1 /* SPDX-License-Identifier: GPL-2.0+ */
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
20 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
22 /* Race on early boot between thread creation and assignment */
23 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
26 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
33 * Offload callback processing from the boot-time-specified set of CPUs
34 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
35 * created that pull the callbacks from the corresponding CPU, wait for
36 * a grace period to elapse, and invoke the callbacks. These kthreads
37 * are organized into GP kthreads, which manage incoming callbacks, wait for
38 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
39 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
40 * do a wake_up() on their GP kthread when they insert a callback into any
41 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
42 * in which case each kthread actively polls its CPU. (Which isn't so great
43 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
45 * This is intended to be used in conjunction with Frederic Weisbecker's
46 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
47 * running CPU-bound user-mode computations.
49 * Offloading of callbacks can also be used as an energy-efficiency
50 * measure because CPUs with no RCU callbacks queued are more aggressive
51 * about entering dyntick-idle mode.
56 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
57 * If the list is invalid, a warning is emitted and all CPUs are offloaded.
59 static int __init rcu_nocb_setup(char *str)
61 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
63 if (cpulist_parse(++str, rcu_nocb_mask)) {
64 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
65 cpumask_setall(rcu_nocb_mask);
68 rcu_state.nocb_is_setup = true;
71 __setup("rcu_nocbs", rcu_nocb_setup);
73 static int __init parse_rcu_nocb_poll(char *arg)
78 __setup("rcu_nocb_poll", parse_rcu_nocb_poll);
81 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
82 * After all, the main point of bypassing is to avoid lock contention
83 * on ->nocb_lock, which only can happen at high call_rcu() rates.
85 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
86 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
89 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
90 * lock isn't immediately available, perform minimal sanity check.
92 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
93 __acquires(&rdp->nocb_bypass_lock)
95 lockdep_assert_irqs_disabled();
96 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
99 * Contention expected only when local enqueue collide with
100 * remote flush from kthreads.
102 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
103 raw_spin_lock(&rdp->nocb_bypass_lock);
107 * Conditionally acquire the specified rcu_data structure's
108 * ->nocb_bypass_lock.
110 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
112 lockdep_assert_irqs_disabled();
113 return raw_spin_trylock(&rdp->nocb_bypass_lock);
117 * Release the specified rcu_data structure's ->nocb_bypass_lock.
119 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
120 __releases(&rdp->nocb_bypass_lock)
122 lockdep_assert_irqs_disabled();
123 raw_spin_unlock(&rdp->nocb_bypass_lock);
127 * Acquire the specified rcu_data structure's ->nocb_lock, but only
128 * if it corresponds to a no-CBs CPU.
130 static void rcu_nocb_lock(struct rcu_data *rdp)
132 lockdep_assert_irqs_disabled();
133 if (!rcu_rdp_is_offloaded(rdp))
135 raw_spin_lock(&rdp->nocb_lock);
139 * Release the specified rcu_data structure's ->nocb_lock, but only
140 * if it corresponds to a no-CBs CPU.
142 static void rcu_nocb_unlock(struct rcu_data *rdp)
144 if (rcu_rdp_is_offloaded(rdp)) {
145 lockdep_assert_irqs_disabled();
146 raw_spin_unlock(&rdp->nocb_lock);
151 * Release the specified rcu_data structure's ->nocb_lock and restore
152 * interrupts, but only if it corresponds to a no-CBs CPU.
154 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
157 if (rcu_rdp_is_offloaded(rdp)) {
158 lockdep_assert_irqs_disabled();
159 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
161 local_irq_restore(flags);
165 /* Lockdep check that ->cblist may be safely accessed. */
166 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
168 lockdep_assert_irqs_disabled();
169 if (rcu_rdp_is_offloaded(rdp))
170 lockdep_assert_held(&rdp->nocb_lock);
174 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
177 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
182 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
184 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
187 static void rcu_init_one_nocb(struct rcu_node *rnp)
189 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
190 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
193 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
194 struct rcu_data *rdp,
195 bool force, unsigned long flags)
196 __releases(rdp_gp->nocb_gp_lock)
198 bool needwake = false;
200 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
201 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
202 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
203 TPS("AlreadyAwake"));
207 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
208 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
209 del_timer(&rdp_gp->nocb_timer);
212 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
213 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
216 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
218 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
219 swake_up_one_online(&rdp_gp->nocb_gp_wq);
226 * Kick the GP kthread for this NOCB group.
228 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
231 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
233 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
234 return __wake_nocb_gp(rdp_gp, rdp, force, flags);
237 #ifdef CONFIG_RCU_LAZY
239 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
240 * can elapse before lazy callbacks are flushed. Lazy callbacks
241 * could be flushed much earlier for a number of other reasons
242 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
243 * left unsubmitted to RCU after those many jiffies.
245 #define LAZY_FLUSH_JIFFIES (10 * HZ)
246 static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES;
248 // To be called only from test code.
249 void rcu_set_jiffies_lazy_flush(unsigned long jif)
251 jiffies_lazy_flush = jif;
253 EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush);
255 unsigned long rcu_get_jiffies_lazy_flush(void)
257 return jiffies_lazy_flush;
259 EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush);
263 * Arrange to wake the GP kthread for this NOCB group at some future
264 * time when it is safe to do so.
266 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
270 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
272 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
275 * Bypass wakeup overrides previous deferments. In case of
276 * callback storms, no need to wake up too early.
278 if (waketype == RCU_NOCB_WAKE_LAZY &&
279 rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
280 mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush());
281 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
282 } else if (waketype == RCU_NOCB_WAKE_BYPASS) {
283 mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
284 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
286 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
287 mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
288 if (rdp_gp->nocb_defer_wakeup < waketype)
289 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
292 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
294 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
298 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
299 * However, if there is a callback to be enqueued and if ->nocb_bypass
300 * proves to be initially empty, just return false because the no-CB GP
301 * kthread may need to be awakened in this case.
303 * Return true if there was something to be flushed and it succeeded, otherwise
306 * Note that this function always returns true if rhp is NULL.
308 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
309 unsigned long j, bool lazy)
311 struct rcu_cblist rcl;
312 struct rcu_head *rhp = rhp_in;
314 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
315 rcu_lockdep_assert_cblist_protected(rdp);
316 lockdep_assert_held(&rdp->nocb_bypass_lock);
317 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
318 raw_spin_unlock(&rdp->nocb_bypass_lock);
321 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
323 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
326 * If the new CB requested was a lazy one, queue it onto the main
327 * ->cblist so that we can take advantage of the grace-period that will
328 * happen regardless. But queue it onto the bypass list first so that
329 * the lazy CB is ordered with the existing CBs in the bypass list.
332 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
335 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
336 WRITE_ONCE(rdp->lazy_len, 0);
338 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
339 WRITE_ONCE(rdp->nocb_bypass_first, j);
340 rcu_nocb_bypass_unlock(rdp);
345 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
346 * However, if there is a callback to be enqueued and if ->nocb_bypass
347 * proves to be initially empty, just return false because the no-CB GP
348 * kthread may need to be awakened in this case.
350 * Note that this function always returns true if rhp is NULL.
352 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
353 unsigned long j, bool lazy)
355 if (!rcu_rdp_is_offloaded(rdp))
357 rcu_lockdep_assert_cblist_protected(rdp);
358 rcu_nocb_bypass_lock(rdp);
359 return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
363 * If the ->nocb_bypass_lock is immediately available, flush the
364 * ->nocb_bypass queue into ->cblist.
366 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
368 rcu_lockdep_assert_cblist_protected(rdp);
369 if (!rcu_rdp_is_offloaded(rdp) ||
370 !rcu_nocb_bypass_trylock(rdp))
372 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
376 * See whether it is appropriate to use the ->nocb_bypass list in order
377 * to control contention on ->nocb_lock. A limited number of direct
378 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
379 * is non-empty, further callbacks must be placed into ->nocb_bypass,
380 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
381 * back to direct use of ->cblist. However, ->nocb_bypass should not be
382 * used if ->cblist is empty, because otherwise callbacks can be stranded
383 * on ->nocb_bypass because we cannot count on the current CPU ever again
384 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
385 * non-empty, the corresponding no-CBs grace-period kthread must not be
386 * in an indefinite sleep state.
388 * Finally, it is not permitted to use the bypass during early boot,
389 * as doing so would confuse the auto-initialization code. Besides
390 * which, there is no point in worrying about lock contention while
391 * there is only one CPU in operation.
393 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
394 bool *was_alldone, unsigned long flags,
398 unsigned long cur_gp_seq;
399 unsigned long j = jiffies;
400 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
401 bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
403 lockdep_assert_irqs_disabled();
405 // Pure softirq/rcuc based processing: no bypassing, no
407 if (!rcu_rdp_is_offloaded(rdp)) {
408 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
412 // Don't use ->nocb_bypass during early boot.
413 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
415 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
416 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
420 // If we have advanced to a new jiffy, reset counts to allow
421 // moving back from ->nocb_bypass to ->cblist.
422 if (j == rdp->nocb_nobypass_last) {
423 c = rdp->nocb_nobypass_count + 1;
425 WRITE_ONCE(rdp->nocb_nobypass_last, j);
426 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
427 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
428 nocb_nobypass_lim_per_jiffy))
430 else if (c > nocb_nobypass_lim_per_jiffy)
431 c = nocb_nobypass_lim_per_jiffy;
433 WRITE_ONCE(rdp->nocb_nobypass_count, c);
435 // If there hasn't yet been all that many ->cblist enqueues
436 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
437 // ->nocb_bypass first.
438 // Lazy CBs throttle this back and do immediate bypass queuing.
439 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
441 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
443 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
446 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
447 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
448 return false; // Caller must enqueue the callback.
451 // If ->nocb_bypass has been used too long or is too full,
452 // flush ->nocb_bypass to ->cblist.
453 if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
454 (ncbs && bypass_is_lazy &&
455 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) ||
458 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
460 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
462 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
464 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
465 return false; // Caller must enqueue the callback.
467 if (j != rdp->nocb_gp_adv_time &&
468 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
469 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
470 rcu_advance_cbs_nowake(rdp->mynode, rdp);
471 rdp->nocb_gp_adv_time = j;
474 // The flush succeeded and we moved CBs into the regular list.
475 // Don't wait for the wake up timer as it may be too far ahead.
476 // Wake up the GP thread now instead, if the cblist was empty.
477 __call_rcu_nocb_wake(rdp, *was_alldone, flags);
479 return true; // Callback already enqueued.
482 // We need to use the bypass.
483 rcu_nocb_bypass_lock(rdp);
484 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
485 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
486 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
489 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
492 WRITE_ONCE(rdp->nocb_bypass_first, j);
493 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
495 rcu_nocb_bypass_unlock(rdp);
497 // A wake up of the grace period kthread or timer adjustment
498 // needs to be done only if:
499 // 1. Bypass list was fully empty before (this is the first
500 // bypass list entry), or:
501 // 2. Both of these conditions are met:
502 // a. The bypass list previously had only lazy CBs, and:
503 // b. The new CB is non-lazy.
504 if (!ncbs || (bypass_is_lazy && !lazy)) {
505 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
506 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
507 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
508 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
510 __call_rcu_nocb_wake(rdp, true, flags);
512 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
513 TPS("FirstBQnoWake"));
514 rcu_nocb_unlock(rdp);
517 return true; // Callback already enqueued.
521 * Awaken the no-CBs grace-period kthread if needed, either due to it
522 * legitimately being asleep or due to overload conditions.
524 * If warranted, also wake up the kthread servicing this CPUs queues.
526 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
528 __releases(rdp->nocb_lock)
531 unsigned long cur_gp_seq;
535 struct task_struct *t;
536 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
538 // If we are being polled or there is no kthread, just leave.
539 t = READ_ONCE(rdp->nocb_gp_kthread);
540 if (rcu_nocb_poll || !t) {
541 rcu_nocb_unlock(rdp);
542 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
546 // Need to actually to a wakeup.
547 len = rcu_segcblist_n_cbs(&rdp->cblist);
548 bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
549 lazy_len = READ_ONCE(rdp->lazy_len);
551 rdp->qlen_last_fqs_check = len;
552 // Only lazy CBs in bypass list
553 if (lazy_len && bypass_len == lazy_len) {
554 rcu_nocb_unlock(rdp);
555 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
557 } else if (!irqs_disabled_flags(flags)) {
558 /* ... if queue was empty ... */
559 rcu_nocb_unlock(rdp);
560 wake_nocb_gp(rdp, false);
561 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
564 rcu_nocb_unlock(rdp);
565 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
566 TPS("WakeEmptyIsDeferred"));
568 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
569 /* ... or if many callbacks queued. */
570 rdp->qlen_last_fqs_check = len;
572 if (j != rdp->nocb_gp_adv_time &&
573 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
574 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
575 rcu_advance_cbs_nowake(rdp->mynode, rdp);
576 rdp->nocb_gp_adv_time = j;
578 smp_mb(); /* Enqueue before timer_pending(). */
579 if ((rdp->nocb_cb_sleep ||
580 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
581 !timer_pending(&rdp_gp->nocb_timer)) {
582 rcu_nocb_unlock(rdp);
583 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
584 TPS("WakeOvfIsDeferred"));
586 rcu_nocb_unlock(rdp);
587 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
590 rcu_nocb_unlock(rdp);
591 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
595 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
596 rcu_callback_t func, unsigned long flags, bool lazy)
600 if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
601 /* Not enqueued on bypass but locked, do regular enqueue */
602 rcutree_enqueue(rdp, head, func);
603 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
607 static void nocb_gp_toggle_rdp(struct rcu_data *rdp_gp, struct rcu_data *rdp)
609 struct rcu_segcblist *cblist = &rdp->cblist;
613 * Locking orders future de-offloaded callbacks enqueue against previous
614 * handling of this rdp. Ie: Make sure rcuog is done with this rdp before
615 * deoffloaded callbacks can be enqueued.
617 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
618 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
620 * Offloading. Set our flag and notify the offload worker.
621 * We will handle this rdp until it ever gets de-offloaded.
623 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
624 rcu_segcblist_set_flags(cblist, SEGCBLIST_OFFLOADED);
627 * De-offloading. Clear our flag and notify the de-offload worker.
628 * We will ignore this rdp until it ever gets re-offloaded.
630 list_del(&rdp->nocb_entry_rdp);
631 rcu_segcblist_clear_flags(cblist, SEGCBLIST_OFFLOADED);
633 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
636 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
638 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
639 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
640 !READ_ONCE(my_rdp->nocb_gp_sleep));
641 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
645 * No-CBs GP kthreads come here to wait for additional callbacks to show up
646 * or for grace periods to end.
648 static void nocb_gp_wait(struct rcu_data *my_rdp)
651 int __maybe_unused cpu = my_rdp->cpu;
652 unsigned long cur_gp_seq;
655 unsigned long j = jiffies;
657 bool needwait_gp = false; // This prevents actual uninitialized use.
660 struct rcu_data *rdp, *rdp_toggling = NULL;
661 struct rcu_node *rnp;
662 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
663 bool wasempty = false;
666 * Each pass through the following loop checks for CBs and for the
667 * nearest grace period (if any) to wait for next. The CB kthreads
668 * and the global grace-period kthread are awakened if needed.
670 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
672 * An rcu_data structure is removed from the list after its
673 * CPU is de-offloaded and added to the list before that CPU is
674 * (re-)offloaded. If the following loop happens to be referencing
675 * that rcu_data structure during the time that the corresponding
676 * CPU is de-offloaded and then immediately re-offloaded, this
677 * loop's rdp pointer will be carried to the end of the list by
678 * the resulting pair of list operations. This can cause the loop
679 * to skip over some of the rcu_data structures that were supposed
680 * to have been scanned. Fortunately a new iteration through the
681 * entire loop is forced after a given CPU's rcu_data structure
682 * is added to the list, so the skipped-over rcu_data structures
683 * won't be ignored for long.
685 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
687 bool flush_bypass = false;
690 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
691 rcu_nocb_lock_irqsave(rdp, flags);
692 lockdep_assert_held(&rdp->nocb_lock);
693 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
694 lazy_ncbs = READ_ONCE(rdp->lazy_len);
696 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
697 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) ||
698 bypass_ncbs > 2 * qhimark)) {
700 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
701 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
702 bypass_ncbs > 2 * qhimark)) {
704 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
705 rcu_nocb_unlock_irqrestore(rdp, flags);
706 continue; /* No callbacks here, try next. */
710 // Bypass full or old, so flush it.
711 (void)rcu_nocb_try_flush_bypass(rdp, j);
712 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
713 lazy_ncbs = READ_ONCE(rdp->lazy_len);
717 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
718 bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
719 if (bypass_ncbs == lazy_ncbs)
726 // Advance callbacks if helpful and low contention.
728 if (!rcu_segcblist_restempty(&rdp->cblist,
729 RCU_NEXT_READY_TAIL) ||
730 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
731 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
732 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
733 needwake_gp = rcu_advance_cbs(rnp, rdp);
734 wasempty = rcu_segcblist_restempty(&rdp->cblist,
735 RCU_NEXT_READY_TAIL);
736 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
738 // Need to wait on some grace period?
739 WARN_ON_ONCE(wasempty &&
740 !rcu_segcblist_restempty(&rdp->cblist,
741 RCU_NEXT_READY_TAIL));
742 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
744 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
745 wait_gp_seq = cur_gp_seq;
747 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
750 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
751 needwake = rdp->nocb_cb_sleep;
752 WRITE_ONCE(rdp->nocb_cb_sleep, false);
756 rcu_nocb_unlock_irqrestore(rdp, flags);
758 swake_up_one(&rdp->nocb_cb_wq);
762 rcu_gp_kthread_wake();
765 my_rdp->nocb_gp_bypass = bypass;
766 my_rdp->nocb_gp_gp = needwait_gp;
767 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
769 // At least one child with non-empty ->nocb_bypass, so set
770 // timer in order to avoid stranding its callbacks.
771 if (!rcu_nocb_poll) {
772 // If bypass list only has lazy CBs. Add a deferred lazy wake up.
773 if (lazy && !bypass) {
774 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
775 TPS("WakeLazyIsDeferred"));
776 // Otherwise add a deferred bypass wake up.
778 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
779 TPS("WakeBypassIsDeferred"));
784 /* Polling, so trace if first poll in the series. */
786 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
787 if (list_empty(&my_rdp->nocb_head_rdp)) {
788 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
789 if (!my_rdp->nocb_toggling_rdp)
790 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
791 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
792 /* Wait for any offloading rdp */
793 nocb_gp_sleep(my_rdp, cpu);
795 schedule_timeout_idle(1);
797 } else if (!needwait_gp) {
798 /* Wait for callbacks to appear. */
799 nocb_gp_sleep(my_rdp, cpu);
801 rnp = my_rdp->mynode;
802 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
803 swait_event_interruptible_exclusive(
804 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
805 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
806 !READ_ONCE(my_rdp->nocb_gp_sleep));
807 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
810 if (!rcu_nocb_poll) {
811 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
812 // (De-)queue an rdp to/from the group if its nocb state is changing
813 rdp_toggling = my_rdp->nocb_toggling_rdp;
815 my_rdp->nocb_toggling_rdp = NULL;
817 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
818 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
819 del_timer(&my_rdp->nocb_timer);
821 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
822 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
824 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
827 * Paranoid locking to make sure nocb_toggling_rdp is well
828 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
829 * race with another round of nocb toggling for this rdp.
830 * Nocb locking should prevent from that already but we stick
831 * to paranoia, especially in rare path.
833 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
834 my_rdp->nocb_toggling_rdp = NULL;
835 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
840 nocb_gp_toggle_rdp(my_rdp, rdp_toggling);
841 swake_up_one(&rdp_toggling->nocb_state_wq);
844 my_rdp->nocb_gp_seq = -1;
845 WARN_ON(signal_pending(current));
849 * No-CBs grace-period-wait kthread. There is one of these per group
850 * of CPUs, but only once at least one CPU in that group has come online
851 * at least once since boot. This kthread checks for newly posted
852 * callbacks from any of the CPUs it is responsible for, waits for a
853 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
854 * that then have callback-invocation work to do.
856 static int rcu_nocb_gp_kthread(void *arg)
858 struct rcu_data *rdp = arg;
861 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
863 cond_resched_tasks_rcu_qs();
868 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
870 return !READ_ONCE(rdp->nocb_cb_sleep) || kthread_should_park();
874 * Invoke any ready callbacks from the corresponding no-CBs CPU,
875 * then, if there are no more, wait for more to appear.
877 static void nocb_cb_wait(struct rcu_data *rdp)
879 struct rcu_segcblist *cblist = &rdp->cblist;
880 unsigned long cur_gp_seq;
882 bool needwake_gp = false;
883 struct rcu_node *rnp = rdp->mynode;
885 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
886 nocb_cb_wait_cond(rdp));
887 if (kthread_should_park()) {
889 } else if (READ_ONCE(rdp->nocb_cb_sleep)) {
890 WARN_ON(signal_pending(current));
891 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
894 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
896 local_irq_save(flags);
898 local_irq_restore(flags);
900 * Disable BH to provide the expected environment. Also, when
901 * transitioning to/from NOCB mode, a self-requeuing callback might
902 * be invoked from softirq. A short grace period could cause both
903 * instances of this callback would execute concurrently.
908 lockdep_assert_irqs_enabled();
909 rcu_nocb_lock_irqsave(rdp, flags);
910 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
911 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
912 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
913 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
914 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
917 if (!rcu_segcblist_ready_cbs(cblist)) {
918 WRITE_ONCE(rdp->nocb_cb_sleep, true);
919 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
921 WRITE_ONCE(rdp->nocb_cb_sleep, false);
924 rcu_nocb_unlock_irqrestore(rdp, flags);
926 rcu_gp_kthread_wake();
930 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
931 * nocb_cb_wait() to do the dirty work.
933 static int rcu_nocb_cb_kthread(void *arg)
935 struct rcu_data *rdp = arg;
937 // Each pass through this loop does one callback batch, and,
938 // if there are no more ready callbacks, waits for them.
941 cond_resched_tasks_rcu_qs();
946 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
947 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
949 return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
952 /* Do a deferred wakeup of rcu_nocb_kthread(). */
953 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
954 struct rcu_data *rdp, int level,
956 __releases(rdp_gp->nocb_gp_lock)
961 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
962 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
966 ndw = rdp_gp->nocb_defer_wakeup;
967 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
968 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
973 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
974 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
977 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
979 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
980 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
982 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
983 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
984 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
988 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
989 * This means we do an inexact common-case check. Note that if
990 * we miss, ->nocb_timer will eventually clean things up.
992 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
995 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
997 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
1000 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1001 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
1004 void rcu_nocb_flush_deferred_wakeup(void)
1006 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
1008 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
1010 static int rcu_nocb_queue_toggle_rdp(struct rcu_data *rdp)
1012 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1013 bool wake_gp = false;
1014 unsigned long flags;
1016 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1017 // Queue this rdp for add/del to/from the list to iterate on rcuog
1018 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
1019 if (rdp_gp->nocb_gp_sleep) {
1020 rdp_gp->nocb_gp_sleep = false;
1023 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1028 static bool rcu_nocb_rdp_deoffload_wait_cond(struct rcu_data *rdp)
1030 unsigned long flags;
1034 * Locking makes sure rcuog is done handling this rdp before deoffloaded
1035 * enqueue can happen. Also it keeps the SEGCBLIST_OFFLOADED flag stable
1036 * while the ->nocb_lock is held.
1038 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1039 ret = !rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1040 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1045 static int rcu_nocb_rdp_deoffload(struct rcu_data *rdp)
1047 unsigned long flags;
1049 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1051 /* CPU must be offline, unless it's early boot */
1052 WARN_ON_ONCE(cpu_online(rdp->cpu) && rdp->cpu != raw_smp_processor_id());
1054 pr_info("De-offloading %d\n", rdp->cpu);
1056 /* Flush all callbacks from segcblist and bypass */
1060 * Make sure the rcuoc kthread isn't in the middle of a nocb locked
1061 * sequence while offloading is deactivated, along with nocb locking.
1063 if (rdp->nocb_cb_kthread)
1064 kthread_park(rdp->nocb_cb_kthread);
1066 rcu_nocb_lock_irqsave(rdp, flags);
1067 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1068 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
1069 rcu_nocb_unlock_irqrestore(rdp, flags);
1071 wake_gp = rcu_nocb_queue_toggle_rdp(rdp);
1073 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1075 if (rdp_gp->nocb_gp_kthread) {
1077 wake_up_process(rdp_gp->nocb_gp_kthread);
1079 swait_event_exclusive(rdp->nocb_state_wq,
1080 rcu_nocb_rdp_deoffload_wait_cond(rdp));
1083 * No kthread to clear the flags for us or remove the rdp from the nocb list
1084 * to iterate. Do it here instead. Locking doesn't look stricly necessary
1085 * but we stick to paranoia in this rare path.
1087 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1088 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1089 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1091 list_del(&rdp->nocb_entry_rdp);
1094 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1099 int rcu_nocb_cpu_deoffload(int cpu)
1101 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1105 mutex_lock(&rcu_state.nocb_mutex);
1106 if (rcu_rdp_is_offloaded(rdp)) {
1107 if (!cpu_online(cpu)) {
1108 ret = rcu_nocb_rdp_deoffload(rdp);
1110 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1112 pr_info("NOCB: Cannot CB-deoffload online CPU %d\n", rdp->cpu);
1116 mutex_unlock(&rcu_state.nocb_mutex);
1121 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1123 static bool rcu_nocb_rdp_offload_wait_cond(struct rcu_data *rdp)
1125 unsigned long flags;
1128 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1129 ret = rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1130 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1135 static int rcu_nocb_rdp_offload(struct rcu_data *rdp)
1138 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1140 WARN_ON_ONCE(cpu_online(rdp->cpu));
1142 * For now we only support re-offload, ie: the rdp must have been
1143 * offloaded on boot first.
1145 if (!rdp->nocb_gp_rdp)
1148 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1151 pr_info("Offloading %d\n", rdp->cpu);
1153 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1154 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
1156 wake_gp = rcu_nocb_queue_toggle_rdp(rdp);
1158 wake_up_process(rdp_gp->nocb_gp_kthread);
1160 swait_event_exclusive(rdp->nocb_state_wq,
1161 rcu_nocb_rdp_offload_wait_cond(rdp));
1163 kthread_unpark(rdp->nocb_cb_kthread);
1168 int rcu_nocb_cpu_offload(int cpu)
1170 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1174 mutex_lock(&rcu_state.nocb_mutex);
1175 if (!rcu_rdp_is_offloaded(rdp)) {
1176 if (!cpu_online(cpu)) {
1177 ret = rcu_nocb_rdp_offload(rdp);
1179 cpumask_set_cpu(cpu, rcu_nocb_mask);
1181 pr_info("NOCB: Cannot CB-offload online CPU %d\n", rdp->cpu);
1185 mutex_unlock(&rcu_state.nocb_mutex);
1190 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1192 #ifdef CONFIG_RCU_LAZY
1193 static unsigned long
1194 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1197 unsigned long count = 0;
1199 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1202 /* Protect rcu_nocb_mask against concurrent (de-)offloading. */
1203 if (!mutex_trylock(&rcu_state.nocb_mutex))
1206 /* Snapshot count of all CPUs */
1207 for_each_cpu(cpu, rcu_nocb_mask) {
1208 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1210 count += READ_ONCE(rdp->lazy_len);
1213 mutex_unlock(&rcu_state.nocb_mutex);
1215 return count ? count : SHRINK_EMPTY;
1218 static unsigned long
1219 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1222 unsigned long flags;
1223 unsigned long count = 0;
1225 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1228 * Protect against concurrent (de-)offloading. Otherwise nocb locking
1229 * may be ignored or imbalanced.
1231 if (!mutex_trylock(&rcu_state.nocb_mutex)) {
1233 * But really don't insist if nocb_mutex is contended since we
1234 * can't guarantee that it will never engage in a dependency
1235 * chain involving memory allocation. The lock is seldom contended
1241 /* Snapshot count of all CPUs */
1242 for_each_cpu(cpu, rcu_nocb_mask) {
1243 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1246 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
1249 if (!READ_ONCE(rdp->lazy_len))
1252 rcu_nocb_lock_irqsave(rdp, flags);
1254 * Recheck under the nocb lock. Since we are not holding the bypass
1255 * lock we may still race with increments from the enqueuer but still
1256 * we know for sure if there is at least one lazy callback.
1258 _count = READ_ONCE(rdp->lazy_len);
1260 rcu_nocb_unlock_irqrestore(rdp, flags);
1263 rcu_nocb_try_flush_bypass(rdp, jiffies);
1264 rcu_nocb_unlock_irqrestore(rdp, flags);
1265 wake_nocb_gp(rdp, false);
1266 sc->nr_to_scan -= _count;
1268 if (sc->nr_to_scan <= 0)
1272 mutex_unlock(&rcu_state.nocb_mutex);
1274 return count ? count : SHRINK_STOP;
1276 #endif // #ifdef CONFIG_RCU_LAZY
1278 void __init rcu_init_nohz(void)
1281 struct rcu_data *rdp;
1282 const struct cpumask *cpumask = NULL;
1283 struct shrinker * __maybe_unused lazy_rcu_shrinker;
1285 #if defined(CONFIG_NO_HZ_FULL)
1286 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
1287 cpumask = tick_nohz_full_mask;
1290 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
1291 !rcu_state.nocb_is_setup && !cpumask)
1292 cpumask = cpu_possible_mask;
1295 if (!cpumask_available(rcu_nocb_mask)) {
1296 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1297 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1302 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
1303 rcu_state.nocb_is_setup = true;
1306 if (!rcu_state.nocb_is_setup)
1309 #ifdef CONFIG_RCU_LAZY
1310 lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy");
1311 if (!lazy_rcu_shrinker) {
1312 pr_err("Failed to allocate lazy_rcu shrinker!\n");
1314 lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count;
1315 lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan;
1317 shrinker_register(lazy_rcu_shrinker);
1319 #endif // #ifdef CONFIG_RCU_LAZY
1321 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1322 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1323 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1326 if (cpumask_empty(rcu_nocb_mask))
1327 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1329 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1330 cpumask_pr_args(rcu_nocb_mask));
1332 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1334 for_each_cpu(cpu, rcu_nocb_mask) {
1335 rdp = per_cpu_ptr(&rcu_data, cpu);
1336 if (rcu_segcblist_empty(&rdp->cblist))
1337 rcu_segcblist_init(&rdp->cblist);
1338 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1340 rcu_organize_nocb_kthreads();
1343 /* Initialize per-rcu_data variables for no-CBs CPUs. */
1344 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1346 init_swait_queue_head(&rdp->nocb_cb_wq);
1347 init_swait_queue_head(&rdp->nocb_gp_wq);
1348 init_swait_queue_head(&rdp->nocb_state_wq);
1349 raw_spin_lock_init(&rdp->nocb_lock);
1350 raw_spin_lock_init(&rdp->nocb_bypass_lock);
1351 raw_spin_lock_init(&rdp->nocb_gp_lock);
1352 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1353 rcu_cblist_init(&rdp->nocb_bypass);
1354 WRITE_ONCE(rdp->lazy_len, 0);
1355 mutex_init(&rdp->nocb_gp_kthread_mutex);
1359 * If the specified CPU is a no-CBs CPU that does not already have its
1360 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
1361 * for this CPU's group has not yet been created, spawn it as well.
1363 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1365 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1366 struct rcu_data *rdp_gp;
1367 struct task_struct *t;
1368 struct sched_param sp;
1370 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1373 /* If there already is an rcuo kthread, then nothing to do. */
1374 if (rdp->nocb_cb_kthread)
1377 /* If we didn't spawn the GP kthread first, reorganize! */
1378 sp.sched_priority = kthread_prio;
1379 rdp_gp = rdp->nocb_gp_rdp;
1380 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1381 if (!rdp_gp->nocb_gp_kthread) {
1382 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1383 "rcuog/%d", rdp_gp->cpu);
1384 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1385 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1388 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1390 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1392 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1394 /* Spawn the kthread for this CPU. */
1395 t = kthread_create(rcu_nocb_cb_kthread, rdp,
1396 "rcuo%c/%d", rcu_state.abbr, cpu);
1397 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1400 if (rcu_rdp_is_offloaded(rdp))
1405 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1406 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1408 WRITE_ONCE(rdp->nocb_cb_kthread, t);
1409 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1414 * No need to protect against concurrent rcu_barrier()
1415 * because the number of callbacks should be 0 for a non-boot CPU,
1416 * therefore rcu_barrier() shouldn't even try to grab the nocb_lock.
1417 * But hold nocb_mutex to avoid nocb_lock imbalance from shrinker.
1419 WARN_ON_ONCE(system_state > SYSTEM_BOOTING && rcu_segcblist_n_cbs(&rdp->cblist));
1420 mutex_lock(&rcu_state.nocb_mutex);
1421 if (rcu_rdp_is_offloaded(rdp)) {
1422 rcu_nocb_rdp_deoffload(rdp);
1423 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1425 mutex_unlock(&rcu_state.nocb_mutex);
1428 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
1429 static int rcu_nocb_gp_stride = -1;
1430 module_param(rcu_nocb_gp_stride, int, 0444);
1433 * Initialize GP-CB relationships for all no-CBs CPU.
1435 static void __init rcu_organize_nocb_kthreads(void)
1438 bool firsttime = true;
1439 bool gotnocbs = false;
1440 bool gotnocbscbs = true;
1441 int ls = rcu_nocb_gp_stride;
1442 int nl = 0; /* Next GP kthread. */
1443 struct rcu_data *rdp;
1444 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
1446 if (!cpumask_available(rcu_nocb_mask))
1449 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1450 rcu_nocb_gp_stride = ls;
1454 * Each pass through this loop sets up one rcu_data structure.
1455 * Should the corresponding CPU come online in the future, then
1456 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1458 for_each_possible_cpu(cpu) {
1459 rdp = per_cpu_ptr(&rcu_data, cpu);
1460 if (rdp->cpu >= nl) {
1461 /* New GP kthread, set up for CBs & next GP. */
1463 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1465 INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1468 pr_cont("%s\n", gotnocbscbs
1469 ? "" : " (self only)");
1470 gotnocbscbs = false;
1472 pr_alert("%s: No-CB GP kthread CPU %d:",
1476 /* Another CB kthread, link to previous GP kthread. */
1479 pr_cont(" %d", cpu);
1481 rdp->nocb_gp_rdp = rdp_gp;
1482 if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1483 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1485 if (gotnocbs && dump_tree)
1486 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1490 * Bind the current task to the offloaded CPUs. If there are no offloaded
1491 * CPUs, leave the task unbound. Splat if the bind attempt fails.
1493 void rcu_bind_current_to_nocb(void)
1495 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1496 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1498 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1500 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1502 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1504 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1506 #else // #ifdef CONFIG_SMP
1507 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1511 #endif // #else #ifdef CONFIG_SMP
1514 * Dump out nocb grace-period kthread state for the specified rcu_data
1517 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1519 struct rcu_node *rnp = rdp->mynode;
1521 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1523 "kK"[!!rdp->nocb_gp_kthread],
1524 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1525 "dD"[!!rdp->nocb_defer_wakeup],
1526 "tT"[timer_pending(&rdp->nocb_timer)],
1527 "sS"[!!rdp->nocb_gp_sleep],
1528 ".W"[swait_active(&rdp->nocb_gp_wq)],
1529 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
1530 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
1531 ".B"[!!rdp->nocb_gp_bypass],
1532 ".G"[!!rdp->nocb_gp_gp],
1533 (long)rdp->nocb_gp_seq,
1534 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1535 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1536 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1537 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1540 /* Dump out nocb kthread state for the specified rcu_data structure. */
1541 static void show_rcu_nocb_state(struct rcu_data *rdp)
1545 struct rcu_data *nocb_next_rdp;
1546 struct rcu_segcblist *rsclp = &rdp->cblist;
1550 if (rdp->nocb_gp_rdp == rdp)
1551 show_rcu_nocb_gp_state(rdp);
1553 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1554 &rdp->nocb_entry_rdp,
1558 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1559 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1560 pr_info(" CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1561 rdp->cpu, rdp->nocb_gp_rdp->cpu,
1562 nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1563 "kK"[!!rdp->nocb_cb_kthread],
1564 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1565 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1566 "sS"[!!rdp->nocb_cb_sleep],
1567 ".W"[swait_active(&rdp->nocb_cb_wq)],
1568 jiffies - rdp->nocb_bypass_first,
1569 jiffies - rdp->nocb_nobypass_last,
1570 rdp->nocb_nobypass_count,
1571 ".D"[rcu_segcblist_ready_cbs(rsclp)],
1572 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1573 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1574 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1575 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1576 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1577 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1578 rcu_segcblist_n_cbs(&rdp->cblist),
1579 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1580 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1581 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1583 /* It is OK for GP kthreads to have GP state. */
1584 if (rdp->nocb_gp_rdp == rdp)
1587 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1588 wassleep = swait_active(&rdp->nocb_gp_wq);
1589 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1590 return; /* Nothing untoward. */
1592 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1594 "dD"[!!rdp->nocb_defer_wakeup],
1595 "sS"[!!rdp->nocb_gp_sleep],
1599 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1601 /* No ->nocb_lock to acquire. */
1602 static void rcu_nocb_lock(struct rcu_data *rdp)
1606 /* No ->nocb_lock to release. */
1607 static void rcu_nocb_unlock(struct rcu_data *rdp)
1611 /* No ->nocb_lock to release. */
1612 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1613 unsigned long flags)
1615 local_irq_restore(flags);
1618 /* Lockdep check that ->cblist may be safely accessed. */
1619 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1621 lockdep_assert_irqs_disabled();
1624 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1628 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1633 static void rcu_init_one_nocb(struct rcu_node *rnp)
1637 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1642 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1643 unsigned long j, bool lazy)
1648 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
1649 rcu_callback_t func, unsigned long flags, bool lazy)
1651 WARN_ON_ONCE(1); /* Should be dead code! */
1654 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1655 unsigned long flags)
1657 WARN_ON_ONCE(1); /* Should be dead code! */
1660 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1664 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1669 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1674 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1678 static void show_rcu_nocb_state(struct rcu_data *rdp)
1682 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */