2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/memremap.h>
34 #include <linux/nmi.h>
35 #include <linux/gfp.h>
36 #include <linux/kcore.h>
38 #include <asm/processor.h>
39 #include <asm/bios_ebda.h>
40 #include <asm/uaccess.h>
41 #include <asm/pgtable.h>
42 #include <asm/pgalloc.h>
44 #include <asm/fixmap.h>
48 #include <asm/mmu_context.h>
49 #include <asm/proto.h>
51 #include <asm/sections.h>
52 #include <asm/kdebug.h>
54 #include <asm/cacheflush.h>
56 #include <asm/uv/uv.h>
57 #include <asm/setup.h>
59 #include "mm_internal.h"
61 #include "ident_map.c"
64 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
65 * physical space so we can cache the place of the first one and move
66 * around without checking the pgd every time.
69 pteval_t __supported_pte_mask __read_mostly = ~0;
70 EXPORT_SYMBOL_GPL(__supported_pte_mask);
72 int force_personality32;
76 * Control non executable heap for 32bit processes.
77 * To control the stack too use noexec=off
79 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
80 * off PROT_READ implies PROT_EXEC
82 static int __init nonx32_setup(char *str)
84 if (!strcmp(str, "on"))
85 force_personality32 &= ~READ_IMPLIES_EXEC;
86 else if (!strcmp(str, "off"))
87 force_personality32 |= READ_IMPLIES_EXEC;
90 __setup("noexec32=", nonx32_setup);
93 * When memory was added/removed make sure all the processes MM have
94 * suitable PGD entries in the local PGD level page.
96 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
98 unsigned long address;
100 for (address = start; address <= end; address += PGDIR_SIZE) {
101 const pgd_t *pgd_ref = pgd_offset_k(address);
105 * When it is called after memory hot remove, pgd_none()
106 * returns true. In this case (removed == 1), we must clear
107 * the PGD entries in the local PGD level page.
109 if (pgd_none(*pgd_ref) && !removed)
112 spin_lock(&pgd_lock);
113 list_for_each_entry(page, &pgd_list, lru) {
115 spinlock_t *pgt_lock;
117 pgd = (pgd_t *)page_address(page) + pgd_index(address);
118 /* the pgt_lock only for Xen */
119 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
122 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
123 BUG_ON(pgd_page_vaddr(*pgd)
124 != pgd_page_vaddr(*pgd_ref));
127 if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
131 set_pgd(pgd, *pgd_ref);
134 spin_unlock(pgt_lock);
136 spin_unlock(&pgd_lock);
141 * NOTE: This function is marked __ref because it calls __init function
142 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
144 static __ref void *spp_getpage(void)
149 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
151 ptr = alloc_bootmem_pages(PAGE_SIZE);
153 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
154 panic("set_pte_phys: cannot allocate page data %s\n",
155 after_bootmem ? "after bootmem" : "");
158 pr_debug("spp_getpage %p\n", ptr);
163 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
165 if (pgd_none(*pgd)) {
166 pud_t *pud = (pud_t *)spp_getpage();
167 pgd_populate(&init_mm, pgd, pud);
168 if (pud != pud_offset(pgd, 0))
169 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
170 pud, pud_offset(pgd, 0));
172 return pud_offset(pgd, vaddr);
175 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
177 if (pud_none(*pud)) {
178 pmd_t *pmd = (pmd_t *) spp_getpage();
179 pud_populate(&init_mm, pud, pmd);
180 if (pmd != pmd_offset(pud, 0))
181 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
182 pmd, pmd_offset(pud, 0));
184 return pmd_offset(pud, vaddr);
187 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
189 if (pmd_none(*pmd)) {
190 pte_t *pte = (pte_t *) spp_getpage();
191 pmd_populate_kernel(&init_mm, pmd, pte);
192 if (pte != pte_offset_kernel(pmd, 0))
193 printk(KERN_ERR "PAGETABLE BUG #02!\n");
195 return pte_offset_kernel(pmd, vaddr);
198 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
204 pud = pud_page + pud_index(vaddr);
205 pmd = fill_pmd(pud, vaddr);
206 pte = fill_pte(pmd, vaddr);
208 set_pte(pte, new_pte);
211 * It's enough to flush this one mapping.
212 * (PGE mappings get flushed as well)
214 __flush_tlb_one(vaddr);
217 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
222 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
224 pgd = pgd_offset_k(vaddr);
225 if (pgd_none(*pgd)) {
227 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
230 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
231 set_pte_vaddr_pud(pud_page, vaddr, pteval);
234 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
239 pgd = pgd_offset_k(vaddr);
240 pud = fill_pud(pgd, vaddr);
241 return fill_pmd(pud, vaddr);
244 pte_t * __init populate_extra_pte(unsigned long vaddr)
248 pmd = populate_extra_pmd(vaddr);
249 return fill_pte(pmd, vaddr);
253 * Create large page table mappings for a range of physical addresses.
255 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
256 enum page_cache_mode cache)
263 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
264 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
265 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
266 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
267 pgd = pgd_offset_k((unsigned long)__va(phys));
268 if (pgd_none(*pgd)) {
269 pud = (pud_t *) spp_getpage();
270 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
273 pud = pud_offset(pgd, (unsigned long)__va(phys));
274 if (pud_none(*pud)) {
275 pmd = (pmd_t *) spp_getpage();
276 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
279 pmd = pmd_offset(pud, phys);
280 BUG_ON(!pmd_none(*pmd));
281 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
285 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
287 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
290 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
292 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
296 * The head.S code sets up the kernel high mapping:
298 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
300 * phys_base holds the negative offset to the kernel, which is added
301 * to the compile time generated pmds. This results in invalid pmds up
302 * to the point where we hit the physaddr 0 mapping.
304 * We limit the mappings to the region from _text to _brk_end. _brk_end
305 * is rounded up to the 2MB boundary. This catches the invalid pmds as
306 * well, as they are located before _text:
308 void __init cleanup_highmap(void)
310 unsigned long vaddr = __START_KERNEL_map;
311 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
312 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
313 pmd_t *pmd = level2_kernel_pgt;
316 * Native path, max_pfn_mapped is not set yet.
317 * Xen has valid max_pfn_mapped set in
318 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
321 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
323 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
326 if (vaddr < (unsigned long) _text || vaddr > end)
327 set_pmd(pmd, __pmd(0));
332 * Create PTE level page table mapping for physical addresses.
333 * It returns the last physical address mapped.
335 static unsigned long __meminit
336 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
339 unsigned long pages = 0, paddr_next;
340 unsigned long paddr_last = paddr_end;
344 pte = pte_page + pte_index(paddr);
345 i = pte_index(paddr);
347 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
348 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
349 if (paddr >= paddr_end) {
350 if (!after_bootmem &&
351 !e820_any_mapped(paddr & PAGE_MASK, paddr_next,
353 !e820_any_mapped(paddr & PAGE_MASK, paddr_next,
355 set_pte(pte, __pte(0));
360 * We will re-use the existing mapping.
361 * Xen for example has some special requirements, like mapping
362 * pagetable pages as RO. So assume someone who pre-setup
363 * these mappings are more intelligent.
372 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
373 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
375 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
376 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
379 update_page_count(PG_LEVEL_4K, pages);
385 * Create PMD level page table mapping for physical addresses. The virtual
386 * and physical address have to be aligned at this level.
387 * It returns the last physical address mapped.
389 static unsigned long __meminit
390 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
391 unsigned long page_size_mask, pgprot_t prot)
393 unsigned long pages = 0, paddr_next;
394 unsigned long paddr_last = paddr_end;
396 int i = pmd_index(paddr);
398 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
399 pmd_t *pmd = pmd_page + pmd_index(paddr);
401 pgprot_t new_prot = prot;
403 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
404 if (paddr >= paddr_end) {
405 if (!after_bootmem &&
406 !e820_any_mapped(paddr & PMD_MASK, paddr_next,
408 !e820_any_mapped(paddr & PMD_MASK, paddr_next,
410 set_pmd(pmd, __pmd(0));
415 if (!pmd_large(*pmd)) {
416 spin_lock(&init_mm.page_table_lock);
417 pte = (pte_t *)pmd_page_vaddr(*pmd);
418 paddr_last = phys_pte_init(pte, paddr,
420 spin_unlock(&init_mm.page_table_lock);
424 * If we are ok with PG_LEVEL_2M mapping, then we will
425 * use the existing mapping,
427 * Otherwise, we will split the large page mapping but
428 * use the same existing protection bits except for
429 * large page, so that we don't violate Intel's TLB
430 * Application note (317080) which says, while changing
431 * the page sizes, new and old translations should
432 * not differ with respect to page frame and
435 if (page_size_mask & (1 << PG_LEVEL_2M)) {
438 paddr_last = paddr_next;
441 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
444 if (page_size_mask & (1<<PG_LEVEL_2M)) {
446 spin_lock(&init_mm.page_table_lock);
447 set_pte((pte_t *)pmd,
448 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
449 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
450 spin_unlock(&init_mm.page_table_lock);
451 paddr_last = paddr_next;
455 pte = alloc_low_page();
456 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
458 spin_lock(&init_mm.page_table_lock);
459 pmd_populate_kernel(&init_mm, pmd, pte);
460 spin_unlock(&init_mm.page_table_lock);
462 update_page_count(PG_LEVEL_2M, pages);
467 * Create PUD level page table mapping for physical addresses. The virtual
468 * and physical address do not have to be aligned at this level. KASLR can
469 * randomize virtual addresses up to this level.
470 * It returns the last physical address mapped.
472 static unsigned long __meminit
473 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
474 unsigned long page_size_mask)
476 unsigned long pages = 0, paddr_next;
477 unsigned long paddr_last = paddr_end;
478 unsigned long vaddr = (unsigned long)__va(paddr);
479 int i = pud_index(vaddr);
481 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
484 pgprot_t prot = PAGE_KERNEL;
486 vaddr = (unsigned long)__va(paddr);
487 pud = pud_page + pud_index(vaddr);
488 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
490 if (paddr >= paddr_end) {
491 if (!after_bootmem &&
492 !e820_any_mapped(paddr & PUD_MASK, paddr_next,
494 !e820_any_mapped(paddr & PUD_MASK, paddr_next,
496 set_pud(pud, __pud(0));
501 if (!pud_large(*pud)) {
502 pmd = pmd_offset(pud, 0);
503 paddr_last = phys_pmd_init(pmd, paddr,
511 * If we are ok with PG_LEVEL_1G mapping, then we will
512 * use the existing mapping.
514 * Otherwise, we will split the gbpage mapping but use
515 * the same existing protection bits except for large
516 * page, so that we don't violate Intel's TLB
517 * Application note (317080) which says, while changing
518 * the page sizes, new and old translations should
519 * not differ with respect to page frame and
522 if (page_size_mask & (1 << PG_LEVEL_1G)) {
525 paddr_last = paddr_next;
528 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
531 if (page_size_mask & (1<<PG_LEVEL_1G)) {
533 spin_lock(&init_mm.page_table_lock);
534 set_pte((pte_t *)pud,
535 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
537 spin_unlock(&init_mm.page_table_lock);
538 paddr_last = paddr_next;
542 pmd = alloc_low_page();
543 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
544 page_size_mask, prot);
546 spin_lock(&init_mm.page_table_lock);
547 pud_populate(&init_mm, pud, pmd);
548 spin_unlock(&init_mm.page_table_lock);
552 update_page_count(PG_LEVEL_1G, pages);
558 * Create page table mapping for the physical memory for specific physical
559 * addresses. The virtual and physical addresses have to be aligned on PMD level
560 * down. It returns the last physical address mapped.
562 unsigned long __meminit
563 kernel_physical_mapping_init(unsigned long paddr_start,
564 unsigned long paddr_end,
565 unsigned long page_size_mask)
567 bool pgd_changed = false;
568 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
570 paddr_last = paddr_end;
571 vaddr = (unsigned long)__va(paddr_start);
572 vaddr_end = (unsigned long)__va(paddr_end);
575 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
576 pgd_t *pgd = pgd_offset_k(vaddr);
579 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
582 pud = (pud_t *)pgd_page_vaddr(*pgd);
583 paddr_last = phys_pud_init(pud, __pa(vaddr),
589 pud = alloc_low_page();
590 paddr_last = phys_pud_init(pud, __pa(vaddr), __pa(vaddr_end),
593 spin_lock(&init_mm.page_table_lock);
594 pgd_populate(&init_mm, pgd, pud);
595 spin_unlock(&init_mm.page_table_lock);
600 sync_global_pgds(vaddr_start, vaddr_end - 1, 0);
608 void __init initmem_init(void)
610 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
614 void __init paging_init(void)
616 sparse_memory_present_with_active_regions(MAX_NUMNODES);
620 * clear the default setting with node 0
621 * note: don't use nodes_clear here, that is really clearing when
622 * numa support is not compiled in, and later node_set_state
623 * will not set it back.
625 node_clear_state(0, N_MEMORY);
626 if (N_MEMORY != N_NORMAL_MEMORY)
627 node_clear_state(0, N_NORMAL_MEMORY);
633 * Memory hotplug specific functions
635 #ifdef CONFIG_MEMORY_HOTPLUG
637 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
640 static void update_end_of_memory_vars(u64 start, u64 size)
642 unsigned long end_pfn = PFN_UP(start + size);
644 if (end_pfn > max_pfn) {
646 max_low_pfn = end_pfn;
647 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
652 * Memory is added always to NORMAL zone. This means you will never get
653 * additional DMA/DMA32 memory.
655 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
657 struct pglist_data *pgdat = NODE_DATA(nid);
658 struct zone *zone = pgdat->node_zones +
659 zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
660 unsigned long start_pfn = start >> PAGE_SHIFT;
661 unsigned long nr_pages = size >> PAGE_SHIFT;
664 init_memory_mapping(start, start + size);
666 ret = __add_pages(nid, zone, start_pfn, nr_pages);
669 /* update max_pfn, max_low_pfn and high_memory */
670 update_end_of_memory_vars(start, size);
674 EXPORT_SYMBOL_GPL(arch_add_memory);
676 #define PAGE_INUSE 0xFD
678 static void __meminit free_pagetable(struct page *page, int order)
681 unsigned int nr_pages = 1 << order;
682 struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
685 vmem_altmap_free(altmap, nr_pages);
689 /* bootmem page has reserved flag */
690 if (PageReserved(page)) {
691 __ClearPageReserved(page);
693 magic = (unsigned long)page->lru.next;
694 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
696 put_page_bootmem(page++);
699 free_reserved_page(page++);
701 free_pages((unsigned long)page_address(page), order);
704 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
709 for (i = 0; i < PTRS_PER_PTE; i++) {
715 /* free a pte talbe */
716 free_pagetable(pmd_page(*pmd), 0);
717 spin_lock(&init_mm.page_table_lock);
719 spin_unlock(&init_mm.page_table_lock);
722 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
727 for (i = 0; i < PTRS_PER_PMD; i++) {
733 /* free a pmd talbe */
734 free_pagetable(pud_page(*pud), 0);
735 spin_lock(&init_mm.page_table_lock);
737 spin_unlock(&init_mm.page_table_lock);
740 /* Return true if pgd is changed, otherwise return false. */
741 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
746 for (i = 0; i < PTRS_PER_PUD; i++) {
752 /* free a pud table */
753 free_pagetable(pgd_page(*pgd), 0);
754 spin_lock(&init_mm.page_table_lock);
756 spin_unlock(&init_mm.page_table_lock);
761 static void __meminit
762 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
765 unsigned long next, pages = 0;
768 phys_addr_t phys_addr;
770 pte = pte_start + pte_index(addr);
771 for (; addr < end; addr = next, pte++) {
772 next = (addr + PAGE_SIZE) & PAGE_MASK;
776 if (!pte_present(*pte))
780 * We mapped [0,1G) memory as identity mapping when
781 * initializing, in arch/x86/kernel/head_64.S. These
782 * pagetables cannot be removed.
784 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
785 if (phys_addr < (phys_addr_t)0x40000000)
788 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
790 * Do not free direct mapping pages since they were
791 * freed when offlining, or simplely not in use.
794 free_pagetable(pte_page(*pte), 0);
796 spin_lock(&init_mm.page_table_lock);
797 pte_clear(&init_mm, addr, pte);
798 spin_unlock(&init_mm.page_table_lock);
800 /* For non-direct mapping, pages means nothing. */
804 * If we are here, we are freeing vmemmap pages since
805 * direct mapped memory ranges to be freed are aligned.
807 * If we are not removing the whole page, it means
808 * other page structs in this page are being used and
809 * we canot remove them. So fill the unused page_structs
810 * with 0xFD, and remove the page when it is wholly
813 memset((void *)addr, PAGE_INUSE, next - addr);
815 page_addr = page_address(pte_page(*pte));
816 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
817 free_pagetable(pte_page(*pte), 0);
819 spin_lock(&init_mm.page_table_lock);
820 pte_clear(&init_mm, addr, pte);
821 spin_unlock(&init_mm.page_table_lock);
826 /* Call free_pte_table() in remove_pmd_table(). */
829 update_page_count(PG_LEVEL_4K, -pages);
832 static void __meminit
833 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
836 unsigned long next, pages = 0;
841 pmd = pmd_start + pmd_index(addr);
842 for (; addr < end; addr = next, pmd++) {
843 next = pmd_addr_end(addr, end);
845 if (!pmd_present(*pmd))
848 if (pmd_large(*pmd)) {
849 if (IS_ALIGNED(addr, PMD_SIZE) &&
850 IS_ALIGNED(next, PMD_SIZE)) {
852 free_pagetable(pmd_page(*pmd),
853 get_order(PMD_SIZE));
855 spin_lock(&init_mm.page_table_lock);
857 spin_unlock(&init_mm.page_table_lock);
860 /* If here, we are freeing vmemmap pages. */
861 memset((void *)addr, PAGE_INUSE, next - addr);
863 page_addr = page_address(pmd_page(*pmd));
864 if (!memchr_inv(page_addr, PAGE_INUSE,
866 free_pagetable(pmd_page(*pmd),
867 get_order(PMD_SIZE));
869 spin_lock(&init_mm.page_table_lock);
871 spin_unlock(&init_mm.page_table_lock);
878 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
879 remove_pte_table(pte_base, addr, next, direct);
880 free_pte_table(pte_base, pmd);
883 /* Call free_pmd_table() in remove_pud_table(). */
885 update_page_count(PG_LEVEL_2M, -pages);
888 static void __meminit
889 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
892 unsigned long next, pages = 0;
897 pud = pud_start + pud_index(addr);
898 for (; addr < end; addr = next, pud++) {
899 next = pud_addr_end(addr, end);
901 if (!pud_present(*pud))
904 if (pud_large(*pud)) {
905 if (IS_ALIGNED(addr, PUD_SIZE) &&
906 IS_ALIGNED(next, PUD_SIZE)) {
908 free_pagetable(pud_page(*pud),
909 get_order(PUD_SIZE));
911 spin_lock(&init_mm.page_table_lock);
913 spin_unlock(&init_mm.page_table_lock);
916 /* If here, we are freeing vmemmap pages. */
917 memset((void *)addr, PAGE_INUSE, next - addr);
919 page_addr = page_address(pud_page(*pud));
920 if (!memchr_inv(page_addr, PAGE_INUSE,
922 free_pagetable(pud_page(*pud),
923 get_order(PUD_SIZE));
925 spin_lock(&init_mm.page_table_lock);
927 spin_unlock(&init_mm.page_table_lock);
934 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
935 remove_pmd_table(pmd_base, addr, next, direct);
936 free_pmd_table(pmd_base, pud);
940 update_page_count(PG_LEVEL_1G, -pages);
943 /* start and end are both virtual address. */
944 static void __meminit
945 remove_pagetable(unsigned long start, unsigned long end, bool direct)
951 bool pgd_changed = false;
953 for (addr = start; addr < end; addr = next) {
954 next = pgd_addr_end(addr, end);
956 pgd = pgd_offset_k(addr);
957 if (!pgd_present(*pgd))
960 pud = (pud_t *)pgd_page_vaddr(*pgd);
961 remove_pud_table(pud, addr, next, direct);
962 if (free_pud_table(pud, pgd))
967 sync_global_pgds(start, end - 1, 1);
972 void __ref vmemmap_free(unsigned long start, unsigned long end)
974 remove_pagetable(start, end, false);
977 #ifdef CONFIG_MEMORY_HOTREMOVE
978 static void __meminit
979 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
981 start = (unsigned long)__va(start);
982 end = (unsigned long)__va(end);
984 remove_pagetable(start, end, true);
987 int __ref arch_remove_memory(u64 start, u64 size)
989 unsigned long start_pfn = start >> PAGE_SHIFT;
990 unsigned long nr_pages = size >> PAGE_SHIFT;
991 struct page *page = pfn_to_page(start_pfn);
992 struct vmem_altmap *altmap;
996 /* With altmap the first mapped page is offset from @start */
997 altmap = to_vmem_altmap((unsigned long) page);
999 page += vmem_altmap_offset(altmap);
1000 zone = page_zone(page);
1001 ret = __remove_pages(zone, start_pfn, nr_pages);
1003 kernel_physical_mapping_remove(start, start + size);
1008 #endif /* CONFIG_MEMORY_HOTPLUG */
1010 static struct kcore_list kcore_vsyscall;
1012 static void __init register_page_bootmem_info(void)
1017 for_each_online_node(i)
1018 register_page_bootmem_info_node(NODE_DATA(i));
1022 void __init mem_init(void)
1026 /* clear_bss() already clear the empty_zero_page */
1028 register_page_bootmem_info();
1030 /* this will put all memory onto the freelists */
1034 /* Register memory areas for /proc/kcore */
1035 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1036 PAGE_SIZE, KCORE_OTHER);
1038 mem_init_print_info(NULL);
1041 const int rodata_test_data = 0xC3;
1042 EXPORT_SYMBOL_GPL(rodata_test_data);
1044 int kernel_set_to_readonly;
1046 void set_kernel_text_rw(void)
1048 unsigned long start = PFN_ALIGN(_text);
1049 unsigned long end = PFN_ALIGN(__stop___ex_table);
1051 if (!kernel_set_to_readonly)
1054 pr_debug("Set kernel text: %lx - %lx for read write\n",
1058 * Make the kernel identity mapping for text RW. Kernel text
1059 * mapping will always be RO. Refer to the comment in
1060 * static_protections() in pageattr.c
1062 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1065 void set_kernel_text_ro(void)
1067 unsigned long start = PFN_ALIGN(_text);
1068 unsigned long end = PFN_ALIGN(__stop___ex_table);
1070 if (!kernel_set_to_readonly)
1073 pr_debug("Set kernel text: %lx - %lx for read only\n",
1077 * Set the kernel identity mapping for text RO.
1079 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1082 void mark_rodata_ro(void)
1084 unsigned long start = PFN_ALIGN(_text);
1085 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1086 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1087 unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1088 unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1089 unsigned long all_end;
1091 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1092 (end - start) >> 10);
1093 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1095 kernel_set_to_readonly = 1;
1098 * The rodata/data/bss/brk section (but not the kernel text!)
1099 * should also be not-executable.
1101 * We align all_end to PMD_SIZE because the existing mapping
1102 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1103 * split the PMD and the reminder between _brk_end and the end
1104 * of the PMD will remain mapped executable.
1106 * Any PMD which was setup after the one which covers _brk_end
1107 * has been zapped already via cleanup_highmem().
1109 all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1110 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1114 #ifdef CONFIG_CPA_DEBUG
1115 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1116 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1118 printk(KERN_INFO "Testing CPA: again\n");
1119 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1122 free_init_pages("unused kernel",
1123 (unsigned long) __va(__pa_symbol(text_end)),
1124 (unsigned long) __va(__pa_symbol(rodata_start)));
1125 free_init_pages("unused kernel",
1126 (unsigned long) __va(__pa_symbol(rodata_end)),
1127 (unsigned long) __va(__pa_symbol(_sdata)));
1132 int kern_addr_valid(unsigned long addr)
1134 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1140 if (above != 0 && above != -1UL)
1143 pgd = pgd_offset_k(addr);
1147 pud = pud_offset(pgd, addr);
1151 if (pud_large(*pud))
1152 return pfn_valid(pud_pfn(*pud));
1154 pmd = pmd_offset(pud, addr);
1158 if (pmd_large(*pmd))
1159 return pfn_valid(pmd_pfn(*pmd));
1161 pte = pte_offset_kernel(pmd, addr);
1165 return pfn_valid(pte_pfn(*pte));
1168 static unsigned long probe_memory_block_size(void)
1170 unsigned long bz = MIN_MEMORY_BLOCK_SIZE;
1172 /* if system is UV or has 64GB of RAM or more, use large blocks */
1173 if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30)))
1174 bz = 2UL << 30; /* 2GB */
1176 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1181 static unsigned long memory_block_size_probed;
1182 unsigned long memory_block_size_bytes(void)
1184 if (!memory_block_size_probed)
1185 memory_block_size_probed = probe_memory_block_size();
1187 return memory_block_size_probed;
1190 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1192 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1194 static long __meminitdata addr_start, addr_end;
1195 static void __meminitdata *p_start, *p_end;
1196 static int __meminitdata node_start;
1198 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1199 unsigned long end, int node, struct vmem_altmap *altmap)
1207 for (addr = start; addr < end; addr = next) {
1208 next = pmd_addr_end(addr, end);
1210 pgd = vmemmap_pgd_populate(addr, node);
1214 pud = vmemmap_pud_populate(pgd, addr, node);
1218 pmd = pmd_offset(pud, addr);
1219 if (pmd_none(*pmd)) {
1222 p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1226 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1228 set_pmd(pmd, __pmd(pte_val(entry)));
1230 /* check to see if we have contiguous blocks */
1231 if (p_end != p || node_start != node) {
1233 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1234 addr_start, addr_end-1, p_start, p_end-1, node_start);
1240 addr_end = addr + PMD_SIZE;
1241 p_end = p + PMD_SIZE;
1244 return -ENOMEM; /* no fallback */
1245 } else if (pmd_large(*pmd)) {
1246 vmemmap_verify((pte_t *)pmd, node, addr, next);
1249 pr_warn_once("vmemmap: falling back to regular page backing\n");
1250 if (vmemmap_populate_basepages(addr, next, node))
1256 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1258 struct vmem_altmap *altmap = to_vmem_altmap(start);
1261 if (boot_cpu_has(X86_FEATURE_PSE))
1262 err = vmemmap_populate_hugepages(start, end, node, altmap);
1264 pr_err_once("%s: no cpu support for altmap allocations\n",
1268 err = vmemmap_populate_basepages(start, end, node);
1270 sync_global_pgds(start, end - 1, 0);
1274 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1275 void register_page_bootmem_memmap(unsigned long section_nr,
1276 struct page *start_page, unsigned long size)
1278 unsigned long addr = (unsigned long)start_page;
1279 unsigned long end = (unsigned long)(start_page + size);
1284 unsigned int nr_pages;
1287 for (; addr < end; addr = next) {
1290 pgd = pgd_offset_k(addr);
1291 if (pgd_none(*pgd)) {
1292 next = (addr + PAGE_SIZE) & PAGE_MASK;
1295 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1297 pud = pud_offset(pgd, addr);
1298 if (pud_none(*pud)) {
1299 next = (addr + PAGE_SIZE) & PAGE_MASK;
1302 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1304 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1305 next = (addr + PAGE_SIZE) & PAGE_MASK;
1306 pmd = pmd_offset(pud, addr);
1309 get_page_bootmem(section_nr, pmd_page(*pmd),
1312 pte = pte_offset_kernel(pmd, addr);
1315 get_page_bootmem(section_nr, pte_page(*pte),
1318 next = pmd_addr_end(addr, end);
1320 pmd = pmd_offset(pud, addr);
1324 nr_pages = 1 << (get_order(PMD_SIZE));
1325 page = pmd_page(*pmd);
1327 get_page_bootmem(section_nr, page++,
1334 void __meminit vmemmap_populate_print_last(void)
1337 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1338 addr_start, addr_end-1, p_start, p_end-1, node_start);