]> Git Repo - linux.git/blob - kernel/rcu/tree_nocb.h
crypto: akcipher - Drop sign/verify operations
[linux.git] / kernel / rcu / tree_nocb.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  * Copyright SUSE, 2021
10  *
11  * Author: Ingo Molnar <[email protected]>
12  *         Paul E. McKenney <[email protected]>
13  *         Frederic Weisbecker <[email protected]>
14  */
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19
20 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
21 {
22         /* Race on early boot between thread creation and assignment */
23         if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
24                 return true;
25
26         if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
27                 if (in_task())
28                         return true;
29         return false;
30 }
31
32 /*
33  * Offload callback processing from the boot-time-specified set of CPUs
34  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
35  * created that pull the callbacks from the corresponding CPU, wait for
36  * a grace period to elapse, and invoke the callbacks.  These kthreads
37  * are organized into GP kthreads, which manage incoming callbacks, wait for
38  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
39  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
40  * do a wake_up() on their GP kthread when they insert a callback into any
41  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
42  * in which case each kthread actively polls its CPU.  (Which isn't so great
43  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
44  *
45  * This is intended to be used in conjunction with Frederic Weisbecker's
46  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
47  * running CPU-bound user-mode computations.
48  *
49  * Offloading of callbacks can also be used as an energy-efficiency
50  * measure because CPUs with no RCU callbacks queued are more aggressive
51  * about entering dyntick-idle mode.
52  */
53
54
55 /*
56  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
57  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
58  */
59 static int __init rcu_nocb_setup(char *str)
60 {
61         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
62         if (*str == '=') {
63                 if (cpulist_parse(++str, rcu_nocb_mask)) {
64                         pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
65                         cpumask_setall(rcu_nocb_mask);
66                 }
67         }
68         rcu_state.nocb_is_setup = true;
69         return 1;
70 }
71 __setup("rcu_nocbs", rcu_nocb_setup);
72
73 static int __init parse_rcu_nocb_poll(char *arg)
74 {
75         rcu_nocb_poll = true;
76         return 1;
77 }
78 __setup("rcu_nocb_poll", parse_rcu_nocb_poll);
79
80 /*
81  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
82  * After all, the main point of bypassing is to avoid lock contention
83  * on ->nocb_lock, which only can happen at high call_rcu() rates.
84  */
85 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
86 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
87
88 /*
89  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
90  * lock isn't immediately available, perform minimal sanity check.
91  */
92 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
93         __acquires(&rdp->nocb_bypass_lock)
94 {
95         lockdep_assert_irqs_disabled();
96         if (raw_spin_trylock(&rdp->nocb_bypass_lock))
97                 return;
98         /*
99          * Contention expected only when local enqueue collide with
100          * remote flush from kthreads.
101          */
102         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
103         raw_spin_lock(&rdp->nocb_bypass_lock);
104 }
105
106 /*
107  * Conditionally acquire the specified rcu_data structure's
108  * ->nocb_bypass_lock.
109  */
110 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
111 {
112         lockdep_assert_irqs_disabled();
113         return raw_spin_trylock(&rdp->nocb_bypass_lock);
114 }
115
116 /*
117  * Release the specified rcu_data structure's ->nocb_bypass_lock.
118  */
119 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
120         __releases(&rdp->nocb_bypass_lock)
121 {
122         lockdep_assert_irqs_disabled();
123         raw_spin_unlock(&rdp->nocb_bypass_lock);
124 }
125
126 /*
127  * Acquire the specified rcu_data structure's ->nocb_lock, but only
128  * if it corresponds to a no-CBs CPU.
129  */
130 static void rcu_nocb_lock(struct rcu_data *rdp)
131 {
132         lockdep_assert_irqs_disabled();
133         if (!rcu_rdp_is_offloaded(rdp))
134                 return;
135         raw_spin_lock(&rdp->nocb_lock);
136 }
137
138 /*
139  * Release the specified rcu_data structure's ->nocb_lock, but only
140  * if it corresponds to a no-CBs CPU.
141  */
142 static void rcu_nocb_unlock(struct rcu_data *rdp)
143 {
144         if (rcu_rdp_is_offloaded(rdp)) {
145                 lockdep_assert_irqs_disabled();
146                 raw_spin_unlock(&rdp->nocb_lock);
147         }
148 }
149
150 /*
151  * Release the specified rcu_data structure's ->nocb_lock and restore
152  * interrupts, but only if it corresponds to a no-CBs CPU.
153  */
154 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
155                                        unsigned long flags)
156 {
157         if (rcu_rdp_is_offloaded(rdp)) {
158                 lockdep_assert_irqs_disabled();
159                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
160         } else {
161                 local_irq_restore(flags);
162         }
163 }
164
165 /* Lockdep check that ->cblist may be safely accessed. */
166 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
167 {
168         lockdep_assert_irqs_disabled();
169         if (rcu_rdp_is_offloaded(rdp))
170                 lockdep_assert_held(&rdp->nocb_lock);
171 }
172
173 /*
174  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
175  * grace period.
176  */
177 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
178 {
179         swake_up_all(sq);
180 }
181
182 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
183 {
184         return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
185 }
186
187 static void rcu_init_one_nocb(struct rcu_node *rnp)
188 {
189         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
190         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
191 }
192
193 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
194                            struct rcu_data *rdp,
195                            bool force, unsigned long flags)
196         __releases(rdp_gp->nocb_gp_lock)
197 {
198         bool needwake = false;
199
200         if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
201                 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
202                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
203                                     TPS("AlreadyAwake"));
204                 return false;
205         }
206
207         if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
208                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
209                 del_timer(&rdp_gp->nocb_timer);
210         }
211
212         if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
213                 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
214                 needwake = true;
215         }
216         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
217         if (needwake) {
218                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
219                 swake_up_one_online(&rdp_gp->nocb_gp_wq);
220         }
221
222         return needwake;
223 }
224
225 /*
226  * Kick the GP kthread for this NOCB group.
227  */
228 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
229 {
230         unsigned long flags;
231         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
232
233         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
234         return __wake_nocb_gp(rdp_gp, rdp, force, flags);
235 }
236
237 #ifdef CONFIG_RCU_LAZY
238 /*
239  * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
240  * can elapse before lazy callbacks are flushed. Lazy callbacks
241  * could be flushed much earlier for a number of other reasons
242  * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
243  * left unsubmitted to RCU after those many jiffies.
244  */
245 #define LAZY_FLUSH_JIFFIES (10 * HZ)
246 static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES;
247
248 // To be called only from test code.
249 void rcu_set_jiffies_lazy_flush(unsigned long jif)
250 {
251         jiffies_lazy_flush = jif;
252 }
253 EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush);
254
255 unsigned long rcu_get_jiffies_lazy_flush(void)
256 {
257         return jiffies_lazy_flush;
258 }
259 EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush);
260 #endif
261
262 /*
263  * Arrange to wake the GP kthread for this NOCB group at some future
264  * time when it is safe to do so.
265  */
266 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
267                                const char *reason)
268 {
269         unsigned long flags;
270         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
271
272         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
273
274         /*
275          * Bypass wakeup overrides previous deferments. In case of
276          * callback storms, no need to wake up too early.
277          */
278         if (waketype == RCU_NOCB_WAKE_LAZY &&
279             rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
280                 mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush());
281                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
282         } else if (waketype == RCU_NOCB_WAKE_BYPASS) {
283                 mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
284                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
285         } else {
286                 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
287                         mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
288                 if (rdp_gp->nocb_defer_wakeup < waketype)
289                         WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
290         }
291
292         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
293
294         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
295 }
296
297 /*
298  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
299  * However, if there is a callback to be enqueued and if ->nocb_bypass
300  * proves to be initially empty, just return false because the no-CB GP
301  * kthread may need to be awakened in this case.
302  *
303  * Return true if there was something to be flushed and it succeeded, otherwise
304  * false.
305  *
306  * Note that this function always returns true if rhp is NULL.
307  */
308 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
309                                      unsigned long j, bool lazy)
310 {
311         struct rcu_cblist rcl;
312         struct rcu_head *rhp = rhp_in;
313
314         WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
315         rcu_lockdep_assert_cblist_protected(rdp);
316         lockdep_assert_held(&rdp->nocb_bypass_lock);
317         if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
318                 raw_spin_unlock(&rdp->nocb_bypass_lock);
319                 return false;
320         }
321         /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
322         if (rhp)
323                 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
324
325         /*
326          * If the new CB requested was a lazy one, queue it onto the main
327          * ->cblist so that we can take advantage of the grace-period that will
328          * happen regardless. But queue it onto the bypass list first so that
329          * the lazy CB is ordered with the existing CBs in the bypass list.
330          */
331         if (lazy && rhp) {
332                 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
333                 rhp = NULL;
334         }
335         rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
336         WRITE_ONCE(rdp->lazy_len, 0);
337
338         rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
339         WRITE_ONCE(rdp->nocb_bypass_first, j);
340         rcu_nocb_bypass_unlock(rdp);
341         return true;
342 }
343
344 /*
345  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
346  * However, if there is a callback to be enqueued and if ->nocb_bypass
347  * proves to be initially empty, just return false because the no-CB GP
348  * kthread may need to be awakened in this case.
349  *
350  * Note that this function always returns true if rhp is NULL.
351  */
352 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
353                                   unsigned long j, bool lazy)
354 {
355         if (!rcu_rdp_is_offloaded(rdp))
356                 return true;
357         rcu_lockdep_assert_cblist_protected(rdp);
358         rcu_nocb_bypass_lock(rdp);
359         return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
360 }
361
362 /*
363  * If the ->nocb_bypass_lock is immediately available, flush the
364  * ->nocb_bypass queue into ->cblist.
365  */
366 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
367 {
368         rcu_lockdep_assert_cblist_protected(rdp);
369         if (!rcu_rdp_is_offloaded(rdp) ||
370             !rcu_nocb_bypass_trylock(rdp))
371                 return;
372         WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
373 }
374
375 /*
376  * See whether it is appropriate to use the ->nocb_bypass list in order
377  * to control contention on ->nocb_lock.  A limited number of direct
378  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
379  * is non-empty, further callbacks must be placed into ->nocb_bypass,
380  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
381  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
382  * used if ->cblist is empty, because otherwise callbacks can be stranded
383  * on ->nocb_bypass because we cannot count on the current CPU ever again
384  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
385  * non-empty, the corresponding no-CBs grace-period kthread must not be
386  * in an indefinite sleep state.
387  *
388  * Finally, it is not permitted to use the bypass during early boot,
389  * as doing so would confuse the auto-initialization code.  Besides
390  * which, there is no point in worrying about lock contention while
391  * there is only one CPU in operation.
392  */
393 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
394                                 bool *was_alldone, unsigned long flags,
395                                 bool lazy)
396 {
397         unsigned long c;
398         unsigned long cur_gp_seq;
399         unsigned long j = jiffies;
400         long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
401         bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
402
403         lockdep_assert_irqs_disabled();
404
405         // Pure softirq/rcuc based processing: no bypassing, no
406         // locking.
407         if (!rcu_rdp_is_offloaded(rdp)) {
408                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
409                 return false;
410         }
411
412         // Don't use ->nocb_bypass during early boot.
413         if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
414                 rcu_nocb_lock(rdp);
415                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
416                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
417                 return false;
418         }
419
420         // If we have advanced to a new jiffy, reset counts to allow
421         // moving back from ->nocb_bypass to ->cblist.
422         if (j == rdp->nocb_nobypass_last) {
423                 c = rdp->nocb_nobypass_count + 1;
424         } else {
425                 WRITE_ONCE(rdp->nocb_nobypass_last, j);
426                 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
427                 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
428                                  nocb_nobypass_lim_per_jiffy))
429                         c = 0;
430                 else if (c > nocb_nobypass_lim_per_jiffy)
431                         c = nocb_nobypass_lim_per_jiffy;
432         }
433         WRITE_ONCE(rdp->nocb_nobypass_count, c);
434
435         // If there hasn't yet been all that many ->cblist enqueues
436         // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
437         // ->nocb_bypass first.
438         // Lazy CBs throttle this back and do immediate bypass queuing.
439         if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
440                 rcu_nocb_lock(rdp);
441                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
442                 if (*was_alldone)
443                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
444                                             TPS("FirstQ"));
445
446                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
447                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
448                 return false; // Caller must enqueue the callback.
449         }
450
451         // If ->nocb_bypass has been used too long or is too full,
452         // flush ->nocb_bypass to ->cblist.
453         if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
454             (ncbs &&  bypass_is_lazy &&
455              (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) ||
456             ncbs >= qhimark) {
457                 rcu_nocb_lock(rdp);
458                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
459
460                 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
461                         if (*was_alldone)
462                                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
463                                                     TPS("FirstQ"));
464                         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
465                         return false; // Caller must enqueue the callback.
466                 }
467                 if (j != rdp->nocb_gp_adv_time &&
468                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
469                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
470                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
471                         rdp->nocb_gp_adv_time = j;
472                 }
473
474                 // The flush succeeded and we moved CBs into the regular list.
475                 // Don't wait for the wake up timer as it may be too far ahead.
476                 // Wake up the GP thread now instead, if the cblist was empty.
477                 __call_rcu_nocb_wake(rdp, *was_alldone, flags);
478
479                 return true; // Callback already enqueued.
480         }
481
482         // We need to use the bypass.
483         rcu_nocb_bypass_lock(rdp);
484         ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
485         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
486         rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
487
488         if (lazy)
489                 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
490
491         if (!ncbs) {
492                 WRITE_ONCE(rdp->nocb_bypass_first, j);
493                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
494         }
495         rcu_nocb_bypass_unlock(rdp);
496
497         // A wake up of the grace period kthread or timer adjustment
498         // needs to be done only if:
499         // 1. Bypass list was fully empty before (this is the first
500         //    bypass list entry), or:
501         // 2. Both of these conditions are met:
502         //    a. The bypass list previously had only lazy CBs, and:
503         //    b. The new CB is non-lazy.
504         if (!ncbs || (bypass_is_lazy && !lazy)) {
505                 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
506                 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
507                 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
508                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
509                                             TPS("FirstBQwake"));
510                         __call_rcu_nocb_wake(rdp, true, flags);
511                 } else {
512                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
513                                             TPS("FirstBQnoWake"));
514                         rcu_nocb_unlock(rdp);
515                 }
516         }
517         return true; // Callback already enqueued.
518 }
519
520 /*
521  * Awaken the no-CBs grace-period kthread if needed, either due to it
522  * legitimately being asleep or due to overload conditions.
523  *
524  * If warranted, also wake up the kthread servicing this CPUs queues.
525  */
526 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
527                                  unsigned long flags)
528                                  __releases(rdp->nocb_lock)
529 {
530         long bypass_len;
531         unsigned long cur_gp_seq;
532         unsigned long j;
533         long lazy_len;
534         long len;
535         struct task_struct *t;
536         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
537
538         // If we are being polled or there is no kthread, just leave.
539         t = READ_ONCE(rdp->nocb_gp_kthread);
540         if (rcu_nocb_poll || !t) {
541                 rcu_nocb_unlock(rdp);
542                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
543                                     TPS("WakeNotPoll"));
544                 return;
545         }
546         // Need to actually to a wakeup.
547         len = rcu_segcblist_n_cbs(&rdp->cblist);
548         bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
549         lazy_len = READ_ONCE(rdp->lazy_len);
550         if (was_alldone) {
551                 rdp->qlen_last_fqs_check = len;
552                 // Only lazy CBs in bypass list
553                 if (lazy_len && bypass_len == lazy_len) {
554                         rcu_nocb_unlock(rdp);
555                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
556                                            TPS("WakeLazy"));
557                 } else if (!irqs_disabled_flags(flags)) {
558                         /* ... if queue was empty ... */
559                         rcu_nocb_unlock(rdp);
560                         wake_nocb_gp(rdp, false);
561                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
562                                             TPS("WakeEmpty"));
563                 } else {
564                         rcu_nocb_unlock(rdp);
565                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
566                                            TPS("WakeEmptyIsDeferred"));
567                 }
568         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
569                 /* ... or if many callbacks queued. */
570                 rdp->qlen_last_fqs_check = len;
571                 j = jiffies;
572                 if (j != rdp->nocb_gp_adv_time &&
573                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
574                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
575                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
576                         rdp->nocb_gp_adv_time = j;
577                 }
578                 smp_mb(); /* Enqueue before timer_pending(). */
579                 if ((rdp->nocb_cb_sleep ||
580                      !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
581                     !timer_pending(&rdp_gp->nocb_timer)) {
582                         rcu_nocb_unlock(rdp);
583                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
584                                            TPS("WakeOvfIsDeferred"));
585                 } else {
586                         rcu_nocb_unlock(rdp);
587                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
588                 }
589         } else {
590                 rcu_nocb_unlock(rdp);
591                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
592         }
593 }
594
595 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
596                           rcu_callback_t func, unsigned long flags, bool lazy)
597 {
598         bool was_alldone;
599
600         if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
601                 /* Not enqueued on bypass but locked, do regular enqueue */
602                 rcutree_enqueue(rdp, head, func);
603                 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
604         }
605 }
606
607 static void nocb_gp_toggle_rdp(struct rcu_data *rdp_gp, struct rcu_data *rdp)
608 {
609         struct rcu_segcblist *cblist = &rdp->cblist;
610         unsigned long flags;
611
612         /*
613          * Locking orders future de-offloaded callbacks enqueue against previous
614          * handling of this rdp. Ie: Make sure rcuog is done with this rdp before
615          * deoffloaded callbacks can be enqueued.
616          */
617         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
618         if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
619                 /*
620                  * Offloading. Set our flag and notify the offload worker.
621                  * We will handle this rdp until it ever gets de-offloaded.
622                  */
623                 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
624                 rcu_segcblist_set_flags(cblist, SEGCBLIST_OFFLOADED);
625         } else {
626                 /*
627                  * De-offloading. Clear our flag and notify the de-offload worker.
628                  * We will ignore this rdp until it ever gets re-offloaded.
629                  */
630                 list_del(&rdp->nocb_entry_rdp);
631                 rcu_segcblist_clear_flags(cblist, SEGCBLIST_OFFLOADED);
632         }
633         raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
634 }
635
636 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
637 {
638         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
639         swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
640                                         !READ_ONCE(my_rdp->nocb_gp_sleep));
641         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
642 }
643
644 /*
645  * No-CBs GP kthreads come here to wait for additional callbacks to show up
646  * or for grace periods to end.
647  */
648 static void nocb_gp_wait(struct rcu_data *my_rdp)
649 {
650         bool bypass = false;
651         int __maybe_unused cpu = my_rdp->cpu;
652         unsigned long cur_gp_seq;
653         unsigned long flags;
654         bool gotcbs = false;
655         unsigned long j = jiffies;
656         bool lazy = false;
657         bool needwait_gp = false; // This prevents actual uninitialized use.
658         bool needwake;
659         bool needwake_gp;
660         struct rcu_data *rdp, *rdp_toggling = NULL;
661         struct rcu_node *rnp;
662         unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
663         bool wasempty = false;
664
665         /*
666          * Each pass through the following loop checks for CBs and for the
667          * nearest grace period (if any) to wait for next.  The CB kthreads
668          * and the global grace-period kthread are awakened if needed.
669          */
670         WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
671         /*
672          * An rcu_data structure is removed from the list after its
673          * CPU is de-offloaded and added to the list before that CPU is
674          * (re-)offloaded.  If the following loop happens to be referencing
675          * that rcu_data structure during the time that the corresponding
676          * CPU is de-offloaded and then immediately re-offloaded, this
677          * loop's rdp pointer will be carried to the end of the list by
678          * the resulting pair of list operations.  This can cause the loop
679          * to skip over some of the rcu_data structures that were supposed
680          * to have been scanned.  Fortunately a new iteration through the
681          * entire loop is forced after a given CPU's rcu_data structure
682          * is added to the list, so the skipped-over rcu_data structures
683          * won't be ignored for long.
684          */
685         list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
686                 long bypass_ncbs;
687                 bool flush_bypass = false;
688                 long lazy_ncbs;
689
690                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
691                 rcu_nocb_lock_irqsave(rdp, flags);
692                 lockdep_assert_held(&rdp->nocb_lock);
693                 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
694                 lazy_ncbs = READ_ONCE(rdp->lazy_len);
695
696                 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
697                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) ||
698                      bypass_ncbs > 2 * qhimark)) {
699                         flush_bypass = true;
700                 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
701                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
702                      bypass_ncbs > 2 * qhimark)) {
703                         flush_bypass = true;
704                 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
705                         rcu_nocb_unlock_irqrestore(rdp, flags);
706                         continue; /* No callbacks here, try next. */
707                 }
708
709                 if (flush_bypass) {
710                         // Bypass full or old, so flush it.
711                         (void)rcu_nocb_try_flush_bypass(rdp, j);
712                         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
713                         lazy_ncbs = READ_ONCE(rdp->lazy_len);
714                 }
715
716                 if (bypass_ncbs) {
717                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
718                                             bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
719                         if (bypass_ncbs == lazy_ncbs)
720                                 lazy = true;
721                         else
722                                 bypass = true;
723                 }
724                 rnp = rdp->mynode;
725
726                 // Advance callbacks if helpful and low contention.
727                 needwake_gp = false;
728                 if (!rcu_segcblist_restempty(&rdp->cblist,
729                                              RCU_NEXT_READY_TAIL) ||
730                     (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
731                      rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
732                         raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
733                         needwake_gp = rcu_advance_cbs(rnp, rdp);
734                         wasempty = rcu_segcblist_restempty(&rdp->cblist,
735                                                            RCU_NEXT_READY_TAIL);
736                         raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
737                 }
738                 // Need to wait on some grace period?
739                 WARN_ON_ONCE(wasempty &&
740                              !rcu_segcblist_restempty(&rdp->cblist,
741                                                       RCU_NEXT_READY_TAIL));
742                 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
743                         if (!needwait_gp ||
744                             ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
745                                 wait_gp_seq = cur_gp_seq;
746                         needwait_gp = true;
747                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
748                                             TPS("NeedWaitGP"));
749                 }
750                 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
751                         needwake = rdp->nocb_cb_sleep;
752                         WRITE_ONCE(rdp->nocb_cb_sleep, false);
753                 } else {
754                         needwake = false;
755                 }
756                 rcu_nocb_unlock_irqrestore(rdp, flags);
757                 if (needwake) {
758                         swake_up_one(&rdp->nocb_cb_wq);
759                         gotcbs = true;
760                 }
761                 if (needwake_gp)
762                         rcu_gp_kthread_wake();
763         }
764
765         my_rdp->nocb_gp_bypass = bypass;
766         my_rdp->nocb_gp_gp = needwait_gp;
767         my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
768
769         // At least one child with non-empty ->nocb_bypass, so set
770         // timer in order to avoid stranding its callbacks.
771         if (!rcu_nocb_poll) {
772                 // If bypass list only has lazy CBs. Add a deferred lazy wake up.
773                 if (lazy && !bypass) {
774                         wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
775                                         TPS("WakeLazyIsDeferred"));
776                 // Otherwise add a deferred bypass wake up.
777                 } else if (bypass) {
778                         wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
779                                         TPS("WakeBypassIsDeferred"));
780                 }
781         }
782
783         if (rcu_nocb_poll) {
784                 /* Polling, so trace if first poll in the series. */
785                 if (gotcbs)
786                         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
787                 if (list_empty(&my_rdp->nocb_head_rdp)) {
788                         raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
789                         if (!my_rdp->nocb_toggling_rdp)
790                                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
791                         raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
792                         /* Wait for any offloading rdp */
793                         nocb_gp_sleep(my_rdp, cpu);
794                 } else {
795                         schedule_timeout_idle(1);
796                 }
797         } else if (!needwait_gp) {
798                 /* Wait for callbacks to appear. */
799                 nocb_gp_sleep(my_rdp, cpu);
800         } else {
801                 rnp = my_rdp->mynode;
802                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
803                 swait_event_interruptible_exclusive(
804                         rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
805                         rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
806                         !READ_ONCE(my_rdp->nocb_gp_sleep));
807                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
808         }
809
810         if (!rcu_nocb_poll) {
811                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
812                 // (De-)queue an rdp to/from the group if its nocb state is changing
813                 rdp_toggling = my_rdp->nocb_toggling_rdp;
814                 if (rdp_toggling)
815                         my_rdp->nocb_toggling_rdp = NULL;
816
817                 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
818                         WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
819                         del_timer(&my_rdp->nocb_timer);
820                 }
821                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
822                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
823         } else {
824                 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
825                 if (rdp_toggling) {
826                         /*
827                          * Paranoid locking to make sure nocb_toggling_rdp is well
828                          * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
829                          * race with another round of nocb toggling for this rdp.
830                          * Nocb locking should prevent from that already but we stick
831                          * to paranoia, especially in rare path.
832                          */
833                         raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
834                         my_rdp->nocb_toggling_rdp = NULL;
835                         raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
836                 }
837         }
838
839         if (rdp_toggling) {
840                 nocb_gp_toggle_rdp(my_rdp, rdp_toggling);
841                 swake_up_one(&rdp_toggling->nocb_state_wq);
842         }
843
844         my_rdp->nocb_gp_seq = -1;
845         WARN_ON(signal_pending(current));
846 }
847
848 /*
849  * No-CBs grace-period-wait kthread.  There is one of these per group
850  * of CPUs, but only once at least one CPU in that group has come online
851  * at least once since boot.  This kthread checks for newly posted
852  * callbacks from any of the CPUs it is responsible for, waits for a
853  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
854  * that then have callback-invocation work to do.
855  */
856 static int rcu_nocb_gp_kthread(void *arg)
857 {
858         struct rcu_data *rdp = arg;
859
860         for (;;) {
861                 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
862                 nocb_gp_wait(rdp);
863                 cond_resched_tasks_rcu_qs();
864         }
865         return 0;
866 }
867
868 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
869 {
870         return !READ_ONCE(rdp->nocb_cb_sleep) || kthread_should_park();
871 }
872
873 /*
874  * Invoke any ready callbacks from the corresponding no-CBs CPU,
875  * then, if there are no more, wait for more to appear.
876  */
877 static void nocb_cb_wait(struct rcu_data *rdp)
878 {
879         struct rcu_segcblist *cblist = &rdp->cblist;
880         unsigned long cur_gp_seq;
881         unsigned long flags;
882         bool needwake_gp = false;
883         struct rcu_node *rnp = rdp->mynode;
884
885         swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
886                                             nocb_cb_wait_cond(rdp));
887         if (kthread_should_park()) {
888                 kthread_parkme();
889         } else if (READ_ONCE(rdp->nocb_cb_sleep)) {
890                 WARN_ON(signal_pending(current));
891                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
892         }
893
894         WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
895
896         local_irq_save(flags);
897         rcu_momentary_eqs();
898         local_irq_restore(flags);
899         /*
900          * Disable BH to provide the expected environment.  Also, when
901          * transitioning to/from NOCB mode, a self-requeuing callback might
902          * be invoked from softirq.  A short grace period could cause both
903          * instances of this callback would execute concurrently.
904          */
905         local_bh_disable();
906         rcu_do_batch(rdp);
907         local_bh_enable();
908         lockdep_assert_irqs_enabled();
909         rcu_nocb_lock_irqsave(rdp, flags);
910         if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
911             rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
912             raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
913                 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
914                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
915         }
916
917         if (!rcu_segcblist_ready_cbs(cblist)) {
918                 WRITE_ONCE(rdp->nocb_cb_sleep, true);
919                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
920         } else {
921                 WRITE_ONCE(rdp->nocb_cb_sleep, false);
922         }
923
924         rcu_nocb_unlock_irqrestore(rdp, flags);
925         if (needwake_gp)
926                 rcu_gp_kthread_wake();
927 }
928
929 /*
930  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
931  * nocb_cb_wait() to do the dirty work.
932  */
933 static int rcu_nocb_cb_kthread(void *arg)
934 {
935         struct rcu_data *rdp = arg;
936
937         // Each pass through this loop does one callback batch, and,
938         // if there are no more ready callbacks, waits for them.
939         for (;;) {
940                 nocb_cb_wait(rdp);
941                 cond_resched_tasks_rcu_qs();
942         }
943         return 0;
944 }
945
946 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
947 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
948 {
949         return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
950 }
951
952 /* Do a deferred wakeup of rcu_nocb_kthread(). */
953 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
954                                            struct rcu_data *rdp, int level,
955                                            unsigned long flags)
956         __releases(rdp_gp->nocb_gp_lock)
957 {
958         int ndw;
959         int ret;
960
961         if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
962                 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
963                 return false;
964         }
965
966         ndw = rdp_gp->nocb_defer_wakeup;
967         ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
968         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
969
970         return ret;
971 }
972
973 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
974 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
975 {
976         unsigned long flags;
977         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
978
979         WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
980         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
981
982         raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
983         smp_mb__after_spinlock(); /* Timer expire before wakeup. */
984         do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
985 }
986
987 /*
988  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
989  * This means we do an inexact common-case check.  Note that if
990  * we miss, ->nocb_timer will eventually clean things up.
991  */
992 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
993 {
994         unsigned long flags;
995         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
996
997         if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
998                 return false;
999
1000         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1001         return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
1002 }
1003
1004 void rcu_nocb_flush_deferred_wakeup(void)
1005 {
1006         do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
1007 }
1008 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
1009
1010 static int rcu_nocb_queue_toggle_rdp(struct rcu_data *rdp)
1011 {
1012         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1013         bool wake_gp = false;
1014         unsigned long flags;
1015
1016         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1017         // Queue this rdp for add/del to/from the list to iterate on rcuog
1018         WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
1019         if (rdp_gp->nocb_gp_sleep) {
1020                 rdp_gp->nocb_gp_sleep = false;
1021                 wake_gp = true;
1022         }
1023         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1024
1025         return wake_gp;
1026 }
1027
1028 static bool rcu_nocb_rdp_deoffload_wait_cond(struct rcu_data *rdp)
1029 {
1030         unsigned long flags;
1031         bool ret;
1032
1033         /*
1034          * Locking makes sure rcuog is done handling this rdp before deoffloaded
1035          * enqueue can happen. Also it keeps the SEGCBLIST_OFFLOADED flag stable
1036          * while the ->nocb_lock is held.
1037          */
1038         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1039         ret = !rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1040         raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1041
1042         return ret;
1043 }
1044
1045 static int rcu_nocb_rdp_deoffload(struct rcu_data *rdp)
1046 {
1047         unsigned long flags;
1048         int wake_gp;
1049         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1050
1051         /* CPU must be offline, unless it's early boot */
1052         WARN_ON_ONCE(cpu_online(rdp->cpu) && rdp->cpu != raw_smp_processor_id());
1053
1054         pr_info("De-offloading %d\n", rdp->cpu);
1055
1056         /* Flush all callbacks from segcblist and bypass */
1057         rcu_barrier();
1058
1059         /*
1060          * Make sure the rcuoc kthread isn't in the middle of a nocb locked
1061          * sequence while offloading is deactivated, along with nocb locking.
1062          */
1063         if (rdp->nocb_cb_kthread)
1064                 kthread_park(rdp->nocb_cb_kthread);
1065
1066         rcu_nocb_lock_irqsave(rdp, flags);
1067         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1068         WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
1069         rcu_nocb_unlock_irqrestore(rdp, flags);
1070
1071         wake_gp = rcu_nocb_queue_toggle_rdp(rdp);
1072
1073         mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1074
1075         if (rdp_gp->nocb_gp_kthread) {
1076                 if (wake_gp)
1077                         wake_up_process(rdp_gp->nocb_gp_kthread);
1078
1079                 swait_event_exclusive(rdp->nocb_state_wq,
1080                                       rcu_nocb_rdp_deoffload_wait_cond(rdp));
1081         } else {
1082                 /*
1083                  * No kthread to clear the flags for us or remove the rdp from the nocb list
1084                  * to iterate. Do it here instead. Locking doesn't look stricly necessary
1085                  * but we stick to paranoia in this rare path.
1086                  */
1087                 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1088                 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1089                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1090
1091                 list_del(&rdp->nocb_entry_rdp);
1092         }
1093
1094         mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1095
1096         return 0;
1097 }
1098
1099 int rcu_nocb_cpu_deoffload(int cpu)
1100 {
1101         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1102         int ret = 0;
1103
1104         cpus_read_lock();
1105         mutex_lock(&rcu_state.nocb_mutex);
1106         if (rcu_rdp_is_offloaded(rdp)) {
1107                 if (!cpu_online(cpu)) {
1108                         ret = rcu_nocb_rdp_deoffload(rdp);
1109                         if (!ret)
1110                                 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1111                 } else {
1112                         pr_info("NOCB: Cannot CB-deoffload online CPU %d\n", rdp->cpu);
1113                         ret = -EINVAL;
1114                 }
1115         }
1116         mutex_unlock(&rcu_state.nocb_mutex);
1117         cpus_read_unlock();
1118
1119         return ret;
1120 }
1121 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1122
1123 static bool rcu_nocb_rdp_offload_wait_cond(struct rcu_data *rdp)
1124 {
1125         unsigned long flags;
1126         bool ret;
1127
1128         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1129         ret = rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1130         raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1131
1132         return ret;
1133 }
1134
1135 static int rcu_nocb_rdp_offload(struct rcu_data *rdp)
1136 {
1137         int wake_gp;
1138         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1139
1140         WARN_ON_ONCE(cpu_online(rdp->cpu));
1141         /*
1142          * For now we only support re-offload, ie: the rdp must have been
1143          * offloaded on boot first.
1144          */
1145         if (!rdp->nocb_gp_rdp)
1146                 return -EINVAL;
1147
1148         if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1149                 return -EINVAL;
1150
1151         pr_info("Offloading %d\n", rdp->cpu);
1152
1153         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1154         WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
1155
1156         wake_gp = rcu_nocb_queue_toggle_rdp(rdp);
1157         if (wake_gp)
1158                 wake_up_process(rdp_gp->nocb_gp_kthread);
1159
1160         swait_event_exclusive(rdp->nocb_state_wq,
1161                               rcu_nocb_rdp_offload_wait_cond(rdp));
1162
1163         kthread_unpark(rdp->nocb_cb_kthread);
1164
1165         return 0;
1166 }
1167
1168 int rcu_nocb_cpu_offload(int cpu)
1169 {
1170         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1171         int ret = 0;
1172
1173         cpus_read_lock();
1174         mutex_lock(&rcu_state.nocb_mutex);
1175         if (!rcu_rdp_is_offloaded(rdp)) {
1176                 if (!cpu_online(cpu)) {
1177                         ret = rcu_nocb_rdp_offload(rdp);
1178                         if (!ret)
1179                                 cpumask_set_cpu(cpu, rcu_nocb_mask);
1180                 } else {
1181                         pr_info("NOCB: Cannot CB-offload online CPU %d\n", rdp->cpu);
1182                         ret = -EINVAL;
1183                 }
1184         }
1185         mutex_unlock(&rcu_state.nocb_mutex);
1186         cpus_read_unlock();
1187
1188         return ret;
1189 }
1190 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1191
1192 #ifdef CONFIG_RCU_LAZY
1193 static unsigned long
1194 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1195 {
1196         int cpu;
1197         unsigned long count = 0;
1198
1199         if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1200                 return 0;
1201
1202         /*  Protect rcu_nocb_mask against concurrent (de-)offloading. */
1203         if (!mutex_trylock(&rcu_state.nocb_mutex))
1204                 return 0;
1205
1206         /* Snapshot count of all CPUs */
1207         for_each_cpu(cpu, rcu_nocb_mask) {
1208                 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1209
1210                 count +=  READ_ONCE(rdp->lazy_len);
1211         }
1212
1213         mutex_unlock(&rcu_state.nocb_mutex);
1214
1215         return count ? count : SHRINK_EMPTY;
1216 }
1217
1218 static unsigned long
1219 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1220 {
1221         int cpu;
1222         unsigned long flags;
1223         unsigned long count = 0;
1224
1225         if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1226                 return 0;
1227         /*
1228          * Protect against concurrent (de-)offloading. Otherwise nocb locking
1229          * may be ignored or imbalanced.
1230          */
1231         if (!mutex_trylock(&rcu_state.nocb_mutex)) {
1232                 /*
1233                  * But really don't insist if nocb_mutex is contended since we
1234                  * can't guarantee that it will never engage in a dependency
1235                  * chain involving memory allocation. The lock is seldom contended
1236                  * anyway.
1237                  */
1238                 return 0;
1239         }
1240
1241         /* Snapshot count of all CPUs */
1242         for_each_cpu(cpu, rcu_nocb_mask) {
1243                 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1244                 int _count;
1245
1246                 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
1247                         continue;
1248
1249                 if (!READ_ONCE(rdp->lazy_len))
1250                         continue;
1251
1252                 rcu_nocb_lock_irqsave(rdp, flags);
1253                 /*
1254                  * Recheck under the nocb lock. Since we are not holding the bypass
1255                  * lock we may still race with increments from the enqueuer but still
1256                  * we know for sure if there is at least one lazy callback.
1257                  */
1258                 _count = READ_ONCE(rdp->lazy_len);
1259                 if (!_count) {
1260                         rcu_nocb_unlock_irqrestore(rdp, flags);
1261                         continue;
1262                 }
1263                 rcu_nocb_try_flush_bypass(rdp, jiffies);
1264                 rcu_nocb_unlock_irqrestore(rdp, flags);
1265                 wake_nocb_gp(rdp, false);
1266                 sc->nr_to_scan -= _count;
1267                 count += _count;
1268                 if (sc->nr_to_scan <= 0)
1269                         break;
1270         }
1271
1272         mutex_unlock(&rcu_state.nocb_mutex);
1273
1274         return count ? count : SHRINK_STOP;
1275 }
1276 #endif // #ifdef CONFIG_RCU_LAZY
1277
1278 void __init rcu_init_nohz(void)
1279 {
1280         int cpu;
1281         struct rcu_data *rdp;
1282         const struct cpumask *cpumask = NULL;
1283         struct shrinker * __maybe_unused lazy_rcu_shrinker;
1284
1285 #if defined(CONFIG_NO_HZ_FULL)
1286         if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
1287                 cpumask = tick_nohz_full_mask;
1288 #endif
1289
1290         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
1291             !rcu_state.nocb_is_setup && !cpumask)
1292                 cpumask = cpu_possible_mask;
1293
1294         if (cpumask) {
1295                 if (!cpumask_available(rcu_nocb_mask)) {
1296                         if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1297                                 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1298                                 return;
1299                         }
1300                 }
1301
1302                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
1303                 rcu_state.nocb_is_setup = true;
1304         }
1305
1306         if (!rcu_state.nocb_is_setup)
1307                 return;
1308
1309 #ifdef CONFIG_RCU_LAZY
1310         lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy");
1311         if (!lazy_rcu_shrinker) {
1312                 pr_err("Failed to allocate lazy_rcu shrinker!\n");
1313         } else {
1314                 lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count;
1315                 lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan;
1316
1317                 shrinker_register(lazy_rcu_shrinker);
1318         }
1319 #endif // #ifdef CONFIG_RCU_LAZY
1320
1321         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1322                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1323                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1324                             rcu_nocb_mask);
1325         }
1326         if (cpumask_empty(rcu_nocb_mask))
1327                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1328         else
1329                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1330                         cpumask_pr_args(rcu_nocb_mask));
1331         if (rcu_nocb_poll)
1332                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1333
1334         for_each_cpu(cpu, rcu_nocb_mask) {
1335                 rdp = per_cpu_ptr(&rcu_data, cpu);
1336                 if (rcu_segcblist_empty(&rdp->cblist))
1337                         rcu_segcblist_init(&rdp->cblist);
1338                 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1339         }
1340         rcu_organize_nocb_kthreads();
1341 }
1342
1343 /* Initialize per-rcu_data variables for no-CBs CPUs. */
1344 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1345 {
1346         init_swait_queue_head(&rdp->nocb_cb_wq);
1347         init_swait_queue_head(&rdp->nocb_gp_wq);
1348         init_swait_queue_head(&rdp->nocb_state_wq);
1349         raw_spin_lock_init(&rdp->nocb_lock);
1350         raw_spin_lock_init(&rdp->nocb_bypass_lock);
1351         raw_spin_lock_init(&rdp->nocb_gp_lock);
1352         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1353         rcu_cblist_init(&rdp->nocb_bypass);
1354         WRITE_ONCE(rdp->lazy_len, 0);
1355         mutex_init(&rdp->nocb_gp_kthread_mutex);
1356 }
1357
1358 /*
1359  * If the specified CPU is a no-CBs CPU that does not already have its
1360  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1361  * for this CPU's group has not yet been created, spawn it as well.
1362  */
1363 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1364 {
1365         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1366         struct rcu_data *rdp_gp;
1367         struct task_struct *t;
1368         struct sched_param sp;
1369
1370         if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1371                 return;
1372
1373         /* If there already is an rcuo kthread, then nothing to do. */
1374         if (rdp->nocb_cb_kthread)
1375                 return;
1376
1377         /* If we didn't spawn the GP kthread first, reorganize! */
1378         sp.sched_priority = kthread_prio;
1379         rdp_gp = rdp->nocb_gp_rdp;
1380         mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1381         if (!rdp_gp->nocb_gp_kthread) {
1382                 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1383                                 "rcuog/%d", rdp_gp->cpu);
1384                 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1385                         mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1386                         goto err;
1387                 }
1388                 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1389                 if (kthread_prio)
1390                         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1391         }
1392         mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1393
1394         /* Spawn the kthread for this CPU. */
1395         t = kthread_create(rcu_nocb_cb_kthread, rdp,
1396                            "rcuo%c/%d", rcu_state.abbr, cpu);
1397         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1398                 goto err;
1399
1400         if (rcu_rdp_is_offloaded(rdp))
1401                 wake_up_process(t);
1402         else
1403                 kthread_park(t);
1404
1405         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1406                 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1407
1408         WRITE_ONCE(rdp->nocb_cb_kthread, t);
1409         WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1410         return;
1411
1412 err:
1413         /*
1414          * No need to protect against concurrent rcu_barrier()
1415          * because the number of callbacks should be 0 for a non-boot CPU,
1416          * therefore rcu_barrier() shouldn't even try to grab the nocb_lock.
1417          * But hold nocb_mutex to avoid nocb_lock imbalance from shrinker.
1418          */
1419         WARN_ON_ONCE(system_state > SYSTEM_BOOTING && rcu_segcblist_n_cbs(&rdp->cblist));
1420         mutex_lock(&rcu_state.nocb_mutex);
1421         if (rcu_rdp_is_offloaded(rdp)) {
1422                 rcu_nocb_rdp_deoffload(rdp);
1423                 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1424         }
1425         mutex_unlock(&rcu_state.nocb_mutex);
1426 }
1427
1428 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1429 static int rcu_nocb_gp_stride = -1;
1430 module_param(rcu_nocb_gp_stride, int, 0444);
1431
1432 /*
1433  * Initialize GP-CB relationships for all no-CBs CPU.
1434  */
1435 static void __init rcu_organize_nocb_kthreads(void)
1436 {
1437         int cpu;
1438         bool firsttime = true;
1439         bool gotnocbs = false;
1440         bool gotnocbscbs = true;
1441         int ls = rcu_nocb_gp_stride;
1442         int nl = 0;  /* Next GP kthread. */
1443         struct rcu_data *rdp;
1444         struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1445
1446         if (!cpumask_available(rcu_nocb_mask))
1447                 return;
1448         if (ls == -1) {
1449                 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1450                 rcu_nocb_gp_stride = ls;
1451         }
1452
1453         /*
1454          * Each pass through this loop sets up one rcu_data structure.
1455          * Should the corresponding CPU come online in the future, then
1456          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1457          */
1458         for_each_possible_cpu(cpu) {
1459                 rdp = per_cpu_ptr(&rcu_data, cpu);
1460                 if (rdp->cpu >= nl) {
1461                         /* New GP kthread, set up for CBs & next GP. */
1462                         gotnocbs = true;
1463                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1464                         rdp_gp = rdp;
1465                         INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1466                         if (dump_tree) {
1467                                 if (!firsttime)
1468                                         pr_cont("%s\n", gotnocbscbs
1469                                                         ? "" : " (self only)");
1470                                 gotnocbscbs = false;
1471                                 firsttime = false;
1472                                 pr_alert("%s: No-CB GP kthread CPU %d:",
1473                                          __func__, cpu);
1474                         }
1475                 } else {
1476                         /* Another CB kthread, link to previous GP kthread. */
1477                         gotnocbscbs = true;
1478                         if (dump_tree)
1479                                 pr_cont(" %d", cpu);
1480                 }
1481                 rdp->nocb_gp_rdp = rdp_gp;
1482                 if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1483                         list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1484         }
1485         if (gotnocbs && dump_tree)
1486                 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1487 }
1488
1489 /*
1490  * Bind the current task to the offloaded CPUs.  If there are no offloaded
1491  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1492  */
1493 void rcu_bind_current_to_nocb(void)
1494 {
1495         if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1496                 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1497 }
1498 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1499
1500 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1501 #ifdef CONFIG_SMP
1502 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1503 {
1504         return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1505 }
1506 #else // #ifdef CONFIG_SMP
1507 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1508 {
1509         return "";
1510 }
1511 #endif // #else #ifdef CONFIG_SMP
1512
1513 /*
1514  * Dump out nocb grace-period kthread state for the specified rcu_data
1515  * structure.
1516  */
1517 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1518 {
1519         struct rcu_node *rnp = rdp->mynode;
1520
1521         pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1522                 rdp->cpu,
1523                 "kK"[!!rdp->nocb_gp_kthread],
1524                 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1525                 "dD"[!!rdp->nocb_defer_wakeup],
1526                 "tT"[timer_pending(&rdp->nocb_timer)],
1527                 "sS"[!!rdp->nocb_gp_sleep],
1528                 ".W"[swait_active(&rdp->nocb_gp_wq)],
1529                 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
1530                 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
1531                 ".B"[!!rdp->nocb_gp_bypass],
1532                 ".G"[!!rdp->nocb_gp_gp],
1533                 (long)rdp->nocb_gp_seq,
1534                 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1535                 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1536                 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1537                 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1538 }
1539
1540 /* Dump out nocb kthread state for the specified rcu_data structure. */
1541 static void show_rcu_nocb_state(struct rcu_data *rdp)
1542 {
1543         char bufw[20];
1544         char bufr[20];
1545         struct rcu_data *nocb_next_rdp;
1546         struct rcu_segcblist *rsclp = &rdp->cblist;
1547         bool waslocked;
1548         bool wassleep;
1549
1550         if (rdp->nocb_gp_rdp == rdp)
1551                 show_rcu_nocb_gp_state(rdp);
1552
1553         nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1554                                               &rdp->nocb_entry_rdp,
1555                                               typeof(*rdp),
1556                                               nocb_entry_rdp);
1557
1558         sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1559         sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1560         pr_info("   CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1561                 rdp->cpu, rdp->nocb_gp_rdp->cpu,
1562                 nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1563                 "kK"[!!rdp->nocb_cb_kthread],
1564                 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1565                 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1566                 "sS"[!!rdp->nocb_cb_sleep],
1567                 ".W"[swait_active(&rdp->nocb_cb_wq)],
1568                 jiffies - rdp->nocb_bypass_first,
1569                 jiffies - rdp->nocb_nobypass_last,
1570                 rdp->nocb_nobypass_count,
1571                 ".D"[rcu_segcblist_ready_cbs(rsclp)],
1572                 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1573                 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1574                 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1575                 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1576                 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1577                 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1578                 rcu_segcblist_n_cbs(&rdp->cblist),
1579                 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1580                 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1581                 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1582
1583         /* It is OK for GP kthreads to have GP state. */
1584         if (rdp->nocb_gp_rdp == rdp)
1585                 return;
1586
1587         waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1588         wassleep = swait_active(&rdp->nocb_gp_wq);
1589         if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1590                 return;  /* Nothing untoward. */
1591
1592         pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1593                 "lL"[waslocked],
1594                 "dD"[!!rdp->nocb_defer_wakeup],
1595                 "sS"[!!rdp->nocb_gp_sleep],
1596                 ".W"[wassleep]);
1597 }
1598
1599 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1600
1601 /* No ->nocb_lock to acquire.  */
1602 static void rcu_nocb_lock(struct rcu_data *rdp)
1603 {
1604 }
1605
1606 /* No ->nocb_lock to release.  */
1607 static void rcu_nocb_unlock(struct rcu_data *rdp)
1608 {
1609 }
1610
1611 /* No ->nocb_lock to release.  */
1612 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1613                                        unsigned long flags)
1614 {
1615         local_irq_restore(flags);
1616 }
1617
1618 /* Lockdep check that ->cblist may be safely accessed. */
1619 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1620 {
1621         lockdep_assert_irqs_disabled();
1622 }
1623
1624 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1625 {
1626 }
1627
1628 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1629 {
1630         return NULL;
1631 }
1632
1633 static void rcu_init_one_nocb(struct rcu_node *rnp)
1634 {
1635 }
1636
1637 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1638 {
1639         return false;
1640 }
1641
1642 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1643                                   unsigned long j, bool lazy)
1644 {
1645         return true;
1646 }
1647
1648 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
1649                           rcu_callback_t func, unsigned long flags, bool lazy)
1650 {
1651         WARN_ON_ONCE(1);  /* Should be dead code! */
1652 }
1653
1654 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1655                                  unsigned long flags)
1656 {
1657         WARN_ON_ONCE(1);  /* Should be dead code! */
1658 }
1659
1660 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1661 {
1662 }
1663
1664 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1665 {
1666         return false;
1667 }
1668
1669 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1670 {
1671         return false;
1672 }
1673
1674 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1675 {
1676 }
1677
1678 static void show_rcu_nocb_state(struct rcu_data *rdp)
1679 {
1680 }
1681
1682 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
This page took 0.163978 seconds and 4 git commands to generate.