2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
41 #include "ext4_jbd2.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 raw->i_checksum_hi = 0;
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
80 __u32 provided, calculated;
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !ext4_has_metadata_csum(inode->i_sb))
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 return provided == calculated;
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
105 !ext4_has_metadata_csum(inode->i_sb))
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 trace_ext4_begin_ordered_truncate(inode, new_size);
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
125 if (!EXT4_I(inode)->jinode)
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 * Test whether an inode is a fast symlink.
142 int ext4_inode_is_fast_symlink(struct inode *inode)
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
147 if (ext4_has_inline_data(inode))
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
180 * Called at the last iput() if i_nlink is zero.
182 void ext4_evict_inode(struct inode *inode)
187 trace_ext4_evict_inode(inode);
189 if (inode->i_nlink) {
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
205 * Note that directories do not have this problem because they
206 * don't use page cache.
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
217 truncate_inode_pages_final(&inode->i_data);
222 if (is_bad_inode(inode))
224 dquot_initialize(inode);
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages_final(&inode->i_data);
231 * Protect us against freezing - iput() caller didn't have to have any
232 * protection against it
234 sb_start_intwrite(inode->i_sb);
235 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
236 ext4_blocks_for_truncate(inode)+3);
237 if (IS_ERR(handle)) {
238 ext4_std_error(inode->i_sb, PTR_ERR(handle));
240 * If we're going to skip the normal cleanup, we still need to
241 * make sure that the in-core orphan linked list is properly
244 ext4_orphan_del(NULL, inode);
245 sb_end_intwrite(inode->i_sb);
250 ext4_handle_sync(handle);
252 err = ext4_mark_inode_dirty(handle, inode);
254 ext4_warning(inode->i_sb,
255 "couldn't mark inode dirty (err %d)", err);
259 ext4_truncate(inode);
262 * ext4_ext_truncate() doesn't reserve any slop when it
263 * restarts journal transactions; therefore there may not be
264 * enough credits left in the handle to remove the inode from
265 * the orphan list and set the dtime field.
267 if (!ext4_handle_has_enough_credits(handle, 3)) {
268 err = ext4_journal_extend(handle, 3);
270 err = ext4_journal_restart(handle, 3);
272 ext4_warning(inode->i_sb,
273 "couldn't extend journal (err %d)", err);
275 ext4_journal_stop(handle);
276 ext4_orphan_del(NULL, inode);
277 sb_end_intwrite(inode->i_sb);
283 * Kill off the orphan record which ext4_truncate created.
284 * AKPM: I think this can be inside the above `if'.
285 * Note that ext4_orphan_del() has to be able to cope with the
286 * deletion of a non-existent orphan - this is because we don't
287 * know if ext4_truncate() actually created an orphan record.
288 * (Well, we could do this if we need to, but heck - it works)
290 ext4_orphan_del(handle, inode);
291 EXT4_I(inode)->i_dtime = get_seconds();
294 * One subtle ordering requirement: if anything has gone wrong
295 * (transaction abort, IO errors, whatever), then we can still
296 * do these next steps (the fs will already have been marked as
297 * having errors), but we can't free the inode if the mark_dirty
300 if (ext4_mark_inode_dirty(handle, inode))
301 /* If that failed, just do the required in-core inode clear. */
302 ext4_clear_inode(inode);
304 ext4_free_inode(handle, inode);
305 ext4_journal_stop(handle);
306 sb_end_intwrite(inode->i_sb);
309 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
313 qsize_t *ext4_get_reserved_space(struct inode *inode)
315 return &EXT4_I(inode)->i_reserved_quota;
320 * Called with i_data_sem down, which is important since we can call
321 * ext4_discard_preallocations() from here.
323 void ext4_da_update_reserve_space(struct inode *inode,
324 int used, int quota_claim)
326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
327 struct ext4_inode_info *ei = EXT4_I(inode);
329 spin_lock(&ei->i_block_reservation_lock);
330 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
331 if (unlikely(used > ei->i_reserved_data_blocks)) {
332 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
333 "with only %d reserved data blocks",
334 __func__, inode->i_ino, used,
335 ei->i_reserved_data_blocks);
337 used = ei->i_reserved_data_blocks;
340 /* Update per-inode reservations */
341 ei->i_reserved_data_blocks -= used;
342 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
344 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
346 /* Update quota subsystem for data blocks */
348 dquot_claim_block(inode, EXT4_C2B(sbi, used));
351 * We did fallocate with an offset that is already delayed
352 * allocated. So on delayed allocated writeback we should
353 * not re-claim the quota for fallocated blocks.
355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359 * If we have done all the pending block allocations and if
360 * there aren't any writers on the inode, we can discard the
361 * inode's preallocations.
363 if ((ei->i_reserved_data_blocks == 0) &&
364 (atomic_read(&inode->i_writecount) == 0))
365 ext4_discard_preallocations(inode);
368 static int __check_block_validity(struct inode *inode, const char *func,
370 struct ext4_map_blocks *map)
372 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
374 ext4_error_inode(inode, func, line, map->m_pblk,
375 "lblock %lu mapped to illegal pblock "
376 "(length %d)", (unsigned long) map->m_lblk,
378 return -EFSCORRUPTED;
383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
388 if (ext4_encrypted_inode(inode))
389 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
391 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
398 #define check_block_validity(inode, map) \
399 __check_block_validity((inode), __func__, __LINE__, (map))
401 #ifdef ES_AGGRESSIVE_TEST
402 static void ext4_map_blocks_es_recheck(handle_t *handle,
404 struct ext4_map_blocks *es_map,
405 struct ext4_map_blocks *map,
412 * There is a race window that the result is not the same.
413 * e.g. xfstests #223 when dioread_nolock enables. The reason
414 * is that we lookup a block mapping in extent status tree with
415 * out taking i_data_sem. So at the time the unwritten extent
416 * could be converted.
418 down_read(&EXT4_I(inode)->i_data_sem);
419 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
420 retval = ext4_ext_map_blocks(handle, inode, map, flags &
421 EXT4_GET_BLOCKS_KEEP_SIZE);
423 retval = ext4_ind_map_blocks(handle, inode, map, flags &
424 EXT4_GET_BLOCKS_KEEP_SIZE);
426 up_read((&EXT4_I(inode)->i_data_sem));
429 * We don't check m_len because extent will be collpased in status
430 * tree. So the m_len might not equal.
432 if (es_map->m_lblk != map->m_lblk ||
433 es_map->m_flags != map->m_flags ||
434 es_map->m_pblk != map->m_pblk) {
435 printk("ES cache assertion failed for inode: %lu "
436 "es_cached ex [%d/%d/%llu/%x] != "
437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 inode->i_ino, es_map->m_lblk, es_map->m_len,
439 es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 map->m_len, map->m_pblk, map->m_flags,
444 #endif /* ES_AGGRESSIVE_TEST */
447 * The ext4_map_blocks() function tries to look up the requested blocks,
448 * and returns if the blocks are already mapped.
450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451 * and store the allocated blocks in the result buffer head and mark it
454 * If file type is extents based, it will call ext4_ext_map_blocks(),
455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
458 * On success, it returns the number of blocks being mapped or allocated. if
459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
462 * It returns 0 if plain look up failed (blocks have not been allocated), in
463 * that case, @map is returned as unmapped but we still do fill map->m_len to
464 * indicate the length of a hole starting at map->m_lblk.
466 * It returns the error in case of allocation failure.
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 struct ext4_map_blocks *map, int flags)
471 struct extent_status es;
474 #ifdef ES_AGGRESSIVE_TEST
475 struct ext4_map_blocks orig_map;
477 memcpy(&orig_map, map, sizeof(*map));
481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 (unsigned long) map->m_lblk);
486 * ext4_map_blocks returns an int, and m_len is an unsigned int
488 if (unlikely(map->m_len > INT_MAX))
489 map->m_len = INT_MAX;
491 /* We can handle the block number less than EXT_MAX_BLOCKS */
492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493 return -EFSCORRUPTED;
495 /* Lookup extent status tree firstly */
496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498 map->m_pblk = ext4_es_pblock(&es) +
499 map->m_lblk - es.es_lblk;
500 map->m_flags |= ext4_es_is_written(&es) ?
501 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502 retval = es.es_len - (map->m_lblk - es.es_lblk);
503 if (retval > map->m_len)
506 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
508 retval = es.es_len - (map->m_lblk - es.es_lblk);
509 if (retval > map->m_len)
516 #ifdef ES_AGGRESSIVE_TEST
517 ext4_map_blocks_es_recheck(handle, inode, map,
524 * Try to see if we can get the block without requesting a new
527 down_read(&EXT4_I(inode)->i_data_sem);
528 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
529 retval = ext4_ext_map_blocks(handle, inode, map, flags &
530 EXT4_GET_BLOCKS_KEEP_SIZE);
532 retval = ext4_ind_map_blocks(handle, inode, map, flags &
533 EXT4_GET_BLOCKS_KEEP_SIZE);
538 if (unlikely(retval != map->m_len)) {
539 ext4_warning(inode->i_sb,
540 "ES len assertion failed for inode "
541 "%lu: retval %d != map->m_len %d",
542 inode->i_ino, retval, map->m_len);
546 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
547 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
548 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
549 !(status & EXTENT_STATUS_WRITTEN) &&
550 ext4_find_delalloc_range(inode, map->m_lblk,
551 map->m_lblk + map->m_len - 1))
552 status |= EXTENT_STATUS_DELAYED;
553 ret = ext4_es_insert_extent(inode, map->m_lblk,
554 map->m_len, map->m_pblk, status);
558 up_read((&EXT4_I(inode)->i_data_sem));
561 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
562 ret = check_block_validity(inode, map);
567 /* If it is only a block(s) look up */
568 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
572 * Returns if the blocks have already allocated
574 * Note that if blocks have been preallocated
575 * ext4_ext_get_block() returns the create = 0
576 * with buffer head unmapped.
578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
580 * If we need to convert extent to unwritten
581 * we continue and do the actual work in
582 * ext4_ext_map_blocks()
584 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
588 * Here we clear m_flags because after allocating an new extent,
589 * it will be set again.
591 map->m_flags &= ~EXT4_MAP_FLAGS;
594 * New blocks allocate and/or writing to unwritten extent
595 * will possibly result in updating i_data, so we take
596 * the write lock of i_data_sem, and call get_block()
597 * with create == 1 flag.
599 down_write(&EXT4_I(inode)->i_data_sem);
602 * We need to check for EXT4 here because migrate
603 * could have changed the inode type in between
605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 retval = ext4_ext_map_blocks(handle, inode, map, flags);
608 retval = ext4_ind_map_blocks(handle, inode, map, flags);
610 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
612 * We allocated new blocks which will result in
613 * i_data's format changing. Force the migrate
614 * to fail by clearing migrate flags
616 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
620 * Update reserved blocks/metadata blocks after successful
621 * block allocation which had been deferred till now. We don't
622 * support fallocate for non extent files. So we can update
623 * reserve space here.
626 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
627 ext4_da_update_reserve_space(inode, retval, 1);
633 if (unlikely(retval != map->m_len)) {
634 ext4_warning(inode->i_sb,
635 "ES len assertion failed for inode "
636 "%lu: retval %d != map->m_len %d",
637 inode->i_ino, retval, map->m_len);
642 * We have to zeroout blocks before inserting them into extent
643 * status tree. Otherwise someone could look them up there and
644 * use them before they are really zeroed.
646 if (flags & EXT4_GET_BLOCKS_ZERO &&
647 map->m_flags & EXT4_MAP_MAPPED &&
648 map->m_flags & EXT4_MAP_NEW) {
649 ret = ext4_issue_zeroout(inode, map->m_lblk,
650 map->m_pblk, map->m_len);
658 * If the extent has been zeroed out, we don't need to update
659 * extent status tree.
661 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
662 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
663 if (ext4_es_is_written(&es))
666 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
667 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
668 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
669 !(status & EXTENT_STATUS_WRITTEN) &&
670 ext4_find_delalloc_range(inode, map->m_lblk,
671 map->m_lblk + map->m_len - 1))
672 status |= EXTENT_STATUS_DELAYED;
673 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
674 map->m_pblk, status);
682 up_write((&EXT4_I(inode)->i_data_sem));
683 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
684 ret = check_block_validity(inode, map);
689 * Inodes with freshly allocated blocks where contents will be
690 * visible after transaction commit must be on transaction's
693 if (map->m_flags & EXT4_MAP_NEW &&
694 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
695 !(flags & EXT4_GET_BLOCKS_ZERO) &&
696 !IS_NOQUOTA(inode) &&
697 ext4_should_order_data(inode)) {
698 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
699 ret = ext4_jbd2_inode_add_wait(handle, inode);
701 ret = ext4_jbd2_inode_add_write(handle, inode);
710 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
711 * we have to be careful as someone else may be manipulating b_state as well.
713 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
715 unsigned long old_state;
716 unsigned long new_state;
718 flags &= EXT4_MAP_FLAGS;
720 /* Dummy buffer_head? Set non-atomically. */
722 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
726 * Someone else may be modifying b_state. Be careful! This is ugly but
727 * once we get rid of using bh as a container for mapping information
728 * to pass to / from get_block functions, this can go away.
731 old_state = READ_ONCE(bh->b_state);
732 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
734 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
737 static int _ext4_get_block(struct inode *inode, sector_t iblock,
738 struct buffer_head *bh, int flags)
740 struct ext4_map_blocks map;
743 if (ext4_has_inline_data(inode))
747 map.m_len = bh->b_size >> inode->i_blkbits;
749 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
752 map_bh(bh, inode->i_sb, map.m_pblk);
753 ext4_update_bh_state(bh, map.m_flags);
754 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
760 int ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int create)
763 return _ext4_get_block(inode, iblock, bh,
764 create ? EXT4_GET_BLOCKS_CREATE : 0);
768 * Get block function used when preparing for buffered write if we require
769 * creating an unwritten extent if blocks haven't been allocated. The extent
770 * will be converted to written after the IO is complete.
772 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
773 struct buffer_head *bh_result, int create)
775 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
776 inode->i_ino, create);
777 return _ext4_get_block(inode, iblock, bh_result,
778 EXT4_GET_BLOCKS_IO_CREATE_EXT);
781 /* Maximum number of blocks we map for direct IO at once. */
782 #define DIO_MAX_BLOCKS 4096
785 * Get blocks function for the cases that need to start a transaction -
786 * generally difference cases of direct IO and DAX IO. It also handles retries
789 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
790 struct buffer_head *bh_result, int flags)
797 /* Trim mapping request to maximum we can map at once for DIO */
798 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
799 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
800 dio_credits = ext4_chunk_trans_blocks(inode,
801 bh_result->b_size >> inode->i_blkbits);
803 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
805 return PTR_ERR(handle);
807 ret = _ext4_get_block(inode, iblock, bh_result, flags);
808 ext4_journal_stop(handle);
810 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
815 /* Get block function for DIO reads and writes to inodes without extents */
816 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
817 struct buffer_head *bh, int create)
819 /* We don't expect handle for direct IO */
820 WARN_ON_ONCE(ext4_journal_current_handle());
823 return _ext4_get_block(inode, iblock, bh, 0);
824 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
828 * Get block function for AIO DIO writes when we create unwritten extent if
829 * blocks are not allocated yet. The extent will be converted to written
830 * after IO is complete.
832 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
833 sector_t iblock, struct buffer_head *bh_result, int create)
837 /* We don't expect handle for direct IO */
838 WARN_ON_ONCE(ext4_journal_current_handle());
840 ret = ext4_get_block_trans(inode, iblock, bh_result,
841 EXT4_GET_BLOCKS_IO_CREATE_EXT);
844 * When doing DIO using unwritten extents, we need io_end to convert
845 * unwritten extents to written on IO completion. We allocate io_end
846 * once we spot unwritten extent and store it in b_private. Generic
847 * DIO code keeps b_private set and furthermore passes the value to
848 * our completion callback in 'private' argument.
850 if (!ret && buffer_unwritten(bh_result)) {
851 if (!bh_result->b_private) {
852 ext4_io_end_t *io_end;
854 io_end = ext4_init_io_end(inode, GFP_KERNEL);
857 bh_result->b_private = io_end;
858 ext4_set_io_unwritten_flag(inode, io_end);
860 set_buffer_defer_completion(bh_result);
867 * Get block function for non-AIO DIO writes when we create unwritten extent if
868 * blocks are not allocated yet. The extent will be converted to written
869 * after IO is complete from ext4_ext_direct_IO() function.
871 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
872 sector_t iblock, struct buffer_head *bh_result, int create)
876 /* We don't expect handle for direct IO */
877 WARN_ON_ONCE(ext4_journal_current_handle());
879 ret = ext4_get_block_trans(inode, iblock, bh_result,
880 EXT4_GET_BLOCKS_IO_CREATE_EXT);
883 * Mark inode as having pending DIO writes to unwritten extents.
884 * ext4_ext_direct_IO() checks this flag and converts extents to
887 if (!ret && buffer_unwritten(bh_result))
888 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
893 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
894 struct buffer_head *bh_result, int create)
898 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
899 inode->i_ino, create);
900 /* We don't expect handle for direct IO */
901 WARN_ON_ONCE(ext4_journal_current_handle());
903 ret = _ext4_get_block(inode, iblock, bh_result, 0);
905 * Blocks should have been preallocated! ext4_file_write_iter() checks
908 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
915 * `handle' can be NULL if create is zero
917 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
918 ext4_lblk_t block, int map_flags)
920 struct ext4_map_blocks map;
921 struct buffer_head *bh;
922 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
925 J_ASSERT(handle != NULL || create == 0);
929 err = ext4_map_blocks(handle, inode, &map, map_flags);
932 return create ? ERR_PTR(-ENOSPC) : NULL;
936 bh = sb_getblk(inode->i_sb, map.m_pblk);
938 return ERR_PTR(-ENOMEM);
939 if (map.m_flags & EXT4_MAP_NEW) {
940 J_ASSERT(create != 0);
941 J_ASSERT(handle != NULL);
944 * Now that we do not always journal data, we should
945 * keep in mind whether this should always journal the
946 * new buffer as metadata. For now, regular file
947 * writes use ext4_get_block instead, so it's not a
951 BUFFER_TRACE(bh, "call get_create_access");
952 err = ext4_journal_get_create_access(handle, bh);
957 if (!buffer_uptodate(bh)) {
958 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
959 set_buffer_uptodate(bh);
962 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
963 err = ext4_handle_dirty_metadata(handle, inode, bh);
967 BUFFER_TRACE(bh, "not a new buffer");
974 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
975 ext4_lblk_t block, int map_flags)
977 struct buffer_head *bh;
979 bh = ext4_getblk(handle, inode, block, map_flags);
982 if (!bh || buffer_uptodate(bh))
984 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
986 if (buffer_uptodate(bh))
989 return ERR_PTR(-EIO);
992 int ext4_walk_page_buffers(handle_t *handle,
993 struct buffer_head *head,
997 int (*fn)(handle_t *handle,
998 struct buffer_head *bh))
1000 struct buffer_head *bh;
1001 unsigned block_start, block_end;
1002 unsigned blocksize = head->b_size;
1004 struct buffer_head *next;
1006 for (bh = head, block_start = 0;
1007 ret == 0 && (bh != head || !block_start);
1008 block_start = block_end, bh = next) {
1009 next = bh->b_this_page;
1010 block_end = block_start + blocksize;
1011 if (block_end <= from || block_start >= to) {
1012 if (partial && !buffer_uptodate(bh))
1016 err = (*fn)(handle, bh);
1024 * To preserve ordering, it is essential that the hole instantiation and
1025 * the data write be encapsulated in a single transaction. We cannot
1026 * close off a transaction and start a new one between the ext4_get_block()
1027 * and the commit_write(). So doing the jbd2_journal_start at the start of
1028 * prepare_write() is the right place.
1030 * Also, this function can nest inside ext4_writepage(). In that case, we
1031 * *know* that ext4_writepage() has generated enough buffer credits to do the
1032 * whole page. So we won't block on the journal in that case, which is good,
1033 * because the caller may be PF_MEMALLOC.
1035 * By accident, ext4 can be reentered when a transaction is open via
1036 * quota file writes. If we were to commit the transaction while thus
1037 * reentered, there can be a deadlock - we would be holding a quota
1038 * lock, and the commit would never complete if another thread had a
1039 * transaction open and was blocking on the quota lock - a ranking
1042 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1043 * will _not_ run commit under these circumstances because handle->h_ref
1044 * is elevated. We'll still have enough credits for the tiny quotafile
1047 int do_journal_get_write_access(handle_t *handle,
1048 struct buffer_head *bh)
1050 int dirty = buffer_dirty(bh);
1053 if (!buffer_mapped(bh) || buffer_freed(bh))
1056 * __block_write_begin() could have dirtied some buffers. Clean
1057 * the dirty bit as jbd2_journal_get_write_access() could complain
1058 * otherwise about fs integrity issues. Setting of the dirty bit
1059 * by __block_write_begin() isn't a real problem here as we clear
1060 * the bit before releasing a page lock and thus writeback cannot
1061 * ever write the buffer.
1064 clear_buffer_dirty(bh);
1065 BUFFER_TRACE(bh, "get write access");
1066 ret = ext4_journal_get_write_access(handle, bh);
1068 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1073 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1074 get_block_t *get_block)
1076 unsigned from = pos & (PAGE_SIZE - 1);
1077 unsigned to = from + len;
1078 struct inode *inode = page->mapping->host;
1079 unsigned block_start, block_end;
1082 unsigned blocksize = inode->i_sb->s_blocksize;
1084 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1085 bool decrypt = false;
1087 BUG_ON(!PageLocked(page));
1088 BUG_ON(from > PAGE_SIZE);
1089 BUG_ON(to > PAGE_SIZE);
1092 if (!page_has_buffers(page))
1093 create_empty_buffers(page, blocksize, 0);
1094 head = page_buffers(page);
1095 bbits = ilog2(blocksize);
1096 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1098 for (bh = head, block_start = 0; bh != head || !block_start;
1099 block++, block_start = block_end, bh = bh->b_this_page) {
1100 block_end = block_start + blocksize;
1101 if (block_end <= from || block_start >= to) {
1102 if (PageUptodate(page)) {
1103 if (!buffer_uptodate(bh))
1104 set_buffer_uptodate(bh);
1109 clear_buffer_new(bh);
1110 if (!buffer_mapped(bh)) {
1111 WARN_ON(bh->b_size != blocksize);
1112 err = get_block(inode, block, bh, 1);
1115 if (buffer_new(bh)) {
1116 unmap_underlying_metadata(bh->b_bdev,
1118 if (PageUptodate(page)) {
1119 clear_buffer_new(bh);
1120 set_buffer_uptodate(bh);
1121 mark_buffer_dirty(bh);
1124 if (block_end > to || block_start < from)
1125 zero_user_segments(page, to, block_end,
1130 if (PageUptodate(page)) {
1131 if (!buffer_uptodate(bh))
1132 set_buffer_uptodate(bh);
1135 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1136 !buffer_unwritten(bh) &&
1137 (block_start < from || block_end > to)) {
1138 ll_rw_block(READ, 1, &bh);
1140 decrypt = ext4_encrypted_inode(inode) &&
1141 S_ISREG(inode->i_mode);
1145 * If we issued read requests, let them complete.
1147 while (wait_bh > wait) {
1148 wait_on_buffer(*--wait_bh);
1149 if (!buffer_uptodate(*wait_bh))
1153 page_zero_new_buffers(page, from, to);
1155 err = ext4_decrypt(page);
1160 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1161 loff_t pos, unsigned len, unsigned flags,
1162 struct page **pagep, void **fsdata)
1164 struct inode *inode = mapping->host;
1165 int ret, needed_blocks;
1172 trace_ext4_write_begin(inode, pos, len, flags);
1174 * Reserve one block more for addition to orphan list in case
1175 * we allocate blocks but write fails for some reason
1177 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1178 index = pos >> PAGE_SHIFT;
1179 from = pos & (PAGE_SIZE - 1);
1182 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1183 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1192 * grab_cache_page_write_begin() can take a long time if the
1193 * system is thrashing due to memory pressure, or if the page
1194 * is being written back. So grab it first before we start
1195 * the transaction handle. This also allows us to allocate
1196 * the page (if needed) without using GFP_NOFS.
1199 page = grab_cache_page_write_begin(mapping, index, flags);
1205 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1206 if (IS_ERR(handle)) {
1208 return PTR_ERR(handle);
1212 if (page->mapping != mapping) {
1213 /* The page got truncated from under us */
1216 ext4_journal_stop(handle);
1219 /* In case writeback began while the page was unlocked */
1220 wait_for_stable_page(page);
1222 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1223 if (ext4_should_dioread_nolock(inode))
1224 ret = ext4_block_write_begin(page, pos, len,
1225 ext4_get_block_unwritten);
1227 ret = ext4_block_write_begin(page, pos, len,
1230 if (ext4_should_dioread_nolock(inode))
1231 ret = __block_write_begin(page, pos, len,
1232 ext4_get_block_unwritten);
1234 ret = __block_write_begin(page, pos, len, ext4_get_block);
1236 if (!ret && ext4_should_journal_data(inode)) {
1237 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1239 do_journal_get_write_access);
1245 * __block_write_begin may have instantiated a few blocks
1246 * outside i_size. Trim these off again. Don't need
1247 * i_size_read because we hold i_mutex.
1249 * Add inode to orphan list in case we crash before
1252 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1253 ext4_orphan_add(handle, inode);
1255 ext4_journal_stop(handle);
1256 if (pos + len > inode->i_size) {
1257 ext4_truncate_failed_write(inode);
1259 * If truncate failed early the inode might
1260 * still be on the orphan list; we need to
1261 * make sure the inode is removed from the
1262 * orphan list in that case.
1265 ext4_orphan_del(NULL, inode);
1268 if (ret == -ENOSPC &&
1269 ext4_should_retry_alloc(inode->i_sb, &retries))
1278 /* For write_end() in data=journal mode */
1279 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1282 if (!buffer_mapped(bh) || buffer_freed(bh))
1284 set_buffer_uptodate(bh);
1285 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1286 clear_buffer_meta(bh);
1287 clear_buffer_prio(bh);
1292 * We need to pick up the new inode size which generic_commit_write gave us
1293 * `file' can be NULL - eg, when called from page_symlink().
1295 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1296 * buffers are managed internally.
1298 static int ext4_write_end(struct file *file,
1299 struct address_space *mapping,
1300 loff_t pos, unsigned len, unsigned copied,
1301 struct page *page, void *fsdata)
1303 handle_t *handle = ext4_journal_current_handle();
1304 struct inode *inode = mapping->host;
1305 loff_t old_size = inode->i_size;
1307 int i_size_changed = 0;
1309 trace_ext4_write_end(inode, pos, len, copied);
1310 if (ext4_has_inline_data(inode)) {
1311 ret = ext4_write_inline_data_end(inode, pos, len,
1317 copied = block_write_end(file, mapping, pos,
1318 len, copied, page, fsdata);
1320 * it's important to update i_size while still holding page lock:
1321 * page writeout could otherwise come in and zero beyond i_size.
1323 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1328 pagecache_isize_extended(inode, old_size, pos);
1330 * Don't mark the inode dirty under page lock. First, it unnecessarily
1331 * makes the holding time of page lock longer. Second, it forces lock
1332 * ordering of page lock and transaction start for journaling
1336 ext4_mark_inode_dirty(handle, inode);
1338 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1339 /* if we have allocated more blocks and copied
1340 * less. We will have blocks allocated outside
1341 * inode->i_size. So truncate them
1343 ext4_orphan_add(handle, inode);
1345 ret2 = ext4_journal_stop(handle);
1349 if (pos + len > inode->i_size) {
1350 ext4_truncate_failed_write(inode);
1352 * If truncate failed early the inode might still be
1353 * on the orphan list; we need to make sure the inode
1354 * is removed from the orphan list in that case.
1357 ext4_orphan_del(NULL, inode);
1360 return ret ? ret : copied;
1364 * This is a private version of page_zero_new_buffers() which doesn't
1365 * set the buffer to be dirty, since in data=journalled mode we need
1366 * to call ext4_handle_dirty_metadata() instead.
1368 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1370 unsigned int block_start = 0, block_end;
1371 struct buffer_head *head, *bh;
1373 bh = head = page_buffers(page);
1375 block_end = block_start + bh->b_size;
1376 if (buffer_new(bh)) {
1377 if (block_end > from && block_start < to) {
1378 if (!PageUptodate(page)) {
1379 unsigned start, size;
1381 start = max(from, block_start);
1382 size = min(to, block_end) - start;
1384 zero_user(page, start, size);
1385 set_buffer_uptodate(bh);
1387 clear_buffer_new(bh);
1390 block_start = block_end;
1391 bh = bh->b_this_page;
1392 } while (bh != head);
1395 static int ext4_journalled_write_end(struct file *file,
1396 struct address_space *mapping,
1397 loff_t pos, unsigned len, unsigned copied,
1398 struct page *page, void *fsdata)
1400 handle_t *handle = ext4_journal_current_handle();
1401 struct inode *inode = mapping->host;
1402 loff_t old_size = inode->i_size;
1406 int size_changed = 0;
1408 trace_ext4_journalled_write_end(inode, pos, len, copied);
1409 from = pos & (PAGE_SIZE - 1);
1412 BUG_ON(!ext4_handle_valid(handle));
1414 if (ext4_has_inline_data(inode))
1415 copied = ext4_write_inline_data_end(inode, pos, len,
1419 if (!PageUptodate(page))
1421 zero_new_buffers(page, from+copied, to);
1424 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1425 to, &partial, write_end_fn);
1427 SetPageUptodate(page);
1429 size_changed = ext4_update_inode_size(inode, pos + copied);
1430 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1431 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1436 pagecache_isize_extended(inode, old_size, pos);
1439 ret2 = ext4_mark_inode_dirty(handle, inode);
1444 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1445 /* if we have allocated more blocks and copied
1446 * less. We will have blocks allocated outside
1447 * inode->i_size. So truncate them
1449 ext4_orphan_add(handle, inode);
1451 ret2 = ext4_journal_stop(handle);
1454 if (pos + len > inode->i_size) {
1455 ext4_truncate_failed_write(inode);
1457 * If truncate failed early the inode might still be
1458 * on the orphan list; we need to make sure the inode
1459 * is removed from the orphan list in that case.
1462 ext4_orphan_del(NULL, inode);
1465 return ret ? ret : copied;
1469 * Reserve space for a single cluster
1471 static int ext4_da_reserve_space(struct inode *inode)
1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474 struct ext4_inode_info *ei = EXT4_I(inode);
1478 * We will charge metadata quota at writeout time; this saves
1479 * us from metadata over-estimation, though we may go over by
1480 * a small amount in the end. Here we just reserve for data.
1482 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1486 spin_lock(&ei->i_block_reservation_lock);
1487 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1488 spin_unlock(&ei->i_block_reservation_lock);
1489 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1492 ei->i_reserved_data_blocks++;
1493 trace_ext4_da_reserve_space(inode);
1494 spin_unlock(&ei->i_block_reservation_lock);
1496 return 0; /* success */
1499 static void ext4_da_release_space(struct inode *inode, int to_free)
1501 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1502 struct ext4_inode_info *ei = EXT4_I(inode);
1505 return; /* Nothing to release, exit */
1507 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1509 trace_ext4_da_release_space(inode, to_free);
1510 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1512 * if there aren't enough reserved blocks, then the
1513 * counter is messed up somewhere. Since this
1514 * function is called from invalidate page, it's
1515 * harmless to return without any action.
1517 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1518 "ino %lu, to_free %d with only %d reserved "
1519 "data blocks", inode->i_ino, to_free,
1520 ei->i_reserved_data_blocks);
1522 to_free = ei->i_reserved_data_blocks;
1524 ei->i_reserved_data_blocks -= to_free;
1526 /* update fs dirty data blocks counter */
1527 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1529 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1531 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1534 static void ext4_da_page_release_reservation(struct page *page,
1535 unsigned int offset,
1536 unsigned int length)
1538 int to_release = 0, contiguous_blks = 0;
1539 struct buffer_head *head, *bh;
1540 unsigned int curr_off = 0;
1541 struct inode *inode = page->mapping->host;
1542 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1543 unsigned int stop = offset + length;
1547 BUG_ON(stop > PAGE_SIZE || stop < length);
1549 head = page_buffers(page);
1552 unsigned int next_off = curr_off + bh->b_size;
1554 if (next_off > stop)
1557 if ((offset <= curr_off) && (buffer_delay(bh))) {
1560 clear_buffer_delay(bh);
1561 } else if (contiguous_blks) {
1562 lblk = page->index <<
1563 (PAGE_SHIFT - inode->i_blkbits);
1564 lblk += (curr_off >> inode->i_blkbits) -
1566 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1567 contiguous_blks = 0;
1569 curr_off = next_off;
1570 } while ((bh = bh->b_this_page) != head);
1572 if (contiguous_blks) {
1573 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1574 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1575 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1578 /* If we have released all the blocks belonging to a cluster, then we
1579 * need to release the reserved space for that cluster. */
1580 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1581 while (num_clusters > 0) {
1582 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1583 ((num_clusters - 1) << sbi->s_cluster_bits);
1584 if (sbi->s_cluster_ratio == 1 ||
1585 !ext4_find_delalloc_cluster(inode, lblk))
1586 ext4_da_release_space(inode, 1);
1593 * Delayed allocation stuff
1596 struct mpage_da_data {
1597 struct inode *inode;
1598 struct writeback_control *wbc;
1600 pgoff_t first_page; /* The first page to write */
1601 pgoff_t next_page; /* Current page to examine */
1602 pgoff_t last_page; /* Last page to examine */
1604 * Extent to map - this can be after first_page because that can be
1605 * fully mapped. We somewhat abuse m_flags to store whether the extent
1606 * is delalloc or unwritten.
1608 struct ext4_map_blocks map;
1609 struct ext4_io_submit io_submit; /* IO submission data */
1612 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1617 struct pagevec pvec;
1618 struct inode *inode = mpd->inode;
1619 struct address_space *mapping = inode->i_mapping;
1621 /* This is necessary when next_page == 0. */
1622 if (mpd->first_page >= mpd->next_page)
1625 index = mpd->first_page;
1626 end = mpd->next_page - 1;
1628 ext4_lblk_t start, last;
1629 start = index << (PAGE_SHIFT - inode->i_blkbits);
1630 last = end << (PAGE_SHIFT - inode->i_blkbits);
1631 ext4_es_remove_extent(inode, start, last - start + 1);
1634 pagevec_init(&pvec, 0);
1635 while (index <= end) {
1636 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1639 for (i = 0; i < nr_pages; i++) {
1640 struct page *page = pvec.pages[i];
1641 if (page->index > end)
1643 BUG_ON(!PageLocked(page));
1644 BUG_ON(PageWriteback(page));
1646 block_invalidatepage(page, 0, PAGE_SIZE);
1647 ClearPageUptodate(page);
1651 index = pvec.pages[nr_pages - 1]->index + 1;
1652 pagevec_release(&pvec);
1656 static void ext4_print_free_blocks(struct inode *inode)
1658 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1659 struct super_block *sb = inode->i_sb;
1660 struct ext4_inode_info *ei = EXT4_I(inode);
1662 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1663 EXT4_C2B(EXT4_SB(inode->i_sb),
1664 ext4_count_free_clusters(sb)));
1665 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1666 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1667 (long long) EXT4_C2B(EXT4_SB(sb),
1668 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1669 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1670 (long long) EXT4_C2B(EXT4_SB(sb),
1671 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1672 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1673 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1674 ei->i_reserved_data_blocks);
1678 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1680 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1684 * This function is grabs code from the very beginning of
1685 * ext4_map_blocks, but assumes that the caller is from delayed write
1686 * time. This function looks up the requested blocks and sets the
1687 * buffer delay bit under the protection of i_data_sem.
1689 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1690 struct ext4_map_blocks *map,
1691 struct buffer_head *bh)
1693 struct extent_status es;
1695 sector_t invalid_block = ~((sector_t) 0xffff);
1696 #ifdef ES_AGGRESSIVE_TEST
1697 struct ext4_map_blocks orig_map;
1699 memcpy(&orig_map, map, sizeof(*map));
1702 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1706 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1707 "logical block %lu\n", inode->i_ino, map->m_len,
1708 (unsigned long) map->m_lblk);
1710 /* Lookup extent status tree firstly */
1711 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1712 if (ext4_es_is_hole(&es)) {
1714 down_read(&EXT4_I(inode)->i_data_sem);
1719 * Delayed extent could be allocated by fallocate.
1720 * So we need to check it.
1722 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1723 map_bh(bh, inode->i_sb, invalid_block);
1725 set_buffer_delay(bh);
1729 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1730 retval = es.es_len - (iblock - es.es_lblk);
1731 if (retval > map->m_len)
1732 retval = map->m_len;
1733 map->m_len = retval;
1734 if (ext4_es_is_written(&es))
1735 map->m_flags |= EXT4_MAP_MAPPED;
1736 else if (ext4_es_is_unwritten(&es))
1737 map->m_flags |= EXT4_MAP_UNWRITTEN;
1741 #ifdef ES_AGGRESSIVE_TEST
1742 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1748 * Try to see if we can get the block without requesting a new
1749 * file system block.
1751 down_read(&EXT4_I(inode)->i_data_sem);
1752 if (ext4_has_inline_data(inode))
1754 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1755 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1757 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1763 * XXX: __block_prepare_write() unmaps passed block,
1767 * If the block was allocated from previously allocated cluster,
1768 * then we don't need to reserve it again. However we still need
1769 * to reserve metadata for every block we're going to write.
1771 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1772 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1773 ret = ext4_da_reserve_space(inode);
1775 /* not enough space to reserve */
1781 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1782 ~0, EXTENT_STATUS_DELAYED);
1788 map_bh(bh, inode->i_sb, invalid_block);
1790 set_buffer_delay(bh);
1791 } else if (retval > 0) {
1793 unsigned int status;
1795 if (unlikely(retval != map->m_len)) {
1796 ext4_warning(inode->i_sb,
1797 "ES len assertion failed for inode "
1798 "%lu: retval %d != map->m_len %d",
1799 inode->i_ino, retval, map->m_len);
1803 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1804 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1805 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1806 map->m_pblk, status);
1812 up_read((&EXT4_I(inode)->i_data_sem));
1818 * This is a special get_block_t callback which is used by
1819 * ext4_da_write_begin(). It will either return mapped block or
1820 * reserve space for a single block.
1822 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1823 * We also have b_blocknr = -1 and b_bdev initialized properly
1825 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1826 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1827 * initialized properly.
1829 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1830 struct buffer_head *bh, int create)
1832 struct ext4_map_blocks map;
1835 BUG_ON(create == 0);
1836 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1838 map.m_lblk = iblock;
1842 * first, we need to know whether the block is allocated already
1843 * preallocated blocks are unmapped but should treated
1844 * the same as allocated blocks.
1846 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1850 map_bh(bh, inode->i_sb, map.m_pblk);
1851 ext4_update_bh_state(bh, map.m_flags);
1853 if (buffer_unwritten(bh)) {
1854 /* A delayed write to unwritten bh should be marked
1855 * new and mapped. Mapped ensures that we don't do
1856 * get_block multiple times when we write to the same
1857 * offset and new ensures that we do proper zero out
1858 * for partial write.
1861 set_buffer_mapped(bh);
1866 static int bget_one(handle_t *handle, struct buffer_head *bh)
1872 static int bput_one(handle_t *handle, struct buffer_head *bh)
1878 static int __ext4_journalled_writepage(struct page *page,
1881 struct address_space *mapping = page->mapping;
1882 struct inode *inode = mapping->host;
1883 struct buffer_head *page_bufs = NULL;
1884 handle_t *handle = NULL;
1885 int ret = 0, err = 0;
1886 int inline_data = ext4_has_inline_data(inode);
1887 struct buffer_head *inode_bh = NULL;
1889 ClearPageChecked(page);
1892 BUG_ON(page->index != 0);
1893 BUG_ON(len > ext4_get_max_inline_size(inode));
1894 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1895 if (inode_bh == NULL)
1898 page_bufs = page_buffers(page);
1903 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1907 * We need to release the page lock before we start the
1908 * journal, so grab a reference so the page won't disappear
1909 * out from under us.
1914 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1915 ext4_writepage_trans_blocks(inode));
1916 if (IS_ERR(handle)) {
1917 ret = PTR_ERR(handle);
1919 goto out_no_pagelock;
1921 BUG_ON(!ext4_handle_valid(handle));
1925 if (page->mapping != mapping) {
1926 /* The page got truncated from under us */
1927 ext4_journal_stop(handle);
1933 BUFFER_TRACE(inode_bh, "get write access");
1934 ret = ext4_journal_get_write_access(handle, inode_bh);
1936 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1939 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1940 do_journal_get_write_access);
1942 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1947 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1948 err = ext4_journal_stop(handle);
1952 if (!ext4_has_inline_data(inode))
1953 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1955 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1964 * Note that we don't need to start a transaction unless we're journaling data
1965 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1966 * need to file the inode to the transaction's list in ordered mode because if
1967 * we are writing back data added by write(), the inode is already there and if
1968 * we are writing back data modified via mmap(), no one guarantees in which
1969 * transaction the data will hit the disk. In case we are journaling data, we
1970 * cannot start transaction directly because transaction start ranks above page
1971 * lock so we have to do some magic.
1973 * This function can get called via...
1974 * - ext4_writepages after taking page lock (have journal handle)
1975 * - journal_submit_inode_data_buffers (no journal handle)
1976 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1977 * - grab_page_cache when doing write_begin (have journal handle)
1979 * We don't do any block allocation in this function. If we have page with
1980 * multiple blocks we need to write those buffer_heads that are mapped. This
1981 * is important for mmaped based write. So if we do with blocksize 1K
1982 * truncate(f, 1024);
1983 * a = mmap(f, 0, 4096);
1985 * truncate(f, 4096);
1986 * we have in the page first buffer_head mapped via page_mkwrite call back
1987 * but other buffer_heads would be unmapped but dirty (dirty done via the
1988 * do_wp_page). So writepage should write the first block. If we modify
1989 * the mmap area beyond 1024 we will again get a page_fault and the
1990 * page_mkwrite callback will do the block allocation and mark the
1991 * buffer_heads mapped.
1993 * We redirty the page if we have any buffer_heads that is either delay or
1994 * unwritten in the page.
1996 * We can get recursively called as show below.
1998 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2001 * But since we don't do any block allocation we should not deadlock.
2002 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2004 static int ext4_writepage(struct page *page,
2005 struct writeback_control *wbc)
2010 struct buffer_head *page_bufs = NULL;
2011 struct inode *inode = page->mapping->host;
2012 struct ext4_io_submit io_submit;
2013 bool keep_towrite = false;
2015 trace_ext4_writepage(page);
2016 size = i_size_read(inode);
2017 if (page->index == size >> PAGE_SHIFT)
2018 len = size & ~PAGE_MASK;
2022 page_bufs = page_buffers(page);
2024 * We cannot do block allocation or other extent handling in this
2025 * function. If there are buffers needing that, we have to redirty
2026 * the page. But we may reach here when we do a journal commit via
2027 * journal_submit_inode_data_buffers() and in that case we must write
2028 * allocated buffers to achieve data=ordered mode guarantees.
2030 * Also, if there is only one buffer per page (the fs block
2031 * size == the page size), if one buffer needs block
2032 * allocation or needs to modify the extent tree to clear the
2033 * unwritten flag, we know that the page can't be written at
2034 * all, so we might as well refuse the write immediately.
2035 * Unfortunately if the block size != page size, we can't as
2036 * easily detect this case using ext4_walk_page_buffers(), but
2037 * for the extremely common case, this is an optimization that
2038 * skips a useless round trip through ext4_bio_write_page().
2040 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2041 ext4_bh_delay_or_unwritten)) {
2042 redirty_page_for_writepage(wbc, page);
2043 if ((current->flags & PF_MEMALLOC) ||
2044 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2046 * For memory cleaning there's no point in writing only
2047 * some buffers. So just bail out. Warn if we came here
2048 * from direct reclaim.
2050 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2055 keep_towrite = true;
2058 if (PageChecked(page) && ext4_should_journal_data(inode))
2060 * It's mmapped pagecache. Add buffers and journal it. There
2061 * doesn't seem much point in redirtying the page here.
2063 return __ext4_journalled_writepage(page, len);
2065 ext4_io_submit_init(&io_submit, wbc);
2066 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2067 if (!io_submit.io_end) {
2068 redirty_page_for_writepage(wbc, page);
2072 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2073 ext4_io_submit(&io_submit);
2074 /* Drop io_end reference we got from init */
2075 ext4_put_io_end_defer(io_submit.io_end);
2079 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2082 loff_t size = i_size_read(mpd->inode);
2085 BUG_ON(page->index != mpd->first_page);
2086 if (page->index == size >> PAGE_SHIFT)
2087 len = size & ~PAGE_MASK;
2090 clear_page_dirty_for_io(page);
2091 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2093 mpd->wbc->nr_to_write--;
2099 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2102 * mballoc gives us at most this number of blocks...
2103 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2104 * The rest of mballoc seems to handle chunks up to full group size.
2106 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2109 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2111 * @mpd - extent of blocks
2112 * @lblk - logical number of the block in the file
2113 * @bh - buffer head we want to add to the extent
2115 * The function is used to collect contig. blocks in the same state. If the
2116 * buffer doesn't require mapping for writeback and we haven't started the
2117 * extent of buffers to map yet, the function returns 'true' immediately - the
2118 * caller can write the buffer right away. Otherwise the function returns true
2119 * if the block has been added to the extent, false if the block couldn't be
2122 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2123 struct buffer_head *bh)
2125 struct ext4_map_blocks *map = &mpd->map;
2127 /* Buffer that doesn't need mapping for writeback? */
2128 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2129 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2130 /* So far no extent to map => we write the buffer right away */
2131 if (map->m_len == 0)
2136 /* First block in the extent? */
2137 if (map->m_len == 0) {
2140 map->m_flags = bh->b_state & BH_FLAGS;
2144 /* Don't go larger than mballoc is willing to allocate */
2145 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2148 /* Can we merge the block to our big extent? */
2149 if (lblk == map->m_lblk + map->m_len &&
2150 (bh->b_state & BH_FLAGS) == map->m_flags) {
2158 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2160 * @mpd - extent of blocks for mapping
2161 * @head - the first buffer in the page
2162 * @bh - buffer we should start processing from
2163 * @lblk - logical number of the block in the file corresponding to @bh
2165 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2166 * the page for IO if all buffers in this page were mapped and there's no
2167 * accumulated extent of buffers to map or add buffers in the page to the
2168 * extent of buffers to map. The function returns 1 if the caller can continue
2169 * by processing the next page, 0 if it should stop adding buffers to the
2170 * extent to map because we cannot extend it anymore. It can also return value
2171 * < 0 in case of error during IO submission.
2173 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2174 struct buffer_head *head,
2175 struct buffer_head *bh,
2178 struct inode *inode = mpd->inode;
2180 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2181 >> inode->i_blkbits;
2184 BUG_ON(buffer_locked(bh));
2186 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2187 /* Found extent to map? */
2190 /* Everything mapped so far and we hit EOF */
2193 } while (lblk++, (bh = bh->b_this_page) != head);
2194 /* So far everything mapped? Submit the page for IO. */
2195 if (mpd->map.m_len == 0) {
2196 err = mpage_submit_page(mpd, head->b_page);
2200 return lblk < blocks;
2204 * mpage_map_buffers - update buffers corresponding to changed extent and
2205 * submit fully mapped pages for IO
2207 * @mpd - description of extent to map, on return next extent to map
2209 * Scan buffers corresponding to changed extent (we expect corresponding pages
2210 * to be already locked) and update buffer state according to new extent state.
2211 * We map delalloc buffers to their physical location, clear unwritten bits,
2212 * and mark buffers as uninit when we perform writes to unwritten extents
2213 * and do extent conversion after IO is finished. If the last page is not fully
2214 * mapped, we update @map to the next extent in the last page that needs
2215 * mapping. Otherwise we submit the page for IO.
2217 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2219 struct pagevec pvec;
2221 struct inode *inode = mpd->inode;
2222 struct buffer_head *head, *bh;
2223 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2229 start = mpd->map.m_lblk >> bpp_bits;
2230 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2231 lblk = start << bpp_bits;
2232 pblock = mpd->map.m_pblk;
2234 pagevec_init(&pvec, 0);
2235 while (start <= end) {
2236 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2240 for (i = 0; i < nr_pages; i++) {
2241 struct page *page = pvec.pages[i];
2243 if (page->index > end)
2245 /* Up to 'end' pages must be contiguous */
2246 BUG_ON(page->index != start);
2247 bh = head = page_buffers(page);
2249 if (lblk < mpd->map.m_lblk)
2251 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2253 * Buffer after end of mapped extent.
2254 * Find next buffer in the page to map.
2257 mpd->map.m_flags = 0;
2259 * FIXME: If dioread_nolock supports
2260 * blocksize < pagesize, we need to make
2261 * sure we add size mapped so far to
2262 * io_end->size as the following call
2263 * can submit the page for IO.
2265 err = mpage_process_page_bufs(mpd, head,
2267 pagevec_release(&pvec);
2272 if (buffer_delay(bh)) {
2273 clear_buffer_delay(bh);
2274 bh->b_blocknr = pblock++;
2276 clear_buffer_unwritten(bh);
2277 } while (lblk++, (bh = bh->b_this_page) != head);
2280 * FIXME: This is going to break if dioread_nolock
2281 * supports blocksize < pagesize as we will try to
2282 * convert potentially unmapped parts of inode.
2284 mpd->io_submit.io_end->size += PAGE_SIZE;
2285 /* Page fully mapped - let IO run! */
2286 err = mpage_submit_page(mpd, page);
2288 pagevec_release(&pvec);
2293 pagevec_release(&pvec);
2295 /* Extent fully mapped and matches with page boundary. We are done. */
2297 mpd->map.m_flags = 0;
2301 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2303 struct inode *inode = mpd->inode;
2304 struct ext4_map_blocks *map = &mpd->map;
2305 int get_blocks_flags;
2306 int err, dioread_nolock;
2308 trace_ext4_da_write_pages_extent(inode, map);
2310 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2311 * to convert an unwritten extent to be initialized (in the case
2312 * where we have written into one or more preallocated blocks). It is
2313 * possible that we're going to need more metadata blocks than
2314 * previously reserved. However we must not fail because we're in
2315 * writeback and there is nothing we can do about it so it might result
2316 * in data loss. So use reserved blocks to allocate metadata if
2319 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2320 * the blocks in question are delalloc blocks. This indicates
2321 * that the blocks and quotas has already been checked when
2322 * the data was copied into the page cache.
2324 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2325 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2326 EXT4_GET_BLOCKS_IO_SUBMIT;
2327 dioread_nolock = ext4_should_dioread_nolock(inode);
2329 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2330 if (map->m_flags & (1 << BH_Delay))
2331 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2333 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2336 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2337 if (!mpd->io_submit.io_end->handle &&
2338 ext4_handle_valid(handle)) {
2339 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2340 handle->h_rsv_handle = NULL;
2342 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2345 BUG_ON(map->m_len == 0);
2346 if (map->m_flags & EXT4_MAP_NEW) {
2347 struct block_device *bdev = inode->i_sb->s_bdev;
2350 for (i = 0; i < map->m_len; i++)
2351 unmap_underlying_metadata(bdev, map->m_pblk + i);
2357 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2358 * mpd->len and submit pages underlying it for IO
2360 * @handle - handle for journal operations
2361 * @mpd - extent to map
2362 * @give_up_on_write - we set this to true iff there is a fatal error and there
2363 * is no hope of writing the data. The caller should discard
2364 * dirty pages to avoid infinite loops.
2366 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2367 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2368 * them to initialized or split the described range from larger unwritten
2369 * extent. Note that we need not map all the described range since allocation
2370 * can return less blocks or the range is covered by more unwritten extents. We
2371 * cannot map more because we are limited by reserved transaction credits. On
2372 * the other hand we always make sure that the last touched page is fully
2373 * mapped so that it can be written out (and thus forward progress is
2374 * guaranteed). After mapping we submit all mapped pages for IO.
2376 static int mpage_map_and_submit_extent(handle_t *handle,
2377 struct mpage_da_data *mpd,
2378 bool *give_up_on_write)
2380 struct inode *inode = mpd->inode;
2381 struct ext4_map_blocks *map = &mpd->map;
2386 mpd->io_submit.io_end->offset =
2387 ((loff_t)map->m_lblk) << inode->i_blkbits;
2389 err = mpage_map_one_extent(handle, mpd);
2391 struct super_block *sb = inode->i_sb;
2393 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2394 goto invalidate_dirty_pages;
2396 * Let the uper layers retry transient errors.
2397 * In the case of ENOSPC, if ext4_count_free_blocks()
2398 * is non-zero, a commit should free up blocks.
2400 if ((err == -ENOMEM) ||
2401 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2403 goto update_disksize;
2406 ext4_msg(sb, KERN_CRIT,
2407 "Delayed block allocation failed for "
2408 "inode %lu at logical offset %llu with"
2409 " max blocks %u with error %d",
2411 (unsigned long long)map->m_lblk,
2412 (unsigned)map->m_len, -err);
2413 ext4_msg(sb, KERN_CRIT,
2414 "This should not happen!! Data will "
2417 ext4_print_free_blocks(inode);
2418 invalidate_dirty_pages:
2419 *give_up_on_write = true;
2424 * Update buffer state, submit mapped pages, and get us new
2427 err = mpage_map_and_submit_buffers(mpd);
2429 goto update_disksize;
2430 } while (map->m_len);
2434 * Update on-disk size after IO is submitted. Races with
2435 * truncate are avoided by checking i_size under i_data_sem.
2437 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2438 if (disksize > EXT4_I(inode)->i_disksize) {
2442 down_write(&EXT4_I(inode)->i_data_sem);
2443 i_size = i_size_read(inode);
2444 if (disksize > i_size)
2446 if (disksize > EXT4_I(inode)->i_disksize)
2447 EXT4_I(inode)->i_disksize = disksize;
2448 err2 = ext4_mark_inode_dirty(handle, inode);
2449 up_write(&EXT4_I(inode)->i_data_sem);
2451 ext4_error(inode->i_sb,
2452 "Failed to mark inode %lu dirty",
2461 * Calculate the total number of credits to reserve for one writepages
2462 * iteration. This is called from ext4_writepages(). We map an extent of
2463 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2464 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2465 * bpp - 1 blocks in bpp different extents.
2467 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2469 int bpp = ext4_journal_blocks_per_page(inode);
2471 return ext4_meta_trans_blocks(inode,
2472 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2476 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2477 * and underlying extent to map
2479 * @mpd - where to look for pages
2481 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2482 * IO immediately. When we find a page which isn't mapped we start accumulating
2483 * extent of buffers underlying these pages that needs mapping (formed by
2484 * either delayed or unwritten buffers). We also lock the pages containing
2485 * these buffers. The extent found is returned in @mpd structure (starting at
2486 * mpd->lblk with length mpd->len blocks).
2488 * Note that this function can attach bios to one io_end structure which are
2489 * neither logically nor physically contiguous. Although it may seem as an
2490 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2491 * case as we need to track IO to all buffers underlying a page in one io_end.
2493 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2495 struct address_space *mapping = mpd->inode->i_mapping;
2496 struct pagevec pvec;
2497 unsigned int nr_pages;
2498 long left = mpd->wbc->nr_to_write;
2499 pgoff_t index = mpd->first_page;
2500 pgoff_t end = mpd->last_page;
2503 int blkbits = mpd->inode->i_blkbits;
2505 struct buffer_head *head;
2507 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2508 tag = PAGECACHE_TAG_TOWRITE;
2510 tag = PAGECACHE_TAG_DIRTY;
2512 pagevec_init(&pvec, 0);
2514 mpd->next_page = index;
2515 while (index <= end) {
2516 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2517 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2521 for (i = 0; i < nr_pages; i++) {
2522 struct page *page = pvec.pages[i];
2525 * At this point, the page may be truncated or
2526 * invalidated (changing page->mapping to NULL), or
2527 * even swizzled back from swapper_space to tmpfs file
2528 * mapping. However, page->index will not change
2529 * because we have a reference on the page.
2531 if (page->index > end)
2535 * Accumulated enough dirty pages? This doesn't apply
2536 * to WB_SYNC_ALL mode. For integrity sync we have to
2537 * keep going because someone may be concurrently
2538 * dirtying pages, and we might have synced a lot of
2539 * newly appeared dirty pages, but have not synced all
2540 * of the old dirty pages.
2542 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2545 /* If we can't merge this page, we are done. */
2546 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2551 * If the page is no longer dirty, or its mapping no
2552 * longer corresponds to inode we are writing (which
2553 * means it has been truncated or invalidated), or the
2554 * page is already under writeback and we are not doing
2555 * a data integrity writeback, skip the page
2557 if (!PageDirty(page) ||
2558 (PageWriteback(page) &&
2559 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2560 unlikely(page->mapping != mapping)) {
2565 wait_on_page_writeback(page);
2566 BUG_ON(PageWriteback(page));
2568 if (mpd->map.m_len == 0)
2569 mpd->first_page = page->index;
2570 mpd->next_page = page->index + 1;
2571 /* Add all dirty buffers to mpd */
2572 lblk = ((ext4_lblk_t)page->index) <<
2573 (PAGE_SHIFT - blkbits);
2574 head = page_buffers(page);
2575 err = mpage_process_page_bufs(mpd, head, head, lblk);
2581 pagevec_release(&pvec);
2586 pagevec_release(&pvec);
2590 static int __writepage(struct page *page, struct writeback_control *wbc,
2593 struct address_space *mapping = data;
2594 int ret = ext4_writepage(page, wbc);
2595 mapping_set_error(mapping, ret);
2599 static int ext4_writepages(struct address_space *mapping,
2600 struct writeback_control *wbc)
2602 pgoff_t writeback_index = 0;
2603 long nr_to_write = wbc->nr_to_write;
2604 int range_whole = 0;
2606 handle_t *handle = NULL;
2607 struct mpage_da_data mpd;
2608 struct inode *inode = mapping->host;
2609 int needed_blocks, rsv_blocks = 0, ret = 0;
2610 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2612 struct blk_plug plug;
2613 bool give_up_on_write = false;
2615 percpu_down_read(&sbi->s_journal_flag_rwsem);
2616 trace_ext4_writepages(inode, wbc);
2618 if (dax_mapping(mapping)) {
2619 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2621 goto out_writepages;
2625 * No pages to write? This is mainly a kludge to avoid starting
2626 * a transaction for special inodes like journal inode on last iput()
2627 * because that could violate lock ordering on umount
2629 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2630 goto out_writepages;
2632 if (ext4_should_journal_data(inode)) {
2633 struct blk_plug plug;
2635 blk_start_plug(&plug);
2636 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2637 blk_finish_plug(&plug);
2638 goto out_writepages;
2642 * If the filesystem has aborted, it is read-only, so return
2643 * right away instead of dumping stack traces later on that
2644 * will obscure the real source of the problem. We test
2645 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2646 * the latter could be true if the filesystem is mounted
2647 * read-only, and in that case, ext4_writepages should
2648 * *never* be called, so if that ever happens, we would want
2651 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2653 goto out_writepages;
2656 if (ext4_should_dioread_nolock(inode)) {
2658 * We may need to convert up to one extent per block in
2659 * the page and we may dirty the inode.
2661 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2665 * If we have inline data and arrive here, it means that
2666 * we will soon create the block for the 1st page, so
2667 * we'd better clear the inline data here.
2669 if (ext4_has_inline_data(inode)) {
2670 /* Just inode will be modified... */
2671 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2672 if (IS_ERR(handle)) {
2673 ret = PTR_ERR(handle);
2674 goto out_writepages;
2676 BUG_ON(ext4_test_inode_state(inode,
2677 EXT4_STATE_MAY_INLINE_DATA));
2678 ext4_destroy_inline_data(handle, inode);
2679 ext4_journal_stop(handle);
2682 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2685 if (wbc->range_cyclic) {
2686 writeback_index = mapping->writeback_index;
2687 if (writeback_index)
2689 mpd.first_page = writeback_index;
2692 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2693 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2698 ext4_io_submit_init(&mpd.io_submit, wbc);
2700 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2701 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2703 blk_start_plug(&plug);
2704 while (!done && mpd.first_page <= mpd.last_page) {
2705 /* For each extent of pages we use new io_end */
2706 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2707 if (!mpd.io_submit.io_end) {
2713 * We have two constraints: We find one extent to map and we
2714 * must always write out whole page (makes a difference when
2715 * blocksize < pagesize) so that we don't block on IO when we
2716 * try to write out the rest of the page. Journalled mode is
2717 * not supported by delalloc.
2719 BUG_ON(ext4_should_journal_data(inode));
2720 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2722 /* start a new transaction */
2723 handle = ext4_journal_start_with_reserve(inode,
2724 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2725 if (IS_ERR(handle)) {
2726 ret = PTR_ERR(handle);
2727 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2728 "%ld pages, ino %lu; err %d", __func__,
2729 wbc->nr_to_write, inode->i_ino, ret);
2730 /* Release allocated io_end */
2731 ext4_put_io_end(mpd.io_submit.io_end);
2735 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2736 ret = mpage_prepare_extent_to_map(&mpd);
2739 ret = mpage_map_and_submit_extent(handle, &mpd,
2743 * We scanned the whole range (or exhausted
2744 * nr_to_write), submitted what was mapped and
2745 * didn't find anything needing mapping. We are
2751 ext4_journal_stop(handle);
2752 /* Submit prepared bio */
2753 ext4_io_submit(&mpd.io_submit);
2754 /* Unlock pages we didn't use */
2755 mpage_release_unused_pages(&mpd, give_up_on_write);
2756 /* Drop our io_end reference we got from init */
2757 ext4_put_io_end(mpd.io_submit.io_end);
2759 if (ret == -ENOSPC && sbi->s_journal) {
2761 * Commit the transaction which would
2762 * free blocks released in the transaction
2765 jbd2_journal_force_commit_nested(sbi->s_journal);
2769 /* Fatal error - ENOMEM, EIO... */
2773 blk_finish_plug(&plug);
2774 if (!ret && !cycled && wbc->nr_to_write > 0) {
2776 mpd.last_page = writeback_index - 1;
2782 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2784 * Set the writeback_index so that range_cyclic
2785 * mode will write it back later
2787 mapping->writeback_index = mpd.first_page;
2790 trace_ext4_writepages_result(inode, wbc, ret,
2791 nr_to_write - wbc->nr_to_write);
2792 percpu_up_read(&sbi->s_journal_flag_rwsem);
2796 static int ext4_nonda_switch(struct super_block *sb)
2798 s64 free_clusters, dirty_clusters;
2799 struct ext4_sb_info *sbi = EXT4_SB(sb);
2802 * switch to non delalloc mode if we are running low
2803 * on free block. The free block accounting via percpu
2804 * counters can get slightly wrong with percpu_counter_batch getting
2805 * accumulated on each CPU without updating global counters
2806 * Delalloc need an accurate free block accounting. So switch
2807 * to non delalloc when we are near to error range.
2810 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2812 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2814 * Start pushing delalloc when 1/2 of free blocks are dirty.
2816 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2817 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2819 if (2 * free_clusters < 3 * dirty_clusters ||
2820 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2822 * free block count is less than 150% of dirty blocks
2823 * or free blocks is less than watermark
2830 /* We always reserve for an inode update; the superblock could be there too */
2831 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2833 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2836 if (pos + len <= 0x7fffffffULL)
2839 /* We might need to update the superblock to set LARGE_FILE */
2843 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2844 loff_t pos, unsigned len, unsigned flags,
2845 struct page **pagep, void **fsdata)
2847 int ret, retries = 0;
2850 struct inode *inode = mapping->host;
2853 index = pos >> PAGE_SHIFT;
2855 if (ext4_nonda_switch(inode->i_sb)) {
2856 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2857 return ext4_write_begin(file, mapping, pos,
2858 len, flags, pagep, fsdata);
2860 *fsdata = (void *)0;
2861 trace_ext4_da_write_begin(inode, pos, len, flags);
2863 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2864 ret = ext4_da_write_inline_data_begin(mapping, inode,
2874 * grab_cache_page_write_begin() can take a long time if the
2875 * system is thrashing due to memory pressure, or if the page
2876 * is being written back. So grab it first before we start
2877 * the transaction handle. This also allows us to allocate
2878 * the page (if needed) without using GFP_NOFS.
2881 page = grab_cache_page_write_begin(mapping, index, flags);
2887 * With delayed allocation, we don't log the i_disksize update
2888 * if there is delayed block allocation. But we still need
2889 * to journalling the i_disksize update if writes to the end
2890 * of file which has an already mapped buffer.
2893 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2894 ext4_da_write_credits(inode, pos, len));
2895 if (IS_ERR(handle)) {
2897 return PTR_ERR(handle);
2901 if (page->mapping != mapping) {
2902 /* The page got truncated from under us */
2905 ext4_journal_stop(handle);
2908 /* In case writeback began while the page was unlocked */
2909 wait_for_stable_page(page);
2911 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2912 ret = ext4_block_write_begin(page, pos, len,
2913 ext4_da_get_block_prep);
2915 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2919 ext4_journal_stop(handle);
2921 * block_write_begin may have instantiated a few blocks
2922 * outside i_size. Trim these off again. Don't need
2923 * i_size_read because we hold i_mutex.
2925 if (pos + len > inode->i_size)
2926 ext4_truncate_failed_write(inode);
2928 if (ret == -ENOSPC &&
2929 ext4_should_retry_alloc(inode->i_sb, &retries))
2941 * Check if we should update i_disksize
2942 * when write to the end of file but not require block allocation
2944 static int ext4_da_should_update_i_disksize(struct page *page,
2945 unsigned long offset)
2947 struct buffer_head *bh;
2948 struct inode *inode = page->mapping->host;
2952 bh = page_buffers(page);
2953 idx = offset >> inode->i_blkbits;
2955 for (i = 0; i < idx; i++)
2956 bh = bh->b_this_page;
2958 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2963 static int ext4_da_write_end(struct file *file,
2964 struct address_space *mapping,
2965 loff_t pos, unsigned len, unsigned copied,
2966 struct page *page, void *fsdata)
2968 struct inode *inode = mapping->host;
2970 handle_t *handle = ext4_journal_current_handle();
2972 unsigned long start, end;
2973 int write_mode = (int)(unsigned long)fsdata;
2975 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2976 return ext4_write_end(file, mapping, pos,
2977 len, copied, page, fsdata);
2979 trace_ext4_da_write_end(inode, pos, len, copied);
2980 start = pos & (PAGE_SIZE - 1);
2981 end = start + copied - 1;
2984 * generic_write_end() will run mark_inode_dirty() if i_size
2985 * changes. So let's piggyback the i_disksize mark_inode_dirty
2988 new_i_size = pos + copied;
2989 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2990 if (ext4_has_inline_data(inode) ||
2991 ext4_da_should_update_i_disksize(page, end)) {
2992 ext4_update_i_disksize(inode, new_i_size);
2993 /* We need to mark inode dirty even if
2994 * new_i_size is less that inode->i_size
2995 * bu greater than i_disksize.(hint delalloc)
2997 ext4_mark_inode_dirty(handle, inode);
3001 if (write_mode != CONVERT_INLINE_DATA &&
3002 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3003 ext4_has_inline_data(inode))
3004 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3007 ret2 = generic_write_end(file, mapping, pos, len, copied,
3013 ret2 = ext4_journal_stop(handle);
3017 return ret ? ret : copied;
3020 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3021 unsigned int length)
3024 * Drop reserved blocks
3026 BUG_ON(!PageLocked(page));
3027 if (!page_has_buffers(page))
3030 ext4_da_page_release_reservation(page, offset, length);
3033 ext4_invalidatepage(page, offset, length);
3039 * Force all delayed allocation blocks to be allocated for a given inode.
3041 int ext4_alloc_da_blocks(struct inode *inode)
3043 trace_ext4_alloc_da_blocks(inode);
3045 if (!EXT4_I(inode)->i_reserved_data_blocks)
3049 * We do something simple for now. The filemap_flush() will
3050 * also start triggering a write of the data blocks, which is
3051 * not strictly speaking necessary (and for users of
3052 * laptop_mode, not even desirable). However, to do otherwise
3053 * would require replicating code paths in:
3055 * ext4_writepages() ->
3056 * write_cache_pages() ---> (via passed in callback function)
3057 * __mpage_da_writepage() -->
3058 * mpage_add_bh_to_extent()
3059 * mpage_da_map_blocks()
3061 * The problem is that write_cache_pages(), located in
3062 * mm/page-writeback.c, marks pages clean in preparation for
3063 * doing I/O, which is not desirable if we're not planning on
3066 * We could call write_cache_pages(), and then redirty all of
3067 * the pages by calling redirty_page_for_writepage() but that
3068 * would be ugly in the extreme. So instead we would need to
3069 * replicate parts of the code in the above functions,
3070 * simplifying them because we wouldn't actually intend to
3071 * write out the pages, but rather only collect contiguous
3072 * logical block extents, call the multi-block allocator, and
3073 * then update the buffer heads with the block allocations.
3075 * For now, though, we'll cheat by calling filemap_flush(),
3076 * which will map the blocks, and start the I/O, but not
3077 * actually wait for the I/O to complete.
3079 return filemap_flush(inode->i_mapping);
3083 * bmap() is special. It gets used by applications such as lilo and by
3084 * the swapper to find the on-disk block of a specific piece of data.
3086 * Naturally, this is dangerous if the block concerned is still in the
3087 * journal. If somebody makes a swapfile on an ext4 data-journaling
3088 * filesystem and enables swap, then they may get a nasty shock when the
3089 * data getting swapped to that swapfile suddenly gets overwritten by
3090 * the original zero's written out previously to the journal and
3091 * awaiting writeback in the kernel's buffer cache.
3093 * So, if we see any bmap calls here on a modified, data-journaled file,
3094 * take extra steps to flush any blocks which might be in the cache.
3096 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3098 struct inode *inode = mapping->host;
3103 * We can get here for an inline file via the FIBMAP ioctl
3105 if (ext4_has_inline_data(inode))
3108 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3109 test_opt(inode->i_sb, DELALLOC)) {
3111 * With delalloc we want to sync the file
3112 * so that we can make sure we allocate
3115 filemap_write_and_wait(mapping);
3118 if (EXT4_JOURNAL(inode) &&
3119 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3121 * This is a REALLY heavyweight approach, but the use of
3122 * bmap on dirty files is expected to be extremely rare:
3123 * only if we run lilo or swapon on a freshly made file
3124 * do we expect this to happen.
3126 * (bmap requires CAP_SYS_RAWIO so this does not
3127 * represent an unprivileged user DOS attack --- we'd be
3128 * in trouble if mortal users could trigger this path at
3131 * NB. EXT4_STATE_JDATA is not set on files other than
3132 * regular files. If somebody wants to bmap a directory
3133 * or symlink and gets confused because the buffer
3134 * hasn't yet been flushed to disk, they deserve
3135 * everything they get.
3138 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3139 journal = EXT4_JOURNAL(inode);
3140 jbd2_journal_lock_updates(journal);
3141 err = jbd2_journal_flush(journal);
3142 jbd2_journal_unlock_updates(journal);
3148 return generic_block_bmap(mapping, block, ext4_get_block);
3151 static int ext4_readpage(struct file *file, struct page *page)
3154 struct inode *inode = page->mapping->host;
3156 trace_ext4_readpage(page);
3158 if (ext4_has_inline_data(inode))
3159 ret = ext4_readpage_inline(inode, page);
3162 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3168 ext4_readpages(struct file *file, struct address_space *mapping,
3169 struct list_head *pages, unsigned nr_pages)
3171 struct inode *inode = mapping->host;
3173 /* If the file has inline data, no need to do readpages. */
3174 if (ext4_has_inline_data(inode))
3177 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3180 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3181 unsigned int length)
3183 trace_ext4_invalidatepage(page, offset, length);
3185 /* No journalling happens on data buffers when this function is used */
3186 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3188 block_invalidatepage(page, offset, length);
3191 static int __ext4_journalled_invalidatepage(struct page *page,
3192 unsigned int offset,
3193 unsigned int length)
3195 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3197 trace_ext4_journalled_invalidatepage(page, offset, length);
3200 * If it's a full truncate we just forget about the pending dirtying
3202 if (offset == 0 && length == PAGE_SIZE)
3203 ClearPageChecked(page);
3205 return jbd2_journal_invalidatepage(journal, page, offset, length);
3208 /* Wrapper for aops... */
3209 static void ext4_journalled_invalidatepage(struct page *page,
3210 unsigned int offset,
3211 unsigned int length)
3213 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3216 static int ext4_releasepage(struct page *page, gfp_t wait)
3218 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3220 trace_ext4_releasepage(page);
3222 /* Page has dirty journalled data -> cannot release */
3223 if (PageChecked(page))
3226 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3228 return try_to_free_buffers(page);
3231 #ifdef CONFIG_FS_DAX
3233 * Get block function for DAX IO and mmap faults. It takes care of converting
3234 * unwritten extents to written ones and initializes new / converted blocks
3237 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3238 struct buffer_head *bh_result, int create)
3242 ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3244 return _ext4_get_block(inode, iblock, bh_result, 0);
3246 ret = ext4_get_block_trans(inode, iblock, bh_result,
3247 EXT4_GET_BLOCKS_PRE_IO |
3248 EXT4_GET_BLOCKS_CREATE_ZERO);
3252 if (buffer_unwritten(bh_result)) {
3254 * We are protected by i_mmap_sem or i_mutex so we know block
3255 * cannot go away from under us even though we dropped
3256 * i_data_sem. Convert extent to written and write zeros there.
3258 ret = ext4_get_block_trans(inode, iblock, bh_result,
3259 EXT4_GET_BLOCKS_CONVERT |
3260 EXT4_GET_BLOCKS_CREATE_ZERO);
3265 * At least for now we have to clear BH_New so that DAX code
3266 * doesn't attempt to zero blocks again in a racy way.
3268 clear_buffer_new(bh_result);
3272 /* Just define empty function, it will never get called. */
3273 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3274 struct buffer_head *bh_result, int create)
3281 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3282 ssize_t size, void *private)
3284 ext4_io_end_t *io_end = private;
3286 /* if not async direct IO just return */
3290 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3291 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3292 io_end, io_end->inode->i_ino, iocb, offset, size);
3295 * Error during AIO DIO. We cannot convert unwritten extents as the
3296 * data was not written. Just clear the unwritten flag and drop io_end.
3299 ext4_clear_io_unwritten_flag(io_end);
3302 io_end->offset = offset;
3303 io_end->size = size;
3304 ext4_put_io_end(io_end);
3310 * Handling of direct IO writes.
3312 * For ext4 extent files, ext4 will do direct-io write even to holes,
3313 * preallocated extents, and those write extend the file, no need to
3314 * fall back to buffered IO.
3316 * For holes, we fallocate those blocks, mark them as unwritten
3317 * If those blocks were preallocated, we mark sure they are split, but
3318 * still keep the range to write as unwritten.
3320 * The unwritten extents will be converted to written when DIO is completed.
3321 * For async direct IO, since the IO may still pending when return, we
3322 * set up an end_io call back function, which will do the conversion
3323 * when async direct IO completed.
3325 * If the O_DIRECT write will extend the file then add this inode to the
3326 * orphan list. So recovery will truncate it back to the original size
3327 * if the machine crashes during the write.
3330 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3332 struct file *file = iocb->ki_filp;
3333 struct inode *inode = file->f_mapping->host;
3334 struct ext4_inode_info *ei = EXT4_I(inode);
3336 loff_t offset = iocb->ki_pos;
3337 size_t count = iov_iter_count(iter);
3339 get_block_t *get_block_func = NULL;
3341 loff_t final_size = offset + count;
3345 if (final_size > inode->i_size) {
3346 /* Credits for sb + inode write */
3347 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3348 if (IS_ERR(handle)) {
3349 ret = PTR_ERR(handle);
3352 ret = ext4_orphan_add(handle, inode);
3354 ext4_journal_stop(handle);
3358 ei->i_disksize = inode->i_size;
3359 ext4_journal_stop(handle);
3362 BUG_ON(iocb->private == NULL);
3365 * Make all waiters for direct IO properly wait also for extent
3366 * conversion. This also disallows race between truncate() and
3367 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3369 inode_dio_begin(inode);
3371 /* If we do a overwrite dio, i_mutex locking can be released */
3372 overwrite = *((int *)iocb->private);
3375 inode_unlock(inode);
3378 * For extent mapped files we could direct write to holes and fallocate.
3380 * Allocated blocks to fill the hole are marked as unwritten to prevent
3381 * parallel buffered read to expose the stale data before DIO complete
3384 * As to previously fallocated extents, ext4 get_block will just simply
3385 * mark the buffer mapped but still keep the extents unwritten.
3387 * For non AIO case, we will convert those unwritten extents to written
3388 * after return back from blockdev_direct_IO. That way we save us from
3389 * allocating io_end structure and also the overhead of offloading
3390 * the extent convertion to a workqueue.
3392 * For async DIO, the conversion needs to be deferred when the
3393 * IO is completed. The ext4 end_io callback function will be
3394 * called to take care of the conversion work. Here for async
3395 * case, we allocate an io_end structure to hook to the iocb.
3397 iocb->private = NULL;
3399 get_block_func = ext4_dio_get_block_overwrite;
3400 else if (IS_DAX(inode)) {
3402 * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3403 * writes need zeroing either because they can race with page
3404 * faults or because they use partial blocks.
3406 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3407 ext4_aligned_io(inode, offset, count))
3408 get_block_func = ext4_dio_get_block;
3410 get_block_func = ext4_dax_get_block;
3411 dio_flags = DIO_LOCKING;
3412 } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3413 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3414 get_block_func = ext4_dio_get_block;
3415 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3416 } else if (is_sync_kiocb(iocb)) {
3417 get_block_func = ext4_dio_get_block_unwritten_sync;
3418 dio_flags = DIO_LOCKING;
3420 get_block_func = ext4_dio_get_block_unwritten_async;
3421 dio_flags = DIO_LOCKING;
3423 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3424 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3426 if (IS_DAX(inode)) {
3427 ret = dax_do_io(iocb, inode, iter, get_block_func,
3428 ext4_end_io_dio, dio_flags);
3430 ret = __blockdev_direct_IO(iocb, inode,
3431 inode->i_sb->s_bdev, iter,
3433 ext4_end_io_dio, NULL, dio_flags);
3435 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3436 EXT4_STATE_DIO_UNWRITTEN)) {
3439 * for non AIO case, since the IO is already
3440 * completed, we could do the conversion right here
3442 err = ext4_convert_unwritten_extents(NULL, inode,
3446 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3449 inode_dio_end(inode);
3450 /* take i_mutex locking again if we do a ovewrite dio */
3454 if (ret < 0 && final_size > inode->i_size)
3455 ext4_truncate_failed_write(inode);
3457 /* Handle extending of i_size after direct IO write */
3461 /* Credits for sb + inode write */
3462 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3463 if (IS_ERR(handle)) {
3464 /* This is really bad luck. We've written the data
3465 * but cannot extend i_size. Bail out and pretend
3466 * the write failed... */
3467 ret = PTR_ERR(handle);
3469 ext4_orphan_del(NULL, inode);
3474 ext4_orphan_del(handle, inode);
3476 loff_t end = offset + ret;
3477 if (end > inode->i_size) {
3478 ei->i_disksize = end;
3479 i_size_write(inode, end);
3481 * We're going to return a positive `ret'
3482 * here due to non-zero-length I/O, so there's
3483 * no way of reporting error returns from
3484 * ext4_mark_inode_dirty() to userspace. So
3487 ext4_mark_inode_dirty(handle, inode);
3490 err = ext4_journal_stop(handle);
3498 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3501 struct inode *inode = iocb->ki_filp->f_mapping->host;
3504 if (ext4_should_dioread_nolock(inode)) {
3506 * Nolock dioread optimization may be dynamically disabled
3507 * via ext4_inode_block_unlocked_dio(). Check inode's state
3508 * while holding extra i_dio_count ref.
3510 inode_dio_begin(inode);
3512 if (unlikely(ext4_test_inode_state(inode,
3513 EXT4_STATE_DIOREAD_LOCK)))
3514 inode_dio_end(inode);
3518 if (IS_DAX(inode)) {
3519 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block,
3520 NULL, unlocked ? 0 : DIO_LOCKING);
3522 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3523 iter, ext4_dio_get_block,
3525 unlocked ? 0 : DIO_LOCKING);
3528 inode_dio_end(inode);
3532 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3534 struct file *file = iocb->ki_filp;
3535 struct inode *inode = file->f_mapping->host;
3536 size_t count = iov_iter_count(iter);
3537 loff_t offset = iocb->ki_pos;
3540 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3541 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3546 * If we are doing data journalling we don't support O_DIRECT
3548 if (ext4_should_journal_data(inode))
3551 /* Let buffer I/O handle the inline data case. */
3552 if (ext4_has_inline_data(inode))
3555 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3556 if (iov_iter_rw(iter) == READ)
3557 ret = ext4_direct_IO_read(iocb, iter);
3559 ret = ext4_direct_IO_write(iocb, iter);
3560 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3565 * Pages can be marked dirty completely asynchronously from ext4's journalling
3566 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3567 * much here because ->set_page_dirty is called under VFS locks. The page is
3568 * not necessarily locked.
3570 * We cannot just dirty the page and leave attached buffers clean, because the
3571 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3572 * or jbddirty because all the journalling code will explode.
3574 * So what we do is to mark the page "pending dirty" and next time writepage
3575 * is called, propagate that into the buffers appropriately.
3577 static int ext4_journalled_set_page_dirty(struct page *page)
3579 SetPageChecked(page);
3580 return __set_page_dirty_nobuffers(page);
3583 static const struct address_space_operations ext4_aops = {
3584 .readpage = ext4_readpage,
3585 .readpages = ext4_readpages,
3586 .writepage = ext4_writepage,
3587 .writepages = ext4_writepages,
3588 .write_begin = ext4_write_begin,
3589 .write_end = ext4_write_end,
3591 .invalidatepage = ext4_invalidatepage,
3592 .releasepage = ext4_releasepage,
3593 .direct_IO = ext4_direct_IO,
3594 .migratepage = buffer_migrate_page,
3595 .is_partially_uptodate = block_is_partially_uptodate,
3596 .error_remove_page = generic_error_remove_page,
3599 static const struct address_space_operations ext4_journalled_aops = {
3600 .readpage = ext4_readpage,
3601 .readpages = ext4_readpages,
3602 .writepage = ext4_writepage,
3603 .writepages = ext4_writepages,
3604 .write_begin = ext4_write_begin,
3605 .write_end = ext4_journalled_write_end,
3606 .set_page_dirty = ext4_journalled_set_page_dirty,
3608 .invalidatepage = ext4_journalled_invalidatepage,
3609 .releasepage = ext4_releasepage,
3610 .direct_IO = ext4_direct_IO,
3611 .is_partially_uptodate = block_is_partially_uptodate,
3612 .error_remove_page = generic_error_remove_page,
3615 static const struct address_space_operations ext4_da_aops = {
3616 .readpage = ext4_readpage,
3617 .readpages = ext4_readpages,
3618 .writepage = ext4_writepage,
3619 .writepages = ext4_writepages,
3620 .write_begin = ext4_da_write_begin,
3621 .write_end = ext4_da_write_end,
3623 .invalidatepage = ext4_da_invalidatepage,
3624 .releasepage = ext4_releasepage,
3625 .direct_IO = ext4_direct_IO,
3626 .migratepage = buffer_migrate_page,
3627 .is_partially_uptodate = block_is_partially_uptodate,
3628 .error_remove_page = generic_error_remove_page,
3631 void ext4_set_aops(struct inode *inode)
3633 switch (ext4_inode_journal_mode(inode)) {
3634 case EXT4_INODE_ORDERED_DATA_MODE:
3635 case EXT4_INODE_WRITEBACK_DATA_MODE:
3637 case EXT4_INODE_JOURNAL_DATA_MODE:
3638 inode->i_mapping->a_ops = &ext4_journalled_aops;
3643 if (test_opt(inode->i_sb, DELALLOC))
3644 inode->i_mapping->a_ops = &ext4_da_aops;
3646 inode->i_mapping->a_ops = &ext4_aops;
3649 static int __ext4_block_zero_page_range(handle_t *handle,
3650 struct address_space *mapping, loff_t from, loff_t length)
3652 ext4_fsblk_t index = from >> PAGE_SHIFT;
3653 unsigned offset = from & (PAGE_SIZE-1);
3654 unsigned blocksize, pos;
3656 struct inode *inode = mapping->host;
3657 struct buffer_head *bh;
3661 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3662 mapping_gfp_constraint(mapping, ~__GFP_FS));
3666 blocksize = inode->i_sb->s_blocksize;
3668 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3670 if (!page_has_buffers(page))
3671 create_empty_buffers(page, blocksize, 0);
3673 /* Find the buffer that contains "offset" */
3674 bh = page_buffers(page);
3676 while (offset >= pos) {
3677 bh = bh->b_this_page;
3681 if (buffer_freed(bh)) {
3682 BUFFER_TRACE(bh, "freed: skip");
3685 if (!buffer_mapped(bh)) {
3686 BUFFER_TRACE(bh, "unmapped");
3687 ext4_get_block(inode, iblock, bh, 0);
3688 /* unmapped? It's a hole - nothing to do */
3689 if (!buffer_mapped(bh)) {
3690 BUFFER_TRACE(bh, "still unmapped");
3695 /* Ok, it's mapped. Make sure it's up-to-date */
3696 if (PageUptodate(page))
3697 set_buffer_uptodate(bh);
3699 if (!buffer_uptodate(bh)) {
3701 ll_rw_block(READ, 1, &bh);
3703 /* Uhhuh. Read error. Complain and punt. */
3704 if (!buffer_uptodate(bh))
3706 if (S_ISREG(inode->i_mode) &&
3707 ext4_encrypted_inode(inode)) {
3708 /* We expect the key to be set. */
3709 BUG_ON(!ext4_has_encryption_key(inode));
3710 BUG_ON(blocksize != PAGE_SIZE);
3711 WARN_ON_ONCE(ext4_decrypt(page));
3714 if (ext4_should_journal_data(inode)) {
3715 BUFFER_TRACE(bh, "get write access");
3716 err = ext4_journal_get_write_access(handle, bh);
3720 zero_user(page, offset, length);
3721 BUFFER_TRACE(bh, "zeroed end of block");
3723 if (ext4_should_journal_data(inode)) {
3724 err = ext4_handle_dirty_metadata(handle, inode, bh);
3727 mark_buffer_dirty(bh);
3728 if (ext4_should_order_data(inode))
3729 err = ext4_jbd2_inode_add_write(handle, inode);
3739 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3740 * starting from file offset 'from'. The range to be zero'd must
3741 * be contained with in one block. If the specified range exceeds
3742 * the end of the block it will be shortened to end of the block
3743 * that cooresponds to 'from'
3745 static int ext4_block_zero_page_range(handle_t *handle,
3746 struct address_space *mapping, loff_t from, loff_t length)
3748 struct inode *inode = mapping->host;
3749 unsigned offset = from & (PAGE_SIZE-1);
3750 unsigned blocksize = inode->i_sb->s_blocksize;
3751 unsigned max = blocksize - (offset & (blocksize - 1));
3754 * correct length if it does not fall between
3755 * 'from' and the end of the block
3757 if (length > max || length < 0)
3761 return dax_zero_page_range(inode, from, length, ext4_get_block);
3762 return __ext4_block_zero_page_range(handle, mapping, from, length);
3766 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3767 * up to the end of the block which corresponds to `from'.
3768 * This required during truncate. We need to physically zero the tail end
3769 * of that block so it doesn't yield old data if the file is later grown.
3771 static int ext4_block_truncate_page(handle_t *handle,
3772 struct address_space *mapping, loff_t from)
3774 unsigned offset = from & (PAGE_SIZE-1);
3777 struct inode *inode = mapping->host;
3779 blocksize = inode->i_sb->s_blocksize;
3780 length = blocksize - (offset & (blocksize - 1));
3782 return ext4_block_zero_page_range(handle, mapping, from, length);
3785 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3786 loff_t lstart, loff_t length)
3788 struct super_block *sb = inode->i_sb;
3789 struct address_space *mapping = inode->i_mapping;
3790 unsigned partial_start, partial_end;
3791 ext4_fsblk_t start, end;
3792 loff_t byte_end = (lstart + length - 1);
3795 partial_start = lstart & (sb->s_blocksize - 1);
3796 partial_end = byte_end & (sb->s_blocksize - 1);
3798 start = lstart >> sb->s_blocksize_bits;
3799 end = byte_end >> sb->s_blocksize_bits;
3801 /* Handle partial zero within the single block */
3803 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3804 err = ext4_block_zero_page_range(handle, mapping,
3808 /* Handle partial zero out on the start of the range */
3809 if (partial_start) {
3810 err = ext4_block_zero_page_range(handle, mapping,
3811 lstart, sb->s_blocksize);
3815 /* Handle partial zero out on the end of the range */
3816 if (partial_end != sb->s_blocksize - 1)
3817 err = ext4_block_zero_page_range(handle, mapping,
3818 byte_end - partial_end,
3823 int ext4_can_truncate(struct inode *inode)
3825 if (S_ISREG(inode->i_mode))
3827 if (S_ISDIR(inode->i_mode))
3829 if (S_ISLNK(inode->i_mode))
3830 return !ext4_inode_is_fast_symlink(inode);
3835 * We have to make sure i_disksize gets properly updated before we truncate
3836 * page cache due to hole punching or zero range. Otherwise i_disksize update
3837 * can get lost as it may have been postponed to submission of writeback but
3838 * that will never happen after we truncate page cache.
3840 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3844 loff_t size = i_size_read(inode);
3846 WARN_ON(!inode_is_locked(inode));
3847 if (offset > size || offset + len < size)
3850 if (EXT4_I(inode)->i_disksize >= size)
3853 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3855 return PTR_ERR(handle);
3856 ext4_update_i_disksize(inode, size);
3857 ext4_mark_inode_dirty(handle, inode);
3858 ext4_journal_stop(handle);
3864 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3865 * associated with the given offset and length
3867 * @inode: File inode
3868 * @offset: The offset where the hole will begin
3869 * @len: The length of the hole
3871 * Returns: 0 on success or negative on failure
3874 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3876 struct super_block *sb = inode->i_sb;
3877 ext4_lblk_t first_block, stop_block;
3878 struct address_space *mapping = inode->i_mapping;
3879 loff_t first_block_offset, last_block_offset;
3881 unsigned int credits;
3884 if (!S_ISREG(inode->i_mode))
3887 trace_ext4_punch_hole(inode, offset, length, 0);
3890 * Write out all dirty pages to avoid race conditions
3891 * Then release them.
3893 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3894 ret = filemap_write_and_wait_range(mapping, offset,
3895 offset + length - 1);
3902 /* No need to punch hole beyond i_size */
3903 if (offset >= inode->i_size)
3907 * If the hole extends beyond i_size, set the hole
3908 * to end after the page that contains i_size
3910 if (offset + length > inode->i_size) {
3911 length = inode->i_size +
3912 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3916 if (offset & (sb->s_blocksize - 1) ||
3917 (offset + length) & (sb->s_blocksize - 1)) {
3919 * Attach jinode to inode for jbd2 if we do any zeroing of
3922 ret = ext4_inode_attach_jinode(inode);
3928 /* Wait all existing dio workers, newcomers will block on i_mutex */
3929 ext4_inode_block_unlocked_dio(inode);
3930 inode_dio_wait(inode);
3933 * Prevent page faults from reinstantiating pages we have released from
3936 down_write(&EXT4_I(inode)->i_mmap_sem);
3937 first_block_offset = round_up(offset, sb->s_blocksize);
3938 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3940 /* Now release the pages and zero block aligned part of pages*/
3941 if (last_block_offset > first_block_offset) {
3942 ret = ext4_update_disksize_before_punch(inode, offset, length);
3945 truncate_pagecache_range(inode, first_block_offset,
3949 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3950 credits = ext4_writepage_trans_blocks(inode);
3952 credits = ext4_blocks_for_truncate(inode);
3953 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3954 if (IS_ERR(handle)) {
3955 ret = PTR_ERR(handle);
3956 ext4_std_error(sb, ret);
3960 ret = ext4_zero_partial_blocks(handle, inode, offset,
3965 first_block = (offset + sb->s_blocksize - 1) >>
3966 EXT4_BLOCK_SIZE_BITS(sb);
3967 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3969 /* If there are no blocks to remove, return now */
3970 if (first_block >= stop_block)
3973 down_write(&EXT4_I(inode)->i_data_sem);
3974 ext4_discard_preallocations(inode);
3976 ret = ext4_es_remove_extent(inode, first_block,
3977 stop_block - first_block);
3979 up_write(&EXT4_I(inode)->i_data_sem);
3983 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3984 ret = ext4_ext_remove_space(inode, first_block,
3987 ret = ext4_ind_remove_space(handle, inode, first_block,
3990 up_write(&EXT4_I(inode)->i_data_sem);
3992 ext4_handle_sync(handle);
3994 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3995 ext4_mark_inode_dirty(handle, inode);
3997 ext4_journal_stop(handle);
3999 up_write(&EXT4_I(inode)->i_mmap_sem);
4000 ext4_inode_resume_unlocked_dio(inode);
4002 inode_unlock(inode);
4006 int ext4_inode_attach_jinode(struct inode *inode)
4008 struct ext4_inode_info *ei = EXT4_I(inode);
4009 struct jbd2_inode *jinode;
4011 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4014 jinode = jbd2_alloc_inode(GFP_KERNEL);
4015 spin_lock(&inode->i_lock);
4018 spin_unlock(&inode->i_lock);
4021 ei->jinode = jinode;
4022 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4025 spin_unlock(&inode->i_lock);
4026 if (unlikely(jinode != NULL))
4027 jbd2_free_inode(jinode);
4034 * We block out ext4_get_block() block instantiations across the entire
4035 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4036 * simultaneously on behalf of the same inode.
4038 * As we work through the truncate and commit bits of it to the journal there
4039 * is one core, guiding principle: the file's tree must always be consistent on
4040 * disk. We must be able to restart the truncate after a crash.
4042 * The file's tree may be transiently inconsistent in memory (although it
4043 * probably isn't), but whenever we close off and commit a journal transaction,
4044 * the contents of (the filesystem + the journal) must be consistent and
4045 * restartable. It's pretty simple, really: bottom up, right to left (although
4046 * left-to-right works OK too).
4048 * Note that at recovery time, journal replay occurs *before* the restart of
4049 * truncate against the orphan inode list.
4051 * The committed inode has the new, desired i_size (which is the same as
4052 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4053 * that this inode's truncate did not complete and it will again call
4054 * ext4_truncate() to have another go. So there will be instantiated blocks
4055 * to the right of the truncation point in a crashed ext4 filesystem. But
4056 * that's fine - as long as they are linked from the inode, the post-crash
4057 * ext4_truncate() run will find them and release them.
4059 void ext4_truncate(struct inode *inode)
4061 struct ext4_inode_info *ei = EXT4_I(inode);
4062 unsigned int credits;
4064 struct address_space *mapping = inode->i_mapping;
4067 * There is a possibility that we're either freeing the inode
4068 * or it's a completely new inode. In those cases we might not
4069 * have i_mutex locked because it's not necessary.
4071 if (!(inode->i_state & (I_NEW|I_FREEING)))
4072 WARN_ON(!inode_is_locked(inode));
4073 trace_ext4_truncate_enter(inode);
4075 if (!ext4_can_truncate(inode))
4078 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4080 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4081 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4083 if (ext4_has_inline_data(inode)) {
4086 ext4_inline_data_truncate(inode, &has_inline);
4091 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4092 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4093 if (ext4_inode_attach_jinode(inode) < 0)
4097 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4098 credits = ext4_writepage_trans_blocks(inode);
4100 credits = ext4_blocks_for_truncate(inode);
4102 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4103 if (IS_ERR(handle)) {
4104 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4108 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4109 ext4_block_truncate_page(handle, mapping, inode->i_size);
4112 * We add the inode to the orphan list, so that if this
4113 * truncate spans multiple transactions, and we crash, we will
4114 * resume the truncate when the filesystem recovers. It also
4115 * marks the inode dirty, to catch the new size.
4117 * Implication: the file must always be in a sane, consistent
4118 * truncatable state while each transaction commits.
4120 if (ext4_orphan_add(handle, inode))
4123 down_write(&EXT4_I(inode)->i_data_sem);
4125 ext4_discard_preallocations(inode);
4127 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4128 ext4_ext_truncate(handle, inode);
4130 ext4_ind_truncate(handle, inode);
4132 up_write(&ei->i_data_sem);
4135 ext4_handle_sync(handle);
4139 * If this was a simple ftruncate() and the file will remain alive,
4140 * then we need to clear up the orphan record which we created above.
4141 * However, if this was a real unlink then we were called by
4142 * ext4_evict_inode(), and we allow that function to clean up the
4143 * orphan info for us.
4146 ext4_orphan_del(handle, inode);
4148 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4149 ext4_mark_inode_dirty(handle, inode);
4150 ext4_journal_stop(handle);
4152 trace_ext4_truncate_exit(inode);
4156 * ext4_get_inode_loc returns with an extra refcount against the inode's
4157 * underlying buffer_head on success. If 'in_mem' is true, we have all
4158 * data in memory that is needed to recreate the on-disk version of this
4161 static int __ext4_get_inode_loc(struct inode *inode,
4162 struct ext4_iloc *iloc, int in_mem)
4164 struct ext4_group_desc *gdp;
4165 struct buffer_head *bh;
4166 struct super_block *sb = inode->i_sb;
4168 int inodes_per_block, inode_offset;
4171 if (!ext4_valid_inum(sb, inode->i_ino))
4172 return -EFSCORRUPTED;
4174 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4175 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4180 * Figure out the offset within the block group inode table
4182 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4183 inode_offset = ((inode->i_ino - 1) %
4184 EXT4_INODES_PER_GROUP(sb));
4185 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4186 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4188 bh = sb_getblk(sb, block);
4191 if (!buffer_uptodate(bh)) {
4195 * If the buffer has the write error flag, we have failed
4196 * to write out another inode in the same block. In this
4197 * case, we don't have to read the block because we may
4198 * read the old inode data successfully.
4200 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4201 set_buffer_uptodate(bh);
4203 if (buffer_uptodate(bh)) {
4204 /* someone brought it uptodate while we waited */
4210 * If we have all information of the inode in memory and this
4211 * is the only valid inode in the block, we need not read the
4215 struct buffer_head *bitmap_bh;
4218 start = inode_offset & ~(inodes_per_block - 1);
4220 /* Is the inode bitmap in cache? */
4221 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4222 if (unlikely(!bitmap_bh))
4226 * If the inode bitmap isn't in cache then the
4227 * optimisation may end up performing two reads instead
4228 * of one, so skip it.
4230 if (!buffer_uptodate(bitmap_bh)) {
4234 for (i = start; i < start + inodes_per_block; i++) {
4235 if (i == inode_offset)
4237 if (ext4_test_bit(i, bitmap_bh->b_data))
4241 if (i == start + inodes_per_block) {
4242 /* all other inodes are free, so skip I/O */
4243 memset(bh->b_data, 0, bh->b_size);
4244 set_buffer_uptodate(bh);
4252 * If we need to do any I/O, try to pre-readahead extra
4253 * blocks from the inode table.
4255 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4256 ext4_fsblk_t b, end, table;
4258 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4260 table = ext4_inode_table(sb, gdp);
4261 /* s_inode_readahead_blks is always a power of 2 */
4262 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4266 num = EXT4_INODES_PER_GROUP(sb);
4267 if (ext4_has_group_desc_csum(sb))
4268 num -= ext4_itable_unused_count(sb, gdp);
4269 table += num / inodes_per_block;
4273 sb_breadahead(sb, b++);
4277 * There are other valid inodes in the buffer, this inode
4278 * has in-inode xattrs, or we don't have this inode in memory.
4279 * Read the block from disk.
4281 trace_ext4_load_inode(inode);
4283 bh->b_end_io = end_buffer_read_sync;
4284 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4286 if (!buffer_uptodate(bh)) {
4287 EXT4_ERROR_INODE_BLOCK(inode, block,
4288 "unable to read itable block");
4298 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4300 /* We have all inode data except xattrs in memory here. */
4301 return __ext4_get_inode_loc(inode, iloc,
4302 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4305 void ext4_set_inode_flags(struct inode *inode)
4307 unsigned int flags = EXT4_I(inode)->i_flags;
4308 unsigned int new_fl = 0;
4310 if (flags & EXT4_SYNC_FL)
4312 if (flags & EXT4_APPEND_FL)
4314 if (flags & EXT4_IMMUTABLE_FL)
4315 new_fl |= S_IMMUTABLE;
4316 if (flags & EXT4_NOATIME_FL)
4317 new_fl |= S_NOATIME;
4318 if (flags & EXT4_DIRSYNC_FL)
4319 new_fl |= S_DIRSYNC;
4320 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4322 inode_set_flags(inode, new_fl,
4323 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4326 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4327 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4329 unsigned int vfs_fl;
4330 unsigned long old_fl, new_fl;
4333 vfs_fl = ei->vfs_inode.i_flags;
4334 old_fl = ei->i_flags;
4335 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4336 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4338 if (vfs_fl & S_SYNC)
4339 new_fl |= EXT4_SYNC_FL;
4340 if (vfs_fl & S_APPEND)
4341 new_fl |= EXT4_APPEND_FL;
4342 if (vfs_fl & S_IMMUTABLE)
4343 new_fl |= EXT4_IMMUTABLE_FL;
4344 if (vfs_fl & S_NOATIME)
4345 new_fl |= EXT4_NOATIME_FL;
4346 if (vfs_fl & S_DIRSYNC)
4347 new_fl |= EXT4_DIRSYNC_FL;
4348 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4351 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4352 struct ext4_inode_info *ei)
4355 struct inode *inode = &(ei->vfs_inode);
4356 struct super_block *sb = inode->i_sb;
4358 if (ext4_has_feature_huge_file(sb)) {
4359 /* we are using combined 48 bit field */
4360 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4361 le32_to_cpu(raw_inode->i_blocks_lo);
4362 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4363 /* i_blocks represent file system block size */
4364 return i_blocks << (inode->i_blkbits - 9);
4369 return le32_to_cpu(raw_inode->i_blocks_lo);
4373 static inline void ext4_iget_extra_inode(struct inode *inode,
4374 struct ext4_inode *raw_inode,
4375 struct ext4_inode_info *ei)
4377 __le32 *magic = (void *)raw_inode +
4378 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4379 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4380 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4381 ext4_find_inline_data_nolock(inode);
4383 EXT4_I(inode)->i_inline_off = 0;
4386 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4388 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4390 *projid = EXT4_I(inode)->i_projid;
4394 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4396 struct ext4_iloc iloc;
4397 struct ext4_inode *raw_inode;
4398 struct ext4_inode_info *ei;
4399 struct inode *inode;
4400 journal_t *journal = EXT4_SB(sb)->s_journal;
4407 inode = iget_locked(sb, ino);
4409 return ERR_PTR(-ENOMEM);
4410 if (!(inode->i_state & I_NEW))
4416 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4419 raw_inode = ext4_raw_inode(&iloc);
4421 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4422 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4423 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4424 EXT4_INODE_SIZE(inode->i_sb)) {
4425 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4426 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4427 EXT4_INODE_SIZE(inode->i_sb));
4428 ret = -EFSCORRUPTED;
4432 ei->i_extra_isize = 0;
4434 /* Precompute checksum seed for inode metadata */
4435 if (ext4_has_metadata_csum(sb)) {
4436 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4438 __le32 inum = cpu_to_le32(inode->i_ino);
4439 __le32 gen = raw_inode->i_generation;
4440 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4442 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4446 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4447 EXT4_ERROR_INODE(inode, "checksum invalid");
4452 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4453 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4454 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4455 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4456 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4457 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4458 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4460 i_projid = EXT4_DEF_PROJID;
4462 if (!(test_opt(inode->i_sb, NO_UID32))) {
4463 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4464 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4466 i_uid_write(inode, i_uid);
4467 i_gid_write(inode, i_gid);
4468 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4469 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4471 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4472 ei->i_inline_off = 0;
4473 ei->i_dir_start_lookup = 0;
4474 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4475 /* We now have enough fields to check if the inode was active or not.
4476 * This is needed because nfsd might try to access dead inodes
4477 * the test is that same one that e2fsck uses
4478 * NeilBrown 1999oct15
4480 if (inode->i_nlink == 0) {
4481 if ((inode->i_mode == 0 ||
4482 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4483 ino != EXT4_BOOT_LOADER_INO) {
4484 /* this inode is deleted */
4488 /* The only unlinked inodes we let through here have
4489 * valid i_mode and are being read by the orphan
4490 * recovery code: that's fine, we're about to complete
4491 * the process of deleting those.
4492 * OR it is the EXT4_BOOT_LOADER_INO which is
4493 * not initialized on a new filesystem. */
4495 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4496 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4497 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4498 if (ext4_has_feature_64bit(sb))
4500 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4501 inode->i_size = ext4_isize(raw_inode);
4502 ei->i_disksize = inode->i_size;
4504 ei->i_reserved_quota = 0;
4506 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4507 ei->i_block_group = iloc.block_group;
4508 ei->i_last_alloc_group = ~0;
4510 * NOTE! The in-memory inode i_data array is in little-endian order
4511 * even on big-endian machines: we do NOT byteswap the block numbers!
4513 for (block = 0; block < EXT4_N_BLOCKS; block++)
4514 ei->i_data[block] = raw_inode->i_block[block];
4515 INIT_LIST_HEAD(&ei->i_orphan);
4518 * Set transaction id's of transactions that have to be committed
4519 * to finish f[data]sync. We set them to currently running transaction
4520 * as we cannot be sure that the inode or some of its metadata isn't
4521 * part of the transaction - the inode could have been reclaimed and
4522 * now it is reread from disk.
4525 transaction_t *transaction;
4528 read_lock(&journal->j_state_lock);
4529 if (journal->j_running_transaction)
4530 transaction = journal->j_running_transaction;
4532 transaction = journal->j_committing_transaction;
4534 tid = transaction->t_tid;
4536 tid = journal->j_commit_sequence;
4537 read_unlock(&journal->j_state_lock);
4538 ei->i_sync_tid = tid;
4539 ei->i_datasync_tid = tid;
4542 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4543 if (ei->i_extra_isize == 0) {
4544 /* The extra space is currently unused. Use it. */
4545 ei->i_extra_isize = sizeof(struct ext4_inode) -
4546 EXT4_GOOD_OLD_INODE_SIZE;
4548 ext4_iget_extra_inode(inode, raw_inode, ei);
4552 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4553 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4554 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4555 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4557 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4558 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4559 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4560 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4562 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4567 if (ei->i_file_acl &&
4568 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4569 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4571 ret = -EFSCORRUPTED;
4573 } else if (!ext4_has_inline_data(inode)) {
4574 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4575 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4576 (S_ISLNK(inode->i_mode) &&
4577 !ext4_inode_is_fast_symlink(inode))))
4578 /* Validate extent which is part of inode */
4579 ret = ext4_ext_check_inode(inode);
4580 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4581 (S_ISLNK(inode->i_mode) &&
4582 !ext4_inode_is_fast_symlink(inode))) {
4583 /* Validate block references which are part of inode */
4584 ret = ext4_ind_check_inode(inode);
4590 if (S_ISREG(inode->i_mode)) {
4591 inode->i_op = &ext4_file_inode_operations;
4592 inode->i_fop = &ext4_file_operations;
4593 ext4_set_aops(inode);
4594 } else if (S_ISDIR(inode->i_mode)) {
4595 inode->i_op = &ext4_dir_inode_operations;
4596 inode->i_fop = &ext4_dir_operations;
4597 } else if (S_ISLNK(inode->i_mode)) {
4598 if (ext4_encrypted_inode(inode)) {
4599 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4600 ext4_set_aops(inode);
4601 } else if (ext4_inode_is_fast_symlink(inode)) {
4602 inode->i_link = (char *)ei->i_data;
4603 inode->i_op = &ext4_fast_symlink_inode_operations;
4604 nd_terminate_link(ei->i_data, inode->i_size,
4605 sizeof(ei->i_data) - 1);
4607 inode->i_op = &ext4_symlink_inode_operations;
4608 ext4_set_aops(inode);
4610 inode_nohighmem(inode);
4611 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4612 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4613 inode->i_op = &ext4_special_inode_operations;
4614 if (raw_inode->i_block[0])
4615 init_special_inode(inode, inode->i_mode,
4616 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4618 init_special_inode(inode, inode->i_mode,
4619 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4620 } else if (ino == EXT4_BOOT_LOADER_INO) {
4621 make_bad_inode(inode);
4623 ret = -EFSCORRUPTED;
4624 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4628 ext4_set_inode_flags(inode);
4629 unlock_new_inode(inode);
4635 return ERR_PTR(ret);
4638 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4640 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4641 return ERR_PTR(-EFSCORRUPTED);
4642 return ext4_iget(sb, ino);
4645 static int ext4_inode_blocks_set(handle_t *handle,
4646 struct ext4_inode *raw_inode,
4647 struct ext4_inode_info *ei)
4649 struct inode *inode = &(ei->vfs_inode);
4650 u64 i_blocks = inode->i_blocks;
4651 struct super_block *sb = inode->i_sb;
4653 if (i_blocks <= ~0U) {
4655 * i_blocks can be represented in a 32 bit variable
4656 * as multiple of 512 bytes
4658 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4659 raw_inode->i_blocks_high = 0;
4660 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4663 if (!ext4_has_feature_huge_file(sb))
4666 if (i_blocks <= 0xffffffffffffULL) {
4668 * i_blocks can be represented in a 48 bit variable
4669 * as multiple of 512 bytes
4671 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4672 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4673 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4675 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4676 /* i_block is stored in file system block size */
4677 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4678 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4679 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4684 struct other_inode {
4685 unsigned long orig_ino;
4686 struct ext4_inode *raw_inode;
4689 static int other_inode_match(struct inode * inode, unsigned long ino,
4692 struct other_inode *oi = (struct other_inode *) data;
4694 if ((inode->i_ino != ino) ||
4695 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4696 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4697 ((inode->i_state & I_DIRTY_TIME) == 0))
4699 spin_lock(&inode->i_lock);
4700 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4701 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4702 (inode->i_state & I_DIRTY_TIME)) {
4703 struct ext4_inode_info *ei = EXT4_I(inode);
4705 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4706 spin_unlock(&inode->i_lock);
4708 spin_lock(&ei->i_raw_lock);
4709 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4710 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4711 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4712 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4713 spin_unlock(&ei->i_raw_lock);
4714 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4717 spin_unlock(&inode->i_lock);
4722 * Opportunistically update the other time fields for other inodes in
4723 * the same inode table block.
4725 static void ext4_update_other_inodes_time(struct super_block *sb,
4726 unsigned long orig_ino, char *buf)
4728 struct other_inode oi;
4730 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4731 int inode_size = EXT4_INODE_SIZE(sb);
4733 oi.orig_ino = orig_ino;
4735 * Calculate the first inode in the inode table block. Inode
4736 * numbers are one-based. That is, the first inode in a block
4737 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4739 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4740 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4741 if (ino == orig_ino)
4743 oi.raw_inode = (struct ext4_inode *) buf;
4744 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4749 * Post the struct inode info into an on-disk inode location in the
4750 * buffer-cache. This gobbles the caller's reference to the
4751 * buffer_head in the inode location struct.
4753 * The caller must have write access to iloc->bh.
4755 static int ext4_do_update_inode(handle_t *handle,
4756 struct inode *inode,
4757 struct ext4_iloc *iloc)
4759 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4760 struct ext4_inode_info *ei = EXT4_I(inode);
4761 struct buffer_head *bh = iloc->bh;
4762 struct super_block *sb = inode->i_sb;
4763 int err = 0, rc, block;
4764 int need_datasync = 0, set_large_file = 0;
4769 spin_lock(&ei->i_raw_lock);
4771 /* For fields not tracked in the in-memory inode,
4772 * initialise them to zero for new inodes. */
4773 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4774 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4776 ext4_get_inode_flags(ei);
4777 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4778 i_uid = i_uid_read(inode);
4779 i_gid = i_gid_read(inode);
4780 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4781 if (!(test_opt(inode->i_sb, NO_UID32))) {
4782 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4783 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4785 * Fix up interoperability with old kernels. Otherwise, old inodes get
4786 * re-used with the upper 16 bits of the uid/gid intact
4789 raw_inode->i_uid_high =
4790 cpu_to_le16(high_16_bits(i_uid));
4791 raw_inode->i_gid_high =
4792 cpu_to_le16(high_16_bits(i_gid));
4794 raw_inode->i_uid_high = 0;
4795 raw_inode->i_gid_high = 0;
4798 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4799 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4800 raw_inode->i_uid_high = 0;
4801 raw_inode->i_gid_high = 0;
4803 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4805 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4806 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4807 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4808 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4810 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4812 spin_unlock(&ei->i_raw_lock);
4815 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4816 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4817 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4818 raw_inode->i_file_acl_high =
4819 cpu_to_le16(ei->i_file_acl >> 32);
4820 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4821 if (ei->i_disksize != ext4_isize(raw_inode)) {
4822 ext4_isize_set(raw_inode, ei->i_disksize);
4825 if (ei->i_disksize > 0x7fffffffULL) {
4826 if (!ext4_has_feature_large_file(sb) ||
4827 EXT4_SB(sb)->s_es->s_rev_level ==
4828 cpu_to_le32(EXT4_GOOD_OLD_REV))
4831 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4832 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4833 if (old_valid_dev(inode->i_rdev)) {
4834 raw_inode->i_block[0] =
4835 cpu_to_le32(old_encode_dev(inode->i_rdev));
4836 raw_inode->i_block[1] = 0;
4838 raw_inode->i_block[0] = 0;
4839 raw_inode->i_block[1] =
4840 cpu_to_le32(new_encode_dev(inode->i_rdev));
4841 raw_inode->i_block[2] = 0;
4843 } else if (!ext4_has_inline_data(inode)) {
4844 for (block = 0; block < EXT4_N_BLOCKS; block++)
4845 raw_inode->i_block[block] = ei->i_data[block];
4848 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4849 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4850 if (ei->i_extra_isize) {
4851 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4852 raw_inode->i_version_hi =
4853 cpu_to_le32(inode->i_version >> 32);
4854 raw_inode->i_extra_isize =
4855 cpu_to_le16(ei->i_extra_isize);
4859 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4860 EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4861 i_projid != EXT4_DEF_PROJID);
4863 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4864 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4865 raw_inode->i_projid = cpu_to_le32(i_projid);
4867 ext4_inode_csum_set(inode, raw_inode, ei);
4868 spin_unlock(&ei->i_raw_lock);
4869 if (inode->i_sb->s_flags & MS_LAZYTIME)
4870 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4873 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4874 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4877 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4878 if (set_large_file) {
4879 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4880 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4883 ext4_update_dynamic_rev(sb);
4884 ext4_set_feature_large_file(sb);
4885 ext4_handle_sync(handle);
4886 err = ext4_handle_dirty_super(handle, sb);
4888 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4891 ext4_std_error(inode->i_sb, err);
4896 * ext4_write_inode()
4898 * We are called from a few places:
4900 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4901 * Here, there will be no transaction running. We wait for any running
4902 * transaction to commit.
4904 * - Within flush work (sys_sync(), kupdate and such).
4905 * We wait on commit, if told to.
4907 * - Within iput_final() -> write_inode_now()
4908 * We wait on commit, if told to.
4910 * In all cases it is actually safe for us to return without doing anything,
4911 * because the inode has been copied into a raw inode buffer in
4912 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4915 * Note that we are absolutely dependent upon all inode dirtiers doing the
4916 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4917 * which we are interested.
4919 * It would be a bug for them to not do this. The code:
4921 * mark_inode_dirty(inode)
4923 * inode->i_size = expr;
4925 * is in error because write_inode() could occur while `stuff()' is running,
4926 * and the new i_size will be lost. Plus the inode will no longer be on the
4927 * superblock's dirty inode list.
4929 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4933 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4936 if (EXT4_SB(inode->i_sb)->s_journal) {
4937 if (ext4_journal_current_handle()) {
4938 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4944 * No need to force transaction in WB_SYNC_NONE mode. Also
4945 * ext4_sync_fs() will force the commit after everything is
4948 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4951 err = ext4_force_commit(inode->i_sb);
4953 struct ext4_iloc iloc;
4955 err = __ext4_get_inode_loc(inode, &iloc, 0);
4959 * sync(2) will flush the whole buffer cache. No need to do
4960 * it here separately for each inode.
4962 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4963 sync_dirty_buffer(iloc.bh);
4964 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4965 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4966 "IO error syncing inode");
4975 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4976 * buffers that are attached to a page stradding i_size and are undergoing
4977 * commit. In that case we have to wait for commit to finish and try again.
4979 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4983 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4984 tid_t commit_tid = 0;
4987 offset = inode->i_size & (PAGE_SIZE - 1);
4989 * All buffers in the last page remain valid? Then there's nothing to
4990 * do. We do the check mainly to optimize the common PAGE_SIZE ==
4993 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
4996 page = find_lock_page(inode->i_mapping,
4997 inode->i_size >> PAGE_SHIFT);
5000 ret = __ext4_journalled_invalidatepage(page, offset,
5001 PAGE_SIZE - offset);
5007 read_lock(&journal->j_state_lock);
5008 if (journal->j_committing_transaction)
5009 commit_tid = journal->j_committing_transaction->t_tid;
5010 read_unlock(&journal->j_state_lock);
5012 jbd2_log_wait_commit(journal, commit_tid);
5019 * Called from notify_change.
5021 * We want to trap VFS attempts to truncate the file as soon as
5022 * possible. In particular, we want to make sure that when the VFS
5023 * shrinks i_size, we put the inode on the orphan list and modify
5024 * i_disksize immediately, so that during the subsequent flushing of
5025 * dirty pages and freeing of disk blocks, we can guarantee that any
5026 * commit will leave the blocks being flushed in an unused state on
5027 * disk. (On recovery, the inode will get truncated and the blocks will
5028 * be freed, so we have a strong guarantee that no future commit will
5029 * leave these blocks visible to the user.)
5031 * Another thing we have to assure is that if we are in ordered mode
5032 * and inode is still attached to the committing transaction, we must
5033 * we start writeout of all the dirty pages which are being truncated.
5034 * This way we are sure that all the data written in the previous
5035 * transaction are already on disk (truncate waits for pages under
5038 * Called with inode->i_mutex down.
5040 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5042 struct inode *inode = d_inode(dentry);
5045 const unsigned int ia_valid = attr->ia_valid;
5047 error = inode_change_ok(inode, attr);
5051 if (is_quota_modification(inode, attr)) {
5052 error = dquot_initialize(inode);
5056 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5057 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5060 /* (user+group)*(old+new) structure, inode write (sb,
5061 * inode block, ? - but truncate inode update has it) */
5062 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5063 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5064 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5065 if (IS_ERR(handle)) {
5066 error = PTR_ERR(handle);
5069 error = dquot_transfer(inode, attr);
5071 ext4_journal_stop(handle);
5074 /* Update corresponding info in inode so that everything is in
5075 * one transaction */
5076 if (attr->ia_valid & ATTR_UID)
5077 inode->i_uid = attr->ia_uid;
5078 if (attr->ia_valid & ATTR_GID)
5079 inode->i_gid = attr->ia_gid;
5080 error = ext4_mark_inode_dirty(handle, inode);
5081 ext4_journal_stop(handle);
5084 if (attr->ia_valid & ATTR_SIZE) {
5086 loff_t oldsize = inode->i_size;
5087 int shrink = (attr->ia_size <= inode->i_size);
5089 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5090 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5092 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5095 if (!S_ISREG(inode->i_mode))
5098 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5099 inode_inc_iversion(inode);
5101 if (ext4_should_order_data(inode) &&
5102 (attr->ia_size < inode->i_size)) {
5103 error = ext4_begin_ordered_truncate(inode,
5108 if (attr->ia_size != inode->i_size) {
5109 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5110 if (IS_ERR(handle)) {
5111 error = PTR_ERR(handle);
5114 if (ext4_handle_valid(handle) && shrink) {
5115 error = ext4_orphan_add(handle, inode);
5119 * Update c/mtime on truncate up, ext4_truncate() will
5120 * update c/mtime in shrink case below
5123 inode->i_mtime = ext4_current_time(inode);
5124 inode->i_ctime = inode->i_mtime;
5126 down_write(&EXT4_I(inode)->i_data_sem);
5127 EXT4_I(inode)->i_disksize = attr->ia_size;
5128 rc = ext4_mark_inode_dirty(handle, inode);
5132 * We have to update i_size under i_data_sem together
5133 * with i_disksize to avoid races with writeback code
5134 * running ext4_wb_update_i_disksize().
5137 i_size_write(inode, attr->ia_size);
5138 up_write(&EXT4_I(inode)->i_data_sem);
5139 ext4_journal_stop(handle);
5142 ext4_orphan_del(NULL, inode);
5147 pagecache_isize_extended(inode, oldsize, inode->i_size);
5150 * Blocks are going to be removed from the inode. Wait
5151 * for dio in flight. Temporarily disable
5152 * dioread_nolock to prevent livelock.
5155 if (!ext4_should_journal_data(inode)) {
5156 ext4_inode_block_unlocked_dio(inode);
5157 inode_dio_wait(inode);
5158 ext4_inode_resume_unlocked_dio(inode);
5160 ext4_wait_for_tail_page_commit(inode);
5162 down_write(&EXT4_I(inode)->i_mmap_sem);
5164 * Truncate pagecache after we've waited for commit
5165 * in data=journal mode to make pages freeable.
5167 truncate_pagecache(inode, inode->i_size);
5169 ext4_truncate(inode);
5170 up_write(&EXT4_I(inode)->i_mmap_sem);
5174 setattr_copy(inode, attr);
5175 mark_inode_dirty(inode);
5179 * If the call to ext4_truncate failed to get a transaction handle at
5180 * all, we need to clean up the in-core orphan list manually.
5182 if (orphan && inode->i_nlink)
5183 ext4_orphan_del(NULL, inode);
5185 if (!rc && (ia_valid & ATTR_MODE))
5186 rc = posix_acl_chmod(inode, inode->i_mode);
5189 ext4_std_error(inode->i_sb, error);
5195 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5198 struct inode *inode;
5199 unsigned long long delalloc_blocks;
5201 inode = d_inode(dentry);
5202 generic_fillattr(inode, stat);
5205 * If there is inline data in the inode, the inode will normally not
5206 * have data blocks allocated (it may have an external xattr block).
5207 * Report at least one sector for such files, so tools like tar, rsync,
5208 * others doen't incorrectly think the file is completely sparse.
5210 if (unlikely(ext4_has_inline_data(inode)))
5211 stat->blocks += (stat->size + 511) >> 9;
5214 * We can't update i_blocks if the block allocation is delayed
5215 * otherwise in the case of system crash before the real block
5216 * allocation is done, we will have i_blocks inconsistent with
5217 * on-disk file blocks.
5218 * We always keep i_blocks updated together with real
5219 * allocation. But to not confuse with user, stat
5220 * will return the blocks that include the delayed allocation
5221 * blocks for this file.
5223 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5224 EXT4_I(inode)->i_reserved_data_blocks);
5225 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5229 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5232 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5233 return ext4_ind_trans_blocks(inode, lblocks);
5234 return ext4_ext_index_trans_blocks(inode, pextents);
5238 * Account for index blocks, block groups bitmaps and block group
5239 * descriptor blocks if modify datablocks and index blocks
5240 * worse case, the indexs blocks spread over different block groups
5242 * If datablocks are discontiguous, they are possible to spread over
5243 * different block groups too. If they are contiguous, with flexbg,
5244 * they could still across block group boundary.
5246 * Also account for superblock, inode, quota and xattr blocks
5248 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5251 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5257 * How many index blocks need to touch to map @lblocks logical blocks
5258 * to @pextents physical extents?
5260 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5265 * Now let's see how many group bitmaps and group descriptors need
5268 groups = idxblocks + pextents;
5270 if (groups > ngroups)
5272 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5273 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5275 /* bitmaps and block group descriptor blocks */
5276 ret += groups + gdpblocks;
5278 /* Blocks for super block, inode, quota and xattr blocks */
5279 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5285 * Calculate the total number of credits to reserve to fit
5286 * the modification of a single pages into a single transaction,
5287 * which may include multiple chunks of block allocations.
5289 * This could be called via ext4_write_begin()
5291 * We need to consider the worse case, when
5292 * one new block per extent.
5294 int ext4_writepage_trans_blocks(struct inode *inode)
5296 int bpp = ext4_journal_blocks_per_page(inode);
5299 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5301 /* Account for data blocks for journalled mode */
5302 if (ext4_should_journal_data(inode))
5308 * Calculate the journal credits for a chunk of data modification.
5310 * This is called from DIO, fallocate or whoever calling
5311 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5313 * journal buffers for data blocks are not included here, as DIO
5314 * and fallocate do no need to journal data buffers.
5316 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5318 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5322 * The caller must have previously called ext4_reserve_inode_write().
5323 * Give this, we know that the caller already has write access to iloc->bh.
5325 int ext4_mark_iloc_dirty(handle_t *handle,
5326 struct inode *inode, struct ext4_iloc *iloc)
5330 if (IS_I_VERSION(inode))
5331 inode_inc_iversion(inode);
5333 /* the do_update_inode consumes one bh->b_count */
5336 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5337 err = ext4_do_update_inode(handle, inode, iloc);
5343 * On success, We end up with an outstanding reference count against
5344 * iloc->bh. This _must_ be cleaned up later.
5348 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5349 struct ext4_iloc *iloc)
5353 err = ext4_get_inode_loc(inode, iloc);
5355 BUFFER_TRACE(iloc->bh, "get_write_access");
5356 err = ext4_journal_get_write_access(handle, iloc->bh);
5362 ext4_std_error(inode->i_sb, err);
5367 * Expand an inode by new_extra_isize bytes.
5368 * Returns 0 on success or negative error number on failure.
5370 static int ext4_expand_extra_isize(struct inode *inode,
5371 unsigned int new_extra_isize,
5372 struct ext4_iloc iloc,
5375 struct ext4_inode *raw_inode;
5376 struct ext4_xattr_ibody_header *header;
5378 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5381 raw_inode = ext4_raw_inode(&iloc);
5383 header = IHDR(inode, raw_inode);
5385 /* No extended attributes present */
5386 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5387 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5388 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5390 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5394 /* try to expand with EAs present */
5395 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5400 * What we do here is to mark the in-core inode as clean with respect to inode
5401 * dirtiness (it may still be data-dirty).
5402 * This means that the in-core inode may be reaped by prune_icache
5403 * without having to perform any I/O. This is a very good thing,
5404 * because *any* task may call prune_icache - even ones which
5405 * have a transaction open against a different journal.
5407 * Is this cheating? Not really. Sure, we haven't written the
5408 * inode out, but prune_icache isn't a user-visible syncing function.
5409 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5410 * we start and wait on commits.
5412 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5414 struct ext4_iloc iloc;
5415 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5416 static unsigned int mnt_count;
5420 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5421 err = ext4_reserve_inode_write(handle, inode, &iloc);
5424 if (ext4_handle_valid(handle) &&
5425 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5426 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5428 * We need extra buffer credits since we may write into EA block
5429 * with this same handle. If journal_extend fails, then it will
5430 * only result in a minor loss of functionality for that inode.
5431 * If this is felt to be critical, then e2fsck should be run to
5432 * force a large enough s_min_extra_isize.
5434 if ((jbd2_journal_extend(handle,
5435 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5436 ret = ext4_expand_extra_isize(inode,
5437 sbi->s_want_extra_isize,
5440 ext4_set_inode_state(inode,
5441 EXT4_STATE_NO_EXPAND);
5443 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5444 ext4_warning(inode->i_sb,
5445 "Unable to expand inode %lu. Delete"
5446 " some EAs or run e2fsck.",
5449 le16_to_cpu(sbi->s_es->s_mnt_count);
5454 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5458 * ext4_dirty_inode() is called from __mark_inode_dirty()
5460 * We're really interested in the case where a file is being extended.
5461 * i_size has been changed by generic_commit_write() and we thus need
5462 * to include the updated inode in the current transaction.
5464 * Also, dquot_alloc_block() will always dirty the inode when blocks
5465 * are allocated to the file.
5467 * If the inode is marked synchronous, we don't honour that here - doing
5468 * so would cause a commit on atime updates, which we don't bother doing.
5469 * We handle synchronous inodes at the highest possible level.
5471 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5472 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5473 * to copy into the on-disk inode structure are the timestamp files.
5475 void ext4_dirty_inode(struct inode *inode, int flags)
5479 if (flags == I_DIRTY_TIME)
5481 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5485 ext4_mark_inode_dirty(handle, inode);
5487 ext4_journal_stop(handle);
5494 * Bind an inode's backing buffer_head into this transaction, to prevent
5495 * it from being flushed to disk early. Unlike
5496 * ext4_reserve_inode_write, this leaves behind no bh reference and
5497 * returns no iloc structure, so the caller needs to repeat the iloc
5498 * lookup to mark the inode dirty later.
5500 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5502 struct ext4_iloc iloc;
5506 err = ext4_get_inode_loc(inode, &iloc);
5508 BUFFER_TRACE(iloc.bh, "get_write_access");
5509 err = jbd2_journal_get_write_access(handle, iloc.bh);
5511 err = ext4_handle_dirty_metadata(handle,
5517 ext4_std_error(inode->i_sb, err);
5522 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5527 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5530 * We have to be very careful here: changing a data block's
5531 * journaling status dynamically is dangerous. If we write a
5532 * data block to the journal, change the status and then delete
5533 * that block, we risk forgetting to revoke the old log record
5534 * from the journal and so a subsequent replay can corrupt data.
5535 * So, first we make sure that the journal is empty and that
5536 * nobody is changing anything.
5539 journal = EXT4_JOURNAL(inode);
5542 if (is_journal_aborted(journal))
5545 /* Wait for all existing dio workers */
5546 ext4_inode_block_unlocked_dio(inode);
5547 inode_dio_wait(inode);
5550 * Before flushing the journal and switching inode's aops, we have
5551 * to flush all dirty data the inode has. There can be outstanding
5552 * delayed allocations, there can be unwritten extents created by
5553 * fallocate or buffered writes in dioread_nolock mode covered by
5554 * dirty data which can be converted only after flushing the dirty
5555 * data (and journalled aops don't know how to handle these cases).
5558 down_write(&EXT4_I(inode)->i_mmap_sem);
5559 err = filemap_write_and_wait(inode->i_mapping);
5561 up_write(&EXT4_I(inode)->i_mmap_sem);
5562 ext4_inode_resume_unlocked_dio(inode);
5567 percpu_down_write(&sbi->s_journal_flag_rwsem);
5568 jbd2_journal_lock_updates(journal);
5571 * OK, there are no updates running now, and all cached data is
5572 * synced to disk. We are now in a completely consistent state
5573 * which doesn't have anything in the journal, and we know that
5574 * no filesystem updates are running, so it is safe to modify
5575 * the inode's in-core data-journaling state flag now.
5579 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5581 err = jbd2_journal_flush(journal);
5583 jbd2_journal_unlock_updates(journal);
5584 percpu_up_write(&sbi->s_journal_flag_rwsem);
5585 ext4_inode_resume_unlocked_dio(inode);
5588 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5590 ext4_set_aops(inode);
5592 jbd2_journal_unlock_updates(journal);
5593 percpu_up_write(&sbi->s_journal_flag_rwsem);
5596 up_write(&EXT4_I(inode)->i_mmap_sem);
5597 ext4_inode_resume_unlocked_dio(inode);
5599 /* Finally we can mark the inode as dirty. */
5601 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5603 return PTR_ERR(handle);
5605 err = ext4_mark_inode_dirty(handle, inode);
5606 ext4_handle_sync(handle);
5607 ext4_journal_stop(handle);
5608 ext4_std_error(inode->i_sb, err);
5613 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5615 return !buffer_mapped(bh);
5618 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5620 struct page *page = vmf->page;
5624 struct file *file = vma->vm_file;
5625 struct inode *inode = file_inode(file);
5626 struct address_space *mapping = inode->i_mapping;
5628 get_block_t *get_block;
5631 sb_start_pagefault(inode->i_sb);
5632 file_update_time(vma->vm_file);
5634 down_read(&EXT4_I(inode)->i_mmap_sem);
5635 /* Delalloc case is easy... */
5636 if (test_opt(inode->i_sb, DELALLOC) &&
5637 !ext4_should_journal_data(inode) &&
5638 !ext4_nonda_switch(inode->i_sb)) {
5640 ret = block_page_mkwrite(vma, vmf,
5641 ext4_da_get_block_prep);
5642 } while (ret == -ENOSPC &&
5643 ext4_should_retry_alloc(inode->i_sb, &retries));
5648 size = i_size_read(inode);
5649 /* Page got truncated from under us? */
5650 if (page->mapping != mapping || page_offset(page) > size) {
5652 ret = VM_FAULT_NOPAGE;
5656 if (page->index == size >> PAGE_SHIFT)
5657 len = size & ~PAGE_MASK;
5661 * Return if we have all the buffers mapped. This avoids the need to do
5662 * journal_start/journal_stop which can block and take a long time
5664 if (page_has_buffers(page)) {
5665 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5667 ext4_bh_unmapped)) {
5668 /* Wait so that we don't change page under IO */
5669 wait_for_stable_page(page);
5670 ret = VM_FAULT_LOCKED;
5675 /* OK, we need to fill the hole... */
5676 if (ext4_should_dioread_nolock(inode))
5677 get_block = ext4_get_block_unwritten;
5679 get_block = ext4_get_block;
5681 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5682 ext4_writepage_trans_blocks(inode));
5683 if (IS_ERR(handle)) {
5684 ret = VM_FAULT_SIGBUS;
5687 ret = block_page_mkwrite(vma, vmf, get_block);
5688 if (!ret && ext4_should_journal_data(inode)) {
5689 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5690 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5692 ret = VM_FAULT_SIGBUS;
5693 ext4_journal_stop(handle);
5696 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5698 ext4_journal_stop(handle);
5699 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5702 ret = block_page_mkwrite_return(ret);
5704 up_read(&EXT4_I(inode)->i_mmap_sem);
5705 sb_end_pagefault(inode->i_sb);
5709 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5711 struct inode *inode = file_inode(vma->vm_file);
5714 down_read(&EXT4_I(inode)->i_mmap_sem);
5715 err = filemap_fault(vma, vmf);
5716 up_read(&EXT4_I(inode)->i_mmap_sem);
5722 * Find the first extent at or after @lblk in an inode that is not a hole.
5723 * Search for @map_len blocks at most. The extent is returned in @result.
5725 * The function returns 1 if we found an extent. The function returns 0 in
5726 * case there is no extent at or after @lblk and in that case also sets
5727 * @result->es_len to 0. In case of error, the error code is returned.
5729 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5730 unsigned int map_len, struct extent_status *result)
5732 struct ext4_map_blocks map;
5733 struct extent_status es = {};
5737 map.m_len = map_len;
5740 * For non-extent based files this loop may iterate several times since
5741 * we do not determine full hole size.
5743 while (map.m_len > 0) {
5744 ret = ext4_map_blocks(NULL, inode, &map, 0);
5747 /* There's extent covering m_lblk? Just return it. */
5751 ext4_es_store_pblock(result, map.m_pblk);
5752 result->es_lblk = map.m_lblk;
5753 result->es_len = map.m_len;
5754 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5755 status = EXTENT_STATUS_UNWRITTEN;
5757 status = EXTENT_STATUS_WRITTEN;
5758 ext4_es_store_status(result, status);
5761 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5762 map.m_lblk + map.m_len - 1,
5764 /* Is delalloc data before next block in extent tree? */
5765 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5766 ext4_lblk_t offset = 0;
5768 if (es.es_lblk < lblk)
5769 offset = lblk - es.es_lblk;
5770 result->es_lblk = es.es_lblk + offset;
5771 ext4_es_store_pblock(result,
5772 ext4_es_pblock(&es) + offset);
5773 result->es_len = es.es_len - offset;
5774 ext4_es_store_status(result, ext4_es_status(&es));
5778 /* There's a hole at m_lblk, advance us after it */
5779 map.m_lblk += map.m_len;
5780 map_len -= map.m_len;
5781 map.m_len = map_len;