]> Git Repo - linux.git/blob - arch/x86/mm/init_64.c
Linux 6.14-rc3
[linux.git] / arch / x86 / mm / init_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/x86_64/mm/init.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Copyright (C) 2000  Pavel Machek <[email protected]>
7  *  Copyright (C) 2002,2003 Andi Kleen <[email protected]>
8  */
9
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 #include <linux/bootmem_info.h>
37
38 #include <asm/processor.h>
39 #include <asm/bios_ebda.h>
40 #include <linux/uaccess.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57 #include <asm/ftrace.h>
58
59 #include "mm_internal.h"
60
61 #include "ident_map.c"
62
63 #define DEFINE_POPULATE(fname, type1, type2, init)              \
64 static inline void fname##_init(struct mm_struct *mm,           \
65                 type1##_t *arg1, type2##_t *arg2, bool init)    \
66 {                                                               \
67         if (init)                                               \
68                 fname##_safe(mm, arg1, arg2);                   \
69         else                                                    \
70                 fname(mm, arg1, arg2);                          \
71 }
72
73 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
74 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
75 DEFINE_POPULATE(pud_populate, pud, pmd, init)
76 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
77
78 #define DEFINE_ENTRY(type1, type2, init)                        \
79 static inline void set_##type1##_init(type1##_t *arg1,          \
80                         type2##_t arg2, bool init)              \
81 {                                                               \
82         if (init)                                               \
83                 set_##type1##_safe(arg1, arg2);                 \
84         else                                                    \
85                 set_##type1(arg1, arg2);                        \
86 }
87
88 DEFINE_ENTRY(p4d, p4d, init)
89 DEFINE_ENTRY(pud, pud, init)
90 DEFINE_ENTRY(pmd, pmd, init)
91 DEFINE_ENTRY(pte, pte, init)
92
93 static inline pgprot_t prot_sethuge(pgprot_t prot)
94 {
95         WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT);
96
97         return __pgprot(pgprot_val(prot) | _PAGE_PSE);
98 }
99
100 /*
101  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
102  * physical space so we can cache the place of the first one and move
103  * around without checking the pgd every time.
104  */
105
106 /* Bits supported by the hardware: */
107 pteval_t __supported_pte_mask __read_mostly = ~0;
108 /* Bits allowed in normal kernel mappings: */
109 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
110 EXPORT_SYMBOL_GPL(__supported_pte_mask);
111 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
112 EXPORT_SYMBOL(__default_kernel_pte_mask);
113
114 int force_personality32;
115
116 /*
117  * noexec32=on|off
118  * Control non executable heap for 32bit processes.
119  *
120  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
121  * off  PROT_READ implies PROT_EXEC
122  */
123 static int __init nonx32_setup(char *str)
124 {
125         if (!strcmp(str, "on"))
126                 force_personality32 &= ~READ_IMPLIES_EXEC;
127         else if (!strcmp(str, "off"))
128                 force_personality32 |= READ_IMPLIES_EXEC;
129         return 1;
130 }
131 __setup("noexec32=", nonx32_setup);
132
133 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
134 {
135         unsigned long addr;
136
137         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
138                 const pgd_t *pgd_ref = pgd_offset_k(addr);
139                 struct page *page;
140
141                 /* Check for overflow */
142                 if (addr < start)
143                         break;
144
145                 if (pgd_none(*pgd_ref))
146                         continue;
147
148                 spin_lock(&pgd_lock);
149                 list_for_each_entry(page, &pgd_list, lru) {
150                         pgd_t *pgd;
151                         spinlock_t *pgt_lock;
152
153                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
154                         /* the pgt_lock only for Xen */
155                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
156                         spin_lock(pgt_lock);
157
158                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
159                                 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
160
161                         if (pgd_none(*pgd))
162                                 set_pgd(pgd, *pgd_ref);
163
164                         spin_unlock(pgt_lock);
165                 }
166                 spin_unlock(&pgd_lock);
167         }
168 }
169
170 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
171 {
172         unsigned long addr;
173
174         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
175                 pgd_t *pgd_ref = pgd_offset_k(addr);
176                 const p4d_t *p4d_ref;
177                 struct page *page;
178
179                 /*
180                  * With folded p4d, pgd_none() is always false, we need to
181                  * handle synchronization on p4d level.
182                  */
183                 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
184                 p4d_ref = p4d_offset(pgd_ref, addr);
185
186                 if (p4d_none(*p4d_ref))
187                         continue;
188
189                 spin_lock(&pgd_lock);
190                 list_for_each_entry(page, &pgd_list, lru) {
191                         pgd_t *pgd;
192                         p4d_t *p4d;
193                         spinlock_t *pgt_lock;
194
195                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
196                         p4d = p4d_offset(pgd, addr);
197                         /* the pgt_lock only for Xen */
198                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
199                         spin_lock(pgt_lock);
200
201                         if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
202                                 BUG_ON(p4d_pgtable(*p4d)
203                                        != p4d_pgtable(*p4d_ref));
204
205                         if (p4d_none(*p4d))
206                                 set_p4d(p4d, *p4d_ref);
207
208                         spin_unlock(pgt_lock);
209                 }
210                 spin_unlock(&pgd_lock);
211         }
212 }
213
214 /*
215  * When memory was added make sure all the processes MM have
216  * suitable PGD entries in the local PGD level page.
217  */
218 static void sync_global_pgds(unsigned long start, unsigned long end)
219 {
220         if (pgtable_l5_enabled())
221                 sync_global_pgds_l5(start, end);
222         else
223                 sync_global_pgds_l4(start, end);
224 }
225
226 /*
227  * NOTE: This function is marked __ref because it calls __init function
228  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
229  */
230 static __ref void *spp_getpage(void)
231 {
232         void *ptr;
233
234         if (after_bootmem)
235                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
236         else
237                 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
238
239         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
240                 panic("set_pte_phys: cannot allocate page data %s\n",
241                         after_bootmem ? "after bootmem" : "");
242         }
243
244         pr_debug("spp_getpage %p\n", ptr);
245
246         return ptr;
247 }
248
249 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
250 {
251         if (pgd_none(*pgd)) {
252                 p4d_t *p4d = (p4d_t *)spp_getpage();
253                 pgd_populate(&init_mm, pgd, p4d);
254                 if (p4d != p4d_offset(pgd, 0))
255                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
256                                p4d, p4d_offset(pgd, 0));
257         }
258         return p4d_offset(pgd, vaddr);
259 }
260
261 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
262 {
263         if (p4d_none(*p4d)) {
264                 pud_t *pud = (pud_t *)spp_getpage();
265                 p4d_populate(&init_mm, p4d, pud);
266                 if (pud != pud_offset(p4d, 0))
267                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
268                                pud, pud_offset(p4d, 0));
269         }
270         return pud_offset(p4d, vaddr);
271 }
272
273 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
274 {
275         if (pud_none(*pud)) {
276                 pmd_t *pmd = (pmd_t *) spp_getpage();
277                 pud_populate(&init_mm, pud, pmd);
278                 if (pmd != pmd_offset(pud, 0))
279                         printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
280                                pmd, pmd_offset(pud, 0));
281         }
282         return pmd_offset(pud, vaddr);
283 }
284
285 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
286 {
287         if (pmd_none(*pmd)) {
288                 pte_t *pte = (pte_t *) spp_getpage();
289                 pmd_populate_kernel(&init_mm, pmd, pte);
290                 if (pte != pte_offset_kernel(pmd, 0))
291                         printk(KERN_ERR "PAGETABLE BUG #03!\n");
292         }
293         return pte_offset_kernel(pmd, vaddr);
294 }
295
296 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
297 {
298         pmd_t *pmd = fill_pmd(pud, vaddr);
299         pte_t *pte = fill_pte(pmd, vaddr);
300
301         set_pte(pte, new_pte);
302
303         /*
304          * It's enough to flush this one mapping.
305          * (PGE mappings get flushed as well)
306          */
307         flush_tlb_one_kernel(vaddr);
308 }
309
310 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
311 {
312         p4d_t *p4d = p4d_page + p4d_index(vaddr);
313         pud_t *pud = fill_pud(p4d, vaddr);
314
315         __set_pte_vaddr(pud, vaddr, new_pte);
316 }
317
318 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
319 {
320         pud_t *pud = pud_page + pud_index(vaddr);
321
322         __set_pte_vaddr(pud, vaddr, new_pte);
323 }
324
325 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
326 {
327         pgd_t *pgd;
328         p4d_t *p4d_page;
329
330         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
331
332         pgd = pgd_offset_k(vaddr);
333         if (pgd_none(*pgd)) {
334                 printk(KERN_ERR
335                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
336                 return;
337         }
338
339         p4d_page = p4d_offset(pgd, 0);
340         set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
341 }
342
343 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
344 {
345         pgd_t *pgd;
346         p4d_t *p4d;
347         pud_t *pud;
348
349         pgd = pgd_offset_k(vaddr);
350         p4d = fill_p4d(pgd, vaddr);
351         pud = fill_pud(p4d, vaddr);
352         return fill_pmd(pud, vaddr);
353 }
354
355 pte_t * __init populate_extra_pte(unsigned long vaddr)
356 {
357         pmd_t *pmd;
358
359         pmd = populate_extra_pmd(vaddr);
360         return fill_pte(pmd, vaddr);
361 }
362
363 /*
364  * Create large page table mappings for a range of physical addresses.
365  */
366 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
367                                         enum page_cache_mode cache)
368 {
369         pgd_t *pgd;
370         p4d_t *p4d;
371         pud_t *pud;
372         pmd_t *pmd;
373         pgprot_t prot;
374
375         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
376                 protval_4k_2_large(cachemode2protval(cache));
377         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
378         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
379                 pgd = pgd_offset_k((unsigned long)__va(phys));
380                 if (pgd_none(*pgd)) {
381                         p4d = (p4d_t *) spp_getpage();
382                         set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
383                                                 _PAGE_USER));
384                 }
385                 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
386                 if (p4d_none(*p4d)) {
387                         pud = (pud_t *) spp_getpage();
388                         set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
389                                                 _PAGE_USER));
390                 }
391                 pud = pud_offset(p4d, (unsigned long)__va(phys));
392                 if (pud_none(*pud)) {
393                         pmd = (pmd_t *) spp_getpage();
394                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
395                                                 _PAGE_USER));
396                 }
397                 pmd = pmd_offset(pud, phys);
398                 BUG_ON(!pmd_none(*pmd));
399                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
400         }
401 }
402
403 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
404 {
405         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
406 }
407
408 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
409 {
410         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
411 }
412
413 /*
414  * The head.S code sets up the kernel high mapping:
415  *
416  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
417  *
418  * phys_base holds the negative offset to the kernel, which is added
419  * to the compile time generated pmds. This results in invalid pmds up
420  * to the point where we hit the physaddr 0 mapping.
421  *
422  * We limit the mappings to the region from _text to _brk_end.  _brk_end
423  * is rounded up to the 2MB boundary. This catches the invalid pmds as
424  * well, as they are located before _text:
425  */
426 void __init cleanup_highmap(void)
427 {
428         unsigned long vaddr = __START_KERNEL_map;
429         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
430         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
431         pmd_t *pmd = level2_kernel_pgt;
432
433         /*
434          * Native path, max_pfn_mapped is not set yet.
435          * Xen has valid max_pfn_mapped set in
436          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
437          */
438         if (max_pfn_mapped)
439                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
440
441         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
442                 if (pmd_none(*pmd))
443                         continue;
444                 if (vaddr < (unsigned long) _text || vaddr > end)
445                         set_pmd(pmd, __pmd(0));
446         }
447 }
448
449 /*
450  * Create PTE level page table mapping for physical addresses.
451  * It returns the last physical address mapped.
452  */
453 static unsigned long __meminit
454 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
455               pgprot_t prot, bool init)
456 {
457         unsigned long pages = 0, paddr_next;
458         unsigned long paddr_last = paddr_end;
459         pte_t *pte;
460         int i;
461
462         pte = pte_page + pte_index(paddr);
463         i = pte_index(paddr);
464
465         for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
466                 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
467                 if (paddr >= paddr_end) {
468                         if (!after_bootmem &&
469                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
470                                              E820_TYPE_RAM) &&
471                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
472                                              E820_TYPE_RESERVED_KERN) &&
473                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
474                                              E820_TYPE_ACPI))
475                                 set_pte_init(pte, __pte(0), init);
476                         continue;
477                 }
478
479                 /*
480                  * We will re-use the existing mapping.
481                  * Xen for example has some special requirements, like mapping
482                  * pagetable pages as RO. So assume someone who pre-setup
483                  * these mappings are more intelligent.
484                  */
485                 if (!pte_none(*pte)) {
486                         if (!after_bootmem)
487                                 pages++;
488                         continue;
489                 }
490
491                 if (0)
492                         pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
493                                 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
494                 pages++;
495                 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
496                 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
497         }
498
499         update_page_count(PG_LEVEL_4K, pages);
500
501         return paddr_last;
502 }
503
504 /*
505  * Create PMD level page table mapping for physical addresses. The virtual
506  * and physical address have to be aligned at this level.
507  * It returns the last physical address mapped.
508  */
509 static unsigned long __meminit
510 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
511               unsigned long page_size_mask, pgprot_t prot, bool init)
512 {
513         unsigned long pages = 0, paddr_next;
514         unsigned long paddr_last = paddr_end;
515
516         int i = pmd_index(paddr);
517
518         for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
519                 pmd_t *pmd = pmd_page + pmd_index(paddr);
520                 pte_t *pte;
521                 pgprot_t new_prot = prot;
522
523                 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
524                 if (paddr >= paddr_end) {
525                         if (!after_bootmem &&
526                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
527                                              E820_TYPE_RAM) &&
528                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
529                                              E820_TYPE_RESERVED_KERN) &&
530                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
531                                              E820_TYPE_ACPI))
532                                 set_pmd_init(pmd, __pmd(0), init);
533                         continue;
534                 }
535
536                 if (!pmd_none(*pmd)) {
537                         if (!pmd_leaf(*pmd)) {
538                                 spin_lock(&init_mm.page_table_lock);
539                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
540                                 paddr_last = phys_pte_init(pte, paddr,
541                                                            paddr_end, prot,
542                                                            init);
543                                 spin_unlock(&init_mm.page_table_lock);
544                                 continue;
545                         }
546                         /*
547                          * If we are ok with PG_LEVEL_2M mapping, then we will
548                          * use the existing mapping,
549                          *
550                          * Otherwise, we will split the large page mapping but
551                          * use the same existing protection bits except for
552                          * large page, so that we don't violate Intel's TLB
553                          * Application note (317080) which says, while changing
554                          * the page sizes, new and old translations should
555                          * not differ with respect to page frame and
556                          * attributes.
557                          */
558                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
559                                 if (!after_bootmem)
560                                         pages++;
561                                 paddr_last = paddr_next;
562                                 continue;
563                         }
564                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
565                 }
566
567                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
568                         pages++;
569                         spin_lock(&init_mm.page_table_lock);
570                         set_pmd_init(pmd,
571                                      pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
572                                      init);
573                         spin_unlock(&init_mm.page_table_lock);
574                         paddr_last = paddr_next;
575                         continue;
576                 }
577
578                 pte = alloc_low_page();
579                 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
580
581                 spin_lock(&init_mm.page_table_lock);
582                 pmd_populate_kernel_init(&init_mm, pmd, pte, init);
583                 spin_unlock(&init_mm.page_table_lock);
584         }
585         update_page_count(PG_LEVEL_2M, pages);
586         return paddr_last;
587 }
588
589 /*
590  * Create PUD level page table mapping for physical addresses. The virtual
591  * and physical address do not have to be aligned at this level. KASLR can
592  * randomize virtual addresses up to this level.
593  * It returns the last physical address mapped.
594  */
595 static unsigned long __meminit
596 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
597               unsigned long page_size_mask, pgprot_t _prot, bool init)
598 {
599         unsigned long pages = 0, paddr_next;
600         unsigned long paddr_last = paddr_end;
601         unsigned long vaddr = (unsigned long)__va(paddr);
602         int i = pud_index(vaddr);
603
604         for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
605                 pud_t *pud;
606                 pmd_t *pmd;
607                 pgprot_t prot = _prot;
608
609                 vaddr = (unsigned long)__va(paddr);
610                 pud = pud_page + pud_index(vaddr);
611                 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
612
613                 if (paddr >= paddr_end) {
614                         if (!after_bootmem &&
615                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
616                                              E820_TYPE_RAM) &&
617                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
618                                              E820_TYPE_RESERVED_KERN) &&
619                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
620                                              E820_TYPE_ACPI))
621                                 set_pud_init(pud, __pud(0), init);
622                         continue;
623                 }
624
625                 if (!pud_none(*pud)) {
626                         if (!pud_leaf(*pud)) {
627                                 pmd = pmd_offset(pud, 0);
628                                 paddr_last = phys_pmd_init(pmd, paddr,
629                                                            paddr_end,
630                                                            page_size_mask,
631                                                            prot, init);
632                                 continue;
633                         }
634                         /*
635                          * If we are ok with PG_LEVEL_1G mapping, then we will
636                          * use the existing mapping.
637                          *
638                          * Otherwise, we will split the gbpage mapping but use
639                          * the same existing protection  bits except for large
640                          * page, so that we don't violate Intel's TLB
641                          * Application note (317080) which says, while changing
642                          * the page sizes, new and old translations should
643                          * not differ with respect to page frame and
644                          * attributes.
645                          */
646                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
647                                 if (!after_bootmem)
648                                         pages++;
649                                 paddr_last = paddr_next;
650                                 continue;
651                         }
652                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
653                 }
654
655                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
656                         pages++;
657                         spin_lock(&init_mm.page_table_lock);
658                         set_pud_init(pud,
659                                      pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
660                                      init);
661                         spin_unlock(&init_mm.page_table_lock);
662                         paddr_last = paddr_next;
663                         continue;
664                 }
665
666                 pmd = alloc_low_page();
667                 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
668                                            page_size_mask, prot, init);
669
670                 spin_lock(&init_mm.page_table_lock);
671                 pud_populate_init(&init_mm, pud, pmd, init);
672                 spin_unlock(&init_mm.page_table_lock);
673         }
674
675         update_page_count(PG_LEVEL_1G, pages);
676
677         return paddr_last;
678 }
679
680 static unsigned long __meminit
681 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
682               unsigned long page_size_mask, pgprot_t prot, bool init)
683 {
684         unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
685
686         paddr_last = paddr_end;
687         vaddr = (unsigned long)__va(paddr);
688         vaddr_end = (unsigned long)__va(paddr_end);
689
690         if (!pgtable_l5_enabled())
691                 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
692                                      page_size_mask, prot, init);
693
694         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
695                 p4d_t *p4d = p4d_page + p4d_index(vaddr);
696                 pud_t *pud;
697
698                 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
699                 paddr = __pa(vaddr);
700
701                 if (paddr >= paddr_end) {
702                         paddr_next = __pa(vaddr_next);
703                         if (!after_bootmem &&
704                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
705                                              E820_TYPE_RAM) &&
706                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
707                                              E820_TYPE_RESERVED_KERN) &&
708                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
709                                              E820_TYPE_ACPI))
710                                 set_p4d_init(p4d, __p4d(0), init);
711                         continue;
712                 }
713
714                 if (!p4d_none(*p4d)) {
715                         pud = pud_offset(p4d, 0);
716                         paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
717                                         page_size_mask, prot, init);
718                         continue;
719                 }
720
721                 pud = alloc_low_page();
722                 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
723                                            page_size_mask, prot, init);
724
725                 spin_lock(&init_mm.page_table_lock);
726                 p4d_populate_init(&init_mm, p4d, pud, init);
727                 spin_unlock(&init_mm.page_table_lock);
728         }
729
730         return paddr_last;
731 }
732
733 static unsigned long __meminit
734 __kernel_physical_mapping_init(unsigned long paddr_start,
735                                unsigned long paddr_end,
736                                unsigned long page_size_mask,
737                                pgprot_t prot, bool init)
738 {
739         bool pgd_changed = false;
740         unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
741
742         paddr_last = paddr_end;
743         vaddr = (unsigned long)__va(paddr_start);
744         vaddr_end = (unsigned long)__va(paddr_end);
745         vaddr_start = vaddr;
746
747         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
748                 pgd_t *pgd = pgd_offset_k(vaddr);
749                 p4d_t *p4d;
750
751                 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
752
753                 if (pgd_val(*pgd)) {
754                         p4d = (p4d_t *)pgd_page_vaddr(*pgd);
755                         paddr_last = phys_p4d_init(p4d, __pa(vaddr),
756                                                    __pa(vaddr_end),
757                                                    page_size_mask,
758                                                    prot, init);
759                         continue;
760                 }
761
762                 p4d = alloc_low_page();
763                 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
764                                            page_size_mask, prot, init);
765
766                 spin_lock(&init_mm.page_table_lock);
767                 if (pgtable_l5_enabled())
768                         pgd_populate_init(&init_mm, pgd, p4d, init);
769                 else
770                         p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
771                                           (pud_t *) p4d, init);
772
773                 spin_unlock(&init_mm.page_table_lock);
774                 pgd_changed = true;
775         }
776
777         if (pgd_changed)
778                 sync_global_pgds(vaddr_start, vaddr_end - 1);
779
780         return paddr_last;
781 }
782
783
784 /*
785  * Create page table mapping for the physical memory for specific physical
786  * addresses. Note that it can only be used to populate non-present entries.
787  * The virtual and physical addresses have to be aligned on PMD level
788  * down. It returns the last physical address mapped.
789  */
790 unsigned long __meminit
791 kernel_physical_mapping_init(unsigned long paddr_start,
792                              unsigned long paddr_end,
793                              unsigned long page_size_mask, pgprot_t prot)
794 {
795         return __kernel_physical_mapping_init(paddr_start, paddr_end,
796                                               page_size_mask, prot, true);
797 }
798
799 /*
800  * This function is similar to kernel_physical_mapping_init() above with the
801  * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
802  * when updating the mapping. The caller is responsible to flush the TLBs after
803  * the function returns.
804  */
805 unsigned long __meminit
806 kernel_physical_mapping_change(unsigned long paddr_start,
807                                unsigned long paddr_end,
808                                unsigned long page_size_mask)
809 {
810         return __kernel_physical_mapping_init(paddr_start, paddr_end,
811                                               page_size_mask, PAGE_KERNEL,
812                                               false);
813 }
814
815 #ifndef CONFIG_NUMA
816 void __init initmem_init(void)
817 {
818         memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
819 }
820 #endif
821
822 void __init paging_init(void)
823 {
824         sparse_init();
825
826         /*
827          * clear the default setting with node 0
828          * note: don't use nodes_clear here, that is really clearing when
829          *       numa support is not compiled in, and later node_set_state
830          *       will not set it back.
831          */
832         node_clear_state(0, N_MEMORY);
833         node_clear_state(0, N_NORMAL_MEMORY);
834
835         zone_sizes_init();
836 }
837
838 #ifdef CONFIG_SPARSEMEM_VMEMMAP
839 #define PAGE_UNUSED 0xFD
840
841 /*
842  * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
843  * from unused_pmd_start to next PMD_SIZE boundary.
844  */
845 static unsigned long unused_pmd_start __meminitdata;
846
847 static void __meminit vmemmap_flush_unused_pmd(void)
848 {
849         if (!unused_pmd_start)
850                 return;
851         /*
852          * Clears (unused_pmd_start, PMD_END]
853          */
854         memset((void *)unused_pmd_start, PAGE_UNUSED,
855                ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
856         unused_pmd_start = 0;
857 }
858
859 #ifdef CONFIG_MEMORY_HOTPLUG
860 /* Returns true if the PMD is completely unused and thus it can be freed */
861 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
862 {
863         unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
864
865         /*
866          * Flush the unused range cache to ensure that memchr_inv() will work
867          * for the whole range.
868          */
869         vmemmap_flush_unused_pmd();
870         memset((void *)addr, PAGE_UNUSED, end - addr);
871
872         return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
873 }
874 #endif
875
876 static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
877 {
878         /*
879          * As we expect to add in the same granularity as we remove, it's
880          * sufficient to mark only some piece used to block the memmap page from
881          * getting removed when removing some other adjacent memmap (just in
882          * case the first memmap never gets initialized e.g., because the memory
883          * block never gets onlined).
884          */
885         memset((void *)start, 0, sizeof(struct page));
886 }
887
888 static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
889 {
890         /*
891          * We only optimize if the new used range directly follows the
892          * previously unused range (esp., when populating consecutive sections).
893          */
894         if (unused_pmd_start == start) {
895                 if (likely(IS_ALIGNED(end, PMD_SIZE)))
896                         unused_pmd_start = 0;
897                 else
898                         unused_pmd_start = end;
899                 return;
900         }
901
902         /*
903          * If the range does not contiguously follows previous one, make sure
904          * to mark the unused range of the previous one so it can be removed.
905          */
906         vmemmap_flush_unused_pmd();
907         __vmemmap_use_sub_pmd(start);
908 }
909
910
911 static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
912 {
913         const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
914
915         vmemmap_flush_unused_pmd();
916
917         /*
918          * Could be our memmap page is filled with PAGE_UNUSED already from a
919          * previous remove. Make sure to reset it.
920          */
921         __vmemmap_use_sub_pmd(start);
922
923         /*
924          * Mark with PAGE_UNUSED the unused parts of the new memmap range
925          */
926         if (!IS_ALIGNED(start, PMD_SIZE))
927                 memset((void *)page, PAGE_UNUSED, start - page);
928
929         /*
930          * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
931          * consecutive sections. Remember for the last added PMD where the
932          * unused range begins.
933          */
934         if (!IS_ALIGNED(end, PMD_SIZE))
935                 unused_pmd_start = end;
936 }
937 #endif
938
939 /*
940  * Memory hotplug specific functions
941  */
942 #ifdef CONFIG_MEMORY_HOTPLUG
943 /*
944  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
945  * updating.
946  */
947 static void update_end_of_memory_vars(u64 start, u64 size)
948 {
949         unsigned long end_pfn = PFN_UP(start + size);
950
951         if (end_pfn > max_pfn) {
952                 max_pfn = end_pfn;
953                 max_low_pfn = end_pfn;
954                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
955         }
956 }
957
958 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
959               struct mhp_params *params)
960 {
961         unsigned long end = ((start_pfn + nr_pages) << PAGE_SHIFT) - 1;
962         int ret;
963
964         if (WARN_ON_ONCE(end > DIRECT_MAP_PHYSMEM_END))
965                 return -ERANGE;
966
967         ret = __add_pages(nid, start_pfn, nr_pages, params);
968         WARN_ON_ONCE(ret);
969
970         /* update max_pfn, max_low_pfn and high_memory */
971         update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
972                                   nr_pages << PAGE_SHIFT);
973
974         return ret;
975 }
976
977 int arch_add_memory(int nid, u64 start, u64 size,
978                     struct mhp_params *params)
979 {
980         unsigned long start_pfn = start >> PAGE_SHIFT;
981         unsigned long nr_pages = size >> PAGE_SHIFT;
982
983         init_memory_mapping(start, start + size, params->pgprot);
984
985         return add_pages(nid, start_pfn, nr_pages, params);
986 }
987
988 static void free_reserved_pages(struct page *page, unsigned long nr_pages)
989 {
990         while (nr_pages--)
991                 free_reserved_page(page++);
992 }
993
994 static void __meminit free_pagetable(struct page *page, int order)
995 {
996         /* bootmem page has reserved flag */
997         if (PageReserved(page)) {
998                 unsigned long nr_pages = 1 << order;
999 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1000                 enum bootmem_type type = bootmem_type(page);
1001
1002                 if (type == SECTION_INFO || type == MIX_SECTION_INFO) {
1003                         while (nr_pages--)
1004                                 put_page_bootmem(page++);
1005                 } else {
1006                         free_reserved_pages(page, nr_pages);
1007                 }
1008 #else
1009                 free_reserved_pages(page, nr_pages);
1010 #endif
1011         } else {
1012                 free_pages((unsigned long)page_address(page), order);
1013         }
1014 }
1015
1016 static void __meminit free_hugepage_table(struct page *page,
1017                 struct vmem_altmap *altmap)
1018 {
1019         if (altmap)
1020                 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1021         else
1022                 free_pagetable(page, get_order(PMD_SIZE));
1023 }
1024
1025 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1026 {
1027         pte_t *pte;
1028         int i;
1029
1030         for (i = 0; i < PTRS_PER_PTE; i++) {
1031                 pte = pte_start + i;
1032                 if (!pte_none(*pte))
1033                         return;
1034         }
1035
1036         /* free a pte table */
1037         free_pagetable(pmd_page(*pmd), 0);
1038         spin_lock(&init_mm.page_table_lock);
1039         pmd_clear(pmd);
1040         spin_unlock(&init_mm.page_table_lock);
1041 }
1042
1043 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1044 {
1045         pmd_t *pmd;
1046         int i;
1047
1048         for (i = 0; i < PTRS_PER_PMD; i++) {
1049                 pmd = pmd_start + i;
1050                 if (!pmd_none(*pmd))
1051                         return;
1052         }
1053
1054         /* free a pmd table */
1055         free_pagetable(pud_page(*pud), 0);
1056         spin_lock(&init_mm.page_table_lock);
1057         pud_clear(pud);
1058         spin_unlock(&init_mm.page_table_lock);
1059 }
1060
1061 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1062 {
1063         pud_t *pud;
1064         int i;
1065
1066         for (i = 0; i < PTRS_PER_PUD; i++) {
1067                 pud = pud_start + i;
1068                 if (!pud_none(*pud))
1069                         return;
1070         }
1071
1072         /* free a pud table */
1073         free_pagetable(p4d_page(*p4d), 0);
1074         spin_lock(&init_mm.page_table_lock);
1075         p4d_clear(p4d);
1076         spin_unlock(&init_mm.page_table_lock);
1077 }
1078
1079 static void __meminit
1080 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1081                  bool direct)
1082 {
1083         unsigned long next, pages = 0;
1084         pte_t *pte;
1085         phys_addr_t phys_addr;
1086
1087         pte = pte_start + pte_index(addr);
1088         for (; addr < end; addr = next, pte++) {
1089                 next = (addr + PAGE_SIZE) & PAGE_MASK;
1090                 if (next > end)
1091                         next = end;
1092
1093                 if (!pte_present(*pte))
1094                         continue;
1095
1096                 /*
1097                  * We mapped [0,1G) memory as identity mapping when
1098                  * initializing, in arch/x86/kernel/head_64.S. These
1099                  * pagetables cannot be removed.
1100                  */
1101                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1102                 if (phys_addr < (phys_addr_t)0x40000000)
1103                         return;
1104
1105                 if (!direct)
1106                         free_pagetable(pte_page(*pte), 0);
1107
1108                 spin_lock(&init_mm.page_table_lock);
1109                 pte_clear(&init_mm, addr, pte);
1110                 spin_unlock(&init_mm.page_table_lock);
1111
1112                 /* For non-direct mapping, pages means nothing. */
1113                 pages++;
1114         }
1115
1116         /* Call free_pte_table() in remove_pmd_table(). */
1117         flush_tlb_all();
1118         if (direct)
1119                 update_page_count(PG_LEVEL_4K, -pages);
1120 }
1121
1122 static void __meminit
1123 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1124                  bool direct, struct vmem_altmap *altmap)
1125 {
1126         unsigned long next, pages = 0;
1127         pte_t *pte_base;
1128         pmd_t *pmd;
1129
1130         pmd = pmd_start + pmd_index(addr);
1131         for (; addr < end; addr = next, pmd++) {
1132                 next = pmd_addr_end(addr, end);
1133
1134                 if (!pmd_present(*pmd))
1135                         continue;
1136
1137                 if (pmd_leaf(*pmd)) {
1138                         if (IS_ALIGNED(addr, PMD_SIZE) &&
1139                             IS_ALIGNED(next, PMD_SIZE)) {
1140                                 if (!direct)
1141                                         free_hugepage_table(pmd_page(*pmd),
1142                                                             altmap);
1143
1144                                 spin_lock(&init_mm.page_table_lock);
1145                                 pmd_clear(pmd);
1146                                 spin_unlock(&init_mm.page_table_lock);
1147                                 pages++;
1148                         }
1149 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1150                         else if (vmemmap_pmd_is_unused(addr, next)) {
1151                                         free_hugepage_table(pmd_page(*pmd),
1152                                                             altmap);
1153                                         spin_lock(&init_mm.page_table_lock);
1154                                         pmd_clear(pmd);
1155                                         spin_unlock(&init_mm.page_table_lock);
1156                         }
1157 #endif
1158                         continue;
1159                 }
1160
1161                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1162                 remove_pte_table(pte_base, addr, next, direct);
1163                 free_pte_table(pte_base, pmd);
1164         }
1165
1166         /* Call free_pmd_table() in remove_pud_table(). */
1167         if (direct)
1168                 update_page_count(PG_LEVEL_2M, -pages);
1169 }
1170
1171 static void __meminit
1172 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1173                  struct vmem_altmap *altmap, bool direct)
1174 {
1175         unsigned long next, pages = 0;
1176         pmd_t *pmd_base;
1177         pud_t *pud;
1178
1179         pud = pud_start + pud_index(addr);
1180         for (; addr < end; addr = next, pud++) {
1181                 next = pud_addr_end(addr, end);
1182
1183                 if (!pud_present(*pud))
1184                         continue;
1185
1186                 if (pud_leaf(*pud) &&
1187                     IS_ALIGNED(addr, PUD_SIZE) &&
1188                     IS_ALIGNED(next, PUD_SIZE)) {
1189                         spin_lock(&init_mm.page_table_lock);
1190                         pud_clear(pud);
1191                         spin_unlock(&init_mm.page_table_lock);
1192                         pages++;
1193                         continue;
1194                 }
1195
1196                 pmd_base = pmd_offset(pud, 0);
1197                 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1198                 free_pmd_table(pmd_base, pud);
1199         }
1200
1201         if (direct)
1202                 update_page_count(PG_LEVEL_1G, -pages);
1203 }
1204
1205 static void __meminit
1206 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1207                  struct vmem_altmap *altmap, bool direct)
1208 {
1209         unsigned long next, pages = 0;
1210         pud_t *pud_base;
1211         p4d_t *p4d;
1212
1213         p4d = p4d_start + p4d_index(addr);
1214         for (; addr < end; addr = next, p4d++) {
1215                 next = p4d_addr_end(addr, end);
1216
1217                 if (!p4d_present(*p4d))
1218                         continue;
1219
1220                 BUILD_BUG_ON(p4d_leaf(*p4d));
1221
1222                 pud_base = pud_offset(p4d, 0);
1223                 remove_pud_table(pud_base, addr, next, altmap, direct);
1224                 /*
1225                  * For 4-level page tables we do not want to free PUDs, but in the
1226                  * 5-level case we should free them. This code will have to change
1227                  * to adapt for boot-time switching between 4 and 5 level page tables.
1228                  */
1229                 if (pgtable_l5_enabled())
1230                         free_pud_table(pud_base, p4d);
1231         }
1232
1233         if (direct)
1234                 update_page_count(PG_LEVEL_512G, -pages);
1235 }
1236
1237 /* start and end are both virtual address. */
1238 static void __meminit
1239 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1240                 struct vmem_altmap *altmap)
1241 {
1242         unsigned long next;
1243         unsigned long addr;
1244         pgd_t *pgd;
1245         p4d_t *p4d;
1246
1247         for (addr = start; addr < end; addr = next) {
1248                 next = pgd_addr_end(addr, end);
1249
1250                 pgd = pgd_offset_k(addr);
1251                 if (!pgd_present(*pgd))
1252                         continue;
1253
1254                 p4d = p4d_offset(pgd, 0);
1255                 remove_p4d_table(p4d, addr, next, altmap, direct);
1256         }
1257
1258         flush_tlb_all();
1259 }
1260
1261 void __ref vmemmap_free(unsigned long start, unsigned long end,
1262                 struct vmem_altmap *altmap)
1263 {
1264         VM_BUG_ON(!PAGE_ALIGNED(start));
1265         VM_BUG_ON(!PAGE_ALIGNED(end));
1266
1267         remove_pagetable(start, end, false, altmap);
1268 }
1269
1270 static void __meminit
1271 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1272 {
1273         start = (unsigned long)__va(start);
1274         end = (unsigned long)__va(end);
1275
1276         remove_pagetable(start, end, true, NULL);
1277 }
1278
1279 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1280 {
1281         unsigned long start_pfn = start >> PAGE_SHIFT;
1282         unsigned long nr_pages = size >> PAGE_SHIFT;
1283
1284         __remove_pages(start_pfn, nr_pages, altmap);
1285         kernel_physical_mapping_remove(start, start + size);
1286 }
1287 #endif /* CONFIG_MEMORY_HOTPLUG */
1288
1289 static struct kcore_list kcore_vsyscall;
1290
1291 static void __init register_page_bootmem_info(void)
1292 {
1293 #if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
1294         int i;
1295
1296         for_each_online_node(i)
1297                 register_page_bootmem_info_node(NODE_DATA(i));
1298 #endif
1299 }
1300
1301 /*
1302  * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1303  * Only the level which needs to be synchronized between all page-tables is
1304  * allocated because the synchronization can be expensive.
1305  */
1306 static void __init preallocate_vmalloc_pages(void)
1307 {
1308         unsigned long addr;
1309         const char *lvl;
1310
1311         for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1312                 pgd_t *pgd = pgd_offset_k(addr);
1313                 p4d_t *p4d;
1314                 pud_t *pud;
1315
1316                 lvl = "p4d";
1317                 p4d = p4d_alloc(&init_mm, pgd, addr);
1318                 if (!p4d)
1319                         goto failed;
1320
1321                 if (pgtable_l5_enabled())
1322                         continue;
1323
1324                 /*
1325                  * The goal here is to allocate all possibly required
1326                  * hardware page tables pointed to by the top hardware
1327                  * level.
1328                  *
1329                  * On 4-level systems, the P4D layer is folded away and
1330                  * the above code does no preallocation.  Below, go down
1331                  * to the pud _software_ level to ensure the second
1332                  * hardware level is allocated on 4-level systems too.
1333                  */
1334                 lvl = "pud";
1335                 pud = pud_alloc(&init_mm, p4d, addr);
1336                 if (!pud)
1337                         goto failed;
1338         }
1339
1340         return;
1341
1342 failed:
1343
1344         /*
1345          * The pages have to be there now or they will be missing in
1346          * process page-tables later.
1347          */
1348         panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1349 }
1350
1351 void __init mem_init(void)
1352 {
1353         pci_iommu_alloc();
1354
1355         /* clear_bss() already clear the empty_zero_page */
1356
1357         /* this will put all memory onto the freelists */
1358         memblock_free_all();
1359         after_bootmem = 1;
1360         x86_init.hyper.init_after_bootmem();
1361
1362         /*
1363          * Must be done after boot memory is put on freelist, because here we
1364          * might set fields in deferred struct pages that have not yet been
1365          * initialized, and memblock_free_all() initializes all the reserved
1366          * deferred pages for us.
1367          */
1368         register_page_bootmem_info();
1369
1370         /* Register memory areas for /proc/kcore */
1371         if (get_gate_vma(&init_mm))
1372                 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1373
1374         preallocate_vmalloc_pages();
1375 }
1376
1377 int kernel_set_to_readonly;
1378
1379 void mark_rodata_ro(void)
1380 {
1381         unsigned long start = PFN_ALIGN(_text);
1382         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1383         unsigned long end = (unsigned long)__end_rodata_hpage_align;
1384         unsigned long text_end = PFN_ALIGN(_etext);
1385         unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1386         unsigned long all_end;
1387
1388         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1389                (end - start) >> 10);
1390         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1391
1392         kernel_set_to_readonly = 1;
1393
1394         /*
1395          * The rodata/data/bss/brk section (but not the kernel text!)
1396          * should also be not-executable.
1397          *
1398          * We align all_end to PMD_SIZE because the existing mapping
1399          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1400          * split the PMD and the reminder between _brk_end and the end
1401          * of the PMD will remain mapped executable.
1402          *
1403          * Any PMD which was setup after the one which covers _brk_end
1404          * has been zapped already via cleanup_highmem().
1405          */
1406         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1407         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1408
1409         set_ftrace_ops_ro();
1410
1411 #ifdef CONFIG_CPA_DEBUG
1412         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1413         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1414
1415         printk(KERN_INFO "Testing CPA: again\n");
1416         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1417 #endif
1418
1419         free_kernel_image_pages("unused kernel image (text/rodata gap)",
1420                                 (void *)text_end, (void *)rodata_start);
1421         free_kernel_image_pages("unused kernel image (rodata/data gap)",
1422                                 (void *)rodata_end, (void *)_sdata);
1423 }
1424
1425 /*
1426  * Block size is the minimum amount of memory which can be hotplugged or
1427  * hotremoved. It must be power of two and must be equal or larger than
1428  * MIN_MEMORY_BLOCK_SIZE.
1429  */
1430 #define MAX_BLOCK_SIZE (2UL << 30)
1431
1432 /* Amount of ram needed to start using large blocks */
1433 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1434
1435 /* Adjustable memory block size */
1436 static unsigned long set_memory_block_size;
1437 int __init set_memory_block_size_order(unsigned int order)
1438 {
1439         unsigned long size = 1UL << order;
1440
1441         if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1442                 return -EINVAL;
1443
1444         set_memory_block_size = size;
1445         return 0;
1446 }
1447
1448 static unsigned long probe_memory_block_size(void)
1449 {
1450         unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1451         unsigned long bz;
1452
1453         /* If memory block size has been set, then use it */
1454         bz = set_memory_block_size;
1455         if (bz)
1456                 goto done;
1457
1458         /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1459         if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1460                 bz = MIN_MEMORY_BLOCK_SIZE;
1461                 goto done;
1462         }
1463
1464         /*
1465          * Use max block size to minimize overhead on bare metal, where
1466          * alignment for memory hotplug isn't a concern.
1467          */
1468         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1469                 bz = MAX_BLOCK_SIZE;
1470                 goto done;
1471         }
1472
1473         /* Find the largest allowed block size that aligns to memory end */
1474         for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1475                 if (IS_ALIGNED(boot_mem_end, bz))
1476                         break;
1477         }
1478 done:
1479         pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1480
1481         return bz;
1482 }
1483
1484 static unsigned long memory_block_size_probed;
1485 unsigned long memory_block_size_bytes(void)
1486 {
1487         if (!memory_block_size_probed)
1488                 memory_block_size_probed = probe_memory_block_size();
1489
1490         return memory_block_size_probed;
1491 }
1492
1493 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1494 /*
1495  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1496  */
1497 static long __meminitdata addr_start, addr_end;
1498 static void __meminitdata *p_start, *p_end;
1499 static int __meminitdata node_start;
1500
1501 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1502                                unsigned long addr, unsigned long next)
1503 {
1504         pte_t entry;
1505
1506         entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1507                         PAGE_KERNEL_LARGE);
1508         set_pmd(pmd, __pmd(pte_val(entry)));
1509
1510         /* check to see if we have contiguous blocks */
1511         if (p_end != p || node_start != node) {
1512                 if (p_start)
1513                         pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1514                                 addr_start, addr_end-1, p_start, p_end-1, node_start);
1515                 addr_start = addr;
1516                 node_start = node;
1517                 p_start = p;
1518         }
1519
1520         addr_end = addr + PMD_SIZE;
1521         p_end = p + PMD_SIZE;
1522
1523         if (!IS_ALIGNED(addr, PMD_SIZE) ||
1524                 !IS_ALIGNED(next, PMD_SIZE))
1525                 vmemmap_use_new_sub_pmd(addr, next);
1526 }
1527
1528 int __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
1529                                 unsigned long addr, unsigned long next)
1530 {
1531         int large = pmd_leaf(*pmd);
1532
1533         if (pmd_leaf(*pmd)) {
1534                 vmemmap_verify((pte_t *)pmd, node, addr, next);
1535                 vmemmap_use_sub_pmd(addr, next);
1536         }
1537
1538         return large;
1539 }
1540
1541 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1542                 struct vmem_altmap *altmap)
1543 {
1544         int err;
1545
1546         VM_BUG_ON(!PAGE_ALIGNED(start));
1547         VM_BUG_ON(!PAGE_ALIGNED(end));
1548
1549         if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1550                 err = vmemmap_populate_basepages(start, end, node, NULL);
1551         else if (boot_cpu_has(X86_FEATURE_PSE))
1552                 err = vmemmap_populate_hugepages(start, end, node, altmap);
1553         else if (altmap) {
1554                 pr_err_once("%s: no cpu support for altmap allocations\n",
1555                                 __func__);
1556                 err = -ENOMEM;
1557         } else
1558                 err = vmemmap_populate_basepages(start, end, node, NULL);
1559         if (!err)
1560                 sync_global_pgds(start, end - 1);
1561         return err;
1562 }
1563
1564 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1565 void register_page_bootmem_memmap(unsigned long section_nr,
1566                                   struct page *start_page, unsigned long nr_pages)
1567 {
1568         unsigned long addr = (unsigned long)start_page;
1569         unsigned long end = (unsigned long)(start_page + nr_pages);
1570         unsigned long next;
1571         pgd_t *pgd;
1572         p4d_t *p4d;
1573         pud_t *pud;
1574         pmd_t *pmd;
1575         unsigned int nr_pmd_pages;
1576         struct page *page;
1577
1578         for (; addr < end; addr = next) {
1579                 pte_t *pte = NULL;
1580
1581                 pgd = pgd_offset_k(addr);
1582                 if (pgd_none(*pgd)) {
1583                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1584                         continue;
1585                 }
1586                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1587
1588                 p4d = p4d_offset(pgd, addr);
1589                 if (p4d_none(*p4d)) {
1590                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1591                         continue;
1592                 }
1593                 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1594
1595                 pud = pud_offset(p4d, addr);
1596                 if (pud_none(*pud)) {
1597                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1598                         continue;
1599                 }
1600                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1601
1602                 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1603                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1604                         pmd = pmd_offset(pud, addr);
1605                         if (pmd_none(*pmd))
1606                                 continue;
1607                         get_page_bootmem(section_nr, pmd_page(*pmd),
1608                                          MIX_SECTION_INFO);
1609
1610                         pte = pte_offset_kernel(pmd, addr);
1611                         if (pte_none(*pte))
1612                                 continue;
1613                         get_page_bootmem(section_nr, pte_page(*pte),
1614                                          SECTION_INFO);
1615                 } else {
1616                         next = pmd_addr_end(addr, end);
1617
1618                         pmd = pmd_offset(pud, addr);
1619                         if (pmd_none(*pmd))
1620                                 continue;
1621
1622                         nr_pmd_pages = 1 << get_order(PMD_SIZE);
1623                         page = pmd_page(*pmd);
1624                         while (nr_pmd_pages--)
1625                                 get_page_bootmem(section_nr, page++,
1626                                                  SECTION_INFO);
1627                 }
1628         }
1629 }
1630 #endif
1631
1632 void __meminit vmemmap_populate_print_last(void)
1633 {
1634         if (p_start) {
1635                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1636                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1637                 p_start = NULL;
1638                 p_end = NULL;
1639                 node_start = 0;
1640         }
1641 }
1642 #endif
This page took 0.123565 seconds and 4 git commands to generate.