h->max_huge_pages--;
2105 spin_unlock_irq(&hugetlb_lock);
2108 * Normally update_and_free_page will allocate required vmemmmap
2109 * before freeing the page. update_and_free_page will fail to
2110 * free the page if it can not allocate required vmemmap. We
2111 * need to adjust max_huge_pages if the page is not freed.
2112 * Attempt to allocate vmemmmap here so that we can take
2113 * appropriate action on failure.
2115 rc = hugetlb_vmemmap_alloc(h, head);
2118 * Move PageHWPoison flag from head page to the raw
2119 * error page, which makes any subpages rather than
2120 * the error page reusable.
2122 if (PageHWPoison(head) && page != head) {
2123 SetPageHWPoison(page);
2124 ClearPageHWPoison(head);
2126 update_and_free_page(h, head, false);
2128 spin_lock_irq(&hugetlb_lock);
2129 add_hugetlb_page(h, head, false);
2130 h->max_huge_pages++;
2131 spin_unlock_irq(&hugetlb_lock);
2137 spin_unlock_irq(&hugetlb_lock);
2142 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2143 * make specified memory blocks removable from the system.
2144 * Note that this will dissolve a free gigantic hugepage completely, if any
2145 * part of it lies within the given range.
2146 * Also note that if dissolve_free_huge_page() returns with an error, all
2147 * free hugepages that were dissolved before that error are lost.
2149 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2155 if (!hugepages_supported())
2158 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2159 page = pfn_to_page(pfn);
2160 rc = dissolve_free_huge_page(page);
2169 * Allocates a fresh surplus page from the page allocator.
2171 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2172 int nid, nodemask_t *nmask, bool zero_ref)
2174 struct page *page = NULL;
2177 if (hstate_is_gigantic(h))
2180 spin_lock_irq(&hugetlb_lock);
2181 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2183 spin_unlock_irq(&hugetlb_lock);
2186 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2190 spin_lock_irq(&hugetlb_lock);
2192 * We could have raced with the pool size change.
2193 * Double check that and simply deallocate the new page
2194 * if we would end up overcommiting the surpluses. Abuse
2195 * temporary page to workaround the nasty free_huge_page
2198 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2199 SetHPageTemporary(page);
2200 spin_unlock_irq(&hugetlb_lock);
2207 * Caller requires a page with zero ref count.
2208 * We will drop ref count here. If someone else is holding
2209 * a ref, the page will be freed when they drop it. Abuse
2210 * temporary page flag to accomplish this.
2212 SetHPageTemporary(page);
2213 if (!put_page_testzero(page)) {
2215 * Unexpected inflated ref count on freshly allocated
2218 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2219 spin_unlock_irq(&hugetlb_lock);
2226 ClearHPageTemporary(page);
2229 h->surplus_huge_pages++;
2230 h->surplus_huge_pages_node[page_to_nid(page)]++;
2233 spin_unlock_irq(&hugetlb_lock);
2238 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2239 int nid, nodemask_t *nmask)
2243 if (hstate_is_gigantic(h))
2246 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2251 * We do not account these pages as surplus because they are only
2252 * temporary and will be released properly on the last reference
2254 SetHPageTemporary(page);
2260 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2263 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2264 struct vm_area_struct *vma, unsigned long addr)
2266 struct page *page = NULL;
2267 struct mempolicy *mpol;
2268 gfp_t gfp_mask = htlb_alloc_mask(h);
2270 nodemask_t *nodemask;
2272 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2273 if (mpol_is_preferred_many(mpol)) {
2274 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2276 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2277 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2279 /* Fallback to all nodes if page==NULL */
2284 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2285 mpol_cond_put(mpol);
2289 /* page migration callback function */
2290 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2291 nodemask_t *nmask, gfp_t gfp_mask)
2293 spin_lock_irq(&hugetlb_lock);
2294 if (h->free_huge_pages - h->resv_huge_pages > 0) {
2297 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2299 spin_unlock_irq(&hugetlb_lock);
2303 spin_unlock_irq(&hugetlb_lock);
2305 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2308 /* mempolicy aware migration callback */
2309 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2310 unsigned long address)
2312 struct mempolicy *mpol;
2313 nodemask_t *nodemask;
2318 gfp_mask = htlb_alloc_mask(h);
2319 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2320 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2321 mpol_cond_put(mpol);
2327 * Increase the hugetlb pool such that it can accommodate a reservation
2330 static int gather_surplus_pages(struct hstate *h, long delta)
2331 __must_hold(&hugetlb_lock)
2333 struct list_head surplus_list;
2334 struct page *page, *tmp;
2337 long needed, allocated;
2338 bool alloc_ok = true;
2340 lockdep_assert_held(&hugetlb_lock);
2341 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2343 h->resv_huge_pages += delta;
2348 INIT_LIST_HEAD(&surplus_list);
2352 spin_unlock_irq(&hugetlb_lock);
2353 for (i = 0; i < needed; i++) {
2354 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2355 NUMA_NO_NODE, NULL, true);
2360 list_add(&page->lru, &surplus_list);
2366 * After retaking hugetlb_lock, we need to recalculate 'needed'
2367 * because either resv_huge_pages or free_huge_pages may have changed.
2369 spin_lock_irq(&hugetlb_lock);
2370 needed = (h->resv_huge_pages + delta) -
2371 (h->free_huge_pages + allocated);
2376 * We were not able to allocate enough pages to
2377 * satisfy the entire reservation so we free what
2378 * we've allocated so far.
2383 * The surplus_list now contains _at_least_ the number of extra pages
2384 * needed to accommodate the reservation. Add the appropriate number
2385 * of pages to the hugetlb pool and free the extras back to the buddy
2386 * allocator. Commit the entire reservation here to prevent another
2387 * process from stealing the pages as they are added to the pool but
2388 * before they are reserved.
2390 needed += allocated;
2391 h->resv_huge_pages += delta;
2394 /* Free the needed pages to the hugetlb pool */
2395 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2398 /* Add the page to the hugetlb allocator */
2399 enqueue_huge_page(h, page);
2402 spin_unlock_irq(&hugetlb_lock);
2405 * Free unnecessary surplus pages to the buddy allocator.
2406 * Pages have no ref count, call free_huge_page directly.
2408 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2409 free_huge_page(page);
2410 spin_lock_irq(&hugetlb_lock);
2416 * This routine has two main purposes:
2417 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2418 * in unused_resv_pages. This corresponds to the prior adjustments made
2419 * to the associated reservation map.
2420 * 2) Free any unused surplus pages that may have been allocated to satisfy
2421 * the reservation. As many as unused_resv_pages may be freed.
2423 static void return_unused_surplus_pages(struct hstate *h,
2424 unsigned long unused_resv_pages)
2426 unsigned long nr_pages;
2428 LIST_HEAD(page_list);
2430 lockdep_assert_held(&hugetlb_lock);
2431 /* Uncommit the reservation */
2432 h->resv_huge_pages -= unused_resv_pages;
2434 /* Cannot return gigantic pages currently */
2435 if (hstate_is_gigantic(h))
2439 * Part (or even all) of the reservation could have been backed
2440 * by pre-allocated pages. Only free surplus pages.
2442 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2445 * We want to release as many surplus pages as possible, spread
2446 * evenly across all nodes with memory. Iterate across these nodes
2447 * until we can no longer free unreserved surplus pages. This occurs
2448 * when the nodes with surplus pages have no free pages.
2449 * remove_pool_huge_page() will balance the freed pages across the
2450 * on-line nodes with memory and will handle the hstate accounting.
2452 while (nr_pages--) {
2453 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2457 list_add(&page->lru, &page_list);
2461 spin_unlock_irq(&hugetlb_lock);
2462 update_and_free_pages_bulk(h, &page_list);
2463 spin_lock_irq(&hugetlb_lock);
2468 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2469 * are used by the huge page allocation routines to manage reservations.
2471 * vma_needs_reservation is called to determine if the huge page at addr
2472 * within the vma has an associated reservation. If a reservation is
2473 * needed, the value 1 is returned. The caller is then responsible for
2474 * managing the global reservation and subpool usage counts. After
2475 * the huge page has been allocated, vma_commit_reservation is called
2476 * to add the page to the reservation map. If the page allocation fails,
2477 * the reservation must be ended instead of committed. vma_end_reservation
2478 * is called in such cases.
2480 * In the normal case, vma_commit_reservation returns the same value
2481 * as the preceding vma_needs_reservation call. The only time this
2482 * is not the case is if a reserve map was changed between calls. It
2483 * is the responsibility of the caller to notice the difference and
2484 * take appropriate action.
2486 * vma_add_reservation is used in error paths where a reservation must
2487 * be restored when a newly allocated huge page must be freed. It is
2488 * to be called after calling vma_needs_reservation to determine if a
2489 * reservation exists.
2491 * vma_del_reservation is used in error paths where an entry in the reserve
2492 * map was created during huge page allocation and must be removed. It is to
2493 * be called after calling vma_needs_reservation to determine if a reservation
2496 enum vma_resv_mode {
2503 static long __vma_reservation_common(struct hstate *h,
2504 struct vm_area_struct *vma, unsigned long addr,
2505 enum vma_resv_mode mode)
2507 struct resv_map *resv;
2510 long dummy_out_regions_needed;
2512 resv = vma_resv_map(vma);
2516 idx = vma_hugecache_offset(h, vma, addr);
2518 case VMA_NEEDS_RESV:
2519 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2520 /* We assume that vma_reservation_* routines always operate on
2521 * 1 page, and that adding to resv map a 1 page entry can only
2522 * ever require 1 region.
2524 VM_BUG_ON(dummy_out_regions_needed != 1);
2526 case VMA_COMMIT_RESV:
2527 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2528 /* region_add calls of range 1 should never fail. */
2532 region_abort(resv, idx, idx + 1, 1);
2536 if (vma->vm_flags & VM_MAYSHARE) {
2537 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2538 /* region_add calls of range 1 should never fail. */
2541 region_abort(resv, idx, idx + 1, 1);
2542 ret = region_del(resv, idx, idx + 1);
2546 if (vma->vm_flags & VM_MAYSHARE) {
2547 region_abort(resv, idx, idx + 1, 1);
2548 ret = region_del(resv, idx, idx + 1);
2550 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2551 /* region_add calls of range 1 should never fail. */
2559 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2562 * We know private mapping must have HPAGE_RESV_OWNER set.
2564 * In most cases, reserves always exist for private mappings.
2565 * However, a file associated with mapping could have been
2566 * hole punched or truncated after reserves were consumed.
2567 * As subsequent fault on such a range will not use reserves.
2568 * Subtle - The reserve map for private mappings has the
2569 * opposite meaning than that of shared mappings. If NO
2570 * entry is in the reserve map, it means a reservation exists.
2571 * If an entry exists in the reserve map, it means the
2572 * reservation has already been consumed. As a result, the
2573 * return value of this routine is the opposite of the
2574 * value returned from reserve map manipulation routines above.
2583 static long vma_needs_reservation(struct hstate *h,
2584 struct vm_area_struct *vma, unsigned long addr)
2586 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2589 static long vma_commit_reservation(struct hstate *h,
2590 struct vm_area_struct *vma, unsigned long addr)
2592 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2595 static void vma_end_reservation(struct hstate *h,
2596 struct vm_area_struct *vma, unsigned long addr)
2598 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2601 static long vma_add_reservation(struct hstate *h,
2602 struct vm_area_struct *vma, unsigned long addr)
2604 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2607 static long vma_del_reservation(struct hstate *h,
2608 struct vm_area_struct *vma, unsigned long addr)
2610 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2614 * This routine is called to restore reservation information on error paths.
2615 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2616 * the hugetlb mutex should remain held when calling this routine.
2618 * It handles two specific cases:
2619 * 1) A reservation was in place and the page consumed the reservation.
2620 * HPageRestoreReserve is set in the page.
2621 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2622 * not set. However, alloc_huge_page always updates the reserve map.
2624 * In case 1, free_huge_page later in the error path will increment the
2625 * global reserve count. But, free_huge_page does not have enough context
2626 * to adjust the reservation map. This case deals primarily with private
2627 * mappings. Adjust the reserve map here to be consistent with global
2628 * reserve count adjustments to be made by free_huge_page. Make sure the
2629 * reserve map indicates there is a reservation present.
2631 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2633 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2634 unsigned long address, struct page *page)
2636 long rc = vma_needs_reservation(h, vma, address);
2638 if (HPageRestoreReserve(page)) {
2639 if (unlikely(rc < 0))
2641 * Rare out of memory condition in reserve map
2642 * manipulation. Clear HPageRestoreReserve so that
2643 * global reserve count will not be incremented
2644 * by free_huge_page. This will make it appear
2645 * as though the reservation for this page was
2646 * consumed. This may prevent the task from
2647 * faulting in the page at a later time. This
2648 * is better than inconsistent global huge page
2649 * accounting of reserve counts.
2651 ClearHPageRestoreReserve(page);
2653 (void)vma_add_reservation(h, vma, address);
2655 vma_end_reservation(h, vma, address);
2659 * This indicates there is an entry in the reserve map
2660 * not added by alloc_huge_page. We know it was added
2661 * before the alloc_huge_page call, otherwise
2662 * HPageRestoreReserve would be set on the page.
2663 * Remove the entry so that a subsequent allocation
2664 * does not consume a reservation.
2666 rc = vma_del_reservation(h, vma, address);
2669 * VERY rare out of memory condition. Since
2670 * we can not delete the entry, set
2671 * HPageRestoreReserve so that the reserve
2672 * count will be incremented when the page
2673 * is freed. This reserve will be consumed
2674 * on a subsequent allocation.
2676 SetHPageRestoreReserve(page);
2677 } else if (rc < 0) {
2679 * Rare out of memory condition from
2680 * vma_needs_reservation call. Memory allocation is
2681 * only attempted if a new entry is needed. Therefore,
2682 * this implies there is not an entry in the
2685 * For shared mappings, no entry in the map indicates
2686 * no reservation. We are done.
2688 if (!(vma->vm_flags & VM_MAYSHARE))
2690 * For private mappings, no entry indicates
2691 * a reservation is present. Since we can
2692 * not add an entry, set SetHPageRestoreReserve
2693 * on the page so reserve count will be
2694 * incremented when freed. This reserve will
2695 * be consumed on a subsequent allocation.
2697 SetHPageRestoreReserve(page);
2700 * No reservation present, do nothing
2702 vma_end_reservation(h, vma, address);
2707 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2708 * @h: struct hstate old page belongs to
2709 * @old_page: Old page to dissolve
2710 * @list: List to isolate the page in case we need to
2711 * Returns 0 on success, otherwise negated error.
2713 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2714 struct list_head *list)
2716 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2717 int nid = page_to_nid(old_page);
2718 bool alloc_retry = false;
2719 struct page *new_page;
2723 * Before dissolving the page, we need to allocate a new one for the
2724 * pool to remain stable. Here, we allocate the page and 'prep' it
2725 * by doing everything but actually updating counters and adding to
2726 * the pool. This simplifies and let us do most of the processing
2730 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2734 * If all goes well, this page will be directly added to the free
2735 * list in the pool. For this the ref count needs to be zero.
2736 * Attempt to drop now, and retry once if needed. It is VERY
2737 * unlikely there is another ref on the page.
2739 * If someone else has a reference to the page, it will be freed
2740 * when they drop their ref. Abuse temporary page flag to accomplish
2741 * this. Retry once if there is an inflated ref count.
2743 SetHPageTemporary(new_page);
2744 if (!put_page_testzero(new_page)) {
2751 ClearHPageTemporary(new_page);
2753 __prep_new_huge_page(h, new_page);
2756 spin_lock_irq(&hugetlb_lock);
2757 if (!PageHuge(old_page)) {
2759 * Freed from under us. Drop new_page too.
2762 } else if (page_count(old_page)) {
2764 * Someone has grabbed the page, try to isolate it here.
2765 * Fail with -EBUSY if not possible.
2767 spin_unlock_irq(&hugetlb_lock);
2768 if (!isolate_huge_page(old_page, list))
2770 spin_lock_irq(&hugetlb_lock);
2772 } else if (!HPageFreed(old_page)) {
2774 * Page's refcount is 0 but it has not been enqueued in the
2775 * freelist yet. Race window is small, so we can succeed here if
2778 spin_unlock_irq(&hugetlb_lock);
2783 * Ok, old_page is still a genuine free hugepage. Remove it from
2784 * the freelist and decrease the counters. These will be
2785 * incremented again when calling __prep_account_new_huge_page()
2786 * and enqueue_huge_page() for new_page. The counters will remain
2787 * stable since this happens under the lock.
2789 remove_hugetlb_page(h, old_page, false);
2792 * Ref count on new page is already zero as it was dropped
2793 * earlier. It can be directly added to the pool free list.
2795 __prep_account_new_huge_page(h, nid);
2796 enqueue_huge_page(h, new_page);
2799 * Pages have been replaced, we can safely free the old one.
2801 spin_unlock_irq(&hugetlb_lock);
2802 update_and_free_page(h, old_page, false);
2808 spin_unlock_irq(&hugetlb_lock);
2809 /* Page has a zero ref count, but needs a ref to be freed */
2810 set_page_refcounted(new_page);
2811 update_and_free_page(h, new_page, false);
2816 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2823 * The page might have been dissolved from under our feet, so make sure
2824 * to carefully check the state under the lock.
2825 * Return success when racing as if we dissolved the page ourselves.
2827 spin_lock_irq(&hugetlb_lock);
2828 if (PageHuge(page)) {
2829 head = compound_head(page);
2830 h = page_hstate(head);
2832 spin_unlock_irq(&hugetlb_lock);
2835 spin_unlock_irq(&hugetlb_lock);
2838 * Fence off gigantic pages as there is a cyclic dependency between
2839 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2840 * of bailing out right away without further retrying.
2842 if (hstate_is_gigantic(h))
2845 if (page_count(head) && isolate_huge_page(head, list))
2847 else if (!page_count(head))
2848 ret = alloc_and_dissolve_huge_page(h, head, list);
2853 struct page *alloc_huge_page(struct vm_area_struct *vma,
2854 unsigned long addr, int avoid_reserve)
2856 struct hugepage_subpool *spool = subpool_vma(vma);
2857 struct hstate *h = hstate_vma(vma);
2859 long map_chg, map_commit;
2862 struct hugetlb_cgroup *h_cg;
2863 bool deferred_reserve;
2865 idx = hstate_index(h);
2867 * Examine the region/reserve map to determine if the process
2868 * has a reservation for the page to be allocated. A return
2869 * code of zero indicates a reservation exists (no change).
2871 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2873 return ERR_PTR(-ENOMEM);
2876 * Processes that did not create the mapping will have no
2877 * reserves as indicated by the region/reserve map. Check
2878 * that the allocation will not exceed the subpool limit.
2879 * Allocations for MAP_NORESERVE mappings also need to be
2880 * checked against any subpool limit.
2882 if (map_chg || avoid_reserve) {
2883 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2885 vma_end_reservation(h, vma, addr);
2886 return ERR_PTR(-ENOSPC);
2890 * Even though there was no reservation in the region/reserve
2891 * map, there could be reservations associated with the
2892 * subpool that can be used. This would be indicated if the
2893 * return value of hugepage_subpool_get_pages() is zero.
2894 * However, if avoid_reserve is specified we still avoid even
2895 * the subpool reservations.
2901 /* If this allocation is not consuming a reservation, charge it now.
2903 deferred_reserve = map_chg || avoid_reserve;
2904 if (deferred_reserve) {
2905 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2906 idx, pages_per_huge_page(h), &h_cg);
2908 goto out_subpool_put;
2911 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2913 goto out_uncharge_cgroup_reservation;
2915 spin_lock_irq(&hugetlb_lock);
2917 * glb_chg is passed to indicate whether or not a page must be taken
2918 * from the global free pool (global change). gbl_chg == 0 indicates
2919 * a reservation exists for the allocation.
2921 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2923 spin_unlock_irq(&hugetlb_lock);
2924 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2926 goto out_uncharge_cgroup;
2927 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2928 SetHPageRestoreReserve(page);
2929 h->resv_huge_pages--;
2931 spin_lock_irq(&hugetlb_lock);
2932 list_add(&page->lru, &h->hugepage_activelist);
2935 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2936 /* If allocation is not consuming a reservation, also store the
2937 * hugetlb_cgroup pointer on the page.
2939 if (deferred_reserve) {
2940 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2944 spin_unlock_irq(&hugetlb_lock);
2946 hugetlb_set_page_subpool(page, spool);
2948 map_commit = vma_commit_reservation(h, vma, addr);
2949 if (unlikely(map_chg > map_commit)) {
2951 * The page was added to the reservation map between
2952 * vma_needs_reservation and vma_commit_reservation.
2953 * This indicates a race with hugetlb_reserve_pages.
2954 * Adjust for the subpool count incremented above AND
2955 * in hugetlb_reserve_pages for the same page. Also,
2956 * the reservation count added in hugetlb_reserve_pages
2957 * no longer applies.
2961 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2962 hugetlb_acct_memory(h, -rsv_adjust);
2963 if (deferred_reserve)
2964 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2965 pages_per_huge_page(h), page);
2969 out_uncharge_cgroup:
2970 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2971 out_uncharge_cgroup_reservation:
2972 if (deferred_reserve)
2973 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2976 if (map_chg || avoid_reserve)
2977 hugepage_subpool_put_pages(spool, 1);
2978 vma_end_reservation(h, vma, addr);
2979 return ERR_PTR(-ENOSPC);
2982 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2983 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2984 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2986 struct huge_bootmem_page *m = NULL; /* initialize for clang */
2989 /* do node specific alloc */
2990 if (nid != NUMA_NO_NODE) {
2991 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2992 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2997 /* allocate from next node when distributing huge pages */
2998 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2999 m = memblock_alloc_try_nid_raw(
3000 huge_page_size(h), huge_page_size(h),
3001 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3003 * Use the beginning of the huge page to store the
3004 * huge_bootmem_page struct (until gather_bootmem
3005 * puts them into the mem_map).
3013 /* Put them into a private list first because mem_map is not up yet */
3014 INIT_LIST_HEAD(&m->list);
3015 list_add(&m->list, &huge_boot_pages);
3021 * Put bootmem huge pages into the standard lists after mem_map is up.
3022 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3024 static void __init gather_bootmem_prealloc(void)
3026 struct huge_bootmem_page *m;
3028 list_for_each_entry(m, &huge_boot_pages, list) {
3029 struct page *page = virt_to_page(m);
3030 struct hstate *h = m->hstate;
3032 VM_BUG_ON(!hstate_is_gigantic(h));
3033 WARN_ON(page_count(page) != 1);
3034 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3035 WARN_ON(PageReserved(page));
3036 prep_new_huge_page(h, page, page_to_nid(page));
3037 put_page(page); /* add to the hugepage allocator */
3039 /* VERY unlikely inflated ref count on a tail page */
3040 free_gigantic_page(page, huge_page_order(h));
3044 * We need to restore the 'stolen' pages to totalram_pages
3045 * in order to fix confusing memory reports from free(1) and
3046 * other side-effects, like CommitLimit going negative.
3048 adjust_managed_page_count(page, pages_per_huge_page(h));
3052 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3057 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3058 if (hstate_is_gigantic(h)) {
3059 if (!alloc_bootmem_huge_page(h, nid))
3063 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3065 page = alloc_fresh_huge_page(h, gfp_mask, nid,
3066 &node_states[N_MEMORY], NULL);
3069 put_page(page); /* free it into the hugepage allocator */
3073 if (i == h->max_huge_pages_node[nid])
3076 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3077 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3078 h->max_huge_pages_node[nid], buf, nid, i);
3079 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3080 h->max_huge_pages_node[nid] = i;
3083 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3086 nodemask_t *node_alloc_noretry;
3087 bool node_specific_alloc = false;
3089 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3090 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3091 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3095 /* do node specific alloc */
3096 for_each_online_node(i) {
3097 if (h->max_huge_pages_node[i] > 0) {
3098 hugetlb_hstate_alloc_pages_onenode(h, i);
3099 node_specific_alloc = true;
3103 if (node_specific_alloc)
3106 /* below will do all node balanced alloc */
3107 if (!hstate_is_gigantic(h)) {
3109 * Bit mask controlling how hard we retry per-node allocations.
3110 * Ignore errors as lower level routines can deal with
3111 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3112 * time, we are likely in bigger trouble.
3114 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3117 /* allocations done at boot time */
3118 node_alloc_noretry = NULL;
3121 /* bit mask controlling how hard we retry per-node allocations */
3122 if (node_alloc_noretry)
3123 nodes_clear(*node_alloc_noretry);
3125 for (i = 0; i < h->max_huge_pages; ++i) {
3126 if (hstate_is_gigantic(h)) {
3127 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3129 } else if (!alloc_pool_huge_page(h,
3130 &node_states[N_MEMORY],
3131 node_alloc_noretry))
3135 if (i < h->max_huge_pages) {
3138 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3139 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3140 h->max_huge_pages, buf, i);
3141 h->max_huge_pages = i;
3143 kfree(node_alloc_noretry);
3146 static void __init hugetlb_init_hstates(void)
3148 struct hstate *h, *h2;
3150 for_each_hstate(h) {
3151 if (minimum_order > huge_page_order(h))
3152 minimum_order = huge_page_order(h);
3154 /* oversize hugepages were init'ed in early boot */
3155 if (!hstate_is_gigantic(h))
3156 hugetlb_hstate_alloc_pages(h);
3159 * Set demote order for each hstate. Note that
3160 * h->demote_order is initially 0.
3161 * - We can not demote gigantic pages if runtime freeing
3162 * is not supported, so skip this.
3163 * - If CMA allocation is possible, we can not demote
3164 * HUGETLB_PAGE_ORDER or smaller size pages.
3166 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3168 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3170 for_each_hstate(h2) {
3173 if (h2->order < h->order &&
3174 h2->order > h->demote_order)
3175 h->demote_order = h2->order;
3178 VM_BUG_ON(minimum_order == UINT_MAX);
3181 static void __init report_hugepages(void)
3185 for_each_hstate(h) {
3188 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3189 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3190 buf, h->free_huge_pages);
3194 #ifdef CONFIG_HIGHMEM
3195 static void try_to_free_low(struct hstate *h, unsigned long count,
3196 nodemask_t *nodes_allowed)
3199 LIST_HEAD(page_list);
3201 lockdep_assert_held(&hugetlb_lock);
3202 if (hstate_is_gigantic(h))
3206 * Collect pages to be freed on a list, and free after dropping lock
3208 for_each_node_mask(i, *nodes_allowed) {
3209 struct page *page, *next;
3210 struct list_head *freel = &h->hugepage_freelists[i];
3211 list_for_each_entry_safe(page, next, freel, lru) {
3212 if (count >= h->nr_huge_pages)
3214 if (PageHighMem(page))
3216 remove_hugetlb_page(h, page, false);
3217 list_add(&page->lru, &page_list);
3222 spin_unlock_irq(&hugetlb_lock);
3223 update_and_free_pages_bulk(h, &page_list);
3224 spin_lock_irq(&hugetlb_lock);
3227 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3228 nodemask_t *nodes_allowed)
3234 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3235 * balanced by operating on them in a round-robin fashion.
3236 * Returns 1 if an adjustment was made.
3238 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3243 lockdep_assert_held(&hugetlb_lock);
3244 VM_BUG_ON(delta != -1 && delta != 1);
3247 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3248 if (h->surplus_huge_pages_node[node])
3252 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3253 if (h->surplus_huge_pages_node[node] <
3254 h->nr_huge_pages_node[node])
3261 h->surplus_huge_pages += delta;
3262 h->surplus_huge_pages_node[node] += delta;
3266 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3267 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3268 nodemask_t *nodes_allowed)
3270 unsigned long min_count, ret;
3272 LIST_HEAD(page_list);
3273 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3276 * Bit mask controlling how hard we retry per-node allocations.
3277 * If we can not allocate the bit mask, do not attempt to allocate
3278 * the requested huge pages.
3280 if (node_alloc_noretry)
3281 nodes_clear(*node_alloc_noretry);
3286 * resize_lock mutex prevents concurrent adjustments to number of
3287 * pages in hstate via the proc/sysfs interfaces.
3289 mutex_lock(&h->resize_lock);
3290 flush_free_hpage_work(h);
3291 spin_lock_irq(&hugetlb_lock);
3294 * Check for a node specific request.
3295 * Changing node specific huge page count may require a corresponding
3296 * change to the global count. In any case, the passed node mask
3297 * (nodes_allowed) will restrict alloc/free to the specified node.
3299 if (nid != NUMA_NO_NODE) {
3300 unsigned long old_count = count;
3302 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3304 * User may have specified a large count value which caused the
3305 * above calculation to overflow. In this case, they wanted
3306 * to allocate as many huge pages as possible. Set count to
3307 * largest possible value to align with their intention.
3309 if (count < old_count)
3314 * Gigantic pages runtime allocation depend on the capability for large
3315 * page range allocation.
3316 * If the system does not provide this feature, return an error when
3317 * the user tries to allocate gigantic pages but let the user free the
3318 * boottime allocated gigantic pages.
3320 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3321 if (count > persistent_huge_pages(h)) {
3322 spin_unlock_irq(&hugetlb_lock);
3323 mutex_unlock(&h->resize_lock);
3324 NODEMASK_FREE(node_alloc_noretry);
3327 /* Fall through to decrease pool */
3331 * Increase the pool size
3332 * First take pages out of surplus state. Then make up the
3333 * remaining difference by allocating fresh huge pages.
3335 * We might race with alloc_surplus_huge_page() here and be unable
3336 * to convert a surplus huge page to a normal huge page. That is
3337 * not critical, though, it just means the overall size of the
3338 * pool might be one hugepage larger than it needs to be, but
3339 * within all the constraints specified by the sysctls.
3341 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3342 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3346 while (count > persistent_huge_pages(h)) {
3348 * If this allocation races such that we no longer need the
3349 * page, free_huge_page will handle it by freeing the page
3350 * and reducing the surplus.
3352 spin_unlock_irq(&hugetlb_lock);
3354 /* yield cpu to avoid soft lockup */
3357 ret = alloc_pool_huge_page(h, nodes_allowed,
3358 node_alloc_noretry);
3359 spin_lock_irq(&hugetlb_lock);
3363 /* Bail for signals. Probably ctrl-c from user */
3364 if (signal_pending(current))
3369 * Decrease the pool size
3370 * First return free pages to the buddy allocator (being careful
3371 * to keep enough around to satisfy reservations). Then place
3372 * pages into surplus state as needed so the pool will shrink
3373 * to the desired size as pages become free.
3375 * By placing pages into the surplus state independent of the
3376 * overcommit value, we are allowing the surplus pool size to
3377 * exceed overcommit. There are few sane options here. Since
3378 * alloc_surplus_huge_page() is checking the global counter,
3379 * though, we'll note that we're not allowed to exceed surplus
3380 * and won't grow the pool anywhere else. Not until one of the
3381 * sysctls are changed, or the surplus pages go out of use.
3383 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3384 min_count = max(count, min_count);
3385 try_to_free_low(h, min_count, nodes_allowed);
3388 * Collect pages to be removed on list without dropping lock
3390 while (min_count < persistent_huge_pages(h)) {
3391 page = remove_pool_huge_page(h, nodes_allowed, 0);
3395 list_add(&page->lru, &page_list);
3397 /* free the pages after dropping lock */
3398 spin_unlock_irq(&hugetlb_lock);
3399 update_and_free_pages_bulk(h, &page_list);
3400 flush_free_hpage_work(h);
3401 spin_lock_irq(&hugetlb_lock);
3403 while (count < persistent_huge_pages(h)) {
3404 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3408 h->max_huge_pages = persistent_huge_pages(h);
3409 spin_unlock_irq(&hugetlb_lock);
3410 mutex_unlock(&h->resize_lock);
3412 NODEMASK_FREE(node_alloc_noretry);
3417 static int demote_free_huge_page(struct hstate *h, struct page *page)
3419 int i, nid = page_to_nid(page);
3420 struct hstate *target_hstate;
3423 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3425 remove_hugetlb_page_for_demote(h, page, false);
3426 spin_unlock_irq(&hugetlb_lock);
3428 rc = hugetlb_vmemmap_alloc(h, page);
3430 /* Allocation of vmemmmap failed, we can not demote page */
3431 spin_lock_irq(&hugetlb_lock);
3432 set_page_refcounted(page);
3433 add_hugetlb_page(h, page, false);
3438 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3439 * sizes as it will not ref count pages.
3441 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3444 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3445 * Without the mutex, pages added to target hstate could be marked
3448 * Note that we already hold h->resize_lock. To prevent deadlock,
3449 * use the convention of always taking larger size hstate mutex first.
3451 mutex_lock(&target_hstate->resize_lock);
3452 for (i = 0; i < pages_per_huge_page(h);
3453 i += pages_per_huge_page(target_hstate)) {
3454 if (hstate_is_gigantic(target_hstate))
3455 prep_compound_gigantic_page_for_demote(page + i,
3456 target_hstate->order);
3458 prep_compound_page(page + i, target_hstate->order);
3459 set_page_private(page + i, 0);
3460 set_page_refcounted(page + i);
3461 prep_new_huge_page(target_hstate, page + i, nid);
3464 mutex_unlock(&target_hstate->resize_lock);
3466 spin_lock_irq(&hugetlb_lock);
3469 * Not absolutely necessary, but for consistency update max_huge_pages
3470 * based on pool changes for the demoted page.
3472 h->max_huge_pages--;
3473 target_hstate->max_huge_pages += pages_per_huge_page(h);
3478 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3479 __must_hold(&hugetlb_lock)
3484 lockdep_assert_held(&hugetlb_lock);
3486 /* We should never get here if no demote order */
3487 if (!h->demote_order) {
3488 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3489 return -EINVAL; /* internal error */
3492 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3493 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3494 if (PageHWPoison(page))
3497 return demote_free_huge_page(h, page);
3502 * Only way to get here is if all pages on free lists are poisoned.
3503 * Return -EBUSY so that caller will not retry.
3508 #define HSTATE_ATTR_RO(_name) \
3509 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3511 #define HSTATE_ATTR_WO(_name) \
3512 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3514 #define HSTATE_ATTR(_name) \
3515 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3517 static struct kobject *hugepages_kobj;
3518 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3520 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3522 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3526 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3527 if (hstate_kobjs[i] == kobj) {
3529 *nidp = NUMA_NO_NODE;
3533 return kobj_to_node_hstate(kobj, nidp);
3536 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3537 struct kobj_attribute *attr, char *buf)
3540 unsigned long nr_huge_pages;
3543 h = kobj_to_hstate(kobj, &nid);
3544 if (nid == NUMA_NO_NODE)
3545 nr_huge_pages = h->nr_huge_pages;
3547 nr_huge_pages = h->nr_huge_pages_node[nid];
3549 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3552 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3553 struct hstate *h, int nid,
3554 unsigned long count, size_t len)
3557 nodemask_t nodes_allowed, *n_mask;
3559 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3562 if (nid == NUMA_NO_NODE) {
3564 * global hstate attribute
3566 if (!(obey_mempolicy &&
3567 init_nodemask_of_mempolicy(&nodes_allowed)))
3568 n_mask = &node_states[N_MEMORY];
3570 n_mask = &nodes_allowed;
3573 * Node specific request. count adjustment happens in
3574 * set_max_huge_pages() after acquiring hugetlb_lock.
3576 init_nodemask_of_node(&nodes_allowed, nid);
3577 n_mask = &nodes_allowed;
3580 err = set_max_huge_pages(h, count, nid, n_mask);
3582 return err ? err : len;
3585 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3586 struct kobject *kobj, const char *buf,
3590 unsigned long count;
3594 err = kstrtoul(buf, 10, &count);
3598 h = kobj_to_hstate(kobj, &nid);
3599 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3602 static ssize_t nr_hugepages_show(struct kobject *kobj,
3603 struct kobj_attribute *attr, char *buf)
3605 return nr_hugepages_show_common(kobj, attr, buf);
3608 static ssize_t nr_hugepages_store(struct kobject *kobj,
3609 struct kobj_attribute *attr, const char *buf, size_t len)
3611 return nr_hugepages_store_common(false, kobj, buf, len);
3613 HSTATE_ATTR(nr_hugepages);
3618 * hstate attribute for optionally mempolicy-based constraint on persistent
3619 * huge page alloc/free.
3621 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3622 struct kobj_attribute *attr,
3625 return nr_hugepages_show_common(kobj, attr, buf);
3628 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3629 struct kobj_attribute *attr, const char *buf, size_t len)
3631 return nr_hugepages_store_common(true, kobj, buf, len);
3633 HSTATE_ATTR(nr_hugepages_mempolicy);
3637 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3638 struct kobj_attribute *attr, char *buf)
3640 struct hstate *h = kobj_to_hstate(kobj, NULL);
3641 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3644 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3645 struct kobj_attribute *attr, const char *buf, size_t count)
3648 unsigned long input;
3649 struct hstate *h = kobj_to_hstate(kobj, NULL);
3651 if (hstate_is_gigantic(h))
3654 err = kstrtoul(buf, 10, &input);
3658 spin_lock_irq(&hugetlb_lock);
3659 h->nr_overcommit_huge_pages = input;
3660 spin_unlock_irq(&hugetlb_lock);
3664 HSTATE_ATTR(nr_overcommit_hugepages);
3666 static ssize_t free_hugepages_show(struct kobject *kobj,
3667 struct kobj_attribute *attr, char *buf)
3670 unsigned long free_huge_pages;
3673 h = kobj_to_hstate(kobj, &nid);
3674 if (nid == NUMA_NO_NODE)
3675 free_huge_pages = h->free_huge_pages;
3677 free_huge_pages = h->free_huge_pages_node[nid];
3679 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3681 HSTATE_ATTR_RO(free_hugepages);
3683 static ssize_t resv_hugepages_show(struct kobject *kobj,
3684 struct kobj_attribute *attr, char *buf)
3686 struct hstate *h = kobj_to_hstate(kobj, NULL);
3687 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3689 HSTATE_ATTR_RO(resv_hugepages);
3691 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3692 struct kobj_attribute *attr, char *buf)
3695 unsigned long surplus_huge_pages;
3698 h = kobj_to_hstate(kobj, &nid);
3699 if (nid == NUMA_NO_NODE)
3700 surplus_huge_pages = h->surplus_huge_pages;
3702 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3704 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3706 HSTATE_ATTR_RO(surplus_hugepages);
3708 static ssize_t demote_store(struct kobject *kobj,
3709 struct kobj_attribute *attr, const char *buf, size_t len)
3711 unsigned long nr_demote;
3712 unsigned long nr_available;
3713 nodemask_t nodes_allowed, *n_mask;
3718 err = kstrtoul(buf, 10, &nr_demote);
3721 h = kobj_to_hstate(kobj, &nid);
3723 if (nid != NUMA_NO_NODE) {
3724 init_nodemask_of_node(&nodes_allowed, nid);
3725 n_mask = &nodes_allowed;
3727 n_mask = &node_states[N_MEMORY];
3730 /* Synchronize with other sysfs operations modifying huge pages */
3731 mutex_lock(&h->resize_lock);
3732 spin_lock_irq(&hugetlb_lock);
3736 * Check for available pages to demote each time thorough the
3737 * loop as demote_pool_huge_page will drop hugetlb_lock.
3739 if (nid != NUMA_NO_NODE)
3740 nr_available = h->free_huge_pages_node[nid];
3742 nr_available = h->free_huge_pages;
3743 nr_available -= h->resv_huge_pages;
3747 err = demote_pool_huge_page(h, n_mask);
3754 spin_unlock_irq(&hugetlb_lock);
3755 mutex_unlock(&h->resize_lock);
3761 HSTATE_ATTR_WO(demote);
3763 static ssize_t demote_size_show(struct kobject *kobj,
3764 struct kobj_attribute *attr, char *buf)
3767 struct hstate *h = kobj_to_hstate(kobj, &nid);
3768 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3770 return sysfs_emit(buf, "%lukB\n", demote_size);
3773 static ssize_t demote_size_store(struct kobject *kobj,
3774 struct kobj_attribute *attr,
3775 const char *buf, size_t count)
3777 struct hstate *h, *demote_hstate;
3778 unsigned long demote_size;
3779 unsigned int demote_order;
3782 demote_size = (unsigned long)memparse(buf, NULL);
3784 demote_hstate = size_to_hstate(demote_size);
3787 demote_order = demote_hstate->order;
3788 if (demote_order < HUGETLB_PAGE_ORDER)
3791 /* demote order must be smaller than hstate order */
3792 h = kobj_to_hstate(kobj, &nid);
3793 if (demote_order >= h->order)
3796 /* resize_lock synchronizes access to demote size and writes */
3797 mutex_lock(&h->resize_lock);
3798 h->demote_order = demote_order;
3799 mutex_unlock(&h->resize_lock);
3803 HSTATE_ATTR(demote_size);
3805 static struct attribute *hstate_attrs[] = {
3806 &nr_hugepages_attr.attr,
3807 &nr_overcommit_hugepages_attr.attr,
3808 &free_hugepages_attr.attr,
3809 &resv_hugepages_attr.attr,
3810 &surplus_hugepages_attr.attr,
3812 &nr_hugepages_mempolicy_attr.attr,
3817 static const struct attribute_group hstate_attr_group = {
3818 .attrs = hstate_attrs,
3821 static struct attribute *hstate_demote_attrs[] = {
3822 &demote_size_attr.attr,
3827 static const struct attribute_group hstate_demote_attr_group = {
3828 .attrs = hstate_demote_attrs,
3831 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3832 struct kobject **hstate_kobjs,
3833 const struct attribute_group *hstate_attr_group)
3836 int hi = hstate_index(h);
3838 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3839 if (!hstate_kobjs[hi])
3842 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3844 kobject_put(hstate_kobjs[hi]);
3845 hstate_kobjs[hi] = NULL;
3848 if (h->demote_order) {
3849 if (sysfs_create_group(hstate_kobjs[hi],
3850 &hstate_demote_attr_group))
3851 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3857 static void __init hugetlb_sysfs_init(void)
3862 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3863 if (!hugepages_kobj)
3866 for_each_hstate(h) {
3867 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3868 hstate_kobjs, &hstate_attr_group);
3870 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3877 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3878 * with node devices in node_devices[] using a parallel array. The array
3879 * index of a node device or _hstate == node id.
3880 * This is here to avoid any static dependency of the node device driver, in
3881 * the base kernel, on the hugetlb module.
3883 struct node_hstate {
3884 struct kobject *hugepages_kobj;
3885 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3887 static struct node_hstate node_hstates[MAX_NUMNODES];
3890 * A subset of global hstate attributes for node devices
3892 static struct attribute *per_node_hstate_attrs[] = {
3893 &nr_hugepages_attr.attr,
3894 &free_hugepages_attr.attr,
3895 &surplus_hugepages_attr.attr,
3899 static const struct attribute_group per_node_hstate_attr_group = {
3900 .attrs = per_node_hstate_attrs,
3904 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3905 * Returns node id via non-NULL nidp.
3907 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3911 for (nid = 0; nid < nr_node_ids; nid++) {
3912 struct node_hstate *nhs = &node_hstates[nid];
3914 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3915 if (nhs->hstate_kobjs[i] == kobj) {
3927 * Unregister hstate attributes from a single node device.
3928 * No-op if no hstate attributes attached.
3930 static void hugetlb_unregister_node(struct node *node)
3933 struct node_hstate *nhs = &node_hstates[node->dev.id];
3935 if (!nhs->hugepages_kobj)
3936 return; /* no hstate attributes */
3938 for_each_hstate(h) {
3939 int idx = hstate_index(h);
3940 if (nhs->hstate_kobjs[idx]) {
3941 kobject_put(nhs->hstate_kobjs[idx]);
3942 nhs->hstate_kobjs[idx] = NULL;
3946 kobject_put(nhs->hugepages_kobj);
3947 nhs->hugepages_kobj = NULL;
3952 * Register hstate attributes for a single node device.
3953 * No-op if attributes already registered.
3955 static void hugetlb_register_node(struct node *node)
3958 struct node_hstate *nhs = &node_hstates[node->dev.id];
3961 if (nhs->hugepages_kobj)
3962 return; /* already allocated */
3964 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3966 if (!nhs->hugepages_kobj)
3969 for_each_hstate(h) {
3970 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3972 &per_node_hstate_attr_group);
3974 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3975 h->name, node->dev.id);
3976 hugetlb_unregister_node(node);
3983 * hugetlb init time: register hstate attributes for all registered node
3984 * devices of nodes that have memory. All on-line nodes should have
3985 * registered their associated device by this time.
3987 static void __init hugetlb_register_all_nodes(void)
3991 for_each_node_state(nid, N_MEMORY) {
3992 struct node *node = node_devices[nid];
3993 if (node->dev.id == nid)
3994 hugetlb_register_node(node);
3998 * Let the node device driver know we're here so it can
3999 * [un]register hstate attributes on node hotplug.
4001 register_hugetlbfs_with_node(hugetlb_register_node,
4002 hugetlb_unregister_node);
4004 #else /* !CONFIG_NUMA */
4006 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4014 static void hugetlb_register_all_nodes(void) { }
4018 static int __init hugetlb_init(void)
4022 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4025 if (!hugepages_supported()) {
4026 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4027 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4032 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4033 * architectures depend on setup being done here.
4035 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4036 if (!parsed_default_hugepagesz) {
4038 * If we did not parse a default huge page size, set
4039 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4040 * number of huge pages for this default size was implicitly
4041 * specified, set that here as well.
4042 * Note that the implicit setting will overwrite an explicit
4043 * setting. A warning will be printed in this case.
4045 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4046 if (default_hstate_max_huge_pages) {
4047 if (default_hstate.max_huge_pages) {
4050 string_get_size(huge_page_size(&default_hstate),
4051 1, STRING_UNITS_2, buf, 32);
4052 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4053 default_hstate.max_huge_pages, buf);
4054 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4055 default_hstate_max_huge_pages);
4057 default_hstate.max_huge_pages =
4058 default_hstate_max_huge_pages;
4060 for_each_online_node(i)
4061 default_hstate.max_huge_pages_node[i] =
4062 default_hugepages_in_node[i];
4066 hugetlb_cma_check();
4067 hugetlb_init_hstates();
4068 gather_bootmem_prealloc();
4071 hugetlb_sysfs_init();
4072 hugetlb_register_all_nodes();
4073 hugetlb_cgroup_file_init();
4076 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4078 num_fault_mutexes = 1;
4080 hugetlb_fault_mutex_table =
4081 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4083 BUG_ON(!hugetlb_fault_mutex_table);
4085 for (i = 0; i < num_fault_mutexes; i++)
4086 mutex_init(&hugetlb_fault_mutex_table[i]);
4089 subsys_initcall(hugetlb_init);
4091 /* Overwritten by architectures with more huge page sizes */
4092 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4094 return size == HPAGE_SIZE;
4097 void __init hugetlb_add_hstate(unsigned int order)
4102 if (size_to_hstate(PAGE_SIZE << order)) {
4105 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4107 h = &hstates[hugetlb_max_hstate++];
4108 mutex_init(&h->resize_lock);
4110 h->mask = ~(huge_page_size(h) - 1);
4111 for (i = 0; i < MAX_NUMNODES; ++i)
4112 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4113 INIT_LIST_HEAD(&h->hugepage_activelist);
4114 h->next_nid_to_alloc = first_memory_node;
4115 h->next_nid_to_free = first_memory_node;
4116 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4117 huge_page_size(h)/1024);
4118 hugetlb_vmemmap_init(h);
4123 bool __init __weak hugetlb_node_alloc_supported(void)
4128 static void __init hugepages_clear_pages_in_node(void)
4130 if (!hugetlb_max_hstate) {
4131 default_hstate_max_huge_pages = 0;
4132 memset(default_hugepages_in_node, 0,
4133 MAX_NUMNODES * sizeof(unsigned int));
4135 parsed_hstate->max_huge_pages = 0;
4136 memset(parsed_hstate->max_huge_pages_node, 0,
4137 MAX_NUMNODES * sizeof(unsigned int));
4142 * hugepages command line processing
4143 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4144 * specification. If not, ignore the hugepages value. hugepages can also
4145 * be the first huge page command line option in which case it implicitly
4146 * specifies the number of huge pages for the default size.
4148 static int __init hugepages_setup(char *s)
4151 static unsigned long *last_mhp;
4152 int node = NUMA_NO_NODE;
4157 if (!parsed_valid_hugepagesz) {
4158 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4159 parsed_valid_hugepagesz = true;
4164 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4165 * yet, so this hugepages= parameter goes to the "default hstate".
4166 * Otherwise, it goes with the previously parsed hugepagesz or
4167 * default_hugepagesz.
4169 else if (!hugetlb_max_hstate)
4170 mhp = &default_hstate_max_huge_pages;
4172 mhp = &parsed_hstate->max_huge_pages;
4174 if (mhp == last_mhp) {
4175 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4181 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4183 /* Parameter is node format */
4184 if (p[count] == ':') {
4185 if (!hugetlb_node_alloc_supported()) {
4186 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4189 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4191 node = array_index_nospec(tmp, MAX_NUMNODES);
4193 /* Parse hugepages */
4194 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4196 if (!hugetlb_max_hstate)
4197 default_hugepages_in_node[node] = tmp;
4199 parsed_hstate->max_huge_pages_node[node] = tmp;
4201 /* Go to parse next node*/
4202 if (p[count] == ',')
4215 * Global state is always initialized later in hugetlb_init.
4216 * But we need to allocate gigantic hstates here early to still
4217 * use the bootmem allocator.
4219 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4220 hugetlb_hstate_alloc_pages(parsed_hstate);
4227 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4228 hugepages_clear_pages_in_node();
4231 __setup("hugepages=", hugepages_setup);
4234 * hugepagesz command line processing
4235 * A specific huge page size can only be specified once with hugepagesz.
4236 * hugepagesz is followed by hugepages on the command line. The global
4237 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4238 * hugepagesz argument was valid.
4240 static int __init hugepagesz_setup(char *s)
4245 parsed_valid_hugepagesz = false;
4246 size = (unsigned long)memparse(s, NULL);
4248 if (!arch_hugetlb_valid_size(size)) {
4249 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4253 h = size_to_hstate(size);
4256 * hstate for this size already exists. This is normally
4257 * an error, but is allowed if the existing hstate is the
4258 * default hstate. More specifically, it is only allowed if
4259 * the number of huge pages for the default hstate was not
4260 * previously specified.
4262 if (!parsed_default_hugepagesz || h != &default_hstate ||
4263 default_hstate.max_huge_pages) {
4264 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4269 * No need to call hugetlb_add_hstate() as hstate already
4270 * exists. But, do set parsed_hstate so that a following
4271 * hugepages= parameter will be applied to this hstate.
4274 parsed_valid_hugepagesz = true;
4278 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4279 parsed_valid_hugepagesz = true;
4282 __setup("hugepagesz=", hugepagesz_setup);
4285 * default_hugepagesz command line input
4286 * Only one instance of default_hugepagesz allowed on command line.
4288 static int __init default_hugepagesz_setup(char *s)
4293 parsed_valid_hugepagesz = false;
4294 if (parsed_default_hugepagesz) {
4295 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4299 size = (unsigned long)memparse(s, NULL);
4301 if (!arch_hugetlb_valid_size(size)) {
4302 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4306 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4307 parsed_valid_hugepagesz = true;
4308 parsed_default_hugepagesz = true;
4309 default_hstate_idx = hstate_index(size_to_hstate(size));
4312 * The number of default huge pages (for this size) could have been
4313 * specified as the first hugetlb parameter: hugepages=X. If so,
4314 * then default_hstate_max_huge_pages is set. If the default huge
4315 * page size is gigantic (>= MAX_ORDER), then the pages must be
4316 * allocated here from bootmem allocator.
4318 if (default_hstate_max_huge_pages) {
4319 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4320 for_each_online_node(i)
4321 default_hstate.max_huge_pages_node[i] =
4322 default_hugepages_in_node[i];
4323 if (hstate_is_gigantic(&default_hstate))
4324 hugetlb_hstate_alloc_pages(&default_hstate);
4325 default_hstate_max_huge_pages = 0;
4330 __setup("default_hugepagesz=", default_hugepagesz_setup);
4332 static unsigned int allowed_mems_nr(struct hstate *h)
4335 unsigned int nr = 0;
4336 nodemask_t *mpol_allowed;
4337 unsigned int *array = h->free_huge_pages_node;
4338 gfp_t gfp_mask = htlb_alloc_mask(h);
4340 mpol_allowed = policy_nodemask_current(gfp_mask);
4342 for_each_node_mask(node, cpuset_current_mems_allowed) {
4343 if (!mpol_allowed || node_isset(node, *mpol_allowed))
4350 #ifdef CONFIG_SYSCTL
4351 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4352 void *buffer, size_t *length,
4353 loff_t *ppos, unsigned long *out)
4355 struct ctl_table dup_table;
4358 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4359 * can duplicate the @table and alter the duplicate of it.
4362 dup_table.data = out;
4364 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4367 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4368 struct ctl_table *table, int write,
4369 void *buffer, size_t *length, loff_t *ppos)
4371 struct hstate *h = &default_hstate;
4372 unsigned long tmp = h->max_huge_pages;
4375 if (!hugepages_supported())
4378 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4384 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4385 NUMA_NO_NODE, tmp, *length);
4390 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4391 void *buffer, size_t *length, loff_t *ppos)
4394 return hugetlb_sysctl_handler_common(false, table, write,
4395 buffer, length, ppos);
4399 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4400 void *buffer, size_t *length, loff_t *ppos)
4402 return hugetlb_sysctl_handler_common(true, table, write,
4403 buffer, length, ppos);
4405 #endif /* CONFIG_NUMA */
4407 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4408 void *buffer, size_t *length, loff_t *ppos)
4410 struct hstate *h = &default_hstate;
4414 if (!hugepages_supported())
4417 tmp = h->nr_overcommit_huge_pages;
4419 if (write && hstate_is_gigantic(h))
4422 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4428 spin_lock_irq(&hugetlb_lock);
4429 h->nr_overcommit_huge_pages = tmp;
4430 spin_unlock_irq(&hugetlb_lock);
4436 #endif /* CONFIG_SYSCTL */
4438 void hugetlb_report_meminfo(struct seq_file *m)
4441 unsigned long total = 0;
4443 if (!hugepages_supported())
4446 for_each_hstate(h) {
4447 unsigned long count = h->nr_huge_pages;
4449 total += huge_page_size(h) * count;
4451 if (h == &default_hstate)
4453 "HugePages_Total: %5lu\n"
4454 "HugePages_Free: %5lu\n"
4455 "HugePages_Rsvd: %5lu\n"
4456 "HugePages_Surp: %5lu\n"
4457 "Hugepagesize: %8lu kB\n",
4461 h->surplus_huge_pages,
4462 huge_page_size(h) / SZ_1K);
4465 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4468 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4470 struct hstate *h = &default_hstate;
4472 if (!hugepages_supported())
4475 return sysfs_emit_at(buf, len,
4476 "Node %d HugePages_Total: %5u\n"
4477 "Node %d HugePages_Free: %5u\n"
4478 "Node %d HugePages_Surp: %5u\n",
4479 nid, h->nr_huge_pages_node[nid],
4480 nid, h->free_huge_pages_node[nid],
4481 nid, h->surplus_huge_pages_node[nid]);
4484 void hugetlb_show_meminfo(void)
4489 if (!hugepages_supported())
4492 for_each_node_state(nid, N_MEMORY)
4494 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4496 h->nr_huge_pages_node[nid],
4497 h->free_huge_pages_node[nid],
4498 h->surplus_huge_pages_node[nid],
4499 huge_page_size(h) / SZ_1K);
4502 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4504 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4505 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4508 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4509 unsigned long hugetlb_total_pages(void)
4512 unsigned long nr_total_pages = 0;
4515 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4516 return nr_total_pages;
4519 static int hugetlb_acct_memory(struct hstate *h, long delta)
4526 spin_lock_irq(&hugetlb_lock);
4528 * When cpuset is configured, it breaks the strict hugetlb page
4529 * reservation as the accounting is done on a global variable. Such
4530 * reservation is completely rubbish in the presence of cpuset because
4531 * the reservation is not checked against page availability for the
4532 * current cpuset. Application can still potentially OOM'ed by kernel
4533 * with lack of free htlb page in cpuset that the task is in.
4534 * Attempt to enforce strict accounting with cpuset is almost
4535 * impossible (or too ugly) because cpuset is too fluid that
4536 * task or memory node can be dynamically moved between cpusets.
4538 * The change of semantics for shared hugetlb mapping with cpuset is
4539 * undesirable. However, in order to preserve some of the semantics,
4540 * we fall back to check against current free page availability as
4541 * a best attempt and hopefully to minimize the impact of changing
4542 * semantics that cpuset has.
4544 * Apart from cpuset, we also have memory policy mechanism that
4545 * also determines from which node the kernel will allocate memory
4546 * in a NUMA system. So similar to cpuset, we also should consider
4547 * the memory policy of the current task. Similar to the description
4551 if (gather_surplus_pages(h, delta) < 0)
4554 if (delta > allowed_mems_nr(h)) {
4555 return_unused_surplus_pages(h, delta);
4562 return_unused_surplus_pages(h, (unsigned long) -delta);
4565 spin_unlock_irq(&hugetlb_lock);
4569 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4571 struct resv_map *resv = vma_resv_map(vma);
4574 * This new VMA should share its siblings reservation map if present.
4575 * The VMA will only ever have a valid reservation map pointer where
4576 * it is being copied for another still existing VMA. As that VMA
4577 * has a reference to the reservation map it cannot disappear until
4578 * after this open call completes. It is therefore safe to take a
4579 * new reference here without additional locking.
4581 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4582 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4583 kref_get(&resv->refs);
4587 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4589 struct hstate *h = hstate_vma(vma);
4590 struct resv_map *resv = vma_resv_map(vma);
4591 struct hugepage_subpool *spool = subpool_vma(vma);
4592 unsigned long reserve, start, end;
4595 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4598 start = vma_hugecache_offset(h, vma, vma->vm_start);
4599 end = vma_hugecache_offset(h, vma, vma->vm_end);
4601 reserve = (end - start) - region_count(resv, start, end);
4602 hugetlb_cgroup_uncharge_counter(resv, start, end);
4605 * Decrement reserve counts. The global reserve count may be
4606 * adjusted if the subpool has a minimum size.
4608 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4609 hugetlb_acct_memory(h, -gbl_reserve);
4612 kref_put(&resv->refs, resv_map_release);
4615 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4617 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4622 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4624 return huge_page_size(hstate_vma(vma));
4628 * We cannot handle pagefaults against hugetlb pages at all. They cause
4629 * handle_mm_fault() to try to instantiate regular-sized pages in the
4630 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4633 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4640 * When a new function is introduced to vm_operations_struct and added
4641 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4642 * This is because under System V memory model, mappings created via
4643 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4644 * their original vm_ops are overwritten with shm_vm_ops.
4646 const struct vm_operations_struct hugetlb_vm_ops = {
4647 .fault = hugetlb_vm_op_fault,
4648 .open = hugetlb_vm_op_open,
4649 .close = hugetlb_vm_op_close,
4650 .may_split = hugetlb_vm_op_split,
4651 .pagesize = hugetlb_vm_op_pagesize,
4654 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4658 unsigned int shift = huge_page_shift(hstate_vma(vma));
4661 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4662 vma->vm_page_prot)));
4664 entry = huge_pte_wrprotect(mk_huge_pte(page,
4665 vma->vm_page_prot));
4667 entry = pte_mkyoung(entry);
4668 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4673 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4674 unsigned long address, pte_t *ptep)
4678 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4679 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4680 update_mmu_cache(vma, address, ptep);
4683 bool is_hugetlb_entry_migration(pte_t pte)
4687 if (huge_pte_none(pte) || pte_present(pte))
4689 swp = pte_to_swp_entry(pte);
4690 if (is_migration_entry(swp))
4696 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4700 if (huge_pte_none(pte) || pte_present(pte))
4702 swp = pte_to_swp_entry(pte);
4703 if (is_hwpoison_entry(swp))
4710 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4711 struct page *new_page)
4713 __SetPageUptodate(new_page);
4714 hugepage_add_new_anon_rmap(new_page, vma, addr);
4715 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4716 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4717 ClearHPageRestoreReserve(new_page);
4718 SetHPageMigratable(new_page);
4721 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4722 struct vm_area_struct *vma)
4724 pte_t *src_pte, *dst_pte, entry, dst_entry;
4725 struct page *ptepage;
4727 bool cow = is_cow_mapping(vma->vm_flags);
4728 struct hstate *h = hstate_vma(vma);
4729 unsigned long sz = huge_page_size(h);
4730 unsigned long npages = pages_per_huge_page(h);
4731 struct address_space *mapping = vma->vm_file->f_mapping;
4732 struct mmu_notifier_range range;
4736 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4739 mmu_notifier_invalidate_range_start(&range);
4740 mmap_assert_write_locked(src);
4741 raw_write_seqcount_begin(&src->write_protect_seq);
4744 * For shared mappings i_mmap_rwsem must be held to call
4745 * huge_pte_alloc, otherwise the returned ptep could go
4746 * away if part of a shared pmd and another thread calls
4749 i_mmap_lock_read(mapping);
4752 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4753 spinlock_t *src_ptl, *dst_ptl;
4754 src_pte = huge_pte_offset(src, addr, sz);
4757 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4764 * If the pagetables are shared don't copy or take references.
4765 * dst_pte == src_pte is the common case of src/dest sharing.
4767 * However, src could have 'unshared' and dst shares with
4768 * another vma. If dst_pte !none, this implies sharing.
4769 * Check here before taking page table lock, and once again
4770 * after taking the lock below.
4772 dst_entry = huge_ptep_get(dst_pte);
4773 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4776 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4777 src_ptl = huge_pte_lockptr(h, src, src_pte);
4778 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4779 entry = huge_ptep_get(src_pte);
4780 dst_entry = huge_ptep_get(dst_pte);
4782 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4784 * Skip if src entry none. Also, skip in the
4785 * unlikely case dst entry !none as this implies
4786 * sharing with another vma.
4789 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4790 is_hugetlb_entry_hwpoisoned(entry))) {
4791 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4793 if (!is_readable_migration_entry(swp_entry) && cow) {
4795 * COW mappings require pages in both
4796 * parent and child to be set to read.
4798 swp_entry = make_readable_migration_entry(
4799 swp_offset(swp_entry));
4800 entry = swp_entry_to_pte(swp_entry);
4801 set_huge_swap_pte_at(src, addr, src_pte,
4804 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4806 entry = huge_ptep_get(src_pte);
4807 ptepage = pte_page(entry);
4811 * Failing to duplicate the anon rmap is a rare case
4812 * where we see pinned hugetlb pages while they're
4813 * prone to COW. We need to do the COW earlier during
4816 * When pre-allocating the page or copying data, we
4817 * need to be without the pgtable locks since we could
4818 * sleep during the process.
4820 if (!PageAnon(ptepage)) {
4821 page_dup_file_rmap(ptepage, true);
4822 } else if (page_try_dup_anon_rmap(ptepage, true, vma)) {
4823 pte_t src_pte_old = entry;
4826 spin_unlock(src_ptl);
4827 spin_unlock(dst_ptl);
4828 /* Do not use reserve as it's private owned */
4829 new = alloc_huge_page(vma, addr, 1);
4835 copy_user_huge_page(new, ptepage, addr, vma,
4839 /* Install the new huge page if src pte stable */
4840 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4841 src_ptl = huge_pte_lockptr(h, src, src_pte);
4842 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4843 entry = huge_ptep_get(src_pte);
4844 if (!pte_same(src_pte_old, entry)) {
4845 restore_reserve_on_error(h, vma, addr,
4848 /* dst_entry won't change as in child */
4851 hugetlb_install_page(vma, dst_pte, addr, new);
4852 spin_unlock(src_ptl);
4853 spin_unlock(dst_ptl);
4859 * No need to notify as we are downgrading page
4860 * table protection not changing it to point
4863 * See Documentation/vm/mmu_notifier.rst
4865 huge_ptep_set_wrprotect(src, addr, src_pte);
4866 entry = huge_pte_wrprotect(entry);
4869 set_huge_pte_at(dst, addr, dst_pte, entry);
4870 hugetlb_count_add(npages, dst);
4872 spin_unlock(src_ptl);
4873 spin_unlock(dst_ptl);
4877 raw_write_seqcount_end(&src->write_protect_seq);
4878 mmu_notifier_invalidate_range_end(&range);
4880 i_mmap_unlock_read(mapping);
4886 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4887 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4889 struct hstate *h = hstate_vma(vma);
4890 struct mm_struct *mm = vma->vm_mm;
4891 spinlock_t *src_ptl, *dst_ptl;
4894 dst_ptl = huge_pte_lock(h, mm, dst_pte);
4895 src_ptl = huge_pte_lockptr(h, mm, src_pte);
4898 * We don't have to worry about the ordering of src and dst ptlocks
4899 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4901 if (src_ptl != dst_ptl)
4902 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4904 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4905 set_huge_pte_at(mm, new_addr, dst_pte, pte);
4907 if (src_ptl != dst_ptl)
4908 spin_unlock(src_ptl);
4909 spin_unlock(dst_ptl);
4912 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4913 struct vm_area_struct *new_vma,
4914 unsigned long old_addr, unsigned long new_addr,
4917 struct hstate *h = hstate_vma(vma);
4918 struct address_space *mapping = vma->vm_file->f_mapping;
4919 unsigned long sz = huge_page_size(h);
4920 struct mm_struct *mm = vma->vm_mm;
4921 unsigned long old_end = old_addr + len;
4922 unsigned long old_addr_copy;
4923 pte_t *src_pte, *dst_pte;
4924 struct mmu_notifier_range range;
4926 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4928 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4929 mmu_notifier_invalidate_range_start(&range);
4930 /* Prevent race with file truncation */
4931 i_mmap_lock_write(mapping);
4932 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4933 src_pte = huge_pte_offset(mm, old_addr, sz);
4936 if (huge_pte_none(huge_ptep_get(src_pte)))
4939 /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4940 * arg may be modified. Pass a copy instead to preserve the
4941 * value in old_addr.
4943 old_addr_copy = old_addr;
4945 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
4948 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4952 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4954 flush_tlb_range(vma, old_end - len, old_end);
4955 mmu_notifier_invalidate_range_end(&range);
4956 i_mmap_unlock_write(mapping);
4958 return len + old_addr - old_end;
4961 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4962 unsigned long start, unsigned long end,
4963 struct page *ref_page)
4965 struct mm_struct *mm = vma->vm_mm;
4966 unsigned long address;
4971 struct hstate *h = hstate_vma(vma);
4972 unsigned long sz = huge_page_size(h);
4973 struct mmu_notifier_range range;
4974 bool force_flush = false;
4976 WARN_ON(!is_vm_hugetlb_page(vma));
4977 BUG_ON(start & ~huge_page_mask(h));
4978 BUG_ON(end & ~huge_page_mask(h));
4981 * This is a hugetlb vma, all the pte entries should point
4984 tlb_change_page_size(tlb, sz);
4985 tlb_start_vma(tlb, vma);
4988 * If sharing possible, alert mmu notifiers of worst case.
4990 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4992 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4993 mmu_notifier_invalidate_range_start(&range);
4995 for (; address < end; address += sz) {
4996 ptep = huge_pte_offset(mm, address, sz);
5000 ptl = huge_pte_lock(h, mm, ptep);
5001 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5003 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5008 pte = huge_ptep_get(ptep);
5009 if (huge_pte_none(pte)) {
5015 * Migrating hugepage or HWPoisoned hugepage is already
5016 * unmapped and its refcount is dropped, so just clear pte here.
5018 if (unlikely(!pte_present(pte))) {
5019 huge_pte_clear(mm, address, ptep, sz);
5024 page = pte_page(pte);
5026 * If a reference page is supplied, it is because a specific
5027 * page is being unmapped, not a range. Ensure the page we
5028 * are about to unmap is the actual page of interest.
5031 if (page != ref_page) {
5036 * Mark the VMA as having unmapped its page so that
5037 * future faults in this VMA will fail rather than
5038 * looking like data was lost
5040 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5043 pte = huge_ptep_get_and_clear(mm, address, ptep);
5044 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5045 if (huge_pte_dirty(pte))
5046 set_page_dirty(page);
5048 hugetlb_count_sub(pages_per_huge_page(h), mm);
5049 page_remove_rmap(page, vma, true);
5052 tlb_remove_page_size(tlb, page, huge_page_size(h));
5054 * Bail out after unmapping reference page if supplied
5059 mmu_notifier_invalidate_range_end(&range);
5060 tlb_end_vma(tlb, vma);
5063 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5064 * could defer the flush until now, since by holding i_mmap_rwsem we
5065 * guaranteed that the last refernece would not be dropped. But we must
5066 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5067 * dropped and the last reference to the shared PMDs page might be
5070 * In theory we could defer the freeing of the PMD pages as well, but
5071 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5072 * detect sharing, so we cannot defer the release of the page either.
5073 * Instead, do flush now.
5076 tlb_flush_mmu_tlbonly(tlb);
5079 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5080 struct vm_area_struct *vma, unsigned long start,
5081 unsigned long end, struct page *ref_page)
5083 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
5086 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5087 * test will fail on a vma being torn down, and not grab a page table
5088 * on its way out. We're lucky that the flag has such an appropriate
5089 * name, and can in fact be safely cleared here. We could clear it
5090 * before the __unmap_hugepage_range above, but all that's necessary
5091 * is to clear it before releasing the i_mmap_rwsem. This works
5092 * because in the context this is called, the VMA is about to be
5093 * destroyed and the i_mmap_rwsem is held.
5095 vma->vm_flags &= ~VM_MAYSHARE;
5098 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5099 unsigned long end, struct page *ref_page)
5101 struct mmu_gather tlb;
5103 tlb_gather_mmu(&tlb, vma->vm_mm);
5104 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
5105 tlb_finish_mmu(&tlb);
5109 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5110 * mapping it owns the reserve page for. The intention is to unmap the page
5111 * from other VMAs and let the children be SIGKILLed if they are faulting the
5114 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5115 struct page *page, unsigned long address)
5117 struct hstate *h = hstate_vma(vma);
5118 struct vm_area_struct *iter_vma;
5119 struct address_space *mapping;
5123 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5124 * from page cache lookup which is in HPAGE_SIZE units.
5126 address = address & huge_page_mask(h);
5127 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5129 mapping = vma->vm_file->f_mapping;
5132 * Take the mapping lock for the duration of the table walk. As
5133 * this mapping should be shared between all the VMAs,
5134 * __unmap_hugepage_range() is called as the lock is already held
5136 i_mmap_lock_write(mapping);
5137 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5138 /* Do not unmap the current VMA */
5139 if (iter_vma == vma)
5143 * Shared VMAs have their own reserves and do not affect
5144 * MAP_PRIVATE accounting but it is possible that a shared
5145 * VMA is using the same page so check and skip such VMAs.
5147 if (iter_vma->vm_flags & VM_MAYSHARE)
5151 * Unmap the page from other VMAs without their own reserves.
5152 * They get marked to be SIGKILLed if they fault in these
5153 * areas. This is because a future no-page fault on this VMA
5154 * could insert a zeroed page instead of the data existing
5155 * from the time of fork. This would look like data corruption
5157 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5158 unmap_hugepage_range(iter_vma, address,
5159 address + huge_page_size(h), page);
5161 i_mmap_unlock_write(mapping);
5165 * Hugetlb_cow() should be called with page lock of the original hugepage held.
5166 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5167 * cannot race with other handlers or page migration.
5168 * Keep the pte_same checks anyway to make transition from the mutex easier.
5170 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
5171 unsigned long address, pte_t *ptep,
5172 struct page *pagecache_page, spinlock_t *ptl)
5175 struct hstate *h = hstate_vma(vma);
5176 struct page *old_page, *new_page;
5177 int outside_reserve = 0;
5179 unsigned long haddr = address & huge_page_mask(h);
5180 struct mmu_notifier_range range;
5182 pte = huge_ptep_get(ptep);
5183 old_page = pte_page(pte);
5186 /* If no-one else is actually using this page, avoid the copy
5187 * and just make the page writable */
5188 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5189 page_move_anon_rmap(old_page, vma);
5190 set_huge_ptep_writable(vma, haddr, ptep);
5193 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5197 * If the process that created a MAP_PRIVATE mapping is about to
5198 * perform a COW due to a shared page count, attempt to satisfy
5199 * the allocation without using the existing reserves. The pagecache
5200 * page is used to determine if the reserve at this address was
5201 * consumed or not. If reserves were used, a partial faulted mapping
5202 * at the time of fork() could consume its reserves on COW instead
5203 * of the full address range.
5205 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5206 old_page != pagecache_page)
5207 outside_reserve = 1;
5212 * Drop page table lock as buddy allocator may be called. It will
5213 * be acquired again before returning to the caller, as expected.
5216 new_page = alloc_huge_page(vma, haddr, outside_reserve);
5218 if (IS_ERR(new_page)) {
5220 * If a process owning a MAP_PRIVATE mapping fails to COW,
5221 * it is due to references held by a child and an insufficient
5222 * huge page pool. To guarantee the original mappers
5223 * reliability, unmap the page from child processes. The child
5224 * may get SIGKILLed if it later faults.
5226 if (outside_reserve) {
5227 struct address_space *mapping = vma->vm_file->f_mapping;
5232 BUG_ON(huge_pte_none(pte));
5234 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5235 * unmapping. unmapping needs to hold i_mmap_rwsem
5236 * in write mode. Dropping i_mmap_rwsem in read mode
5237 * here is OK as COW mappings do not interact with
5240 * Reacquire both after unmap operation.
5242 idx = vma_hugecache_offset(h, vma, haddr);
5243 hash = hugetlb_fault_mutex_hash(mapping, idx);
5244 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5245 i_mmap_unlock_read(mapping);
5247 unmap_ref_private(mm, vma, old_page, haddr);
5249 i_mmap_lock_read(mapping);
5250 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5252 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5254 pte_same(huge_ptep_get(ptep), pte)))
5255 goto retry_avoidcopy;
5257 * race occurs while re-acquiring page table
5258 * lock, and our job is done.
5263 ret = vmf_error(PTR_ERR(new_page));
5264 goto out_release_old;
5268 * When the original hugepage is shared one, it does not have
5269 * anon_vma prepared.
5271 if (unlikely(anon_vma_prepare(vma))) {
5273 goto out_release_all;
5276 copy_user_huge_page(new_page, old_page, address, vma,
5277 pages_per_huge_page(h));
5278 __SetPageUptodate(new_page);
5280 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5281 haddr + huge_page_size(h));
5282 mmu_notifier_invalidate_range_start(&range);
5285 * Retake the page table lock to check for racing updates
5286 * before the page tables are altered
5289 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5290 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5291 ClearHPageRestoreReserve(new_page);
5294 huge_ptep_clear_flush(vma, haddr, ptep);
5295 mmu_notifier_invalidate_range(mm, range.start, range.end);
5296 page_remove_rmap(old_page, vma, true);
5297 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5298 set_huge_pte_at(mm, haddr, ptep,
5299 make_huge_pte(vma, new_page, 1));
5300 SetHPageMigratable(new_page);
5301 /* Make the old page be freed below */
5302 new_page = old_page;
5305 mmu_notifier_invalidate_range_end(&range);
5307 /* No restore in case of successful pagetable update (Break COW) */
5308 if (new_page != old_page)
5309 restore_reserve_on_error(h, vma, haddr, new_page);
5314 spin_lock(ptl); /* Caller expects lock to be held */
5318 /* Return the pagecache page at a given address within a VMA */
5319 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5320 struct vm_area_struct *vma, unsigned long address)
5322 struct address_space *mapping;
5325 mapping = vma->vm_file->f_mapping;
5326 idx = vma_hugecache_offset(h, vma, address);
5328 return find_lock_page(mapping, idx);
5332 * Return whether there is a pagecache page to back given address within VMA.
5333 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5335 static bool hugetlbfs_pagecache_present(struct hstate *h,
5336 struct vm_area_struct *vma, unsigned long address)
5338 struct address_space *mapping;
5342 mapping = vma->vm_file->f_mapping;
5343 idx = vma_hugecache_offset(h, vma, address);
5345 page = find_get_page(mapping, idx);
5348 return page != NULL;
5351 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5354 struct inode *inode = mapping->host;
5355 struct hstate *h = hstate_inode(inode);
5356 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5360 ClearHPageRestoreReserve(page);
5363 * set page dirty so that it will not be removed from cache/file
5364 * by non-hugetlbfs specific code paths.
5366 set_page_dirty(page);
5368 spin_lock(&inode->i_lock);
5369 inode->i_blocks += blocks_per_huge_page(h);
5370 spin_unlock(&inode->i_lock);
5374 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5375 struct address_space *mapping,
5378 unsigned long haddr,
5380 unsigned long reason)
5384 struct vm_fault vmf = {
5387 .real_address = addr,
5391 * Hard to debug if it ends up being
5392 * used by a callee that assumes
5393 * something about the other
5394 * uninitialized fields... same as in
5400 * hugetlb_fault_mutex and i_mmap_rwsem must be
5401 * dropped before handling userfault. Reacquire
5402 * after handling fault to make calling code simpler.
5404 hash = hugetlb_fault_mutex_hash(mapping, idx);
5405 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5406 i_mmap_unlock_read(mapping);
5407 ret = handle_userfault(&vmf, reason);
5408 i_mmap_lock_read(mapping);
5409 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5414 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5415 struct vm_area_struct *vma,
5416 struct address_space *mapping, pgoff_t idx,
5417 unsigned long address, pte_t *ptep, unsigned int flags)
5419 struct hstate *h = hstate_vma(vma);
5420 vm_fault_t ret = VM_FAULT_SIGBUS;
5426 unsigned long haddr = address & huge_page_mask(h);
5427 bool new_page, new_pagecache_page = false;
5430 * Currently, we are forced to kill the process in the event the
5431 * original mapper has unmapped pages from the child due to a failed
5432 * COW. Warn that such a situation has occurred as it may not be obvious
5434 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5435 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5441 * We can not race with truncation due to holding i_mmap_rwsem.
5442 * i_size is modified when holding i_mmap_rwsem, so check here
5443 * once for faults beyond end of file.
5445 size = i_size_read(mapping->host) >> huge_page_shift(h);
5451 page = find_lock_page(mapping, idx);
5453 /* Check for page in userfault range */
5454 if (userfaultfd_missing(vma)) {
5455 ret = hugetlb_handle_userfault(vma, mapping, idx,
5456 flags, haddr, address,
5461 page = alloc_huge_page(vma, haddr, 0);
5464 * Returning error will result in faulting task being
5465 * sent SIGBUS. The hugetlb fault mutex prevents two
5466 * tasks from racing to fault in the same page which
5467 * could result in false unable to allocate errors.
5468 * Page migration does not take the fault mutex, but
5469 * does a clear then write of pte's under page table
5470 * lock. Page fault code could race with migration,
5471 * notice the clear pte and try to allocate a page
5472 * here. Before returning error, get ptl and make
5473 * sure there really is no pte entry.
5475 ptl = huge_pte_lock(h, mm, ptep);
5477 if (huge_pte_none(huge_ptep_get(ptep)))
5478 ret = vmf_error(PTR_ERR(page));
5482 clear_huge_page(page, address, pages_per_huge_page(h));
5483 __SetPageUptodate(page);
5486 if (vma->vm_flags & VM_MAYSHARE) {
5487 int err = huge_add_to_page_cache(page, mapping, idx);
5494 new_pagecache_page = true;
5497 if (unlikely(anon_vma_prepare(vma))) {
5499 goto backout_unlocked;
5505 * If memory error occurs between mmap() and fault, some process
5506 * don't have hwpoisoned swap entry for errored virtual address.
5507 * So we need to block hugepage fault by PG_hwpoison bit check.
5509 if (unlikely(PageHWPoison(page))) {
5510 ret = VM_FAULT_HWPOISON_LARGE |
5511 VM_FAULT_SET_HINDEX(hstate_index(h));
5512 goto backout_unlocked;
5515 /* Check for page in userfault range. */
5516 if (userfaultfd_minor(vma)) {
5519 ret = hugetlb_handle_userfault(vma, mapping, idx,
5520 flags, haddr, address,
5527 * If we are going to COW a private mapping later, we examine the
5528 * pending reservations for this page now. This will ensure that
5529 * any allocations necessary to record that reservation occur outside
5532 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5533 if (vma_needs_reservation(h, vma, haddr) < 0) {
5535 goto backout_unlocked;
5537 /* Just decrements count, does not deallocate */
5538 vma_end_reservation(h, vma, haddr);
5541 ptl = huge_pte_lock(h, mm, ptep);
5543 if (!huge_pte_none(huge_ptep_get(ptep)))
5547 ClearHPageRestoreReserve(page);
5548 hugepage_add_new_anon_rmap(page, vma, haddr);
5550 page_dup_file_rmap(page, true);
5551 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5552 && (vma->vm_flags & VM_SHARED)));
5553 set_huge_pte_at(mm, haddr, ptep, new_pte);
5555 hugetlb_count_add(pages_per_huge_page(h), mm);
5556 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5557 /* Optimization, do the COW without a second fault */
5558 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5564 * Only set HPageMigratable in newly allocated pages. Existing pages
5565 * found in the pagecache may not have HPageMigratableset if they have
5566 * been isolated for migration.
5569 SetHPageMigratable(page);
5579 /* restore reserve for newly allocated pages not in page cache */
5580 if (new_page && !new_pagecache_page)
5581 restore_reserve_on_error(h, vma, haddr, page);
5587 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5589 unsigned long key[2];
5592 key[0] = (unsigned long) mapping;
5595 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5597 return hash & (num_fault_mutexes - 1);
5601 * For uniprocessor systems we always use a single mutex, so just
5602 * return 0 and avoid the hashing overhead.
5604 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5610 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5611 unsigned long address, unsigned int flags)
5618 struct page *page = NULL;
5619 struct page *pagecache_page = NULL;
5620 struct hstate *h = hstate_vma(vma);
5621 struct address_space *mapping;
5622 int need_wait_lock = 0;
5623 unsigned long haddr = address & huge_page_mask(h);
5625 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5628 * Since we hold no locks, ptep could be stale. That is
5629 * OK as we are only making decisions based on content and
5630 * not actually modifying content here.
5632 entry = huge_ptep_get(ptep);
5633 if (unlikely(is_hugetlb_entry_migration(entry))) {
5634 migration_entry_wait_huge(vma, mm, ptep);
5636 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5637 return VM_FAULT_HWPOISON_LARGE |
5638 VM_FAULT_SET_HINDEX(hstate_index(h));
5642 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5643 * until finished with ptep. This serves two purposes:
5644 * 1) It prevents huge_pmd_unshare from being called elsewhere
5645 * and making the ptep no longer valid.
5646 * 2) It synchronizes us with i_size modifications during truncation.
5648 * ptep could have already be assigned via huge_pte_offset. That
5649 * is OK, as huge_pte_alloc will return the same value unless
5650 * something has changed.
5652 mapping = vma->vm_file->f_mapping;
5653 i_mmap_lock_read(mapping);
5654 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5656 i_mmap_unlock_read(mapping);
5657 return VM_FAULT_OOM;
5661 * Serialize hugepage allocation and instantiation, so that we don't
5662 * get spurious allocation failures if two CPUs race to instantiate
5663 * the same page in the page cache.
5665 idx = vma_hugecache_offset(h, vma, haddr);
5666 hash = hugetlb_fault_mutex_hash(mapping, idx);
5667 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5669 entry = huge_ptep_get(ptep);
5670 if (huge_pte_none(entry)) {
5671 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5678 * entry could be a migration/hwpoison entry at this point, so this
5679 * check prevents the kernel from going below assuming that we have
5680 * an active hugepage in pagecache. This goto expects the 2nd page
5681 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5682 * properly handle it.
5684 if (!pte_present(entry))
5688 * If we are going to COW the mapping later, we examine the pending
5689 * reservations for this page now. This will ensure that any
5690 * allocations necessary to record that reservation occur outside the
5691 * spinlock. For private mappings, we also lookup the pagecache
5692 * page now as it is used to determine if a reservation has been
5695 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5696 if (vma_needs_reservation(h, vma, haddr) < 0) {
5700 /* Just decrements count, does not deallocate */
5701 vma_end_reservation(h, vma, haddr);
5703 if (!(vma->vm_flags & VM_MAYSHARE))
5704 pagecache_page = hugetlbfs_pagecache_page(h,
5708 ptl = huge_pte_lock(h, mm, ptep);
5710 /* Check for a racing update before calling hugetlb_cow */
5711 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5715 * hugetlb_cow() requires page locks of pte_page(entry) and
5716 * pagecache_page, so here we need take the former one
5717 * when page != pagecache_page or !pagecache_page.
5719 page = pte_page(entry);
5720 if (page != pagecache_page)
5721 if (!trylock_page(page)) {
5728 if (flags & FAULT_FLAG_WRITE) {
5729 if (!huge_pte_write(entry)) {
5730 ret = hugetlb_cow(mm, vma, address, ptep,
5731 pagecache_page, ptl);
5734 entry = huge_pte_mkdirty(entry);
5736 entry = pte_mkyoung(entry);
5737 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5738 flags & FAULT_FLAG_WRITE))
5739 update_mmu_cache(vma, haddr, ptep);
5741 if (page != pagecache_page)
5747 if (pagecache_page) {
5748 unlock_page(pagecache_page);
5749 put_page(pagecache_page);
5752 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5753 i_mmap_unlock_read(mapping);
5755 * Generally it's safe to hold refcount during waiting page lock. But
5756 * here we just wait to defer the next page fault to avoid busy loop and
5757 * the page is not used after unlocked before returning from the current
5758 * page fault. So we are safe from accessing freed page, even if we wait
5759 * here without taking refcount.
5762 wait_on_page_locked(page);
5766 #ifdef CONFIG_USERFAULTFD
5768 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5769 * modifications for huge pages.
5771 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5773 struct vm_area_struct *dst_vma,
5774 unsigned long dst_addr,
5775 unsigned long src_addr,
5776 enum mcopy_atomic_mode mode,
5777 struct page **pagep)
5779 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5780 struct hstate *h = hstate_vma(dst_vma);
5781 struct address_space *mapping = dst_vma->vm_file->f_mapping;
5782 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5784 int vm_shared = dst_vma->vm_flags & VM_SHARED;
5790 bool page_in_pagecache = false;
5794 page = find_lock_page(mapping, idx);
5797 page_in_pagecache = true;
5798 } else if (!*pagep) {
5799 /* If a page already exists, then it's UFFDIO_COPY for
5800 * a non-missing case. Return -EEXIST.
5803 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5808 page = alloc_huge_page(dst_vma, dst_addr, 0);
5814 ret = copy_huge_page_from_user(page,
5815 (const void __user *) src_addr,
5816 pages_per_huge_page(h), false);
5818 /* fallback to copy_from_user outside mmap_lock */
5819 if (unlikely(ret)) {
5821 /* Free the allocated page which may have
5822 * consumed a reservation.
5824 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5827 /* Allocate a temporary page to hold the copied
5830 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5836 /* Set the outparam pagep and return to the caller to
5837 * copy the contents outside the lock. Don't free the
5844 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5851 page = alloc_huge_page(dst_vma, dst_addr, 0);
5857 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5858 pages_per_huge_page(h));
5864 * The memory barrier inside __SetPageUptodate makes sure that
5865 * preceding stores to the page contents become visible before
5866 * the set_pte_at() write.
5868 __SetPageUptodate(page);
5870 /* Add shared, newly allocated pages to the page cache. */
5871 if (vm_shared && !is_continue) {
5872 size = i_size_read(mapping->host) >> huge_page_shift(h);
5875 goto out_release_nounlock;
5878 * Serialization between remove_inode_hugepages() and
5879 * huge_add_to_page_cache() below happens through the
5880 * hugetlb_fault_mutex_table that here must be hold by
5883 ret = huge_add_to_page_cache(page, mapping, idx);
5885 goto out_release_nounlock;
5886 page_in_pagecache = true;
5889 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5893 * Recheck the i_size after holding PT lock to make sure not
5894 * to leave any page mapped (as page_mapped()) beyond the end
5895 * of the i_size (remove_inode_hugepages() is strict about
5896 * enforcing that). If we bail out here, we'll also leave a
5897 * page in the radix tree in the vm_shared case beyond the end
5898 * of the i_size, but remove_inode_hugepages() will take care
5899 * of it as soon as we drop the hugetlb_fault_mutex_table.
5901 size = i_size_read(mapping->host) >> huge_page_shift(h);
5904 goto out_release_unlock;
5907 if (!huge_pte_none(huge_ptep_get(dst_pte)))
5908 goto out_release_unlock;
5911 page_dup_file_rmap(page, true);
5913 ClearHPageRestoreReserve(page);
5914 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5917 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5918 if (is_continue && !vm_shared)
5921 writable = dst_vma->vm_flags & VM_WRITE;
5923 _dst_pte = make_huge_pte(dst_vma, page, writable);
5925 _dst_pte = huge_pte_mkdirty(_dst_pte);
5926 _dst_pte = pte_mkyoung(_dst_pte);
5928 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5930 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5931 dst_vma->vm_flags & VM_WRITE);
5932 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5934 /* No need to invalidate - it was non-present before */
5935 update_mmu_cache(dst_vma, dst_addr, dst_pte);
5939 SetHPageMigratable(page);
5940 if (vm_shared || is_continue)
5947 if (vm_shared || is_continue)
5949 out_release_nounlock:
5950 if (!page_in_pagecache)
5951 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5955 #endif /* CONFIG_USERFAULTFD */
5957 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5958 int refs, struct page **pages,
5959 struct vm_area_struct **vmas)
5963 for (nr = 0; nr < refs; nr++) {
5965 pages[nr] = mem_map_offset(page, nr);
5971 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5972 struct page **pages, struct vm_area_struct **vmas,
5973 unsigned long *position, unsigned long *nr_pages,
5974 long i, unsigned int flags, int *locked)
5976 unsigned long pfn_offset;
5977 unsigned long vaddr = *position;
5978 unsigned long remainder = *nr_pages;
5979 struct hstate *h = hstate_vma(vma);
5980 int err = -EFAULT, refs;
5982 while (vaddr < vma->vm_end && remainder) {
5984 spinlock_t *ptl = NULL;
5989 * If we have a pending SIGKILL, don't keep faulting pages and
5990 * potentially allocating memory.
5992 if (fatal_signal_pending(current)) {
5998 * Some archs (sparc64, sh*) have multiple pte_ts to
5999 * each hugepage. We have to make sure we get the
6000 * first, for the page indexing below to work.
6002 * Note that page table lock is not held when pte is null.
6004 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6007 ptl = huge_pte_lock(h, mm, pte);
6008 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6011 * When coredumping, it suits get_dump_page if we just return
6012 * an error where there's an empty slot with no huge pagecache
6013 * to back it. This way, we avoid allocating a hugepage, and
6014 * the sparse dumpfile avoids allocating disk blocks, but its
6015 * huge holes still show up with zeroes where they need to be.
6017 if (absent && (flags & FOLL_DUMP) &&
6018 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6026 * We need call hugetlb_fault for both hugepages under migration
6027 * (in which case hugetlb_fault waits for the migration,) and
6028 * hwpoisoned hugepages (in which case we need to prevent the
6029 * caller from accessing to them.) In order to do this, we use
6030 * here is_swap_pte instead of is_hugetlb_entry_migration and
6031 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6032 * both cases, and because we can't follow correct pages
6033 * directly from any kind of swap entries.
6035 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
6036 ((flags & FOLL_WRITE) &&
6037 !huge_pte_write(huge_ptep_get(pte)))) {
6039 unsigned int fault_flags = 0;
6043 if (flags & FOLL_WRITE)
6044 fault_flags |= FAULT_FLAG_WRITE;
6046 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6047 FAULT_FLAG_KILLABLE;
6048 if (flags & FOLL_NOWAIT)
6049 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6050 FAULT_FLAG_RETRY_NOWAIT;
6051 if (flags & FOLL_TRIED) {
6053 * Note: FAULT_FLAG_ALLOW_RETRY and
6054 * FAULT_FLAG_TRIED can co-exist
6056 fault_flags |= FAULT_FLAG_TRIED;
6058 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6059 if (ret & VM_FAULT_ERROR) {
6060 err = vm_fault_to_errno(ret, flags);
6064 if (ret & VM_FAULT_RETRY) {
6066 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6070 * VM_FAULT_RETRY must not return an
6071 * error, it will return zero
6074 * No need to update "position" as the
6075 * caller will not check it after
6076 * *nr_pages is set to 0.
6083 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6084 page = pte_page(huge_ptep_get(pte));
6087 * If subpage information not requested, update counters
6088 * and skip the same_page loop below.
6090 if (!pages && !vmas && !pfn_offset &&
6091 (vaddr + huge_page_size(h) < vma->vm_end) &&
6092 (remainder >= pages_per_huge_page(h))) {
6093 vaddr += huge_page_size(h);
6094 remainder -= pages_per_huge_page(h);
6095 i += pages_per_huge_page(h);
6100 /* vaddr may not be aligned to PAGE_SIZE */
6101 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6102 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6105 record_subpages_vmas(mem_map_offset(page, pfn_offset),
6107 likely(pages) ? pages + i : NULL,
6108 vmas ? vmas + i : NULL);
6112 * try_grab_folio() should always succeed here,
6113 * because: a) we hold the ptl lock, and b) we've just
6114 * checked that the huge page is present in the page
6115 * tables. If the huge page is present, then the tail
6116 * pages must also be present. The ptl prevents the
6117 * head page and tail pages from being rearranged in
6118 * any way. So this page must be available at this
6119 * point, unless the page refcount overflowed:
6121 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6130 vaddr += (refs << PAGE_SHIFT);
6136 *nr_pages = remainder;
6138 * setting position is actually required only if remainder is
6139 * not zero but it's faster not to add a "if (remainder)"
6147 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6148 unsigned long address, unsigned long end, pgprot_t newprot)
6150 struct mm_struct *mm = vma->vm_mm;
6151 unsigned long start = address;
6154 struct hstate *h = hstate_vma(vma);
6155 unsigned long pages = 0;
6156 bool shared_pmd = false;
6157 struct mmu_notifier_range range;
6160 * In the case of shared PMDs, the area to flush could be beyond
6161 * start/end. Set range.start/range.end to cover the maximum possible
6162 * range if PMD sharing is possible.
6164 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6165 0, vma, mm, start, end);
6166 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6168 BUG_ON(address >= end);
6169 flush_cache_range(vma, range.start, range.end);
6171 mmu_notifier_invalidate_range_start(&range);
6172 i_mmap_lock_write(vma->vm_file->f_mapping);
6173 for (; address < end; address += huge_page_size(h)) {
6175 ptep = huge_pte_offset(mm, address, huge_page_size(h));
6178 ptl = huge_pte_lock(h, mm, ptep);
6179 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6185 pte = huge_ptep_get(ptep);
6186 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6190 if (unlikely(is_hugetlb_entry_migration(pte))) {
6191 swp_entry_t entry = pte_to_swp_entry(pte);
6192 struct page *page = pfn_swap_entry_to_page(entry);
6194 if (!is_readable_migration_entry(entry)) {
6198 entry = make_readable_exclusive_migration_entry(
6201 entry = make_readable_migration_entry(
6203 newpte = swp_entry_to_pte(entry);
6204 set_huge_swap_pte_at(mm, address, ptep,
6205 newpte, huge_page_size(h));
6211 if (!huge_pte_none(pte)) {
6213 unsigned int shift = huge_page_shift(hstate_vma(vma));
6215 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6216 pte = huge_pte_modify(old_pte, newprot);
6217 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6218 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6224 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6225 * may have cleared our pud entry and done put_page on the page table:
6226 * once we release i_mmap_rwsem, another task can do the final put_page
6227 * and that page table be reused and filled with junk. If we actually
6228 * did unshare a page of pmds, flush the range corresponding to the pud.
6231 flush_hugetlb_tlb_range(vma, range.start, range.end);
6233 flush_hugetlb_tlb_range(vma, start, end);
6235 * No need to call mmu_notifier_invalidate_range() we are downgrading
6236 * page table protection not changing it to point to a new page.
6238 * See Documentation/vm/mmu_notifier.rst
6240 i_mmap_unlock_write(vma->vm_file->f_mapping);
6241 mmu_notifier_invalidate_range_end(&range);
6243 return pages << h->order;
6246 /* Return true if reservation was successful, false otherwise. */
6247 bool hugetlb_reserve_pages(struct inode *inode,
6249 struct vm_area_struct *vma,
6250 vm_flags_t vm_flags)
6253 struct hstate *h = hstate_inode(inode);
6254 struct hugepage_subpool *spool = subpool_inode(inode);
6255 struct resv_map *resv_map;
6256 struct hugetlb_cgroup *h_cg = NULL;
6257 long gbl_reserve, regions_needed = 0;
6259 /* This should never happen */
6261 VM_WARN(1, "%s called with a negative range\n", __func__);
6266 * Only apply hugepage reservation if asked. At fault time, an
6267 * attempt will be made for VM_NORESERVE to allocate a page
6268 * without using reserves
6270 if (vm_flags & VM_NORESERVE)
6274 * Shared mappings base their reservation on the number of pages that
6275 * are already allocated on behalf of the file. Private mappings need
6276 * to reserve the full area even if read-only as mprotect() may be
6277 * called to make the mapping read-write. Assume !vma is a shm mapping
6279 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6281 * resv_map can not be NULL as hugetlb_reserve_pages is only
6282 * called for inodes for which resv_maps were created (see
6283 * hugetlbfs_get_inode).
6285 resv_map = inode_resv_map(inode);
6287 chg = region_chg(resv_map, from, to, ®ions_needed);
6290 /* Private mapping. */
6291 resv_map = resv_map_alloc();
6297 set_vma_resv_map(vma, resv_map);
6298 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6304 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6305 chg * pages_per_huge_page(h), &h_cg) < 0)
6308 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6309 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6312 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6316 * There must be enough pages in the subpool for the mapping. If
6317 * the subpool has a minimum size, there may be some global
6318 * reservations already in place (gbl_reserve).
6320 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6321 if (gbl_reserve < 0)
6322 goto out_uncharge_cgroup;
6325 * Check enough hugepages are available for the reservation.
6326 * Hand the pages back to the subpool if there are not
6328 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6332 * Account for the reservations made. Shared mappings record regions
6333 * that have reservations as they are shared by multiple VMAs.
6334 * When the last VMA disappears, the region map says how much
6335 * the reservation was and the page cache tells how much of
6336 * the reservation was consumed. Private mappings are per-VMA and
6337 * only the consumed reservations are tracked. When the VMA
6338 * disappears, the original reservation is the VMA size and the
6339 * consumed reservations are stored in the map. Hence, nothing
6340 * else has to be done for private mappings here
6342 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6343 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6345 if (unlikely(add < 0)) {
6346 hugetlb_acct_memory(h, -gbl_reserve);
6348 } else if (unlikely(chg > add)) {
6350 * pages in this range were added to the reserve
6351 * map between region_chg and region_add. This
6352 * indicates a race with alloc_huge_page. Adjust
6353 * the subpool and reserve counts modified above
6354 * based on the difference.
6359 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6360 * reference to h_cg->css. See comment below for detail.
6362 hugetlb_cgroup_uncharge_cgroup_rsvd(
6364 (chg - add) * pages_per_huge_page(h), h_cg);
6366 rsv_adjust = hugepage_subpool_put_pages(spool,
6368 hugetlb_acct_memory(h, -rsv_adjust);
6371 * The file_regions will hold their own reference to
6372 * h_cg->css. So we should release the reference held
6373 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6376 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6382 /* put back original number of pages, chg */
6383 (void)hugepage_subpool_put_pages(spool, chg);
6384 out_uncharge_cgroup:
6385 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6386 chg * pages_per_huge_page(h), h_cg);
6388 if (!vma || vma->vm_flags & VM_MAYSHARE)
6389 /* Only call region_abort if the region_chg succeeded but the
6390 * region_add failed or didn't run.
6392 if (chg >= 0 && add < 0)
6393 region_abort(resv_map, from, to, regions_needed);
6394 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6395 kref_put(&resv_map->refs, resv_map_release);
6399 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6402 struct hstate *h = hstate_inode(inode);
6403 struct resv_map *resv_map = inode_resv_map(inode);
6405 struct hugepage_subpool *spool = subpool_inode(inode);
6409 * Since this routine can be called in the evict inode path for all
6410 * hugetlbfs inodes, resv_map could be NULL.
6413 chg = region_del(resv_map, start, end);
6415 * region_del() can fail in the rare case where a region
6416 * must be split and another region descriptor can not be
6417 * allocated. If end == LONG_MAX, it will not fail.
6423 spin_lock(&inode->i_lock);
6424 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6425 spin_unlock(&inode->i_lock);
6428 * If the subpool has a minimum size, the number of global
6429 * reservations to be released may be adjusted.
6431 * Note that !resv_map implies freed == 0. So (chg - freed)
6432 * won't go negative.
6434 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6435 hugetlb_acct_memory(h, -gbl_reserve);
6440 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6441 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6442 struct vm_area_struct *vma,
6443 unsigned long addr, pgoff_t idx)
6445 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6447 unsigned long sbase = saddr & PUD_MASK;
6448 unsigned long s_end = sbase + PUD_SIZE;
6450 /* Allow segments to share if only one is marked locked */
6451 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6452 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6455 * match the virtual addresses, permission and the alignment of the
6458 if (pmd_index(addr) != pmd_index(saddr) ||
6459 vm_flags != svm_flags ||
6460 !range_in_vma(svma, sbase, s_end))
6466 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6468 unsigned long base = addr & PUD_MASK;
6469 unsigned long end = base + PUD_SIZE;
6472 * check on proper vm_flags and page table alignment
6474 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6479 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6481 #ifdef CONFIG_USERFAULTFD
6482 if (uffd_disable_huge_pmd_share(vma))
6485 return vma_shareable(vma, addr);
6489 * Determine if start,end range within vma could be mapped by shared pmd.
6490 * If yes, adjust start and end to cover range associated with possible
6491 * shared pmd mappings.
6493 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6494 unsigned long *start, unsigned long *end)
6496 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6497 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6500 * vma needs to span at least one aligned PUD size, and the range
6501 * must be at least partially within in.
6503 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6504 (*end <= v_start) || (*start >= v_end))
6507 /* Extend the range to be PUD aligned for a worst case scenario */
6508 if (*start > v_start)
6509 *start = ALIGN_DOWN(*start, PUD_SIZE);
6512 *end = ALIGN(*end, PUD_SIZE);
6516 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6517 * and returns the corresponding pte. While this is not necessary for the
6518 * !shared pmd case because we can allocate the pmd later as well, it makes the
6519 * code much cleaner.
6521 * This routine must be called with i_mmap_rwsem held in at least read mode if
6522 * sharing is possible. For hugetlbfs, this prevents removal of any page
6523 * table entries associated with the address space. This is important as we
6524 * are setting up sharing based on existing page table entries (mappings).
6526 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6527 unsigned long addr, pud_t *pud)
6529 struct address_space *mapping = vma->vm_file->f_mapping;
6530 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6532 struct vm_area_struct *svma;
6533 unsigned long saddr;
6538 i_mmap_assert_locked(mapping);
6539 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6543 saddr = page_table_shareable(svma, vma, addr, idx);
6545 spte = huge_pte_offset(svma->vm_mm, saddr,
6546 vma_mmu_pagesize(svma));
6548 get_page(virt_to_page(spte));
6557 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6558 if (pud_none(*pud)) {
6559 pud_populate(mm, pud,
6560 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6563 put_page(virt_to_page(spte));
6567 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6572 * unmap huge page backed by shared pte.
6574 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
6575 * indicated by page_count > 1, unmap is achieved by clearing pud and
6576 * decrementing the ref count. If count == 1, the pte page is not shared.
6578 * Called with page table lock held and i_mmap_rwsem held in write mode.
6580 * returns: 1 successfully unmapped a shared pte page
6581 * 0 the underlying pte page is not shared, or it is the last user
6583 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6584 unsigned long *addr, pte_t *ptep)
6586 pgd_t *pgd = pgd_offset(mm, *addr);
6587 p4d_t *p4d = p4d_offset(pgd, *addr);
6588 pud_t *pud = pud_offset(p4d, *addr);
6590 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6591 BUG_ON(page_count(virt_to_page(ptep)) == 0);
6592 if (page_count(virt_to_page(ptep)) == 1)
6596 put_page(virt_to_page(ptep));
6598 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6602 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6603 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6604 unsigned long addr, pud_t *pud)
6609 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6610 unsigned long *addr, pte_t *ptep)
6615 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6616 unsigned long *start, unsigned long *end)
6620 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6624 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6626 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6627 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6628 unsigned long addr, unsigned long sz)
6635 pgd = pgd_offset(mm, addr);
6636 p4d = p4d_alloc(mm, pgd, addr);
6639 pud = pud_alloc(mm, p4d, addr);
6641 if (sz == PUD_SIZE) {
6644 BUG_ON(sz != PMD_SIZE);
6645 if (want_pmd_share(vma, addr) && pud_none(*pud))
6646 pte = huge_pmd_share(mm, vma, addr, pud);
6648 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6651 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6657 * huge_pte_offset() - Walk the page table to resolve the hugepage
6658 * entry at address @addr
6660 * Return: Pointer to page table entry (PUD or PMD) for
6661 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6662 * size @sz doesn't match the hugepage size at this level of the page
6665 pte_t *huge_pte_offset(struct mm_struct *mm,
6666 unsigned long addr, unsigned long sz)
6673 pgd = pgd_offset(mm, addr);
6674 if (!pgd_present(*pgd))
6676 p4d = p4d_offset(pgd, addr);
6677 if (!p4d_present(*p4d))
6680 pud = pud_offset(p4d, addr);
6682 /* must be pud huge, non-present or none */
6683 return (pte_t *)pud;
6684 if (!pud_present(*pud))
6686 /* must have a valid entry and size to go further */
6688 pmd = pmd_offset(pud, addr);
6689 /* must be pmd huge, non-present or none */
6690 return (pte_t *)pmd;
6693 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6696 * These functions are overwritable if your architecture needs its own
6699 struct page * __weak
6700 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6703 return ERR_PTR(-EINVAL);
6706 struct page * __weak
6707 follow_huge_pd(struct vm_area_struct *vma,
6708 unsigned long address, hugepd_t hpd, int flags, int pdshift)
6710 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6714 struct page * __weak
6715 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6716 pmd_t *pmd, int flags)
6718 struct page *page = NULL;
6722 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6723 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6724 (FOLL_PIN | FOLL_GET)))
6728 ptl = pmd_lockptr(mm, pmd);
6731 * make sure that the address range covered by this pmd is not
6732 * unmapped from other threads.
6734 if (!pmd_huge(*pmd))
6736 pte = huge_ptep_get((pte_t *)pmd);
6737 if (pte_present(pte)) {
6738 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6740 * try_grab_page() should always succeed here, because: a) we
6741 * hold the pmd (ptl) lock, and b) we've just checked that the
6742 * huge pmd (head) page is present in the page tables. The ptl
6743 * prevents the head page and tail pages from being rearranged
6744 * in any way. So this page must be available at this point,
6745 * unless the page refcount overflowed:
6747 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6752 if (is_hugetlb_entry_migration(pte)) {
6754 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6758 * hwpoisoned entry is treated as no_page_table in
6759 * follow_page_mask().
6767 struct page * __weak
6768 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6769 pud_t *pud, int flags)
6771 if (flags & (FOLL_GET | FOLL_PIN))
6774 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6777 struct page * __weak
6778 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6780 if (flags & (FOLL_GET | FOLL_PIN))
6783 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6786 bool isolate_huge_page(struct page *page, struct list_head *list)
6790 spin_lock_irq(&hugetlb_lock);
6791 if (!PageHeadHuge(page) ||
6792 !HPageMigratable(page) ||
6793 !get_page_unless_zero(page)) {
6797 ClearHPageMigratable(page);
6798 list_move_tail(&page->lru, list);
6800 spin_unlock_irq(&hugetlb_lock);
6804 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6809 spin_lock_irq(&hugetlb_lock);
6810 if (PageHeadHuge(page)) {
6812 if (HPageFreed(page))
6814 else if (HPageMigratable(page))
6815 ret = get_page_unless_zero(page);
6819 spin_unlock_irq(&hugetlb_lock);
6823 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
6827 spin_lock_irq(&hugetlb_lock);
6828 ret = __get_huge_page_for_hwpoison(pfn, flags);
6829 spin_unlock_irq(&hugetlb_lock);
6833 void putback_active_hugepage(struct page *page)
6835 spin_lock_irq(&hugetlb_lock);
6836 SetHPageMigratable(page);
6837 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6838 spin_unlock_irq(&hugetlb_lock);
6842 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6844 struct hstate *h = page_hstate(oldpage);
6846 hugetlb_cgroup_migrate(oldpage, newpage);
6847 set_page_owner_migrate_reason(newpage, reason);
6850 * transfer temporary state of the new huge page. This is
6851 * reverse to other transitions because the newpage is going to
6852 * be final while the old one will be freed so it takes over
6853 * the temporary status.
6855 * Also note that we have to transfer the per-node surplus state
6856 * here as well otherwise the global surplus count will not match
6859 if (HPageTemporary(newpage)) {
6860 int old_nid = page_to_nid(oldpage);
6861 int new_nid = page_to_nid(newpage);
6863 SetHPageTemporary(oldpage);
6864 ClearHPageTemporary(newpage);
6867 * There is no need to transfer the per-node surplus state
6868 * when we do not cross the node.
6870 if (new_nid == old_nid)
6872 spin_lock_irq(&hugetlb_lock);
6873 if (h->surplus_huge_pages_node[old_nid]) {
6874 h->surplus_huge_pages_node[old_nid]--;
6875 h->surplus_huge_pages_node[new_nid]++;
6877 spin_unlock_irq(&hugetlb_lock);
6882 * This function will unconditionally remove all the shared pmd pgtable entries
6883 * within the specific vma for a hugetlbfs memory range.
6885 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6887 struct hstate *h = hstate_vma(vma);
6888 unsigned long sz = huge_page_size(h);
6889 struct mm_struct *mm = vma->vm_mm;
6890 struct mmu_notifier_range range;
6891 unsigned long address, start, end;
6895 if (!(vma->vm_flags & VM_MAYSHARE))
6898 start = ALIGN(vma->vm_start, PUD_SIZE);
6899 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6904 flush_cache_range(vma, start, end);
6906 * No need to call adjust_range_if_pmd_sharing_possible(), because
6907 * we have already done the PUD_SIZE alignment.
6909 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6911 mmu_notifier_invalidate_range_start(&range);
6912 i_mmap_lock_write(vma->vm_file->f_mapping);
6913 for (address = start; address < end; address += PUD_SIZE) {
6914 unsigned long tmp = address;
6916 ptep = huge_pte_offset(mm, address, sz);
6919 ptl = huge_pte_lock(h, mm, ptep);
6920 /* We don't want 'address' to be changed */
6921 huge_pmd_unshare(mm, vma, &tmp, ptep);
6924 flush_hugetlb_tlb_range(vma, start, end);
6925 i_mmap_unlock_write(vma->vm_file->f_mapping);
6927 * No need to call mmu_notifier_invalidate_range(), see
6928 * Documentation/vm/mmu_notifier.rst.
6930 mmu_notifier_invalidate_range_end(&range);
6934 static bool cma_reserve_called __initdata;
6936 static int __init cmdline_parse_hugetlb_cma(char *p)
6943 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
6946 if (s[count] == ':') {
6947 if (tmp >= MAX_NUMNODES)
6949 nid = array_index_nospec(tmp, MAX_NUMNODES);
6952 tmp = memparse(s, &s);
6953 hugetlb_cma_size_in_node[nid] = tmp;
6954 hugetlb_cma_size += tmp;
6957 * Skip the separator if have one, otherwise
6958 * break the parsing.
6965 hugetlb_cma_size = memparse(p, &p);
6973 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6975 void __init hugetlb_cma_reserve(int order)
6977 unsigned long size, reserved, per_node;
6978 bool node_specific_cma_alloc = false;
6981 cma_reserve_called = true;
6983 if (!hugetlb_cma_size)
6986 for (nid = 0; nid < MAX_NUMNODES; nid++) {
6987 if (hugetlb_cma_size_in_node[nid] == 0)
6990 if (!node_online(nid)) {
6991 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
6992 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6993 hugetlb_cma_size_in_node[nid] = 0;
6997 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
6998 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
6999 nid, (PAGE_SIZE << order) / SZ_1M);
7000 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7001 hugetlb_cma_size_in_node[nid] = 0;
7003 node_specific_cma_alloc = true;
7007 /* Validate the CMA size again in case some invalid nodes specified. */
7008 if (!hugetlb_cma_size)
7011 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7012 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7013 (PAGE_SIZE << order) / SZ_1M);
7014 hugetlb_cma_size = 0;
7018 if (!node_specific_cma_alloc) {
7020 * If 3 GB area is requested on a machine with 4 numa nodes,
7021 * let's allocate 1 GB on first three nodes and ignore the last one.
7023 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7024 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7025 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7029 for_each_online_node(nid) {
7031 char name[CMA_MAX_NAME];
7033 if (node_specific_cma_alloc) {
7034 if (hugetlb_cma_size_in_node[nid] == 0)
7037 size = hugetlb_cma_size_in_node[nid];
7039 size = min(per_node, hugetlb_cma_size - reserved);
7042 size = round_up(size, PAGE_SIZE << order);
7044 snprintf(name, sizeof(name), "hugetlb%d", nid);
7046 * Note that 'order per bit' is based on smallest size that
7047 * may be returned to CMA allocator in the case of
7048 * huge page demotion.
7050 res = cma_declare_contiguous_nid(0, size, 0,
7051 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7053 &hugetlb_cma[nid], nid);
7055 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7061 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7064 if (reserved >= hugetlb_cma_size)
7070 * hugetlb_cma_size is used to determine if allocations from
7071 * cma are possible. Set to zero if no cma regions are set up.
7073 hugetlb_cma_size = 0;
7076 void __init hugetlb_cma_check(void)
7078 if (!hugetlb_cma_size || cma_reserve_called)
7081 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7084 #endif /* CONFIG_CMA */