1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
40 #include <asm/pgalloc.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
49 #include "hugetlb_vmemmap.h"
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
69 static unsigned long hugetlb_cma_size __initdata;
71 __initdata LIST_HEAD(huge_boot_pages);
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82 * free_huge_pages, and surplus_huge_pages.
84 DEFINE_SPINLOCK(hugetlb_lock);
87 * Serializes faults on the same logical page. This is used to
88 * prevent spurious OOMs when the hugepage pool is fully utilized.
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 unsigned long start, unsigned long end);
101 static inline bool subpool_is_free(struct hugepage_subpool *spool)
105 if (spool->max_hpages != -1)
106 return spool->used_hpages == 0;
107 if (spool->min_hpages != -1)
108 return spool->rsv_hpages == spool->min_hpages;
113 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
114 unsigned long irq_flags)
116 spin_unlock_irqrestore(&spool->lock, irq_flags);
118 /* If no pages are used, and no other handles to the subpool
119 * remain, give up any reservations based on minimum size and
120 * free the subpool */
121 if (subpool_is_free(spool)) {
122 if (spool->min_hpages != -1)
123 hugetlb_acct_memory(spool->hstate,
129 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132 struct hugepage_subpool *spool;
134 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
138 spin_lock_init(&spool->lock);
140 spool->max_hpages = max_hpages;
142 spool->min_hpages = min_hpages;
144 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
148 spool->rsv_hpages = min_hpages;
153 void hugepage_put_subpool(struct hugepage_subpool *spool)
157 spin_lock_irqsave(&spool->lock, flags);
158 BUG_ON(!spool->count);
160 unlock_or_release_subpool(spool, flags);
164 * Subpool accounting for allocating and reserving pages.
165 * Return -ENOMEM if there are not enough resources to satisfy the
166 * request. Otherwise, return the number of pages by which the
167 * global pools must be adjusted (upward). The returned value may
168 * only be different than the passed value (delta) in the case where
169 * a subpool minimum size must be maintained.
171 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
179 spin_lock_irq(&spool->lock);
181 if (spool->max_hpages != -1) { /* maximum size accounting */
182 if ((spool->used_hpages + delta) <= spool->max_hpages)
183 spool->used_hpages += delta;
190 /* minimum size accounting */
191 if (spool->min_hpages != -1 && spool->rsv_hpages) {
192 if (delta > spool->rsv_hpages) {
194 * Asking for more reserves than those already taken on
195 * behalf of subpool. Return difference.
197 ret = delta - spool->rsv_hpages;
198 spool->rsv_hpages = 0;
200 ret = 0; /* reserves already accounted for */
201 spool->rsv_hpages -= delta;
206 spin_unlock_irq(&spool->lock);
211 * Subpool accounting for freeing and unreserving pages.
212 * Return the number of global page reservations that must be dropped.
213 * The return value may only be different than the passed value (delta)
214 * in the case where a subpool minimum size must be maintained.
216 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
225 spin_lock_irqsave(&spool->lock, flags);
227 if (spool->max_hpages != -1) /* maximum size accounting */
228 spool->used_hpages -= delta;
230 /* minimum size accounting */
231 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
232 if (spool->rsv_hpages + delta <= spool->min_hpages)
235 ret = spool->rsv_hpages + delta - spool->min_hpages;
237 spool->rsv_hpages += delta;
238 if (spool->rsv_hpages > spool->min_hpages)
239 spool->rsv_hpages = spool->min_hpages;
243 * If hugetlbfs_put_super couldn't free spool due to an outstanding
244 * quota reference, free it now.
246 unlock_or_release_subpool(spool, flags);
251 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 return HUGETLBFS_SB(inode->i_sb)->spool;
256 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 return subpool_inode(file_inode(vma->vm_file));
262 * hugetlb vma_lock helper routines
264 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 if (__vma_shareable_lock(vma)) {
267 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269 down_read(&vma_lock->rw_sema);
273 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
275 if (__vma_shareable_lock(vma)) {
276 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
278 up_read(&vma_lock->rw_sema);
282 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
284 if (__vma_shareable_lock(vma)) {
285 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
287 down_write(&vma_lock->rw_sema);
291 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
293 if (__vma_shareable_lock(vma)) {
294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296 up_write(&vma_lock->rw_sema);
300 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
302 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
304 if (!__vma_shareable_lock(vma))
307 return down_write_trylock(&vma_lock->rw_sema);
310 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
312 if (__vma_shareable_lock(vma)) {
313 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
315 lockdep_assert_held(&vma_lock->rw_sema);
319 void hugetlb_vma_lock_release(struct kref *kref)
321 struct hugetlb_vma_lock *vma_lock = container_of(kref,
322 struct hugetlb_vma_lock, refs);
327 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
329 struct vm_area_struct *vma = vma_lock->vma;
332 * vma_lock structure may or not be released as a result of put,
333 * it certainly will no longer be attached to vma so clear pointer.
334 * Semaphore synchronizes access to vma_lock->vma field.
336 vma_lock->vma = NULL;
337 vma->vm_private_data = NULL;
338 up_write(&vma_lock->rw_sema);
339 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
342 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
344 if (__vma_shareable_lock(vma)) {
345 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
347 __hugetlb_vma_unlock_write_put(vma_lock);
351 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
354 * Only present in sharable vmas.
356 if (!vma || !__vma_shareable_lock(vma))
359 if (vma->vm_private_data) {
360 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
362 down_write(&vma_lock->rw_sema);
363 __hugetlb_vma_unlock_write_put(vma_lock);
367 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
369 struct hugetlb_vma_lock *vma_lock;
371 /* Only establish in (flags) sharable vmas */
372 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
375 /* Should never get here with non-NULL vm_private_data */
376 if (vma->vm_private_data)
379 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
382 * If we can not allocate structure, then vma can not
383 * participate in pmd sharing. This is only a possible
384 * performance enhancement and memory saving issue.
385 * However, the lock is also used to synchronize page
386 * faults with truncation. If the lock is not present,
387 * unlikely races could leave pages in a file past i_size
388 * until the file is removed. Warn in the unlikely case of
389 * allocation failure.
391 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
395 kref_init(&vma_lock->refs);
396 init_rwsem(&vma_lock->rw_sema);
398 vma->vm_private_data = vma_lock;
401 /* Helper that removes a struct file_region from the resv_map cache and returns
404 static struct file_region *
405 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
407 struct file_region *nrg;
409 VM_BUG_ON(resv->region_cache_count <= 0);
411 resv->region_cache_count--;
412 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
413 list_del(&nrg->link);
421 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
422 struct file_region *rg)
424 #ifdef CONFIG_CGROUP_HUGETLB
425 nrg->reservation_counter = rg->reservation_counter;
432 /* Helper that records hugetlb_cgroup uncharge info. */
433 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
435 struct resv_map *resv,
436 struct file_region *nrg)
438 #ifdef CONFIG_CGROUP_HUGETLB
440 nrg->reservation_counter =
441 &h_cg->rsvd_hugepage[hstate_index(h)];
442 nrg->css = &h_cg->css;
444 * The caller will hold exactly one h_cg->css reference for the
445 * whole contiguous reservation region. But this area might be
446 * scattered when there are already some file_regions reside in
447 * it. As a result, many file_regions may share only one css
448 * reference. In order to ensure that one file_region must hold
449 * exactly one h_cg->css reference, we should do css_get for
450 * each file_region and leave the reference held by caller
454 if (!resv->pages_per_hpage)
455 resv->pages_per_hpage = pages_per_huge_page(h);
456 /* pages_per_hpage should be the same for all entries in
459 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
461 nrg->reservation_counter = NULL;
467 static void put_uncharge_info(struct file_region *rg)
469 #ifdef CONFIG_CGROUP_HUGETLB
475 static bool has_same_uncharge_info(struct file_region *rg,
476 struct file_region *org)
478 #ifdef CONFIG_CGROUP_HUGETLB
479 return rg->reservation_counter == org->reservation_counter &&
487 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
489 struct file_region *nrg, *prg;
491 prg = list_prev_entry(rg, link);
492 if (&prg->link != &resv->regions && prg->to == rg->from &&
493 has_same_uncharge_info(prg, rg)) {
497 put_uncharge_info(rg);
503 nrg = list_next_entry(rg, link);
504 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
505 has_same_uncharge_info(nrg, rg)) {
506 nrg->from = rg->from;
509 put_uncharge_info(rg);
515 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
516 long to, struct hstate *h, struct hugetlb_cgroup *cg,
517 long *regions_needed)
519 struct file_region *nrg;
521 if (!regions_needed) {
522 nrg = get_file_region_entry_from_cache(map, from, to);
523 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
524 list_add(&nrg->link, rg);
525 coalesce_file_region(map, nrg);
527 *regions_needed += 1;
533 * Must be called with resv->lock held.
535 * Calling this with regions_needed != NULL will count the number of pages
536 * to be added but will not modify the linked list. And regions_needed will
537 * indicate the number of file_regions needed in the cache to carry out to add
538 * the regions for this range.
540 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
541 struct hugetlb_cgroup *h_cg,
542 struct hstate *h, long *regions_needed)
545 struct list_head *head = &resv->regions;
546 long last_accounted_offset = f;
547 struct file_region *iter, *trg = NULL;
548 struct list_head *rg = NULL;
553 /* In this loop, we essentially handle an entry for the range
554 * [last_accounted_offset, iter->from), at every iteration, with some
557 list_for_each_entry_safe(iter, trg, head, link) {
558 /* Skip irrelevant regions that start before our range. */
559 if (iter->from < f) {
560 /* If this region ends after the last accounted offset,
561 * then we need to update last_accounted_offset.
563 if (iter->to > last_accounted_offset)
564 last_accounted_offset = iter->to;
568 /* When we find a region that starts beyond our range, we've
571 if (iter->from >= t) {
572 rg = iter->link.prev;
576 /* Add an entry for last_accounted_offset -> iter->from, and
577 * update last_accounted_offset.
579 if (iter->from > last_accounted_offset)
580 add += hugetlb_resv_map_add(resv, iter->link.prev,
581 last_accounted_offset,
585 last_accounted_offset = iter->to;
588 /* Handle the case where our range extends beyond
589 * last_accounted_offset.
593 if (last_accounted_offset < t)
594 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
595 t, h, h_cg, regions_needed);
600 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
602 static int allocate_file_region_entries(struct resv_map *resv,
604 __must_hold(&resv->lock)
606 LIST_HEAD(allocated_regions);
607 int to_allocate = 0, i = 0;
608 struct file_region *trg = NULL, *rg = NULL;
610 VM_BUG_ON(regions_needed < 0);
613 * Check for sufficient descriptors in the cache to accommodate
614 * the number of in progress add operations plus regions_needed.
616 * This is a while loop because when we drop the lock, some other call
617 * to region_add or region_del may have consumed some region_entries,
618 * so we keep looping here until we finally have enough entries for
619 * (adds_in_progress + regions_needed).
621 while (resv->region_cache_count <
622 (resv->adds_in_progress + regions_needed)) {
623 to_allocate = resv->adds_in_progress + regions_needed -
624 resv->region_cache_count;
626 /* At this point, we should have enough entries in the cache
627 * for all the existing adds_in_progress. We should only be
628 * needing to allocate for regions_needed.
630 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
632 spin_unlock(&resv->lock);
633 for (i = 0; i < to_allocate; i++) {
634 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
637 list_add(&trg->link, &allocated_regions);
640 spin_lock(&resv->lock);
642 list_splice(&allocated_regions, &resv->region_cache);
643 resv->region_cache_count += to_allocate;
649 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
657 * Add the huge page range represented by [f, t) to the reserve
658 * map. Regions will be taken from the cache to fill in this range.
659 * Sufficient regions should exist in the cache due to the previous
660 * call to region_chg with the same range, but in some cases the cache will not
661 * have sufficient entries due to races with other code doing region_add or
662 * region_del. The extra needed entries will be allocated.
664 * regions_needed is the out value provided by a previous call to region_chg.
666 * Return the number of new huge pages added to the map. This number is greater
667 * than or equal to zero. If file_region entries needed to be allocated for
668 * this operation and we were not able to allocate, it returns -ENOMEM.
669 * region_add of regions of length 1 never allocate file_regions and cannot
670 * fail; region_chg will always allocate at least 1 entry and a region_add for
671 * 1 page will only require at most 1 entry.
673 static long region_add(struct resv_map *resv, long f, long t,
674 long in_regions_needed, struct hstate *h,
675 struct hugetlb_cgroup *h_cg)
677 long add = 0, actual_regions_needed = 0;
679 spin_lock(&resv->lock);
682 /* Count how many regions are actually needed to execute this add. */
683 add_reservation_in_range(resv, f, t, NULL, NULL,
684 &actual_regions_needed);
687 * Check for sufficient descriptors in the cache to accommodate
688 * this add operation. Note that actual_regions_needed may be greater
689 * than in_regions_needed, as the resv_map may have been modified since
690 * the region_chg call. In this case, we need to make sure that we
691 * allocate extra entries, such that we have enough for all the
692 * existing adds_in_progress, plus the excess needed for this
695 if (actual_regions_needed > in_regions_needed &&
696 resv->region_cache_count <
697 resv->adds_in_progress +
698 (actual_regions_needed - in_regions_needed)) {
699 /* region_add operation of range 1 should never need to
700 * allocate file_region entries.
702 VM_BUG_ON(t - f <= 1);
704 if (allocate_file_region_entries(
705 resv, actual_regions_needed - in_regions_needed)) {
712 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
714 resv->adds_in_progress -= in_regions_needed;
716 spin_unlock(&resv->lock);
721 * Examine the existing reserve map and determine how many
722 * huge pages in the specified range [f, t) are NOT currently
723 * represented. This routine is called before a subsequent
724 * call to region_add that will actually modify the reserve
725 * map to add the specified range [f, t). region_chg does
726 * not change the number of huge pages represented by the
727 * map. A number of new file_region structures is added to the cache as a
728 * placeholder, for the subsequent region_add call to use. At least 1
729 * file_region structure is added.
731 * out_regions_needed is the number of regions added to the
732 * resv->adds_in_progress. This value needs to be provided to a follow up call
733 * to region_add or region_abort for proper accounting.
735 * Returns the number of huge pages that need to be added to the existing
736 * reservation map for the range [f, t). This number is greater or equal to
737 * zero. -ENOMEM is returned if a new file_region structure or cache entry
738 * is needed and can not be allocated.
740 static long region_chg(struct resv_map *resv, long f, long t,
741 long *out_regions_needed)
745 spin_lock(&resv->lock);
747 /* Count how many hugepages in this range are NOT represented. */
748 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
751 if (*out_regions_needed == 0)
752 *out_regions_needed = 1;
754 if (allocate_file_region_entries(resv, *out_regions_needed))
757 resv->adds_in_progress += *out_regions_needed;
759 spin_unlock(&resv->lock);
764 * Abort the in progress add operation. The adds_in_progress field
765 * of the resv_map keeps track of the operations in progress between
766 * calls to region_chg and region_add. Operations are sometimes
767 * aborted after the call to region_chg. In such cases, region_abort
768 * is called to decrement the adds_in_progress counter. regions_needed
769 * is the value returned by the region_chg call, it is used to decrement
770 * the adds_in_progress counter.
772 * NOTE: The range arguments [f, t) are not needed or used in this
773 * routine. They are kept to make reading the calling code easier as
774 * arguments will match the associated region_chg call.
776 static void region_abort(struct resv_map *resv, long f, long t,
779 spin_lock(&resv->lock);
780 VM_BUG_ON(!resv->region_cache_count);
781 resv->adds_in_progress -= regions_needed;
782 spin_unlock(&resv->lock);
786 * Delete the specified range [f, t) from the reserve map. If the
787 * t parameter is LONG_MAX, this indicates that ALL regions after f
788 * should be deleted. Locate the regions which intersect [f, t)
789 * and either trim, delete or split the existing regions.
791 * Returns the number of huge pages deleted from the reserve map.
792 * In the normal case, the return value is zero or more. In the
793 * case where a region must be split, a new region descriptor must
794 * be allocated. If the allocation fails, -ENOMEM will be returned.
795 * NOTE: If the parameter t == LONG_MAX, then we will never split
796 * a region and possibly return -ENOMEM. Callers specifying
797 * t == LONG_MAX do not need to check for -ENOMEM error.
799 static long region_del(struct resv_map *resv, long f, long t)
801 struct list_head *head = &resv->regions;
802 struct file_region *rg, *trg;
803 struct file_region *nrg = NULL;
807 spin_lock(&resv->lock);
808 list_for_each_entry_safe(rg, trg, head, link) {
810 * Skip regions before the range to be deleted. file_region
811 * ranges are normally of the form [from, to). However, there
812 * may be a "placeholder" entry in the map which is of the form
813 * (from, to) with from == to. Check for placeholder entries
814 * at the beginning of the range to be deleted.
816 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
822 if (f > rg->from && t < rg->to) { /* Must split region */
824 * Check for an entry in the cache before dropping
825 * lock and attempting allocation.
828 resv->region_cache_count > resv->adds_in_progress) {
829 nrg = list_first_entry(&resv->region_cache,
832 list_del(&nrg->link);
833 resv->region_cache_count--;
837 spin_unlock(&resv->lock);
838 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
845 hugetlb_cgroup_uncharge_file_region(
846 resv, rg, t - f, false);
848 /* New entry for end of split region */
852 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
854 INIT_LIST_HEAD(&nrg->link);
856 /* Original entry is trimmed */
859 list_add(&nrg->link, &rg->link);
864 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
865 del += rg->to - rg->from;
866 hugetlb_cgroup_uncharge_file_region(resv, rg,
867 rg->to - rg->from, true);
873 if (f <= rg->from) { /* Trim beginning of region */
874 hugetlb_cgroup_uncharge_file_region(resv, rg,
875 t - rg->from, false);
879 } else { /* Trim end of region */
880 hugetlb_cgroup_uncharge_file_region(resv, rg,
888 spin_unlock(&resv->lock);
894 * A rare out of memory error was encountered which prevented removal of
895 * the reserve map region for a page. The huge page itself was free'ed
896 * and removed from the page cache. This routine will adjust the subpool
897 * usage count, and the global reserve count if needed. By incrementing
898 * these counts, the reserve map entry which could not be deleted will
899 * appear as a "reserved" entry instead of simply dangling with incorrect
902 void hugetlb_fix_reserve_counts(struct inode *inode)
904 struct hugepage_subpool *spool = subpool_inode(inode);
906 bool reserved = false;
908 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
909 if (rsv_adjust > 0) {
910 struct hstate *h = hstate_inode(inode);
912 if (!hugetlb_acct_memory(h, 1))
914 } else if (!rsv_adjust) {
919 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
923 * Count and return the number of huge pages in the reserve map
924 * that intersect with the range [f, t).
926 static long region_count(struct resv_map *resv, long f, long t)
928 struct list_head *head = &resv->regions;
929 struct file_region *rg;
932 spin_lock(&resv->lock);
933 /* Locate each segment we overlap with, and count that overlap. */
934 list_for_each_entry(rg, head, link) {
943 seg_from = max(rg->from, f);
944 seg_to = min(rg->to, t);
946 chg += seg_to - seg_from;
948 spin_unlock(&resv->lock);
954 * Convert the address within this vma to the page offset within
955 * the mapping, in pagecache page units; huge pages here.
957 static pgoff_t vma_hugecache_offset(struct hstate *h,
958 struct vm_area_struct *vma, unsigned long address)
960 return ((address - vma->vm_start) >> huge_page_shift(h)) +
961 (vma->vm_pgoff >> huge_page_order(h));
964 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
965 unsigned long address)
967 return vma_hugecache_offset(hstate_vma(vma), vma, address);
969 EXPORT_SYMBOL_GPL(linear_hugepage_index);
972 * Return the size of the pages allocated when backing a VMA. In the majority
973 * cases this will be same size as used by the page table entries.
975 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
977 if (vma->vm_ops && vma->vm_ops->pagesize)
978 return vma->vm_ops->pagesize(vma);
981 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
984 * Return the page size being used by the MMU to back a VMA. In the majority
985 * of cases, the page size used by the kernel matches the MMU size. On
986 * architectures where it differs, an architecture-specific 'strong'
987 * version of this symbol is required.
989 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
991 return vma_kernel_pagesize(vma);
995 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
996 * bits of the reservation map pointer, which are always clear due to
999 #define HPAGE_RESV_OWNER (1UL << 0)
1000 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1001 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1004 * These helpers are used to track how many pages are reserved for
1005 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1006 * is guaranteed to have their future faults succeed.
1008 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1009 * the reserve counters are updated with the hugetlb_lock held. It is safe
1010 * to reset the VMA at fork() time as it is not in use yet and there is no
1011 * chance of the global counters getting corrupted as a result of the values.
1013 * The private mapping reservation is represented in a subtly different
1014 * manner to a shared mapping. A shared mapping has a region map associated
1015 * with the underlying file, this region map represents the backing file
1016 * pages which have ever had a reservation assigned which this persists even
1017 * after the page is instantiated. A private mapping has a region map
1018 * associated with the original mmap which is attached to all VMAs which
1019 * reference it, this region map represents those offsets which have consumed
1020 * reservation ie. where pages have been instantiated.
1022 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1024 return (unsigned long)vma->vm_private_data;
1027 static void set_vma_private_data(struct vm_area_struct *vma,
1028 unsigned long value)
1030 vma->vm_private_data = (void *)value;
1034 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1035 struct hugetlb_cgroup *h_cg,
1038 #ifdef CONFIG_CGROUP_HUGETLB
1040 resv_map->reservation_counter = NULL;
1041 resv_map->pages_per_hpage = 0;
1042 resv_map->css = NULL;
1044 resv_map->reservation_counter =
1045 &h_cg->rsvd_hugepage[hstate_index(h)];
1046 resv_map->pages_per_hpage = pages_per_huge_page(h);
1047 resv_map->css = &h_cg->css;
1052 struct resv_map *resv_map_alloc(void)
1054 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1055 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1057 if (!resv_map || !rg) {
1063 kref_init(&resv_map->refs);
1064 spin_lock_init(&resv_map->lock);
1065 INIT_LIST_HEAD(&resv_map->regions);
1067 resv_map->adds_in_progress = 0;
1069 * Initialize these to 0. On shared mappings, 0's here indicate these
1070 * fields don't do cgroup accounting. On private mappings, these will be
1071 * re-initialized to the proper values, to indicate that hugetlb cgroup
1072 * reservations are to be un-charged from here.
1074 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1076 INIT_LIST_HEAD(&resv_map->region_cache);
1077 list_add(&rg->link, &resv_map->region_cache);
1078 resv_map->region_cache_count = 1;
1083 void resv_map_release(struct kref *ref)
1085 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1086 struct list_head *head = &resv_map->region_cache;
1087 struct file_region *rg, *trg;
1089 /* Clear out any active regions before we release the map. */
1090 region_del(resv_map, 0, LONG_MAX);
1092 /* ... and any entries left in the cache */
1093 list_for_each_entry_safe(rg, trg, head, link) {
1094 list_del(&rg->link);
1098 VM_BUG_ON(resv_map->adds_in_progress);
1103 static inline struct resv_map *inode_resv_map(struct inode *inode)
1106 * At inode evict time, i_mapping may not point to the original
1107 * address space within the inode. This original address space
1108 * contains the pointer to the resv_map. So, always use the
1109 * address space embedded within the inode.
1110 * The VERY common case is inode->mapping == &inode->i_data but,
1111 * this may not be true for device special inodes.
1113 return (struct resv_map *)(&inode->i_data)->private_data;
1116 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1118 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1119 if (vma->vm_flags & VM_MAYSHARE) {
1120 struct address_space *mapping = vma->vm_file->f_mapping;
1121 struct inode *inode = mapping->host;
1123 return inode_resv_map(inode);
1126 return (struct resv_map *)(get_vma_private_data(vma) &
1131 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1133 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1134 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1136 set_vma_private_data(vma, (get_vma_private_data(vma) &
1137 HPAGE_RESV_MASK) | (unsigned long)map);
1140 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1142 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1143 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1145 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1148 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1152 return (get_vma_private_data(vma) & flag) != 0;
1155 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1157 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1159 * Clear vm_private_data
1160 * - For shared mappings this is a per-vma semaphore that may be
1161 * allocated in a subsequent call to hugetlb_vm_op_open.
1162 * Before clearing, make sure pointer is not associated with vma
1163 * as this will leak the structure. This is the case when called
1164 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1165 * been called to allocate a new structure.
1166 * - For MAP_PRIVATE mappings, this is the reserve map which does
1167 * not apply to children. Faults generated by the children are
1168 * not guaranteed to succeed, even if read-only.
1170 if (vma->vm_flags & VM_MAYSHARE) {
1171 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1173 if (vma_lock && vma_lock->vma != vma)
1174 vma->vm_private_data = NULL;
1176 vma->vm_private_data = NULL;
1180 * Reset and decrement one ref on hugepage private reservation.
1181 * Called with mm->mmap_lock writer semaphore held.
1182 * This function should be only used by move_vma() and operate on
1183 * same sized vma. It should never come here with last ref on the
1186 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1189 * Clear the old hugetlb private page reservation.
1190 * It has already been transferred to new_vma.
1192 * During a mremap() operation of a hugetlb vma we call move_vma()
1193 * which copies vma into new_vma and unmaps vma. After the copy
1194 * operation both new_vma and vma share a reference to the resv_map
1195 * struct, and at that point vma is about to be unmapped. We don't
1196 * want to return the reservation to the pool at unmap of vma because
1197 * the reservation still lives on in new_vma, so simply decrement the
1198 * ref here and remove the resv_map reference from this vma.
1200 struct resv_map *reservations = vma_resv_map(vma);
1202 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1203 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1204 kref_put(&reservations->refs, resv_map_release);
1207 hugetlb_dup_vma_private(vma);
1210 /* Returns true if the VMA has associated reserve pages */
1211 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1213 if (vma->vm_flags & VM_NORESERVE) {
1215 * This address is already reserved by other process(chg == 0),
1216 * so, we should decrement reserved count. Without decrementing,
1217 * reserve count remains after releasing inode, because this
1218 * allocated page will go into page cache and is regarded as
1219 * coming from reserved pool in releasing step. Currently, we
1220 * don't have any other solution to deal with this situation
1221 * properly, so add work-around here.
1223 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1229 /* Shared mappings always use reserves */
1230 if (vma->vm_flags & VM_MAYSHARE) {
1232 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1233 * be a region map for all pages. The only situation where
1234 * there is no region map is if a hole was punched via
1235 * fallocate. In this case, there really are no reserves to
1236 * use. This situation is indicated if chg != 0.
1245 * Only the process that called mmap() has reserves for
1248 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1250 * Like the shared case above, a hole punch or truncate
1251 * could have been performed on the private mapping.
1252 * Examine the value of chg to determine if reserves
1253 * actually exist or were previously consumed.
1254 * Very Subtle - The value of chg comes from a previous
1255 * call to vma_needs_reserves(). The reserve map for
1256 * private mappings has different (opposite) semantics
1257 * than that of shared mappings. vma_needs_reserves()
1258 * has already taken this difference in semantics into
1259 * account. Therefore, the meaning of chg is the same
1260 * as in the shared case above. Code could easily be
1261 * combined, but keeping it separate draws attention to
1262 * subtle differences.
1273 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1275 int nid = folio_nid(folio);
1277 lockdep_assert_held(&hugetlb_lock);
1278 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1280 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1281 h->free_huge_pages++;
1282 h->free_huge_pages_node[nid]++;
1283 folio_set_hugetlb_freed(folio);
1286 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1289 struct folio *folio;
1290 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1292 lockdep_assert_held(&hugetlb_lock);
1293 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1294 if (pin && !folio_is_longterm_pinnable(folio))
1297 if (folio_test_hwpoison(folio))
1300 list_move(&folio->lru, &h->hugepage_activelist);
1301 folio_ref_unfreeze(folio, 1);
1302 folio_clear_hugetlb_freed(folio);
1303 h->free_huge_pages--;
1304 h->free_huge_pages_node[nid]--;
1311 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1312 int nid, nodemask_t *nmask)
1314 unsigned int cpuset_mems_cookie;
1315 struct zonelist *zonelist;
1318 int node = NUMA_NO_NODE;
1320 zonelist = node_zonelist(nid, gfp_mask);
1323 cpuset_mems_cookie = read_mems_allowed_begin();
1324 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1325 struct folio *folio;
1327 if (!cpuset_zone_allowed(zone, gfp_mask))
1330 * no need to ask again on the same node. Pool is node rather than
1333 if (zone_to_nid(zone) == node)
1335 node = zone_to_nid(zone);
1337 folio = dequeue_hugetlb_folio_node_exact(h, node);
1341 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1347 static unsigned long available_huge_pages(struct hstate *h)
1349 return h->free_huge_pages - h->resv_huge_pages;
1352 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1353 struct vm_area_struct *vma,
1354 unsigned long address, int avoid_reserve,
1357 struct folio *folio = NULL;
1358 struct mempolicy *mpol;
1360 nodemask_t *nodemask;
1364 * A child process with MAP_PRIVATE mappings created by their parent
1365 * have no page reserves. This check ensures that reservations are
1366 * not "stolen". The child may still get SIGKILLed
1368 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1371 /* If reserves cannot be used, ensure enough pages are in the pool */
1372 if (avoid_reserve && !available_huge_pages(h))
1375 gfp_mask = htlb_alloc_mask(h);
1376 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1378 if (mpol_is_preferred_many(mpol)) {
1379 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1382 /* Fallback to all nodes if page==NULL */
1387 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1390 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1391 folio_set_hugetlb_restore_reserve(folio);
1392 h->resv_huge_pages--;
1395 mpol_cond_put(mpol);
1403 * common helper functions for hstate_next_node_to_{alloc|free}.
1404 * We may have allocated or freed a huge page based on a different
1405 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1406 * be outside of *nodes_allowed. Ensure that we use an allowed
1407 * node for alloc or free.
1409 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1411 nid = next_node_in(nid, *nodes_allowed);
1412 VM_BUG_ON(nid >= MAX_NUMNODES);
1417 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1419 if (!node_isset(nid, *nodes_allowed))
1420 nid = next_node_allowed(nid, nodes_allowed);
1425 * returns the previously saved node ["this node"] from which to
1426 * allocate a persistent huge page for the pool and advance the
1427 * next node from which to allocate, handling wrap at end of node
1430 static int hstate_next_node_to_alloc(struct hstate *h,
1431 nodemask_t *nodes_allowed)
1435 VM_BUG_ON(!nodes_allowed);
1437 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1438 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1444 * helper for remove_pool_huge_page() - return the previously saved
1445 * node ["this node"] from which to free a huge page. Advance the
1446 * next node id whether or not we find a free huge page to free so
1447 * that the next attempt to free addresses the next node.
1449 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1453 VM_BUG_ON(!nodes_allowed);
1455 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1456 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1461 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1462 for (nr_nodes = nodes_weight(*mask); \
1464 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1467 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1468 for (nr_nodes = nodes_weight(*mask); \
1470 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1473 /* used to demote non-gigantic_huge pages as well */
1474 static void __destroy_compound_gigantic_folio(struct folio *folio,
1475 unsigned int order, bool demote)
1478 int nr_pages = 1 << order;
1481 atomic_set(&folio->_entire_mapcount, 0);
1482 atomic_set(&folio->_nr_pages_mapped, 0);
1483 atomic_set(&folio->_pincount, 0);
1485 for (i = 1; i < nr_pages; i++) {
1486 p = folio_page(folio, i);
1488 clear_compound_head(p);
1490 set_page_refcounted(p);
1493 __folio_clear_head(folio);
1496 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1499 __destroy_compound_gigantic_folio(folio, order, true);
1502 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1503 static void destroy_compound_gigantic_folio(struct folio *folio,
1506 __destroy_compound_gigantic_folio(folio, order, false);
1509 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1512 * If the page isn't allocated using the cma allocator,
1513 * cma_release() returns false.
1516 int nid = folio_nid(folio);
1518 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1522 free_contig_range(folio_pfn(folio), 1 << order);
1525 #ifdef CONFIG_CONTIG_ALLOC
1526 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1527 int nid, nodemask_t *nodemask)
1530 unsigned long nr_pages = pages_per_huge_page(h);
1531 if (nid == NUMA_NO_NODE)
1532 nid = numa_mem_id();
1538 if (hugetlb_cma[nid]) {
1539 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1540 huge_page_order(h), true);
1542 return page_folio(page);
1545 if (!(gfp_mask & __GFP_THISNODE)) {
1546 for_each_node_mask(node, *nodemask) {
1547 if (node == nid || !hugetlb_cma[node])
1550 page = cma_alloc(hugetlb_cma[node], nr_pages,
1551 huge_page_order(h), true);
1553 return page_folio(page);
1559 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1560 return page ? page_folio(page) : NULL;
1563 #else /* !CONFIG_CONTIG_ALLOC */
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565 int nid, nodemask_t *nodemask)
1569 #endif /* CONFIG_CONTIG_ALLOC */
1571 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1572 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1573 int nid, nodemask_t *nodemask)
1577 static inline void free_gigantic_folio(struct folio *folio,
1578 unsigned int order) { }
1579 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1580 unsigned int order) { }
1584 * Remove hugetlb folio from lists, and update dtor so that the folio appears
1585 * as just a compound page.
1587 * A reference is held on the folio, except in the case of demote.
1589 * Must be called with hugetlb lock held.
1591 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1592 bool adjust_surplus,
1595 int nid = folio_nid(folio);
1597 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1598 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1600 lockdep_assert_held(&hugetlb_lock);
1601 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1604 list_del(&folio->lru);
1606 if (folio_test_hugetlb_freed(folio)) {
1607 h->free_huge_pages--;
1608 h->free_huge_pages_node[nid]--;
1610 if (adjust_surplus) {
1611 h->surplus_huge_pages--;
1612 h->surplus_huge_pages_node[nid]--;
1618 * For non-gigantic pages set the destructor to the normal compound
1619 * page dtor. This is needed in case someone takes an additional
1620 * temporary ref to the page, and freeing is delayed until they drop
1623 * For gigantic pages set the destructor to the null dtor. This
1624 * destructor will never be called. Before freeing the gigantic
1625 * page destroy_compound_gigantic_folio will turn the folio into a
1626 * simple group of pages. After this the destructor does not
1629 * This handles the case where more than one ref is held when and
1630 * after update_and_free_hugetlb_folio is called.
1632 * In the case of demote we do not ref count the page as it will soon
1633 * be turned into a page of smaller size.
1636 folio_ref_unfreeze(folio, 1);
1637 if (hstate_is_gigantic(h))
1638 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1640 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1643 h->nr_huge_pages_node[nid]--;
1646 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647 bool adjust_surplus)
1649 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1652 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1653 bool adjust_surplus)
1655 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1658 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1659 bool adjust_surplus)
1662 int nid = folio_nid(folio);
1664 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1666 lockdep_assert_held(&hugetlb_lock);
1668 INIT_LIST_HEAD(&folio->lru);
1670 h->nr_huge_pages_node[nid]++;
1672 if (adjust_surplus) {
1673 h->surplus_huge_pages++;
1674 h->surplus_huge_pages_node[nid]++;
1677 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1678 folio_change_private(folio, NULL);
1680 * We have to set hugetlb_vmemmap_optimized again as above
1681 * folio_change_private(folio, NULL) cleared it.
1683 folio_set_hugetlb_vmemmap_optimized(folio);
1686 * This folio is about to be managed by the hugetlb allocator and
1687 * should have no users. Drop our reference, and check for others
1690 zeroed = folio_put_testzero(folio);
1691 if (unlikely(!zeroed))
1693 * It is VERY unlikely soneone else has taken a ref on
1694 * the page. In this case, we simply return as the
1695 * hugetlb destructor (free_huge_page) will be called
1696 * when this other ref is dropped.
1700 arch_clear_hugepage_flags(&folio->page);
1701 enqueue_hugetlb_folio(h, folio);
1704 static void __update_and_free_hugetlb_folio(struct hstate *h,
1705 struct folio *folio)
1708 struct page *subpage;
1710 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1714 * If we don't know which subpages are hwpoisoned, we can't free
1715 * the hugepage, so it's leaked intentionally.
1717 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1720 if (hugetlb_vmemmap_restore(h, &folio->page)) {
1721 spin_lock_irq(&hugetlb_lock);
1723 * If we cannot allocate vmemmap pages, just refuse to free the
1724 * page and put the page back on the hugetlb free list and treat
1725 * as a surplus page.
1727 add_hugetlb_folio(h, folio, true);
1728 spin_unlock_irq(&hugetlb_lock);
1733 * Move PageHWPoison flag from head page to the raw error pages,
1734 * which makes any healthy subpages reusable.
1736 if (unlikely(folio_test_hwpoison(folio)))
1737 folio_clear_hugetlb_hwpoison(folio);
1739 for (i = 0; i < pages_per_huge_page(h); i++) {
1740 subpage = folio_page(folio, i);
1741 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1742 1 << PG_referenced | 1 << PG_dirty |
1743 1 << PG_active | 1 << PG_private |
1748 * Non-gigantic pages demoted from CMA allocated gigantic pages
1749 * need to be given back to CMA in free_gigantic_folio.
1751 if (hstate_is_gigantic(h) ||
1752 hugetlb_cma_folio(folio, huge_page_order(h))) {
1753 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754 free_gigantic_folio(folio, huge_page_order(h));
1756 __free_pages(&folio->page, huge_page_order(h));
1761 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1762 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764 * the vmemmap pages.
1766 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767 * freed and frees them one-by-one. As the page->mapping pointer is going
1768 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769 * structure of a lockless linked list of huge pages to be freed.
1771 static LLIST_HEAD(hpage_freelist);
1773 static void free_hpage_workfn(struct work_struct *work)
1775 struct llist_node *node;
1777 node = llist_del_all(&hpage_freelist);
1783 page = container_of((struct address_space **)node,
1784 struct page, mapping);
1786 page->mapping = NULL;
1788 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1789 * folio_hstate() is going to trigger because a previous call to
1790 * remove_hugetlb_folio() will call folio_set_compound_dtor
1791 * (folio, NULL_COMPOUND_DTOR), so do not use folio_hstate()
1794 h = size_to_hstate(page_size(page));
1796 __update_and_free_hugetlb_folio(h, page_folio(page));
1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1803 static inline void flush_free_hpage_work(struct hstate *h)
1805 if (hugetlb_vmemmap_optimizable(h))
1806 flush_work(&free_hpage_work);
1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1812 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1813 __update_and_free_hugetlb_folio(h, folio);
1818 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1820 * Only call schedule_work() if hpage_freelist is previously
1821 * empty. Otherwise, schedule_work() had been called but the workfn
1822 * hasn't retrieved the list yet.
1824 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1825 schedule_work(&free_hpage_work);
1828 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1830 struct page *page, *t_page;
1831 struct folio *folio;
1833 list_for_each_entry_safe(page, t_page, list, lru) {
1834 folio = page_folio(page);
1835 update_and_free_hugetlb_folio(h, folio, false);
1840 struct hstate *size_to_hstate(unsigned long size)
1844 for_each_hstate(h) {
1845 if (huge_page_size(h) == size)
1851 void free_huge_page(struct page *page)
1854 * Can't pass hstate in here because it is called from the
1855 * compound page destructor.
1857 struct folio *folio = page_folio(page);
1858 struct hstate *h = folio_hstate(folio);
1859 int nid = folio_nid(folio);
1860 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1861 bool restore_reserve;
1862 unsigned long flags;
1864 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1865 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1867 hugetlb_set_folio_subpool(folio, NULL);
1868 if (folio_test_anon(folio))
1869 __ClearPageAnonExclusive(&folio->page);
1870 folio->mapping = NULL;
1871 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1872 folio_clear_hugetlb_restore_reserve(folio);
1875 * If HPageRestoreReserve was set on page, page allocation consumed a
1876 * reservation. If the page was associated with a subpool, there
1877 * would have been a page reserved in the subpool before allocation
1878 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1879 * reservation, do not call hugepage_subpool_put_pages() as this will
1880 * remove the reserved page from the subpool.
1882 if (!restore_reserve) {
1884 * A return code of zero implies that the subpool will be
1885 * under its minimum size if the reservation is not restored
1886 * after page is free. Therefore, force restore_reserve
1889 if (hugepage_subpool_put_pages(spool, 1) == 0)
1890 restore_reserve = true;
1893 spin_lock_irqsave(&hugetlb_lock, flags);
1894 folio_clear_hugetlb_migratable(folio);
1895 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1896 pages_per_huge_page(h), folio);
1897 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1898 pages_per_huge_page(h), folio);
1899 if (restore_reserve)
1900 h->resv_huge_pages++;
1902 if (folio_test_hugetlb_temporary(folio)) {
1903 remove_hugetlb_folio(h, folio, false);
1904 spin_unlock_irqrestore(&hugetlb_lock, flags);
1905 update_and_free_hugetlb_folio(h, folio, true);
1906 } else if (h->surplus_huge_pages_node[nid]) {
1907 /* remove the page from active list */
1908 remove_hugetlb_folio(h, folio, true);
1909 spin_unlock_irqrestore(&hugetlb_lock, flags);
1910 update_and_free_hugetlb_folio(h, folio, true);
1912 arch_clear_hugepage_flags(page);
1913 enqueue_hugetlb_folio(h, folio);
1914 spin_unlock_irqrestore(&hugetlb_lock, flags);
1919 * Must be called with the hugetlb lock held
1921 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1923 lockdep_assert_held(&hugetlb_lock);
1925 h->nr_huge_pages_node[nid]++;
1928 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1930 hugetlb_vmemmap_optimize(h, &folio->page);
1931 INIT_LIST_HEAD(&folio->lru);
1932 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1933 hugetlb_set_folio_subpool(folio, NULL);
1934 set_hugetlb_cgroup(folio, NULL);
1935 set_hugetlb_cgroup_rsvd(folio, NULL);
1938 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1940 __prep_new_hugetlb_folio(h, folio);
1941 spin_lock_irq(&hugetlb_lock);
1942 __prep_account_new_huge_page(h, nid);
1943 spin_unlock_irq(&hugetlb_lock);
1946 static bool __prep_compound_gigantic_folio(struct folio *folio,
1947 unsigned int order, bool demote)
1950 int nr_pages = 1 << order;
1953 __folio_clear_reserved(folio);
1954 for (i = 0; i < nr_pages; i++) {
1955 p = folio_page(folio, i);
1958 * For gigantic hugepages allocated through bootmem at
1959 * boot, it's safer to be consistent with the not-gigantic
1960 * hugepages and clear the PG_reserved bit from all tail pages
1961 * too. Otherwise drivers using get_user_pages() to access tail
1962 * pages may get the reference counting wrong if they see
1963 * PG_reserved set on a tail page (despite the head page not
1964 * having PG_reserved set). Enforcing this consistency between
1965 * head and tail pages allows drivers to optimize away a check
1966 * on the head page when they need know if put_page() is needed
1967 * after get_user_pages().
1969 if (i != 0) /* head page cleared above */
1970 __ClearPageReserved(p);
1972 * Subtle and very unlikely
1974 * Gigantic 'page allocators' such as memblock or cma will
1975 * return a set of pages with each page ref counted. We need
1976 * to turn this set of pages into a compound page with tail
1977 * page ref counts set to zero. Code such as speculative page
1978 * cache adding could take a ref on a 'to be' tail page.
1979 * We need to respect any increased ref count, and only set
1980 * the ref count to zero if count is currently 1. If count
1981 * is not 1, we return an error. An error return indicates
1982 * the set of pages can not be converted to a gigantic page.
1983 * The caller who allocated the pages should then discard the
1984 * pages using the appropriate free interface.
1986 * In the case of demote, the ref count will be zero.
1989 if (!page_ref_freeze(p, 1)) {
1990 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1994 VM_BUG_ON_PAGE(page_count(p), p);
1997 set_compound_head(p, &folio->page);
1999 __folio_set_head(folio);
2000 /* we rely on prep_new_hugetlb_folio to set the destructor */
2001 folio_set_order(folio, order);
2002 atomic_set(&folio->_entire_mapcount, -1);
2003 atomic_set(&folio->_nr_pages_mapped, 0);
2004 atomic_set(&folio->_pincount, 0);
2008 /* undo page modifications made above */
2009 for (j = 0; j < i; j++) {
2010 p = folio_page(folio, j);
2012 clear_compound_head(p);
2013 set_page_refcounted(p);
2015 /* need to clear PG_reserved on remaining tail pages */
2016 for (; j < nr_pages; j++) {
2017 p = folio_page(folio, j);
2018 __ClearPageReserved(p);
2023 static bool prep_compound_gigantic_folio(struct folio *folio,
2026 return __prep_compound_gigantic_folio(folio, order, false);
2029 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2032 return __prep_compound_gigantic_folio(folio, order, true);
2036 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2037 * transparent huge pages. See the PageTransHuge() documentation for more
2040 int PageHuge(struct page *page)
2042 struct folio *folio;
2044 if (!PageCompound(page))
2046 folio = page_folio(page);
2047 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2049 EXPORT_SYMBOL_GPL(PageHuge);
2052 * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2053 * @folio: The folio to test.
2055 * Context: Any context. Caller should have a reference on the folio to
2056 * prevent it from being turned into a tail page.
2057 * Return: True for hugetlbfs folios, false for anon folios or folios
2058 * belonging to other filesystems.
2060 bool folio_test_hugetlb(struct folio *folio)
2062 if (!folio_test_large(folio))
2065 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2067 EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2070 * Find and lock address space (mapping) in write mode.
2072 * Upon entry, the page is locked which means that page_mapping() is
2073 * stable. Due to locking order, we can only trylock_write. If we can
2074 * not get the lock, simply return NULL to caller.
2076 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2078 struct address_space *mapping = page_mapping(hpage);
2083 if (i_mmap_trylock_write(mapping))
2089 pgoff_t hugetlb_basepage_index(struct page *page)
2091 struct page *page_head = compound_head(page);
2092 pgoff_t index = page_index(page_head);
2093 unsigned long compound_idx;
2095 if (compound_order(page_head) > MAX_ORDER)
2096 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2098 compound_idx = page - page_head;
2100 return (index << compound_order(page_head)) + compound_idx;
2103 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2104 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2105 nodemask_t *node_alloc_noretry)
2107 int order = huge_page_order(h);
2109 bool alloc_try_hard = true;
2113 * By default we always try hard to allocate the page with
2114 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2115 * a loop (to adjust global huge page counts) and previous allocation
2116 * failed, do not continue to try hard on the same node. Use the
2117 * node_alloc_noretry bitmap to manage this state information.
2119 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2120 alloc_try_hard = false;
2121 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2123 gfp_mask |= __GFP_RETRY_MAYFAIL;
2124 if (nid == NUMA_NO_NODE)
2125 nid = numa_mem_id();
2127 page = __alloc_pages(gfp_mask, order, nid, nmask);
2129 /* Freeze head page */
2130 if (page && !page_ref_freeze(page, 1)) {
2131 __free_pages(page, order);
2132 if (retry) { /* retry once */
2136 /* WOW! twice in a row. */
2137 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2142 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2143 * indicates an overall state change. Clear bit so that we resume
2144 * normal 'try hard' allocations.
2146 if (node_alloc_noretry && page && !alloc_try_hard)
2147 node_clear(nid, *node_alloc_noretry);
2150 * If we tried hard to get a page but failed, set bit so that
2151 * subsequent attempts will not try as hard until there is an
2152 * overall state change.
2154 if (node_alloc_noretry && !page && alloc_try_hard)
2155 node_set(nid, *node_alloc_noretry);
2158 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2162 __count_vm_event(HTLB_BUDDY_PGALLOC);
2163 return page_folio(page);
2167 * Common helper to allocate a fresh hugetlb page. All specific allocators
2168 * should use this function to get new hugetlb pages
2170 * Note that returned page is 'frozen': ref count of head page and all tail
2173 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2174 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2175 nodemask_t *node_alloc_noretry)
2177 struct folio *folio;
2181 if (hstate_is_gigantic(h))
2182 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2184 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2185 nid, nmask, node_alloc_noretry);
2188 if (hstate_is_gigantic(h)) {
2189 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2191 * Rare failure to convert pages to compound page.
2192 * Free pages and try again - ONCE!
2194 free_gigantic_folio(folio, huge_page_order(h));
2202 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2208 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2211 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2212 nodemask_t *node_alloc_noretry)
2214 struct folio *folio;
2216 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2218 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2219 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2220 nodes_allowed, node_alloc_noretry);
2222 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2231 * Remove huge page from pool from next node to free. Attempt to keep
2232 * persistent huge pages more or less balanced over allowed nodes.
2233 * This routine only 'removes' the hugetlb page. The caller must make
2234 * an additional call to free the page to low level allocators.
2235 * Called with hugetlb_lock locked.
2237 static struct page *remove_pool_huge_page(struct hstate *h,
2238 nodemask_t *nodes_allowed,
2242 struct page *page = NULL;
2243 struct folio *folio;
2245 lockdep_assert_held(&hugetlb_lock);
2246 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2248 * If we're returning unused surplus pages, only examine
2249 * nodes with surplus pages.
2251 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2252 !list_empty(&h->hugepage_freelists[node])) {
2253 page = list_entry(h->hugepage_freelists[node].next,
2255 folio = page_folio(page);
2256 remove_hugetlb_folio(h, folio, acct_surplus);
2265 * Dissolve a given free hugepage into free buddy pages. This function does
2266 * nothing for in-use hugepages and non-hugepages.
2267 * This function returns values like below:
2269 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2270 * when the system is under memory pressure and the feature of
2271 * freeing unused vmemmap pages associated with each hugetlb page
2273 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2274 * (allocated or reserved.)
2275 * 0: successfully dissolved free hugepages or the page is not a
2276 * hugepage (considered as already dissolved)
2278 int dissolve_free_huge_page(struct page *page)
2281 struct folio *folio = page_folio(page);
2284 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2285 if (!folio_test_hugetlb(folio))
2288 spin_lock_irq(&hugetlb_lock);
2289 if (!folio_test_hugetlb(folio)) {
2294 if (!folio_ref_count(folio)) {
2295 struct hstate *h = folio_hstate(folio);
2296 if (!available_huge_pages(h))
2300 * We should make sure that the page is already on the free list
2301 * when it is dissolved.
2303 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2304 spin_unlock_irq(&hugetlb_lock);
2308 * Theoretically, we should return -EBUSY when we
2309 * encounter this race. In fact, we have a chance
2310 * to successfully dissolve the page if we do a
2311 * retry. Because the race window is quite small.
2312 * If we seize this opportunity, it is an optimization
2313 * for increasing the success rate of dissolving page.
2318 remove_hugetlb_folio(h, folio, false);
2319 h->max_huge_pages--;
2320 spin_unlock_irq(&hugetlb_lock);
2323 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2324 * before freeing the page. update_and_free_hugtlb_folio will fail to
2325 * free the page if it can not allocate required vmemmap. We
2326 * need to adjust max_huge_pages if the page is not freed.
2327 * Attempt to allocate vmemmmap here so that we can take
2328 * appropriate action on failure.
2330 rc = hugetlb_vmemmap_restore(h, &folio->page);
2332 update_and_free_hugetlb_folio(h, folio, false);
2334 spin_lock_irq(&hugetlb_lock);
2335 add_hugetlb_folio(h, folio, false);
2336 h->max_huge_pages++;
2337 spin_unlock_irq(&hugetlb_lock);
2343 spin_unlock_irq(&hugetlb_lock);
2348 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2349 * make specified memory blocks removable from the system.
2350 * Note that this will dissolve a free gigantic hugepage completely, if any
2351 * part of it lies within the given range.
2352 * Also note that if dissolve_free_huge_page() returns with an error, all
2353 * free hugepages that were dissolved before that error are lost.
2355 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2363 if (!hugepages_supported())
2366 order = huge_page_order(&default_hstate);
2368 order = min(order, huge_page_order(h));
2370 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2371 page = pfn_to_page(pfn);
2372 rc = dissolve_free_huge_page(page);
2381 * Allocates a fresh surplus page from the page allocator.
2383 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2384 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2386 struct folio *folio = NULL;
2388 if (hstate_is_gigantic(h))
2391 spin_lock_irq(&hugetlb_lock);
2392 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2394 spin_unlock_irq(&hugetlb_lock);
2396 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2400 spin_lock_irq(&hugetlb_lock);
2402 * We could have raced with the pool size change.
2403 * Double check that and simply deallocate the new page
2404 * if we would end up overcommiting the surpluses. Abuse
2405 * temporary page to workaround the nasty free_huge_page
2408 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2409 folio_set_hugetlb_temporary(folio);
2410 spin_unlock_irq(&hugetlb_lock);
2411 free_huge_page(&folio->page);
2415 h->surplus_huge_pages++;
2416 h->surplus_huge_pages_node[folio_nid(folio)]++;
2419 spin_unlock_irq(&hugetlb_lock);
2424 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2425 int nid, nodemask_t *nmask)
2427 struct folio *folio;
2429 if (hstate_is_gigantic(h))
2432 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2436 /* fresh huge pages are frozen */
2437 folio_ref_unfreeze(folio, 1);
2439 * We do not account these pages as surplus because they are only
2440 * temporary and will be released properly on the last reference
2442 folio_set_hugetlb_temporary(folio);
2448 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2451 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2452 struct vm_area_struct *vma, unsigned long addr)
2454 struct folio *folio = NULL;
2455 struct mempolicy *mpol;
2456 gfp_t gfp_mask = htlb_alloc_mask(h);
2458 nodemask_t *nodemask;
2460 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2461 if (mpol_is_preferred_many(mpol)) {
2462 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2464 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2465 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2467 /* Fallback to all nodes if page==NULL */
2472 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2473 mpol_cond_put(mpol);
2477 /* folio migration callback function */
2478 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2479 nodemask_t *nmask, gfp_t gfp_mask)
2481 spin_lock_irq(&hugetlb_lock);
2482 if (available_huge_pages(h)) {
2483 struct folio *folio;
2485 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2486 preferred_nid, nmask);
2488 spin_unlock_irq(&hugetlb_lock);
2492 spin_unlock_irq(&hugetlb_lock);
2494 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2497 /* mempolicy aware migration callback */
2498 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2499 unsigned long address)
2501 struct mempolicy *mpol;
2502 nodemask_t *nodemask;
2503 struct folio *folio;
2507 gfp_mask = htlb_alloc_mask(h);
2508 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2509 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2510 mpol_cond_put(mpol);
2516 * Increase the hugetlb pool such that it can accommodate a reservation
2519 static int gather_surplus_pages(struct hstate *h, long delta)
2520 __must_hold(&hugetlb_lock)
2522 LIST_HEAD(surplus_list);
2523 struct folio *folio;
2524 struct page *page, *tmp;
2527 long needed, allocated;
2528 bool alloc_ok = true;
2530 lockdep_assert_held(&hugetlb_lock);
2531 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2533 h->resv_huge_pages += delta;
2541 spin_unlock_irq(&hugetlb_lock);
2542 for (i = 0; i < needed; i++) {
2543 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2544 NUMA_NO_NODE, NULL);
2549 list_add(&folio->lru, &surplus_list);
2555 * After retaking hugetlb_lock, we need to recalculate 'needed'
2556 * because either resv_huge_pages or free_huge_pages may have changed.
2558 spin_lock_irq(&hugetlb_lock);
2559 needed = (h->resv_huge_pages + delta) -
2560 (h->free_huge_pages + allocated);
2565 * We were not able to allocate enough pages to
2566 * satisfy the entire reservation so we free what
2567 * we've allocated so far.
2572 * The surplus_list now contains _at_least_ the number of extra pages
2573 * needed to accommodate the reservation. Add the appropriate number
2574 * of pages to the hugetlb pool and free the extras back to the buddy
2575 * allocator. Commit the entire reservation here to prevent another
2576 * process from stealing the pages as they are added to the pool but
2577 * before they are reserved.
2579 needed += allocated;
2580 h->resv_huge_pages += delta;
2583 /* Free the needed pages to the hugetlb pool */
2584 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2587 /* Add the page to the hugetlb allocator */
2588 enqueue_hugetlb_folio(h, page_folio(page));
2591 spin_unlock_irq(&hugetlb_lock);
2594 * Free unnecessary surplus pages to the buddy allocator.
2595 * Pages have no ref count, call free_huge_page directly.
2597 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2598 free_huge_page(page);
2599 spin_lock_irq(&hugetlb_lock);
2605 * This routine has two main purposes:
2606 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2607 * in unused_resv_pages. This corresponds to the prior adjustments made
2608 * to the associated reservation map.
2609 * 2) Free any unused surplus pages that may have been allocated to satisfy
2610 * the reservation. As many as unused_resv_pages may be freed.
2612 static void return_unused_surplus_pages(struct hstate *h,
2613 unsigned long unused_resv_pages)
2615 unsigned long nr_pages;
2617 LIST_HEAD(page_list);
2619 lockdep_assert_held(&hugetlb_lock);
2620 /* Uncommit the reservation */
2621 h->resv_huge_pages -= unused_resv_pages;
2623 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2627 * Part (or even all) of the reservation could have been backed
2628 * by pre-allocated pages. Only free surplus pages.
2630 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2633 * We want to release as many surplus pages as possible, spread
2634 * evenly across all nodes with memory. Iterate across these nodes
2635 * until we can no longer free unreserved surplus pages. This occurs
2636 * when the nodes with surplus pages have no free pages.
2637 * remove_pool_huge_page() will balance the freed pages across the
2638 * on-line nodes with memory and will handle the hstate accounting.
2640 while (nr_pages--) {
2641 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2645 list_add(&page->lru, &page_list);
2649 spin_unlock_irq(&hugetlb_lock);
2650 update_and_free_pages_bulk(h, &page_list);
2651 spin_lock_irq(&hugetlb_lock);
2656 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2657 * are used by the huge page allocation routines to manage reservations.
2659 * vma_needs_reservation is called to determine if the huge page at addr
2660 * within the vma has an associated reservation. If a reservation is
2661 * needed, the value 1 is returned. The caller is then responsible for
2662 * managing the global reservation and subpool usage counts. After
2663 * the huge page has been allocated, vma_commit_reservation is called
2664 * to add the page to the reservation map. If the page allocation fails,
2665 * the reservation must be ended instead of committed. vma_end_reservation
2666 * is called in such cases.
2668 * In the normal case, vma_commit_reservation returns the same value
2669 * as the preceding vma_needs_reservation call. The only time this
2670 * is not the case is if a reserve map was changed between calls. It
2671 * is the responsibility of the caller to notice the difference and
2672 * take appropriate action.
2674 * vma_add_reservation is used in error paths where a reservation must
2675 * be restored when a newly allocated huge page must be freed. It is
2676 * to be called after calling vma_needs_reservation to determine if a
2677 * reservation exists.
2679 * vma_del_reservation is used in error paths where an entry in the reserve
2680 * map was created during huge page allocation and must be removed. It is to
2681 * be called after calling vma_needs_reservation to determine if a reservation
2684 enum vma_resv_mode {
2691 static long __vma_reservation_common(struct hstate *h,
2692 struct vm_area_struct *vma, unsigned long addr,
2693 enum vma_resv_mode mode)
2695 struct resv_map *resv;
2698 long dummy_out_regions_needed;
2700 resv = vma_resv_map(vma);
2704 idx = vma_hugecache_offset(h, vma, addr);
2706 case VMA_NEEDS_RESV:
2707 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2708 /* We assume that vma_reservation_* routines always operate on
2709 * 1 page, and that adding to resv map a 1 page entry can only
2710 * ever require 1 region.
2712 VM_BUG_ON(dummy_out_regions_needed != 1);
2714 case VMA_COMMIT_RESV:
2715 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2716 /* region_add calls of range 1 should never fail. */
2720 region_abort(resv, idx, idx + 1, 1);
2724 if (vma->vm_flags & VM_MAYSHARE) {
2725 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2726 /* region_add calls of range 1 should never fail. */
2729 region_abort(resv, idx, idx + 1, 1);
2730 ret = region_del(resv, idx, idx + 1);
2734 if (vma->vm_flags & VM_MAYSHARE) {
2735 region_abort(resv, idx, idx + 1, 1);
2736 ret = region_del(resv, idx, idx + 1);
2738 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2739 /* region_add calls of range 1 should never fail. */
2747 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2750 * We know private mapping must have HPAGE_RESV_OWNER set.
2752 * In most cases, reserves always exist for private mappings.
2753 * However, a file associated with mapping could have been
2754 * hole punched or truncated after reserves were consumed.
2755 * As subsequent fault on such a range will not use reserves.
2756 * Subtle - The reserve map for private mappings has the
2757 * opposite meaning than that of shared mappings. If NO
2758 * entry is in the reserve map, it means a reservation exists.
2759 * If an entry exists in the reserve map, it means the
2760 * reservation has already been consumed. As a result, the
2761 * return value of this routine is the opposite of the
2762 * value returned from reserve map manipulation routines above.
2771 static long vma_needs_reservation(struct hstate *h,
2772 struct vm_area_struct *vma, unsigned long addr)
2774 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2777 static long vma_commit_reservation(struct hstate *h,
2778 struct vm_area_struct *vma, unsigned long addr)
2780 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2783 static void vma_end_reservation(struct hstate *h,
2784 struct vm_area_struct *vma, unsigned long addr)
2786 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2789 static long vma_add_reservation(struct hstate *h,
2790 struct vm_area_struct *vma, unsigned long addr)
2792 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2795 static long vma_del_reservation(struct hstate *h,
2796 struct vm_area_struct *vma, unsigned long addr)
2798 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2802 * This routine is called to restore reservation information on error paths.
2803 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2804 * and the hugetlb mutex should remain held when calling this routine.
2806 * It handles two specific cases:
2807 * 1) A reservation was in place and the folio consumed the reservation.
2808 * hugetlb_restore_reserve is set in the folio.
2809 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2810 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2812 * In case 1, free_huge_page later in the error path will increment the
2813 * global reserve count. But, free_huge_page does not have enough context
2814 * to adjust the reservation map. This case deals primarily with private
2815 * mappings. Adjust the reserve map here to be consistent with global
2816 * reserve count adjustments to be made by free_huge_page. Make sure the
2817 * reserve map indicates there is a reservation present.
2819 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2821 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2822 unsigned long address, struct folio *folio)
2824 long rc = vma_needs_reservation(h, vma, address);
2826 if (folio_test_hugetlb_restore_reserve(folio)) {
2827 if (unlikely(rc < 0))
2829 * Rare out of memory condition in reserve map
2830 * manipulation. Clear hugetlb_restore_reserve so
2831 * that global reserve count will not be incremented
2832 * by free_huge_page. This will make it appear
2833 * as though the reservation for this folio was
2834 * consumed. This may prevent the task from
2835 * faulting in the folio at a later time. This
2836 * is better than inconsistent global huge page
2837 * accounting of reserve counts.
2839 folio_clear_hugetlb_restore_reserve(folio);
2841 (void)vma_add_reservation(h, vma, address);
2843 vma_end_reservation(h, vma, address);
2847 * This indicates there is an entry in the reserve map
2848 * not added by alloc_hugetlb_folio. We know it was added
2849 * before the alloc_hugetlb_folio call, otherwise
2850 * hugetlb_restore_reserve would be set on the folio.
2851 * Remove the entry so that a subsequent allocation
2852 * does not consume a reservation.
2854 rc = vma_del_reservation(h, vma, address);
2857 * VERY rare out of memory condition. Since
2858 * we can not delete the entry, set
2859 * hugetlb_restore_reserve so that the reserve
2860 * count will be incremented when the folio
2861 * is freed. This reserve will be consumed
2862 * on a subsequent allocation.
2864 folio_set_hugetlb_restore_reserve(folio);
2865 } else if (rc < 0) {
2867 * Rare out of memory condition from
2868 * vma_needs_reservation call. Memory allocation is
2869 * only attempted if a new entry is needed. Therefore,
2870 * this implies there is not an entry in the
2873 * For shared mappings, no entry in the map indicates
2874 * no reservation. We are done.
2876 if (!(vma->vm_flags & VM_MAYSHARE))
2878 * For private mappings, no entry indicates
2879 * a reservation is present. Since we can
2880 * not add an entry, set hugetlb_restore_reserve
2881 * on the folio so reserve count will be
2882 * incremented when freed. This reserve will
2883 * be consumed on a subsequent allocation.
2885 folio_set_hugetlb_restore_reserve(folio);
2888 * No reservation present, do nothing
2890 vma_end_reservation(h, vma, address);
2895 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2897 * @h: struct hstate old page belongs to
2898 * @old_folio: Old folio to dissolve
2899 * @list: List to isolate the page in case we need to
2900 * Returns 0 on success, otherwise negated error.
2902 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2903 struct folio *old_folio, struct list_head *list)
2905 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2906 int nid = folio_nid(old_folio);
2907 struct folio *new_folio;
2911 * Before dissolving the folio, we need to allocate a new one for the
2912 * pool to remain stable. Here, we allocate the folio and 'prep' it
2913 * by doing everything but actually updating counters and adding to
2914 * the pool. This simplifies and let us do most of the processing
2917 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2920 __prep_new_hugetlb_folio(h, new_folio);
2923 spin_lock_irq(&hugetlb_lock);
2924 if (!folio_test_hugetlb(old_folio)) {
2926 * Freed from under us. Drop new_folio too.
2929 } else if (folio_ref_count(old_folio)) {
2933 * Someone has grabbed the folio, try to isolate it here.
2934 * Fail with -EBUSY if not possible.
2936 spin_unlock_irq(&hugetlb_lock);
2937 isolated = isolate_hugetlb(old_folio, list);
2938 ret = isolated ? 0 : -EBUSY;
2939 spin_lock_irq(&hugetlb_lock);
2941 } else if (!folio_test_hugetlb_freed(old_folio)) {
2943 * Folio's refcount is 0 but it has not been enqueued in the
2944 * freelist yet. Race window is small, so we can succeed here if
2947 spin_unlock_irq(&hugetlb_lock);
2952 * Ok, old_folio is still a genuine free hugepage. Remove it from
2953 * the freelist and decrease the counters. These will be
2954 * incremented again when calling __prep_account_new_huge_page()
2955 * and enqueue_hugetlb_folio() for new_folio. The counters will
2956 * remain stable since this happens under the lock.
2958 remove_hugetlb_folio(h, old_folio, false);
2961 * Ref count on new_folio is already zero as it was dropped
2962 * earlier. It can be directly added to the pool free list.
2964 __prep_account_new_huge_page(h, nid);
2965 enqueue_hugetlb_folio(h, new_folio);
2968 * Folio has been replaced, we can safely free the old one.
2970 spin_unlock_irq(&hugetlb_lock);
2971 update_and_free_hugetlb_folio(h, old_folio, false);
2977 spin_unlock_irq(&hugetlb_lock);
2978 /* Folio has a zero ref count, but needs a ref to be freed */
2979 folio_ref_unfreeze(new_folio, 1);
2980 update_and_free_hugetlb_folio(h, new_folio, false);
2985 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2988 struct folio *folio = page_folio(page);
2992 * The page might have been dissolved from under our feet, so make sure
2993 * to carefully check the state under the lock.
2994 * Return success when racing as if we dissolved the page ourselves.
2996 spin_lock_irq(&hugetlb_lock);
2997 if (folio_test_hugetlb(folio)) {
2998 h = folio_hstate(folio);
3000 spin_unlock_irq(&hugetlb_lock);
3003 spin_unlock_irq(&hugetlb_lock);
3006 * Fence off gigantic pages as there is a cyclic dependency between
3007 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3008 * of bailing out right away without further retrying.
3010 if (hstate_is_gigantic(h))
3013 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3015 else if (!folio_ref_count(folio))
3016 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3021 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3022 unsigned long addr, int avoid_reserve)
3024 struct hugepage_subpool *spool = subpool_vma(vma);
3025 struct hstate *h = hstate_vma(vma);
3026 struct folio *folio;
3027 long map_chg, map_commit;
3030 struct hugetlb_cgroup *h_cg = NULL;
3031 bool deferred_reserve;
3033 idx = hstate_index(h);
3035 * Examine the region/reserve map to determine if the process
3036 * has a reservation for the page to be allocated. A return
3037 * code of zero indicates a reservation exists (no change).
3039 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3041 return ERR_PTR(-ENOMEM);
3044 * Processes that did not create the mapping will have no
3045 * reserves as indicated by the region/reserve map. Check
3046 * that the allocation will not exceed the subpool limit.
3047 * Allocations for MAP_NORESERVE mappings also need to be
3048 * checked against any subpool limit.
3050 if (map_chg || avoid_reserve) {
3051 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3053 vma_end_reservation(h, vma, addr);
3054 return ERR_PTR(-ENOSPC);
3058 * Even though there was no reservation in the region/reserve
3059 * map, there could be reservations associated with the
3060 * subpool that can be used. This would be indicated if the
3061 * return value of hugepage_subpool_get_pages() is zero.
3062 * However, if avoid_reserve is specified we still avoid even
3063 * the subpool reservations.
3069 /* If this allocation is not consuming a reservation, charge it now.
3071 deferred_reserve = map_chg || avoid_reserve;
3072 if (deferred_reserve) {
3073 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3074 idx, pages_per_huge_page(h), &h_cg);
3076 goto out_subpool_put;
3079 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3081 goto out_uncharge_cgroup_reservation;
3083 spin_lock_irq(&hugetlb_lock);
3085 * glb_chg is passed to indicate whether or not a page must be taken
3086 * from the global free pool (global change). gbl_chg == 0 indicates
3087 * a reservation exists for the allocation.
3089 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3091 spin_unlock_irq(&hugetlb_lock);
3092 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3094 goto out_uncharge_cgroup;
3095 spin_lock_irq(&hugetlb_lock);
3096 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3097 folio_set_hugetlb_restore_reserve(folio);
3098 h->resv_huge_pages--;
3100 list_add(&folio->lru, &h->hugepage_activelist);
3101 folio_ref_unfreeze(folio, 1);
3105 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3106 /* If allocation is not consuming a reservation, also store the
3107 * hugetlb_cgroup pointer on the page.
3109 if (deferred_reserve) {
3110 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3114 spin_unlock_irq(&hugetlb_lock);
3116 hugetlb_set_folio_subpool(folio, spool);
3118 map_commit = vma_commit_reservation(h, vma, addr);
3119 if (unlikely(map_chg > map_commit)) {
3121 * The page was added to the reservation map between
3122 * vma_needs_reservation and vma_commit_reservation.
3123 * This indicates a race with hugetlb_reserve_pages.
3124 * Adjust for the subpool count incremented above AND
3125 * in hugetlb_reserve_pages for the same page. Also,
3126 * the reservation count added in hugetlb_reserve_pages
3127 * no longer applies.
3131 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3132 hugetlb_acct_memory(h, -rsv_adjust);
3133 if (deferred_reserve)
3134 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3135 pages_per_huge_page(h), folio);
3139 out_uncharge_cgroup:
3140 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3141 out_uncharge_cgroup_reservation:
3142 if (deferred_reserve)
3143 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3146 if (map_chg || avoid_reserve)
3147 hugepage_subpool_put_pages(spool, 1);
3148 vma_end_reservation(h, vma, addr);
3149 return ERR_PTR(-ENOSPC);
3152 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3153 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3154 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3156 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3159 /* do node specific alloc */
3160 if (nid != NUMA_NO_NODE) {
3161 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3162 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3167 /* allocate from next node when distributing huge pages */
3168 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3169 m = memblock_alloc_try_nid_raw(
3170 huge_page_size(h), huge_page_size(h),
3171 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3173 * Use the beginning of the huge page to store the
3174 * huge_bootmem_page struct (until gather_bootmem
3175 * puts them into the mem_map).
3183 /* Put them into a private list first because mem_map is not up yet */
3184 INIT_LIST_HEAD(&m->list);
3185 list_add(&m->list, &huge_boot_pages);
3191 * Put bootmem huge pages into the standard lists after mem_map is up.
3192 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3194 static void __init gather_bootmem_prealloc(void)
3196 struct huge_bootmem_page *m;
3198 list_for_each_entry(m, &huge_boot_pages, list) {
3199 struct page *page = virt_to_page(m);
3200 struct folio *folio = page_folio(page);
3201 struct hstate *h = m->hstate;
3203 VM_BUG_ON(!hstate_is_gigantic(h));
3204 WARN_ON(folio_ref_count(folio) != 1);
3205 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3206 WARN_ON(folio_test_reserved(folio));
3207 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3208 free_huge_page(page); /* add to the hugepage allocator */
3210 /* VERY unlikely inflated ref count on a tail page */
3211 free_gigantic_folio(folio, huge_page_order(h));
3215 * We need to restore the 'stolen' pages to totalram_pages
3216 * in order to fix confusing memory reports from free(1) and
3217 * other side-effects, like CommitLimit going negative.
3219 adjust_managed_page_count(page, pages_per_huge_page(h));
3223 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3228 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3229 if (hstate_is_gigantic(h)) {
3230 if (!alloc_bootmem_huge_page(h, nid))
3233 struct folio *folio;
3234 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3236 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3237 &node_states[N_MEMORY], NULL);
3240 free_huge_page(&folio->page); /* free it into the hugepage allocator */
3244 if (i == h->max_huge_pages_node[nid])
3247 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3248 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3249 h->max_huge_pages_node[nid], buf, nid, i);
3250 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3251 h->max_huge_pages_node[nid] = i;
3254 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3257 nodemask_t *node_alloc_noretry;
3258 bool node_specific_alloc = false;
3260 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3261 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3262 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3266 /* do node specific alloc */
3267 for_each_online_node(i) {
3268 if (h->max_huge_pages_node[i] > 0) {
3269 hugetlb_hstate_alloc_pages_onenode(h, i);
3270 node_specific_alloc = true;
3274 if (node_specific_alloc)
3277 /* below will do all node balanced alloc */
3278 if (!hstate_is_gigantic(h)) {
3280 * Bit mask controlling how hard we retry per-node allocations.
3281 * Ignore errors as lower level routines can deal with
3282 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3283 * time, we are likely in bigger trouble.
3285 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3288 /* allocations done at boot time */
3289 node_alloc_noretry = NULL;
3292 /* bit mask controlling how hard we retry per-node allocations */
3293 if (node_alloc_noretry)
3294 nodes_clear(*node_alloc_noretry);
3296 for (i = 0; i < h->max_huge_pages; ++i) {
3297 if (hstate_is_gigantic(h)) {
3298 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3300 } else if (!alloc_pool_huge_page(h,
3301 &node_states[N_MEMORY],
3302 node_alloc_noretry))
3306 if (i < h->max_huge_pages) {
3309 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3310 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3311 h->max_huge_pages, buf, i);
3312 h->max_huge_pages = i;
3314 kfree(node_alloc_noretry);
3317 static void __init hugetlb_init_hstates(void)
3319 struct hstate *h, *h2;
3321 for_each_hstate(h) {
3322 /* oversize hugepages were init'ed in early boot */
3323 if (!hstate_is_gigantic(h))
3324 hugetlb_hstate_alloc_pages(h);
3327 * Set demote order for each hstate. Note that
3328 * h->demote_order is initially 0.
3329 * - We can not demote gigantic pages if runtime freeing
3330 * is not supported, so skip this.
3331 * - If CMA allocation is possible, we can not demote
3332 * HUGETLB_PAGE_ORDER or smaller size pages.
3334 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3336 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3338 for_each_hstate(h2) {
3341 if (h2->order < h->order &&
3342 h2->order > h->demote_order)
3343 h->demote_order = h2->order;
3348 static void __init report_hugepages(void)
3352 for_each_hstate(h) {
3355 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3356 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3357 buf, h->free_huge_pages);
3358 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3359 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3363 #ifdef CONFIG_HIGHMEM
3364 static void try_to_free_low(struct hstate *h, unsigned long count,
3365 nodemask_t *nodes_allowed)
3368 LIST_HEAD(page_list);
3370 lockdep_assert_held(&hugetlb_lock);
3371 if (hstate_is_gigantic(h))
3375 * Collect pages to be freed on a list, and free after dropping lock
3377 for_each_node_mask(i, *nodes_allowed) {
3378 struct page *page, *next;
3379 struct list_head *freel = &h->hugepage_freelists[i];
3380 list_for_each_entry_safe(page, next, freel, lru) {
3381 if (count >= h->nr_huge_pages)
3383 if (PageHighMem(page))
3385 remove_hugetlb_folio(h, page_folio(page), false);
3386 list_add(&page->lru, &page_list);
3391 spin_unlock_irq(&hugetlb_lock);
3392 update_and_free_pages_bulk(h, &page_list);
3393 spin_lock_irq(&hugetlb_lock);
3396 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3397 nodemask_t *nodes_allowed)
3403 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3404 * balanced by operating on them in a round-robin fashion.
3405 * Returns 1 if an adjustment was made.
3407 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3412 lockdep_assert_held(&hugetlb_lock);
3413 VM_BUG_ON(delta != -1 && delta != 1);
3416 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3417 if (h->surplus_huge_pages_node[node])
3421 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3422 if (h->surplus_huge_pages_node[node] <
3423 h->nr_huge_pages_node[node])
3430 h->surplus_huge_pages += delta;
3431 h->surplus_huge_pages_node[node] += delta;
3435 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3436 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3437 nodemask_t *nodes_allowed)
3439 unsigned long min_count, ret;
3441 LIST_HEAD(page_list);
3442 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3445 * Bit mask controlling how hard we retry per-node allocations.
3446 * If we can not allocate the bit mask, do not attempt to allocate
3447 * the requested huge pages.
3449 if (node_alloc_noretry)
3450 nodes_clear(*node_alloc_noretry);
3455 * resize_lock mutex prevents concurrent adjustments to number of
3456 * pages in hstate via the proc/sysfs interfaces.
3458 mutex_lock(&h->resize_lock);
3459 flush_free_hpage_work(h);
3460 spin_lock_irq(&hugetlb_lock);
3463 * Check for a node specific request.
3464 * Changing node specific huge page count may require a corresponding
3465 * change to the global count. In any case, the passed node mask
3466 * (nodes_allowed) will restrict alloc/free to the specified node.
3468 if (nid != NUMA_NO_NODE) {
3469 unsigned long old_count = count;
3471 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3473 * User may have specified a large count value which caused the
3474 * above calculation to overflow. In this case, they wanted
3475 * to allocate as many huge pages as possible. Set count to
3476 * largest possible value to align with their intention.
3478 if (count < old_count)
3483 * Gigantic pages runtime allocation depend on the capability for large
3484 * page range allocation.
3485 * If the system does not provide this feature, return an error when
3486 * the user tries to allocate gigantic pages but let the user free the
3487 * boottime allocated gigantic pages.
3489 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3490 if (count > persistent_huge_pages(h)) {
3491 spin_unlock_irq(&hugetlb_lock);
3492 mutex_unlock(&h->resize_lock);
3493 NODEMASK_FREE(node_alloc_noretry);
3496 /* Fall through to decrease pool */
3500 * Increase the pool size
3501 * First take pages out of surplus state. Then make up the
3502 * remaining difference by allocating fresh huge pages.
3504 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3505 * to convert a surplus huge page to a normal huge page. That is
3506 * not critical, though, it just means the overall size of the
3507 * pool might be one hugepage larger than it needs to be, but
3508 * within all the constraints specified by the sysctls.
3510 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3511 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3515 while (count > persistent_huge_pages(h)) {
3517 * If this allocation races such that we no longer need the
3518 * page, free_huge_page will handle it by freeing the page
3519 * and reducing the surplus.
3521 spin_unlock_irq(&hugetlb_lock);
3523 /* yield cpu to avoid soft lockup */
3526 ret = alloc_pool_huge_page(h, nodes_allowed,
3527 node_alloc_noretry);
3528 spin_lock_irq(&hugetlb_lock);
3532 /* Bail for signals. Probably ctrl-c from user */
3533 if (signal_pending(current))
3538 * Decrease the pool size
3539 * First return free pages to the buddy allocator (being careful
3540 * to keep enough around to satisfy reservations). Then place
3541 * pages into surplus state as needed so the pool will shrink
3542 * to the desired size as pages become free.
3544 * By placing pages into the surplus state independent of the
3545 * overcommit value, we are allowing the surplus pool size to
3546 * exceed overcommit. There are few sane options here. Since
3547 * alloc_surplus_hugetlb_folio() is checking the global counter,
3548 * though, we'll note that we're not allowed to exceed surplus
3549 * and won't grow the pool anywhere else. Not until one of the
3550 * sysctls are changed, or the surplus pages go out of use.
3552 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3553 min_count = max(count, min_count);
3554 try_to_free_low(h, min_count, nodes_allowed);
3557 * Collect pages to be removed on list without dropping lock
3559 while (min_count < persistent_huge_pages(h)) {
3560 page = remove_pool_huge_page(h, nodes_allowed, 0);
3564 list_add(&page->lru, &page_list);
3566 /* free the pages after dropping lock */
3567 spin_unlock_irq(&hugetlb_lock);
3568 update_and_free_pages_bulk(h, &page_list);
3569 flush_free_hpage_work(h);
3570 spin_lock_irq(&hugetlb_lock);
3572 while (count < persistent_huge_pages(h)) {
3573 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3577 h->max_huge_pages = persistent_huge_pages(h);
3578 spin_unlock_irq(&hugetlb_lock);
3579 mutex_unlock(&h->resize_lock);
3581 NODEMASK_FREE(node_alloc_noretry);
3586 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3588 int i, nid = folio_nid(folio);
3589 struct hstate *target_hstate;
3590 struct page *subpage;
3591 struct folio *inner_folio;
3594 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3596 remove_hugetlb_folio_for_demote(h, folio, false);
3597 spin_unlock_irq(&hugetlb_lock);
3599 rc = hugetlb_vmemmap_restore(h, &folio->page);
3601 /* Allocation of vmemmmap failed, we can not demote folio */
3602 spin_lock_irq(&hugetlb_lock);
3603 folio_ref_unfreeze(folio, 1);
3604 add_hugetlb_folio(h, folio, false);
3609 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3610 * sizes as it will not ref count folios.
3612 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3615 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3616 * Without the mutex, pages added to target hstate could be marked
3619 * Note that we already hold h->resize_lock. To prevent deadlock,
3620 * use the convention of always taking larger size hstate mutex first.
3622 mutex_lock(&target_hstate->resize_lock);
3623 for (i = 0; i < pages_per_huge_page(h);
3624 i += pages_per_huge_page(target_hstate)) {
3625 subpage = folio_page(folio, i);
3626 inner_folio = page_folio(subpage);
3627 if (hstate_is_gigantic(target_hstate))
3628 prep_compound_gigantic_folio_for_demote(inner_folio,
3629 target_hstate->order);
3631 prep_compound_page(subpage, target_hstate->order);
3632 folio_change_private(inner_folio, NULL);
3633 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3634 free_huge_page(subpage);
3636 mutex_unlock(&target_hstate->resize_lock);
3638 spin_lock_irq(&hugetlb_lock);
3641 * Not absolutely necessary, but for consistency update max_huge_pages
3642 * based on pool changes for the demoted page.
3644 h->max_huge_pages--;
3645 target_hstate->max_huge_pages +=
3646 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3651 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3652 __must_hold(&hugetlb_lock)
3655 struct folio *folio;
3657 lockdep_assert_held(&hugetlb_lock);
3659 /* We should never get here if no demote order */
3660 if (!h->demote_order) {
3661 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3662 return -EINVAL; /* internal error */
3665 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3666 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3667 if (folio_test_hwpoison(folio))
3669 return demote_free_hugetlb_folio(h, folio);
3674 * Only way to get here is if all pages on free lists are poisoned.
3675 * Return -EBUSY so that caller will not retry.
3680 #define HSTATE_ATTR_RO(_name) \
3681 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3683 #define HSTATE_ATTR_WO(_name) \
3684 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3686 #define HSTATE_ATTR(_name) \
3687 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3689 static struct kobject *hugepages_kobj;
3690 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3692 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3694 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3698 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3699 if (hstate_kobjs[i] == kobj) {
3701 *nidp = NUMA_NO_NODE;
3705 return kobj_to_node_hstate(kobj, nidp);
3708 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3709 struct kobj_attribute *attr, char *buf)
3712 unsigned long nr_huge_pages;
3715 h = kobj_to_hstate(kobj, &nid);
3716 if (nid == NUMA_NO_NODE)
3717 nr_huge_pages = h->nr_huge_pages;
3719 nr_huge_pages = h->nr_huge_pages_node[nid];
3721 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3724 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3725 struct hstate *h, int nid,
3726 unsigned long count, size_t len)
3729 nodemask_t nodes_allowed, *n_mask;
3731 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3734 if (nid == NUMA_NO_NODE) {
3736 * global hstate attribute
3738 if (!(obey_mempolicy &&
3739 init_nodemask_of_mempolicy(&nodes_allowed)))
3740 n_mask = &node_states[N_MEMORY];
3742 n_mask = &nodes_allowed;
3745 * Node specific request. count adjustment happens in
3746 * set_max_huge_pages() after acquiring hugetlb_lock.
3748 init_nodemask_of_node(&nodes_allowed, nid);
3749 n_mask = &nodes_allowed;
3752 err = set_max_huge_pages(h, count, nid, n_mask);
3754 return err ? err : len;
3757 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3758 struct kobject *kobj, const char *buf,
3762 unsigned long count;
3766 err = kstrtoul(buf, 10, &count);
3770 h = kobj_to_hstate(kobj, &nid);
3771 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3774 static ssize_t nr_hugepages_show(struct kobject *kobj,
3775 struct kobj_attribute *attr, char *buf)
3777 return nr_hugepages_show_common(kobj, attr, buf);
3780 static ssize_t nr_hugepages_store(struct kobject *kobj,
3781 struct kobj_attribute *attr, const char *buf, size_t len)
3783 return nr_hugepages_store_common(false, kobj, buf, len);
3785 HSTATE_ATTR(nr_hugepages);
3790 * hstate attribute for optionally mempolicy-based constraint on persistent
3791 * huge page alloc/free.
3793 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3794 struct kobj_attribute *attr,
3797 return nr_hugepages_show_common(kobj, attr, buf);
3800 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3801 struct kobj_attribute *attr, const char *buf, size_t len)
3803 return nr_hugepages_store_common(true, kobj, buf, len);
3805 HSTATE_ATTR(nr_hugepages_mempolicy);
3809 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3810 struct kobj_attribute *attr, char *buf)
3812 struct hstate *h = kobj_to_hstate(kobj, NULL);
3813 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3816 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3817 struct kobj_attribute *attr, const char *buf, size_t count)
3820 unsigned long input;
3821 struct hstate *h = kobj_to_hstate(kobj, NULL);
3823 if (hstate_is_gigantic(h))
3826 err = kstrtoul(buf, 10, &input);
3830 spin_lock_irq(&hugetlb_lock);
3831 h->nr_overcommit_huge_pages = input;
3832 spin_unlock_irq(&hugetlb_lock);
3836 HSTATE_ATTR(nr_overcommit_hugepages);
3838 static ssize_t free_hugepages_show(struct kobject *kobj,
3839 struct kobj_attribute *attr, char *buf)
3842 unsigned long free_huge_pages;
3845 h = kobj_to_hstate(kobj, &nid);
3846 if (nid == NUMA_NO_NODE)
3847 free_huge_pages = h->free_huge_pages;
3849 free_huge_pages = h->free_huge_pages_node[nid];
3851 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3853 HSTATE_ATTR_RO(free_hugepages);
3855 static ssize_t resv_hugepages_show(struct kobject *kobj,
3856 struct kobj_attribute *attr, char *buf)
3858 struct hstate *h = kobj_to_hstate(kobj, NULL);
3859 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3861 HSTATE_ATTR_RO(resv_hugepages);
3863 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3864 struct kobj_attribute *attr, char *buf)
3867 unsigned long surplus_huge_pages;
3870 h = kobj_to_hstate(kobj, &nid);
3871 if (nid == NUMA_NO_NODE)
3872 surplus_huge_pages = h->surplus_huge_pages;
3874 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3876 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3878 HSTATE_ATTR_RO(surplus_hugepages);
3880 static ssize_t demote_store(struct kobject *kobj,
3881 struct kobj_attribute *attr, const char *buf, size_t len)
3883 unsigned long nr_demote;
3884 unsigned long nr_available;
3885 nodemask_t nodes_allowed, *n_mask;
3890 err = kstrtoul(buf, 10, &nr_demote);
3893 h = kobj_to_hstate(kobj, &nid);
3895 if (nid != NUMA_NO_NODE) {
3896 init_nodemask_of_node(&nodes_allowed, nid);
3897 n_mask = &nodes_allowed;
3899 n_mask = &node_states[N_MEMORY];
3902 /* Synchronize with other sysfs operations modifying huge pages */
3903 mutex_lock(&h->resize_lock);
3904 spin_lock_irq(&hugetlb_lock);
3908 * Check for available pages to demote each time thorough the
3909 * loop as demote_pool_huge_page will drop hugetlb_lock.
3911 if (nid != NUMA_NO_NODE)
3912 nr_available = h->free_huge_pages_node[nid];
3914 nr_available = h->free_huge_pages;
3915 nr_available -= h->resv_huge_pages;
3919 err = demote_pool_huge_page(h, n_mask);
3926 spin_unlock_irq(&hugetlb_lock);
3927 mutex_unlock(&h->resize_lock);
3933 HSTATE_ATTR_WO(demote);
3935 static ssize_t demote_size_show(struct kobject *kobj,
3936 struct kobj_attribute *attr, char *buf)
3938 struct hstate *h = kobj_to_hstate(kobj, NULL);
3939 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3941 return sysfs_emit(buf, "%lukB\n", demote_size);
3944 static ssize_t demote_size_store(struct kobject *kobj,
3945 struct kobj_attribute *attr,
3946 const char *buf, size_t count)
3948 struct hstate *h, *demote_hstate;
3949 unsigned long demote_size;
3950 unsigned int demote_order;
3952 demote_size = (unsigned long)memparse(buf, NULL);
3954 demote_hstate = size_to_hstate(demote_size);
3957 demote_order = demote_hstate->order;
3958 if (demote_order < HUGETLB_PAGE_ORDER)
3961 /* demote order must be smaller than hstate order */
3962 h = kobj_to_hstate(kobj, NULL);
3963 if (demote_order >= h->order)
3966 /* resize_lock synchronizes access to demote size and writes */
3967 mutex_lock(&h->resize_lock);
3968 h->demote_order = demote_order;
3969 mutex_unlock(&h->resize_lock);
3973 HSTATE_ATTR(demote_size);
3975 static struct attribute *hstate_attrs[] = {
3976 &nr_hugepages_attr.attr,
3977 &nr_overcommit_hugepages_attr.attr,
3978 &free_hugepages_attr.attr,
3979 &resv_hugepages_attr.attr,
3980 &surplus_hugepages_attr.attr,
3982 &nr_hugepages_mempolicy_attr.attr,
3987 static const struct attribute_group hstate_attr_group = {
3988 .attrs = hstate_attrs,
3991 static struct attribute *hstate_demote_attrs[] = {
3992 &demote_size_attr.attr,
3997 static const struct attribute_group hstate_demote_attr_group = {
3998 .attrs = hstate_demote_attrs,
4001 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4002 struct kobject **hstate_kobjs,
4003 const struct attribute_group *hstate_attr_group)
4006 int hi = hstate_index(h);
4008 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4009 if (!hstate_kobjs[hi])
4012 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4014 kobject_put(hstate_kobjs[hi]);
4015 hstate_kobjs[hi] = NULL;
4019 if (h->demote_order) {
4020 retval = sysfs_create_group(hstate_kobjs[hi],
4021 &hstate_demote_attr_group);
4023 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4024 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4025 kobject_put(hstate_kobjs[hi]);
4026 hstate_kobjs[hi] = NULL;
4035 static bool hugetlb_sysfs_initialized __ro_after_init;
4038 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4039 * with node devices in node_devices[] using a parallel array. The array
4040 * index of a node device or _hstate == node id.
4041 * This is here to avoid any static dependency of the node device driver, in
4042 * the base kernel, on the hugetlb module.
4044 struct node_hstate {
4045 struct kobject *hugepages_kobj;
4046 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4048 static struct node_hstate node_hstates[MAX_NUMNODES];
4051 * A subset of global hstate attributes for node devices
4053 static struct attribute *per_node_hstate_attrs[] = {
4054 &nr_hugepages_attr.attr,
4055 &free_hugepages_attr.attr,
4056 &surplus_hugepages_attr.attr,
4060 static const struct attribute_group per_node_hstate_attr_group = {
4061 .attrs = per_node_hstate_attrs,
4065 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4066 * Returns node id via non-NULL nidp.
4068 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4072 for (nid = 0; nid < nr_node_ids; nid++) {
4073 struct node_hstate *nhs = &node_hstates[nid];
4075 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4076 if (nhs->hstate_kobjs[i] == kobj) {
4088 * Unregister hstate attributes from a single node device.
4089 * No-op if no hstate attributes attached.
4091 void hugetlb_unregister_node(struct node *node)
4094 struct node_hstate *nhs = &node_hstates[node->dev.id];
4096 if (!nhs->hugepages_kobj)
4097 return; /* no hstate attributes */
4099 for_each_hstate(h) {
4100 int idx = hstate_index(h);
4101 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4105 if (h->demote_order)
4106 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4107 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4108 kobject_put(hstate_kobj);
4109 nhs->hstate_kobjs[idx] = NULL;
4112 kobject_put(nhs->hugepages_kobj);
4113 nhs->hugepages_kobj = NULL;
4118 * Register hstate attributes for a single node device.
4119 * No-op if attributes already registered.
4121 void hugetlb_register_node(struct node *node)
4124 struct node_hstate *nhs = &node_hstates[node->dev.id];
4127 if (!hugetlb_sysfs_initialized)
4130 if (nhs->hugepages_kobj)
4131 return; /* already allocated */
4133 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4135 if (!nhs->hugepages_kobj)
4138 for_each_hstate(h) {
4139 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4141 &per_node_hstate_attr_group);
4143 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4144 h->name, node->dev.id);
4145 hugetlb_unregister_node(node);
4152 * hugetlb init time: register hstate attributes for all registered node
4153 * devices of nodes that have memory. All on-line nodes should have
4154 * registered their associated device by this time.
4156 static void __init hugetlb_register_all_nodes(void)
4160 for_each_online_node(nid)
4161 hugetlb_register_node(node_devices[nid]);
4163 #else /* !CONFIG_NUMA */
4165 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4173 static void hugetlb_register_all_nodes(void) { }
4178 static void __init hugetlb_cma_check(void);
4180 static inline __init void hugetlb_cma_check(void)
4185 static void __init hugetlb_sysfs_init(void)
4190 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4191 if (!hugepages_kobj)
4194 for_each_hstate(h) {
4195 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4196 hstate_kobjs, &hstate_attr_group);
4198 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4202 hugetlb_sysfs_initialized = true;
4204 hugetlb_register_all_nodes();
4207 #ifdef CONFIG_SYSCTL
4208 static void hugetlb_sysctl_init(void);
4210 static inline void hugetlb_sysctl_init(void) { }
4213 static int __init hugetlb_init(void)
4217 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4220 if (!hugepages_supported()) {
4221 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4222 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4227 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4228 * architectures depend on setup being done here.
4230 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4231 if (!parsed_default_hugepagesz) {
4233 * If we did not parse a default huge page size, set
4234 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4235 * number of huge pages for this default size was implicitly
4236 * specified, set that here as well.
4237 * Note that the implicit setting will overwrite an explicit
4238 * setting. A warning will be printed in this case.
4240 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4241 if (default_hstate_max_huge_pages) {
4242 if (default_hstate.max_huge_pages) {
4245 string_get_size(huge_page_size(&default_hstate),
4246 1, STRING_UNITS_2, buf, 32);
4247 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4248 default_hstate.max_huge_pages, buf);
4249 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4250 default_hstate_max_huge_pages);
4252 default_hstate.max_huge_pages =
4253 default_hstate_max_huge_pages;
4255 for_each_online_node(i)
4256 default_hstate.max_huge_pages_node[i] =
4257 default_hugepages_in_node[i];
4261 hugetlb_cma_check();
4262 hugetlb_init_hstates();
4263 gather_bootmem_prealloc();
4266 hugetlb_sysfs_init();
4267 hugetlb_cgroup_file_init();
4268 hugetlb_sysctl_init();
4271 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4273 num_fault_mutexes = 1;
4275 hugetlb_fault_mutex_table =
4276 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4278 BUG_ON(!hugetlb_fault_mutex_table);
4280 for (i = 0; i < num_fault_mutexes; i++)
4281 mutex_init(&hugetlb_fault_mutex_table[i]);
4284 subsys_initcall(hugetlb_init);
4286 /* Overwritten by architectures with more huge page sizes */
4287 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4289 return size == HPAGE_SIZE;
4292 void __init hugetlb_add_hstate(unsigned int order)
4297 if (size_to_hstate(PAGE_SIZE << order)) {
4300 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4302 h = &hstates[hugetlb_max_hstate++];
4303 mutex_init(&h->resize_lock);
4305 h->mask = ~(huge_page_size(h) - 1);
4306 for (i = 0; i < MAX_NUMNODES; ++i)
4307 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4308 INIT_LIST_HEAD(&h->hugepage_activelist);
4309 h->next_nid_to_alloc = first_memory_node;
4310 h->next_nid_to_free = first_memory_node;
4311 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4312 huge_page_size(h)/SZ_1K);
4317 bool __init __weak hugetlb_node_alloc_supported(void)
4322 static void __init hugepages_clear_pages_in_node(void)
4324 if (!hugetlb_max_hstate) {
4325 default_hstate_max_huge_pages = 0;
4326 memset(default_hugepages_in_node, 0,
4327 sizeof(default_hugepages_in_node));
4329 parsed_hstate->max_huge_pages = 0;
4330 memset(parsed_hstate->max_huge_pages_node, 0,
4331 sizeof(parsed_hstate->max_huge_pages_node));
4336 * hugepages command line processing
4337 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4338 * specification. If not, ignore the hugepages value. hugepages can also
4339 * be the first huge page command line option in which case it implicitly
4340 * specifies the number of huge pages for the default size.
4342 static int __init hugepages_setup(char *s)
4345 static unsigned long *last_mhp;
4346 int node = NUMA_NO_NODE;
4351 if (!parsed_valid_hugepagesz) {
4352 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4353 parsed_valid_hugepagesz = true;
4358 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4359 * yet, so this hugepages= parameter goes to the "default hstate".
4360 * Otherwise, it goes with the previously parsed hugepagesz or
4361 * default_hugepagesz.
4363 else if (!hugetlb_max_hstate)
4364 mhp = &default_hstate_max_huge_pages;
4366 mhp = &parsed_hstate->max_huge_pages;
4368 if (mhp == last_mhp) {
4369 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4375 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4377 /* Parameter is node format */
4378 if (p[count] == ':') {
4379 if (!hugetlb_node_alloc_supported()) {
4380 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4383 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4385 node = array_index_nospec(tmp, MAX_NUMNODES);
4387 /* Parse hugepages */
4388 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4390 if (!hugetlb_max_hstate)
4391 default_hugepages_in_node[node] = tmp;
4393 parsed_hstate->max_huge_pages_node[node] = tmp;
4395 /* Go to parse next node*/
4396 if (p[count] == ',')
4409 * Global state is always initialized later in hugetlb_init.
4410 * But we need to allocate gigantic hstates here early to still
4411 * use the bootmem allocator.
4413 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4414 hugetlb_hstate_alloc_pages(parsed_hstate);
4421 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4422 hugepages_clear_pages_in_node();
4425 __setup("hugepages=", hugepages_setup);
4428 * hugepagesz command line processing
4429 * A specific huge page size can only be specified once with hugepagesz.
4430 * hugepagesz is followed by hugepages on the command line. The global
4431 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4432 * hugepagesz argument was valid.
4434 static int __init hugepagesz_setup(char *s)
4439 parsed_valid_hugepagesz = false;
4440 size = (unsigned long)memparse(s, NULL);
4442 if (!arch_hugetlb_valid_size(size)) {
4443 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4447 h = size_to_hstate(size);
4450 * hstate for this size already exists. This is normally
4451 * an error, but is allowed if the existing hstate is the
4452 * default hstate. More specifically, it is only allowed if
4453 * the number of huge pages for the default hstate was not
4454 * previously specified.
4456 if (!parsed_default_hugepagesz || h != &default_hstate ||
4457 default_hstate.max_huge_pages) {
4458 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4463 * No need to call hugetlb_add_hstate() as hstate already
4464 * exists. But, do set parsed_hstate so that a following
4465 * hugepages= parameter will be applied to this hstate.
4468 parsed_valid_hugepagesz = true;
4472 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4473 parsed_valid_hugepagesz = true;
4476 __setup("hugepagesz=", hugepagesz_setup);
4479 * default_hugepagesz command line input
4480 * Only one instance of default_hugepagesz allowed on command line.
4482 static int __init default_hugepagesz_setup(char *s)
4487 parsed_valid_hugepagesz = false;
4488 if (parsed_default_hugepagesz) {
4489 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4493 size = (unsigned long)memparse(s, NULL);
4495 if (!arch_hugetlb_valid_size(size)) {
4496 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4500 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4501 parsed_valid_hugepagesz = true;
4502 parsed_default_hugepagesz = true;
4503 default_hstate_idx = hstate_index(size_to_hstate(size));
4506 * The number of default huge pages (for this size) could have been
4507 * specified as the first hugetlb parameter: hugepages=X. If so,
4508 * then default_hstate_max_huge_pages is set. If the default huge
4509 * page size is gigantic (> MAX_ORDER), then the pages must be
4510 * allocated here from bootmem allocator.
4512 if (default_hstate_max_huge_pages) {
4513 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4514 for_each_online_node(i)
4515 default_hstate.max_huge_pages_node[i] =
4516 default_hugepages_in_node[i];
4517 if (hstate_is_gigantic(&default_hstate))
4518 hugetlb_hstate_alloc_pages(&default_hstate);
4519 default_hstate_max_huge_pages = 0;
4524 __setup("default_hugepagesz=", default_hugepagesz_setup);
4526 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4529 struct mempolicy *mpol = get_task_policy(current);
4532 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4533 * (from policy_nodemask) specifically for hugetlb case
4535 if (mpol->mode == MPOL_BIND &&
4536 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4537 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4538 return &mpol->nodes;
4543 static unsigned int allowed_mems_nr(struct hstate *h)
4546 unsigned int nr = 0;
4547 nodemask_t *mbind_nodemask;
4548 unsigned int *array = h->free_huge_pages_node;
4549 gfp_t gfp_mask = htlb_alloc_mask(h);
4551 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4552 for_each_node_mask(node, cpuset_current_mems_allowed) {
4553 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4560 #ifdef CONFIG_SYSCTL
4561 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4562 void *buffer, size_t *length,
4563 loff_t *ppos, unsigned long *out)
4565 struct ctl_table dup_table;
4568 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4569 * can duplicate the @table and alter the duplicate of it.
4572 dup_table.data = out;
4574 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4577 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4578 struct ctl_table *table, int write,
4579 void *buffer, size_t *length, loff_t *ppos)
4581 struct hstate *h = &default_hstate;
4582 unsigned long tmp = h->max_huge_pages;
4585 if (!hugepages_supported())
4588 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4594 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4595 NUMA_NO_NODE, tmp, *length);
4600 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4601 void *buffer, size_t *length, loff_t *ppos)
4604 return hugetlb_sysctl_handler_common(false, table, write,
4605 buffer, length, ppos);
4609 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4610 void *buffer, size_t *length, loff_t *ppos)
4612 return hugetlb_sysctl_handler_common(true, table, write,
4613 buffer, length, ppos);
4615 #endif /* CONFIG_NUMA */
4617 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4618 void *buffer, size_t *length, loff_t *ppos)
4620 struct hstate *h = &default_hstate;
4624 if (!hugepages_supported())
4627 tmp = h->nr_overcommit_huge_pages;
4629 if (write && hstate_is_gigantic(h))
4632 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4638 spin_lock_irq(&hugetlb_lock);
4639 h->nr_overcommit_huge_pages = tmp;
4640 spin_unlock_irq(&hugetlb_lock);
4646 static struct ctl_table hugetlb_table[] = {
4648 .procname = "nr_hugepages",
4650 .maxlen = sizeof(unsigned long),
4652 .proc_handler = hugetlb_sysctl_handler,
4656 .procname = "nr_hugepages_mempolicy",
4658 .maxlen = sizeof(unsigned long),
4660 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4664 .procname = "hugetlb_shm_group",
4665 .data = &sysctl_hugetlb_shm_group,
4666 .maxlen = sizeof(gid_t),
4668 .proc_handler = proc_dointvec,
4671 .procname = "nr_overcommit_hugepages",
4673 .maxlen = sizeof(unsigned long),
4675 .proc_handler = hugetlb_overcommit_handler,
4680 static void hugetlb_sysctl_init(void)
4682 register_sysctl_init("vm", hugetlb_table);
4684 #endif /* CONFIG_SYSCTL */
4686 void hugetlb_report_meminfo(struct seq_file *m)
4689 unsigned long total = 0;
4691 if (!hugepages_supported())
4694 for_each_hstate(h) {
4695 unsigned long count = h->nr_huge_pages;
4697 total += huge_page_size(h) * count;
4699 if (h == &default_hstate)
4701 "HugePages_Total: %5lu\n"
4702 "HugePages_Free: %5lu\n"
4703 "HugePages_Rsvd: %5lu\n"
4704 "HugePages_Surp: %5lu\n"
4705 "Hugepagesize: %8lu kB\n",
4709 h->surplus_huge_pages,
4710 huge_page_size(h) / SZ_1K);
4713 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4716 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4718 struct hstate *h = &default_hstate;
4720 if (!hugepages_supported())
4723 return sysfs_emit_at(buf, len,
4724 "Node %d HugePages_Total: %5u\n"
4725 "Node %d HugePages_Free: %5u\n"
4726 "Node %d HugePages_Surp: %5u\n",
4727 nid, h->nr_huge_pages_node[nid],
4728 nid, h->free_huge_pages_node[nid],
4729 nid, h->surplus_huge_pages_node[nid]);
4732 void hugetlb_show_meminfo_node(int nid)
4736 if (!hugepages_supported())
4740 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4742 h->nr_huge_pages_node[nid],
4743 h->free_huge_pages_node[nid],
4744 h->surplus_huge_pages_node[nid],
4745 huge_page_size(h) / SZ_1K);
4748 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4750 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4751 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4754 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4755 unsigned long hugetlb_total_pages(void)
4758 unsigned long nr_total_pages = 0;
4761 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4762 return nr_total_pages;
4765 static int hugetlb_acct_memory(struct hstate *h, long delta)
4772 spin_lock_irq(&hugetlb_lock);
4774 * When cpuset is configured, it breaks the strict hugetlb page
4775 * reservation as the accounting is done on a global variable. Such
4776 * reservation is completely rubbish in the presence of cpuset because
4777 * the reservation is not checked against page availability for the
4778 * current cpuset. Application can still potentially OOM'ed by kernel
4779 * with lack of free htlb page in cpuset that the task is in.
4780 * Attempt to enforce strict accounting with cpuset is almost
4781 * impossible (or too ugly) because cpuset is too fluid that
4782 * task or memory node can be dynamically moved between cpusets.
4784 * The change of semantics for shared hugetlb mapping with cpuset is
4785 * undesirable. However, in order to preserve some of the semantics,
4786 * we fall back to check against current free page availability as
4787 * a best attempt and hopefully to minimize the impact of changing
4788 * semantics that cpuset has.
4790 * Apart from cpuset, we also have memory policy mechanism that
4791 * also determines from which node the kernel will allocate memory
4792 * in a NUMA system. So similar to cpuset, we also should consider
4793 * the memory policy of the current task. Similar to the description
4797 if (gather_surplus_pages(h, delta) < 0)
4800 if (delta > allowed_mems_nr(h)) {
4801 return_unused_surplus_pages(h, delta);
4808 return_unused_surplus_pages(h, (unsigned long) -delta);
4811 spin_unlock_irq(&hugetlb_lock);
4815 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4817 struct resv_map *resv = vma_resv_map(vma);
4820 * HPAGE_RESV_OWNER indicates a private mapping.
4821 * This new VMA should share its siblings reservation map if present.
4822 * The VMA will only ever have a valid reservation map pointer where
4823 * it is being copied for another still existing VMA. As that VMA
4824 * has a reference to the reservation map it cannot disappear until
4825 * after this open call completes. It is therefore safe to take a
4826 * new reference here without additional locking.
4828 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4829 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4830 kref_get(&resv->refs);
4834 * vma_lock structure for sharable mappings is vma specific.
4835 * Clear old pointer (if copied via vm_area_dup) and allocate
4836 * new structure. Before clearing, make sure vma_lock is not
4839 if (vma->vm_flags & VM_MAYSHARE) {
4840 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4843 if (vma_lock->vma != vma) {
4844 vma->vm_private_data = NULL;
4845 hugetlb_vma_lock_alloc(vma);
4847 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4849 hugetlb_vma_lock_alloc(vma);
4853 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4855 struct hstate *h = hstate_vma(vma);
4856 struct resv_map *resv;
4857 struct hugepage_subpool *spool = subpool_vma(vma);
4858 unsigned long reserve, start, end;
4861 hugetlb_vma_lock_free(vma);
4863 resv = vma_resv_map(vma);
4864 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4867 start = vma_hugecache_offset(h, vma, vma->vm_start);
4868 end = vma_hugecache_offset(h, vma, vma->vm_end);
4870 reserve = (end - start) - region_count(resv, start, end);
4871 hugetlb_cgroup_uncharge_counter(resv, start, end);
4874 * Decrement reserve counts. The global reserve count may be
4875 * adjusted if the subpool has a minimum size.
4877 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4878 hugetlb_acct_memory(h, -gbl_reserve);
4881 kref_put(&resv->refs, resv_map_release);
4884 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4886 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4890 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4891 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4892 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4894 if (addr & ~PUD_MASK) {
4896 * hugetlb_vm_op_split is called right before we attempt to
4897 * split the VMA. We will need to unshare PMDs in the old and
4898 * new VMAs, so let's unshare before we split.
4900 unsigned long floor = addr & PUD_MASK;
4901 unsigned long ceil = floor + PUD_SIZE;
4903 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4904 hugetlb_unshare_pmds(vma, floor, ceil);
4910 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4912 return huge_page_size(hstate_vma(vma));
4916 * We cannot handle pagefaults against hugetlb pages at all. They cause
4917 * handle_mm_fault() to try to instantiate regular-sized pages in the
4918 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4921 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4928 * When a new function is introduced to vm_operations_struct and added
4929 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4930 * This is because under System V memory model, mappings created via
4931 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4932 * their original vm_ops are overwritten with shm_vm_ops.
4934 const struct vm_operations_struct hugetlb_vm_ops = {
4935 .fault = hugetlb_vm_op_fault,
4936 .open = hugetlb_vm_op_open,
4937 .close = hugetlb_vm_op_close,
4938 .may_split = hugetlb_vm_op_split,
4939 .pagesize = hugetlb_vm_op_pagesize,
4942 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4946 unsigned int shift = huge_page_shift(hstate_vma(vma));
4949 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4950 vma->vm_page_prot)));
4952 entry = huge_pte_wrprotect(mk_huge_pte(page,
4953 vma->vm_page_prot));
4955 entry = pte_mkyoung(entry);
4956 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4961 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4962 unsigned long address, pte_t *ptep)
4966 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4967 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4968 update_mmu_cache(vma, address, ptep);
4971 bool is_hugetlb_entry_migration(pte_t pte)
4975 if (huge_pte_none(pte) || pte_present(pte))
4977 swp = pte_to_swp_entry(pte);
4978 if (is_migration_entry(swp))
4984 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4988 if (huge_pte_none(pte) || pte_present(pte))
4990 swp = pte_to_swp_entry(pte);
4991 if (is_hwpoison_entry(swp))
4998 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4999 struct folio *new_folio, pte_t old)
5001 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5003 __folio_mark_uptodate(new_folio);
5004 hugepage_add_new_anon_rmap(new_folio, vma, addr);
5005 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5006 newpte = huge_pte_mkuffd_wp(newpte);
5007 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
5008 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5009 folio_set_hugetlb_migratable(new_folio);
5012 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5013 struct vm_area_struct *dst_vma,
5014 struct vm_area_struct *src_vma)
5016 pte_t *src_pte, *dst_pte, entry;
5017 struct folio *pte_folio;
5019 bool cow = is_cow_mapping(src_vma->vm_flags);
5020 struct hstate *h = hstate_vma(src_vma);
5021 unsigned long sz = huge_page_size(h);
5022 unsigned long npages = pages_per_huge_page(h);
5023 struct mmu_notifier_range range;
5024 unsigned long last_addr_mask;
5028 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5031 mmu_notifier_invalidate_range_start(&range);
5032 mmap_assert_write_locked(src);
5033 raw_write_seqcount_begin(&src->write_protect_seq);
5036 * For shared mappings the vma lock must be held before
5037 * calling hugetlb_walk() in the src vma. Otherwise, the
5038 * returned ptep could go away if part of a shared pmd and
5039 * another thread calls huge_pmd_unshare.
5041 hugetlb_vma_lock_read(src_vma);
5044 last_addr_mask = hugetlb_mask_last_page(h);
5045 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5046 spinlock_t *src_ptl, *dst_ptl;
5047 src_pte = hugetlb_walk(src_vma, addr, sz);
5049 addr |= last_addr_mask;
5052 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5059 * If the pagetables are shared don't copy or take references.
5061 * dst_pte == src_pte is the common case of src/dest sharing.
5062 * However, src could have 'unshared' and dst shares with
5063 * another vma. So page_count of ptep page is checked instead
5064 * to reliably determine whether pte is shared.
5066 if (page_count(virt_to_page(dst_pte)) > 1) {
5067 addr |= last_addr_mask;
5071 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5072 src_ptl = huge_pte_lockptr(h, src, src_pte);
5073 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5074 entry = huge_ptep_get(src_pte);
5076 if (huge_pte_none(entry)) {
5078 * Skip if src entry none.
5081 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5082 if (!userfaultfd_wp(dst_vma))
5083 entry = huge_pte_clear_uffd_wp(entry);
5084 set_huge_pte_at(dst, addr, dst_pte, entry);
5085 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5086 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5087 bool uffd_wp = pte_swp_uffd_wp(entry);
5089 if (!is_readable_migration_entry(swp_entry) && cow) {
5091 * COW mappings require pages in both
5092 * parent and child to be set to read.
5094 swp_entry = make_readable_migration_entry(
5095 swp_offset(swp_entry));
5096 entry = swp_entry_to_pte(swp_entry);
5097 if (userfaultfd_wp(src_vma) && uffd_wp)
5098 entry = pte_swp_mkuffd_wp(entry);
5099 set_huge_pte_at(src, addr, src_pte, entry);
5101 if (!userfaultfd_wp(dst_vma))
5102 entry = huge_pte_clear_uffd_wp(entry);
5103 set_huge_pte_at(dst, addr, dst_pte, entry);
5104 } else if (unlikely(is_pte_marker(entry))) {
5105 pte_marker marker = copy_pte_marker(
5106 pte_to_swp_entry(entry), dst_vma);
5109 set_huge_pte_at(dst, addr, dst_pte,
5110 make_pte_marker(marker));
5112 entry = huge_ptep_get(src_pte);
5113 pte_folio = page_folio(pte_page(entry));
5114 folio_get(pte_folio);
5117 * Failing to duplicate the anon rmap is a rare case
5118 * where we see pinned hugetlb pages while they're
5119 * prone to COW. We need to do the COW earlier during
5122 * When pre-allocating the page or copying data, we
5123 * need to be without the pgtable locks since we could
5124 * sleep during the process.
5126 if (!folio_test_anon(pte_folio)) {
5127 page_dup_file_rmap(&pte_folio->page, true);
5128 } else if (page_try_dup_anon_rmap(&pte_folio->page,
5130 pte_t src_pte_old = entry;
5131 struct folio *new_folio;
5133 spin_unlock(src_ptl);
5134 spin_unlock(dst_ptl);
5135 /* Do not use reserve as it's private owned */
5136 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5137 if (IS_ERR(new_folio)) {
5138 folio_put(pte_folio);
5139 ret = PTR_ERR(new_folio);
5142 ret = copy_user_large_folio(new_folio,
5145 folio_put(pte_folio);
5147 folio_put(new_folio);
5151 /* Install the new hugetlb folio if src pte stable */
5152 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5153 src_ptl = huge_pte_lockptr(h, src, src_pte);
5154 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5155 entry = huge_ptep_get(src_pte);
5156 if (!pte_same(src_pte_old, entry)) {
5157 restore_reserve_on_error(h, dst_vma, addr,
5159 folio_put(new_folio);
5160 /* huge_ptep of dst_pte won't change as in child */
5163 hugetlb_install_folio(dst_vma, dst_pte, addr,
5164 new_folio, src_pte_old);
5165 spin_unlock(src_ptl);
5166 spin_unlock(dst_ptl);
5172 * No need to notify as we are downgrading page
5173 * table protection not changing it to point
5176 * See Documentation/mm/mmu_notifier.rst
5178 huge_ptep_set_wrprotect(src, addr, src_pte);
5179 entry = huge_pte_wrprotect(entry);
5182 if (!userfaultfd_wp(dst_vma))
5183 entry = huge_pte_clear_uffd_wp(entry);
5185 set_huge_pte_at(dst, addr, dst_pte, entry);
5186 hugetlb_count_add(npages, dst);
5188 spin_unlock(src_ptl);
5189 spin_unlock(dst_ptl);
5193 raw_write_seqcount_end(&src->write_protect_seq);
5194 mmu_notifier_invalidate_range_end(&range);
5196 hugetlb_vma_unlock_read(src_vma);
5202 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5203 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5205 struct hstate *h = hstate_vma(vma);
5206 struct mm_struct *mm = vma->vm_mm;
5207 spinlock_t *src_ptl, *dst_ptl;
5210 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5211 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5214 * We don't have to worry about the ordering of src and dst ptlocks
5215 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5217 if (src_ptl != dst_ptl)
5218 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5220 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5221 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5223 if (src_ptl != dst_ptl)
5224 spin_unlock(src_ptl);
5225 spin_unlock(dst_ptl);
5228 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5229 struct vm_area_struct *new_vma,
5230 unsigned long old_addr, unsigned long new_addr,
5233 struct hstate *h = hstate_vma(vma);
5234 struct address_space *mapping = vma->vm_file->f_mapping;
5235 unsigned long sz = huge_page_size(h);
5236 struct mm_struct *mm = vma->vm_mm;
5237 unsigned long old_end = old_addr + len;
5238 unsigned long last_addr_mask;
5239 pte_t *src_pte, *dst_pte;
5240 struct mmu_notifier_range range;
5241 bool shared_pmd = false;
5243 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5245 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5247 * In case of shared PMDs, we should cover the maximum possible
5250 flush_cache_range(vma, range.start, range.end);
5252 mmu_notifier_invalidate_range_start(&range);
5253 last_addr_mask = hugetlb_mask_last_page(h);
5254 /* Prevent race with file truncation */
5255 hugetlb_vma_lock_write(vma);
5256 i_mmap_lock_write(mapping);
5257 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5258 src_pte = hugetlb_walk(vma, old_addr, sz);
5260 old_addr |= last_addr_mask;
5261 new_addr |= last_addr_mask;
5264 if (huge_pte_none(huge_ptep_get(src_pte)))
5267 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5269 old_addr |= last_addr_mask;
5270 new_addr |= last_addr_mask;
5274 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5278 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5282 flush_tlb_range(vma, range.start, range.end);
5284 flush_tlb_range(vma, old_end - len, old_end);
5285 mmu_notifier_invalidate_range_end(&range);
5286 i_mmap_unlock_write(mapping);
5287 hugetlb_vma_unlock_write(vma);
5289 return len + old_addr - old_end;
5292 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5293 unsigned long start, unsigned long end,
5294 struct page *ref_page, zap_flags_t zap_flags)
5296 struct mm_struct *mm = vma->vm_mm;
5297 unsigned long address;
5302 struct hstate *h = hstate_vma(vma);
5303 unsigned long sz = huge_page_size(h);
5304 unsigned long last_addr_mask;
5305 bool force_flush = false;
5307 WARN_ON(!is_vm_hugetlb_page(vma));
5308 BUG_ON(start & ~huge_page_mask(h));
5309 BUG_ON(end & ~huge_page_mask(h));
5312 * This is a hugetlb vma, all the pte entries should point
5315 tlb_change_page_size(tlb, sz);
5316 tlb_start_vma(tlb, vma);
5318 last_addr_mask = hugetlb_mask_last_page(h);
5320 for (; address < end; address += sz) {
5321 ptep = hugetlb_walk(vma, address, sz);
5323 address |= last_addr_mask;
5327 ptl = huge_pte_lock(h, mm, ptep);
5328 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5330 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5332 address |= last_addr_mask;
5336 pte = huge_ptep_get(ptep);
5337 if (huge_pte_none(pte)) {
5343 * Migrating hugepage or HWPoisoned hugepage is already
5344 * unmapped and its refcount is dropped, so just clear pte here.
5346 if (unlikely(!pte_present(pte))) {
5348 * If the pte was wr-protected by uffd-wp in any of the
5349 * swap forms, meanwhile the caller does not want to
5350 * drop the uffd-wp bit in this zap, then replace the
5351 * pte with a marker.
5353 if (pte_swp_uffd_wp_any(pte) &&
5354 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5355 set_huge_pte_at(mm, address, ptep,
5356 make_pte_marker(PTE_MARKER_UFFD_WP));
5358 huge_pte_clear(mm, address, ptep, sz);
5363 page = pte_page(pte);
5365 * If a reference page is supplied, it is because a specific
5366 * page is being unmapped, not a range. Ensure the page we
5367 * are about to unmap is the actual page of interest.
5370 if (page != ref_page) {
5375 * Mark the VMA as having unmapped its page so that
5376 * future faults in this VMA will fail rather than
5377 * looking like data was lost
5379 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5382 pte = huge_ptep_get_and_clear(mm, address, ptep);
5383 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5384 if (huge_pte_dirty(pte))
5385 set_page_dirty(page);
5386 /* Leave a uffd-wp pte marker if needed */
5387 if (huge_pte_uffd_wp(pte) &&
5388 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5389 set_huge_pte_at(mm, address, ptep,
5390 make_pte_marker(PTE_MARKER_UFFD_WP));
5391 hugetlb_count_sub(pages_per_huge_page(h), mm);
5392 page_remove_rmap(page, vma, true);
5395 tlb_remove_page_size(tlb, page, huge_page_size(h));
5397 * Bail out after unmapping reference page if supplied
5402 tlb_end_vma(tlb, vma);
5405 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5406 * could defer the flush until now, since by holding i_mmap_rwsem we
5407 * guaranteed that the last refernece would not be dropped. But we must
5408 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5409 * dropped and the last reference to the shared PMDs page might be
5412 * In theory we could defer the freeing of the PMD pages as well, but
5413 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5414 * detect sharing, so we cannot defer the release of the page either.
5415 * Instead, do flush now.
5418 tlb_flush_mmu_tlbonly(tlb);
5421 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5422 struct vm_area_struct *vma, unsigned long start,
5423 unsigned long end, struct page *ref_page,
5424 zap_flags_t zap_flags)
5426 hugetlb_vma_lock_write(vma);
5427 i_mmap_lock_write(vma->vm_file->f_mapping);
5429 /* mmu notification performed in caller */
5430 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5432 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5434 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5435 * When the vma_lock is freed, this makes the vma ineligible
5436 * for pmd sharing. And, i_mmap_rwsem is required to set up
5437 * pmd sharing. This is important as page tables for this
5438 * unmapped range will be asynchrously deleted. If the page
5439 * tables are shared, there will be issues when accessed by
5442 __hugetlb_vma_unlock_write_free(vma);
5443 i_mmap_unlock_write(vma->vm_file->f_mapping);
5445 i_mmap_unlock_write(vma->vm_file->f_mapping);
5446 hugetlb_vma_unlock_write(vma);
5450 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5451 unsigned long end, struct page *ref_page,
5452 zap_flags_t zap_flags)
5454 struct mmu_notifier_range range;
5455 struct mmu_gather tlb;
5457 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5459 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5460 mmu_notifier_invalidate_range_start(&range);
5461 tlb_gather_mmu(&tlb, vma->vm_mm);
5463 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5465 mmu_notifier_invalidate_range_end(&range);
5466 tlb_finish_mmu(&tlb);
5470 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5471 * mapping it owns the reserve page for. The intention is to unmap the page
5472 * from other VMAs and let the children be SIGKILLed if they are faulting the
5475 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5476 struct page *page, unsigned long address)
5478 struct hstate *h = hstate_vma(vma);
5479 struct vm_area_struct *iter_vma;
5480 struct address_space *mapping;
5484 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5485 * from page cache lookup which is in HPAGE_SIZE units.
5487 address = address & huge_page_mask(h);
5488 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5490 mapping = vma->vm_file->f_mapping;
5493 * Take the mapping lock for the duration of the table walk. As
5494 * this mapping should be shared between all the VMAs,
5495 * __unmap_hugepage_range() is called as the lock is already held
5497 i_mmap_lock_write(mapping);
5498 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5499 /* Do not unmap the current VMA */
5500 if (iter_vma == vma)
5504 * Shared VMAs have their own reserves and do not affect
5505 * MAP_PRIVATE accounting but it is possible that a shared
5506 * VMA is using the same page so check and skip such VMAs.
5508 if (iter_vma->vm_flags & VM_MAYSHARE)
5512 * Unmap the page from other VMAs without their own reserves.
5513 * They get marked to be SIGKILLed if they fault in these
5514 * areas. This is because a future no-page fault on this VMA
5515 * could insert a zeroed page instead of the data existing
5516 * from the time of fork. This would look like data corruption
5518 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5519 unmap_hugepage_range(iter_vma, address,
5520 address + huge_page_size(h), page, 0);
5522 i_mmap_unlock_write(mapping);
5526 * hugetlb_wp() should be called with page lock of the original hugepage held.
5527 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5528 * cannot race with other handlers or page migration.
5529 * Keep the pte_same checks anyway to make transition from the mutex easier.
5531 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5532 unsigned long address, pte_t *ptep, unsigned int flags,
5533 struct folio *pagecache_folio, spinlock_t *ptl)
5535 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5536 pte_t pte = huge_ptep_get(ptep);
5537 struct hstate *h = hstate_vma(vma);
5538 struct folio *old_folio;
5539 struct folio *new_folio;
5540 int outside_reserve = 0;
5542 unsigned long haddr = address & huge_page_mask(h);
5543 struct mmu_notifier_range range;
5546 * Never handle CoW for uffd-wp protected pages. It should be only
5547 * handled when the uffd-wp protection is removed.
5549 * Note that only the CoW optimization path (in hugetlb_no_page())
5550 * can trigger this, because hugetlb_fault() will always resolve
5551 * uffd-wp bit first.
5553 if (!unshare && huge_pte_uffd_wp(pte))
5557 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5558 * PTE mapped R/O such as maybe_mkwrite() would do.
5560 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5561 return VM_FAULT_SIGSEGV;
5563 /* Let's take out MAP_SHARED mappings first. */
5564 if (vma->vm_flags & VM_MAYSHARE) {
5565 set_huge_ptep_writable(vma, haddr, ptep);
5569 old_folio = page_folio(pte_page(pte));
5571 delayacct_wpcopy_start();
5575 * If no-one else is actually using this page, we're the exclusive
5576 * owner and can reuse this page.
5578 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5579 if (!PageAnonExclusive(&old_folio->page))
5580 page_move_anon_rmap(&old_folio->page, vma);
5581 if (likely(!unshare))
5582 set_huge_ptep_writable(vma, haddr, ptep);
5584 delayacct_wpcopy_end();
5587 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5588 PageAnonExclusive(&old_folio->page), &old_folio->page);
5591 * If the process that created a MAP_PRIVATE mapping is about to
5592 * perform a COW due to a shared page count, attempt to satisfy
5593 * the allocation without using the existing reserves. The pagecache
5594 * page is used to determine if the reserve at this address was
5595 * consumed or not. If reserves were used, a partial faulted mapping
5596 * at the time of fork() could consume its reserves on COW instead
5597 * of the full address range.
5599 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5600 old_folio != pagecache_folio)
5601 outside_reserve = 1;
5603 folio_get(old_folio);
5606 * Drop page table lock as buddy allocator may be called. It will
5607 * be acquired again before returning to the caller, as expected.
5610 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5612 if (IS_ERR(new_folio)) {
5614 * If a process owning a MAP_PRIVATE mapping fails to COW,
5615 * it is due to references held by a child and an insufficient
5616 * huge page pool. To guarantee the original mappers
5617 * reliability, unmap the page from child processes. The child
5618 * may get SIGKILLed if it later faults.
5620 if (outside_reserve) {
5621 struct address_space *mapping = vma->vm_file->f_mapping;
5625 folio_put(old_folio);
5627 * Drop hugetlb_fault_mutex and vma_lock before
5628 * unmapping. unmapping needs to hold vma_lock
5629 * in write mode. Dropping vma_lock in read mode
5630 * here is OK as COW mappings do not interact with
5633 * Reacquire both after unmap operation.
5635 idx = vma_hugecache_offset(h, vma, haddr);
5636 hash = hugetlb_fault_mutex_hash(mapping, idx);
5637 hugetlb_vma_unlock_read(vma);
5638 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5640 unmap_ref_private(mm, vma, &old_folio->page, haddr);
5642 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5643 hugetlb_vma_lock_read(vma);
5645 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5647 pte_same(huge_ptep_get(ptep), pte)))
5648 goto retry_avoidcopy;
5650 * race occurs while re-acquiring page table
5651 * lock, and our job is done.
5653 delayacct_wpcopy_end();
5657 ret = vmf_error(PTR_ERR(new_folio));
5658 goto out_release_old;
5662 * When the original hugepage is shared one, it does not have
5663 * anon_vma prepared.
5665 if (unlikely(anon_vma_prepare(vma))) {
5667 goto out_release_all;
5670 if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5671 ret = VM_FAULT_HWPOISON_LARGE;
5672 goto out_release_all;
5674 __folio_mark_uptodate(new_folio);
5676 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5677 haddr + huge_page_size(h));
5678 mmu_notifier_invalidate_range_start(&range);
5681 * Retake the page table lock to check for racing updates
5682 * before the page tables are altered
5685 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5686 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5687 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5689 /* Break COW or unshare */
5690 huge_ptep_clear_flush(vma, haddr, ptep);
5691 mmu_notifier_invalidate_range(mm, range.start, range.end);
5692 page_remove_rmap(&old_folio->page, vma, true);
5693 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5694 if (huge_pte_uffd_wp(pte))
5695 newpte = huge_pte_mkuffd_wp(newpte);
5696 set_huge_pte_at(mm, haddr, ptep, newpte);
5697 folio_set_hugetlb_migratable(new_folio);
5698 /* Make the old page be freed below */
5699 new_folio = old_folio;
5702 mmu_notifier_invalidate_range_end(&range);
5705 * No restore in case of successful pagetable update (Break COW or
5708 if (new_folio != old_folio)
5709 restore_reserve_on_error(h, vma, haddr, new_folio);
5710 folio_put(new_folio);
5712 folio_put(old_folio);
5714 spin_lock(ptl); /* Caller expects lock to be held */
5716 delayacct_wpcopy_end();
5721 * Return whether there is a pagecache page to back given address within VMA.
5723 static bool hugetlbfs_pagecache_present(struct hstate *h,
5724 struct vm_area_struct *vma, unsigned long address)
5726 struct address_space *mapping = vma->vm_file->f_mapping;
5727 pgoff_t idx = vma_hugecache_offset(h, vma, address);
5728 struct folio *folio;
5730 folio = filemap_get_folio(mapping, idx);
5737 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5740 struct inode *inode = mapping->host;
5741 struct hstate *h = hstate_inode(inode);
5744 __folio_set_locked(folio);
5745 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5747 if (unlikely(err)) {
5748 __folio_clear_locked(folio);
5751 folio_clear_hugetlb_restore_reserve(folio);
5754 * mark folio dirty so that it will not be removed from cache/file
5755 * by non-hugetlbfs specific code paths.
5757 folio_mark_dirty(folio);
5759 spin_lock(&inode->i_lock);
5760 inode->i_blocks += blocks_per_huge_page(h);
5761 spin_unlock(&inode->i_lock);
5765 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5766 struct address_space *mapping,
5769 unsigned long haddr,
5771 unsigned long reason)
5774 struct vm_fault vmf = {
5777 .real_address = addr,
5781 * Hard to debug if it ends up being
5782 * used by a callee that assumes
5783 * something about the other
5784 * uninitialized fields... same as in
5790 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5791 * userfault. Also mmap_lock could be dropped due to handling
5792 * userfault, any vma operation should be careful from here.
5794 hugetlb_vma_unlock_read(vma);
5795 hash = hugetlb_fault_mutex_hash(mapping, idx);
5796 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5797 return handle_userfault(&vmf, reason);
5801 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5802 * false if pte changed or is changing.
5804 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5805 pte_t *ptep, pte_t old_pte)
5810 ptl = huge_pte_lock(h, mm, ptep);
5811 same = pte_same(huge_ptep_get(ptep), old_pte);
5817 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5818 struct vm_area_struct *vma,
5819 struct address_space *mapping, pgoff_t idx,
5820 unsigned long address, pte_t *ptep,
5821 pte_t old_pte, unsigned int flags)
5823 struct hstate *h = hstate_vma(vma);
5824 vm_fault_t ret = VM_FAULT_SIGBUS;
5827 struct folio *folio;
5830 unsigned long haddr = address & huge_page_mask(h);
5831 bool new_folio, new_pagecache_folio = false;
5832 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5835 * Currently, we are forced to kill the process in the event the
5836 * original mapper has unmapped pages from the child due to a failed
5837 * COW/unsharing. Warn that such a situation has occurred as it may not
5840 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5841 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5847 * Use page lock to guard against racing truncation
5848 * before we get page_table_lock.
5851 folio = filemap_lock_folio(mapping, idx);
5852 if (IS_ERR(folio)) {
5853 size = i_size_read(mapping->host) >> huge_page_shift(h);
5856 /* Check for page in userfault range */
5857 if (userfaultfd_missing(vma)) {
5859 * Since hugetlb_no_page() was examining pte
5860 * without pgtable lock, we need to re-test under
5861 * lock because the pte may not be stable and could
5862 * have changed from under us. Try to detect
5863 * either changed or during-changing ptes and retry
5864 * properly when needed.
5866 * Note that userfaultfd is actually fine with
5867 * false positives (e.g. caused by pte changed),
5868 * but not wrong logical events (e.g. caused by
5869 * reading a pte during changing). The latter can
5870 * confuse the userspace, so the strictness is very
5871 * much preferred. E.g., MISSING event should
5872 * never happen on the page after UFFDIO_COPY has
5873 * correctly installed the page and returned.
5875 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5880 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5885 folio = alloc_hugetlb_folio(vma, haddr, 0);
5886 if (IS_ERR(folio)) {
5888 * Returning error will result in faulting task being
5889 * sent SIGBUS. The hugetlb fault mutex prevents two
5890 * tasks from racing to fault in the same page which
5891 * could result in false unable to allocate errors.
5892 * Page migration does not take the fault mutex, but
5893 * does a clear then write of pte's under page table
5894 * lock. Page fault code could race with migration,
5895 * notice the clear pte and try to allocate a page
5896 * here. Before returning error, get ptl and make
5897 * sure there really is no pte entry.
5899 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5900 ret = vmf_error(PTR_ERR(folio));
5905 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5906 __folio_mark_uptodate(folio);
5909 if (vma->vm_flags & VM_MAYSHARE) {
5910 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5913 * err can't be -EEXIST which implies someone
5914 * else consumed the reservation since hugetlb
5915 * fault mutex is held when add a hugetlb page
5916 * to the page cache. So it's safe to call
5917 * restore_reserve_on_error() here.
5919 restore_reserve_on_error(h, vma, haddr, folio);
5923 new_pagecache_folio = true;
5926 if (unlikely(anon_vma_prepare(vma))) {
5928 goto backout_unlocked;
5934 * If memory error occurs between mmap() and fault, some process
5935 * don't have hwpoisoned swap entry for errored virtual address.
5936 * So we need to block hugepage fault by PG_hwpoison bit check.
5938 if (unlikely(folio_test_hwpoison(folio))) {
5939 ret = VM_FAULT_HWPOISON_LARGE |
5940 VM_FAULT_SET_HINDEX(hstate_index(h));
5941 goto backout_unlocked;
5944 /* Check for page in userfault range. */
5945 if (userfaultfd_minor(vma)) {
5946 folio_unlock(folio);
5948 /* See comment in userfaultfd_missing() block above */
5949 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5953 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5960 * If we are going to COW a private mapping later, we examine the
5961 * pending reservations for this page now. This will ensure that
5962 * any allocations necessary to record that reservation occur outside
5965 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5966 if (vma_needs_reservation(h, vma, haddr) < 0) {
5968 goto backout_unlocked;
5970 /* Just decrements count, does not deallocate */
5971 vma_end_reservation(h, vma, haddr);
5974 ptl = huge_pte_lock(h, mm, ptep);
5976 /* If pte changed from under us, retry */
5977 if (!pte_same(huge_ptep_get(ptep), old_pte))
5981 hugepage_add_new_anon_rmap(folio, vma, haddr);
5983 page_dup_file_rmap(&folio->page, true);
5984 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5985 && (vma->vm_flags & VM_SHARED)));
5987 * If this pte was previously wr-protected, keep it wr-protected even
5990 if (unlikely(pte_marker_uffd_wp(old_pte)))
5991 new_pte = huge_pte_mkuffd_wp(new_pte);
5992 set_huge_pte_at(mm, haddr, ptep, new_pte);
5994 hugetlb_count_add(pages_per_huge_page(h), mm);
5995 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5996 /* Optimization, do the COW without a second fault */
5997 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6003 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6004 * found in the pagecache may not have hugetlb_migratable if they have
6005 * been isolated for migration.
6008 folio_set_hugetlb_migratable(folio);
6010 folio_unlock(folio);
6012 hugetlb_vma_unlock_read(vma);
6013 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6019 if (new_folio && !new_pagecache_folio)
6020 restore_reserve_on_error(h, vma, haddr, folio);
6022 folio_unlock(folio);
6028 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6030 unsigned long key[2];
6033 key[0] = (unsigned long) mapping;
6036 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6038 return hash & (num_fault_mutexes - 1);
6042 * For uniprocessor systems we always use a single mutex, so just
6043 * return 0 and avoid the hashing overhead.
6045 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6051 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6052 unsigned long address, unsigned int flags)
6059 struct folio *folio = NULL;
6060 struct folio *pagecache_folio = NULL;
6061 struct hstate *h = hstate_vma(vma);
6062 struct address_space *mapping;
6063 int need_wait_lock = 0;
6064 unsigned long haddr = address & huge_page_mask(h);
6067 * Serialize hugepage allocation and instantiation, so that we don't
6068 * get spurious allocation failures if two CPUs race to instantiate
6069 * the same page in the page cache.
6071 mapping = vma->vm_file->f_mapping;
6072 idx = vma_hugecache_offset(h, vma, haddr);
6073 hash = hugetlb_fault_mutex_hash(mapping, idx);
6074 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6077 * Acquire vma lock before calling huge_pte_alloc and hold
6078 * until finished with ptep. This prevents huge_pmd_unshare from
6079 * being called elsewhere and making the ptep no longer valid.
6081 hugetlb_vma_lock_read(vma);
6082 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6084 hugetlb_vma_unlock_read(vma);
6085 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6086 return VM_FAULT_OOM;
6089 entry = huge_ptep_get(ptep);
6090 if (huge_pte_none_mostly(entry)) {
6091 if (is_pte_marker(entry)) {
6093 pte_marker_get(pte_to_swp_entry(entry));
6095 if (marker & PTE_MARKER_POISONED) {
6096 ret = VM_FAULT_HWPOISON_LARGE;
6102 * Other PTE markers should be handled the same way as none PTE.
6104 * hugetlb_no_page will drop vma lock and hugetlb fault
6105 * mutex internally, which make us return immediately.
6107 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6114 * entry could be a migration/hwpoison entry at this point, so this
6115 * check prevents the kernel from going below assuming that we have
6116 * an active hugepage in pagecache. This goto expects the 2nd page
6117 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6118 * properly handle it.
6120 if (!pte_present(entry)) {
6121 if (unlikely(is_hugetlb_entry_migration(entry))) {
6123 * Release the hugetlb fault lock now, but retain
6124 * the vma lock, because it is needed to guard the
6125 * huge_pte_lockptr() later in
6126 * migration_entry_wait_huge(). The vma lock will
6127 * be released there.
6129 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6130 migration_entry_wait_huge(vma, ptep);
6132 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6133 ret = VM_FAULT_HWPOISON_LARGE |
6134 VM_FAULT_SET_HINDEX(hstate_index(h));
6139 * If we are going to COW/unshare the mapping later, we examine the
6140 * pending reservations for this page now. This will ensure that any
6141 * allocations necessary to record that reservation occur outside the
6142 * spinlock. Also lookup the pagecache page now as it is used to
6143 * determine if a reservation has been consumed.
6145 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6146 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6147 if (vma_needs_reservation(h, vma, haddr) < 0) {
6151 /* Just decrements count, does not deallocate */
6152 vma_end_reservation(h, vma, haddr);
6154 pagecache_folio = filemap_lock_folio(mapping, idx);
6155 if (IS_ERR(pagecache_folio))
6156 pagecache_folio = NULL;
6159 ptl = huge_pte_lock(h, mm, ptep);
6161 /* Check for a racing update before calling hugetlb_wp() */
6162 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6165 /* Handle userfault-wp first, before trying to lock more pages */
6166 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6167 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6168 struct vm_fault vmf = {
6171 .real_address = address,
6176 if (pagecache_folio) {
6177 folio_unlock(pagecache_folio);
6178 folio_put(pagecache_folio);
6180 hugetlb_vma_unlock_read(vma);
6181 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6182 return handle_userfault(&vmf, VM_UFFD_WP);
6186 * hugetlb_wp() requires page locks of pte_page(entry) and
6187 * pagecache_folio, so here we need take the former one
6188 * when folio != pagecache_folio or !pagecache_folio.
6190 folio = page_folio(pte_page(entry));
6191 if (folio != pagecache_folio)
6192 if (!folio_trylock(folio)) {
6199 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6200 if (!huge_pte_write(entry)) {
6201 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6202 pagecache_folio, ptl);
6204 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6205 entry = huge_pte_mkdirty(entry);
6208 entry = pte_mkyoung(entry);
6209 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6210 flags & FAULT_FLAG_WRITE))
6211 update_mmu_cache(vma, haddr, ptep);
6213 if (folio != pagecache_folio)
6214 folio_unlock(folio);
6219 if (pagecache_folio) {
6220 folio_unlock(pagecache_folio);
6221 folio_put(pagecache_folio);
6224 hugetlb_vma_unlock_read(vma);
6225 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6227 * Generally it's safe to hold refcount during waiting page lock. But
6228 * here we just wait to defer the next page fault to avoid busy loop and
6229 * the page is not used after unlocked before returning from the current
6230 * page fault. So we are safe from accessing freed page, even if we wait
6231 * here without taking refcount.
6234 folio_wait_locked(folio);
6238 #ifdef CONFIG_USERFAULTFD
6240 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6241 * with modifications for hugetlb pages.
6243 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6244 struct vm_area_struct *dst_vma,
6245 unsigned long dst_addr,
6246 unsigned long src_addr,
6248 struct folio **foliop)
6250 struct mm_struct *dst_mm = dst_vma->vm_mm;
6251 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6252 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6253 struct hstate *h = hstate_vma(dst_vma);
6254 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6255 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6257 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6261 struct folio *folio;
6263 bool folio_in_pagecache = false;
6265 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6266 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6268 /* Don't overwrite any existing PTEs (even markers) */
6269 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6274 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6275 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6277 /* No need to invalidate - it was non-present before */
6278 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6286 folio = filemap_lock_folio(mapping, idx);
6289 folio_in_pagecache = true;
6290 } else if (!*foliop) {
6291 /* If a folio already exists, then it's UFFDIO_COPY for
6292 * a non-missing case. Return -EEXIST.
6295 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6300 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6301 if (IS_ERR(folio)) {
6306 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6309 /* fallback to copy_from_user outside mmap_lock */
6310 if (unlikely(ret)) {
6312 /* Free the allocated folio which may have
6313 * consumed a reservation.
6315 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6318 /* Allocate a temporary folio to hold the copied
6321 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6327 /* Set the outparam foliop and return to the caller to
6328 * copy the contents outside the lock. Don't free the
6335 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6342 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6343 if (IS_ERR(folio)) {
6349 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6359 * The memory barrier inside __folio_mark_uptodate makes sure that
6360 * preceding stores to the page contents become visible before
6361 * the set_pte_at() write.
6363 __folio_mark_uptodate(folio);
6365 /* Add shared, newly allocated pages to the page cache. */
6366 if (vm_shared && !is_continue) {
6367 size = i_size_read(mapping->host) >> huge_page_shift(h);
6370 goto out_release_nounlock;
6373 * Serialization between remove_inode_hugepages() and
6374 * hugetlb_add_to_page_cache() below happens through the
6375 * hugetlb_fault_mutex_table that here must be hold by
6378 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6380 goto out_release_nounlock;
6381 folio_in_pagecache = true;
6384 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6387 if (folio_test_hwpoison(folio))
6388 goto out_release_unlock;
6391 * We allow to overwrite a pte marker: consider when both MISSING|WP
6392 * registered, we firstly wr-protect a none pte which has no page cache
6393 * page backing it, then access the page.
6396 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6397 goto out_release_unlock;
6399 if (folio_in_pagecache)
6400 page_dup_file_rmap(&folio->page, true);
6402 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6405 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6406 * with wp flag set, don't set pte write bit.
6408 if (wp_enabled || (is_continue && !vm_shared))
6411 writable = dst_vma->vm_flags & VM_WRITE;
6413 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6415 * Always mark UFFDIO_COPY page dirty; note that this may not be
6416 * extremely important for hugetlbfs for now since swapping is not
6417 * supported, but we should still be clear in that this page cannot be
6418 * thrown away at will, even if write bit not set.
6420 _dst_pte = huge_pte_mkdirty(_dst_pte);
6421 _dst_pte = pte_mkyoung(_dst_pte);
6424 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6426 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6428 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6430 /* No need to invalidate - it was non-present before */
6431 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6435 folio_set_hugetlb_migratable(folio);
6436 if (vm_shared || is_continue)
6437 folio_unlock(folio);
6443 if (vm_shared || is_continue)
6444 folio_unlock(folio);
6445 out_release_nounlock:
6446 if (!folio_in_pagecache)
6447 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6451 #endif /* CONFIG_USERFAULTFD */
6453 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6454 unsigned long address, unsigned int flags,
6455 unsigned int *page_mask)
6457 struct hstate *h = hstate_vma(vma);
6458 struct mm_struct *mm = vma->vm_mm;
6459 unsigned long haddr = address & huge_page_mask(h);
6460 struct page *page = NULL;
6465 hugetlb_vma_lock_read(vma);
6466 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6470 ptl = huge_pte_lock(h, mm, pte);
6471 entry = huge_ptep_get(pte);
6472 if (pte_present(entry)) {
6473 page = pte_page(entry);
6475 if (!huge_pte_write(entry)) {
6476 if (flags & FOLL_WRITE) {
6481 if (gup_must_unshare(vma, flags, page)) {
6482 /* Tell the caller to do unsharing */
6483 page = ERR_PTR(-EMLINK);
6488 page += ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6491 * Note that page may be a sub-page, and with vmemmap
6492 * optimizations the page struct may be read only.
6493 * try_grab_page() will increase the ref count on the
6494 * head page, so this will be OK.
6496 * try_grab_page() should always be able to get the page here,
6497 * because we hold the ptl lock and have verified pte_present().
6499 ret = try_grab_page(page, flags);
6501 if (WARN_ON_ONCE(ret)) {
6502 page = ERR_PTR(ret);
6506 *page_mask = (1U << huge_page_order(h)) - 1;
6511 hugetlb_vma_unlock_read(vma);
6514 * Fixup retval for dump requests: if pagecache doesn't exist,
6515 * don't try to allocate a new page but just skip it.
6517 if (!page && (flags & FOLL_DUMP) &&
6518 !hugetlbfs_pagecache_present(h, vma, address))
6519 page = ERR_PTR(-EFAULT);
6524 long hugetlb_change_protection(struct vm_area_struct *vma,
6525 unsigned long address, unsigned long end,
6526 pgprot_t newprot, unsigned long cp_flags)
6528 struct mm_struct *mm = vma->vm_mm;
6529 unsigned long start = address;
6532 struct hstate *h = hstate_vma(vma);
6533 long pages = 0, psize = huge_page_size(h);
6534 bool shared_pmd = false;
6535 struct mmu_notifier_range range;
6536 unsigned long last_addr_mask;
6537 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6538 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6541 * In the case of shared PMDs, the area to flush could be beyond
6542 * start/end. Set range.start/range.end to cover the maximum possible
6543 * range if PMD sharing is possible.
6545 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6547 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6549 BUG_ON(address >= end);
6550 flush_cache_range(vma, range.start, range.end);
6552 mmu_notifier_invalidate_range_start(&range);
6553 hugetlb_vma_lock_write(vma);
6554 i_mmap_lock_write(vma->vm_file->f_mapping);
6555 last_addr_mask = hugetlb_mask_last_page(h);
6556 for (; address < end; address += psize) {
6558 ptep = hugetlb_walk(vma, address, psize);
6561 address |= last_addr_mask;
6565 * Userfaultfd wr-protect requires pgtable
6566 * pre-allocations to install pte markers.
6568 ptep = huge_pte_alloc(mm, vma, address, psize);
6574 ptl = huge_pte_lock(h, mm, ptep);
6575 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6577 * When uffd-wp is enabled on the vma, unshare
6578 * shouldn't happen at all. Warn about it if it
6579 * happened due to some reason.
6581 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6585 address |= last_addr_mask;
6588 pte = huge_ptep_get(ptep);
6589 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6590 /* Nothing to do. */
6591 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6592 swp_entry_t entry = pte_to_swp_entry(pte);
6593 struct page *page = pfn_swap_entry_to_page(entry);
6596 if (is_writable_migration_entry(entry)) {
6598 entry = make_readable_exclusive_migration_entry(
6601 entry = make_readable_migration_entry(
6603 newpte = swp_entry_to_pte(entry);
6608 newpte = pte_swp_mkuffd_wp(newpte);
6609 else if (uffd_wp_resolve)
6610 newpte = pte_swp_clear_uffd_wp(newpte);
6611 if (!pte_same(pte, newpte))
6612 set_huge_pte_at(mm, address, ptep, newpte);
6613 } else if (unlikely(is_pte_marker(pte))) {
6614 /* No other markers apply for now. */
6615 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6616 if (uffd_wp_resolve)
6617 /* Safe to modify directly (non-present->none). */
6618 huge_pte_clear(mm, address, ptep, psize);
6619 } else if (!huge_pte_none(pte)) {
6621 unsigned int shift = huge_page_shift(hstate_vma(vma));
6623 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6624 pte = huge_pte_modify(old_pte, newprot);
6625 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6627 pte = huge_pte_mkuffd_wp(pte);
6628 else if (uffd_wp_resolve)
6629 pte = huge_pte_clear_uffd_wp(pte);
6630 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6634 if (unlikely(uffd_wp))
6635 /* Safe to modify directly (none->non-present). */
6636 set_huge_pte_at(mm, address, ptep,
6637 make_pte_marker(PTE_MARKER_UFFD_WP));
6642 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6643 * may have cleared our pud entry and done put_page on the page table:
6644 * once we release i_mmap_rwsem, another task can do the final put_page
6645 * and that page table be reused and filled with junk. If we actually
6646 * did unshare a page of pmds, flush the range corresponding to the pud.
6649 flush_hugetlb_tlb_range(vma, range.start, range.end);
6651 flush_hugetlb_tlb_range(vma, start, end);
6653 * No need to call mmu_notifier_invalidate_range() we are downgrading
6654 * page table protection not changing it to point to a new page.
6656 * See Documentation/mm/mmu_notifier.rst
6658 i_mmap_unlock_write(vma->vm_file->f_mapping);
6659 hugetlb_vma_unlock_write(vma);
6660 mmu_notifier_invalidate_range_end(&range);
6662 return pages > 0 ? (pages << h->order) : pages;
6665 /* Return true if reservation was successful, false otherwise. */
6666 bool hugetlb_reserve_pages(struct inode *inode,
6668 struct vm_area_struct *vma,
6669 vm_flags_t vm_flags)
6671 long chg = -1, add = -1;
6672 struct hstate *h = hstate_inode(inode);
6673 struct hugepage_subpool *spool = subpool_inode(inode);
6674 struct resv_map *resv_map;
6675 struct hugetlb_cgroup *h_cg = NULL;
6676 long gbl_reserve, regions_needed = 0;
6678 /* This should never happen */
6680 VM_WARN(1, "%s called with a negative range\n", __func__);
6685 * vma specific semaphore used for pmd sharing and fault/truncation
6688 hugetlb_vma_lock_alloc(vma);
6691 * Only apply hugepage reservation if asked. At fault time, an
6692 * attempt will be made for VM_NORESERVE to allocate a page
6693 * without using reserves
6695 if (vm_flags & VM_NORESERVE)
6699 * Shared mappings base their reservation on the number of pages that
6700 * are already allocated on behalf of the file. Private mappings need
6701 * to reserve the full area even if read-only as mprotect() may be
6702 * called to make the mapping read-write. Assume !vma is a shm mapping
6704 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6706 * resv_map can not be NULL as hugetlb_reserve_pages is only
6707 * called for inodes for which resv_maps were created (see
6708 * hugetlbfs_get_inode).
6710 resv_map = inode_resv_map(inode);
6712 chg = region_chg(resv_map, from, to, ®ions_needed);
6714 /* Private mapping. */
6715 resv_map = resv_map_alloc();
6721 set_vma_resv_map(vma, resv_map);
6722 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6728 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6729 chg * pages_per_huge_page(h), &h_cg) < 0)
6732 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6733 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6736 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6740 * There must be enough pages in the subpool for the mapping. If
6741 * the subpool has a minimum size, there may be some global
6742 * reservations already in place (gbl_reserve).
6744 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6745 if (gbl_reserve < 0)
6746 goto out_uncharge_cgroup;
6749 * Check enough hugepages are available for the reservation.
6750 * Hand the pages back to the subpool if there are not
6752 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6756 * Account for the reservations made. Shared mappings record regions
6757 * that have reservations as they are shared by multiple VMAs.
6758 * When the last VMA disappears, the region map says how much
6759 * the reservation was and the page cache tells how much of
6760 * the reservation was consumed. Private mappings are per-VMA and
6761 * only the consumed reservations are tracked. When the VMA
6762 * disappears, the original reservation is the VMA size and the
6763 * consumed reservations are stored in the map. Hence, nothing
6764 * else has to be done for private mappings here
6766 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6767 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6769 if (unlikely(add < 0)) {
6770 hugetlb_acct_memory(h, -gbl_reserve);
6772 } else if (unlikely(chg > add)) {
6774 * pages in this range were added to the reserve
6775 * map between region_chg and region_add. This
6776 * indicates a race with alloc_hugetlb_folio. Adjust
6777 * the subpool and reserve counts modified above
6778 * based on the difference.
6783 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6784 * reference to h_cg->css. See comment below for detail.
6786 hugetlb_cgroup_uncharge_cgroup_rsvd(
6788 (chg - add) * pages_per_huge_page(h), h_cg);
6790 rsv_adjust = hugepage_subpool_put_pages(spool,
6792 hugetlb_acct_memory(h, -rsv_adjust);
6795 * The file_regions will hold their own reference to
6796 * h_cg->css. So we should release the reference held
6797 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6800 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6806 /* put back original number of pages, chg */
6807 (void)hugepage_subpool_put_pages(spool, chg);
6808 out_uncharge_cgroup:
6809 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6810 chg * pages_per_huge_page(h), h_cg);
6812 hugetlb_vma_lock_free(vma);
6813 if (!vma || vma->vm_flags & VM_MAYSHARE)
6814 /* Only call region_abort if the region_chg succeeded but the
6815 * region_add failed or didn't run.
6817 if (chg >= 0 && add < 0)
6818 region_abort(resv_map, from, to, regions_needed);
6819 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6820 kref_put(&resv_map->refs, resv_map_release);
6824 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6827 struct hstate *h = hstate_inode(inode);
6828 struct resv_map *resv_map = inode_resv_map(inode);
6830 struct hugepage_subpool *spool = subpool_inode(inode);
6834 * Since this routine can be called in the evict inode path for all
6835 * hugetlbfs inodes, resv_map could be NULL.
6838 chg = region_del(resv_map, start, end);
6840 * region_del() can fail in the rare case where a region
6841 * must be split and another region descriptor can not be
6842 * allocated. If end == LONG_MAX, it will not fail.
6848 spin_lock(&inode->i_lock);
6849 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6850 spin_unlock(&inode->i_lock);
6853 * If the subpool has a minimum size, the number of global
6854 * reservations to be released may be adjusted.
6856 * Note that !resv_map implies freed == 0. So (chg - freed)
6857 * won't go negative.
6859 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6860 hugetlb_acct_memory(h, -gbl_reserve);
6865 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6866 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6867 struct vm_area_struct *vma,
6868 unsigned long addr, pgoff_t idx)
6870 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6872 unsigned long sbase = saddr & PUD_MASK;
6873 unsigned long s_end = sbase + PUD_SIZE;
6875 /* Allow segments to share if only one is marked locked */
6876 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6877 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6880 * match the virtual addresses, permission and the alignment of the
6883 * Also, vma_lock (vm_private_data) is required for sharing.
6885 if (pmd_index(addr) != pmd_index(saddr) ||
6886 vm_flags != svm_flags ||
6887 !range_in_vma(svma, sbase, s_end) ||
6888 !svma->vm_private_data)
6894 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6896 unsigned long start = addr & PUD_MASK;
6897 unsigned long end = start + PUD_SIZE;
6899 #ifdef CONFIG_USERFAULTFD
6900 if (uffd_disable_huge_pmd_share(vma))
6904 * check on proper vm_flags and page table alignment
6906 if (!(vma->vm_flags & VM_MAYSHARE))
6908 if (!vma->vm_private_data) /* vma lock required for sharing */
6910 if (!range_in_vma(vma, start, end))
6916 * Determine if start,end range within vma could be mapped by shared pmd.
6917 * If yes, adjust start and end to cover range associated with possible
6918 * shared pmd mappings.
6920 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6921 unsigned long *start, unsigned long *end)
6923 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6924 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6927 * vma needs to span at least one aligned PUD size, and the range
6928 * must be at least partially within in.
6930 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6931 (*end <= v_start) || (*start >= v_end))
6934 /* Extend the range to be PUD aligned for a worst case scenario */
6935 if (*start > v_start)
6936 *start = ALIGN_DOWN(*start, PUD_SIZE);
6939 *end = ALIGN(*end, PUD_SIZE);
6943 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6944 * and returns the corresponding pte. While this is not necessary for the
6945 * !shared pmd case because we can allocate the pmd later as well, it makes the
6946 * code much cleaner. pmd allocation is essential for the shared case because
6947 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6948 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6949 * bad pmd for sharing.
6951 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6952 unsigned long addr, pud_t *pud)
6954 struct address_space *mapping = vma->vm_file->f_mapping;
6955 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6957 struct vm_area_struct *svma;
6958 unsigned long saddr;
6962 i_mmap_lock_read(mapping);
6963 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6967 saddr = page_table_shareable(svma, vma, addr, idx);
6969 spte = hugetlb_walk(svma, saddr,
6970 vma_mmu_pagesize(svma));
6972 get_page(virt_to_page(spte));
6981 spin_lock(&mm->page_table_lock);
6982 if (pud_none(*pud)) {
6983 pud_populate(mm, pud,
6984 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6987 put_page(virt_to_page(spte));
6989 spin_unlock(&mm->page_table_lock);
6991 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6992 i_mmap_unlock_read(mapping);
6997 * unmap huge page backed by shared pte.
6999 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7000 * indicated by page_count > 1, unmap is achieved by clearing pud and
7001 * decrementing the ref count. If count == 1, the pte page is not shared.
7003 * Called with page table lock held.
7005 * returns: 1 successfully unmapped a shared pte page
7006 * 0 the underlying pte page is not shared, or it is the last user
7008 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7009 unsigned long addr, pte_t *ptep)
7011 pgd_t *pgd = pgd_offset(mm, addr);
7012 p4d_t *p4d = p4d_offset(pgd, addr);
7013 pud_t *pud = pud_offset(p4d, addr);
7015 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7016 hugetlb_vma_assert_locked(vma);
7017 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7018 if (page_count(virt_to_page(ptep)) == 1)
7022 put_page(virt_to_page(ptep));
7027 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7029 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7030 unsigned long addr, pud_t *pud)
7035 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7036 unsigned long addr, pte_t *ptep)
7041 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7042 unsigned long *start, unsigned long *end)
7046 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7050 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7052 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7053 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7054 unsigned long addr, unsigned long sz)
7061 pgd = pgd_offset(mm, addr);
7062 p4d = p4d_alloc(mm, pgd, addr);
7065 pud = pud_alloc(mm, p4d, addr);
7067 if (sz == PUD_SIZE) {
7070 BUG_ON(sz != PMD_SIZE);
7071 if (want_pmd_share(vma, addr) && pud_none(*pud))
7072 pte = huge_pmd_share(mm, vma, addr, pud);
7074 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7079 pte_t pteval = ptep_get_lockless(pte);
7081 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7088 * huge_pte_offset() - Walk the page table to resolve the hugepage
7089 * entry at address @addr
7091 * Return: Pointer to page table entry (PUD or PMD) for
7092 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7093 * size @sz doesn't match the hugepage size at this level of the page
7096 pte_t *huge_pte_offset(struct mm_struct *mm,
7097 unsigned long addr, unsigned long sz)
7104 pgd = pgd_offset(mm, addr);
7105 if (!pgd_present(*pgd))
7107 p4d = p4d_offset(pgd, addr);
7108 if (!p4d_present(*p4d))
7111 pud = pud_offset(p4d, addr);
7113 /* must be pud huge, non-present or none */
7114 return (pte_t *)pud;
7115 if (!pud_present(*pud))
7117 /* must have a valid entry and size to go further */
7119 pmd = pmd_offset(pud, addr);
7120 /* must be pmd huge, non-present or none */
7121 return (pte_t *)pmd;
7125 * Return a mask that can be used to update an address to the last huge
7126 * page in a page table page mapping size. Used to skip non-present
7127 * page table entries when linearly scanning address ranges. Architectures
7128 * with unique huge page to page table relationships can define their own
7129 * version of this routine.
7131 unsigned long hugetlb_mask_last_page(struct hstate *h)
7133 unsigned long hp_size = huge_page_size(h);
7135 if (hp_size == PUD_SIZE)
7136 return P4D_SIZE - PUD_SIZE;
7137 else if (hp_size == PMD_SIZE)
7138 return PUD_SIZE - PMD_SIZE;
7145 /* See description above. Architectures can provide their own version. */
7146 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7148 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7149 if (huge_page_size(h) == PMD_SIZE)
7150 return PUD_SIZE - PMD_SIZE;
7155 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7158 * These functions are overwritable if your architecture needs its own
7161 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7165 spin_lock_irq(&hugetlb_lock);
7166 if (!folio_test_hugetlb(folio) ||
7167 !folio_test_hugetlb_migratable(folio) ||
7168 !folio_try_get(folio)) {
7172 folio_clear_hugetlb_migratable(folio);
7173 list_move_tail(&folio->lru, list);
7175 spin_unlock_irq(&hugetlb_lock);
7179 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7184 spin_lock_irq(&hugetlb_lock);
7185 if (folio_test_hugetlb(folio)) {
7187 if (folio_test_hugetlb_freed(folio))
7189 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7190 ret = folio_try_get(folio);
7194 spin_unlock_irq(&hugetlb_lock);
7198 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7199 bool *migratable_cleared)
7203 spin_lock_irq(&hugetlb_lock);
7204 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7205 spin_unlock_irq(&hugetlb_lock);
7209 void folio_putback_active_hugetlb(struct folio *folio)
7211 spin_lock_irq(&hugetlb_lock);
7212 folio_set_hugetlb_migratable(folio);
7213 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7214 spin_unlock_irq(&hugetlb_lock);
7218 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7220 struct hstate *h = folio_hstate(old_folio);
7222 hugetlb_cgroup_migrate(old_folio, new_folio);
7223 set_page_owner_migrate_reason(&new_folio->page, reason);
7226 * transfer temporary state of the new hugetlb folio. This is
7227 * reverse to other transitions because the newpage is going to
7228 * be final while the old one will be freed so it takes over
7229 * the temporary status.
7231 * Also note that we have to transfer the per-node surplus state
7232 * here as well otherwise the global surplus count will not match
7235 if (folio_test_hugetlb_temporary(new_folio)) {
7236 int old_nid = folio_nid(old_folio);
7237 int new_nid = folio_nid(new_folio);
7239 folio_set_hugetlb_temporary(old_folio);
7240 folio_clear_hugetlb_temporary(new_folio);
7244 * There is no need to transfer the per-node surplus state
7245 * when we do not cross the node.
7247 if (new_nid == old_nid)
7249 spin_lock_irq(&hugetlb_lock);
7250 if (h->surplus_huge_pages_node[old_nid]) {
7251 h->surplus_huge_pages_node[old_nid]--;
7252 h->surplus_huge_pages_node[new_nid]++;
7254 spin_unlock_irq(&hugetlb_lock);
7258 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7259 unsigned long start,
7262 struct hstate *h = hstate_vma(vma);
7263 unsigned long sz = huge_page_size(h);
7264 struct mm_struct *mm = vma->vm_mm;
7265 struct mmu_notifier_range range;
7266 unsigned long address;
7270 if (!(vma->vm_flags & VM_MAYSHARE))
7276 flush_cache_range(vma, start, end);
7278 * No need to call adjust_range_if_pmd_sharing_possible(), because
7279 * we have already done the PUD_SIZE alignment.
7281 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7283 mmu_notifier_invalidate_range_start(&range);
7284 hugetlb_vma_lock_write(vma);
7285 i_mmap_lock_write(vma->vm_file->f_mapping);
7286 for (address = start; address < end; address += PUD_SIZE) {
7287 ptep = hugetlb_walk(vma, address, sz);
7290 ptl = huge_pte_lock(h, mm, ptep);
7291 huge_pmd_unshare(mm, vma, address, ptep);
7294 flush_hugetlb_tlb_range(vma, start, end);
7295 i_mmap_unlock_write(vma->vm_file->f_mapping);
7296 hugetlb_vma_unlock_write(vma);
7298 * No need to call mmu_notifier_invalidate_range(), see
7299 * Documentation/mm/mmu_notifier.rst.
7301 mmu_notifier_invalidate_range_end(&range);
7305 * This function will unconditionally remove all the shared pmd pgtable entries
7306 * within the specific vma for a hugetlbfs memory range.
7308 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7310 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7311 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7315 static bool cma_reserve_called __initdata;
7317 static int __init cmdline_parse_hugetlb_cma(char *p)
7324 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7327 if (s[count] == ':') {
7328 if (tmp >= MAX_NUMNODES)
7330 nid = array_index_nospec(tmp, MAX_NUMNODES);
7333 tmp = memparse(s, &s);
7334 hugetlb_cma_size_in_node[nid] = tmp;
7335 hugetlb_cma_size += tmp;
7338 * Skip the separator if have one, otherwise
7339 * break the parsing.
7346 hugetlb_cma_size = memparse(p, &p);
7354 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7356 void __init hugetlb_cma_reserve(int order)
7358 unsigned long size, reserved, per_node;
7359 bool node_specific_cma_alloc = false;
7362 cma_reserve_called = true;
7364 if (!hugetlb_cma_size)
7367 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7368 if (hugetlb_cma_size_in_node[nid] == 0)
7371 if (!node_online(nid)) {
7372 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7373 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7374 hugetlb_cma_size_in_node[nid] = 0;
7378 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7379 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7380 nid, (PAGE_SIZE << order) / SZ_1M);
7381 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7382 hugetlb_cma_size_in_node[nid] = 0;
7384 node_specific_cma_alloc = true;
7388 /* Validate the CMA size again in case some invalid nodes specified. */
7389 if (!hugetlb_cma_size)
7392 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7393 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7394 (PAGE_SIZE << order) / SZ_1M);
7395 hugetlb_cma_size = 0;
7399 if (!node_specific_cma_alloc) {
7401 * If 3 GB area is requested on a machine with 4 numa nodes,
7402 * let's allocate 1 GB on first three nodes and ignore the last one.
7404 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7405 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7406 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7410 for_each_online_node(nid) {
7412 char name[CMA_MAX_NAME];
7414 if (node_specific_cma_alloc) {
7415 if (hugetlb_cma_size_in_node[nid] == 0)
7418 size = hugetlb_cma_size_in_node[nid];
7420 size = min(per_node, hugetlb_cma_size - reserved);
7423 size = round_up(size, PAGE_SIZE << order);
7425 snprintf(name, sizeof(name), "hugetlb%d", nid);
7427 * Note that 'order per bit' is based on smallest size that
7428 * may be returned to CMA allocator in the case of
7429 * huge page demotion.
7431 res = cma_declare_contiguous_nid(0, size, 0,
7432 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7434 &hugetlb_cma[nid], nid);
7436 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7442 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7445 if (reserved >= hugetlb_cma_size)
7451 * hugetlb_cma_size is used to determine if allocations from
7452 * cma are possible. Set to zero if no cma regions are set up.
7454 hugetlb_cma_size = 0;
7457 static void __init hugetlb_cma_check(void)
7459 if (!hugetlb_cma_size || cma_reserve_called)
7462 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7465 #endif /* CONFIG_CMA */