]> Git Repo - linux.git/blob - mm/hugetlb.c
mm: vmscan: avoid split during shrink_folio_list()
[linux.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
55
56 #ifdef CONFIG_CMA
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60 {
61         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
62                                 1 << order);
63 }
64 #else
65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
66 {
67         return false;
68 }
69 #endif
70 static unsigned long hugetlb_cma_size __initdata;
71
72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
73
74 /* for command line parsing */
75 static struct hstate * __initdata parsed_hstate;
76 static unsigned long __initdata default_hstate_max_huge_pages;
77 static bool __initdata parsed_valid_hugepagesz = true;
78 static bool __initdata parsed_default_hugepagesz;
79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80
81 /*
82  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83  * free_huge_pages, and surplus_huge_pages.
84  */
85 DEFINE_SPINLOCK(hugetlb_lock);
86
87 /*
88  * Serializes faults on the same logical page.  This is used to
89  * prevent spurious OOMs when the hugepage pool is fully utilized.
90  */
91 static int num_fault_mutexes;
92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93
94 /* Forward declaration */
95 static int hugetlb_acct_memory(struct hstate *h, long delta);
96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100                 unsigned long start, unsigned long end);
101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102
103 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 {
105         if (spool->count)
106                 return false;
107         if (spool->max_hpages != -1)
108                 return spool->used_hpages == 0;
109         if (spool->min_hpages != -1)
110                 return spool->rsv_hpages == spool->min_hpages;
111
112         return true;
113 }
114
115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116                                                 unsigned long irq_flags)
117 {
118         spin_unlock_irqrestore(&spool->lock, irq_flags);
119
120         /* If no pages are used, and no other handles to the subpool
121          * remain, give up any reservations based on minimum size and
122          * free the subpool */
123         if (subpool_is_free(spool)) {
124                 if (spool->min_hpages != -1)
125                         hugetlb_acct_memory(spool->hstate,
126                                                 -spool->min_hpages);
127                 kfree(spool);
128         }
129 }
130
131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132                                                 long min_hpages)
133 {
134         struct hugepage_subpool *spool;
135
136         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137         if (!spool)
138                 return NULL;
139
140         spin_lock_init(&spool->lock);
141         spool->count = 1;
142         spool->max_hpages = max_hpages;
143         spool->hstate = h;
144         spool->min_hpages = min_hpages;
145
146         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147                 kfree(spool);
148                 return NULL;
149         }
150         spool->rsv_hpages = min_hpages;
151
152         return spool;
153 }
154
155 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 {
157         unsigned long flags;
158
159         spin_lock_irqsave(&spool->lock, flags);
160         BUG_ON(!spool->count);
161         spool->count--;
162         unlock_or_release_subpool(spool, flags);
163 }
164
165 /*
166  * Subpool accounting for allocating and reserving pages.
167  * Return -ENOMEM if there are not enough resources to satisfy the
168  * request.  Otherwise, return the number of pages by which the
169  * global pools must be adjusted (upward).  The returned value may
170  * only be different than the passed value (delta) in the case where
171  * a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
174                                       long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return ret;
180
181         spin_lock_irq(&spool->lock);
182
183         if (spool->max_hpages != -1) {          /* maximum size accounting */
184                 if ((spool->used_hpages + delta) <= spool->max_hpages)
185                         spool->used_hpages += delta;
186                 else {
187                         ret = -ENOMEM;
188                         goto unlock_ret;
189                 }
190         }
191
192         /* minimum size accounting */
193         if (spool->min_hpages != -1 && spool->rsv_hpages) {
194                 if (delta > spool->rsv_hpages) {
195                         /*
196                          * Asking for more reserves than those already taken on
197                          * behalf of subpool.  Return difference.
198                          */
199                         ret = delta - spool->rsv_hpages;
200                         spool->rsv_hpages = 0;
201                 } else {
202                         ret = 0;        /* reserves already accounted for */
203                         spool->rsv_hpages -= delta;
204                 }
205         }
206
207 unlock_ret:
208         spin_unlock_irq(&spool->lock);
209         return ret;
210 }
211
212 /*
213  * Subpool accounting for freeing and unreserving pages.
214  * Return the number of global page reservations that must be dropped.
215  * The return value may only be different than the passed value (delta)
216  * in the case where a subpool minimum size must be maintained.
217  */
218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
219                                        long delta)
220 {
221         long ret = delta;
222         unsigned long flags;
223
224         if (!spool)
225                 return delta;
226
227         spin_lock_irqsave(&spool->lock, flags);
228
229         if (spool->max_hpages != -1)            /* maximum size accounting */
230                 spool->used_hpages -= delta;
231
232          /* minimum size accounting */
233         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234                 if (spool->rsv_hpages + delta <= spool->min_hpages)
235                         ret = 0;
236                 else
237                         ret = spool->rsv_hpages + delta - spool->min_hpages;
238
239                 spool->rsv_hpages += delta;
240                 if (spool->rsv_hpages > spool->min_hpages)
241                         spool->rsv_hpages = spool->min_hpages;
242         }
243
244         /*
245          * If hugetlbfs_put_super couldn't free spool due to an outstanding
246          * quota reference, free it now.
247          */
248         unlock_or_release_subpool(spool, flags);
249
250         return ret;
251 }
252
253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254 {
255         return HUGETLBFS_SB(inode->i_sb)->spool;
256 }
257
258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259 {
260         return subpool_inode(file_inode(vma->vm_file));
261 }
262
263 /*
264  * hugetlb vma_lock helper routines
265  */
266 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267 {
268         if (__vma_shareable_lock(vma)) {
269                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270
271                 down_read(&vma_lock->rw_sema);
272         } else if (__vma_private_lock(vma)) {
273                 struct resv_map *resv_map = vma_resv_map(vma);
274
275                 down_read(&resv_map->rw_sema);
276         }
277 }
278
279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280 {
281         if (__vma_shareable_lock(vma)) {
282                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283
284                 up_read(&vma_lock->rw_sema);
285         } else if (__vma_private_lock(vma)) {
286                 struct resv_map *resv_map = vma_resv_map(vma);
287
288                 up_read(&resv_map->rw_sema);
289         }
290 }
291
292 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293 {
294         if (__vma_shareable_lock(vma)) {
295                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296
297                 down_write(&vma_lock->rw_sema);
298         } else if (__vma_private_lock(vma)) {
299                 struct resv_map *resv_map = vma_resv_map(vma);
300
301                 down_write(&resv_map->rw_sema);
302         }
303 }
304
305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306 {
307         if (__vma_shareable_lock(vma)) {
308                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309
310                 up_write(&vma_lock->rw_sema);
311         } else if (__vma_private_lock(vma)) {
312                 struct resv_map *resv_map = vma_resv_map(vma);
313
314                 up_write(&resv_map->rw_sema);
315         }
316 }
317
318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
319 {
320
321         if (__vma_shareable_lock(vma)) {
322                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323
324                 return down_write_trylock(&vma_lock->rw_sema);
325         } else if (__vma_private_lock(vma)) {
326                 struct resv_map *resv_map = vma_resv_map(vma);
327
328                 return down_write_trylock(&resv_map->rw_sema);
329         }
330
331         return 1;
332 }
333
334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335 {
336         if (__vma_shareable_lock(vma)) {
337                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338
339                 lockdep_assert_held(&vma_lock->rw_sema);
340         } else if (__vma_private_lock(vma)) {
341                 struct resv_map *resv_map = vma_resv_map(vma);
342
343                 lockdep_assert_held(&resv_map->rw_sema);
344         }
345 }
346
347 void hugetlb_vma_lock_release(struct kref *kref)
348 {
349         struct hugetlb_vma_lock *vma_lock = container_of(kref,
350                         struct hugetlb_vma_lock, refs);
351
352         kfree(vma_lock);
353 }
354
355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356 {
357         struct vm_area_struct *vma = vma_lock->vma;
358
359         /*
360          * vma_lock structure may or not be released as a result of put,
361          * it certainly will no longer be attached to vma so clear pointer.
362          * Semaphore synchronizes access to vma_lock->vma field.
363          */
364         vma_lock->vma = NULL;
365         vma->vm_private_data = NULL;
366         up_write(&vma_lock->rw_sema);
367         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
368 }
369
370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371 {
372         if (__vma_shareable_lock(vma)) {
373                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374
375                 __hugetlb_vma_unlock_write_put(vma_lock);
376         } else if (__vma_private_lock(vma)) {
377                 struct resv_map *resv_map = vma_resv_map(vma);
378
379                 /* no free for anon vmas, but still need to unlock */
380                 up_write(&resv_map->rw_sema);
381         }
382 }
383
384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
385 {
386         /*
387          * Only present in sharable vmas.
388          */
389         if (!vma || !__vma_shareable_lock(vma))
390                 return;
391
392         if (vma->vm_private_data) {
393                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394
395                 down_write(&vma_lock->rw_sema);
396                 __hugetlb_vma_unlock_write_put(vma_lock);
397         }
398 }
399
400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401 {
402         struct hugetlb_vma_lock *vma_lock;
403
404         /* Only establish in (flags) sharable vmas */
405         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
406                 return;
407
408         /* Should never get here with non-NULL vm_private_data */
409         if (vma->vm_private_data)
410                 return;
411
412         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
413         if (!vma_lock) {
414                 /*
415                  * If we can not allocate structure, then vma can not
416                  * participate in pmd sharing.  This is only a possible
417                  * performance enhancement and memory saving issue.
418                  * However, the lock is also used to synchronize page
419                  * faults with truncation.  If the lock is not present,
420                  * unlikely races could leave pages in a file past i_size
421                  * until the file is removed.  Warn in the unlikely case of
422                  * allocation failure.
423                  */
424                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
425                 return;
426         }
427
428         kref_init(&vma_lock->refs);
429         init_rwsem(&vma_lock->rw_sema);
430         vma_lock->vma = vma;
431         vma->vm_private_data = vma_lock;
432 }
433
434 /* Helper that removes a struct file_region from the resv_map cache and returns
435  * it for use.
436  */
437 static struct file_region *
438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439 {
440         struct file_region *nrg;
441
442         VM_BUG_ON(resv->region_cache_count <= 0);
443
444         resv->region_cache_count--;
445         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446         list_del(&nrg->link);
447
448         nrg->from = from;
449         nrg->to = to;
450
451         return nrg;
452 }
453
454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455                                               struct file_region *rg)
456 {
457 #ifdef CONFIG_CGROUP_HUGETLB
458         nrg->reservation_counter = rg->reservation_counter;
459         nrg->css = rg->css;
460         if (rg->css)
461                 css_get(rg->css);
462 #endif
463 }
464
465 /* Helper that records hugetlb_cgroup uncharge info. */
466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467                                                 struct hstate *h,
468                                                 struct resv_map *resv,
469                                                 struct file_region *nrg)
470 {
471 #ifdef CONFIG_CGROUP_HUGETLB
472         if (h_cg) {
473                 nrg->reservation_counter =
474                         &h_cg->rsvd_hugepage[hstate_index(h)];
475                 nrg->css = &h_cg->css;
476                 /*
477                  * The caller will hold exactly one h_cg->css reference for the
478                  * whole contiguous reservation region. But this area might be
479                  * scattered when there are already some file_regions reside in
480                  * it. As a result, many file_regions may share only one css
481                  * reference. In order to ensure that one file_region must hold
482                  * exactly one h_cg->css reference, we should do css_get for
483                  * each file_region and leave the reference held by caller
484                  * untouched.
485                  */
486                 css_get(&h_cg->css);
487                 if (!resv->pages_per_hpage)
488                         resv->pages_per_hpage = pages_per_huge_page(h);
489                 /* pages_per_hpage should be the same for all entries in
490                  * a resv_map.
491                  */
492                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493         } else {
494                 nrg->reservation_counter = NULL;
495                 nrg->css = NULL;
496         }
497 #endif
498 }
499
500 static void put_uncharge_info(struct file_region *rg)
501 {
502 #ifdef CONFIG_CGROUP_HUGETLB
503         if (rg->css)
504                 css_put(rg->css);
505 #endif
506 }
507
508 static bool has_same_uncharge_info(struct file_region *rg,
509                                    struct file_region *org)
510 {
511 #ifdef CONFIG_CGROUP_HUGETLB
512         return rg->reservation_counter == org->reservation_counter &&
513                rg->css == org->css;
514
515 #else
516         return true;
517 #endif
518 }
519
520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521 {
522         struct file_region *nrg, *prg;
523
524         prg = list_prev_entry(rg, link);
525         if (&prg->link != &resv->regions && prg->to == rg->from &&
526             has_same_uncharge_info(prg, rg)) {
527                 prg->to = rg->to;
528
529                 list_del(&rg->link);
530                 put_uncharge_info(rg);
531                 kfree(rg);
532
533                 rg = prg;
534         }
535
536         nrg = list_next_entry(rg, link);
537         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538             has_same_uncharge_info(nrg, rg)) {
539                 nrg->from = rg->from;
540
541                 list_del(&rg->link);
542                 put_uncharge_info(rg);
543                 kfree(rg);
544         }
545 }
546
547 static inline long
548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
550                      long *regions_needed)
551 {
552         struct file_region *nrg;
553
554         if (!regions_needed) {
555                 nrg = get_file_region_entry_from_cache(map, from, to);
556                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557                 list_add(&nrg->link, rg);
558                 coalesce_file_region(map, nrg);
559         } else
560                 *regions_needed += 1;
561
562         return to - from;
563 }
564
565 /*
566  * Must be called with resv->lock held.
567  *
568  * Calling this with regions_needed != NULL will count the number of pages
569  * to be added but will not modify the linked list. And regions_needed will
570  * indicate the number of file_regions needed in the cache to carry out to add
571  * the regions for this range.
572  */
573 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574                                      struct hugetlb_cgroup *h_cg,
575                                      struct hstate *h, long *regions_needed)
576 {
577         long add = 0;
578         struct list_head *head = &resv->regions;
579         long last_accounted_offset = f;
580         struct file_region *iter, *trg = NULL;
581         struct list_head *rg = NULL;
582
583         if (regions_needed)
584                 *regions_needed = 0;
585
586         /* In this loop, we essentially handle an entry for the range
587          * [last_accounted_offset, iter->from), at every iteration, with some
588          * bounds checking.
589          */
590         list_for_each_entry_safe(iter, trg, head, link) {
591                 /* Skip irrelevant regions that start before our range. */
592                 if (iter->from < f) {
593                         /* If this region ends after the last accounted offset,
594                          * then we need to update last_accounted_offset.
595                          */
596                         if (iter->to > last_accounted_offset)
597                                 last_accounted_offset = iter->to;
598                         continue;
599                 }
600
601                 /* When we find a region that starts beyond our range, we've
602                  * finished.
603                  */
604                 if (iter->from >= t) {
605                         rg = iter->link.prev;
606                         break;
607                 }
608
609                 /* Add an entry for last_accounted_offset -> iter->from, and
610                  * update last_accounted_offset.
611                  */
612                 if (iter->from > last_accounted_offset)
613                         add += hugetlb_resv_map_add(resv, iter->link.prev,
614                                                     last_accounted_offset,
615                                                     iter->from, h, h_cg,
616                                                     regions_needed);
617
618                 last_accounted_offset = iter->to;
619         }
620
621         /* Handle the case where our range extends beyond
622          * last_accounted_offset.
623          */
624         if (!rg)
625                 rg = head->prev;
626         if (last_accounted_offset < t)
627                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628                                             t, h, h_cg, regions_needed);
629
630         return add;
631 }
632
633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634  */
635 static int allocate_file_region_entries(struct resv_map *resv,
636                                         int regions_needed)
637         __must_hold(&resv->lock)
638 {
639         LIST_HEAD(allocated_regions);
640         int to_allocate = 0, i = 0;
641         struct file_region *trg = NULL, *rg = NULL;
642
643         VM_BUG_ON(regions_needed < 0);
644
645         /*
646          * Check for sufficient descriptors in the cache to accommodate
647          * the number of in progress add operations plus regions_needed.
648          *
649          * This is a while loop because when we drop the lock, some other call
650          * to region_add or region_del may have consumed some region_entries,
651          * so we keep looping here until we finally have enough entries for
652          * (adds_in_progress + regions_needed).
653          */
654         while (resv->region_cache_count <
655                (resv->adds_in_progress + regions_needed)) {
656                 to_allocate = resv->adds_in_progress + regions_needed -
657                               resv->region_cache_count;
658
659                 /* At this point, we should have enough entries in the cache
660                  * for all the existing adds_in_progress. We should only be
661                  * needing to allocate for regions_needed.
662                  */
663                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664
665                 spin_unlock(&resv->lock);
666                 for (i = 0; i < to_allocate; i++) {
667                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
668                         if (!trg)
669                                 goto out_of_memory;
670                         list_add(&trg->link, &allocated_regions);
671                 }
672
673                 spin_lock(&resv->lock);
674
675                 list_splice(&allocated_regions, &resv->region_cache);
676                 resv->region_cache_count += to_allocate;
677         }
678
679         return 0;
680
681 out_of_memory:
682         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
683                 list_del(&rg->link);
684                 kfree(rg);
685         }
686         return -ENOMEM;
687 }
688
689 /*
690  * Add the huge page range represented by [f, t) to the reserve
691  * map.  Regions will be taken from the cache to fill in this range.
692  * Sufficient regions should exist in the cache due to the previous
693  * call to region_chg with the same range, but in some cases the cache will not
694  * have sufficient entries due to races with other code doing region_add or
695  * region_del.  The extra needed entries will be allocated.
696  *
697  * regions_needed is the out value provided by a previous call to region_chg.
698  *
699  * Return the number of new huge pages added to the map.  This number is greater
700  * than or equal to zero.  If file_region entries needed to be allocated for
701  * this operation and we were not able to allocate, it returns -ENOMEM.
702  * region_add of regions of length 1 never allocate file_regions and cannot
703  * fail; region_chg will always allocate at least 1 entry and a region_add for
704  * 1 page will only require at most 1 entry.
705  */
706 static long region_add(struct resv_map *resv, long f, long t,
707                        long in_regions_needed, struct hstate *h,
708                        struct hugetlb_cgroup *h_cg)
709 {
710         long add = 0, actual_regions_needed = 0;
711
712         spin_lock(&resv->lock);
713 retry:
714
715         /* Count how many regions are actually needed to execute this add. */
716         add_reservation_in_range(resv, f, t, NULL, NULL,
717                                  &actual_regions_needed);
718
719         /*
720          * Check for sufficient descriptors in the cache to accommodate
721          * this add operation. Note that actual_regions_needed may be greater
722          * than in_regions_needed, as the resv_map may have been modified since
723          * the region_chg call. In this case, we need to make sure that we
724          * allocate extra entries, such that we have enough for all the
725          * existing adds_in_progress, plus the excess needed for this
726          * operation.
727          */
728         if (actual_regions_needed > in_regions_needed &&
729             resv->region_cache_count <
730                     resv->adds_in_progress +
731                             (actual_regions_needed - in_regions_needed)) {
732                 /* region_add operation of range 1 should never need to
733                  * allocate file_region entries.
734                  */
735                 VM_BUG_ON(t - f <= 1);
736
737                 if (allocate_file_region_entries(
738                             resv, actual_regions_needed - in_regions_needed)) {
739                         return -ENOMEM;
740                 }
741
742                 goto retry;
743         }
744
745         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746
747         resv->adds_in_progress -= in_regions_needed;
748
749         spin_unlock(&resv->lock);
750         return add;
751 }
752
753 /*
754  * Examine the existing reserve map and determine how many
755  * huge pages in the specified range [f, t) are NOT currently
756  * represented.  This routine is called before a subsequent
757  * call to region_add that will actually modify the reserve
758  * map to add the specified range [f, t).  region_chg does
759  * not change the number of huge pages represented by the
760  * map.  A number of new file_region structures is added to the cache as a
761  * placeholder, for the subsequent region_add call to use. At least 1
762  * file_region structure is added.
763  *
764  * out_regions_needed is the number of regions added to the
765  * resv->adds_in_progress.  This value needs to be provided to a follow up call
766  * to region_add or region_abort for proper accounting.
767  *
768  * Returns the number of huge pages that need to be added to the existing
769  * reservation map for the range [f, t).  This number is greater or equal to
770  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
771  * is needed and can not be allocated.
772  */
773 static long region_chg(struct resv_map *resv, long f, long t,
774                        long *out_regions_needed)
775 {
776         long chg = 0;
777
778         spin_lock(&resv->lock);
779
780         /* Count how many hugepages in this range are NOT represented. */
781         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
782                                        out_regions_needed);
783
784         if (*out_regions_needed == 0)
785                 *out_regions_needed = 1;
786
787         if (allocate_file_region_entries(resv, *out_regions_needed))
788                 return -ENOMEM;
789
790         resv->adds_in_progress += *out_regions_needed;
791
792         spin_unlock(&resv->lock);
793         return chg;
794 }
795
796 /*
797  * Abort the in progress add operation.  The adds_in_progress field
798  * of the resv_map keeps track of the operations in progress between
799  * calls to region_chg and region_add.  Operations are sometimes
800  * aborted after the call to region_chg.  In such cases, region_abort
801  * is called to decrement the adds_in_progress counter. regions_needed
802  * is the value returned by the region_chg call, it is used to decrement
803  * the adds_in_progress counter.
804  *
805  * NOTE: The range arguments [f, t) are not needed or used in this
806  * routine.  They are kept to make reading the calling code easier as
807  * arguments will match the associated region_chg call.
808  */
809 static void region_abort(struct resv_map *resv, long f, long t,
810                          long regions_needed)
811 {
812         spin_lock(&resv->lock);
813         VM_BUG_ON(!resv->region_cache_count);
814         resv->adds_in_progress -= regions_needed;
815         spin_unlock(&resv->lock);
816 }
817
818 /*
819  * Delete the specified range [f, t) from the reserve map.  If the
820  * t parameter is LONG_MAX, this indicates that ALL regions after f
821  * should be deleted.  Locate the regions which intersect [f, t)
822  * and either trim, delete or split the existing regions.
823  *
824  * Returns the number of huge pages deleted from the reserve map.
825  * In the normal case, the return value is zero or more.  In the
826  * case where a region must be split, a new region descriptor must
827  * be allocated.  If the allocation fails, -ENOMEM will be returned.
828  * NOTE: If the parameter t == LONG_MAX, then we will never split
829  * a region and possibly return -ENOMEM.  Callers specifying
830  * t == LONG_MAX do not need to check for -ENOMEM error.
831  */
832 static long region_del(struct resv_map *resv, long f, long t)
833 {
834         struct list_head *head = &resv->regions;
835         struct file_region *rg, *trg;
836         struct file_region *nrg = NULL;
837         long del = 0;
838
839 retry:
840         spin_lock(&resv->lock);
841         list_for_each_entry_safe(rg, trg, head, link) {
842                 /*
843                  * Skip regions before the range to be deleted.  file_region
844                  * ranges are normally of the form [from, to).  However, there
845                  * may be a "placeholder" entry in the map which is of the form
846                  * (from, to) with from == to.  Check for placeholder entries
847                  * at the beginning of the range to be deleted.
848                  */
849                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
850                         continue;
851
852                 if (rg->from >= t)
853                         break;
854
855                 if (f > rg->from && t < rg->to) { /* Must split region */
856                         /*
857                          * Check for an entry in the cache before dropping
858                          * lock and attempting allocation.
859                          */
860                         if (!nrg &&
861                             resv->region_cache_count > resv->adds_in_progress) {
862                                 nrg = list_first_entry(&resv->region_cache,
863                                                         struct file_region,
864                                                         link);
865                                 list_del(&nrg->link);
866                                 resv->region_cache_count--;
867                         }
868
869                         if (!nrg) {
870                                 spin_unlock(&resv->lock);
871                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
872                                 if (!nrg)
873                                         return -ENOMEM;
874                                 goto retry;
875                         }
876
877                         del += t - f;
878                         hugetlb_cgroup_uncharge_file_region(
879                                 resv, rg, t - f, false);
880
881                         /* New entry for end of split region */
882                         nrg->from = t;
883                         nrg->to = rg->to;
884
885                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886
887                         INIT_LIST_HEAD(&nrg->link);
888
889                         /* Original entry is trimmed */
890                         rg->to = f;
891
892                         list_add(&nrg->link, &rg->link);
893                         nrg = NULL;
894                         break;
895                 }
896
897                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898                         del += rg->to - rg->from;
899                         hugetlb_cgroup_uncharge_file_region(resv, rg,
900                                                             rg->to - rg->from, true);
901                         list_del(&rg->link);
902                         kfree(rg);
903                         continue;
904                 }
905
906                 if (f <= rg->from) {    /* Trim beginning of region */
907                         hugetlb_cgroup_uncharge_file_region(resv, rg,
908                                                             t - rg->from, false);
909
910                         del += t - rg->from;
911                         rg->from = t;
912                 } else {                /* Trim end of region */
913                         hugetlb_cgroup_uncharge_file_region(resv, rg,
914                                                             rg->to - f, false);
915
916                         del += rg->to - f;
917                         rg->to = f;
918                 }
919         }
920
921         spin_unlock(&resv->lock);
922         kfree(nrg);
923         return del;
924 }
925
926 /*
927  * A rare out of memory error was encountered which prevented removal of
928  * the reserve map region for a page.  The huge page itself was free'ed
929  * and removed from the page cache.  This routine will adjust the subpool
930  * usage count, and the global reserve count if needed.  By incrementing
931  * these counts, the reserve map entry which could not be deleted will
932  * appear as a "reserved" entry instead of simply dangling with incorrect
933  * counts.
934  */
935 void hugetlb_fix_reserve_counts(struct inode *inode)
936 {
937         struct hugepage_subpool *spool = subpool_inode(inode);
938         long rsv_adjust;
939         bool reserved = false;
940
941         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942         if (rsv_adjust > 0) {
943                 struct hstate *h = hstate_inode(inode);
944
945                 if (!hugetlb_acct_memory(h, 1))
946                         reserved = true;
947         } else if (!rsv_adjust) {
948                 reserved = true;
949         }
950
951         if (!reserved)
952                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
953 }
954
955 /*
956  * Count and return the number of huge pages in the reserve map
957  * that intersect with the range [f, t).
958  */
959 static long region_count(struct resv_map *resv, long f, long t)
960 {
961         struct list_head *head = &resv->regions;
962         struct file_region *rg;
963         long chg = 0;
964
965         spin_lock(&resv->lock);
966         /* Locate each segment we overlap with, and count that overlap. */
967         list_for_each_entry(rg, head, link) {
968                 long seg_from;
969                 long seg_to;
970
971                 if (rg->to <= f)
972                         continue;
973                 if (rg->from >= t)
974                         break;
975
976                 seg_from = max(rg->from, f);
977                 seg_to = min(rg->to, t);
978
979                 chg += seg_to - seg_from;
980         }
981         spin_unlock(&resv->lock);
982
983         return chg;
984 }
985
986 /*
987  * Convert the address within this vma to the page offset within
988  * the mapping, huge page units here.
989  */
990 static pgoff_t vma_hugecache_offset(struct hstate *h,
991                         struct vm_area_struct *vma, unsigned long address)
992 {
993         return ((address - vma->vm_start) >> huge_page_shift(h)) +
994                         (vma->vm_pgoff >> huge_page_order(h));
995 }
996
997 /**
998  * vma_kernel_pagesize - Page size granularity for this VMA.
999  * @vma: The user mapping.
1000  *
1001  * Folios in this VMA will be aligned to, and at least the size of the
1002  * number of bytes returned by this function.
1003  *
1004  * Return: The default size of the folios allocated when backing a VMA.
1005  */
1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007 {
1008         if (vma->vm_ops && vma->vm_ops->pagesize)
1009                 return vma->vm_ops->pagesize(vma);
1010         return PAGE_SIZE;
1011 }
1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1013
1014 /*
1015  * Return the page size being used by the MMU to back a VMA. In the majority
1016  * of cases, the page size used by the kernel matches the MMU size. On
1017  * architectures where it differs, an architecture-specific 'strong'
1018  * version of this symbol is required.
1019  */
1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1021 {
1022         return vma_kernel_pagesize(vma);
1023 }
1024
1025 /*
1026  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1027  * bits of the reservation map pointer, which are always clear due to
1028  * alignment.
1029  */
1030 #define HPAGE_RESV_OWNER    (1UL << 0)
1031 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1033
1034 /*
1035  * These helpers are used to track how many pages are reserved for
1036  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037  * is guaranteed to have their future faults succeed.
1038  *
1039  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040  * the reserve counters are updated with the hugetlb_lock held. It is safe
1041  * to reset the VMA at fork() time as it is not in use yet and there is no
1042  * chance of the global counters getting corrupted as a result of the values.
1043  *
1044  * The private mapping reservation is represented in a subtly different
1045  * manner to a shared mapping.  A shared mapping has a region map associated
1046  * with the underlying file, this region map represents the backing file
1047  * pages which have ever had a reservation assigned which this persists even
1048  * after the page is instantiated.  A private mapping has a region map
1049  * associated with the original mmap which is attached to all VMAs which
1050  * reference it, this region map represents those offsets which have consumed
1051  * reservation ie. where pages have been instantiated.
1052  */
1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054 {
1055         return (unsigned long)vma->vm_private_data;
1056 }
1057
1058 static void set_vma_private_data(struct vm_area_struct *vma,
1059                                                         unsigned long value)
1060 {
1061         vma->vm_private_data = (void *)value;
1062 }
1063
1064 static void
1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066                                           struct hugetlb_cgroup *h_cg,
1067                                           struct hstate *h)
1068 {
1069 #ifdef CONFIG_CGROUP_HUGETLB
1070         if (!h_cg || !h) {
1071                 resv_map->reservation_counter = NULL;
1072                 resv_map->pages_per_hpage = 0;
1073                 resv_map->css = NULL;
1074         } else {
1075                 resv_map->reservation_counter =
1076                         &h_cg->rsvd_hugepage[hstate_index(h)];
1077                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1078                 resv_map->css = &h_cg->css;
1079         }
1080 #endif
1081 }
1082
1083 struct resv_map *resv_map_alloc(void)
1084 {
1085         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087
1088         if (!resv_map || !rg) {
1089                 kfree(resv_map);
1090                 kfree(rg);
1091                 return NULL;
1092         }
1093
1094         kref_init(&resv_map->refs);
1095         spin_lock_init(&resv_map->lock);
1096         INIT_LIST_HEAD(&resv_map->regions);
1097         init_rwsem(&resv_map->rw_sema);
1098
1099         resv_map->adds_in_progress = 0;
1100         /*
1101          * Initialize these to 0. On shared mappings, 0's here indicate these
1102          * fields don't do cgroup accounting. On private mappings, these will be
1103          * re-initialized to the proper values, to indicate that hugetlb cgroup
1104          * reservations are to be un-charged from here.
1105          */
1106         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1107
1108         INIT_LIST_HEAD(&resv_map->region_cache);
1109         list_add(&rg->link, &resv_map->region_cache);
1110         resv_map->region_cache_count = 1;
1111
1112         return resv_map;
1113 }
1114
1115 void resv_map_release(struct kref *ref)
1116 {
1117         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118         struct list_head *head = &resv_map->region_cache;
1119         struct file_region *rg, *trg;
1120
1121         /* Clear out any active regions before we release the map. */
1122         region_del(resv_map, 0, LONG_MAX);
1123
1124         /* ... and any entries left in the cache */
1125         list_for_each_entry_safe(rg, trg, head, link) {
1126                 list_del(&rg->link);
1127                 kfree(rg);
1128         }
1129
1130         VM_BUG_ON(resv_map->adds_in_progress);
1131
1132         kfree(resv_map);
1133 }
1134
1135 static inline struct resv_map *inode_resv_map(struct inode *inode)
1136 {
1137         /*
1138          * At inode evict time, i_mapping may not point to the original
1139          * address space within the inode.  This original address space
1140          * contains the pointer to the resv_map.  So, always use the
1141          * address space embedded within the inode.
1142          * The VERY common case is inode->mapping == &inode->i_data but,
1143          * this may not be true for device special inodes.
1144          */
1145         return (struct resv_map *)(&inode->i_data)->i_private_data;
1146 }
1147
1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1149 {
1150         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151         if (vma->vm_flags & VM_MAYSHARE) {
1152                 struct address_space *mapping = vma->vm_file->f_mapping;
1153                 struct inode *inode = mapping->host;
1154
1155                 return inode_resv_map(inode);
1156
1157         } else {
1158                 return (struct resv_map *)(get_vma_private_data(vma) &
1159                                                         ~HPAGE_RESV_MASK);
1160         }
1161 }
1162
1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1164 {
1165         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1167
1168         set_vma_private_data(vma, (unsigned long)map);
1169 }
1170
1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172 {
1173         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1175
1176         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1177 }
1178
1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180 {
1181         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1182
1183         return (get_vma_private_data(vma) & flag) != 0;
1184 }
1185
1186 bool __vma_private_lock(struct vm_area_struct *vma)
1187 {
1188         return !(vma->vm_flags & VM_MAYSHARE) &&
1189                 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190                 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191 }
1192
1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194 {
1195         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196         /*
1197          * Clear vm_private_data
1198          * - For shared mappings this is a per-vma semaphore that may be
1199          *   allocated in a subsequent call to hugetlb_vm_op_open.
1200          *   Before clearing, make sure pointer is not associated with vma
1201          *   as this will leak the structure.  This is the case when called
1202          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203          *   been called to allocate a new structure.
1204          * - For MAP_PRIVATE mappings, this is the reserve map which does
1205          *   not apply to children.  Faults generated by the children are
1206          *   not guaranteed to succeed, even if read-only.
1207          */
1208         if (vma->vm_flags & VM_MAYSHARE) {
1209                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210
1211                 if (vma_lock && vma_lock->vma != vma)
1212                         vma->vm_private_data = NULL;
1213         } else
1214                 vma->vm_private_data = NULL;
1215 }
1216
1217 /*
1218  * Reset and decrement one ref on hugepage private reservation.
1219  * Called with mm->mmap_lock writer semaphore held.
1220  * This function should be only used by move_vma() and operate on
1221  * same sized vma. It should never come here with last ref on the
1222  * reservation.
1223  */
1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225 {
1226         /*
1227          * Clear the old hugetlb private page reservation.
1228          * It has already been transferred to new_vma.
1229          *
1230          * During a mremap() operation of a hugetlb vma we call move_vma()
1231          * which copies vma into new_vma and unmaps vma. After the copy
1232          * operation both new_vma and vma share a reference to the resv_map
1233          * struct, and at that point vma is about to be unmapped. We don't
1234          * want to return the reservation to the pool at unmap of vma because
1235          * the reservation still lives on in new_vma, so simply decrement the
1236          * ref here and remove the resv_map reference from this vma.
1237          */
1238         struct resv_map *reservations = vma_resv_map(vma);
1239
1240         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242                 kref_put(&reservations->refs, resv_map_release);
1243         }
1244
1245         hugetlb_dup_vma_private(vma);
1246 }
1247
1248 /* Returns true if the VMA has associated reserve pages */
1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250 {
1251         if (vma->vm_flags & VM_NORESERVE) {
1252                 /*
1253                  * This address is already reserved by other process(chg == 0),
1254                  * so, we should decrement reserved count. Without decrementing,
1255                  * reserve count remains after releasing inode, because this
1256                  * allocated page will go into page cache and is regarded as
1257                  * coming from reserved pool in releasing step.  Currently, we
1258                  * don't have any other solution to deal with this situation
1259                  * properly, so add work-around here.
1260                  */
1261                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1262                         return true;
1263                 else
1264                         return false;
1265         }
1266
1267         /* Shared mappings always use reserves */
1268         if (vma->vm_flags & VM_MAYSHARE) {
1269                 /*
1270                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1271                  * be a region map for all pages.  The only situation where
1272                  * there is no region map is if a hole was punched via
1273                  * fallocate.  In this case, there really are no reserves to
1274                  * use.  This situation is indicated if chg != 0.
1275                  */
1276                 if (chg)
1277                         return false;
1278                 else
1279                         return true;
1280         }
1281
1282         /*
1283          * Only the process that called mmap() has reserves for
1284          * private mappings.
1285          */
1286         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287                 /*
1288                  * Like the shared case above, a hole punch or truncate
1289                  * could have been performed on the private mapping.
1290                  * Examine the value of chg to determine if reserves
1291                  * actually exist or were previously consumed.
1292                  * Very Subtle - The value of chg comes from a previous
1293                  * call to vma_needs_reserves().  The reserve map for
1294                  * private mappings has different (opposite) semantics
1295                  * than that of shared mappings.  vma_needs_reserves()
1296                  * has already taken this difference in semantics into
1297                  * account.  Therefore, the meaning of chg is the same
1298                  * as in the shared case above.  Code could easily be
1299                  * combined, but keeping it separate draws attention to
1300                  * subtle differences.
1301                  */
1302                 if (chg)
1303                         return false;
1304                 else
1305                         return true;
1306         }
1307
1308         return false;
1309 }
1310
1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312 {
1313         int nid = folio_nid(folio);
1314
1315         lockdep_assert_held(&hugetlb_lock);
1316         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317
1318         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319         h->free_huge_pages++;
1320         h->free_huge_pages_node[nid]++;
1321         folio_set_hugetlb_freed(folio);
1322 }
1323
1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325                                                                 int nid)
1326 {
1327         struct folio *folio;
1328         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329
1330         lockdep_assert_held(&hugetlb_lock);
1331         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332                 if (pin && !folio_is_longterm_pinnable(folio))
1333                         continue;
1334
1335                 if (folio_test_hwpoison(folio))
1336                         continue;
1337
1338                 list_move(&folio->lru, &h->hugepage_activelist);
1339                 folio_ref_unfreeze(folio, 1);
1340                 folio_clear_hugetlb_freed(folio);
1341                 h->free_huge_pages--;
1342                 h->free_huge_pages_node[nid]--;
1343                 return folio;
1344         }
1345
1346         return NULL;
1347 }
1348
1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350                                                         int nid, nodemask_t *nmask)
1351 {
1352         unsigned int cpuset_mems_cookie;
1353         struct zonelist *zonelist;
1354         struct zone *zone;
1355         struct zoneref *z;
1356         int node = NUMA_NO_NODE;
1357
1358         zonelist = node_zonelist(nid, gfp_mask);
1359
1360 retry_cpuset:
1361         cpuset_mems_cookie = read_mems_allowed_begin();
1362         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1363                 struct folio *folio;
1364
1365                 if (!cpuset_zone_allowed(zone, gfp_mask))
1366                         continue;
1367                 /*
1368                  * no need to ask again on the same node. Pool is node rather than
1369                  * zone aware
1370                  */
1371                 if (zone_to_nid(zone) == node)
1372                         continue;
1373                 node = zone_to_nid(zone);
1374
1375                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1376                 if (folio)
1377                         return folio;
1378         }
1379         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1380                 goto retry_cpuset;
1381
1382         return NULL;
1383 }
1384
1385 static unsigned long available_huge_pages(struct hstate *h)
1386 {
1387         return h->free_huge_pages - h->resv_huge_pages;
1388 }
1389
1390 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1391                                 struct vm_area_struct *vma,
1392                                 unsigned long address, int avoid_reserve,
1393                                 long chg)
1394 {
1395         struct folio *folio = NULL;
1396         struct mempolicy *mpol;
1397         gfp_t gfp_mask;
1398         nodemask_t *nodemask;
1399         int nid;
1400
1401         /*
1402          * A child process with MAP_PRIVATE mappings created by their parent
1403          * have no page reserves. This check ensures that reservations are
1404          * not "stolen". The child may still get SIGKILLed
1405          */
1406         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1407                 goto err;
1408
1409         /* If reserves cannot be used, ensure enough pages are in the pool */
1410         if (avoid_reserve && !available_huge_pages(h))
1411                 goto err;
1412
1413         gfp_mask = htlb_alloc_mask(h);
1414         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415
1416         if (mpol_is_preferred_many(mpol)) {
1417                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418                                                         nid, nodemask);
1419
1420                 /* Fallback to all nodes if page==NULL */
1421                 nodemask = NULL;
1422         }
1423
1424         if (!folio)
1425                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426                                                         nid, nodemask);
1427
1428         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1429                 folio_set_hugetlb_restore_reserve(folio);
1430                 h->resv_huge_pages--;
1431         }
1432
1433         mpol_cond_put(mpol);
1434         return folio;
1435
1436 err:
1437         return NULL;
1438 }
1439
1440 /*
1441  * common helper functions for hstate_next_node_to_{alloc|free}.
1442  * We may have allocated or freed a huge page based on a different
1443  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444  * be outside of *nodes_allowed.  Ensure that we use an allowed
1445  * node for alloc or free.
1446  */
1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448 {
1449         nid = next_node_in(nid, *nodes_allowed);
1450         VM_BUG_ON(nid >= MAX_NUMNODES);
1451
1452         return nid;
1453 }
1454
1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456 {
1457         if (!node_isset(nid, *nodes_allowed))
1458                 nid = next_node_allowed(nid, nodes_allowed);
1459         return nid;
1460 }
1461
1462 /*
1463  * returns the previously saved node ["this node"] from which to
1464  * allocate a persistent huge page for the pool and advance the
1465  * next node from which to allocate, handling wrap at end of node
1466  * mask.
1467  */
1468 static int hstate_next_node_to_alloc(int *next_node,
1469                                         nodemask_t *nodes_allowed)
1470 {
1471         int nid;
1472
1473         VM_BUG_ON(!nodes_allowed);
1474
1475         nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476         *next_node = next_node_allowed(nid, nodes_allowed);
1477
1478         return nid;
1479 }
1480
1481 /*
1482  * helper for remove_pool_hugetlb_folio() - return the previously saved
1483  * node ["this node"] from which to free a huge page.  Advance the
1484  * next node id whether or not we find a free huge page to free so
1485  * that the next attempt to free addresses the next node.
1486  */
1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488 {
1489         int nid;
1490
1491         VM_BUG_ON(!nodes_allowed);
1492
1493         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495
1496         return nid;
1497 }
1498
1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)            \
1500         for (nr_nodes = nodes_weight(*mask);                            \
1501                 nr_nodes > 0 &&                                         \
1502                 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1);     \
1503                 nr_nodes--)
1504
1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1506         for (nr_nodes = nodes_weight(*mask);                            \
1507                 nr_nodes > 0 &&                                         \
1508                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1509                 nr_nodes--)
1510
1511 /* used to demote non-gigantic_huge pages as well */
1512 static void __destroy_compound_gigantic_folio(struct folio *folio,
1513                                         unsigned int order, bool demote)
1514 {
1515         int i;
1516         int nr_pages = 1 << order;
1517         struct page *p;
1518
1519         atomic_set(&folio->_entire_mapcount, 0);
1520         atomic_set(&folio->_nr_pages_mapped, 0);
1521         atomic_set(&folio->_pincount, 0);
1522
1523         for (i = 1; i < nr_pages; i++) {
1524                 p = folio_page(folio, i);
1525                 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1526                 p->mapping = NULL;
1527                 clear_compound_head(p);
1528                 if (!demote)
1529                         set_page_refcounted(p);
1530         }
1531
1532         __folio_clear_head(folio);
1533 }
1534
1535 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1536                                         unsigned int order)
1537 {
1538         __destroy_compound_gigantic_folio(folio, order, true);
1539 }
1540
1541 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1542 static void destroy_compound_gigantic_folio(struct folio *folio,
1543                                         unsigned int order)
1544 {
1545         __destroy_compound_gigantic_folio(folio, order, false);
1546 }
1547
1548 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1549 {
1550         /*
1551          * If the page isn't allocated using the cma allocator,
1552          * cma_release() returns false.
1553          */
1554 #ifdef CONFIG_CMA
1555         int nid = folio_nid(folio);
1556
1557         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1558                 return;
1559 #endif
1560
1561         free_contig_range(folio_pfn(folio), 1 << order);
1562 }
1563
1564 #ifdef CONFIG_CONTIG_ALLOC
1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566                 int nid, nodemask_t *nodemask)
1567 {
1568         struct page *page;
1569         unsigned long nr_pages = pages_per_huge_page(h);
1570         if (nid == NUMA_NO_NODE)
1571                 nid = numa_mem_id();
1572
1573 #ifdef CONFIG_CMA
1574         {
1575                 int node;
1576
1577                 if (hugetlb_cma[nid]) {
1578                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1579                                         huge_page_order(h), true);
1580                         if (page)
1581                                 return page_folio(page);
1582                 }
1583
1584                 if (!(gfp_mask & __GFP_THISNODE)) {
1585                         for_each_node_mask(node, *nodemask) {
1586                                 if (node == nid || !hugetlb_cma[node])
1587                                         continue;
1588
1589                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1590                                                 huge_page_order(h), true);
1591                                 if (page)
1592                                         return page_folio(page);
1593                         }
1594                 }
1595         }
1596 #endif
1597
1598         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1599         return page ? page_folio(page) : NULL;
1600 }
1601
1602 #else /* !CONFIG_CONTIG_ALLOC */
1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604                                         int nid, nodemask_t *nodemask)
1605 {
1606         return NULL;
1607 }
1608 #endif /* CONFIG_CONTIG_ALLOC */
1609
1610 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1611 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1612                                         int nid, nodemask_t *nodemask)
1613 {
1614         return NULL;
1615 }
1616 static inline void free_gigantic_folio(struct folio *folio,
1617                                                 unsigned int order) { }
1618 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1619                                                 unsigned int order) { }
1620 #endif
1621
1622 /*
1623  * Remove hugetlb folio from lists.
1624  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1625  * folio appears as just a compound page.  Otherwise, wait until after
1626  * allocating vmemmap to clear the flag.
1627  *
1628  * A reference is held on the folio, except in the case of demote.
1629  *
1630  * Must be called with hugetlb lock held.
1631  */
1632 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1633                                                         bool adjust_surplus,
1634                                                         bool demote)
1635 {
1636         int nid = folio_nid(folio);
1637
1638         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1639         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1640
1641         lockdep_assert_held(&hugetlb_lock);
1642         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1643                 return;
1644
1645         list_del(&folio->lru);
1646
1647         if (folio_test_hugetlb_freed(folio)) {
1648                 h->free_huge_pages--;
1649                 h->free_huge_pages_node[nid]--;
1650         }
1651         if (adjust_surplus) {
1652                 h->surplus_huge_pages--;
1653                 h->surplus_huge_pages_node[nid]--;
1654         }
1655
1656         /*
1657          * We can only clear the hugetlb flag after allocating vmemmap
1658          * pages.  Otherwise, someone (memory error handling) may try to write
1659          * to tail struct pages.
1660          */
1661         if (!folio_test_hugetlb_vmemmap_optimized(folio))
1662                 __folio_clear_hugetlb(folio);
1663
1664          /*
1665           * In the case of demote we do not ref count the page as it will soon
1666           * be turned into a page of smaller size.
1667          */
1668         if (!demote)
1669                 folio_ref_unfreeze(folio, 1);
1670
1671         h->nr_huge_pages--;
1672         h->nr_huge_pages_node[nid]--;
1673 }
1674
1675 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1676                                                         bool adjust_surplus)
1677 {
1678         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1679 }
1680
1681 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1682                                                         bool adjust_surplus)
1683 {
1684         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1685 }
1686
1687 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1688                              bool adjust_surplus)
1689 {
1690         int zeroed;
1691         int nid = folio_nid(folio);
1692
1693         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1694
1695         lockdep_assert_held(&hugetlb_lock);
1696
1697         INIT_LIST_HEAD(&folio->lru);
1698         h->nr_huge_pages++;
1699         h->nr_huge_pages_node[nid]++;
1700
1701         if (adjust_surplus) {
1702                 h->surplus_huge_pages++;
1703                 h->surplus_huge_pages_node[nid]++;
1704         }
1705
1706         __folio_set_hugetlb(folio);
1707         folio_change_private(folio, NULL);
1708         /*
1709          * We have to set hugetlb_vmemmap_optimized again as above
1710          * folio_change_private(folio, NULL) cleared it.
1711          */
1712         folio_set_hugetlb_vmemmap_optimized(folio);
1713
1714         /*
1715          * This folio is about to be managed by the hugetlb allocator and
1716          * should have no users.  Drop our reference, and check for others
1717          * just in case.
1718          */
1719         zeroed = folio_put_testzero(folio);
1720         if (unlikely(!zeroed))
1721                 /*
1722                  * It is VERY unlikely soneone else has taken a ref
1723                  * on the folio.  In this case, we simply return as
1724                  * free_huge_folio() will be called when this other ref
1725                  * is dropped.
1726                  */
1727                 return;
1728
1729         arch_clear_hugetlb_flags(folio);
1730         enqueue_hugetlb_folio(h, folio);
1731 }
1732
1733 static void __update_and_free_hugetlb_folio(struct hstate *h,
1734                                                 struct folio *folio)
1735 {
1736         bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1737
1738         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1739                 return;
1740
1741         /*
1742          * If we don't know which subpages are hwpoisoned, we can't free
1743          * the hugepage, so it's leaked intentionally.
1744          */
1745         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1746                 return;
1747
1748         /*
1749          * If folio is not vmemmap optimized (!clear_flag), then the folio
1750          * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1751          * can only be passed hugetlb pages and will BUG otherwise.
1752          */
1753         if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1754                 spin_lock_irq(&hugetlb_lock);
1755                 /*
1756                  * If we cannot allocate vmemmap pages, just refuse to free the
1757                  * page and put the page back on the hugetlb free list and treat
1758                  * as a surplus page.
1759                  */
1760                 add_hugetlb_folio(h, folio, true);
1761                 spin_unlock_irq(&hugetlb_lock);
1762                 return;
1763         }
1764
1765         /*
1766          * Move PageHWPoison flag from head page to the raw error pages,
1767          * which makes any healthy subpages reusable.
1768          */
1769         if (unlikely(folio_test_hwpoison(folio)))
1770                 folio_clear_hugetlb_hwpoison(folio);
1771
1772         /*
1773          * If vmemmap pages were allocated above, then we need to clear the
1774          * hugetlb flag under the hugetlb lock.
1775          */
1776         if (folio_test_hugetlb(folio)) {
1777                 spin_lock_irq(&hugetlb_lock);
1778                 __folio_clear_hugetlb(folio);
1779                 spin_unlock_irq(&hugetlb_lock);
1780         }
1781
1782         /*
1783          * Non-gigantic pages demoted from CMA allocated gigantic pages
1784          * need to be given back to CMA in free_gigantic_folio.
1785          */
1786         if (hstate_is_gigantic(h) ||
1787             hugetlb_cma_folio(folio, huge_page_order(h))) {
1788                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1789                 free_gigantic_folio(folio, huge_page_order(h));
1790         } else {
1791                 INIT_LIST_HEAD(&folio->_deferred_list);
1792                 folio_put(folio);
1793         }
1794 }
1795
1796 /*
1797  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1798  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1799  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1800  * the vmemmap pages.
1801  *
1802  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1803  * freed and frees them one-by-one. As the page->mapping pointer is going
1804  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1805  * structure of a lockless linked list of huge pages to be freed.
1806  */
1807 static LLIST_HEAD(hpage_freelist);
1808
1809 static void free_hpage_workfn(struct work_struct *work)
1810 {
1811         struct llist_node *node;
1812
1813         node = llist_del_all(&hpage_freelist);
1814
1815         while (node) {
1816                 struct folio *folio;
1817                 struct hstate *h;
1818
1819                 folio = container_of((struct address_space **)node,
1820                                      struct folio, mapping);
1821                 node = node->next;
1822                 folio->mapping = NULL;
1823                 /*
1824                  * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1825                  * folio_hstate() is going to trigger because a previous call to
1826                  * remove_hugetlb_folio() will clear the hugetlb bit, so do
1827                  * not use folio_hstate() directly.
1828                  */
1829                 h = size_to_hstate(folio_size(folio));
1830
1831                 __update_and_free_hugetlb_folio(h, folio);
1832
1833                 cond_resched();
1834         }
1835 }
1836 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1837
1838 static inline void flush_free_hpage_work(struct hstate *h)
1839 {
1840         if (hugetlb_vmemmap_optimizable(h))
1841                 flush_work(&free_hpage_work);
1842 }
1843
1844 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1845                                  bool atomic)
1846 {
1847         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1848                 __update_and_free_hugetlb_folio(h, folio);
1849                 return;
1850         }
1851
1852         /*
1853          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1854          *
1855          * Only call schedule_work() if hpage_freelist is previously
1856          * empty. Otherwise, schedule_work() had been called but the workfn
1857          * hasn't retrieved the list yet.
1858          */
1859         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1860                 schedule_work(&free_hpage_work);
1861 }
1862
1863 static void bulk_vmemmap_restore_error(struct hstate *h,
1864                                         struct list_head *folio_list,
1865                                         struct list_head *non_hvo_folios)
1866 {
1867         struct folio *folio, *t_folio;
1868
1869         if (!list_empty(non_hvo_folios)) {
1870                 /*
1871                  * Free any restored hugetlb pages so that restore of the
1872                  * entire list can be retried.
1873                  * The idea is that in the common case of ENOMEM errors freeing
1874                  * hugetlb pages with vmemmap we will free up memory so that we
1875                  * can allocate vmemmap for more hugetlb pages.
1876                  */
1877                 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1878                         list_del(&folio->lru);
1879                         spin_lock_irq(&hugetlb_lock);
1880                         __folio_clear_hugetlb(folio);
1881                         spin_unlock_irq(&hugetlb_lock);
1882                         update_and_free_hugetlb_folio(h, folio, false);
1883                         cond_resched();
1884                 }
1885         } else {
1886                 /*
1887                  * In the case where there are no folios which can be
1888                  * immediately freed, we loop through the list trying to restore
1889                  * vmemmap individually in the hope that someone elsewhere may
1890                  * have done something to cause success (such as freeing some
1891                  * memory).  If unable to restore a hugetlb page, the hugetlb
1892                  * page is made a surplus page and removed from the list.
1893                  * If are able to restore vmemmap and free one hugetlb page, we
1894                  * quit processing the list to retry the bulk operation.
1895                  */
1896                 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1897                         if (hugetlb_vmemmap_restore_folio(h, folio)) {
1898                                 list_del(&folio->lru);
1899                                 spin_lock_irq(&hugetlb_lock);
1900                                 add_hugetlb_folio(h, folio, true);
1901                                 spin_unlock_irq(&hugetlb_lock);
1902                         } else {
1903                                 list_del(&folio->lru);
1904                                 spin_lock_irq(&hugetlb_lock);
1905                                 __folio_clear_hugetlb(folio);
1906                                 spin_unlock_irq(&hugetlb_lock);
1907                                 update_and_free_hugetlb_folio(h, folio, false);
1908                                 cond_resched();
1909                                 break;
1910                         }
1911         }
1912 }
1913
1914 static void update_and_free_pages_bulk(struct hstate *h,
1915                                                 struct list_head *folio_list)
1916 {
1917         long ret;
1918         struct folio *folio, *t_folio;
1919         LIST_HEAD(non_hvo_folios);
1920
1921         /*
1922          * First allocate required vmemmmap (if necessary) for all folios.
1923          * Carefully handle errors and free up any available hugetlb pages
1924          * in an effort to make forward progress.
1925          */
1926 retry:
1927         ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1928         if (ret < 0) {
1929                 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1930                 goto retry;
1931         }
1932
1933         /*
1934          * At this point, list should be empty, ret should be >= 0 and there
1935          * should only be pages on the non_hvo_folios list.
1936          * Do note that the non_hvo_folios list could be empty.
1937          * Without HVO enabled, ret will be 0 and there is no need to call
1938          * __folio_clear_hugetlb as this was done previously.
1939          */
1940         VM_WARN_ON(!list_empty(folio_list));
1941         VM_WARN_ON(ret < 0);
1942         if (!list_empty(&non_hvo_folios) && ret) {
1943                 spin_lock_irq(&hugetlb_lock);
1944                 list_for_each_entry(folio, &non_hvo_folios, lru)
1945                         __folio_clear_hugetlb(folio);
1946                 spin_unlock_irq(&hugetlb_lock);
1947         }
1948
1949         list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1950                 update_and_free_hugetlb_folio(h, folio, false);
1951                 cond_resched();
1952         }
1953 }
1954
1955 struct hstate *size_to_hstate(unsigned long size)
1956 {
1957         struct hstate *h;
1958
1959         for_each_hstate(h) {
1960                 if (huge_page_size(h) == size)
1961                         return h;
1962         }
1963         return NULL;
1964 }
1965
1966 void free_huge_folio(struct folio *folio)
1967 {
1968         /*
1969          * Can't pass hstate in here because it is called from the
1970          * generic mm code.
1971          */
1972         struct hstate *h = folio_hstate(folio);
1973         int nid = folio_nid(folio);
1974         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1975         bool restore_reserve;
1976         unsigned long flags;
1977
1978         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1979         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1980
1981         hugetlb_set_folio_subpool(folio, NULL);
1982         if (folio_test_anon(folio))
1983                 __ClearPageAnonExclusive(&folio->page);
1984         folio->mapping = NULL;
1985         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1986         folio_clear_hugetlb_restore_reserve(folio);
1987
1988         /*
1989          * If HPageRestoreReserve was set on page, page allocation consumed a
1990          * reservation.  If the page was associated with a subpool, there
1991          * would have been a page reserved in the subpool before allocation
1992          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1993          * reservation, do not call hugepage_subpool_put_pages() as this will
1994          * remove the reserved page from the subpool.
1995          */
1996         if (!restore_reserve) {
1997                 /*
1998                  * A return code of zero implies that the subpool will be
1999                  * under its minimum size if the reservation is not restored
2000                  * after page is free.  Therefore, force restore_reserve
2001                  * operation.
2002                  */
2003                 if (hugepage_subpool_put_pages(spool, 1) == 0)
2004                         restore_reserve = true;
2005         }
2006
2007         spin_lock_irqsave(&hugetlb_lock, flags);
2008         folio_clear_hugetlb_migratable(folio);
2009         hugetlb_cgroup_uncharge_folio(hstate_index(h),
2010                                      pages_per_huge_page(h), folio);
2011         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2012                                           pages_per_huge_page(h), folio);
2013         mem_cgroup_uncharge(folio);
2014         if (restore_reserve)
2015                 h->resv_huge_pages++;
2016
2017         if (folio_test_hugetlb_temporary(folio)) {
2018                 remove_hugetlb_folio(h, folio, false);
2019                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2020                 update_and_free_hugetlb_folio(h, folio, true);
2021         } else if (h->surplus_huge_pages_node[nid]) {
2022                 /* remove the page from active list */
2023                 remove_hugetlb_folio(h, folio, true);
2024                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2025                 update_and_free_hugetlb_folio(h, folio, true);
2026         } else {
2027                 arch_clear_hugetlb_flags(folio);
2028                 enqueue_hugetlb_folio(h, folio);
2029                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2030         }
2031 }
2032
2033 /*
2034  * Must be called with the hugetlb lock held
2035  */
2036 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2037 {
2038         lockdep_assert_held(&hugetlb_lock);
2039         h->nr_huge_pages++;
2040         h->nr_huge_pages_node[nid]++;
2041 }
2042
2043 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2044 {
2045         __folio_set_hugetlb(folio);
2046         INIT_LIST_HEAD(&folio->lru);
2047         hugetlb_set_folio_subpool(folio, NULL);
2048         set_hugetlb_cgroup(folio, NULL);
2049         set_hugetlb_cgroup_rsvd(folio, NULL);
2050 }
2051
2052 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2053 {
2054         init_new_hugetlb_folio(h, folio);
2055         hugetlb_vmemmap_optimize_folio(h, folio);
2056 }
2057
2058 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2059 {
2060         __prep_new_hugetlb_folio(h, folio);
2061         spin_lock_irq(&hugetlb_lock);
2062         __prep_account_new_huge_page(h, nid);
2063         spin_unlock_irq(&hugetlb_lock);
2064 }
2065
2066 static bool __prep_compound_gigantic_folio(struct folio *folio,
2067                                         unsigned int order, bool demote)
2068 {
2069         int i, j;
2070         int nr_pages = 1 << order;
2071         struct page *p;
2072
2073         __folio_clear_reserved(folio);
2074         for (i = 0; i < nr_pages; i++) {
2075                 p = folio_page(folio, i);
2076
2077                 /*
2078                  * For gigantic hugepages allocated through bootmem at
2079                  * boot, it's safer to be consistent with the not-gigantic
2080                  * hugepages and clear the PG_reserved bit from all tail pages
2081                  * too.  Otherwise drivers using get_user_pages() to access tail
2082                  * pages may get the reference counting wrong if they see
2083                  * PG_reserved set on a tail page (despite the head page not
2084                  * having PG_reserved set).  Enforcing this consistency between
2085                  * head and tail pages allows drivers to optimize away a check
2086                  * on the head page when they need know if put_page() is needed
2087                  * after get_user_pages().
2088                  */
2089                 if (i != 0)     /* head page cleared above */
2090                         __ClearPageReserved(p);
2091                 /*
2092                  * Subtle and very unlikely
2093                  *
2094                  * Gigantic 'page allocators' such as memblock or cma will
2095                  * return a set of pages with each page ref counted.  We need
2096                  * to turn this set of pages into a compound page with tail
2097                  * page ref counts set to zero.  Code such as speculative page
2098                  * cache adding could take a ref on a 'to be' tail page.
2099                  * We need to respect any increased ref count, and only set
2100                  * the ref count to zero if count is currently 1.  If count
2101                  * is not 1, we return an error.  An error return indicates
2102                  * the set of pages can not be converted to a gigantic page.
2103                  * The caller who allocated the pages should then discard the
2104                  * pages using the appropriate free interface.
2105                  *
2106                  * In the case of demote, the ref count will be zero.
2107                  */
2108                 if (!demote) {
2109                         if (!page_ref_freeze(p, 1)) {
2110                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2111                                 goto out_error;
2112                         }
2113                 } else {
2114                         VM_BUG_ON_PAGE(page_count(p), p);
2115                 }
2116                 if (i != 0)
2117                         set_compound_head(p, &folio->page);
2118         }
2119         __folio_set_head(folio);
2120         /* we rely on prep_new_hugetlb_folio to set the hugetlb flag */
2121         folio_set_order(folio, order);
2122         atomic_set(&folio->_entire_mapcount, -1);
2123         atomic_set(&folio->_nr_pages_mapped, 0);
2124         atomic_set(&folio->_pincount, 0);
2125         return true;
2126
2127 out_error:
2128         /* undo page modifications made above */
2129         for (j = 0; j < i; j++) {
2130                 p = folio_page(folio, j);
2131                 if (j != 0)
2132                         clear_compound_head(p);
2133                 set_page_refcounted(p);
2134         }
2135         /* need to clear PG_reserved on remaining tail pages  */
2136         for (; j < nr_pages; j++) {
2137                 p = folio_page(folio, j);
2138                 __ClearPageReserved(p);
2139         }
2140         return false;
2141 }
2142
2143 static bool prep_compound_gigantic_folio(struct folio *folio,
2144                                                         unsigned int order)
2145 {
2146         return __prep_compound_gigantic_folio(folio, order, false);
2147 }
2148
2149 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2150                                                         unsigned int order)
2151 {
2152         return __prep_compound_gigantic_folio(folio, order, true);
2153 }
2154
2155 /*
2156  * Find and lock address space (mapping) in write mode.
2157  *
2158  * Upon entry, the page is locked which means that page_mapping() is
2159  * stable.  Due to locking order, we can only trylock_write.  If we can
2160  * not get the lock, simply return NULL to caller.
2161  */
2162 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2163 {
2164         struct address_space *mapping = page_mapping(hpage);
2165
2166         if (!mapping)
2167                 return mapping;
2168
2169         if (i_mmap_trylock_write(mapping))
2170                 return mapping;
2171
2172         return NULL;
2173 }
2174
2175 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2176                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2177                 nodemask_t *node_alloc_noretry)
2178 {
2179         int order = huge_page_order(h);
2180         struct page *page;
2181         bool alloc_try_hard = true;
2182         bool retry = true;
2183
2184         /*
2185          * By default we always try hard to allocate the page with
2186          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2187          * a loop (to adjust global huge page counts) and previous allocation
2188          * failed, do not continue to try hard on the same node.  Use the
2189          * node_alloc_noretry bitmap to manage this state information.
2190          */
2191         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2192                 alloc_try_hard = false;
2193         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2194         if (alloc_try_hard)
2195                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2196         if (nid == NUMA_NO_NODE)
2197                 nid = numa_mem_id();
2198 retry:
2199         page = __alloc_pages(gfp_mask, order, nid, nmask);
2200
2201         /* Freeze head page */
2202         if (page && !page_ref_freeze(page, 1)) {
2203                 __free_pages(page, order);
2204                 if (retry) {    /* retry once */
2205                         retry = false;
2206                         goto retry;
2207                 }
2208                 /* WOW!  twice in a row. */
2209                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2210                 page = NULL;
2211         }
2212
2213         /*
2214          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2215          * indicates an overall state change.  Clear bit so that we resume
2216          * normal 'try hard' allocations.
2217          */
2218         if (node_alloc_noretry && page && !alloc_try_hard)
2219                 node_clear(nid, *node_alloc_noretry);
2220
2221         /*
2222          * If we tried hard to get a page but failed, set bit so that
2223          * subsequent attempts will not try as hard until there is an
2224          * overall state change.
2225          */
2226         if (node_alloc_noretry && !page && alloc_try_hard)
2227                 node_set(nid, *node_alloc_noretry);
2228
2229         if (!page) {
2230                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2231                 return NULL;
2232         }
2233
2234         __count_vm_event(HTLB_BUDDY_PGALLOC);
2235         return page_folio(page);
2236 }
2237
2238 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2239                                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2240                                 nodemask_t *node_alloc_noretry)
2241 {
2242         struct folio *folio;
2243         bool retry = false;
2244
2245 retry:
2246         if (hstate_is_gigantic(h))
2247                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2248         else
2249                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2250                                 nid, nmask, node_alloc_noretry);
2251         if (!folio)
2252                 return NULL;
2253
2254         if (hstate_is_gigantic(h)) {
2255                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2256                         /*
2257                          * Rare failure to convert pages to compound page.
2258                          * Free pages and try again - ONCE!
2259                          */
2260                         free_gigantic_folio(folio, huge_page_order(h));
2261                         if (!retry) {
2262                                 retry = true;
2263                                 goto retry;
2264                         }
2265                         return NULL;
2266                 }
2267         }
2268
2269         return folio;
2270 }
2271
2272 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2273                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2274                 nodemask_t *node_alloc_noretry)
2275 {
2276         struct folio *folio;
2277
2278         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2279                                                 node_alloc_noretry);
2280         if (folio)
2281                 init_new_hugetlb_folio(h, folio);
2282         return folio;
2283 }
2284
2285 /*
2286  * Common helper to allocate a fresh hugetlb page. All specific allocators
2287  * should use this function to get new hugetlb pages
2288  *
2289  * Note that returned page is 'frozen':  ref count of head page and all tail
2290  * pages is zero.
2291  */
2292 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2293                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2294                 nodemask_t *node_alloc_noretry)
2295 {
2296         struct folio *folio;
2297
2298         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2299                                                 node_alloc_noretry);
2300         if (!folio)
2301                 return NULL;
2302
2303         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2304         return folio;
2305 }
2306
2307 static void prep_and_add_allocated_folios(struct hstate *h,
2308                                         struct list_head *folio_list)
2309 {
2310         unsigned long flags;
2311         struct folio *folio, *tmp_f;
2312
2313         /* Send list for bulk vmemmap optimization processing */
2314         hugetlb_vmemmap_optimize_folios(h, folio_list);
2315
2316         /* Add all new pool pages to free lists in one lock cycle */
2317         spin_lock_irqsave(&hugetlb_lock, flags);
2318         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2319                 __prep_account_new_huge_page(h, folio_nid(folio));
2320                 enqueue_hugetlb_folio(h, folio);
2321         }
2322         spin_unlock_irqrestore(&hugetlb_lock, flags);
2323 }
2324
2325 /*
2326  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2327  * will later be added to the appropriate hugetlb pool.
2328  */
2329 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2330                                         nodemask_t *nodes_allowed,
2331                                         nodemask_t *node_alloc_noretry,
2332                                         int *next_node)
2333 {
2334         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2335         int nr_nodes, node;
2336
2337         for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2338                 struct folio *folio;
2339
2340                 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2341                                         nodes_allowed, node_alloc_noretry);
2342                 if (folio)
2343                         return folio;
2344         }
2345
2346         return NULL;
2347 }
2348
2349 /*
2350  * Remove huge page from pool from next node to free.  Attempt to keep
2351  * persistent huge pages more or less balanced over allowed nodes.
2352  * This routine only 'removes' the hugetlb page.  The caller must make
2353  * an additional call to free the page to low level allocators.
2354  * Called with hugetlb_lock locked.
2355  */
2356 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2357                 nodemask_t *nodes_allowed, bool acct_surplus)
2358 {
2359         int nr_nodes, node;
2360         struct folio *folio = NULL;
2361
2362         lockdep_assert_held(&hugetlb_lock);
2363         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2364                 /*
2365                  * If we're returning unused surplus pages, only examine
2366                  * nodes with surplus pages.
2367                  */
2368                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2369                     !list_empty(&h->hugepage_freelists[node])) {
2370                         folio = list_entry(h->hugepage_freelists[node].next,
2371                                           struct folio, lru);
2372                         remove_hugetlb_folio(h, folio, acct_surplus);
2373                         break;
2374                 }
2375         }
2376
2377         return folio;
2378 }
2379
2380 /*
2381  * Dissolve a given free hugepage into free buddy pages. This function does
2382  * nothing for in-use hugepages and non-hugepages.
2383  * This function returns values like below:
2384  *
2385  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2386  *           when the system is under memory pressure and the feature of
2387  *           freeing unused vmemmap pages associated with each hugetlb page
2388  *           is enabled.
2389  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2390  *           (allocated or reserved.)
2391  *       0:  successfully dissolved free hugepages or the page is not a
2392  *           hugepage (considered as already dissolved)
2393  */
2394 int dissolve_free_huge_page(struct page *page)
2395 {
2396         int rc = -EBUSY;
2397         struct folio *folio = page_folio(page);
2398
2399 retry:
2400         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2401         if (!folio_test_hugetlb(folio))
2402                 return 0;
2403
2404         spin_lock_irq(&hugetlb_lock);
2405         if (!folio_test_hugetlb(folio)) {
2406                 rc = 0;
2407                 goto out;
2408         }
2409
2410         if (!folio_ref_count(folio)) {
2411                 struct hstate *h = folio_hstate(folio);
2412                 if (!available_huge_pages(h))
2413                         goto out;
2414
2415                 /*
2416                  * We should make sure that the page is already on the free list
2417                  * when it is dissolved.
2418                  */
2419                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2420                         spin_unlock_irq(&hugetlb_lock);
2421                         cond_resched();
2422
2423                         /*
2424                          * Theoretically, we should return -EBUSY when we
2425                          * encounter this race. In fact, we have a chance
2426                          * to successfully dissolve the page if we do a
2427                          * retry. Because the race window is quite small.
2428                          * If we seize this opportunity, it is an optimization
2429                          * for increasing the success rate of dissolving page.
2430                          */
2431                         goto retry;
2432                 }
2433
2434                 remove_hugetlb_folio(h, folio, false);
2435                 h->max_huge_pages--;
2436                 spin_unlock_irq(&hugetlb_lock);
2437
2438                 /*
2439                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2440                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2441                  * free the page if it can not allocate required vmemmap.  We
2442                  * need to adjust max_huge_pages if the page is not freed.
2443                  * Attempt to allocate vmemmmap here so that we can take
2444                  * appropriate action on failure.
2445                  *
2446                  * The folio_test_hugetlb check here is because
2447                  * remove_hugetlb_folio will clear hugetlb folio flag for
2448                  * non-vmemmap optimized hugetlb folios.
2449                  */
2450                 if (folio_test_hugetlb(folio)) {
2451                         rc = hugetlb_vmemmap_restore_folio(h, folio);
2452                         if (rc) {
2453                                 spin_lock_irq(&hugetlb_lock);
2454                                 add_hugetlb_folio(h, folio, false);
2455                                 h->max_huge_pages++;
2456                                 goto out;
2457                         }
2458                 } else
2459                         rc = 0;
2460
2461                 update_and_free_hugetlb_folio(h, folio, false);
2462                 return rc;
2463         }
2464 out:
2465         spin_unlock_irq(&hugetlb_lock);
2466         return rc;
2467 }
2468
2469 /*
2470  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2471  * make specified memory blocks removable from the system.
2472  * Note that this will dissolve a free gigantic hugepage completely, if any
2473  * part of it lies within the given range.
2474  * Also note that if dissolve_free_huge_page() returns with an error, all
2475  * free hugepages that were dissolved before that error are lost.
2476  */
2477 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2478 {
2479         unsigned long pfn;
2480         struct page *page;
2481         int rc = 0;
2482         unsigned int order;
2483         struct hstate *h;
2484
2485         if (!hugepages_supported())
2486                 return rc;
2487
2488         order = huge_page_order(&default_hstate);
2489         for_each_hstate(h)
2490                 order = min(order, huge_page_order(h));
2491
2492         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2493                 page = pfn_to_page(pfn);
2494                 rc = dissolve_free_huge_page(page);
2495                 if (rc)
2496                         break;
2497         }
2498
2499         return rc;
2500 }
2501
2502 /*
2503  * Allocates a fresh surplus page from the page allocator.
2504  */
2505 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2506                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2507 {
2508         struct folio *folio = NULL;
2509
2510         if (hstate_is_gigantic(h))
2511                 return NULL;
2512
2513         spin_lock_irq(&hugetlb_lock);
2514         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2515                 goto out_unlock;
2516         spin_unlock_irq(&hugetlb_lock);
2517
2518         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2519         if (!folio)
2520                 return NULL;
2521
2522         spin_lock_irq(&hugetlb_lock);
2523         /*
2524          * We could have raced with the pool size change.
2525          * Double check that and simply deallocate the new page
2526          * if we would end up overcommiting the surpluses. Abuse
2527          * temporary page to workaround the nasty free_huge_folio
2528          * codeflow
2529          */
2530         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2531                 folio_set_hugetlb_temporary(folio);
2532                 spin_unlock_irq(&hugetlb_lock);
2533                 free_huge_folio(folio);
2534                 return NULL;
2535         }
2536
2537         h->surplus_huge_pages++;
2538         h->surplus_huge_pages_node[folio_nid(folio)]++;
2539
2540 out_unlock:
2541         spin_unlock_irq(&hugetlb_lock);
2542
2543         return folio;
2544 }
2545
2546 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2547                                      int nid, nodemask_t *nmask)
2548 {
2549         struct folio *folio;
2550
2551         if (hstate_is_gigantic(h))
2552                 return NULL;
2553
2554         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2555         if (!folio)
2556                 return NULL;
2557
2558         /* fresh huge pages are frozen */
2559         folio_ref_unfreeze(folio, 1);
2560         /*
2561          * We do not account these pages as surplus because they are only
2562          * temporary and will be released properly on the last reference
2563          */
2564         folio_set_hugetlb_temporary(folio);
2565
2566         return folio;
2567 }
2568
2569 /*
2570  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2571  */
2572 static
2573 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2574                 struct vm_area_struct *vma, unsigned long addr)
2575 {
2576         struct folio *folio = NULL;
2577         struct mempolicy *mpol;
2578         gfp_t gfp_mask = htlb_alloc_mask(h);
2579         int nid;
2580         nodemask_t *nodemask;
2581
2582         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2583         if (mpol_is_preferred_many(mpol)) {
2584                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2585
2586                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2587                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2588
2589                 /* Fallback to all nodes if page==NULL */
2590                 nodemask = NULL;
2591         }
2592
2593         if (!folio)
2594                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2595         mpol_cond_put(mpol);
2596         return folio;
2597 }
2598
2599 /* folio migration callback function */
2600 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2601                 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2602 {
2603         spin_lock_irq(&hugetlb_lock);
2604         if (available_huge_pages(h)) {
2605                 struct folio *folio;
2606
2607                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2608                                                 preferred_nid, nmask);
2609                 if (folio) {
2610                         spin_unlock_irq(&hugetlb_lock);
2611                         return folio;
2612                 }
2613         }
2614         spin_unlock_irq(&hugetlb_lock);
2615
2616         /* We cannot fallback to other nodes, as we could break the per-node pool. */
2617         if (!allow_alloc_fallback)
2618                 gfp_mask |= __GFP_THISNODE;
2619
2620         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2621 }
2622
2623 /*
2624  * Increase the hugetlb pool such that it can accommodate a reservation
2625  * of size 'delta'.
2626  */
2627 static int gather_surplus_pages(struct hstate *h, long delta)
2628         __must_hold(&hugetlb_lock)
2629 {
2630         LIST_HEAD(surplus_list);
2631         struct folio *folio, *tmp;
2632         int ret;
2633         long i;
2634         long needed, allocated;
2635         bool alloc_ok = true;
2636
2637         lockdep_assert_held(&hugetlb_lock);
2638         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2639         if (needed <= 0) {
2640                 h->resv_huge_pages += delta;
2641                 return 0;
2642         }
2643
2644         allocated = 0;
2645
2646         ret = -ENOMEM;
2647 retry:
2648         spin_unlock_irq(&hugetlb_lock);
2649         for (i = 0; i < needed; i++) {
2650                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2651                                 NUMA_NO_NODE, NULL);
2652                 if (!folio) {
2653                         alloc_ok = false;
2654                         break;
2655                 }
2656                 list_add(&folio->lru, &surplus_list);
2657                 cond_resched();
2658         }
2659         allocated += i;
2660
2661         /*
2662          * After retaking hugetlb_lock, we need to recalculate 'needed'
2663          * because either resv_huge_pages or free_huge_pages may have changed.
2664          */
2665         spin_lock_irq(&hugetlb_lock);
2666         needed = (h->resv_huge_pages + delta) -
2667                         (h->free_huge_pages + allocated);
2668         if (needed > 0) {
2669                 if (alloc_ok)
2670                         goto retry;
2671                 /*
2672                  * We were not able to allocate enough pages to
2673                  * satisfy the entire reservation so we free what
2674                  * we've allocated so far.
2675                  */
2676                 goto free;
2677         }
2678         /*
2679          * The surplus_list now contains _at_least_ the number of extra pages
2680          * needed to accommodate the reservation.  Add the appropriate number
2681          * of pages to the hugetlb pool and free the extras back to the buddy
2682          * allocator.  Commit the entire reservation here to prevent another
2683          * process from stealing the pages as they are added to the pool but
2684          * before they are reserved.
2685          */
2686         needed += allocated;
2687         h->resv_huge_pages += delta;
2688         ret = 0;
2689
2690         /* Free the needed pages to the hugetlb pool */
2691         list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2692                 if ((--needed) < 0)
2693                         break;
2694                 /* Add the page to the hugetlb allocator */
2695                 enqueue_hugetlb_folio(h, folio);
2696         }
2697 free:
2698         spin_unlock_irq(&hugetlb_lock);
2699
2700         /*
2701          * Free unnecessary surplus pages to the buddy allocator.
2702          * Pages have no ref count, call free_huge_folio directly.
2703          */
2704         list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2705                 free_huge_folio(folio);
2706         spin_lock_irq(&hugetlb_lock);
2707
2708         return ret;
2709 }
2710
2711 /*
2712  * This routine has two main purposes:
2713  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2714  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2715  *    to the associated reservation map.
2716  * 2) Free any unused surplus pages that may have been allocated to satisfy
2717  *    the reservation.  As many as unused_resv_pages may be freed.
2718  */
2719 static void return_unused_surplus_pages(struct hstate *h,
2720                                         unsigned long unused_resv_pages)
2721 {
2722         unsigned long nr_pages;
2723         LIST_HEAD(page_list);
2724
2725         lockdep_assert_held(&hugetlb_lock);
2726         /* Uncommit the reservation */
2727         h->resv_huge_pages -= unused_resv_pages;
2728
2729         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2730                 goto out;
2731
2732         /*
2733          * Part (or even all) of the reservation could have been backed
2734          * by pre-allocated pages. Only free surplus pages.
2735          */
2736         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2737
2738         /*
2739          * We want to release as many surplus pages as possible, spread
2740          * evenly across all nodes with memory. Iterate across these nodes
2741          * until we can no longer free unreserved surplus pages. This occurs
2742          * when the nodes with surplus pages have no free pages.
2743          * remove_pool_hugetlb_folio() will balance the freed pages across the
2744          * on-line nodes with memory and will handle the hstate accounting.
2745          */
2746         while (nr_pages--) {
2747                 struct folio *folio;
2748
2749                 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2750                 if (!folio)
2751                         goto out;
2752
2753                 list_add(&folio->lru, &page_list);
2754         }
2755
2756 out:
2757         spin_unlock_irq(&hugetlb_lock);
2758         update_and_free_pages_bulk(h, &page_list);
2759         spin_lock_irq(&hugetlb_lock);
2760 }
2761
2762
2763 /*
2764  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2765  * are used by the huge page allocation routines to manage reservations.
2766  *
2767  * vma_needs_reservation is called to determine if the huge page at addr
2768  * within the vma has an associated reservation.  If a reservation is
2769  * needed, the value 1 is returned.  The caller is then responsible for
2770  * managing the global reservation and subpool usage counts.  After
2771  * the huge page has been allocated, vma_commit_reservation is called
2772  * to add the page to the reservation map.  If the page allocation fails,
2773  * the reservation must be ended instead of committed.  vma_end_reservation
2774  * is called in such cases.
2775  *
2776  * In the normal case, vma_commit_reservation returns the same value
2777  * as the preceding vma_needs_reservation call.  The only time this
2778  * is not the case is if a reserve map was changed between calls.  It
2779  * is the responsibility of the caller to notice the difference and
2780  * take appropriate action.
2781  *
2782  * vma_add_reservation is used in error paths where a reservation must
2783  * be restored when a newly allocated huge page must be freed.  It is
2784  * to be called after calling vma_needs_reservation to determine if a
2785  * reservation exists.
2786  *
2787  * vma_del_reservation is used in error paths where an entry in the reserve
2788  * map was created during huge page allocation and must be removed.  It is to
2789  * be called after calling vma_needs_reservation to determine if a reservation
2790  * exists.
2791  */
2792 enum vma_resv_mode {
2793         VMA_NEEDS_RESV,
2794         VMA_COMMIT_RESV,
2795         VMA_END_RESV,
2796         VMA_ADD_RESV,
2797         VMA_DEL_RESV,
2798 };
2799 static long __vma_reservation_common(struct hstate *h,
2800                                 struct vm_area_struct *vma, unsigned long addr,
2801                                 enum vma_resv_mode mode)
2802 {
2803         struct resv_map *resv;
2804         pgoff_t idx;
2805         long ret;
2806         long dummy_out_regions_needed;
2807
2808         resv = vma_resv_map(vma);
2809         if (!resv)
2810                 return 1;
2811
2812         idx = vma_hugecache_offset(h, vma, addr);
2813         switch (mode) {
2814         case VMA_NEEDS_RESV:
2815                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2816                 /* We assume that vma_reservation_* routines always operate on
2817                  * 1 page, and that adding to resv map a 1 page entry can only
2818                  * ever require 1 region.
2819                  */
2820                 VM_BUG_ON(dummy_out_regions_needed != 1);
2821                 break;
2822         case VMA_COMMIT_RESV:
2823                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2824                 /* region_add calls of range 1 should never fail. */
2825                 VM_BUG_ON(ret < 0);
2826                 break;
2827         case VMA_END_RESV:
2828                 region_abort(resv, idx, idx + 1, 1);
2829                 ret = 0;
2830                 break;
2831         case VMA_ADD_RESV:
2832                 if (vma->vm_flags & VM_MAYSHARE) {
2833                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2834                         /* region_add calls of range 1 should never fail. */
2835                         VM_BUG_ON(ret < 0);
2836                 } else {
2837                         region_abort(resv, idx, idx + 1, 1);
2838                         ret = region_del(resv, idx, idx + 1);
2839                 }
2840                 break;
2841         case VMA_DEL_RESV:
2842                 if (vma->vm_flags & VM_MAYSHARE) {
2843                         region_abort(resv, idx, idx + 1, 1);
2844                         ret = region_del(resv, idx, idx + 1);
2845                 } else {
2846                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2847                         /* region_add calls of range 1 should never fail. */
2848                         VM_BUG_ON(ret < 0);
2849                 }
2850                 break;
2851         default:
2852                 BUG();
2853         }
2854
2855         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2856                 return ret;
2857         /*
2858          * We know private mapping must have HPAGE_RESV_OWNER set.
2859          *
2860          * In most cases, reserves always exist for private mappings.
2861          * However, a file associated with mapping could have been
2862          * hole punched or truncated after reserves were consumed.
2863          * As subsequent fault on such a range will not use reserves.
2864          * Subtle - The reserve map for private mappings has the
2865          * opposite meaning than that of shared mappings.  If NO
2866          * entry is in the reserve map, it means a reservation exists.
2867          * If an entry exists in the reserve map, it means the
2868          * reservation has already been consumed.  As a result, the
2869          * return value of this routine is the opposite of the
2870          * value returned from reserve map manipulation routines above.
2871          */
2872         if (ret > 0)
2873                 return 0;
2874         if (ret == 0)
2875                 return 1;
2876         return ret;
2877 }
2878
2879 static long vma_needs_reservation(struct hstate *h,
2880                         struct vm_area_struct *vma, unsigned long addr)
2881 {
2882         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2883 }
2884
2885 static long vma_commit_reservation(struct hstate *h,
2886                         struct vm_area_struct *vma, unsigned long addr)
2887 {
2888         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2889 }
2890
2891 static void vma_end_reservation(struct hstate *h,
2892                         struct vm_area_struct *vma, unsigned long addr)
2893 {
2894         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2895 }
2896
2897 static long vma_add_reservation(struct hstate *h,
2898                         struct vm_area_struct *vma, unsigned long addr)
2899 {
2900         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2901 }
2902
2903 static long vma_del_reservation(struct hstate *h,
2904                         struct vm_area_struct *vma, unsigned long addr)
2905 {
2906         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2907 }
2908
2909 /*
2910  * This routine is called to restore reservation information on error paths.
2911  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2912  * and the hugetlb mutex should remain held when calling this routine.
2913  *
2914  * It handles two specific cases:
2915  * 1) A reservation was in place and the folio consumed the reservation.
2916  *    hugetlb_restore_reserve is set in the folio.
2917  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2918  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2919  *
2920  * In case 1, free_huge_folio later in the error path will increment the
2921  * global reserve count.  But, free_huge_folio does not have enough context
2922  * to adjust the reservation map.  This case deals primarily with private
2923  * mappings.  Adjust the reserve map here to be consistent with global
2924  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2925  * reserve map indicates there is a reservation present.
2926  *
2927  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2928  */
2929 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2930                         unsigned long address, struct folio *folio)
2931 {
2932         long rc = vma_needs_reservation(h, vma, address);
2933
2934         if (folio_test_hugetlb_restore_reserve(folio)) {
2935                 if (unlikely(rc < 0))
2936                         /*
2937                          * Rare out of memory condition in reserve map
2938                          * manipulation.  Clear hugetlb_restore_reserve so
2939                          * that global reserve count will not be incremented
2940                          * by free_huge_folio.  This will make it appear
2941                          * as though the reservation for this folio was
2942                          * consumed.  This may prevent the task from
2943                          * faulting in the folio at a later time.  This
2944                          * is better than inconsistent global huge page
2945                          * accounting of reserve counts.
2946                          */
2947                         folio_clear_hugetlb_restore_reserve(folio);
2948                 else if (rc)
2949                         (void)vma_add_reservation(h, vma, address);
2950                 else
2951                         vma_end_reservation(h, vma, address);
2952         } else {
2953                 if (!rc) {
2954                         /*
2955                          * This indicates there is an entry in the reserve map
2956                          * not added by alloc_hugetlb_folio.  We know it was added
2957                          * before the alloc_hugetlb_folio call, otherwise
2958                          * hugetlb_restore_reserve would be set on the folio.
2959                          * Remove the entry so that a subsequent allocation
2960                          * does not consume a reservation.
2961                          */
2962                         rc = vma_del_reservation(h, vma, address);
2963                         if (rc < 0)
2964                                 /*
2965                                  * VERY rare out of memory condition.  Since
2966                                  * we can not delete the entry, set
2967                                  * hugetlb_restore_reserve so that the reserve
2968                                  * count will be incremented when the folio
2969                                  * is freed.  This reserve will be consumed
2970                                  * on a subsequent allocation.
2971                                  */
2972                                 folio_set_hugetlb_restore_reserve(folio);
2973                 } else if (rc < 0) {
2974                         /*
2975                          * Rare out of memory condition from
2976                          * vma_needs_reservation call.  Memory allocation is
2977                          * only attempted if a new entry is needed.  Therefore,
2978                          * this implies there is not an entry in the
2979                          * reserve map.
2980                          *
2981                          * For shared mappings, no entry in the map indicates
2982                          * no reservation.  We are done.
2983                          */
2984                         if (!(vma->vm_flags & VM_MAYSHARE))
2985                                 /*
2986                                  * For private mappings, no entry indicates
2987                                  * a reservation is present.  Since we can
2988                                  * not add an entry, set hugetlb_restore_reserve
2989                                  * on the folio so reserve count will be
2990                                  * incremented when freed.  This reserve will
2991                                  * be consumed on a subsequent allocation.
2992                                  */
2993                                 folio_set_hugetlb_restore_reserve(folio);
2994                 } else
2995                         /*
2996                          * No reservation present, do nothing
2997                          */
2998                          vma_end_reservation(h, vma, address);
2999         }
3000 }
3001
3002 /*
3003  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3004  * the old one
3005  * @h: struct hstate old page belongs to
3006  * @old_folio: Old folio to dissolve
3007  * @list: List to isolate the page in case we need to
3008  * Returns 0 on success, otherwise negated error.
3009  */
3010 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3011                         struct folio *old_folio, struct list_head *list)
3012 {
3013         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3014         int nid = folio_nid(old_folio);
3015         struct folio *new_folio = NULL;
3016         int ret = 0;
3017
3018 retry:
3019         spin_lock_irq(&hugetlb_lock);
3020         if (!folio_test_hugetlb(old_folio)) {
3021                 /*
3022                  * Freed from under us. Drop new_folio too.
3023                  */
3024                 goto free_new;
3025         } else if (folio_ref_count(old_folio)) {
3026                 bool isolated;
3027
3028                 /*
3029                  * Someone has grabbed the folio, try to isolate it here.
3030                  * Fail with -EBUSY if not possible.
3031                  */
3032                 spin_unlock_irq(&hugetlb_lock);
3033                 isolated = isolate_hugetlb(old_folio, list);
3034                 ret = isolated ? 0 : -EBUSY;
3035                 spin_lock_irq(&hugetlb_lock);
3036                 goto free_new;
3037         } else if (!folio_test_hugetlb_freed(old_folio)) {
3038                 /*
3039                  * Folio's refcount is 0 but it has not been enqueued in the
3040                  * freelist yet. Race window is small, so we can succeed here if
3041                  * we retry.
3042                  */
3043                 spin_unlock_irq(&hugetlb_lock);
3044                 cond_resched();
3045                 goto retry;
3046         } else {
3047                 if (!new_folio) {
3048                         spin_unlock_irq(&hugetlb_lock);
3049                         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3050                                                               NULL, NULL);
3051                         if (!new_folio)
3052                                 return -ENOMEM;
3053                         __prep_new_hugetlb_folio(h, new_folio);
3054                         goto retry;
3055                 }
3056
3057                 /*
3058                  * Ok, old_folio is still a genuine free hugepage. Remove it from
3059                  * the freelist and decrease the counters. These will be
3060                  * incremented again when calling __prep_account_new_huge_page()
3061                  * and enqueue_hugetlb_folio() for new_folio. The counters will
3062                  * remain stable since this happens under the lock.
3063                  */
3064                 remove_hugetlb_folio(h, old_folio, false);
3065
3066                 /*
3067                  * Ref count on new_folio is already zero as it was dropped
3068                  * earlier.  It can be directly added to the pool free list.
3069                  */
3070                 __prep_account_new_huge_page(h, nid);
3071                 enqueue_hugetlb_folio(h, new_folio);
3072
3073                 /*
3074                  * Folio has been replaced, we can safely free the old one.
3075                  */
3076                 spin_unlock_irq(&hugetlb_lock);
3077                 update_and_free_hugetlb_folio(h, old_folio, false);
3078         }
3079
3080         return ret;
3081
3082 free_new:
3083         spin_unlock_irq(&hugetlb_lock);
3084         if (new_folio) {
3085                 /* Folio has a zero ref count, but needs a ref to be freed */
3086                 folio_ref_unfreeze(new_folio, 1);
3087                 update_and_free_hugetlb_folio(h, new_folio, false);
3088         }
3089
3090         return ret;
3091 }
3092
3093 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3094 {
3095         struct hstate *h;
3096         struct folio *folio = page_folio(page);
3097         int ret = -EBUSY;
3098
3099         /*
3100          * The page might have been dissolved from under our feet, so make sure
3101          * to carefully check the state under the lock.
3102          * Return success when racing as if we dissolved the page ourselves.
3103          */
3104         spin_lock_irq(&hugetlb_lock);
3105         if (folio_test_hugetlb(folio)) {
3106                 h = folio_hstate(folio);
3107         } else {
3108                 spin_unlock_irq(&hugetlb_lock);
3109                 return 0;
3110         }
3111         spin_unlock_irq(&hugetlb_lock);
3112
3113         /*
3114          * Fence off gigantic pages as there is a cyclic dependency between
3115          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3116          * of bailing out right away without further retrying.
3117          */
3118         if (hstate_is_gigantic(h))
3119                 return -ENOMEM;
3120
3121         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3122                 ret = 0;
3123         else if (!folio_ref_count(folio))
3124                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3125
3126         return ret;
3127 }
3128
3129 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3130                                     unsigned long addr, int avoid_reserve)
3131 {
3132         struct hugepage_subpool *spool = subpool_vma(vma);
3133         struct hstate *h = hstate_vma(vma);
3134         struct folio *folio;
3135         long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3136         long gbl_chg;
3137         int memcg_charge_ret, ret, idx;
3138         struct hugetlb_cgroup *h_cg = NULL;
3139         struct mem_cgroup *memcg;
3140         bool deferred_reserve;
3141         gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3142
3143         memcg = get_mem_cgroup_from_current();
3144         memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3145         if (memcg_charge_ret == -ENOMEM) {
3146                 mem_cgroup_put(memcg);
3147                 return ERR_PTR(-ENOMEM);
3148         }
3149
3150         idx = hstate_index(h);
3151         /*
3152          * Examine the region/reserve map to determine if the process
3153          * has a reservation for the page to be allocated.  A return
3154          * code of zero indicates a reservation exists (no change).
3155          */
3156         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3157         if (map_chg < 0) {
3158                 if (!memcg_charge_ret)
3159                         mem_cgroup_cancel_charge(memcg, nr_pages);
3160                 mem_cgroup_put(memcg);
3161                 return ERR_PTR(-ENOMEM);
3162         }
3163
3164         /*
3165          * Processes that did not create the mapping will have no
3166          * reserves as indicated by the region/reserve map. Check
3167          * that the allocation will not exceed the subpool limit.
3168          * Allocations for MAP_NORESERVE mappings also need to be
3169          * checked against any subpool limit.
3170          */
3171         if (map_chg || avoid_reserve) {
3172                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3173                 if (gbl_chg < 0)
3174                         goto out_end_reservation;
3175
3176                 /*
3177                  * Even though there was no reservation in the region/reserve
3178                  * map, there could be reservations associated with the
3179                  * subpool that can be used.  This would be indicated if the
3180                  * return value of hugepage_subpool_get_pages() is zero.
3181                  * However, if avoid_reserve is specified we still avoid even
3182                  * the subpool reservations.
3183                  */
3184                 if (avoid_reserve)
3185                         gbl_chg = 1;
3186         }
3187
3188         /* If this allocation is not consuming a reservation, charge it now.
3189          */
3190         deferred_reserve = map_chg || avoid_reserve;
3191         if (deferred_reserve) {
3192                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3193                         idx, pages_per_huge_page(h), &h_cg);
3194                 if (ret)
3195                         goto out_subpool_put;
3196         }
3197
3198         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3199         if (ret)
3200                 goto out_uncharge_cgroup_reservation;
3201
3202         spin_lock_irq(&hugetlb_lock);
3203         /*
3204          * glb_chg is passed to indicate whether or not a page must be taken
3205          * from the global free pool (global change).  gbl_chg == 0 indicates
3206          * a reservation exists for the allocation.
3207          */
3208         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3209         if (!folio) {
3210                 spin_unlock_irq(&hugetlb_lock);
3211                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3212                 if (!folio)
3213                         goto out_uncharge_cgroup;
3214                 spin_lock_irq(&hugetlb_lock);
3215                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3216                         folio_set_hugetlb_restore_reserve(folio);
3217                         h->resv_huge_pages--;
3218                 }
3219                 list_add(&folio->lru, &h->hugepage_activelist);
3220                 folio_ref_unfreeze(folio, 1);
3221                 /* Fall through */
3222         }
3223
3224         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3225         /* If allocation is not consuming a reservation, also store the
3226          * hugetlb_cgroup pointer on the page.
3227          */
3228         if (deferred_reserve) {
3229                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3230                                                   h_cg, folio);
3231         }
3232
3233         spin_unlock_irq(&hugetlb_lock);
3234
3235         hugetlb_set_folio_subpool(folio, spool);
3236
3237         map_commit = vma_commit_reservation(h, vma, addr);
3238         if (unlikely(map_chg > map_commit)) {
3239                 /*
3240                  * The page was added to the reservation map between
3241                  * vma_needs_reservation and vma_commit_reservation.
3242                  * This indicates a race with hugetlb_reserve_pages.
3243                  * Adjust for the subpool count incremented above AND
3244                  * in hugetlb_reserve_pages for the same page.  Also,
3245                  * the reservation count added in hugetlb_reserve_pages
3246                  * no longer applies.
3247                  */
3248                 long rsv_adjust;
3249
3250                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3251                 hugetlb_acct_memory(h, -rsv_adjust);
3252                 if (deferred_reserve) {
3253                         spin_lock_irq(&hugetlb_lock);
3254                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3255                                         pages_per_huge_page(h), folio);
3256                         spin_unlock_irq(&hugetlb_lock);
3257                 }
3258         }
3259
3260         if (!memcg_charge_ret)
3261                 mem_cgroup_commit_charge(folio, memcg);
3262         mem_cgroup_put(memcg);
3263
3264         return folio;
3265
3266 out_uncharge_cgroup:
3267         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3268 out_uncharge_cgroup_reservation:
3269         if (deferred_reserve)
3270                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3271                                                     h_cg);
3272 out_subpool_put:
3273         if (map_chg || avoid_reserve)
3274                 hugepage_subpool_put_pages(spool, 1);
3275 out_end_reservation:
3276         vma_end_reservation(h, vma, addr);
3277         if (!memcg_charge_ret)
3278                 mem_cgroup_cancel_charge(memcg, nr_pages);
3279         mem_cgroup_put(memcg);
3280         return ERR_PTR(-ENOSPC);
3281 }
3282
3283 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3284         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3285 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3286 {
3287         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3288         int nr_nodes, node = nid;
3289
3290         /* do node specific alloc */
3291         if (nid != NUMA_NO_NODE) {
3292                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3293                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3294                 if (!m)
3295                         return 0;
3296                 goto found;
3297         }
3298         /* allocate from next node when distributing huge pages */
3299         for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3300                 m = memblock_alloc_try_nid_raw(
3301                                 huge_page_size(h), huge_page_size(h),
3302                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3303                 /*
3304                  * Use the beginning of the huge page to store the
3305                  * huge_bootmem_page struct (until gather_bootmem
3306                  * puts them into the mem_map).
3307                  */
3308                 if (!m)
3309                         return 0;
3310                 goto found;
3311         }
3312
3313 found:
3314
3315         /*
3316          * Only initialize the head struct page in memmap_init_reserved_pages,
3317          * rest of the struct pages will be initialized by the HugeTLB
3318          * subsystem itself.
3319          * The head struct page is used to get folio information by the HugeTLB
3320          * subsystem like zone id and node id.
3321          */
3322         memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3323                 huge_page_size(h) - PAGE_SIZE);
3324         /* Put them into a private list first because mem_map is not up yet */
3325         INIT_LIST_HEAD(&m->list);
3326         list_add(&m->list, &huge_boot_pages[node]);
3327         m->hstate = h;
3328         return 1;
3329 }
3330
3331 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3332 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3333                                         unsigned long start_page_number,
3334                                         unsigned long end_page_number)
3335 {
3336         enum zone_type zone = zone_idx(folio_zone(folio));
3337         int nid = folio_nid(folio);
3338         unsigned long head_pfn = folio_pfn(folio);
3339         unsigned long pfn, end_pfn = head_pfn + end_page_number;
3340         int ret;
3341
3342         for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3343                 struct page *page = pfn_to_page(pfn);
3344
3345                 __init_single_page(page, pfn, zone, nid);
3346                 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3347                 ret = page_ref_freeze(page, 1);
3348                 VM_BUG_ON(!ret);
3349         }
3350 }
3351
3352 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3353                                               struct hstate *h,
3354                                               unsigned long nr_pages)
3355 {
3356         int ret;
3357
3358         /* Prepare folio head */
3359         __folio_clear_reserved(folio);
3360         __folio_set_head(folio);
3361         ret = folio_ref_freeze(folio, 1);
3362         VM_BUG_ON(!ret);
3363         /* Initialize the necessary tail struct pages */
3364         hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3365         prep_compound_head((struct page *)folio, huge_page_order(h));
3366 }
3367
3368 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3369                                         struct list_head *folio_list)
3370 {
3371         unsigned long flags;
3372         struct folio *folio, *tmp_f;
3373
3374         /* Send list for bulk vmemmap optimization processing */
3375         hugetlb_vmemmap_optimize_folios(h, folio_list);
3376
3377         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3378                 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3379                         /*
3380                          * If HVO fails, initialize all tail struct pages
3381                          * We do not worry about potential long lock hold
3382                          * time as this is early in boot and there should
3383                          * be no contention.
3384                          */
3385                         hugetlb_folio_init_tail_vmemmap(folio,
3386                                         HUGETLB_VMEMMAP_RESERVE_PAGES,
3387                                         pages_per_huge_page(h));
3388                 }
3389                 /* Subdivide locks to achieve better parallel performance */
3390                 spin_lock_irqsave(&hugetlb_lock, flags);
3391                 __prep_account_new_huge_page(h, folio_nid(folio));
3392                 enqueue_hugetlb_folio(h, folio);
3393                 spin_unlock_irqrestore(&hugetlb_lock, flags);
3394         }
3395 }
3396
3397 /*
3398  * Put bootmem huge pages into the standard lists after mem_map is up.
3399  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3400  */
3401 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3402 {
3403         LIST_HEAD(folio_list);
3404         struct huge_bootmem_page *m;
3405         struct hstate *h = NULL, *prev_h = NULL;
3406
3407         list_for_each_entry(m, &huge_boot_pages[nid], list) {
3408                 struct page *page = virt_to_page(m);
3409                 struct folio *folio = (void *)page;
3410
3411                 h = m->hstate;
3412                 /*
3413                  * It is possible to have multiple huge page sizes (hstates)
3414                  * in this list.  If so, process each size separately.
3415                  */
3416                 if (h != prev_h && prev_h != NULL)
3417                         prep_and_add_bootmem_folios(prev_h, &folio_list);
3418                 prev_h = h;
3419
3420                 VM_BUG_ON(!hstate_is_gigantic(h));
3421                 WARN_ON(folio_ref_count(folio) != 1);
3422
3423                 hugetlb_folio_init_vmemmap(folio, h,
3424                                            HUGETLB_VMEMMAP_RESERVE_PAGES);
3425                 init_new_hugetlb_folio(h, folio);
3426                 list_add(&folio->lru, &folio_list);
3427
3428                 /*
3429                  * We need to restore the 'stolen' pages to totalram_pages
3430                  * in order to fix confusing memory reports from free(1) and
3431                  * other side-effects, like CommitLimit going negative.
3432                  */
3433                 adjust_managed_page_count(page, pages_per_huge_page(h));
3434                 cond_resched();
3435         }
3436
3437         prep_and_add_bootmem_folios(h, &folio_list);
3438 }
3439
3440 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3441                                                     unsigned long end, void *arg)
3442 {
3443         int nid;
3444
3445         for (nid = start; nid < end; nid++)
3446                 gather_bootmem_prealloc_node(nid);
3447 }
3448
3449 static void __init gather_bootmem_prealloc(void)
3450 {
3451         struct padata_mt_job job = {
3452                 .thread_fn      = gather_bootmem_prealloc_parallel,
3453                 .fn_arg         = NULL,
3454                 .start          = 0,
3455                 .size           = num_node_state(N_MEMORY),
3456                 .align          = 1,
3457                 .min_chunk      = 1,
3458                 .max_threads    = num_node_state(N_MEMORY),
3459                 .numa_aware     = true,
3460         };
3461
3462         padata_do_multithreaded(&job);
3463 }
3464
3465 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3466 {
3467         unsigned long i;
3468         char buf[32];
3469
3470         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3471                 if (hstate_is_gigantic(h)) {
3472                         if (!alloc_bootmem_huge_page(h, nid))
3473                                 break;
3474                 } else {
3475                         struct folio *folio;
3476                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3477
3478                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3479                                         &node_states[N_MEMORY], NULL);
3480                         if (!folio)
3481                                 break;
3482                         free_huge_folio(folio); /* free it into the hugepage allocator */
3483                 }
3484                 cond_resched();
3485         }
3486         if (i == h->max_huge_pages_node[nid])
3487                 return;
3488
3489         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3490         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3491                 h->max_huge_pages_node[nid], buf, nid, i);
3492         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3493         h->max_huge_pages_node[nid] = i;
3494 }
3495
3496 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3497 {
3498         int i;
3499         bool node_specific_alloc = false;
3500
3501         for_each_online_node(i) {
3502                 if (h->max_huge_pages_node[i] > 0) {
3503                         hugetlb_hstate_alloc_pages_onenode(h, i);
3504                         node_specific_alloc = true;
3505                 }
3506         }
3507
3508         return node_specific_alloc;
3509 }
3510
3511 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3512 {
3513         if (allocated < h->max_huge_pages) {
3514                 char buf[32];
3515
3516                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3517                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3518                         h->max_huge_pages, buf, allocated);
3519                 h->max_huge_pages = allocated;
3520         }
3521 }
3522
3523 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3524 {
3525         struct hstate *h = (struct hstate *)arg;
3526         int i, num = end - start;
3527         nodemask_t node_alloc_noretry;
3528         LIST_HEAD(folio_list);
3529         int next_node = first_online_node;
3530
3531         /* Bit mask controlling how hard we retry per-node allocations.*/
3532         nodes_clear(node_alloc_noretry);
3533
3534         for (i = 0; i < num; ++i) {
3535                 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3536                                                 &node_alloc_noretry, &next_node);
3537                 if (!folio)
3538                         break;
3539
3540                 list_move(&folio->lru, &folio_list);
3541                 cond_resched();
3542         }
3543
3544         prep_and_add_allocated_folios(h, &folio_list);
3545 }
3546
3547 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3548 {
3549         unsigned long i;
3550
3551         for (i = 0; i < h->max_huge_pages; ++i) {
3552                 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3553                         break;
3554                 cond_resched();
3555         }
3556
3557         return i;
3558 }
3559
3560 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3561 {
3562         struct padata_mt_job job = {
3563                 .fn_arg         = h,
3564                 .align          = 1,
3565                 .numa_aware     = true
3566         };
3567
3568         job.thread_fn   = hugetlb_pages_alloc_boot_node;
3569         job.start       = 0;
3570         job.size        = h->max_huge_pages;
3571
3572         /*
3573          * job.max_threads is twice the num_node_state(N_MEMORY),
3574          *
3575          * Tests below indicate that a multiplier of 2 significantly improves
3576          * performance, and although larger values also provide improvements,
3577          * the gains are marginal.
3578          *
3579          * Therefore, choosing 2 as the multiplier strikes a good balance between
3580          * enhancing parallel processing capabilities and maintaining efficient
3581          * resource management.
3582          *
3583          * +------------+-------+-------+-------+-------+-------+
3584          * | multiplier |   1   |   2   |   3   |   4   |   5   |
3585          * +------------+-------+-------+-------+-------+-------+
3586          * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3587          * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3588          * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3589          * +------------+-------+-------+-------+-------+-------+
3590          */
3591         job.max_threads = num_node_state(N_MEMORY) * 2;
3592         job.min_chunk   = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3593         padata_do_multithreaded(&job);
3594
3595         return h->nr_huge_pages;
3596 }
3597
3598 /*
3599  * NOTE: this routine is called in different contexts for gigantic and
3600  * non-gigantic pages.
3601  * - For gigantic pages, this is called early in the boot process and
3602  *   pages are allocated from memblock allocated or something similar.
3603  *   Gigantic pages are actually added to pools later with the routine
3604  *   gather_bootmem_prealloc.
3605  * - For non-gigantic pages, this is called later in the boot process after
3606  *   all of mm is up and functional.  Pages are allocated from buddy and
3607  *   then added to hugetlb pools.
3608  */
3609 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3610 {
3611         unsigned long allocated;
3612         static bool initialized __initdata;
3613
3614         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3615         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3616                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3617                 return;
3618         }
3619
3620         /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3621         if (!initialized) {
3622                 int i = 0;
3623
3624                 for (i = 0; i < MAX_NUMNODES; i++)
3625                         INIT_LIST_HEAD(&huge_boot_pages[i]);
3626                 initialized = true;
3627         }
3628
3629         /* do node specific alloc */
3630         if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3631                 return;
3632
3633         /* below will do all node balanced alloc */
3634         if (hstate_is_gigantic(h))
3635                 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3636         else
3637                 allocated = hugetlb_pages_alloc_boot(h);
3638
3639         hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3640 }
3641
3642 static void __init hugetlb_init_hstates(void)
3643 {
3644         struct hstate *h, *h2;
3645
3646         for_each_hstate(h) {
3647                 /* oversize hugepages were init'ed in early boot */
3648                 if (!hstate_is_gigantic(h))
3649                         hugetlb_hstate_alloc_pages(h);
3650
3651                 /*
3652                  * Set demote order for each hstate.  Note that
3653                  * h->demote_order is initially 0.
3654                  * - We can not demote gigantic pages if runtime freeing
3655                  *   is not supported, so skip this.
3656                  * - If CMA allocation is possible, we can not demote
3657                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3658                  */
3659                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3660                         continue;
3661                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3662                         continue;
3663                 for_each_hstate(h2) {
3664                         if (h2 == h)
3665                                 continue;
3666                         if (h2->order < h->order &&
3667                             h2->order > h->demote_order)
3668                                 h->demote_order = h2->order;
3669                 }
3670         }
3671 }
3672
3673 static void __init report_hugepages(void)
3674 {
3675         struct hstate *h;
3676
3677         for_each_hstate(h) {
3678                 char buf[32];
3679
3680                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3681                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3682                         buf, h->free_huge_pages);
3683                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3684                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3685         }
3686 }
3687
3688 #ifdef CONFIG_HIGHMEM
3689 static void try_to_free_low(struct hstate *h, unsigned long count,
3690                                                 nodemask_t *nodes_allowed)
3691 {
3692         int i;
3693         LIST_HEAD(page_list);
3694
3695         lockdep_assert_held(&hugetlb_lock);
3696         if (hstate_is_gigantic(h))
3697                 return;
3698
3699         /*
3700          * Collect pages to be freed on a list, and free after dropping lock
3701          */
3702         for_each_node_mask(i, *nodes_allowed) {
3703                 struct folio *folio, *next;
3704                 struct list_head *freel = &h->hugepage_freelists[i];
3705                 list_for_each_entry_safe(folio, next, freel, lru) {
3706                         if (count >= h->nr_huge_pages)
3707                                 goto out;
3708                         if (folio_test_highmem(folio))
3709                                 continue;
3710                         remove_hugetlb_folio(h, folio, false);
3711                         list_add(&folio->lru, &page_list);
3712                 }
3713         }
3714
3715 out:
3716         spin_unlock_irq(&hugetlb_lock);
3717         update_and_free_pages_bulk(h, &page_list);
3718         spin_lock_irq(&hugetlb_lock);
3719 }
3720 #else
3721 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3722                                                 nodemask_t *nodes_allowed)
3723 {
3724 }
3725 #endif
3726
3727 /*
3728  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3729  * balanced by operating on them in a round-robin fashion.
3730  * Returns 1 if an adjustment was made.
3731  */
3732 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3733                                 int delta)
3734 {
3735         int nr_nodes, node;
3736
3737         lockdep_assert_held(&hugetlb_lock);
3738         VM_BUG_ON(delta != -1 && delta != 1);
3739
3740         if (delta < 0) {
3741                 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3742                         if (h->surplus_huge_pages_node[node])
3743                                 goto found;
3744                 }
3745         } else {
3746                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3747                         if (h->surplus_huge_pages_node[node] <
3748                                         h->nr_huge_pages_node[node])
3749                                 goto found;
3750                 }
3751         }
3752         return 0;
3753
3754 found:
3755         h->surplus_huge_pages += delta;
3756         h->surplus_huge_pages_node[node] += delta;
3757         return 1;
3758 }
3759
3760 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3761 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3762                               nodemask_t *nodes_allowed)
3763 {
3764         unsigned long min_count;
3765         unsigned long allocated;
3766         struct folio *folio;
3767         LIST_HEAD(page_list);
3768         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3769
3770         /*
3771          * Bit mask controlling how hard we retry per-node allocations.
3772          * If we can not allocate the bit mask, do not attempt to allocate
3773          * the requested huge pages.
3774          */
3775         if (node_alloc_noretry)
3776                 nodes_clear(*node_alloc_noretry);
3777         else
3778                 return -ENOMEM;
3779
3780         /*
3781          * resize_lock mutex prevents concurrent adjustments to number of
3782          * pages in hstate via the proc/sysfs interfaces.
3783          */
3784         mutex_lock(&h->resize_lock);
3785         flush_free_hpage_work(h);
3786         spin_lock_irq(&hugetlb_lock);
3787
3788         /*
3789          * Check for a node specific request.
3790          * Changing node specific huge page count may require a corresponding
3791          * change to the global count.  In any case, the passed node mask
3792          * (nodes_allowed) will restrict alloc/free to the specified node.
3793          */
3794         if (nid != NUMA_NO_NODE) {
3795                 unsigned long old_count = count;
3796
3797                 count += persistent_huge_pages(h) -
3798                          (h->nr_huge_pages_node[nid] -
3799                           h->surplus_huge_pages_node[nid]);
3800                 /*
3801                  * User may have specified a large count value which caused the
3802                  * above calculation to overflow.  In this case, they wanted
3803                  * to allocate as many huge pages as possible.  Set count to
3804                  * largest possible value to align with their intention.
3805                  */
3806                 if (count < old_count)
3807                         count = ULONG_MAX;
3808         }
3809
3810         /*
3811          * Gigantic pages runtime allocation depend on the capability for large
3812          * page range allocation.
3813          * If the system does not provide this feature, return an error when
3814          * the user tries to allocate gigantic pages but let the user free the
3815          * boottime allocated gigantic pages.
3816          */
3817         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3818                 if (count > persistent_huge_pages(h)) {
3819                         spin_unlock_irq(&hugetlb_lock);
3820                         mutex_unlock(&h->resize_lock);
3821                         NODEMASK_FREE(node_alloc_noretry);
3822                         return -EINVAL;
3823                 }
3824                 /* Fall through to decrease pool */
3825         }
3826
3827         /*
3828          * Increase the pool size
3829          * First take pages out of surplus state.  Then make up the
3830          * remaining difference by allocating fresh huge pages.
3831          *
3832          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3833          * to convert a surplus huge page to a normal huge page. That is
3834          * not critical, though, it just means the overall size of the
3835          * pool might be one hugepage larger than it needs to be, but
3836          * within all the constraints specified by the sysctls.
3837          */
3838         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3839                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3840                         break;
3841         }
3842
3843         allocated = 0;
3844         while (count > (persistent_huge_pages(h) + allocated)) {
3845                 /*
3846                  * If this allocation races such that we no longer need the
3847                  * page, free_huge_folio will handle it by freeing the page
3848                  * and reducing the surplus.
3849                  */
3850                 spin_unlock_irq(&hugetlb_lock);
3851
3852                 /* yield cpu to avoid soft lockup */
3853                 cond_resched();
3854
3855                 folio = alloc_pool_huge_folio(h, nodes_allowed,
3856                                                 node_alloc_noretry,
3857                                                 &h->next_nid_to_alloc);
3858                 if (!folio) {
3859                         prep_and_add_allocated_folios(h, &page_list);
3860                         spin_lock_irq(&hugetlb_lock);
3861                         goto out;
3862                 }
3863
3864                 list_add(&folio->lru, &page_list);
3865                 allocated++;
3866
3867                 /* Bail for signals. Probably ctrl-c from user */
3868                 if (signal_pending(current)) {
3869                         prep_and_add_allocated_folios(h, &page_list);
3870                         spin_lock_irq(&hugetlb_lock);
3871                         goto out;
3872                 }
3873
3874                 spin_lock_irq(&hugetlb_lock);
3875         }
3876
3877         /* Add allocated pages to the pool */
3878         if (!list_empty(&page_list)) {
3879                 spin_unlock_irq(&hugetlb_lock);
3880                 prep_and_add_allocated_folios(h, &page_list);
3881                 spin_lock_irq(&hugetlb_lock);
3882         }
3883
3884         /*
3885          * Decrease the pool size
3886          * First return free pages to the buddy allocator (being careful
3887          * to keep enough around to satisfy reservations).  Then place
3888          * pages into surplus state as needed so the pool will shrink
3889          * to the desired size as pages become free.
3890          *
3891          * By placing pages into the surplus state independent of the
3892          * overcommit value, we are allowing the surplus pool size to
3893          * exceed overcommit. There are few sane options here. Since
3894          * alloc_surplus_hugetlb_folio() is checking the global counter,
3895          * though, we'll note that we're not allowed to exceed surplus
3896          * and won't grow the pool anywhere else. Not until one of the
3897          * sysctls are changed, or the surplus pages go out of use.
3898          */
3899         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3900         min_count = max(count, min_count);
3901         try_to_free_low(h, min_count, nodes_allowed);
3902
3903         /*
3904          * Collect pages to be removed on list without dropping lock
3905          */
3906         while (min_count < persistent_huge_pages(h)) {
3907                 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3908                 if (!folio)
3909                         break;
3910
3911                 list_add(&folio->lru, &page_list);
3912         }
3913         /* free the pages after dropping lock */
3914         spin_unlock_irq(&hugetlb_lock);
3915         update_and_free_pages_bulk(h, &page_list);
3916         flush_free_hpage_work(h);
3917         spin_lock_irq(&hugetlb_lock);
3918
3919         while (count < persistent_huge_pages(h)) {
3920                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3921                         break;
3922         }
3923 out:
3924         h->max_huge_pages = persistent_huge_pages(h);
3925         spin_unlock_irq(&hugetlb_lock);
3926         mutex_unlock(&h->resize_lock);
3927
3928         NODEMASK_FREE(node_alloc_noretry);
3929
3930         return 0;
3931 }
3932
3933 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3934 {
3935         int i, nid = folio_nid(folio);
3936         struct hstate *target_hstate;
3937         struct page *subpage;
3938         struct folio *inner_folio;
3939         int rc = 0;
3940
3941         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3942
3943         remove_hugetlb_folio_for_demote(h, folio, false);
3944         spin_unlock_irq(&hugetlb_lock);
3945
3946         /*
3947          * If vmemmap already existed for folio, the remove routine above would
3948          * have cleared the hugetlb folio flag.  Hence the folio is technically
3949          * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3950          * passed hugetlb folios and will BUG otherwise.
3951          */
3952         if (folio_test_hugetlb(folio)) {
3953                 rc = hugetlb_vmemmap_restore_folio(h, folio);
3954                 if (rc) {
3955                         /* Allocation of vmemmmap failed, we can not demote folio */
3956                         spin_lock_irq(&hugetlb_lock);
3957                         folio_ref_unfreeze(folio, 1);
3958                         add_hugetlb_folio(h, folio, false);
3959                         return rc;
3960                 }
3961         }
3962
3963         /*
3964          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3965          * sizes as it will not ref count folios.
3966          */
3967         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3968
3969         /*
3970          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3971          * Without the mutex, pages added to target hstate could be marked
3972          * as surplus.
3973          *
3974          * Note that we already hold h->resize_lock.  To prevent deadlock,
3975          * use the convention of always taking larger size hstate mutex first.
3976          */
3977         mutex_lock(&target_hstate->resize_lock);
3978         for (i = 0; i < pages_per_huge_page(h);
3979                                 i += pages_per_huge_page(target_hstate)) {
3980                 subpage = folio_page(folio, i);
3981                 inner_folio = page_folio(subpage);
3982                 if (hstate_is_gigantic(target_hstate))
3983                         prep_compound_gigantic_folio_for_demote(inner_folio,
3984                                                         target_hstate->order);
3985                 else
3986                         prep_compound_page(subpage, target_hstate->order);
3987                 folio_change_private(inner_folio, NULL);
3988                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3989                 free_huge_folio(inner_folio);
3990         }
3991         mutex_unlock(&target_hstate->resize_lock);
3992
3993         spin_lock_irq(&hugetlb_lock);
3994
3995         /*
3996          * Not absolutely necessary, but for consistency update max_huge_pages
3997          * based on pool changes for the demoted page.
3998          */
3999         h->max_huge_pages--;
4000         target_hstate->max_huge_pages +=
4001                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
4002
4003         return rc;
4004 }
4005
4006 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
4007         __must_hold(&hugetlb_lock)
4008 {
4009         int nr_nodes, node;
4010         struct folio *folio;
4011
4012         lockdep_assert_held(&hugetlb_lock);
4013
4014         /* We should never get here if no demote order */
4015         if (!h->demote_order) {
4016                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4017                 return -EINVAL;         /* internal error */
4018         }
4019
4020         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
4021                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
4022                         if (folio_test_hwpoison(folio))
4023                                 continue;
4024                         return demote_free_hugetlb_folio(h, folio);
4025                 }
4026         }
4027
4028         /*
4029          * Only way to get here is if all pages on free lists are poisoned.
4030          * Return -EBUSY so that caller will not retry.
4031          */
4032         return -EBUSY;
4033 }
4034
4035 #define HSTATE_ATTR_RO(_name) \
4036         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4037
4038 #define HSTATE_ATTR_WO(_name) \
4039         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4040
4041 #define HSTATE_ATTR(_name) \
4042         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4043
4044 static struct kobject *hugepages_kobj;
4045 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4046
4047 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4048
4049 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4050 {
4051         int i;
4052
4053         for (i = 0; i < HUGE_MAX_HSTATE; i++)
4054                 if (hstate_kobjs[i] == kobj) {
4055                         if (nidp)
4056                                 *nidp = NUMA_NO_NODE;
4057                         return &hstates[i];
4058                 }
4059
4060         return kobj_to_node_hstate(kobj, nidp);
4061 }
4062
4063 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4064                                         struct kobj_attribute *attr, char *buf)
4065 {
4066         struct hstate *h;
4067         unsigned long nr_huge_pages;
4068         int nid;
4069
4070         h = kobj_to_hstate(kobj, &nid);
4071         if (nid == NUMA_NO_NODE)
4072                 nr_huge_pages = h->nr_huge_pages;
4073         else
4074                 nr_huge_pages = h->nr_huge_pages_node[nid];
4075
4076         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4077 }
4078
4079 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4080                                            struct hstate *h, int nid,
4081                                            unsigned long count, size_t len)
4082 {
4083         int err;
4084         nodemask_t nodes_allowed, *n_mask;
4085
4086         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4087                 return -EINVAL;
4088
4089         if (nid == NUMA_NO_NODE) {
4090                 /*
4091                  * global hstate attribute
4092                  */
4093                 if (!(obey_mempolicy &&
4094                                 init_nodemask_of_mempolicy(&nodes_allowed)))
4095                         n_mask = &node_states[N_MEMORY];
4096                 else
4097                         n_mask = &nodes_allowed;
4098         } else {
4099                 /*
4100                  * Node specific request.  count adjustment happens in
4101                  * set_max_huge_pages() after acquiring hugetlb_lock.
4102                  */
4103                 init_nodemask_of_node(&nodes_allowed, nid);
4104                 n_mask = &nodes_allowed;
4105         }
4106
4107         err = set_max_huge_pages(h, count, nid, n_mask);
4108
4109         return err ? err : len;
4110 }
4111
4112 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4113                                          struct kobject *kobj, const char *buf,
4114                                          size_t len)
4115 {
4116         struct hstate *h;
4117         unsigned long count;
4118         int nid;
4119         int err;
4120
4121         err = kstrtoul(buf, 10, &count);
4122         if (err)
4123                 return err;
4124
4125         h = kobj_to_hstate(kobj, &nid);
4126         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4127 }
4128
4129 static ssize_t nr_hugepages_show(struct kobject *kobj,
4130                                        struct kobj_attribute *attr, char *buf)
4131 {
4132         return nr_hugepages_show_common(kobj, attr, buf);
4133 }
4134
4135 static ssize_t nr_hugepages_store(struct kobject *kobj,
4136                struct kobj_attribute *attr, const char *buf, size_t len)
4137 {
4138         return nr_hugepages_store_common(false, kobj, buf, len);
4139 }
4140 HSTATE_ATTR(nr_hugepages);
4141
4142 #ifdef CONFIG_NUMA
4143
4144 /*
4145  * hstate attribute for optionally mempolicy-based constraint on persistent
4146  * huge page alloc/free.
4147  */
4148 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4149                                            struct kobj_attribute *attr,
4150                                            char *buf)
4151 {
4152         return nr_hugepages_show_common(kobj, attr, buf);
4153 }
4154
4155 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4156                struct kobj_attribute *attr, const char *buf, size_t len)
4157 {
4158         return nr_hugepages_store_common(true, kobj, buf, len);
4159 }
4160 HSTATE_ATTR(nr_hugepages_mempolicy);
4161 #endif
4162
4163
4164 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4165                                         struct kobj_attribute *attr, char *buf)
4166 {
4167         struct hstate *h = kobj_to_hstate(kobj, NULL);
4168         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4169 }
4170
4171 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4172                 struct kobj_attribute *attr, const char *buf, size_t count)
4173 {
4174         int err;
4175         unsigned long input;
4176         struct hstate *h = kobj_to_hstate(kobj, NULL);
4177
4178         if (hstate_is_gigantic(h))
4179                 return -EINVAL;
4180
4181         err = kstrtoul(buf, 10, &input);
4182         if (err)
4183                 return err;
4184
4185         spin_lock_irq(&hugetlb_lock);
4186         h->nr_overcommit_huge_pages = input;
4187         spin_unlock_irq(&hugetlb_lock);
4188
4189         return count;
4190 }
4191 HSTATE_ATTR(nr_overcommit_hugepages);
4192
4193 static ssize_t free_hugepages_show(struct kobject *kobj,
4194                                         struct kobj_attribute *attr, char *buf)
4195 {
4196         struct hstate *h;
4197         unsigned long free_huge_pages;
4198         int nid;
4199
4200         h = kobj_to_hstate(kobj, &nid);
4201         if (nid == NUMA_NO_NODE)
4202                 free_huge_pages = h->free_huge_pages;
4203         else
4204                 free_huge_pages = h->free_huge_pages_node[nid];
4205
4206         return sysfs_emit(buf, "%lu\n", free_huge_pages);
4207 }
4208 HSTATE_ATTR_RO(free_hugepages);
4209
4210 static ssize_t resv_hugepages_show(struct kobject *kobj,
4211                                         struct kobj_attribute *attr, char *buf)
4212 {
4213         struct hstate *h = kobj_to_hstate(kobj, NULL);
4214         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4215 }
4216 HSTATE_ATTR_RO(resv_hugepages);
4217
4218 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4219                                         struct kobj_attribute *attr, char *buf)
4220 {
4221         struct hstate *h;
4222         unsigned long surplus_huge_pages;
4223         int nid;
4224
4225         h = kobj_to_hstate(kobj, &nid);
4226         if (nid == NUMA_NO_NODE)
4227                 surplus_huge_pages = h->surplus_huge_pages;
4228         else
4229                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4230
4231         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4232 }
4233 HSTATE_ATTR_RO(surplus_hugepages);
4234
4235 static ssize_t demote_store(struct kobject *kobj,
4236                struct kobj_attribute *attr, const char *buf, size_t len)
4237 {
4238         unsigned long nr_demote;
4239         unsigned long nr_available;
4240         nodemask_t nodes_allowed, *n_mask;
4241         struct hstate *h;
4242         int err;
4243         int nid;
4244
4245         err = kstrtoul(buf, 10, &nr_demote);
4246         if (err)
4247                 return err;
4248         h = kobj_to_hstate(kobj, &nid);
4249
4250         if (nid != NUMA_NO_NODE) {
4251                 init_nodemask_of_node(&nodes_allowed, nid);
4252                 n_mask = &nodes_allowed;
4253         } else {
4254                 n_mask = &node_states[N_MEMORY];
4255         }
4256
4257         /* Synchronize with other sysfs operations modifying huge pages */
4258         mutex_lock(&h->resize_lock);
4259         spin_lock_irq(&hugetlb_lock);
4260
4261         while (nr_demote) {
4262                 /*
4263                  * Check for available pages to demote each time thorough the
4264                  * loop as demote_pool_huge_page will drop hugetlb_lock.
4265                  */
4266                 if (nid != NUMA_NO_NODE)
4267                         nr_available = h->free_huge_pages_node[nid];
4268                 else
4269                         nr_available = h->free_huge_pages;
4270                 nr_available -= h->resv_huge_pages;
4271                 if (!nr_available)
4272                         break;
4273
4274                 err = demote_pool_huge_page(h, n_mask);
4275                 if (err)
4276                         break;
4277
4278                 nr_demote--;
4279         }
4280
4281         spin_unlock_irq(&hugetlb_lock);
4282         mutex_unlock(&h->resize_lock);
4283
4284         if (err)
4285                 return err;
4286         return len;
4287 }
4288 HSTATE_ATTR_WO(demote);
4289
4290 static ssize_t demote_size_show(struct kobject *kobj,
4291                                         struct kobj_attribute *attr, char *buf)
4292 {
4293         struct hstate *h = kobj_to_hstate(kobj, NULL);
4294         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4295
4296         return sysfs_emit(buf, "%lukB\n", demote_size);
4297 }
4298
4299 static ssize_t demote_size_store(struct kobject *kobj,
4300                                         struct kobj_attribute *attr,
4301                                         const char *buf, size_t count)
4302 {
4303         struct hstate *h, *demote_hstate;
4304         unsigned long demote_size;
4305         unsigned int demote_order;
4306
4307         demote_size = (unsigned long)memparse(buf, NULL);
4308
4309         demote_hstate = size_to_hstate(demote_size);
4310         if (!demote_hstate)
4311                 return -EINVAL;
4312         demote_order = demote_hstate->order;
4313         if (demote_order < HUGETLB_PAGE_ORDER)
4314                 return -EINVAL;
4315
4316         /* demote order must be smaller than hstate order */
4317         h = kobj_to_hstate(kobj, NULL);
4318         if (demote_order >= h->order)
4319                 return -EINVAL;
4320
4321         /* resize_lock synchronizes access to demote size and writes */
4322         mutex_lock(&h->resize_lock);
4323         h->demote_order = demote_order;
4324         mutex_unlock(&h->resize_lock);
4325
4326         return count;
4327 }
4328 HSTATE_ATTR(demote_size);
4329
4330 static struct attribute *hstate_attrs[] = {
4331         &nr_hugepages_attr.attr,
4332         &nr_overcommit_hugepages_attr.attr,
4333         &free_hugepages_attr.attr,
4334         &resv_hugepages_attr.attr,
4335         &surplus_hugepages_attr.attr,
4336 #ifdef CONFIG_NUMA
4337         &nr_hugepages_mempolicy_attr.attr,
4338 #endif
4339         NULL,
4340 };
4341
4342 static const struct attribute_group hstate_attr_group = {
4343         .attrs = hstate_attrs,
4344 };
4345
4346 static struct attribute *hstate_demote_attrs[] = {
4347         &demote_size_attr.attr,
4348         &demote_attr.attr,
4349         NULL,
4350 };
4351
4352 static const struct attribute_group hstate_demote_attr_group = {
4353         .attrs = hstate_demote_attrs,
4354 };
4355
4356 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4357                                     struct kobject **hstate_kobjs,
4358                                     const struct attribute_group *hstate_attr_group)
4359 {
4360         int retval;
4361         int hi = hstate_index(h);
4362
4363         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4364         if (!hstate_kobjs[hi])
4365                 return -ENOMEM;
4366
4367         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4368         if (retval) {
4369                 kobject_put(hstate_kobjs[hi]);
4370                 hstate_kobjs[hi] = NULL;
4371                 return retval;
4372         }
4373
4374         if (h->demote_order) {
4375                 retval = sysfs_create_group(hstate_kobjs[hi],
4376                                             &hstate_demote_attr_group);
4377                 if (retval) {
4378                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4379                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4380                         kobject_put(hstate_kobjs[hi]);
4381                         hstate_kobjs[hi] = NULL;
4382                         return retval;
4383                 }
4384         }
4385
4386         return 0;
4387 }
4388
4389 #ifdef CONFIG_NUMA
4390 static bool hugetlb_sysfs_initialized __ro_after_init;
4391
4392 /*
4393  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4394  * with node devices in node_devices[] using a parallel array.  The array
4395  * index of a node device or _hstate == node id.
4396  * This is here to avoid any static dependency of the node device driver, in
4397  * the base kernel, on the hugetlb module.
4398  */
4399 struct node_hstate {
4400         struct kobject          *hugepages_kobj;
4401         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4402 };
4403 static struct node_hstate node_hstates[MAX_NUMNODES];
4404
4405 /*
4406  * A subset of global hstate attributes for node devices
4407  */
4408 static struct attribute *per_node_hstate_attrs[] = {
4409         &nr_hugepages_attr.attr,
4410         &free_hugepages_attr.attr,
4411         &surplus_hugepages_attr.attr,
4412         NULL,
4413 };
4414
4415 static const struct attribute_group per_node_hstate_attr_group = {
4416         .attrs = per_node_hstate_attrs,
4417 };
4418
4419 /*
4420  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4421  * Returns node id via non-NULL nidp.
4422  */
4423 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4424 {
4425         int nid;
4426
4427         for (nid = 0; nid < nr_node_ids; nid++) {
4428                 struct node_hstate *nhs = &node_hstates[nid];
4429                 int i;
4430                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4431                         if (nhs->hstate_kobjs[i] == kobj) {
4432                                 if (nidp)
4433                                         *nidp = nid;
4434                                 return &hstates[i];
4435                         }
4436         }
4437
4438         BUG();
4439         return NULL;
4440 }
4441
4442 /*
4443  * Unregister hstate attributes from a single node device.
4444  * No-op if no hstate attributes attached.
4445  */
4446 void hugetlb_unregister_node(struct node *node)
4447 {
4448         struct hstate *h;
4449         struct node_hstate *nhs = &node_hstates[node->dev.id];
4450
4451         if (!nhs->hugepages_kobj)
4452                 return;         /* no hstate attributes */
4453
4454         for_each_hstate(h) {
4455                 int idx = hstate_index(h);
4456                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4457
4458                 if (!hstate_kobj)
4459                         continue;
4460                 if (h->demote_order)
4461                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4462                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4463                 kobject_put(hstate_kobj);
4464                 nhs->hstate_kobjs[idx] = NULL;
4465         }
4466
4467         kobject_put(nhs->hugepages_kobj);
4468         nhs->hugepages_kobj = NULL;
4469 }
4470
4471
4472 /*
4473  * Register hstate attributes for a single node device.
4474  * No-op if attributes already registered.
4475  */
4476 void hugetlb_register_node(struct node *node)
4477 {
4478         struct hstate *h;
4479         struct node_hstate *nhs = &node_hstates[node->dev.id];
4480         int err;
4481
4482         if (!hugetlb_sysfs_initialized)
4483                 return;
4484
4485         if (nhs->hugepages_kobj)
4486                 return;         /* already allocated */
4487
4488         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4489                                                         &node->dev.kobj);
4490         if (!nhs->hugepages_kobj)
4491                 return;
4492
4493         for_each_hstate(h) {
4494                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4495                                                 nhs->hstate_kobjs,
4496                                                 &per_node_hstate_attr_group);
4497                 if (err) {
4498                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4499                                 h->name, node->dev.id);
4500                         hugetlb_unregister_node(node);
4501                         break;
4502                 }
4503         }
4504 }
4505
4506 /*
4507  * hugetlb init time:  register hstate attributes for all registered node
4508  * devices of nodes that have memory.  All on-line nodes should have
4509  * registered their associated device by this time.
4510  */
4511 static void __init hugetlb_register_all_nodes(void)
4512 {
4513         int nid;
4514
4515         for_each_online_node(nid)
4516                 hugetlb_register_node(node_devices[nid]);
4517 }
4518 #else   /* !CONFIG_NUMA */
4519
4520 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4521 {
4522         BUG();
4523         if (nidp)
4524                 *nidp = -1;
4525         return NULL;
4526 }
4527
4528 static void hugetlb_register_all_nodes(void) { }
4529
4530 #endif
4531
4532 #ifdef CONFIG_CMA
4533 static void __init hugetlb_cma_check(void);
4534 #else
4535 static inline __init void hugetlb_cma_check(void)
4536 {
4537 }
4538 #endif
4539
4540 static void __init hugetlb_sysfs_init(void)
4541 {
4542         struct hstate *h;
4543         int err;
4544
4545         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4546         if (!hugepages_kobj)
4547                 return;
4548
4549         for_each_hstate(h) {
4550                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4551                                          hstate_kobjs, &hstate_attr_group);
4552                 if (err)
4553                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4554         }
4555
4556 #ifdef CONFIG_NUMA
4557         hugetlb_sysfs_initialized = true;
4558 #endif
4559         hugetlb_register_all_nodes();
4560 }
4561
4562 #ifdef CONFIG_SYSCTL
4563 static void hugetlb_sysctl_init(void);
4564 #else
4565 static inline void hugetlb_sysctl_init(void) { }
4566 #endif
4567
4568 static int __init hugetlb_init(void)
4569 {
4570         int i;
4571
4572         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4573                         __NR_HPAGEFLAGS);
4574
4575         if (!hugepages_supported()) {
4576                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4577                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4578                 return 0;
4579         }
4580
4581         /*
4582          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4583          * architectures depend on setup being done here.
4584          */
4585         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4586         if (!parsed_default_hugepagesz) {
4587                 /*
4588                  * If we did not parse a default huge page size, set
4589                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4590                  * number of huge pages for this default size was implicitly
4591                  * specified, set that here as well.
4592                  * Note that the implicit setting will overwrite an explicit
4593                  * setting.  A warning will be printed in this case.
4594                  */
4595                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4596                 if (default_hstate_max_huge_pages) {
4597                         if (default_hstate.max_huge_pages) {
4598                                 char buf[32];
4599
4600                                 string_get_size(huge_page_size(&default_hstate),
4601                                         1, STRING_UNITS_2, buf, 32);
4602                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4603                                         default_hstate.max_huge_pages, buf);
4604                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4605                                         default_hstate_max_huge_pages);
4606                         }
4607                         default_hstate.max_huge_pages =
4608                                 default_hstate_max_huge_pages;
4609
4610                         for_each_online_node(i)
4611                                 default_hstate.max_huge_pages_node[i] =
4612                                         default_hugepages_in_node[i];
4613                 }
4614         }
4615
4616         hugetlb_cma_check();
4617         hugetlb_init_hstates();
4618         gather_bootmem_prealloc();
4619         report_hugepages();
4620
4621         hugetlb_sysfs_init();
4622         hugetlb_cgroup_file_init();
4623         hugetlb_sysctl_init();
4624
4625 #ifdef CONFIG_SMP
4626         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4627 #else
4628         num_fault_mutexes = 1;
4629 #endif
4630         hugetlb_fault_mutex_table =
4631                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4632                               GFP_KERNEL);
4633         BUG_ON(!hugetlb_fault_mutex_table);
4634
4635         for (i = 0; i < num_fault_mutexes; i++)
4636                 mutex_init(&hugetlb_fault_mutex_table[i]);
4637         return 0;
4638 }
4639 subsys_initcall(hugetlb_init);
4640
4641 /* Overwritten by architectures with more huge page sizes */
4642 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4643 {
4644         return size == HPAGE_SIZE;
4645 }
4646
4647 void __init hugetlb_add_hstate(unsigned int order)
4648 {
4649         struct hstate *h;
4650         unsigned long i;
4651
4652         if (size_to_hstate(PAGE_SIZE << order)) {
4653                 return;
4654         }
4655         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4656         BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4657         h = &hstates[hugetlb_max_hstate++];
4658         mutex_init(&h->resize_lock);
4659         h->order = order;
4660         h->mask = ~(huge_page_size(h) - 1);
4661         for (i = 0; i < MAX_NUMNODES; ++i)
4662                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4663         INIT_LIST_HEAD(&h->hugepage_activelist);
4664         h->next_nid_to_alloc = first_memory_node;
4665         h->next_nid_to_free = first_memory_node;
4666         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4667                                         huge_page_size(h)/SZ_1K);
4668
4669         parsed_hstate = h;
4670 }
4671
4672 bool __init __weak hugetlb_node_alloc_supported(void)
4673 {
4674         return true;
4675 }
4676
4677 static void __init hugepages_clear_pages_in_node(void)
4678 {
4679         if (!hugetlb_max_hstate) {
4680                 default_hstate_max_huge_pages = 0;
4681                 memset(default_hugepages_in_node, 0,
4682                         sizeof(default_hugepages_in_node));
4683         } else {
4684                 parsed_hstate->max_huge_pages = 0;
4685                 memset(parsed_hstate->max_huge_pages_node, 0,
4686                         sizeof(parsed_hstate->max_huge_pages_node));
4687         }
4688 }
4689
4690 /*
4691  * hugepages command line processing
4692  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4693  * specification.  If not, ignore the hugepages value.  hugepages can also
4694  * be the first huge page command line  option in which case it implicitly
4695  * specifies the number of huge pages for the default size.
4696  */
4697 static int __init hugepages_setup(char *s)
4698 {
4699         unsigned long *mhp;
4700         static unsigned long *last_mhp;
4701         int node = NUMA_NO_NODE;
4702         int count;
4703         unsigned long tmp;
4704         char *p = s;
4705
4706         if (!parsed_valid_hugepagesz) {
4707                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4708                 parsed_valid_hugepagesz = true;
4709                 return 1;
4710         }
4711
4712         /*
4713          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4714          * yet, so this hugepages= parameter goes to the "default hstate".
4715          * Otherwise, it goes with the previously parsed hugepagesz or
4716          * default_hugepagesz.
4717          */
4718         else if (!hugetlb_max_hstate)
4719                 mhp = &default_hstate_max_huge_pages;
4720         else
4721                 mhp = &parsed_hstate->max_huge_pages;
4722
4723         if (mhp == last_mhp) {
4724                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4725                 return 1;
4726         }
4727
4728         while (*p) {
4729                 count = 0;
4730                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4731                         goto invalid;
4732                 /* Parameter is node format */
4733                 if (p[count] == ':') {
4734                         if (!hugetlb_node_alloc_supported()) {
4735                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4736                                 return 1;
4737                         }
4738                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4739                                 goto invalid;
4740                         node = array_index_nospec(tmp, MAX_NUMNODES);
4741                         p += count + 1;
4742                         /* Parse hugepages */
4743                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4744                                 goto invalid;
4745                         if (!hugetlb_max_hstate)
4746                                 default_hugepages_in_node[node] = tmp;
4747                         else
4748                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4749                         *mhp += tmp;
4750                         /* Go to parse next node*/
4751                         if (p[count] == ',')
4752                                 p += count + 1;
4753                         else
4754                                 break;
4755                 } else {
4756                         if (p != s)
4757                                 goto invalid;
4758                         *mhp = tmp;
4759                         break;
4760                 }
4761         }
4762
4763         /*
4764          * Global state is always initialized later in hugetlb_init.
4765          * But we need to allocate gigantic hstates here early to still
4766          * use the bootmem allocator.
4767          */
4768         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4769                 hugetlb_hstate_alloc_pages(parsed_hstate);
4770
4771         last_mhp = mhp;
4772
4773         return 1;
4774
4775 invalid:
4776         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4777         hugepages_clear_pages_in_node();
4778         return 1;
4779 }
4780 __setup("hugepages=", hugepages_setup);
4781
4782 /*
4783  * hugepagesz command line processing
4784  * A specific huge page size can only be specified once with hugepagesz.
4785  * hugepagesz is followed by hugepages on the command line.  The global
4786  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4787  * hugepagesz argument was valid.
4788  */
4789 static int __init hugepagesz_setup(char *s)
4790 {
4791         unsigned long size;
4792         struct hstate *h;
4793
4794         parsed_valid_hugepagesz = false;
4795         size = (unsigned long)memparse(s, NULL);
4796
4797         if (!arch_hugetlb_valid_size(size)) {
4798                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4799                 return 1;
4800         }
4801
4802         h = size_to_hstate(size);
4803         if (h) {
4804                 /*
4805                  * hstate for this size already exists.  This is normally
4806                  * an error, but is allowed if the existing hstate is the
4807                  * default hstate.  More specifically, it is only allowed if
4808                  * the number of huge pages for the default hstate was not
4809                  * previously specified.
4810                  */
4811                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4812                     default_hstate.max_huge_pages) {
4813                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4814                         return 1;
4815                 }
4816
4817                 /*
4818                  * No need to call hugetlb_add_hstate() as hstate already
4819                  * exists.  But, do set parsed_hstate so that a following
4820                  * hugepages= parameter will be applied to this hstate.
4821                  */
4822                 parsed_hstate = h;
4823                 parsed_valid_hugepagesz = true;
4824                 return 1;
4825         }
4826
4827         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4828         parsed_valid_hugepagesz = true;
4829         return 1;
4830 }
4831 __setup("hugepagesz=", hugepagesz_setup);
4832
4833 /*
4834  * default_hugepagesz command line input
4835  * Only one instance of default_hugepagesz allowed on command line.
4836  */
4837 static int __init default_hugepagesz_setup(char *s)
4838 {
4839         unsigned long size;
4840         int i;
4841
4842         parsed_valid_hugepagesz = false;
4843         if (parsed_default_hugepagesz) {
4844                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4845                 return 1;
4846         }
4847
4848         size = (unsigned long)memparse(s, NULL);
4849
4850         if (!arch_hugetlb_valid_size(size)) {
4851                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4852                 return 1;
4853         }
4854
4855         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4856         parsed_valid_hugepagesz = true;
4857         parsed_default_hugepagesz = true;
4858         default_hstate_idx = hstate_index(size_to_hstate(size));
4859
4860         /*
4861          * The number of default huge pages (for this size) could have been
4862          * specified as the first hugetlb parameter: hugepages=X.  If so,
4863          * then default_hstate_max_huge_pages is set.  If the default huge
4864          * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4865          * allocated here from bootmem allocator.
4866          */
4867         if (default_hstate_max_huge_pages) {
4868                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4869                 for_each_online_node(i)
4870                         default_hstate.max_huge_pages_node[i] =
4871                                 default_hugepages_in_node[i];
4872                 if (hstate_is_gigantic(&default_hstate))
4873                         hugetlb_hstate_alloc_pages(&default_hstate);
4874                 default_hstate_max_huge_pages = 0;
4875         }
4876
4877         return 1;
4878 }
4879 __setup("default_hugepagesz=", default_hugepagesz_setup);
4880
4881 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4882 {
4883 #ifdef CONFIG_NUMA
4884         struct mempolicy *mpol = get_task_policy(current);
4885
4886         /*
4887          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4888          * (from policy_nodemask) specifically for hugetlb case
4889          */
4890         if (mpol->mode == MPOL_BIND &&
4891                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4892                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4893                 return &mpol->nodes;
4894 #endif
4895         return NULL;
4896 }
4897
4898 static unsigned int allowed_mems_nr(struct hstate *h)
4899 {
4900         int node;
4901         unsigned int nr = 0;
4902         nodemask_t *mbind_nodemask;
4903         unsigned int *array = h->free_huge_pages_node;
4904         gfp_t gfp_mask = htlb_alloc_mask(h);
4905
4906         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4907         for_each_node_mask(node, cpuset_current_mems_allowed) {
4908                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4909                         nr += array[node];
4910         }
4911
4912         return nr;
4913 }
4914
4915 #ifdef CONFIG_SYSCTL
4916 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4917                                           void *buffer, size_t *length,
4918                                           loff_t *ppos, unsigned long *out)
4919 {
4920         struct ctl_table dup_table;
4921
4922         /*
4923          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4924          * can duplicate the @table and alter the duplicate of it.
4925          */
4926         dup_table = *table;
4927         dup_table.data = out;
4928
4929         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4930 }
4931
4932 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4933                          struct ctl_table *table, int write,
4934                          void *buffer, size_t *length, loff_t *ppos)
4935 {
4936         struct hstate *h = &default_hstate;
4937         unsigned long tmp = h->max_huge_pages;
4938         int ret;
4939
4940         if (!hugepages_supported())
4941                 return -EOPNOTSUPP;
4942
4943         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4944                                              &tmp);
4945         if (ret)
4946                 goto out;
4947
4948         if (write)
4949                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4950                                                   NUMA_NO_NODE, tmp, *length);
4951 out:
4952         return ret;
4953 }
4954
4955 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4956                           void *buffer, size_t *length, loff_t *ppos)
4957 {
4958
4959         return hugetlb_sysctl_handler_common(false, table, write,
4960                                                         buffer, length, ppos);
4961 }
4962
4963 #ifdef CONFIG_NUMA
4964 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4965                           void *buffer, size_t *length, loff_t *ppos)
4966 {
4967         return hugetlb_sysctl_handler_common(true, table, write,
4968                                                         buffer, length, ppos);
4969 }
4970 #endif /* CONFIG_NUMA */
4971
4972 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4973                 void *buffer, size_t *length, loff_t *ppos)
4974 {
4975         struct hstate *h = &default_hstate;
4976         unsigned long tmp;
4977         int ret;
4978
4979         if (!hugepages_supported())
4980                 return -EOPNOTSUPP;
4981
4982         tmp = h->nr_overcommit_huge_pages;
4983
4984         if (write && hstate_is_gigantic(h))
4985                 return -EINVAL;
4986
4987         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4988                                              &tmp);
4989         if (ret)
4990                 goto out;
4991
4992         if (write) {
4993                 spin_lock_irq(&hugetlb_lock);
4994                 h->nr_overcommit_huge_pages = tmp;
4995                 spin_unlock_irq(&hugetlb_lock);
4996         }
4997 out:
4998         return ret;
4999 }
5000
5001 static struct ctl_table hugetlb_table[] = {
5002         {
5003                 .procname       = "nr_hugepages",
5004                 .data           = NULL,
5005                 .maxlen         = sizeof(unsigned long),
5006                 .mode           = 0644,
5007                 .proc_handler   = hugetlb_sysctl_handler,
5008         },
5009 #ifdef CONFIG_NUMA
5010         {
5011                 .procname       = "nr_hugepages_mempolicy",
5012                 .data           = NULL,
5013                 .maxlen         = sizeof(unsigned long),
5014                 .mode           = 0644,
5015                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
5016         },
5017 #endif
5018         {
5019                 .procname       = "hugetlb_shm_group",
5020                 .data           = &sysctl_hugetlb_shm_group,
5021                 .maxlen         = sizeof(gid_t),
5022                 .mode           = 0644,
5023                 .proc_handler   = proc_dointvec,
5024         },
5025         {
5026                 .procname       = "nr_overcommit_hugepages",
5027                 .data           = NULL,
5028                 .maxlen         = sizeof(unsigned long),
5029                 .mode           = 0644,
5030                 .proc_handler   = hugetlb_overcommit_handler,
5031         },
5032 };
5033
5034 static void hugetlb_sysctl_init(void)
5035 {
5036         register_sysctl_init("vm", hugetlb_table);
5037 }
5038 #endif /* CONFIG_SYSCTL */
5039
5040 void hugetlb_report_meminfo(struct seq_file *m)
5041 {
5042         struct hstate *h;
5043         unsigned long total = 0;
5044
5045         if (!hugepages_supported())
5046                 return;
5047
5048         for_each_hstate(h) {
5049                 unsigned long count = h->nr_huge_pages;
5050
5051                 total += huge_page_size(h) * count;
5052
5053                 if (h == &default_hstate)
5054                         seq_printf(m,
5055                                    "HugePages_Total:   %5lu\n"
5056                                    "HugePages_Free:    %5lu\n"
5057                                    "HugePages_Rsvd:    %5lu\n"
5058                                    "HugePages_Surp:    %5lu\n"
5059                                    "Hugepagesize:   %8lu kB\n",
5060                                    count,
5061                                    h->free_huge_pages,
5062                                    h->resv_huge_pages,
5063                                    h->surplus_huge_pages,
5064                                    huge_page_size(h) / SZ_1K);
5065         }
5066
5067         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5068 }
5069
5070 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5071 {
5072         struct hstate *h = &default_hstate;
5073
5074         if (!hugepages_supported())
5075                 return 0;
5076
5077         return sysfs_emit_at(buf, len,
5078                              "Node %d HugePages_Total: %5u\n"
5079                              "Node %d HugePages_Free:  %5u\n"
5080                              "Node %d HugePages_Surp:  %5u\n",
5081                              nid, h->nr_huge_pages_node[nid],
5082                              nid, h->free_huge_pages_node[nid],
5083                              nid, h->surplus_huge_pages_node[nid]);
5084 }
5085
5086 void hugetlb_show_meminfo_node(int nid)
5087 {
5088         struct hstate *h;
5089
5090         if (!hugepages_supported())
5091                 return;
5092
5093         for_each_hstate(h)
5094                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5095                         nid,
5096                         h->nr_huge_pages_node[nid],
5097                         h->free_huge_pages_node[nid],
5098                         h->surplus_huge_pages_node[nid],
5099                         huge_page_size(h) / SZ_1K);
5100 }
5101
5102 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5103 {
5104         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5105                    K(atomic_long_read(&mm->hugetlb_usage)));
5106 }
5107
5108 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5109 unsigned long hugetlb_total_pages(void)
5110 {
5111         struct hstate *h;
5112         unsigned long nr_total_pages = 0;
5113
5114         for_each_hstate(h)
5115                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5116         return nr_total_pages;
5117 }
5118
5119 static int hugetlb_acct_memory(struct hstate *h, long delta)
5120 {
5121         int ret = -ENOMEM;
5122
5123         if (!delta)
5124                 return 0;
5125
5126         spin_lock_irq(&hugetlb_lock);
5127         /*
5128          * When cpuset is configured, it breaks the strict hugetlb page
5129          * reservation as the accounting is done on a global variable. Such
5130          * reservation is completely rubbish in the presence of cpuset because
5131          * the reservation is not checked against page availability for the
5132          * current cpuset. Application can still potentially OOM'ed by kernel
5133          * with lack of free htlb page in cpuset that the task is in.
5134          * Attempt to enforce strict accounting with cpuset is almost
5135          * impossible (or too ugly) because cpuset is too fluid that
5136          * task or memory node can be dynamically moved between cpusets.
5137          *
5138          * The change of semantics for shared hugetlb mapping with cpuset is
5139          * undesirable. However, in order to preserve some of the semantics,
5140          * we fall back to check against current free page availability as
5141          * a best attempt and hopefully to minimize the impact of changing
5142          * semantics that cpuset has.
5143          *
5144          * Apart from cpuset, we also have memory policy mechanism that
5145          * also determines from which node the kernel will allocate memory
5146          * in a NUMA system. So similar to cpuset, we also should consider
5147          * the memory policy of the current task. Similar to the description
5148          * above.
5149          */
5150         if (delta > 0) {
5151                 if (gather_surplus_pages(h, delta) < 0)
5152                         goto out;
5153
5154                 if (delta > allowed_mems_nr(h)) {
5155                         return_unused_surplus_pages(h, delta);
5156                         goto out;
5157                 }
5158         }
5159
5160         ret = 0;
5161         if (delta < 0)
5162                 return_unused_surplus_pages(h, (unsigned long) -delta);
5163
5164 out:
5165         spin_unlock_irq(&hugetlb_lock);
5166         return ret;
5167 }
5168
5169 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5170 {
5171         struct resv_map *resv = vma_resv_map(vma);
5172
5173         /*
5174          * HPAGE_RESV_OWNER indicates a private mapping.
5175          * This new VMA should share its siblings reservation map if present.
5176          * The VMA will only ever have a valid reservation map pointer where
5177          * it is being copied for another still existing VMA.  As that VMA
5178          * has a reference to the reservation map it cannot disappear until
5179          * after this open call completes.  It is therefore safe to take a
5180          * new reference here without additional locking.
5181          */
5182         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5183                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5184                 kref_get(&resv->refs);
5185         }
5186
5187         /*
5188          * vma_lock structure for sharable mappings is vma specific.
5189          * Clear old pointer (if copied via vm_area_dup) and allocate
5190          * new structure.  Before clearing, make sure vma_lock is not
5191          * for this vma.
5192          */
5193         if (vma->vm_flags & VM_MAYSHARE) {
5194                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5195
5196                 if (vma_lock) {
5197                         if (vma_lock->vma != vma) {
5198                                 vma->vm_private_data = NULL;
5199                                 hugetlb_vma_lock_alloc(vma);
5200                         } else
5201                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5202                 } else
5203                         hugetlb_vma_lock_alloc(vma);
5204         }
5205 }
5206
5207 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5208 {
5209         struct hstate *h = hstate_vma(vma);
5210         struct resv_map *resv;
5211         struct hugepage_subpool *spool = subpool_vma(vma);
5212         unsigned long reserve, start, end;
5213         long gbl_reserve;
5214
5215         hugetlb_vma_lock_free(vma);
5216
5217         resv = vma_resv_map(vma);
5218         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5219                 return;
5220
5221         start = vma_hugecache_offset(h, vma, vma->vm_start);
5222         end = vma_hugecache_offset(h, vma, vma->vm_end);
5223
5224         reserve = (end - start) - region_count(resv, start, end);
5225         hugetlb_cgroup_uncharge_counter(resv, start, end);
5226         if (reserve) {
5227                 /*
5228                  * Decrement reserve counts.  The global reserve count may be
5229                  * adjusted if the subpool has a minimum size.
5230                  */
5231                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5232                 hugetlb_acct_memory(h, -gbl_reserve);
5233         }
5234
5235         kref_put(&resv->refs, resv_map_release);
5236 }
5237
5238 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5239 {
5240         if (addr & ~(huge_page_mask(hstate_vma(vma))))
5241                 return -EINVAL;
5242
5243         /*
5244          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5245          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5246          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5247          */
5248         if (addr & ~PUD_MASK) {
5249                 /*
5250                  * hugetlb_vm_op_split is called right before we attempt to
5251                  * split the VMA. We will need to unshare PMDs in the old and
5252                  * new VMAs, so let's unshare before we split.
5253                  */
5254                 unsigned long floor = addr & PUD_MASK;
5255                 unsigned long ceil = floor + PUD_SIZE;
5256
5257                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5258                         hugetlb_unshare_pmds(vma, floor, ceil);
5259         }
5260
5261         return 0;
5262 }
5263
5264 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5265 {
5266         return huge_page_size(hstate_vma(vma));
5267 }
5268
5269 /*
5270  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5271  * handle_mm_fault() to try to instantiate regular-sized pages in the
5272  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5273  * this far.
5274  */
5275 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5276 {
5277         BUG();
5278         return 0;
5279 }
5280
5281 /*
5282  * When a new function is introduced to vm_operations_struct and added
5283  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5284  * This is because under System V memory model, mappings created via
5285  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5286  * their original vm_ops are overwritten with shm_vm_ops.
5287  */
5288 const struct vm_operations_struct hugetlb_vm_ops = {
5289         .fault = hugetlb_vm_op_fault,
5290         .open = hugetlb_vm_op_open,
5291         .close = hugetlb_vm_op_close,
5292         .may_split = hugetlb_vm_op_split,
5293         .pagesize = hugetlb_vm_op_pagesize,
5294 };
5295
5296 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5297                                 int writable)
5298 {
5299         pte_t entry;
5300         unsigned int shift = huge_page_shift(hstate_vma(vma));
5301
5302         if (writable) {
5303                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5304                                          vma->vm_page_prot)));
5305         } else {
5306                 entry = huge_pte_wrprotect(mk_huge_pte(page,
5307                                            vma->vm_page_prot));
5308         }
5309         entry = pte_mkyoung(entry);
5310         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5311
5312         return entry;
5313 }
5314
5315 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5316                                    unsigned long address, pte_t *ptep)
5317 {
5318         pte_t entry;
5319
5320         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5321         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5322                 update_mmu_cache(vma, address, ptep);
5323 }
5324
5325 bool is_hugetlb_entry_migration(pte_t pte)
5326 {
5327         swp_entry_t swp;
5328
5329         if (huge_pte_none(pte) || pte_present(pte))
5330                 return false;
5331         swp = pte_to_swp_entry(pte);
5332         if (is_migration_entry(swp))
5333                 return true;
5334         else
5335                 return false;
5336 }
5337
5338 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5339 {
5340         swp_entry_t swp;
5341
5342         if (huge_pte_none(pte) || pte_present(pte))
5343                 return false;
5344         swp = pte_to_swp_entry(pte);
5345         if (is_hwpoison_entry(swp))
5346                 return true;
5347         else
5348                 return false;
5349 }
5350
5351 static void
5352 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5353                       struct folio *new_folio, pte_t old, unsigned long sz)
5354 {
5355         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5356
5357         __folio_mark_uptodate(new_folio);
5358         hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5359         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5360                 newpte = huge_pte_mkuffd_wp(newpte);
5361         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5362         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5363         folio_set_hugetlb_migratable(new_folio);
5364 }
5365
5366 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5367                             struct vm_area_struct *dst_vma,
5368                             struct vm_area_struct *src_vma)
5369 {
5370         pte_t *src_pte, *dst_pte, entry;
5371         struct folio *pte_folio;
5372         unsigned long addr;
5373         bool cow = is_cow_mapping(src_vma->vm_flags);
5374         struct hstate *h = hstate_vma(src_vma);
5375         unsigned long sz = huge_page_size(h);
5376         unsigned long npages = pages_per_huge_page(h);
5377         struct mmu_notifier_range range;
5378         unsigned long last_addr_mask;
5379         int ret = 0;
5380
5381         if (cow) {
5382                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5383                                         src_vma->vm_start,
5384                                         src_vma->vm_end);
5385                 mmu_notifier_invalidate_range_start(&range);
5386                 vma_assert_write_locked(src_vma);
5387                 raw_write_seqcount_begin(&src->write_protect_seq);
5388         } else {
5389                 /*
5390                  * For shared mappings the vma lock must be held before
5391                  * calling hugetlb_walk() in the src vma. Otherwise, the
5392                  * returned ptep could go away if part of a shared pmd and
5393                  * another thread calls huge_pmd_unshare.
5394                  */
5395                 hugetlb_vma_lock_read(src_vma);
5396         }
5397
5398         last_addr_mask = hugetlb_mask_last_page(h);
5399         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5400                 spinlock_t *src_ptl, *dst_ptl;
5401                 src_pte = hugetlb_walk(src_vma, addr, sz);
5402                 if (!src_pte) {
5403                         addr |= last_addr_mask;
5404                         continue;
5405                 }
5406                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5407                 if (!dst_pte) {
5408                         ret = -ENOMEM;
5409                         break;
5410                 }
5411
5412                 /*
5413                  * If the pagetables are shared don't copy or take references.
5414                  *
5415                  * dst_pte == src_pte is the common case of src/dest sharing.
5416                  * However, src could have 'unshared' and dst shares with
5417                  * another vma. So page_count of ptep page is checked instead
5418                  * to reliably determine whether pte is shared.
5419                  */
5420                 if (page_count(virt_to_page(dst_pte)) > 1) {
5421                         addr |= last_addr_mask;
5422                         continue;
5423                 }
5424
5425                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5426                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5427                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5428                 entry = huge_ptep_get(src_pte);
5429 again:
5430                 if (huge_pte_none(entry)) {
5431                         /*
5432                          * Skip if src entry none.
5433                          */
5434                         ;
5435                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5436                         if (!userfaultfd_wp(dst_vma))
5437                                 entry = huge_pte_clear_uffd_wp(entry);
5438                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5439                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5440                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5441                         bool uffd_wp = pte_swp_uffd_wp(entry);
5442
5443                         if (!is_readable_migration_entry(swp_entry) && cow) {
5444                                 /*
5445                                  * COW mappings require pages in both
5446                                  * parent and child to be set to read.
5447                                  */
5448                                 swp_entry = make_readable_migration_entry(
5449                                                         swp_offset(swp_entry));
5450                                 entry = swp_entry_to_pte(swp_entry);
5451                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5452                                         entry = pte_swp_mkuffd_wp(entry);
5453                                 set_huge_pte_at(src, addr, src_pte, entry, sz);
5454                         }
5455                         if (!userfaultfd_wp(dst_vma))
5456                                 entry = huge_pte_clear_uffd_wp(entry);
5457                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5458                 } else if (unlikely(is_pte_marker(entry))) {
5459                         pte_marker marker = copy_pte_marker(
5460                                 pte_to_swp_entry(entry), dst_vma);
5461
5462                         if (marker)
5463                                 set_huge_pte_at(dst, addr, dst_pte,
5464                                                 make_pte_marker(marker), sz);
5465                 } else {
5466                         entry = huge_ptep_get(src_pte);
5467                         pte_folio = page_folio(pte_page(entry));
5468                         folio_get(pte_folio);
5469
5470                         /*
5471                          * Failing to duplicate the anon rmap is a rare case
5472                          * where we see pinned hugetlb pages while they're
5473                          * prone to COW. We need to do the COW earlier during
5474                          * fork.
5475                          *
5476                          * When pre-allocating the page or copying data, we
5477                          * need to be without the pgtable locks since we could
5478                          * sleep during the process.
5479                          */
5480                         if (!folio_test_anon(pte_folio)) {
5481                                 hugetlb_add_file_rmap(pte_folio);
5482                         } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5483                                 pte_t src_pte_old = entry;
5484                                 struct folio *new_folio;
5485
5486                                 spin_unlock(src_ptl);
5487                                 spin_unlock(dst_ptl);
5488                                 /* Do not use reserve as it's private owned */
5489                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5490                                 if (IS_ERR(new_folio)) {
5491                                         folio_put(pte_folio);
5492                                         ret = PTR_ERR(new_folio);
5493                                         break;
5494                                 }
5495                                 ret = copy_user_large_folio(new_folio,
5496                                                             pte_folio,
5497                                                             addr, dst_vma);
5498                                 folio_put(pte_folio);
5499                                 if (ret) {
5500                                         folio_put(new_folio);
5501                                         break;
5502                                 }
5503
5504                                 /* Install the new hugetlb folio if src pte stable */
5505                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5506                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5507                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5508                                 entry = huge_ptep_get(src_pte);
5509                                 if (!pte_same(src_pte_old, entry)) {
5510                                         restore_reserve_on_error(h, dst_vma, addr,
5511                                                                 new_folio);
5512                                         folio_put(new_folio);
5513                                         /* huge_ptep of dst_pte won't change as in child */
5514                                         goto again;
5515                                 }
5516                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5517                                                       new_folio, src_pte_old, sz);
5518                                 spin_unlock(src_ptl);
5519                                 spin_unlock(dst_ptl);
5520                                 continue;
5521                         }
5522
5523                         if (cow) {
5524                                 /*
5525                                  * No need to notify as we are downgrading page
5526                                  * table protection not changing it to point
5527                                  * to a new page.
5528                                  *
5529                                  * See Documentation/mm/mmu_notifier.rst
5530                                  */
5531                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5532                                 entry = huge_pte_wrprotect(entry);
5533                         }
5534
5535                         if (!userfaultfd_wp(dst_vma))
5536                                 entry = huge_pte_clear_uffd_wp(entry);
5537
5538                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5539                         hugetlb_count_add(npages, dst);
5540                 }
5541                 spin_unlock(src_ptl);
5542                 spin_unlock(dst_ptl);
5543         }
5544
5545         if (cow) {
5546                 raw_write_seqcount_end(&src->write_protect_seq);
5547                 mmu_notifier_invalidate_range_end(&range);
5548         } else {
5549                 hugetlb_vma_unlock_read(src_vma);
5550         }
5551
5552         return ret;
5553 }
5554
5555 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5556                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5557                           unsigned long sz)
5558 {
5559         struct hstate *h = hstate_vma(vma);
5560         struct mm_struct *mm = vma->vm_mm;
5561         spinlock_t *src_ptl, *dst_ptl;
5562         pte_t pte;
5563
5564         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5565         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5566
5567         /*
5568          * We don't have to worry about the ordering of src and dst ptlocks
5569          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5570          */
5571         if (src_ptl != dst_ptl)
5572                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5573
5574         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5575         set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5576
5577         if (src_ptl != dst_ptl)
5578                 spin_unlock(src_ptl);
5579         spin_unlock(dst_ptl);
5580 }
5581
5582 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5583                              struct vm_area_struct *new_vma,
5584                              unsigned long old_addr, unsigned long new_addr,
5585                              unsigned long len)
5586 {
5587         struct hstate *h = hstate_vma(vma);
5588         struct address_space *mapping = vma->vm_file->f_mapping;
5589         unsigned long sz = huge_page_size(h);
5590         struct mm_struct *mm = vma->vm_mm;
5591         unsigned long old_end = old_addr + len;
5592         unsigned long last_addr_mask;
5593         pte_t *src_pte, *dst_pte;
5594         struct mmu_notifier_range range;
5595         bool shared_pmd = false;
5596
5597         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5598                                 old_end);
5599         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5600         /*
5601          * In case of shared PMDs, we should cover the maximum possible
5602          * range.
5603          */
5604         flush_cache_range(vma, range.start, range.end);
5605
5606         mmu_notifier_invalidate_range_start(&range);
5607         last_addr_mask = hugetlb_mask_last_page(h);
5608         /* Prevent race with file truncation */
5609         hugetlb_vma_lock_write(vma);
5610         i_mmap_lock_write(mapping);
5611         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5612                 src_pte = hugetlb_walk(vma, old_addr, sz);
5613                 if (!src_pte) {
5614                         old_addr |= last_addr_mask;
5615                         new_addr |= last_addr_mask;
5616                         continue;
5617                 }
5618                 if (huge_pte_none(huge_ptep_get(src_pte)))
5619                         continue;
5620
5621                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5622                         shared_pmd = true;
5623                         old_addr |= last_addr_mask;
5624                         new_addr |= last_addr_mask;
5625                         continue;
5626                 }
5627
5628                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5629                 if (!dst_pte)
5630                         break;
5631
5632                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5633         }
5634
5635         if (shared_pmd)
5636                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5637         else
5638                 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5639         mmu_notifier_invalidate_range_end(&range);
5640         i_mmap_unlock_write(mapping);
5641         hugetlb_vma_unlock_write(vma);
5642
5643         return len + old_addr - old_end;
5644 }
5645
5646 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5647                             unsigned long start, unsigned long end,
5648                             struct page *ref_page, zap_flags_t zap_flags)
5649 {
5650         struct mm_struct *mm = vma->vm_mm;
5651         unsigned long address;
5652         pte_t *ptep;
5653         pte_t pte;
5654         spinlock_t *ptl;
5655         struct page *page;
5656         struct hstate *h = hstate_vma(vma);
5657         unsigned long sz = huge_page_size(h);
5658         bool adjust_reservation = false;
5659         unsigned long last_addr_mask;
5660         bool force_flush = false;
5661
5662         WARN_ON(!is_vm_hugetlb_page(vma));
5663         BUG_ON(start & ~huge_page_mask(h));
5664         BUG_ON(end & ~huge_page_mask(h));
5665
5666         /*
5667          * This is a hugetlb vma, all the pte entries should point
5668          * to huge page.
5669          */
5670         tlb_change_page_size(tlb, sz);
5671         tlb_start_vma(tlb, vma);
5672
5673         last_addr_mask = hugetlb_mask_last_page(h);
5674         address = start;
5675         for (; address < end; address += sz) {
5676                 ptep = hugetlb_walk(vma, address, sz);
5677                 if (!ptep) {
5678                         address |= last_addr_mask;
5679                         continue;
5680                 }
5681
5682                 ptl = huge_pte_lock(h, mm, ptep);
5683                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5684                         spin_unlock(ptl);
5685                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5686                         force_flush = true;
5687                         address |= last_addr_mask;
5688                         continue;
5689                 }
5690
5691                 pte = huge_ptep_get(ptep);
5692                 if (huge_pte_none(pte)) {
5693                         spin_unlock(ptl);
5694                         continue;
5695                 }
5696
5697                 /*
5698                  * Migrating hugepage or HWPoisoned hugepage is already
5699                  * unmapped and its refcount is dropped, so just clear pte here.
5700                  */
5701                 if (unlikely(!pte_present(pte))) {
5702                         /*
5703                          * If the pte was wr-protected by uffd-wp in any of the
5704                          * swap forms, meanwhile the caller does not want to
5705                          * drop the uffd-wp bit in this zap, then replace the
5706                          * pte with a marker.
5707                          */
5708                         if (pte_swp_uffd_wp_any(pte) &&
5709                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5710                                 set_huge_pte_at(mm, address, ptep,
5711                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
5712                                                 sz);
5713                         else
5714                                 huge_pte_clear(mm, address, ptep, sz);
5715                         spin_unlock(ptl);
5716                         continue;
5717                 }
5718
5719                 page = pte_page(pte);
5720                 /*
5721                  * If a reference page is supplied, it is because a specific
5722                  * page is being unmapped, not a range. Ensure the page we
5723                  * are about to unmap is the actual page of interest.
5724                  */
5725                 if (ref_page) {
5726                         if (page != ref_page) {
5727                                 spin_unlock(ptl);
5728                                 continue;
5729                         }
5730                         /*
5731                          * Mark the VMA as having unmapped its page so that
5732                          * future faults in this VMA will fail rather than
5733                          * looking like data was lost
5734                          */
5735                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5736                 }
5737
5738                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5739                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5740                 if (huge_pte_dirty(pte))
5741                         set_page_dirty(page);
5742                 /* Leave a uffd-wp pte marker if needed */
5743                 if (huge_pte_uffd_wp(pte) &&
5744                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5745                         set_huge_pte_at(mm, address, ptep,
5746                                         make_pte_marker(PTE_MARKER_UFFD_WP),
5747                                         sz);
5748                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5749                 hugetlb_remove_rmap(page_folio(page));
5750
5751                 /*
5752                  * Restore the reservation for anonymous page, otherwise the
5753                  * backing page could be stolen by someone.
5754                  * If there we are freeing a surplus, do not set the restore
5755                  * reservation bit.
5756                  */
5757                 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5758                     folio_test_anon(page_folio(page))) {
5759                         folio_set_hugetlb_restore_reserve(page_folio(page));
5760                         /* Reservation to be adjusted after the spin lock */
5761                         adjust_reservation = true;
5762                 }
5763
5764                 spin_unlock(ptl);
5765
5766                 /*
5767                  * Adjust the reservation for the region that will have the
5768                  * reserve restored. Keep in mind that vma_needs_reservation() changes
5769                  * resv->adds_in_progress if it succeeds. If this is not done,
5770                  * do_exit() will not see it, and will keep the reservation
5771                  * forever.
5772                  */
5773                 if (adjust_reservation && vma_needs_reservation(h, vma, address))
5774                         vma_add_reservation(h, vma, address);
5775
5776                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5777                 /*
5778                  * Bail out after unmapping reference page if supplied
5779                  */
5780                 if (ref_page)
5781                         break;
5782         }
5783         tlb_end_vma(tlb, vma);
5784
5785         /*
5786          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5787          * could defer the flush until now, since by holding i_mmap_rwsem we
5788          * guaranteed that the last refernece would not be dropped. But we must
5789          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5790          * dropped and the last reference to the shared PMDs page might be
5791          * dropped as well.
5792          *
5793          * In theory we could defer the freeing of the PMD pages as well, but
5794          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5795          * detect sharing, so we cannot defer the release of the page either.
5796          * Instead, do flush now.
5797          */
5798         if (force_flush)
5799                 tlb_flush_mmu_tlbonly(tlb);
5800 }
5801
5802 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5803                          unsigned long *start, unsigned long *end)
5804 {
5805         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5806                 return;
5807
5808         adjust_range_if_pmd_sharing_possible(vma, start, end);
5809         hugetlb_vma_lock_write(vma);
5810         if (vma->vm_file)
5811                 i_mmap_lock_write(vma->vm_file->f_mapping);
5812 }
5813
5814 void __hugetlb_zap_end(struct vm_area_struct *vma,
5815                        struct zap_details *details)
5816 {
5817         zap_flags_t zap_flags = details ? details->zap_flags : 0;
5818
5819         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5820                 return;
5821
5822         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5823                 /*
5824                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5825                  * When the vma_lock is freed, this makes the vma ineligible
5826                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5827                  * pmd sharing.  This is important as page tables for this
5828                  * unmapped range will be asynchrously deleted.  If the page
5829                  * tables are shared, there will be issues when accessed by
5830                  * someone else.
5831                  */
5832                 __hugetlb_vma_unlock_write_free(vma);
5833         } else {
5834                 hugetlb_vma_unlock_write(vma);
5835         }
5836
5837         if (vma->vm_file)
5838                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5839 }
5840
5841 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5842                           unsigned long end, struct page *ref_page,
5843                           zap_flags_t zap_flags)
5844 {
5845         struct mmu_notifier_range range;
5846         struct mmu_gather tlb;
5847
5848         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5849                                 start, end);
5850         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5851         mmu_notifier_invalidate_range_start(&range);
5852         tlb_gather_mmu(&tlb, vma->vm_mm);
5853
5854         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5855
5856         mmu_notifier_invalidate_range_end(&range);
5857         tlb_finish_mmu(&tlb);
5858 }
5859
5860 /*
5861  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5862  * mapping it owns the reserve page for. The intention is to unmap the page
5863  * from other VMAs and let the children be SIGKILLed if they are faulting the
5864  * same region.
5865  */
5866 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5867                               struct page *page, unsigned long address)
5868 {
5869         struct hstate *h = hstate_vma(vma);
5870         struct vm_area_struct *iter_vma;
5871         struct address_space *mapping;
5872         pgoff_t pgoff;
5873
5874         /*
5875          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5876          * from page cache lookup which is in HPAGE_SIZE units.
5877          */
5878         address = address & huge_page_mask(h);
5879         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5880                         vma->vm_pgoff;
5881         mapping = vma->vm_file->f_mapping;
5882
5883         /*
5884          * Take the mapping lock for the duration of the table walk. As
5885          * this mapping should be shared between all the VMAs,
5886          * __unmap_hugepage_range() is called as the lock is already held
5887          */
5888         i_mmap_lock_write(mapping);
5889         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5890                 /* Do not unmap the current VMA */
5891                 if (iter_vma == vma)
5892                         continue;
5893
5894                 /*
5895                  * Shared VMAs have their own reserves and do not affect
5896                  * MAP_PRIVATE accounting but it is possible that a shared
5897                  * VMA is using the same page so check and skip such VMAs.
5898                  */
5899                 if (iter_vma->vm_flags & VM_MAYSHARE)
5900                         continue;
5901
5902                 /*
5903                  * Unmap the page from other VMAs without their own reserves.
5904                  * They get marked to be SIGKILLed if they fault in these
5905                  * areas. This is because a future no-page fault on this VMA
5906                  * could insert a zeroed page instead of the data existing
5907                  * from the time of fork. This would look like data corruption
5908                  */
5909                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5910                         unmap_hugepage_range(iter_vma, address,
5911                                              address + huge_page_size(h), page, 0);
5912         }
5913         i_mmap_unlock_write(mapping);
5914 }
5915
5916 /*
5917  * hugetlb_wp() should be called with page lock of the original hugepage held.
5918  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5919  * cannot race with other handlers or page migration.
5920  * Keep the pte_same checks anyway to make transition from the mutex easier.
5921  */
5922 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5923                        unsigned long address, pte_t *ptep, unsigned int flags,
5924                        struct folio *pagecache_folio, spinlock_t *ptl,
5925                        struct vm_fault *vmf)
5926 {
5927         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5928         pte_t pte = huge_ptep_get(ptep);
5929         struct hstate *h = hstate_vma(vma);
5930         struct folio *old_folio;
5931         struct folio *new_folio;
5932         int outside_reserve = 0;
5933         vm_fault_t ret = 0;
5934         unsigned long haddr = address & huge_page_mask(h);
5935         struct mmu_notifier_range range;
5936
5937         /*
5938          * Never handle CoW for uffd-wp protected pages.  It should be only
5939          * handled when the uffd-wp protection is removed.
5940          *
5941          * Note that only the CoW optimization path (in hugetlb_no_page())
5942          * can trigger this, because hugetlb_fault() will always resolve
5943          * uffd-wp bit first.
5944          */
5945         if (!unshare && huge_pte_uffd_wp(pte))
5946                 return 0;
5947
5948         /*
5949          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5950          * PTE mapped R/O such as maybe_mkwrite() would do.
5951          */
5952         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5953                 return VM_FAULT_SIGSEGV;
5954
5955         /* Let's take out MAP_SHARED mappings first. */
5956         if (vma->vm_flags & VM_MAYSHARE) {
5957                 set_huge_ptep_writable(vma, haddr, ptep);
5958                 return 0;
5959         }
5960
5961         old_folio = page_folio(pte_page(pte));
5962
5963         delayacct_wpcopy_start();
5964
5965 retry_avoidcopy:
5966         /*
5967          * If no-one else is actually using this page, we're the exclusive
5968          * owner and can reuse this page.
5969          */
5970         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5971                 if (!PageAnonExclusive(&old_folio->page)) {
5972                         folio_move_anon_rmap(old_folio, vma);
5973                         SetPageAnonExclusive(&old_folio->page);
5974                 }
5975                 if (likely(!unshare))
5976                         set_huge_ptep_writable(vma, haddr, ptep);
5977
5978                 delayacct_wpcopy_end();
5979                 return 0;
5980         }
5981         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5982                        PageAnonExclusive(&old_folio->page), &old_folio->page);
5983
5984         /*
5985          * If the process that created a MAP_PRIVATE mapping is about to
5986          * perform a COW due to a shared page count, attempt to satisfy
5987          * the allocation without using the existing reserves. The pagecache
5988          * page is used to determine if the reserve at this address was
5989          * consumed or not. If reserves were used, a partial faulted mapping
5990          * at the time of fork() could consume its reserves on COW instead
5991          * of the full address range.
5992          */
5993         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5994                         old_folio != pagecache_folio)
5995                 outside_reserve = 1;
5996
5997         folio_get(old_folio);
5998
5999         /*
6000          * Drop page table lock as buddy allocator may be called. It will
6001          * be acquired again before returning to the caller, as expected.
6002          */
6003         spin_unlock(ptl);
6004         new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
6005
6006         if (IS_ERR(new_folio)) {
6007                 /*
6008                  * If a process owning a MAP_PRIVATE mapping fails to COW,
6009                  * it is due to references held by a child and an insufficient
6010                  * huge page pool. To guarantee the original mappers
6011                  * reliability, unmap the page from child processes. The child
6012                  * may get SIGKILLed if it later faults.
6013                  */
6014                 if (outside_reserve) {
6015                         struct address_space *mapping = vma->vm_file->f_mapping;
6016                         pgoff_t idx;
6017                         u32 hash;
6018
6019                         folio_put(old_folio);
6020                         /*
6021                          * Drop hugetlb_fault_mutex and vma_lock before
6022                          * unmapping.  unmapping needs to hold vma_lock
6023                          * in write mode.  Dropping vma_lock in read mode
6024                          * here is OK as COW mappings do not interact with
6025                          * PMD sharing.
6026                          *
6027                          * Reacquire both after unmap operation.
6028                          */
6029                         idx = vma_hugecache_offset(h, vma, haddr);
6030                         hash = hugetlb_fault_mutex_hash(mapping, idx);
6031                         hugetlb_vma_unlock_read(vma);
6032                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6033
6034                         unmap_ref_private(mm, vma, &old_folio->page, haddr);
6035
6036                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6037                         hugetlb_vma_lock_read(vma);
6038                         spin_lock(ptl);
6039                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6040                         if (likely(ptep &&
6041                                    pte_same(huge_ptep_get(ptep), pte)))
6042                                 goto retry_avoidcopy;
6043                         /*
6044                          * race occurs while re-acquiring page table
6045                          * lock, and our job is done.
6046                          */
6047                         delayacct_wpcopy_end();
6048                         return 0;
6049                 }
6050
6051                 ret = vmf_error(PTR_ERR(new_folio));
6052                 goto out_release_old;
6053         }
6054
6055         /*
6056          * When the original hugepage is shared one, it does not have
6057          * anon_vma prepared.
6058          */
6059         ret = vmf_anon_prepare(vmf);
6060         if (unlikely(ret))
6061                 goto out_release_all;
6062
6063         if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
6064                 ret = VM_FAULT_HWPOISON_LARGE;
6065                 goto out_release_all;
6066         }
6067         __folio_mark_uptodate(new_folio);
6068
6069         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
6070                                 haddr + huge_page_size(h));
6071         mmu_notifier_invalidate_range_start(&range);
6072
6073         /*
6074          * Retake the page table lock to check for racing updates
6075          * before the page tables are altered
6076          */
6077         spin_lock(ptl);
6078         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6079         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
6080                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6081
6082                 /* Break COW or unshare */
6083                 huge_ptep_clear_flush(vma, haddr, ptep);
6084                 hugetlb_remove_rmap(old_folio);
6085                 hugetlb_add_new_anon_rmap(new_folio, vma, haddr);
6086                 if (huge_pte_uffd_wp(pte))
6087                         newpte = huge_pte_mkuffd_wp(newpte);
6088                 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
6089                 folio_set_hugetlb_migratable(new_folio);
6090                 /* Make the old page be freed below */
6091                 new_folio = old_folio;
6092         }
6093         spin_unlock(ptl);
6094         mmu_notifier_invalidate_range_end(&range);
6095 out_release_all:
6096         /*
6097          * No restore in case of successful pagetable update (Break COW or
6098          * unshare)
6099          */
6100         if (new_folio != old_folio)
6101                 restore_reserve_on_error(h, vma, haddr, new_folio);
6102         folio_put(new_folio);
6103 out_release_old:
6104         folio_put(old_folio);
6105
6106         spin_lock(ptl); /* Caller expects lock to be held */
6107
6108         delayacct_wpcopy_end();
6109         return ret;
6110 }
6111
6112 /*
6113  * Return whether there is a pagecache page to back given address within VMA.
6114  */
6115 bool hugetlbfs_pagecache_present(struct hstate *h,
6116                                  struct vm_area_struct *vma, unsigned long address)
6117 {
6118         struct address_space *mapping = vma->vm_file->f_mapping;
6119         pgoff_t idx = linear_page_index(vma, address);
6120         struct folio *folio;
6121
6122         folio = filemap_get_folio(mapping, idx);
6123         if (IS_ERR(folio))
6124                 return false;
6125         folio_put(folio);
6126         return true;
6127 }
6128
6129 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6130                            pgoff_t idx)
6131 {
6132         struct inode *inode = mapping->host;
6133         struct hstate *h = hstate_inode(inode);
6134         int err;
6135
6136         idx <<= huge_page_order(h);
6137         __folio_set_locked(folio);
6138         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6139
6140         if (unlikely(err)) {
6141                 __folio_clear_locked(folio);
6142                 return err;
6143         }
6144         folio_clear_hugetlb_restore_reserve(folio);
6145
6146         /*
6147          * mark folio dirty so that it will not be removed from cache/file
6148          * by non-hugetlbfs specific code paths.
6149          */
6150         folio_mark_dirty(folio);
6151
6152         spin_lock(&inode->i_lock);
6153         inode->i_blocks += blocks_per_huge_page(h);
6154         spin_unlock(&inode->i_lock);
6155         return 0;
6156 }
6157
6158 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6159                                                   struct address_space *mapping,
6160                                                   unsigned long reason)
6161 {
6162         u32 hash;
6163
6164         /*
6165          * vma_lock and hugetlb_fault_mutex must be dropped before handling
6166          * userfault. Also mmap_lock could be dropped due to handling
6167          * userfault, any vma operation should be careful from here.
6168          */
6169         hugetlb_vma_unlock_read(vmf->vma);
6170         hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6171         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6172         return handle_userfault(vmf, reason);
6173 }
6174
6175 /*
6176  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6177  * false if pte changed or is changing.
6178  */
6179 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6180                                pte_t *ptep, pte_t old_pte)
6181 {
6182         spinlock_t *ptl;
6183         bool same;
6184
6185         ptl = huge_pte_lock(h, mm, ptep);
6186         same = pte_same(huge_ptep_get(ptep), old_pte);
6187         spin_unlock(ptl);
6188
6189         return same;
6190 }
6191
6192 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
6193                         struct vm_area_struct *vma,
6194                         struct address_space *mapping, pgoff_t idx,
6195                         unsigned long address, pte_t *ptep,
6196                         pte_t old_pte, unsigned int flags,
6197                         struct vm_fault *vmf)
6198 {
6199         struct hstate *h = hstate_vma(vma);
6200         vm_fault_t ret = VM_FAULT_SIGBUS;
6201         int anon_rmap = 0;
6202         unsigned long size;
6203         struct folio *folio;
6204         pte_t new_pte;
6205         spinlock_t *ptl;
6206         unsigned long haddr = address & huge_page_mask(h);
6207         bool new_folio, new_pagecache_folio = false;
6208         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
6209
6210         /*
6211          * Currently, we are forced to kill the process in the event the
6212          * original mapper has unmapped pages from the child due to a failed
6213          * COW/unsharing. Warn that such a situation has occurred as it may not
6214          * be obvious.
6215          */
6216         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6217                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6218                            current->pid);
6219                 goto out;
6220         }
6221
6222         /*
6223          * Use page lock to guard against racing truncation
6224          * before we get page_table_lock.
6225          */
6226         new_folio = false;
6227         folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6228         if (IS_ERR(folio)) {
6229                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6230                 if (idx >= size)
6231                         goto out;
6232                 /* Check for page in userfault range */
6233                 if (userfaultfd_missing(vma)) {
6234                         /*
6235                          * Since hugetlb_no_page() was examining pte
6236                          * without pgtable lock, we need to re-test under
6237                          * lock because the pte may not be stable and could
6238                          * have changed from under us.  Try to detect
6239                          * either changed or during-changing ptes and retry
6240                          * properly when needed.
6241                          *
6242                          * Note that userfaultfd is actually fine with
6243                          * false positives (e.g. caused by pte changed),
6244                          * but not wrong logical events (e.g. caused by
6245                          * reading a pte during changing).  The latter can
6246                          * confuse the userspace, so the strictness is very
6247                          * much preferred.  E.g., MISSING event should
6248                          * never happen on the page after UFFDIO_COPY has
6249                          * correctly installed the page and returned.
6250                          */
6251                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6252                                 ret = 0;
6253                                 goto out;
6254                         }
6255
6256                         return hugetlb_handle_userfault(vmf, mapping,
6257                                                         VM_UFFD_MISSING);
6258                 }
6259
6260                 if (!(vma->vm_flags & VM_MAYSHARE)) {
6261                         ret = vmf_anon_prepare(vmf);
6262                         if (unlikely(ret))
6263                                 goto out;
6264                 }
6265
6266                 folio = alloc_hugetlb_folio(vma, haddr, 0);
6267                 if (IS_ERR(folio)) {
6268                         /*
6269                          * Returning error will result in faulting task being
6270                          * sent SIGBUS.  The hugetlb fault mutex prevents two
6271                          * tasks from racing to fault in the same page which
6272                          * could result in false unable to allocate errors.
6273                          * Page migration does not take the fault mutex, but
6274                          * does a clear then write of pte's under page table
6275                          * lock.  Page fault code could race with migration,
6276                          * notice the clear pte and try to allocate a page
6277                          * here.  Before returning error, get ptl and make
6278                          * sure there really is no pte entry.
6279                          */
6280                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
6281                                 ret = vmf_error(PTR_ERR(folio));
6282                         else
6283                                 ret = 0;
6284                         goto out;
6285                 }
6286                 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
6287                 __folio_mark_uptodate(folio);
6288                 new_folio = true;
6289
6290                 if (vma->vm_flags & VM_MAYSHARE) {
6291                         int err = hugetlb_add_to_page_cache(folio, mapping, idx);
6292                         if (err) {
6293                                 /*
6294                                  * err can't be -EEXIST which implies someone
6295                                  * else consumed the reservation since hugetlb
6296                                  * fault mutex is held when add a hugetlb page
6297                                  * to the page cache. So it's safe to call
6298                                  * restore_reserve_on_error() here.
6299                                  */
6300                                 restore_reserve_on_error(h, vma, haddr, folio);
6301                                 folio_put(folio);
6302                                 ret = VM_FAULT_SIGBUS;
6303                                 goto out;
6304                         }
6305                         new_pagecache_folio = true;
6306                 } else {
6307                         folio_lock(folio);
6308                         anon_rmap = 1;
6309                 }
6310         } else {
6311                 /*
6312                  * If memory error occurs between mmap() and fault, some process
6313                  * don't have hwpoisoned swap entry for errored virtual address.
6314                  * So we need to block hugepage fault by PG_hwpoison bit check.
6315                  */
6316                 if (unlikely(folio_test_hwpoison(folio))) {
6317                         ret = VM_FAULT_HWPOISON_LARGE |
6318                                 VM_FAULT_SET_HINDEX(hstate_index(h));
6319                         goto backout_unlocked;
6320                 }
6321
6322                 /* Check for page in userfault range. */
6323                 if (userfaultfd_minor(vma)) {
6324                         folio_unlock(folio);
6325                         folio_put(folio);
6326                         /* See comment in userfaultfd_missing() block above */
6327                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6328                                 ret = 0;
6329                                 goto out;
6330                         }
6331                         return hugetlb_handle_userfault(vmf, mapping,
6332                                                         VM_UFFD_MINOR);
6333                 }
6334         }
6335
6336         /*
6337          * If we are going to COW a private mapping later, we examine the
6338          * pending reservations for this page now. This will ensure that
6339          * any allocations necessary to record that reservation occur outside
6340          * the spinlock.
6341          */
6342         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6343                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6344                         ret = VM_FAULT_OOM;
6345                         goto backout_unlocked;
6346                 }
6347                 /* Just decrements count, does not deallocate */
6348                 vma_end_reservation(h, vma, haddr);
6349         }
6350
6351         ptl = huge_pte_lock(h, mm, ptep);
6352         ret = 0;
6353         /* If pte changed from under us, retry */
6354         if (!pte_same(huge_ptep_get(ptep), old_pte))
6355                 goto backout;
6356
6357         if (anon_rmap)
6358                 hugetlb_add_new_anon_rmap(folio, vma, haddr);
6359         else
6360                 hugetlb_add_file_rmap(folio);
6361         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6362                                 && (vma->vm_flags & VM_SHARED)));
6363         /*
6364          * If this pte was previously wr-protected, keep it wr-protected even
6365          * if populated.
6366          */
6367         if (unlikely(pte_marker_uffd_wp(old_pte)))
6368                 new_pte = huge_pte_mkuffd_wp(new_pte);
6369         set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6370
6371         hugetlb_count_add(pages_per_huge_page(h), mm);
6372         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6373                 /* Optimization, do the COW without a second fault */
6374                 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl, vmf);
6375         }
6376
6377         spin_unlock(ptl);
6378
6379         /*
6380          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6381          * found in the pagecache may not have hugetlb_migratable if they have
6382          * been isolated for migration.
6383          */
6384         if (new_folio)
6385                 folio_set_hugetlb_migratable(folio);
6386
6387         folio_unlock(folio);
6388 out:
6389         hugetlb_vma_unlock_read(vma);
6390         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6391         return ret;
6392
6393 backout:
6394         spin_unlock(ptl);
6395 backout_unlocked:
6396         if (new_folio && !new_pagecache_folio)
6397                 restore_reserve_on_error(h, vma, haddr, folio);
6398
6399         folio_unlock(folio);
6400         folio_put(folio);
6401         goto out;
6402 }
6403
6404 #ifdef CONFIG_SMP
6405 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6406 {
6407         unsigned long key[2];
6408         u32 hash;
6409
6410         key[0] = (unsigned long) mapping;
6411         key[1] = idx;
6412
6413         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6414
6415         return hash & (num_fault_mutexes - 1);
6416 }
6417 #else
6418 /*
6419  * For uniprocessor systems we always use a single mutex, so just
6420  * return 0 and avoid the hashing overhead.
6421  */
6422 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6423 {
6424         return 0;
6425 }
6426 #endif
6427
6428 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6429                         unsigned long address, unsigned int flags)
6430 {
6431         pte_t *ptep, entry;
6432         spinlock_t *ptl;
6433         vm_fault_t ret;
6434         u32 hash;
6435         struct folio *folio = NULL;
6436         struct folio *pagecache_folio = NULL;
6437         struct hstate *h = hstate_vma(vma);
6438         struct address_space *mapping;
6439         int need_wait_lock = 0;
6440         unsigned long haddr = address & huge_page_mask(h);
6441         struct vm_fault vmf = {
6442                 .vma = vma,
6443                 .address = haddr,
6444                 .real_address = address,
6445                 .flags = flags,
6446                 .pgoff = vma_hugecache_offset(h, vma, haddr),
6447                 /* TODO: Track hugetlb faults using vm_fault */
6448
6449                 /*
6450                  * Some fields may not be initialized, be careful as it may
6451                  * be hard to debug if called functions make assumptions
6452                  */
6453         };
6454
6455         /*
6456          * Serialize hugepage allocation and instantiation, so that we don't
6457          * get spurious allocation failures if two CPUs race to instantiate
6458          * the same page in the page cache.
6459          */
6460         mapping = vma->vm_file->f_mapping;
6461         hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6462         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6463
6464         /*
6465          * Acquire vma lock before calling huge_pte_alloc and hold
6466          * until finished with ptep.  This prevents huge_pmd_unshare from
6467          * being called elsewhere and making the ptep no longer valid.
6468          */
6469         hugetlb_vma_lock_read(vma);
6470         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6471         if (!ptep) {
6472                 hugetlb_vma_unlock_read(vma);
6473                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6474                 return VM_FAULT_OOM;
6475         }
6476
6477         entry = huge_ptep_get(ptep);
6478         if (huge_pte_none_mostly(entry)) {
6479                 if (is_pte_marker(entry)) {
6480                         pte_marker marker =
6481                                 pte_marker_get(pte_to_swp_entry(entry));
6482
6483                         if (marker & PTE_MARKER_POISONED) {
6484                                 ret = VM_FAULT_HWPOISON_LARGE;
6485                                 goto out_mutex;
6486                         }
6487                 }
6488
6489                 /*
6490                  * Other PTE markers should be handled the same way as none PTE.
6491                  *
6492                  * hugetlb_no_page will drop vma lock and hugetlb fault
6493                  * mutex internally, which make us return immediately.
6494                  */
6495                 return hugetlb_no_page(mm, vma, mapping, vmf.pgoff, address,
6496                                         ptep, entry, flags, &vmf);
6497         }
6498
6499         ret = 0;
6500
6501         /*
6502          * entry could be a migration/hwpoison entry at this point, so this
6503          * check prevents the kernel from going below assuming that we have
6504          * an active hugepage in pagecache. This goto expects the 2nd page
6505          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6506          * properly handle it.
6507          */
6508         if (!pte_present(entry)) {
6509                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6510                         /*
6511                          * Release the hugetlb fault lock now, but retain
6512                          * the vma lock, because it is needed to guard the
6513                          * huge_pte_lockptr() later in
6514                          * migration_entry_wait_huge(). The vma lock will
6515                          * be released there.
6516                          */
6517                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6518                         migration_entry_wait_huge(vma, ptep);
6519                         return 0;
6520                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6521                         ret = VM_FAULT_HWPOISON_LARGE |
6522                             VM_FAULT_SET_HINDEX(hstate_index(h));
6523                 goto out_mutex;
6524         }
6525
6526         /*
6527          * If we are going to COW/unshare the mapping later, we examine the
6528          * pending reservations for this page now. This will ensure that any
6529          * allocations necessary to record that reservation occur outside the
6530          * spinlock. Also lookup the pagecache page now as it is used to
6531          * determine if a reservation has been consumed.
6532          */
6533         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6534             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6535                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6536                         ret = VM_FAULT_OOM;
6537                         goto out_mutex;
6538                 }
6539                 /* Just decrements count, does not deallocate */
6540                 vma_end_reservation(h, vma, haddr);
6541
6542                 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6543                                                              vmf.pgoff);
6544                 if (IS_ERR(pagecache_folio))
6545                         pagecache_folio = NULL;
6546         }
6547
6548         ptl = huge_pte_lock(h, mm, ptep);
6549
6550         /* Check for a racing update before calling hugetlb_wp() */
6551         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6552                 goto out_ptl;
6553
6554         /* Handle userfault-wp first, before trying to lock more pages */
6555         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6556             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6557                 if (!userfaultfd_wp_async(vma)) {
6558                         spin_unlock(ptl);
6559                         if (pagecache_folio) {
6560                                 folio_unlock(pagecache_folio);
6561                                 folio_put(pagecache_folio);
6562                         }
6563                         hugetlb_vma_unlock_read(vma);
6564                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6565                         return handle_userfault(&vmf, VM_UFFD_WP);
6566                 }
6567
6568                 entry = huge_pte_clear_uffd_wp(entry);
6569                 set_huge_pte_at(mm, haddr, ptep, entry,
6570                                 huge_page_size(hstate_vma(vma)));
6571                 /* Fallthrough to CoW */
6572         }
6573
6574         /*
6575          * hugetlb_wp() requires page locks of pte_page(entry) and
6576          * pagecache_folio, so here we need take the former one
6577          * when folio != pagecache_folio or !pagecache_folio.
6578          */
6579         folio = page_folio(pte_page(entry));
6580         if (folio != pagecache_folio)
6581                 if (!folio_trylock(folio)) {
6582                         need_wait_lock = 1;
6583                         goto out_ptl;
6584                 }
6585
6586         folio_get(folio);
6587
6588         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6589                 if (!huge_pte_write(entry)) {
6590                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6591                                          pagecache_folio, ptl, &vmf);
6592                         goto out_put_page;
6593                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6594                         entry = huge_pte_mkdirty(entry);
6595                 }
6596         }
6597         entry = pte_mkyoung(entry);
6598         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6599                                                 flags & FAULT_FLAG_WRITE))
6600                 update_mmu_cache(vma, haddr, ptep);
6601 out_put_page:
6602         if (folio != pagecache_folio)
6603                 folio_unlock(folio);
6604         folio_put(folio);
6605 out_ptl:
6606         spin_unlock(ptl);
6607
6608         if (pagecache_folio) {
6609                 folio_unlock(pagecache_folio);
6610                 folio_put(pagecache_folio);
6611         }
6612 out_mutex:
6613         hugetlb_vma_unlock_read(vma);
6614         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6615         /*
6616          * Generally it's safe to hold refcount during waiting page lock. But
6617          * here we just wait to defer the next page fault to avoid busy loop and
6618          * the page is not used after unlocked before returning from the current
6619          * page fault. So we are safe from accessing freed page, even if we wait
6620          * here without taking refcount.
6621          */
6622         if (need_wait_lock)
6623                 folio_wait_locked(folio);
6624         return ret;
6625 }
6626
6627 #ifdef CONFIG_USERFAULTFD
6628 /*
6629  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6630  */
6631 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6632                 struct vm_area_struct *vma, unsigned long address)
6633 {
6634         struct mempolicy *mpol;
6635         nodemask_t *nodemask;
6636         struct folio *folio;
6637         gfp_t gfp_mask;
6638         int node;
6639
6640         gfp_mask = htlb_alloc_mask(h);
6641         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6642         /*
6643          * This is used to allocate a temporary hugetlb to hold the copied
6644          * content, which will then be copied again to the final hugetlb
6645          * consuming a reservation. Set the alloc_fallback to false to indicate
6646          * that breaking the per-node hugetlb pool is not allowed in this case.
6647          */
6648         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6649         mpol_cond_put(mpol);
6650
6651         return folio;
6652 }
6653
6654 /*
6655  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6656  * with modifications for hugetlb pages.
6657  */
6658 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6659                              struct vm_area_struct *dst_vma,
6660                              unsigned long dst_addr,
6661                              unsigned long src_addr,
6662                              uffd_flags_t flags,
6663                              struct folio **foliop)
6664 {
6665         struct mm_struct *dst_mm = dst_vma->vm_mm;
6666         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6667         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6668         struct hstate *h = hstate_vma(dst_vma);
6669         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6670         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6671         unsigned long size;
6672         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6673         pte_t _dst_pte;
6674         spinlock_t *ptl;
6675         int ret = -ENOMEM;
6676         struct folio *folio;
6677         int writable;
6678         bool folio_in_pagecache = false;
6679
6680         if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6681                 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6682
6683                 /* Don't overwrite any existing PTEs (even markers) */
6684                 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6685                         spin_unlock(ptl);
6686                         return -EEXIST;
6687                 }
6688
6689                 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6690                 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6691                                 huge_page_size(h));
6692
6693                 /* No need to invalidate - it was non-present before */
6694                 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6695
6696                 spin_unlock(ptl);
6697                 return 0;
6698         }
6699
6700         if (is_continue) {
6701                 ret = -EFAULT;
6702                 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6703                 if (IS_ERR(folio))
6704                         goto out;
6705                 folio_in_pagecache = true;
6706         } else if (!*foliop) {
6707                 /* If a folio already exists, then it's UFFDIO_COPY for
6708                  * a non-missing case. Return -EEXIST.
6709                  */
6710                 if (vm_shared &&
6711                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6712                         ret = -EEXIST;
6713                         goto out;
6714                 }
6715
6716                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6717                 if (IS_ERR(folio)) {
6718                         ret = -ENOMEM;
6719                         goto out;
6720                 }
6721
6722                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6723                                            false);
6724
6725                 /* fallback to copy_from_user outside mmap_lock */
6726                 if (unlikely(ret)) {
6727                         ret = -ENOENT;
6728                         /* Free the allocated folio which may have
6729                          * consumed a reservation.
6730                          */
6731                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6732                         folio_put(folio);
6733
6734                         /* Allocate a temporary folio to hold the copied
6735                          * contents.
6736                          */
6737                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6738                         if (!folio) {
6739                                 ret = -ENOMEM;
6740                                 goto out;
6741                         }
6742                         *foliop = folio;
6743                         /* Set the outparam foliop and return to the caller to
6744                          * copy the contents outside the lock. Don't free the
6745                          * folio.
6746                          */
6747                         goto out;
6748                 }
6749         } else {
6750                 if (vm_shared &&
6751                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6752                         folio_put(*foliop);
6753                         ret = -EEXIST;
6754                         *foliop = NULL;
6755                         goto out;
6756                 }
6757
6758                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6759                 if (IS_ERR(folio)) {
6760                         folio_put(*foliop);
6761                         ret = -ENOMEM;
6762                         *foliop = NULL;
6763                         goto out;
6764                 }
6765                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6766                 folio_put(*foliop);
6767                 *foliop = NULL;
6768                 if (ret) {
6769                         folio_put(folio);
6770                         goto out;
6771                 }
6772         }
6773
6774         /*
6775          * If we just allocated a new page, we need a memory barrier to ensure
6776          * that preceding stores to the page become visible before the
6777          * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6778          * is what we need.
6779          *
6780          * In the case where we have not allocated a new page (is_continue),
6781          * the page must already be uptodate. UFFDIO_CONTINUE already includes
6782          * an earlier smp_wmb() to ensure that prior stores will be visible
6783          * before the set_pte_at() write.
6784          */
6785         if (!is_continue)
6786                 __folio_mark_uptodate(folio);
6787         else
6788                 WARN_ON_ONCE(!folio_test_uptodate(folio));
6789
6790         /* Add shared, newly allocated pages to the page cache. */
6791         if (vm_shared && !is_continue) {
6792                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6793                 ret = -EFAULT;
6794                 if (idx >= size)
6795                         goto out_release_nounlock;
6796
6797                 /*
6798                  * Serialization between remove_inode_hugepages() and
6799                  * hugetlb_add_to_page_cache() below happens through the
6800                  * hugetlb_fault_mutex_table that here must be hold by
6801                  * the caller.
6802                  */
6803                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6804                 if (ret)
6805                         goto out_release_nounlock;
6806                 folio_in_pagecache = true;
6807         }
6808
6809         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6810
6811         ret = -EIO;
6812         if (folio_test_hwpoison(folio))
6813                 goto out_release_unlock;
6814
6815         /*
6816          * We allow to overwrite a pte marker: consider when both MISSING|WP
6817          * registered, we firstly wr-protect a none pte which has no page cache
6818          * page backing it, then access the page.
6819          */
6820         ret = -EEXIST;
6821         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6822                 goto out_release_unlock;
6823
6824         if (folio_in_pagecache)
6825                 hugetlb_add_file_rmap(folio);
6826         else
6827                 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6828
6829         /*
6830          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6831          * with wp flag set, don't set pte write bit.
6832          */
6833         if (wp_enabled || (is_continue && !vm_shared))
6834                 writable = 0;
6835         else
6836                 writable = dst_vma->vm_flags & VM_WRITE;
6837
6838         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6839         /*
6840          * Always mark UFFDIO_COPY page dirty; note that this may not be
6841          * extremely important for hugetlbfs for now since swapping is not
6842          * supported, but we should still be clear in that this page cannot be
6843          * thrown away at will, even if write bit not set.
6844          */
6845         _dst_pte = huge_pte_mkdirty(_dst_pte);
6846         _dst_pte = pte_mkyoung(_dst_pte);
6847
6848         if (wp_enabled)
6849                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6850
6851         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6852
6853         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6854
6855         /* No need to invalidate - it was non-present before */
6856         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6857
6858         spin_unlock(ptl);
6859         if (!is_continue)
6860                 folio_set_hugetlb_migratable(folio);
6861         if (vm_shared || is_continue)
6862                 folio_unlock(folio);
6863         ret = 0;
6864 out:
6865         return ret;
6866 out_release_unlock:
6867         spin_unlock(ptl);
6868         if (vm_shared || is_continue)
6869                 folio_unlock(folio);
6870 out_release_nounlock:
6871         if (!folio_in_pagecache)
6872                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6873         folio_put(folio);
6874         goto out;
6875 }
6876 #endif /* CONFIG_USERFAULTFD */
6877
6878 long hugetlb_change_protection(struct vm_area_struct *vma,
6879                 unsigned long address, unsigned long end,
6880                 pgprot_t newprot, unsigned long cp_flags)
6881 {
6882         struct mm_struct *mm = vma->vm_mm;
6883         unsigned long start = address;
6884         pte_t *ptep;
6885         pte_t pte;
6886         struct hstate *h = hstate_vma(vma);
6887         long pages = 0, psize = huge_page_size(h);
6888         bool shared_pmd = false;
6889         struct mmu_notifier_range range;
6890         unsigned long last_addr_mask;
6891         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6892         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6893
6894         /*
6895          * In the case of shared PMDs, the area to flush could be beyond
6896          * start/end.  Set range.start/range.end to cover the maximum possible
6897          * range if PMD sharing is possible.
6898          */
6899         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6900                                 0, mm, start, end);
6901         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6902
6903         BUG_ON(address >= end);
6904         flush_cache_range(vma, range.start, range.end);
6905
6906         mmu_notifier_invalidate_range_start(&range);
6907         hugetlb_vma_lock_write(vma);
6908         i_mmap_lock_write(vma->vm_file->f_mapping);
6909         last_addr_mask = hugetlb_mask_last_page(h);
6910         for (; address < end; address += psize) {
6911                 spinlock_t *ptl;
6912                 ptep = hugetlb_walk(vma, address, psize);
6913                 if (!ptep) {
6914                         if (!uffd_wp) {
6915                                 address |= last_addr_mask;
6916                                 continue;
6917                         }
6918                         /*
6919                          * Userfaultfd wr-protect requires pgtable
6920                          * pre-allocations to install pte markers.
6921                          */
6922                         ptep = huge_pte_alloc(mm, vma, address, psize);
6923                         if (!ptep) {
6924                                 pages = -ENOMEM;
6925                                 break;
6926                         }
6927                 }
6928                 ptl = huge_pte_lock(h, mm, ptep);
6929                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6930                         /*
6931                          * When uffd-wp is enabled on the vma, unshare
6932                          * shouldn't happen at all.  Warn about it if it
6933                          * happened due to some reason.
6934                          */
6935                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6936                         pages++;
6937                         spin_unlock(ptl);
6938                         shared_pmd = true;
6939                         address |= last_addr_mask;
6940                         continue;
6941                 }
6942                 pte = huge_ptep_get(ptep);
6943                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6944                         /* Nothing to do. */
6945                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6946                         swp_entry_t entry = pte_to_swp_entry(pte);
6947                         struct page *page = pfn_swap_entry_to_page(entry);
6948                         pte_t newpte = pte;
6949
6950                         if (is_writable_migration_entry(entry)) {
6951                                 if (PageAnon(page))
6952                                         entry = make_readable_exclusive_migration_entry(
6953                                                                 swp_offset(entry));
6954                                 else
6955                                         entry = make_readable_migration_entry(
6956                                                                 swp_offset(entry));
6957                                 newpte = swp_entry_to_pte(entry);
6958                                 pages++;
6959                         }
6960
6961                         if (uffd_wp)
6962                                 newpte = pte_swp_mkuffd_wp(newpte);
6963                         else if (uffd_wp_resolve)
6964                                 newpte = pte_swp_clear_uffd_wp(newpte);
6965                         if (!pte_same(pte, newpte))
6966                                 set_huge_pte_at(mm, address, ptep, newpte, psize);
6967                 } else if (unlikely(is_pte_marker(pte))) {
6968                         /*
6969                          * Do nothing on a poison marker; page is
6970                          * corrupted, permissons do not apply.  Here
6971                          * pte_marker_uffd_wp()==true implies !poison
6972                          * because they're mutual exclusive.
6973                          */
6974                         if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6975                                 /* Safe to modify directly (non-present->none). */
6976                                 huge_pte_clear(mm, address, ptep, psize);
6977                 } else if (!huge_pte_none(pte)) {
6978                         pte_t old_pte;
6979                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6980
6981                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6982                         pte = huge_pte_modify(old_pte, newprot);
6983                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6984                         if (uffd_wp)
6985                                 pte = huge_pte_mkuffd_wp(pte);
6986                         else if (uffd_wp_resolve)
6987                                 pte = huge_pte_clear_uffd_wp(pte);
6988                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6989                         pages++;
6990                 } else {
6991                         /* None pte */
6992                         if (unlikely(uffd_wp))
6993                                 /* Safe to modify directly (none->non-present). */
6994                                 set_huge_pte_at(mm, address, ptep,
6995                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
6996                                                 psize);
6997                 }
6998                 spin_unlock(ptl);
6999         }
7000         /*
7001          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7002          * may have cleared our pud entry and done put_page on the page table:
7003          * once we release i_mmap_rwsem, another task can do the final put_page
7004          * and that page table be reused and filled with junk.  If we actually
7005          * did unshare a page of pmds, flush the range corresponding to the pud.
7006          */
7007         if (shared_pmd)
7008                 flush_hugetlb_tlb_range(vma, range.start, range.end);
7009         else
7010                 flush_hugetlb_tlb_range(vma, start, end);
7011         /*
7012          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7013          * downgrading page table protection not changing it to point to a new
7014          * page.
7015          *
7016          * See Documentation/mm/mmu_notifier.rst
7017          */
7018         i_mmap_unlock_write(vma->vm_file->f_mapping);
7019         hugetlb_vma_unlock_write(vma);
7020         mmu_notifier_invalidate_range_end(&range);
7021
7022         return pages > 0 ? (pages << h->order) : pages;
7023 }
7024
7025 /* Return true if reservation was successful, false otherwise.  */
7026 bool hugetlb_reserve_pages(struct inode *inode,
7027                                         long from, long to,
7028                                         struct vm_area_struct *vma,
7029                                         vm_flags_t vm_flags)
7030 {
7031         long chg = -1, add = -1;
7032         struct hstate *h = hstate_inode(inode);
7033         struct hugepage_subpool *spool = subpool_inode(inode);
7034         struct resv_map *resv_map;
7035         struct hugetlb_cgroup *h_cg = NULL;
7036         long gbl_reserve, regions_needed = 0;
7037
7038         /* This should never happen */
7039         if (from > to) {
7040                 VM_WARN(1, "%s called with a negative range\n", __func__);
7041                 return false;
7042         }
7043
7044         /*
7045          * vma specific semaphore used for pmd sharing and fault/truncation
7046          * synchronization
7047          */
7048         hugetlb_vma_lock_alloc(vma);
7049
7050         /*
7051          * Only apply hugepage reservation if asked. At fault time, an
7052          * attempt will be made for VM_NORESERVE to allocate a page
7053          * without using reserves
7054          */
7055         if (vm_flags & VM_NORESERVE)
7056                 return true;
7057
7058         /*
7059          * Shared mappings base their reservation on the number of pages that
7060          * are already allocated on behalf of the file. Private mappings need
7061          * to reserve the full area even if read-only as mprotect() may be
7062          * called to make the mapping read-write. Assume !vma is a shm mapping
7063          */
7064         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7065                 /*
7066                  * resv_map can not be NULL as hugetlb_reserve_pages is only
7067                  * called for inodes for which resv_maps were created (see
7068                  * hugetlbfs_get_inode).
7069                  */
7070                 resv_map = inode_resv_map(inode);
7071
7072                 chg = region_chg(resv_map, from, to, &regions_needed);
7073         } else {
7074                 /* Private mapping. */
7075                 resv_map = resv_map_alloc();
7076                 if (!resv_map)
7077                         goto out_err;
7078
7079                 chg = to - from;
7080
7081                 set_vma_resv_map(vma, resv_map);
7082                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7083         }
7084
7085         if (chg < 0)
7086                 goto out_err;
7087
7088         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7089                                 chg * pages_per_huge_page(h), &h_cg) < 0)
7090                 goto out_err;
7091
7092         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7093                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7094                  * of the resv_map.
7095                  */
7096                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7097         }
7098
7099         /*
7100          * There must be enough pages in the subpool for the mapping. If
7101          * the subpool has a minimum size, there may be some global
7102          * reservations already in place (gbl_reserve).
7103          */
7104         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7105         if (gbl_reserve < 0)
7106                 goto out_uncharge_cgroup;
7107
7108         /*
7109          * Check enough hugepages are available for the reservation.
7110          * Hand the pages back to the subpool if there are not
7111          */
7112         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7113                 goto out_put_pages;
7114
7115         /*
7116          * Account for the reservations made. Shared mappings record regions
7117          * that have reservations as they are shared by multiple VMAs.
7118          * When the last VMA disappears, the region map says how much
7119          * the reservation was and the page cache tells how much of
7120          * the reservation was consumed. Private mappings are per-VMA and
7121          * only the consumed reservations are tracked. When the VMA
7122          * disappears, the original reservation is the VMA size and the
7123          * consumed reservations are stored in the map. Hence, nothing
7124          * else has to be done for private mappings here
7125          */
7126         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7127                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7128
7129                 if (unlikely(add < 0)) {
7130                         hugetlb_acct_memory(h, -gbl_reserve);
7131                         goto out_put_pages;
7132                 } else if (unlikely(chg > add)) {
7133                         /*
7134                          * pages in this range were added to the reserve
7135                          * map between region_chg and region_add.  This
7136                          * indicates a race with alloc_hugetlb_folio.  Adjust
7137                          * the subpool and reserve counts modified above
7138                          * based on the difference.
7139                          */
7140                         long rsv_adjust;
7141
7142                         /*
7143                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7144                          * reference to h_cg->css. See comment below for detail.
7145                          */
7146                         hugetlb_cgroup_uncharge_cgroup_rsvd(
7147                                 hstate_index(h),
7148                                 (chg - add) * pages_per_huge_page(h), h_cg);
7149
7150                         rsv_adjust = hugepage_subpool_put_pages(spool,
7151                                                                 chg - add);
7152                         hugetlb_acct_memory(h, -rsv_adjust);
7153                 } else if (h_cg) {
7154                         /*
7155                          * The file_regions will hold their own reference to
7156                          * h_cg->css. So we should release the reference held
7157                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7158                          * done.
7159                          */
7160                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7161                 }
7162         }
7163         return true;
7164
7165 out_put_pages:
7166         /* put back original number of pages, chg */
7167         (void)hugepage_subpool_put_pages(spool, chg);
7168 out_uncharge_cgroup:
7169         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7170                                             chg * pages_per_huge_page(h), h_cg);
7171 out_err:
7172         hugetlb_vma_lock_free(vma);
7173         if (!vma || vma->vm_flags & VM_MAYSHARE)
7174                 /* Only call region_abort if the region_chg succeeded but the
7175                  * region_add failed or didn't run.
7176                  */
7177                 if (chg >= 0 && add < 0)
7178                         region_abort(resv_map, from, to, regions_needed);
7179         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7180                 kref_put(&resv_map->refs, resv_map_release);
7181                 set_vma_resv_map(vma, NULL);
7182         }
7183         return false;
7184 }
7185
7186 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7187                                                                 long freed)
7188 {
7189         struct hstate *h = hstate_inode(inode);
7190         struct resv_map *resv_map = inode_resv_map(inode);
7191         long chg = 0;
7192         struct hugepage_subpool *spool = subpool_inode(inode);
7193         long gbl_reserve;
7194
7195         /*
7196          * Since this routine can be called in the evict inode path for all
7197          * hugetlbfs inodes, resv_map could be NULL.
7198          */
7199         if (resv_map) {
7200                 chg = region_del(resv_map, start, end);
7201                 /*
7202                  * region_del() can fail in the rare case where a region
7203                  * must be split and another region descriptor can not be
7204                  * allocated.  If end == LONG_MAX, it will not fail.
7205                  */
7206                 if (chg < 0)
7207                         return chg;
7208         }
7209
7210         spin_lock(&inode->i_lock);
7211         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7212         spin_unlock(&inode->i_lock);
7213
7214         /*
7215          * If the subpool has a minimum size, the number of global
7216          * reservations to be released may be adjusted.
7217          *
7218          * Note that !resv_map implies freed == 0. So (chg - freed)
7219          * won't go negative.
7220          */
7221         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7222         hugetlb_acct_memory(h, -gbl_reserve);
7223
7224         return 0;
7225 }
7226
7227 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7228 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7229                                 struct vm_area_struct *vma,
7230                                 unsigned long addr, pgoff_t idx)
7231 {
7232         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7233                                 svma->vm_start;
7234         unsigned long sbase = saddr & PUD_MASK;
7235         unsigned long s_end = sbase + PUD_SIZE;
7236
7237         /* Allow segments to share if only one is marked locked */
7238         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7239         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7240
7241         /*
7242          * match the virtual addresses, permission and the alignment of the
7243          * page table page.
7244          *
7245          * Also, vma_lock (vm_private_data) is required for sharing.
7246          */
7247         if (pmd_index(addr) != pmd_index(saddr) ||
7248             vm_flags != svm_flags ||
7249             !range_in_vma(svma, sbase, s_end) ||
7250             !svma->vm_private_data)
7251                 return 0;
7252
7253         return saddr;
7254 }
7255
7256 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7257 {
7258         unsigned long start = addr & PUD_MASK;
7259         unsigned long end = start + PUD_SIZE;
7260
7261 #ifdef CONFIG_USERFAULTFD
7262         if (uffd_disable_huge_pmd_share(vma))
7263                 return false;
7264 #endif
7265         /*
7266          * check on proper vm_flags and page table alignment
7267          */
7268         if (!(vma->vm_flags & VM_MAYSHARE))
7269                 return false;
7270         if (!vma->vm_private_data)      /* vma lock required for sharing */
7271                 return false;
7272         if (!range_in_vma(vma, start, end))
7273                 return false;
7274         return true;
7275 }
7276
7277 /*
7278  * Determine if start,end range within vma could be mapped by shared pmd.
7279  * If yes, adjust start and end to cover range associated with possible
7280  * shared pmd mappings.
7281  */
7282 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7283                                 unsigned long *start, unsigned long *end)
7284 {
7285         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7286                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7287
7288         /*
7289          * vma needs to span at least one aligned PUD size, and the range
7290          * must be at least partially within in.
7291          */
7292         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7293                 (*end <= v_start) || (*start >= v_end))
7294                 return;
7295
7296         /* Extend the range to be PUD aligned for a worst case scenario */
7297         if (*start > v_start)
7298                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7299
7300         if (*end < v_end)
7301                 *end = ALIGN(*end, PUD_SIZE);
7302 }
7303
7304 /*
7305  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7306  * and returns the corresponding pte. While this is not necessary for the
7307  * !shared pmd case because we can allocate the pmd later as well, it makes the
7308  * code much cleaner. pmd allocation is essential for the shared case because
7309  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7310  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7311  * bad pmd for sharing.
7312  */
7313 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7314                       unsigned long addr, pud_t *pud)
7315 {
7316         struct address_space *mapping = vma->vm_file->f_mapping;
7317         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7318                         vma->vm_pgoff;
7319         struct vm_area_struct *svma;
7320         unsigned long saddr;
7321         pte_t *spte = NULL;
7322         pte_t *pte;
7323
7324         i_mmap_lock_read(mapping);
7325         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7326                 if (svma == vma)
7327                         continue;
7328
7329                 saddr = page_table_shareable(svma, vma, addr, idx);
7330                 if (saddr) {
7331                         spte = hugetlb_walk(svma, saddr,
7332                                             vma_mmu_pagesize(svma));
7333                         if (spte) {
7334                                 get_page(virt_to_page(spte));
7335                                 break;
7336                         }
7337                 }
7338         }
7339
7340         if (!spte)
7341                 goto out;
7342
7343         spin_lock(&mm->page_table_lock);
7344         if (pud_none(*pud)) {
7345                 pud_populate(mm, pud,
7346                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7347                 mm_inc_nr_pmds(mm);
7348         } else {
7349                 put_page(virt_to_page(spte));
7350         }
7351         spin_unlock(&mm->page_table_lock);
7352 out:
7353         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7354         i_mmap_unlock_read(mapping);
7355         return pte;
7356 }
7357
7358 /*
7359  * unmap huge page backed by shared pte.
7360  *
7361  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7362  * indicated by page_count > 1, unmap is achieved by clearing pud and
7363  * decrementing the ref count. If count == 1, the pte page is not shared.
7364  *
7365  * Called with page table lock held.
7366  *
7367  * returns: 1 successfully unmapped a shared pte page
7368  *          0 the underlying pte page is not shared, or it is the last user
7369  */
7370 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7371                                         unsigned long addr, pte_t *ptep)
7372 {
7373         pgd_t *pgd = pgd_offset(mm, addr);
7374         p4d_t *p4d = p4d_offset(pgd, addr);
7375         pud_t *pud = pud_offset(p4d, addr);
7376
7377         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7378         hugetlb_vma_assert_locked(vma);
7379         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7380         if (page_count(virt_to_page(ptep)) == 1)
7381                 return 0;
7382
7383         pud_clear(pud);
7384         put_page(virt_to_page(ptep));
7385         mm_dec_nr_pmds(mm);
7386         return 1;
7387 }
7388
7389 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7390
7391 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7392                       unsigned long addr, pud_t *pud)
7393 {
7394         return NULL;
7395 }
7396
7397 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7398                                 unsigned long addr, pte_t *ptep)
7399 {
7400         return 0;
7401 }
7402
7403 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7404                                 unsigned long *start, unsigned long *end)
7405 {
7406 }
7407
7408 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7409 {
7410         return false;
7411 }
7412 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7413
7414 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7415 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7416                         unsigned long addr, unsigned long sz)
7417 {
7418         pgd_t *pgd;
7419         p4d_t *p4d;
7420         pud_t *pud;
7421         pte_t *pte = NULL;
7422
7423         pgd = pgd_offset(mm, addr);
7424         p4d = p4d_alloc(mm, pgd, addr);
7425         if (!p4d)
7426                 return NULL;
7427         pud = pud_alloc(mm, p4d, addr);
7428         if (pud) {
7429                 if (sz == PUD_SIZE) {
7430                         pte = (pte_t *)pud;
7431                 } else {
7432                         BUG_ON(sz != PMD_SIZE);
7433                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7434                                 pte = huge_pmd_share(mm, vma, addr, pud);
7435                         else
7436                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7437                 }
7438         }
7439
7440         if (pte) {
7441                 pte_t pteval = ptep_get_lockless(pte);
7442
7443                 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7444         }
7445
7446         return pte;
7447 }
7448
7449 /*
7450  * huge_pte_offset() - Walk the page table to resolve the hugepage
7451  * entry at address @addr
7452  *
7453  * Return: Pointer to page table entry (PUD or PMD) for
7454  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7455  * size @sz doesn't match the hugepage size at this level of the page
7456  * table.
7457  */
7458 pte_t *huge_pte_offset(struct mm_struct *mm,
7459                        unsigned long addr, unsigned long sz)
7460 {
7461         pgd_t *pgd;
7462         p4d_t *p4d;
7463         pud_t *pud;
7464         pmd_t *pmd;
7465
7466         pgd = pgd_offset(mm, addr);
7467         if (!pgd_present(*pgd))
7468                 return NULL;
7469         p4d = p4d_offset(pgd, addr);
7470         if (!p4d_present(*p4d))
7471                 return NULL;
7472
7473         pud = pud_offset(p4d, addr);
7474         if (sz == PUD_SIZE)
7475                 /* must be pud huge, non-present or none */
7476                 return (pte_t *)pud;
7477         if (!pud_present(*pud))
7478                 return NULL;
7479         /* must have a valid entry and size to go further */
7480
7481         pmd = pmd_offset(pud, addr);
7482         /* must be pmd huge, non-present or none */
7483         return (pte_t *)pmd;
7484 }
7485
7486 /*
7487  * Return a mask that can be used to update an address to the last huge
7488  * page in a page table page mapping size.  Used to skip non-present
7489  * page table entries when linearly scanning address ranges.  Architectures
7490  * with unique huge page to page table relationships can define their own
7491  * version of this routine.
7492  */
7493 unsigned long hugetlb_mask_last_page(struct hstate *h)
7494 {
7495         unsigned long hp_size = huge_page_size(h);
7496
7497         if (hp_size == PUD_SIZE)
7498                 return P4D_SIZE - PUD_SIZE;
7499         else if (hp_size == PMD_SIZE)
7500                 return PUD_SIZE - PMD_SIZE;
7501         else
7502                 return 0UL;
7503 }
7504
7505 #else
7506
7507 /* See description above.  Architectures can provide their own version. */
7508 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7509 {
7510 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7511         if (huge_page_size(h) == PMD_SIZE)
7512                 return PUD_SIZE - PMD_SIZE;
7513 #endif
7514         return 0UL;
7515 }
7516
7517 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7518
7519 /*
7520  * These functions are overwritable if your architecture needs its own
7521  * behavior.
7522  */
7523 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7524 {
7525         bool ret = true;
7526
7527         spin_lock_irq(&hugetlb_lock);
7528         if (!folio_test_hugetlb(folio) ||
7529             !folio_test_hugetlb_migratable(folio) ||
7530             !folio_try_get(folio)) {
7531                 ret = false;
7532                 goto unlock;
7533         }
7534         folio_clear_hugetlb_migratable(folio);
7535         list_move_tail(&folio->lru, list);
7536 unlock:
7537         spin_unlock_irq(&hugetlb_lock);
7538         return ret;
7539 }
7540
7541 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7542 {
7543         int ret = 0;
7544
7545         *hugetlb = false;
7546         spin_lock_irq(&hugetlb_lock);
7547         if (folio_test_hugetlb(folio)) {
7548                 *hugetlb = true;
7549                 if (folio_test_hugetlb_freed(folio))
7550                         ret = 0;
7551                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7552                         ret = folio_try_get(folio);
7553                 else
7554                         ret = -EBUSY;
7555         }
7556         spin_unlock_irq(&hugetlb_lock);
7557         return ret;
7558 }
7559
7560 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7561                                 bool *migratable_cleared)
7562 {
7563         int ret;
7564
7565         spin_lock_irq(&hugetlb_lock);
7566         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7567         spin_unlock_irq(&hugetlb_lock);
7568         return ret;
7569 }
7570
7571 void folio_putback_active_hugetlb(struct folio *folio)
7572 {
7573         spin_lock_irq(&hugetlb_lock);
7574         folio_set_hugetlb_migratable(folio);
7575         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7576         spin_unlock_irq(&hugetlb_lock);
7577         folio_put(folio);
7578 }
7579
7580 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7581 {
7582         struct hstate *h = folio_hstate(old_folio);
7583
7584         hugetlb_cgroup_migrate(old_folio, new_folio);
7585         set_page_owner_migrate_reason(&new_folio->page, reason);
7586
7587         /*
7588          * transfer temporary state of the new hugetlb folio. This is
7589          * reverse to other transitions because the newpage is going to
7590          * be final while the old one will be freed so it takes over
7591          * the temporary status.
7592          *
7593          * Also note that we have to transfer the per-node surplus state
7594          * here as well otherwise the global surplus count will not match
7595          * the per-node's.
7596          */
7597         if (folio_test_hugetlb_temporary(new_folio)) {
7598                 int old_nid = folio_nid(old_folio);
7599                 int new_nid = folio_nid(new_folio);
7600
7601                 folio_set_hugetlb_temporary(old_folio);
7602                 folio_clear_hugetlb_temporary(new_folio);
7603
7604
7605                 /*
7606                  * There is no need to transfer the per-node surplus state
7607                  * when we do not cross the node.
7608                  */
7609                 if (new_nid == old_nid)
7610                         return;
7611                 spin_lock_irq(&hugetlb_lock);
7612                 if (h->surplus_huge_pages_node[old_nid]) {
7613                         h->surplus_huge_pages_node[old_nid]--;
7614                         h->surplus_huge_pages_node[new_nid]++;
7615                 }
7616                 spin_unlock_irq(&hugetlb_lock);
7617         }
7618 }
7619
7620 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7621                                    unsigned long start,
7622                                    unsigned long end)
7623 {
7624         struct hstate *h = hstate_vma(vma);
7625         unsigned long sz = huge_page_size(h);
7626         struct mm_struct *mm = vma->vm_mm;
7627         struct mmu_notifier_range range;
7628         unsigned long address;
7629         spinlock_t *ptl;
7630         pte_t *ptep;
7631
7632         if (!(vma->vm_flags & VM_MAYSHARE))
7633                 return;
7634
7635         if (start >= end)
7636                 return;
7637
7638         flush_cache_range(vma, start, end);
7639         /*
7640          * No need to call adjust_range_if_pmd_sharing_possible(), because
7641          * we have already done the PUD_SIZE alignment.
7642          */
7643         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7644                                 start, end);
7645         mmu_notifier_invalidate_range_start(&range);
7646         hugetlb_vma_lock_write(vma);
7647         i_mmap_lock_write(vma->vm_file->f_mapping);
7648         for (address = start; address < end; address += PUD_SIZE) {
7649                 ptep = hugetlb_walk(vma, address, sz);
7650                 if (!ptep)
7651                         continue;
7652                 ptl = huge_pte_lock(h, mm, ptep);
7653                 huge_pmd_unshare(mm, vma, address, ptep);
7654                 spin_unlock(ptl);
7655         }
7656         flush_hugetlb_tlb_range(vma, start, end);
7657         i_mmap_unlock_write(vma->vm_file->f_mapping);
7658         hugetlb_vma_unlock_write(vma);
7659         /*
7660          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7661          * Documentation/mm/mmu_notifier.rst.
7662          */
7663         mmu_notifier_invalidate_range_end(&range);
7664 }
7665
7666 /*
7667  * This function will unconditionally remove all the shared pmd pgtable entries
7668  * within the specific vma for a hugetlbfs memory range.
7669  */
7670 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7671 {
7672         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7673                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7674 }
7675
7676 #ifdef CONFIG_CMA
7677 static bool cma_reserve_called __initdata;
7678
7679 static int __init cmdline_parse_hugetlb_cma(char *p)
7680 {
7681         int nid, count = 0;
7682         unsigned long tmp;
7683         char *s = p;
7684
7685         while (*s) {
7686                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7687                         break;
7688
7689                 if (s[count] == ':') {
7690                         if (tmp >= MAX_NUMNODES)
7691                                 break;
7692                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7693
7694                         s += count + 1;
7695                         tmp = memparse(s, &s);
7696                         hugetlb_cma_size_in_node[nid] = tmp;
7697                         hugetlb_cma_size += tmp;
7698
7699                         /*
7700                          * Skip the separator if have one, otherwise
7701                          * break the parsing.
7702                          */
7703                         if (*s == ',')
7704                                 s++;
7705                         else
7706                                 break;
7707                 } else {
7708                         hugetlb_cma_size = memparse(p, &p);
7709                         break;
7710                 }
7711         }
7712
7713         return 0;
7714 }
7715
7716 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7717
7718 void __init hugetlb_cma_reserve(int order)
7719 {
7720         unsigned long size, reserved, per_node;
7721         bool node_specific_cma_alloc = false;
7722         int nid;
7723
7724         /*
7725          * HugeTLB CMA reservation is required for gigantic
7726          * huge pages which could not be allocated via the
7727          * page allocator. Just warn if there is any change
7728          * breaking this assumption.
7729          */
7730         VM_WARN_ON(order <= MAX_PAGE_ORDER);
7731         cma_reserve_called = true;
7732
7733         if (!hugetlb_cma_size)
7734                 return;
7735
7736         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7737                 if (hugetlb_cma_size_in_node[nid] == 0)
7738                         continue;
7739
7740                 if (!node_online(nid)) {
7741                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7742                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7743                         hugetlb_cma_size_in_node[nid] = 0;
7744                         continue;
7745                 }
7746
7747                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7748                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7749                                 nid, (PAGE_SIZE << order) / SZ_1M);
7750                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7751                         hugetlb_cma_size_in_node[nid] = 0;
7752                 } else {
7753                         node_specific_cma_alloc = true;
7754                 }
7755         }
7756
7757         /* Validate the CMA size again in case some invalid nodes specified. */
7758         if (!hugetlb_cma_size)
7759                 return;
7760
7761         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7762                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7763                         (PAGE_SIZE << order) / SZ_1M);
7764                 hugetlb_cma_size = 0;
7765                 return;
7766         }
7767
7768         if (!node_specific_cma_alloc) {
7769                 /*
7770                  * If 3 GB area is requested on a machine with 4 numa nodes,
7771                  * let's allocate 1 GB on first three nodes and ignore the last one.
7772                  */
7773                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7774                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7775                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7776         }
7777
7778         reserved = 0;
7779         for_each_online_node(nid) {
7780                 int res;
7781                 char name[CMA_MAX_NAME];
7782
7783                 if (node_specific_cma_alloc) {
7784                         if (hugetlb_cma_size_in_node[nid] == 0)
7785                                 continue;
7786
7787                         size = hugetlb_cma_size_in_node[nid];
7788                 } else {
7789                         size = min(per_node, hugetlb_cma_size - reserved);
7790                 }
7791
7792                 size = round_up(size, PAGE_SIZE << order);
7793
7794                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7795                 /*
7796                  * Note that 'order per bit' is based on smallest size that
7797                  * may be returned to CMA allocator in the case of
7798                  * huge page demotion.
7799                  */
7800                 res = cma_declare_contiguous_nid(0, size, 0,
7801                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7802                                                  0, false, name,
7803                                                  &hugetlb_cma[nid], nid);
7804                 if (res) {
7805                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7806                                 res, nid);
7807                         continue;
7808                 }
7809
7810                 reserved += size;
7811                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7812                         size / SZ_1M, nid);
7813
7814                 if (reserved >= hugetlb_cma_size)
7815                         break;
7816         }
7817
7818         if (!reserved)
7819                 /*
7820                  * hugetlb_cma_size is used to determine if allocations from
7821                  * cma are possible.  Set to zero if no cma regions are set up.
7822                  */
7823                 hugetlb_cma_size = 0;
7824 }
7825
7826 static void __init hugetlb_cma_check(void)
7827 {
7828         if (!hugetlb_cma_size || cma_reserve_called)
7829                 return;
7830
7831         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7832 }
7833
7834 #endif /* CONFIG_CMA */
This page took 0.474244 seconds and 4 git commands to generate.