1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Red Hat. All rights reserved.
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
18 #include "free-space-cache.h"
19 #include "transaction.h"
21 #include "extent_io.h"
23 #include "space-info.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
28 #include "inode-item.h"
29 #include "accessors.h"
30 #include "file-item.h"
34 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
35 #define MAX_CACHE_BYTES_PER_GIG SZ_64K
36 #define FORCE_EXTENT_THRESHOLD SZ_1M
38 static struct kmem_cache *btrfs_free_space_cachep;
39 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
41 struct btrfs_trim_range {
44 struct list_head list;
47 static int link_free_space(struct btrfs_free_space_ctl *ctl,
48 struct btrfs_free_space *info);
49 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
50 struct btrfs_free_space *info, bool update_stat);
51 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
52 struct btrfs_free_space *bitmap_info, u64 *offset,
53 u64 *bytes, bool for_alloc);
54 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
55 struct btrfs_free_space *bitmap_info);
56 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
57 struct btrfs_free_space *info, u64 offset,
58 u64 bytes, bool update_stats);
60 static void btrfs_crc32c_final(u32 crc, u8 *result)
62 put_unaligned_le32(~crc, result);
65 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
67 struct btrfs_free_space *info;
70 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
71 info = rb_entry(node, struct btrfs_free_space, offset_index);
73 unlink_free_space(ctl, info, true);
74 kmem_cache_free(btrfs_free_space_cachep, info);
76 free_bitmap(ctl, info);
79 cond_resched_lock(&ctl->tree_lock);
83 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
84 struct btrfs_path *path,
87 struct btrfs_fs_info *fs_info = root->fs_info;
89 struct btrfs_key location;
90 struct btrfs_disk_key disk_key;
91 struct btrfs_free_space_header *header;
92 struct extent_buffer *leaf;
93 struct inode *inode = NULL;
97 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
101 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
105 btrfs_release_path(path);
106 return ERR_PTR(-ENOENT);
109 leaf = path->nodes[0];
110 header = btrfs_item_ptr(leaf, path->slots[0],
111 struct btrfs_free_space_header);
112 btrfs_free_space_key(leaf, header, &disk_key);
113 btrfs_disk_key_to_cpu(&location, &disk_key);
114 btrfs_release_path(path);
117 * We are often under a trans handle at this point, so we need to make
118 * sure NOFS is set to keep us from deadlocking.
120 nofs_flag = memalloc_nofs_save();
121 inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
122 btrfs_release_path(path);
123 memalloc_nofs_restore(nofs_flag);
127 mapping_set_gfp_mask(inode->i_mapping,
128 mapping_gfp_constraint(inode->i_mapping,
129 ~(__GFP_FS | __GFP_HIGHMEM)));
134 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
135 struct btrfs_path *path)
137 struct btrfs_fs_info *fs_info = block_group->fs_info;
138 struct inode *inode = NULL;
139 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
141 spin_lock(&block_group->lock);
142 if (block_group->inode)
143 inode = igrab(block_group->inode);
144 spin_unlock(&block_group->lock);
148 inode = __lookup_free_space_inode(fs_info->tree_root, path,
153 spin_lock(&block_group->lock);
154 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
155 btrfs_info(fs_info, "Old style space inode found, converting.");
156 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
157 BTRFS_INODE_NODATACOW;
158 block_group->disk_cache_state = BTRFS_DC_CLEAR;
161 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
162 block_group->inode = igrab(inode);
163 spin_unlock(&block_group->lock);
168 static int __create_free_space_inode(struct btrfs_root *root,
169 struct btrfs_trans_handle *trans,
170 struct btrfs_path *path,
173 struct btrfs_key key;
174 struct btrfs_disk_key disk_key;
175 struct btrfs_free_space_header *header;
176 struct btrfs_inode_item *inode_item;
177 struct extent_buffer *leaf;
178 /* We inline CRCs for the free disk space cache */
179 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
180 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
183 ret = btrfs_insert_empty_inode(trans, root, path, ino);
187 leaf = path->nodes[0];
188 inode_item = btrfs_item_ptr(leaf, path->slots[0],
189 struct btrfs_inode_item);
190 btrfs_item_key(leaf, &disk_key, path->slots[0]);
191 memzero_extent_buffer(leaf, (unsigned long)inode_item,
192 sizeof(*inode_item));
193 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
194 btrfs_set_inode_size(leaf, inode_item, 0);
195 btrfs_set_inode_nbytes(leaf, inode_item, 0);
196 btrfs_set_inode_uid(leaf, inode_item, 0);
197 btrfs_set_inode_gid(leaf, inode_item, 0);
198 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
199 btrfs_set_inode_flags(leaf, inode_item, flags);
200 btrfs_set_inode_nlink(leaf, inode_item, 1);
201 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
202 btrfs_set_inode_block_group(leaf, inode_item, offset);
203 btrfs_mark_buffer_dirty(trans, leaf);
204 btrfs_release_path(path);
206 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
209 ret = btrfs_insert_empty_item(trans, root, path, &key,
210 sizeof(struct btrfs_free_space_header));
212 btrfs_release_path(path);
216 leaf = path->nodes[0];
217 header = btrfs_item_ptr(leaf, path->slots[0],
218 struct btrfs_free_space_header);
219 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
220 btrfs_set_free_space_key(leaf, header, &disk_key);
221 btrfs_mark_buffer_dirty(trans, leaf);
222 btrfs_release_path(path);
227 int create_free_space_inode(struct btrfs_trans_handle *trans,
228 struct btrfs_block_group *block_group,
229 struct btrfs_path *path)
234 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
238 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
239 ino, block_group->start);
243 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
244 * handles lookup, otherwise it takes ownership and iputs the inode.
245 * Don't reuse an inode pointer after passing it into this function.
247 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
249 struct btrfs_block_group *block_group)
251 struct btrfs_path *path;
252 struct btrfs_key key;
255 path = btrfs_alloc_path();
260 inode = lookup_free_space_inode(block_group, path);
262 if (PTR_ERR(inode) != -ENOENT)
263 ret = PTR_ERR(inode);
266 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
268 btrfs_add_delayed_iput(BTRFS_I(inode));
272 /* One for the block groups ref */
273 spin_lock(&block_group->lock);
274 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
275 block_group->inode = NULL;
276 spin_unlock(&block_group->lock);
279 spin_unlock(&block_group->lock);
281 /* One for the lookup ref */
282 btrfs_add_delayed_iput(BTRFS_I(inode));
284 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
286 key.offset = block_group->start;
287 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
294 ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
296 btrfs_free_path(path);
300 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
301 struct btrfs_block_group *block_group,
302 struct inode *vfs_inode)
304 struct btrfs_truncate_control control = {
305 .inode = BTRFS_I(vfs_inode),
307 .ino = btrfs_ino(BTRFS_I(vfs_inode)),
308 .min_type = BTRFS_EXTENT_DATA_KEY,
309 .clear_extent_range = true,
311 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
312 struct btrfs_root *root = inode->root;
313 struct extent_state *cached_state = NULL;
318 struct btrfs_path *path = btrfs_alloc_path();
325 mutex_lock(&trans->transaction->cache_write_mutex);
326 if (!list_empty(&block_group->io_list)) {
327 list_del_init(&block_group->io_list);
329 btrfs_wait_cache_io(trans, block_group, path);
330 btrfs_put_block_group(block_group);
334 * now that we've truncated the cache away, its no longer
337 spin_lock(&block_group->lock);
338 block_group->disk_cache_state = BTRFS_DC_CLEAR;
339 spin_unlock(&block_group->lock);
340 btrfs_free_path(path);
343 btrfs_i_size_write(inode, 0);
344 truncate_pagecache(vfs_inode, 0);
346 lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
347 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
350 * We skip the throttling logic for free space cache inodes, so we don't
351 * need to check for -EAGAIN.
353 ret = btrfs_truncate_inode_items(trans, root, &control);
355 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
356 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
358 unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
362 ret = btrfs_update_inode(trans, inode);
366 mutex_unlock(&trans->transaction->cache_write_mutex);
368 btrfs_abort_transaction(trans, ret);
373 static void readahead_cache(struct inode *inode)
375 struct file_ra_state ra;
376 unsigned long last_index;
378 file_ra_state_init(&ra, inode->i_mapping);
379 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
381 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
384 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
389 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
391 /* Make sure we can fit our crcs and generation into the first page */
392 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
395 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
397 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
401 io_ctl->num_pages = num_pages;
402 io_ctl->fs_info = btrfs_sb(inode->i_sb);
403 io_ctl->inode = inode;
407 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
409 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
411 kfree(io_ctl->pages);
412 io_ctl->pages = NULL;
415 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
423 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
425 ASSERT(io_ctl->index < io_ctl->num_pages);
426 io_ctl->page = io_ctl->pages[io_ctl->index++];
427 io_ctl->cur = page_address(io_ctl->page);
428 io_ctl->orig = io_ctl->cur;
429 io_ctl->size = PAGE_SIZE;
431 clear_page(io_ctl->cur);
434 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
438 io_ctl_unmap_page(io_ctl);
440 for (i = 0; i < io_ctl->num_pages; i++) {
441 if (io_ctl->pages[i]) {
442 btrfs_folio_clear_checked(io_ctl->fs_info,
443 page_folio(io_ctl->pages[i]),
444 page_offset(io_ctl->pages[i]),
446 unlock_page(io_ctl->pages[i]);
447 put_page(io_ctl->pages[i]);
452 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
455 struct inode *inode = io_ctl->inode;
456 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
459 for (i = 0; i < io_ctl->num_pages; i++) {
462 page = find_or_create_page(inode->i_mapping, i, mask);
464 io_ctl_drop_pages(io_ctl);
468 ret = set_page_extent_mapped(page);
472 io_ctl_drop_pages(io_ctl);
476 io_ctl->pages[i] = page;
477 if (uptodate && !PageUptodate(page)) {
478 btrfs_read_folio(NULL, page_folio(page));
480 if (page->mapping != inode->i_mapping) {
481 btrfs_err(BTRFS_I(inode)->root->fs_info,
482 "free space cache page truncated");
483 io_ctl_drop_pages(io_ctl);
486 if (!PageUptodate(page)) {
487 btrfs_err(BTRFS_I(inode)->root->fs_info,
488 "error reading free space cache");
489 io_ctl_drop_pages(io_ctl);
495 for (i = 0; i < io_ctl->num_pages; i++)
496 clear_page_dirty_for_io(io_ctl->pages[i]);
501 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
503 io_ctl_map_page(io_ctl, 1);
506 * Skip the csum areas. If we don't check crcs then we just have a
507 * 64bit chunk at the front of the first page.
509 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
510 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
512 put_unaligned_le64(generation, io_ctl->cur);
513 io_ctl->cur += sizeof(u64);
516 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
521 * Skip the crc area. If we don't check crcs then we just have a 64bit
522 * chunk at the front of the first page.
524 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
525 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
527 cache_gen = get_unaligned_le64(io_ctl->cur);
528 if (cache_gen != generation) {
529 btrfs_err_rl(io_ctl->fs_info,
530 "space cache generation (%llu) does not match inode (%llu)",
531 cache_gen, generation);
532 io_ctl_unmap_page(io_ctl);
535 io_ctl->cur += sizeof(u64);
539 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
546 offset = sizeof(u32) * io_ctl->num_pages;
548 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
549 btrfs_crc32c_final(crc, (u8 *)&crc);
550 io_ctl_unmap_page(io_ctl);
551 tmp = page_address(io_ctl->pages[0]);
556 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
563 offset = sizeof(u32) * io_ctl->num_pages;
565 tmp = page_address(io_ctl->pages[0]);
569 io_ctl_map_page(io_ctl, 0);
570 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
571 btrfs_crc32c_final(crc, (u8 *)&crc);
573 btrfs_err_rl(io_ctl->fs_info,
574 "csum mismatch on free space cache");
575 io_ctl_unmap_page(io_ctl);
582 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
585 struct btrfs_free_space_entry *entry;
591 put_unaligned_le64(offset, &entry->offset);
592 put_unaligned_le64(bytes, &entry->bytes);
593 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
594 BTRFS_FREE_SPACE_EXTENT;
595 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
596 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
598 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
601 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
603 /* No more pages to map */
604 if (io_ctl->index >= io_ctl->num_pages)
607 /* map the next page */
608 io_ctl_map_page(io_ctl, 1);
612 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
618 * If we aren't at the start of the current page, unmap this one and
619 * map the next one if there is any left.
621 if (io_ctl->cur != io_ctl->orig) {
622 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
623 if (io_ctl->index >= io_ctl->num_pages)
625 io_ctl_map_page(io_ctl, 0);
628 copy_page(io_ctl->cur, bitmap);
629 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
630 if (io_ctl->index < io_ctl->num_pages)
631 io_ctl_map_page(io_ctl, 0);
635 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
638 * If we're not on the boundary we know we've modified the page and we
639 * need to crc the page.
641 if (io_ctl->cur != io_ctl->orig)
642 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
644 io_ctl_unmap_page(io_ctl);
646 while (io_ctl->index < io_ctl->num_pages) {
647 io_ctl_map_page(io_ctl, 1);
648 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
652 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
653 struct btrfs_free_space *entry, u8 *type)
655 struct btrfs_free_space_entry *e;
659 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
665 entry->offset = get_unaligned_le64(&e->offset);
666 entry->bytes = get_unaligned_le64(&e->bytes);
668 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
669 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
671 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
674 io_ctl_unmap_page(io_ctl);
679 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
680 struct btrfs_free_space *entry)
684 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
688 copy_page(entry->bitmap, io_ctl->cur);
689 io_ctl_unmap_page(io_ctl);
694 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
696 struct btrfs_block_group *block_group = ctl->block_group;
700 u64 size = block_group->length;
701 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
702 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
704 max_bitmaps = max_t(u64, max_bitmaps, 1);
706 if (ctl->total_bitmaps > max_bitmaps)
707 btrfs_err(block_group->fs_info,
708 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
709 block_group->start, block_group->length,
710 ctl->total_bitmaps, ctl->unit, max_bitmaps,
712 ASSERT(ctl->total_bitmaps <= max_bitmaps);
715 * We are trying to keep the total amount of memory used per 1GiB of
716 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
717 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
718 * bitmaps, we may end up using more memory than this.
721 max_bytes = MAX_CACHE_BYTES_PER_GIG;
723 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
725 bitmap_bytes = ctl->total_bitmaps * ctl->unit;
728 * we want the extent entry threshold to always be at most 1/2 the max
729 * bytes we can have, or whatever is less than that.
731 extent_bytes = max_bytes - bitmap_bytes;
732 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
734 ctl->extents_thresh =
735 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
738 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
739 struct btrfs_free_space_ctl *ctl,
740 struct btrfs_path *path, u64 offset)
742 struct btrfs_fs_info *fs_info = root->fs_info;
743 struct btrfs_free_space_header *header;
744 struct extent_buffer *leaf;
745 struct btrfs_io_ctl io_ctl;
746 struct btrfs_key key;
747 struct btrfs_free_space *e, *n;
755 /* Nothing in the space cache, goodbye */
756 if (!i_size_read(inode))
759 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
763 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
767 btrfs_release_path(path);
773 leaf = path->nodes[0];
774 header = btrfs_item_ptr(leaf, path->slots[0],
775 struct btrfs_free_space_header);
776 num_entries = btrfs_free_space_entries(leaf, header);
777 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
778 generation = btrfs_free_space_generation(leaf, header);
779 btrfs_release_path(path);
781 if (!BTRFS_I(inode)->generation) {
783 "the free space cache file (%llu) is invalid, skip it",
788 if (BTRFS_I(inode)->generation != generation) {
790 "free space inode generation (%llu) did not match free space cache generation (%llu)",
791 BTRFS_I(inode)->generation, generation);
798 ret = io_ctl_init(&io_ctl, inode, 0);
802 readahead_cache(inode);
804 ret = io_ctl_prepare_pages(&io_ctl, true);
808 ret = io_ctl_check_crc(&io_ctl, 0);
812 ret = io_ctl_check_generation(&io_ctl, generation);
816 while (num_entries) {
817 e = kmem_cache_zalloc(btrfs_free_space_cachep,
824 ret = io_ctl_read_entry(&io_ctl, e, &type);
826 kmem_cache_free(btrfs_free_space_cachep, e);
832 kmem_cache_free(btrfs_free_space_cachep, e);
836 if (type == BTRFS_FREE_SPACE_EXTENT) {
837 spin_lock(&ctl->tree_lock);
838 ret = link_free_space(ctl, e);
839 spin_unlock(&ctl->tree_lock);
842 "Duplicate entries in free space cache, dumping");
843 kmem_cache_free(btrfs_free_space_cachep, e);
849 e->bitmap = kmem_cache_zalloc(
850 btrfs_free_space_bitmap_cachep, GFP_NOFS);
854 btrfs_free_space_cachep, e);
857 spin_lock(&ctl->tree_lock);
858 ret = link_free_space(ctl, e);
860 spin_unlock(&ctl->tree_lock);
862 "Duplicate entries in free space cache, dumping");
863 kmem_cache_free(btrfs_free_space_cachep, e);
866 ctl->total_bitmaps++;
867 recalculate_thresholds(ctl);
868 spin_unlock(&ctl->tree_lock);
869 list_add_tail(&e->list, &bitmaps);
875 io_ctl_unmap_page(&io_ctl);
878 * We add the bitmaps at the end of the entries in order that
879 * the bitmap entries are added to the cache.
881 list_for_each_entry_safe(e, n, &bitmaps, list) {
882 list_del_init(&e->list);
883 ret = io_ctl_read_bitmap(&io_ctl, e);
888 io_ctl_drop_pages(&io_ctl);
891 io_ctl_free(&io_ctl);
894 io_ctl_drop_pages(&io_ctl);
896 spin_lock(&ctl->tree_lock);
897 __btrfs_remove_free_space_cache(ctl);
898 spin_unlock(&ctl->tree_lock);
902 static int copy_free_space_cache(struct btrfs_block_group *block_group,
903 struct btrfs_free_space_ctl *ctl)
905 struct btrfs_free_space *info;
909 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
910 info = rb_entry(n, struct btrfs_free_space, offset_index);
912 const u64 offset = info->offset;
913 const u64 bytes = info->bytes;
915 unlink_free_space(ctl, info, true);
916 spin_unlock(&ctl->tree_lock);
917 kmem_cache_free(btrfs_free_space_cachep, info);
918 ret = btrfs_add_free_space(block_group, offset, bytes);
919 spin_lock(&ctl->tree_lock);
921 u64 offset = info->offset;
922 u64 bytes = ctl->unit;
924 ret = search_bitmap(ctl, info, &offset, &bytes, false);
926 bitmap_clear_bits(ctl, info, offset, bytes, true);
927 spin_unlock(&ctl->tree_lock);
928 ret = btrfs_add_free_space(block_group, offset,
930 spin_lock(&ctl->tree_lock);
932 free_bitmap(ctl, info);
936 cond_resched_lock(&ctl->tree_lock);
941 static struct lock_class_key btrfs_free_space_inode_key;
943 int load_free_space_cache(struct btrfs_block_group *block_group)
945 struct btrfs_fs_info *fs_info = block_group->fs_info;
946 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
947 struct btrfs_free_space_ctl tmp_ctl = {};
949 struct btrfs_path *path;
952 u64 used = block_group->used;
955 * Because we could potentially discard our loaded free space, we want
956 * to load everything into a temporary structure first, and then if it's
957 * valid copy it all into the actual free space ctl.
959 btrfs_init_free_space_ctl(block_group, &tmp_ctl);
962 * If this block group has been marked to be cleared for one reason or
963 * another then we can't trust the on disk cache, so just return.
965 spin_lock(&block_group->lock);
966 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
967 spin_unlock(&block_group->lock);
970 spin_unlock(&block_group->lock);
972 path = btrfs_alloc_path();
975 path->search_commit_root = 1;
976 path->skip_locking = 1;
979 * We must pass a path with search_commit_root set to btrfs_iget in
980 * order to avoid a deadlock when allocating extents for the tree root.
982 * When we are COWing an extent buffer from the tree root, when looking
983 * for a free extent, at extent-tree.c:find_free_extent(), we can find
984 * block group without its free space cache loaded. When we find one
985 * we must load its space cache which requires reading its free space
986 * cache's inode item from the root tree. If this inode item is located
987 * in the same leaf that we started COWing before, then we end up in
988 * deadlock on the extent buffer (trying to read lock it when we
989 * previously write locked it).
991 * It's safe to read the inode item using the commit root because
992 * block groups, once loaded, stay in memory forever (until they are
993 * removed) as well as their space caches once loaded. New block groups
994 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
995 * we will never try to read their inode item while the fs is mounted.
997 inode = lookup_free_space_inode(block_group, path);
999 btrfs_free_path(path);
1003 /* We may have converted the inode and made the cache invalid. */
1004 spin_lock(&block_group->lock);
1005 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1006 spin_unlock(&block_group->lock);
1007 btrfs_free_path(path);
1010 spin_unlock(&block_group->lock);
1013 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1014 * free space inodes to prevent false positives related to locks for normal
1017 lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1018 &btrfs_free_space_inode_key);
1020 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1021 path, block_group->start);
1022 btrfs_free_path(path);
1026 matched = (tmp_ctl.free_space == (block_group->length - used -
1027 block_group->bytes_super));
1030 spin_lock(&tmp_ctl.tree_lock);
1031 ret = copy_free_space_cache(block_group, &tmp_ctl);
1032 spin_unlock(&tmp_ctl.tree_lock);
1034 * ret == 1 means we successfully loaded the free space cache,
1035 * so we need to re-set it here.
1041 * We need to call the _locked variant so we don't try to update
1042 * the discard counters.
1044 spin_lock(&tmp_ctl.tree_lock);
1045 __btrfs_remove_free_space_cache(&tmp_ctl);
1046 spin_unlock(&tmp_ctl.tree_lock);
1048 "block group %llu has wrong amount of free space",
1049 block_group->start);
1054 /* This cache is bogus, make sure it gets cleared */
1055 spin_lock(&block_group->lock);
1056 block_group->disk_cache_state = BTRFS_DC_CLEAR;
1057 spin_unlock(&block_group->lock);
1061 "failed to load free space cache for block group %llu, rebuilding it now",
1062 block_group->start);
1065 spin_lock(&ctl->tree_lock);
1066 btrfs_discard_update_discardable(block_group);
1067 spin_unlock(&ctl->tree_lock);
1072 static noinline_for_stack
1073 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1074 struct btrfs_free_space_ctl *ctl,
1075 struct btrfs_block_group *block_group,
1076 int *entries, int *bitmaps,
1077 struct list_head *bitmap_list)
1080 struct btrfs_free_cluster *cluster = NULL;
1081 struct btrfs_free_cluster *cluster_locked = NULL;
1082 struct rb_node *node = rb_first(&ctl->free_space_offset);
1083 struct btrfs_trim_range *trim_entry;
1085 /* Get the cluster for this block_group if it exists */
1086 if (block_group && !list_empty(&block_group->cluster_list)) {
1087 cluster = list_entry(block_group->cluster_list.next,
1088 struct btrfs_free_cluster,
1092 if (!node && cluster) {
1093 cluster_locked = cluster;
1094 spin_lock(&cluster_locked->lock);
1095 node = rb_first(&cluster->root);
1099 /* Write out the extent entries */
1101 struct btrfs_free_space *e;
1103 e = rb_entry(node, struct btrfs_free_space, offset_index);
1106 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1112 list_add_tail(&e->list, bitmap_list);
1115 node = rb_next(node);
1116 if (!node && cluster) {
1117 node = rb_first(&cluster->root);
1118 cluster_locked = cluster;
1119 spin_lock(&cluster_locked->lock);
1123 if (cluster_locked) {
1124 spin_unlock(&cluster_locked->lock);
1125 cluster_locked = NULL;
1129 * Make sure we don't miss any range that was removed from our rbtree
1130 * because trimming is running. Otherwise after a umount+mount (or crash
1131 * after committing the transaction) we would leak free space and get
1132 * an inconsistent free space cache report from fsck.
1134 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1135 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1136 trim_entry->bytes, NULL);
1145 spin_unlock(&cluster_locked->lock);
1149 static noinline_for_stack int
1150 update_cache_item(struct btrfs_trans_handle *trans,
1151 struct btrfs_root *root,
1152 struct inode *inode,
1153 struct btrfs_path *path, u64 offset,
1154 int entries, int bitmaps)
1156 struct btrfs_key key;
1157 struct btrfs_free_space_header *header;
1158 struct extent_buffer *leaf;
1161 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1162 key.offset = offset;
1165 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1167 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1168 EXTENT_DELALLOC, NULL);
1171 leaf = path->nodes[0];
1173 struct btrfs_key found_key;
1174 ASSERT(path->slots[0]);
1176 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1177 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1178 found_key.offset != offset) {
1179 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1180 inode->i_size - 1, EXTENT_DELALLOC,
1182 btrfs_release_path(path);
1187 BTRFS_I(inode)->generation = trans->transid;
1188 header = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_free_space_header);
1190 btrfs_set_free_space_entries(leaf, header, entries);
1191 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1192 btrfs_set_free_space_generation(leaf, header, trans->transid);
1193 btrfs_mark_buffer_dirty(trans, leaf);
1194 btrfs_release_path(path);
1202 static noinline_for_stack int write_pinned_extent_entries(
1203 struct btrfs_trans_handle *trans,
1204 struct btrfs_block_group *block_group,
1205 struct btrfs_io_ctl *io_ctl,
1208 u64 start, extent_start, extent_end, len;
1209 struct extent_io_tree *unpin = NULL;
1216 * We want to add any pinned extents to our free space cache
1217 * so we don't leak the space
1219 * We shouldn't have switched the pinned extents yet so this is the
1222 unpin = &trans->transaction->pinned_extents;
1224 start = block_group->start;
1226 while (start < block_group->start + block_group->length) {
1227 if (!find_first_extent_bit(unpin, start,
1228 &extent_start, &extent_end,
1229 EXTENT_DIRTY, NULL))
1232 /* This pinned extent is out of our range */
1233 if (extent_start >= block_group->start + block_group->length)
1236 extent_start = max(extent_start, start);
1237 extent_end = min(block_group->start + block_group->length,
1239 len = extent_end - extent_start;
1242 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1252 static noinline_for_stack int
1253 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1255 struct btrfs_free_space *entry, *next;
1258 /* Write out the bitmaps */
1259 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1260 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1263 list_del_init(&entry->list);
1269 static int flush_dirty_cache(struct inode *inode)
1273 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1275 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1276 EXTENT_DELALLOC, NULL);
1281 static void noinline_for_stack
1282 cleanup_bitmap_list(struct list_head *bitmap_list)
1284 struct btrfs_free_space *entry, *next;
1286 list_for_each_entry_safe(entry, next, bitmap_list, list)
1287 list_del_init(&entry->list);
1290 static void noinline_for_stack
1291 cleanup_write_cache_enospc(struct inode *inode,
1292 struct btrfs_io_ctl *io_ctl,
1293 struct extent_state **cached_state)
1295 io_ctl_drop_pages(io_ctl);
1296 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1300 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1301 struct btrfs_trans_handle *trans,
1302 struct btrfs_block_group *block_group,
1303 struct btrfs_io_ctl *io_ctl,
1304 struct btrfs_path *path, u64 offset)
1307 struct inode *inode = io_ctl->inode;
1312 /* Flush the dirty pages in the cache file. */
1313 ret = flush_dirty_cache(inode);
1317 /* Update the cache item to tell everyone this cache file is valid. */
1318 ret = update_cache_item(trans, root, inode, path, offset,
1319 io_ctl->entries, io_ctl->bitmaps);
1322 invalidate_inode_pages2(inode->i_mapping);
1323 BTRFS_I(inode)->generation = 0;
1325 btrfs_debug(root->fs_info,
1326 "failed to write free space cache for block group %llu error %d",
1327 block_group->start, ret);
1329 btrfs_update_inode(trans, BTRFS_I(inode));
1332 /* the dirty list is protected by the dirty_bgs_lock */
1333 spin_lock(&trans->transaction->dirty_bgs_lock);
1335 /* the disk_cache_state is protected by the block group lock */
1336 spin_lock(&block_group->lock);
1339 * only mark this as written if we didn't get put back on
1340 * the dirty list while waiting for IO. Otherwise our
1341 * cache state won't be right, and we won't get written again
1343 if (!ret && list_empty(&block_group->dirty_list))
1344 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1346 block_group->disk_cache_state = BTRFS_DC_ERROR;
1348 spin_unlock(&block_group->lock);
1349 spin_unlock(&trans->transaction->dirty_bgs_lock);
1350 io_ctl->inode = NULL;
1358 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1359 struct btrfs_block_group *block_group,
1360 struct btrfs_path *path)
1362 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1363 block_group, &block_group->io_ctl,
1364 path, block_group->start);
1368 * Write out cached info to an inode.
1370 * @inode: freespace inode we are writing out
1371 * @ctl: free space cache we are going to write out
1372 * @block_group: block_group for this cache if it belongs to a block_group
1373 * @io_ctl: holds context for the io
1374 * @trans: the trans handle
1376 * This function writes out a free space cache struct to disk for quick recovery
1377 * on mount. This will return 0 if it was successful in writing the cache out,
1378 * or an errno if it was not.
1380 static int __btrfs_write_out_cache(struct inode *inode,
1381 struct btrfs_free_space_ctl *ctl,
1382 struct btrfs_block_group *block_group,
1383 struct btrfs_io_ctl *io_ctl,
1384 struct btrfs_trans_handle *trans)
1386 struct extent_state *cached_state = NULL;
1387 LIST_HEAD(bitmap_list);
1393 if (!i_size_read(inode))
1396 WARN_ON(io_ctl->pages);
1397 ret = io_ctl_init(io_ctl, inode, 1);
1401 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1402 down_write(&block_group->data_rwsem);
1403 spin_lock(&block_group->lock);
1404 if (block_group->delalloc_bytes) {
1405 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1406 spin_unlock(&block_group->lock);
1407 up_write(&block_group->data_rwsem);
1408 BTRFS_I(inode)->generation = 0;
1413 spin_unlock(&block_group->lock);
1416 /* Lock all pages first so we can lock the extent safely. */
1417 ret = io_ctl_prepare_pages(io_ctl, false);
1421 lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1424 io_ctl_set_generation(io_ctl, trans->transid);
1426 mutex_lock(&ctl->cache_writeout_mutex);
1427 /* Write out the extent entries in the free space cache */
1428 spin_lock(&ctl->tree_lock);
1429 ret = write_cache_extent_entries(io_ctl, ctl,
1430 block_group, &entries, &bitmaps,
1433 goto out_nospc_locked;
1436 * Some spaces that are freed in the current transaction are pinned,
1437 * they will be added into free space cache after the transaction is
1438 * committed, we shouldn't lose them.
1440 * If this changes while we are working we'll get added back to
1441 * the dirty list and redo it. No locking needed
1443 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1445 goto out_nospc_locked;
1448 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1449 * locked while doing it because a concurrent trim can be manipulating
1450 * or freeing the bitmap.
1452 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1453 spin_unlock(&ctl->tree_lock);
1454 mutex_unlock(&ctl->cache_writeout_mutex);
1458 /* Zero out the rest of the pages just to make sure */
1459 io_ctl_zero_remaining_pages(io_ctl);
1461 /* Everything is written out, now we dirty the pages in the file. */
1462 ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1463 io_ctl->num_pages, 0, i_size_read(inode),
1464 &cached_state, false);
1468 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1469 up_write(&block_group->data_rwsem);
1471 * Release the pages and unlock the extent, we will flush
1474 io_ctl_drop_pages(io_ctl);
1475 io_ctl_free(io_ctl);
1477 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1481 * at this point the pages are under IO and we're happy,
1482 * The caller is responsible for waiting on them and updating
1483 * the cache and the inode
1485 io_ctl->entries = entries;
1486 io_ctl->bitmaps = bitmaps;
1488 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1495 cleanup_bitmap_list(&bitmap_list);
1496 spin_unlock(&ctl->tree_lock);
1497 mutex_unlock(&ctl->cache_writeout_mutex);
1500 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1503 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1504 up_write(&block_group->data_rwsem);
1507 io_ctl->inode = NULL;
1508 io_ctl_free(io_ctl);
1510 invalidate_inode_pages2(inode->i_mapping);
1511 BTRFS_I(inode)->generation = 0;
1513 btrfs_update_inode(trans, BTRFS_I(inode));
1519 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1520 struct btrfs_block_group *block_group,
1521 struct btrfs_path *path)
1523 struct btrfs_fs_info *fs_info = trans->fs_info;
1524 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1525 struct inode *inode;
1528 spin_lock(&block_group->lock);
1529 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1530 spin_unlock(&block_group->lock);
1533 spin_unlock(&block_group->lock);
1535 inode = lookup_free_space_inode(block_group, path);
1539 ret = __btrfs_write_out_cache(inode, ctl, block_group,
1540 &block_group->io_ctl, trans);
1542 btrfs_debug(fs_info,
1543 "failed to write free space cache for block group %llu error %d",
1544 block_group->start, ret);
1545 spin_lock(&block_group->lock);
1546 block_group->disk_cache_state = BTRFS_DC_ERROR;
1547 spin_unlock(&block_group->lock);
1549 block_group->io_ctl.inode = NULL;
1554 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1555 * to wait for IO and put the inode
1561 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1564 ASSERT(offset >= bitmap_start);
1565 offset -= bitmap_start;
1566 return (unsigned long)(div_u64(offset, unit));
1569 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1571 return (unsigned long)(div_u64(bytes, unit));
1574 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1578 u64 bytes_per_bitmap;
1580 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1581 bitmap_start = offset - ctl->start;
1582 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1583 bitmap_start *= bytes_per_bitmap;
1584 bitmap_start += ctl->start;
1586 return bitmap_start;
1589 static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1590 struct btrfs_free_cluster *cluster,
1591 struct btrfs_free_space *new_entry)
1593 struct rb_root *root;
1595 struct rb_node *parent = NULL;
1597 lockdep_assert_held(&ctl->tree_lock);
1600 lockdep_assert_held(&cluster->lock);
1601 root = &cluster->root;
1603 root = &ctl->free_space_offset;
1609 struct btrfs_free_space *info;
1612 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1614 if (new_entry->offset < info->offset) {
1616 } else if (new_entry->offset > info->offset) {
1617 p = &(*p)->rb_right;
1620 * we could have a bitmap entry and an extent entry
1621 * share the same offset. If this is the case, we want
1622 * the extent entry to always be found first if we do a
1623 * linear search through the tree, since we want to have
1624 * the quickest allocation time, and allocating from an
1625 * extent is faster than allocating from a bitmap. So
1626 * if we're inserting a bitmap and we find an entry at
1627 * this offset, we want to go right, or after this entry
1628 * logically. If we are inserting an extent and we've
1629 * found a bitmap, we want to go left, or before
1632 if (new_entry->bitmap) {
1637 p = &(*p)->rb_right;
1639 if (!info->bitmap) {
1648 rb_link_node(&new_entry->offset_index, parent, p);
1649 rb_insert_color(&new_entry->offset_index, root);
1655 * This is a little subtle. We *only* have ->max_extent_size set if we actually
1656 * searched through the bitmap and figured out the largest ->max_extent_size,
1657 * otherwise it's 0. In the case that it's 0 we don't want to tell the
1658 * allocator the wrong thing, we want to use the actual real max_extent_size
1659 * we've found already if it's larger, or we want to use ->bytes.
1661 * This matters because find_free_space() will skip entries who's ->bytes is
1662 * less than the required bytes. So if we didn't search down this bitmap, we
1663 * may pick some previous entry that has a smaller ->max_extent_size than we
1664 * have. For example, assume we have two entries, one that has
1665 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set
1666 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will
1667 * call into find_free_space(), and return with max_extent_size == 4K, because
1668 * that first bitmap entry had ->max_extent_size set, but the second one did
1669 * not. If instead we returned 8K we'd come in searching for 8K, and find the
1670 * 8K contiguous range.
1672 * Consider the other case, we have 2 8K chunks in that second entry and still
1673 * don't have ->max_extent_size set. We'll return 16K, and the next time the
1674 * allocator comes in it'll fully search our second bitmap, and this time it'll
1675 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the
1676 * right allocation the next loop through.
1678 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1680 if (entry->bitmap && entry->max_extent_size)
1681 return entry->max_extent_size;
1682 return entry->bytes;
1686 * We want the largest entry to be leftmost, so this is inverted from what you'd
1689 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1691 const struct btrfs_free_space *entry, *exist;
1693 entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1694 exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1695 return get_max_extent_size(exist) < get_max_extent_size(entry);
1699 * searches the tree for the given offset.
1701 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1702 * want a section that has at least bytes size and comes at or after the given
1705 static struct btrfs_free_space *
1706 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1707 u64 offset, int bitmap_only, int fuzzy)
1709 struct rb_node *n = ctl->free_space_offset.rb_node;
1710 struct btrfs_free_space *entry = NULL, *prev = NULL;
1712 lockdep_assert_held(&ctl->tree_lock);
1714 /* find entry that is closest to the 'offset' */
1716 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1719 if (offset < entry->offset)
1721 else if (offset > entry->offset)
1736 * bitmap entry and extent entry may share same offset,
1737 * in that case, bitmap entry comes after extent entry.
1742 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1743 if (entry->offset != offset)
1746 WARN_ON(!entry->bitmap);
1749 if (entry->bitmap) {
1751 * if previous extent entry covers the offset,
1752 * we should return it instead of the bitmap entry
1754 n = rb_prev(&entry->offset_index);
1756 prev = rb_entry(n, struct btrfs_free_space,
1758 if (!prev->bitmap &&
1759 prev->offset + prev->bytes > offset)
1769 /* find last entry before the 'offset' */
1771 if (entry->offset > offset) {
1772 n = rb_prev(&entry->offset_index);
1774 entry = rb_entry(n, struct btrfs_free_space,
1776 ASSERT(entry->offset <= offset);
1785 if (entry->bitmap) {
1786 n = rb_prev(&entry->offset_index);
1788 prev = rb_entry(n, struct btrfs_free_space,
1790 if (!prev->bitmap &&
1791 prev->offset + prev->bytes > offset)
1794 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1796 } else if (entry->offset + entry->bytes > offset)
1803 n = rb_next(&entry->offset_index);
1806 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1807 if (entry->bitmap) {
1808 if (entry->offset + BITS_PER_BITMAP *
1812 if (entry->offset + entry->bytes > offset)
1819 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1820 struct btrfs_free_space *info,
1823 lockdep_assert_held(&ctl->tree_lock);
1825 rb_erase(&info->offset_index, &ctl->free_space_offset);
1826 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1827 ctl->free_extents--;
1829 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1830 ctl->discardable_extents[BTRFS_STAT_CURR]--;
1831 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1835 ctl->free_space -= info->bytes;
1838 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1839 struct btrfs_free_space *info)
1843 lockdep_assert_held(&ctl->tree_lock);
1845 ASSERT(info->bytes || info->bitmap);
1846 ret = tree_insert_offset(ctl, NULL, info);
1850 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1852 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1853 ctl->discardable_extents[BTRFS_STAT_CURR]++;
1854 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1857 ctl->free_space += info->bytes;
1858 ctl->free_extents++;
1862 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1863 struct btrfs_free_space *info)
1865 ASSERT(info->bitmap);
1868 * If our entry is empty it's because we're on a cluster and we don't
1869 * want to re-link it into our ctl bytes index.
1871 if (RB_EMPTY_NODE(&info->bytes_index))
1874 lockdep_assert_held(&ctl->tree_lock);
1876 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1877 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1880 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1881 struct btrfs_free_space *info,
1882 u64 offset, u64 bytes, bool update_stat)
1884 unsigned long start, count, end;
1885 int extent_delta = -1;
1887 start = offset_to_bit(info->offset, ctl->unit, offset);
1888 count = bytes_to_bits(bytes, ctl->unit);
1889 end = start + count;
1890 ASSERT(end <= BITS_PER_BITMAP);
1892 bitmap_clear(info->bitmap, start, count);
1894 info->bytes -= bytes;
1895 if (info->max_extent_size > ctl->unit)
1896 info->max_extent_size = 0;
1898 relink_bitmap_entry(ctl, info);
1900 if (start && test_bit(start - 1, info->bitmap))
1903 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1906 info->bitmap_extents += extent_delta;
1907 if (!btrfs_free_space_trimmed(info)) {
1908 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1909 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1913 ctl->free_space -= bytes;
1916 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1917 struct btrfs_free_space *info, u64 offset,
1920 unsigned long start, count, end;
1921 int extent_delta = 1;
1923 start = offset_to_bit(info->offset, ctl->unit, offset);
1924 count = bytes_to_bits(bytes, ctl->unit);
1925 end = start + count;
1926 ASSERT(end <= BITS_PER_BITMAP);
1928 bitmap_set(info->bitmap, start, count);
1931 * We set some bytes, we have no idea what the max extent size is
1934 info->max_extent_size = 0;
1935 info->bytes += bytes;
1936 ctl->free_space += bytes;
1938 relink_bitmap_entry(ctl, info);
1940 if (start && test_bit(start - 1, info->bitmap))
1943 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1946 info->bitmap_extents += extent_delta;
1947 if (!btrfs_free_space_trimmed(info)) {
1948 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1949 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1954 * If we can not find suitable extent, we will use bytes to record
1955 * the size of the max extent.
1957 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1958 struct btrfs_free_space *bitmap_info, u64 *offset,
1959 u64 *bytes, bool for_alloc)
1961 unsigned long found_bits = 0;
1962 unsigned long max_bits = 0;
1963 unsigned long bits, i;
1964 unsigned long next_zero;
1965 unsigned long extent_bits;
1968 * Skip searching the bitmap if we don't have a contiguous section that
1969 * is large enough for this allocation.
1972 bitmap_info->max_extent_size &&
1973 bitmap_info->max_extent_size < *bytes) {
1974 *bytes = bitmap_info->max_extent_size;
1978 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1979 max_t(u64, *offset, bitmap_info->offset));
1980 bits = bytes_to_bits(*bytes, ctl->unit);
1982 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1983 if (for_alloc && bits == 1) {
1987 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1988 BITS_PER_BITMAP, i);
1989 extent_bits = next_zero - i;
1990 if (extent_bits >= bits) {
1991 found_bits = extent_bits;
1993 } else if (extent_bits > max_bits) {
1994 max_bits = extent_bits;
2000 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
2001 *bytes = (u64)(found_bits) * ctl->unit;
2005 *bytes = (u64)(max_bits) * ctl->unit;
2006 bitmap_info->max_extent_size = *bytes;
2007 relink_bitmap_entry(ctl, bitmap_info);
2011 /* Cache the size of the max extent in bytes */
2012 static struct btrfs_free_space *
2013 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2014 unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2016 struct btrfs_free_space *entry;
2017 struct rb_node *node;
2022 if (!ctl->free_space_offset.rb_node)
2025 if (use_bytes_index) {
2026 node = rb_first_cached(&ctl->free_space_bytes);
2028 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2032 node = &entry->offset_index;
2035 for (; node; node = rb_next(node)) {
2036 if (use_bytes_index)
2037 entry = rb_entry(node, struct btrfs_free_space,
2040 entry = rb_entry(node, struct btrfs_free_space,
2044 * If we are using the bytes index then all subsequent entries
2045 * in this tree are going to be < bytes, so simply set the max
2046 * extent size and exit the loop.
2048 * If we're using the offset index then we need to keep going
2049 * through the rest of the tree.
2051 if (entry->bytes < *bytes) {
2052 *max_extent_size = max(get_max_extent_size(entry),
2054 if (use_bytes_index)
2059 /* make sure the space returned is big enough
2060 * to match our requested alignment
2062 if (*bytes >= align) {
2063 tmp = entry->offset - ctl->start + align - 1;
2064 tmp = div64_u64(tmp, align);
2065 tmp = tmp * align + ctl->start;
2066 align_off = tmp - entry->offset;
2069 tmp = entry->offset;
2073 * We don't break here if we're using the bytes index because we
2074 * may have another entry that has the correct alignment that is
2075 * the right size, so we don't want to miss that possibility.
2076 * At worst this adds another loop through the logic, but if we
2077 * broke here we could prematurely ENOSPC.
2079 if (entry->bytes < *bytes + align_off) {
2080 *max_extent_size = max(get_max_extent_size(entry),
2085 if (entry->bitmap) {
2086 struct rb_node *old_next = rb_next(node);
2089 ret = search_bitmap(ctl, entry, &tmp, &size, true);
2096 max(get_max_extent_size(entry),
2101 * The bitmap may have gotten re-arranged in the space
2102 * index here because the max_extent_size may have been
2103 * updated. Start from the beginning again if this
2106 if (use_bytes_index && old_next != rb_next(node))
2112 *bytes = entry->bytes - align_off;
2119 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2120 struct btrfs_free_space *info, u64 offset)
2122 info->offset = offset_to_bitmap(ctl, offset);
2124 info->bitmap_extents = 0;
2125 INIT_LIST_HEAD(&info->list);
2126 link_free_space(ctl, info);
2127 ctl->total_bitmaps++;
2128 recalculate_thresholds(ctl);
2131 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2132 struct btrfs_free_space *bitmap_info)
2135 * Normally when this is called, the bitmap is completely empty. However,
2136 * if we are blowing up the free space cache for one reason or another
2137 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2138 * we may leave stats on the table.
2140 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2141 ctl->discardable_extents[BTRFS_STAT_CURR] -=
2142 bitmap_info->bitmap_extents;
2143 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2146 unlink_free_space(ctl, bitmap_info, true);
2147 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2148 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2149 ctl->total_bitmaps--;
2150 recalculate_thresholds(ctl);
2153 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2154 struct btrfs_free_space *bitmap_info,
2155 u64 *offset, u64 *bytes)
2158 u64 search_start, search_bytes;
2162 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2165 * We need to search for bits in this bitmap. We could only cover some
2166 * of the extent in this bitmap thanks to how we add space, so we need
2167 * to search for as much as it as we can and clear that amount, and then
2168 * go searching for the next bit.
2170 search_start = *offset;
2171 search_bytes = ctl->unit;
2172 search_bytes = min(search_bytes, end - search_start + 1);
2173 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2175 if (ret < 0 || search_start != *offset)
2178 /* We may have found more bits than what we need */
2179 search_bytes = min(search_bytes, *bytes);
2181 /* Cannot clear past the end of the bitmap */
2182 search_bytes = min(search_bytes, end - search_start + 1);
2184 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2185 *offset += search_bytes;
2186 *bytes -= search_bytes;
2189 struct rb_node *next = rb_next(&bitmap_info->offset_index);
2190 if (!bitmap_info->bytes)
2191 free_bitmap(ctl, bitmap_info);
2194 * no entry after this bitmap, but we still have bytes to
2195 * remove, so something has gone wrong.
2200 bitmap_info = rb_entry(next, struct btrfs_free_space,
2204 * if the next entry isn't a bitmap we need to return to let the
2205 * extent stuff do its work.
2207 if (!bitmap_info->bitmap)
2211 * Ok the next item is a bitmap, but it may not actually hold
2212 * the information for the rest of this free space stuff, so
2213 * look for it, and if we don't find it return so we can try
2214 * everything over again.
2216 search_start = *offset;
2217 search_bytes = ctl->unit;
2218 ret = search_bitmap(ctl, bitmap_info, &search_start,
2219 &search_bytes, false);
2220 if (ret < 0 || search_start != *offset)
2224 } else if (!bitmap_info->bytes)
2225 free_bitmap(ctl, bitmap_info);
2230 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2231 struct btrfs_free_space *info, u64 offset,
2232 u64 bytes, enum btrfs_trim_state trim_state)
2234 u64 bytes_to_set = 0;
2238 * This is a tradeoff to make bitmap trim state minimal. We mark the
2239 * whole bitmap untrimmed if at any point we add untrimmed regions.
2241 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2242 if (btrfs_free_space_trimmed(info)) {
2243 ctl->discardable_extents[BTRFS_STAT_CURR] +=
2244 info->bitmap_extents;
2245 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2247 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2250 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2252 bytes_to_set = min(end - offset, bytes);
2254 bitmap_set_bits(ctl, info, offset, bytes_to_set);
2256 return bytes_to_set;
2260 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2261 struct btrfs_free_space *info)
2263 struct btrfs_block_group *block_group = ctl->block_group;
2264 struct btrfs_fs_info *fs_info = block_group->fs_info;
2265 bool forced = false;
2267 #ifdef CONFIG_BTRFS_DEBUG
2268 if (btrfs_should_fragment_free_space(block_group))
2272 /* This is a way to reclaim large regions from the bitmaps. */
2273 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2277 * If we are below the extents threshold then we can add this as an
2278 * extent, and don't have to deal with the bitmap
2280 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2282 * If this block group has some small extents we don't want to
2283 * use up all of our free slots in the cache with them, we want
2284 * to reserve them to larger extents, however if we have plenty
2285 * of cache left then go ahead an dadd them, no sense in adding
2286 * the overhead of a bitmap if we don't have to.
2288 if (info->bytes <= fs_info->sectorsize * 8) {
2289 if (ctl->free_extents * 3 <= ctl->extents_thresh)
2297 * The original block groups from mkfs can be really small, like 8
2298 * megabytes, so don't bother with a bitmap for those entries. However
2299 * some block groups can be smaller than what a bitmap would cover but
2300 * are still large enough that they could overflow the 32k memory limit,
2301 * so allow those block groups to still be allowed to have a bitmap
2304 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2310 static const struct btrfs_free_space_op free_space_op = {
2311 .use_bitmap = use_bitmap,
2314 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2315 struct btrfs_free_space *info)
2317 struct btrfs_free_space *bitmap_info;
2318 struct btrfs_block_group *block_group = NULL;
2320 u64 bytes, offset, bytes_added;
2321 enum btrfs_trim_state trim_state;
2324 bytes = info->bytes;
2325 offset = info->offset;
2326 trim_state = info->trim_state;
2328 if (!ctl->op->use_bitmap(ctl, info))
2331 if (ctl->op == &free_space_op)
2332 block_group = ctl->block_group;
2335 * Since we link bitmaps right into the cluster we need to see if we
2336 * have a cluster here, and if so and it has our bitmap we need to add
2337 * the free space to that bitmap.
2339 if (block_group && !list_empty(&block_group->cluster_list)) {
2340 struct btrfs_free_cluster *cluster;
2341 struct rb_node *node;
2342 struct btrfs_free_space *entry;
2344 cluster = list_entry(block_group->cluster_list.next,
2345 struct btrfs_free_cluster,
2347 spin_lock(&cluster->lock);
2348 node = rb_first(&cluster->root);
2350 spin_unlock(&cluster->lock);
2351 goto no_cluster_bitmap;
2354 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2355 if (!entry->bitmap) {
2356 spin_unlock(&cluster->lock);
2357 goto no_cluster_bitmap;
2360 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2361 bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2363 bytes -= bytes_added;
2364 offset += bytes_added;
2366 spin_unlock(&cluster->lock);
2374 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2381 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2383 bytes -= bytes_added;
2384 offset += bytes_added;
2394 if (info && info->bitmap) {
2395 add_new_bitmap(ctl, info, offset);
2400 spin_unlock(&ctl->tree_lock);
2402 /* no pre-allocated info, allocate a new one */
2404 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2407 spin_lock(&ctl->tree_lock);
2413 /* allocate the bitmap */
2414 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2416 info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2417 spin_lock(&ctl->tree_lock);
2418 if (!info->bitmap) {
2428 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2430 kmem_cache_free(btrfs_free_space_cachep, info);
2437 * Free space merging rules:
2438 * 1) Merge trimmed areas together
2439 * 2) Let untrimmed areas coalesce with trimmed areas
2440 * 3) Always pull neighboring regions from bitmaps
2442 * The above rules are for when we merge free space based on btrfs_trim_state.
2443 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2444 * same reason: to promote larger extent regions which makes life easier for
2445 * find_free_extent(). Rule 2 enables coalescing based on the common path
2446 * being returning free space from btrfs_finish_extent_commit(). So when free
2447 * space is trimmed, it will prevent aggregating trimmed new region and
2448 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2449 * and provide find_free_extent() with the largest extents possible hoping for
2452 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2453 struct btrfs_free_space *info, bool update_stat)
2455 struct btrfs_free_space *left_info = NULL;
2456 struct btrfs_free_space *right_info;
2457 bool merged = false;
2458 u64 offset = info->offset;
2459 u64 bytes = info->bytes;
2460 const bool is_trimmed = btrfs_free_space_trimmed(info);
2461 struct rb_node *right_prev = NULL;
2464 * first we want to see if there is free space adjacent to the range we
2465 * are adding, if there is remove that struct and add a new one to
2466 * cover the entire range
2468 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2470 right_prev = rb_prev(&right_info->offset_index);
2473 left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2474 else if (!right_info)
2475 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2477 /* See try_merge_free_space() comment. */
2478 if (right_info && !right_info->bitmap &&
2479 (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2480 unlink_free_space(ctl, right_info, update_stat);
2481 info->bytes += right_info->bytes;
2482 kmem_cache_free(btrfs_free_space_cachep, right_info);
2486 /* See try_merge_free_space() comment. */
2487 if (left_info && !left_info->bitmap &&
2488 left_info->offset + left_info->bytes == offset &&
2489 (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2490 unlink_free_space(ctl, left_info, update_stat);
2491 info->offset = left_info->offset;
2492 info->bytes += left_info->bytes;
2493 kmem_cache_free(btrfs_free_space_cachep, left_info);
2500 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2501 struct btrfs_free_space *info,
2504 struct btrfs_free_space *bitmap;
2507 const u64 end = info->offset + info->bytes;
2508 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2511 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2515 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2516 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2519 bytes = (j - i) * ctl->unit;
2520 info->bytes += bytes;
2522 /* See try_merge_free_space() comment. */
2523 if (!btrfs_free_space_trimmed(bitmap))
2524 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2526 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2529 free_bitmap(ctl, bitmap);
2534 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2535 struct btrfs_free_space *info,
2538 struct btrfs_free_space *bitmap;
2542 unsigned long prev_j;
2545 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2546 /* If we're on a boundary, try the previous logical bitmap. */
2547 if (bitmap_offset == info->offset) {
2548 if (info->offset == 0)
2550 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2553 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2557 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2559 prev_j = (unsigned long)-1;
2560 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2568 if (prev_j == (unsigned long)-1)
2569 bytes = (i + 1) * ctl->unit;
2571 bytes = (i - prev_j) * ctl->unit;
2573 info->offset -= bytes;
2574 info->bytes += bytes;
2576 /* See try_merge_free_space() comment. */
2577 if (!btrfs_free_space_trimmed(bitmap))
2578 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2580 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2583 free_bitmap(ctl, bitmap);
2589 * We prefer always to allocate from extent entries, both for clustered and
2590 * non-clustered allocation requests. So when attempting to add a new extent
2591 * entry, try to see if there's adjacent free space in bitmap entries, and if
2592 * there is, migrate that space from the bitmaps to the extent.
2593 * Like this we get better chances of satisfying space allocation requests
2594 * because we attempt to satisfy them based on a single cache entry, and never
2595 * on 2 or more entries - even if the entries represent a contiguous free space
2596 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2599 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2600 struct btrfs_free_space *info,
2604 * Only work with disconnected entries, as we can change their offset,
2605 * and must be extent entries.
2607 ASSERT(!info->bitmap);
2608 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2610 if (ctl->total_bitmaps > 0) {
2612 bool stole_front = false;
2614 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2615 if (ctl->total_bitmaps > 0)
2616 stole_front = steal_from_bitmap_to_front(ctl, info,
2619 if (stole_end || stole_front)
2620 try_merge_free_space(ctl, info, update_stat);
2624 int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2625 u64 offset, u64 bytes,
2626 enum btrfs_trim_state trim_state)
2628 struct btrfs_fs_info *fs_info = block_group->fs_info;
2629 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2630 struct btrfs_free_space *info;
2632 u64 filter_bytes = bytes;
2634 ASSERT(!btrfs_is_zoned(fs_info));
2636 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2640 info->offset = offset;
2641 info->bytes = bytes;
2642 info->trim_state = trim_state;
2643 RB_CLEAR_NODE(&info->offset_index);
2644 RB_CLEAR_NODE(&info->bytes_index);
2646 spin_lock(&ctl->tree_lock);
2648 if (try_merge_free_space(ctl, info, true))
2652 * There was no extent directly to the left or right of this new
2653 * extent then we know we're going to have to allocate a new extent, so
2654 * before we do that see if we need to drop this into a bitmap
2656 ret = insert_into_bitmap(ctl, info);
2665 * Only steal free space from adjacent bitmaps if we're sure we're not
2666 * going to add the new free space to existing bitmap entries - because
2667 * that would mean unnecessary work that would be reverted. Therefore
2668 * attempt to steal space from bitmaps if we're adding an extent entry.
2670 steal_from_bitmap(ctl, info, true);
2672 filter_bytes = max(filter_bytes, info->bytes);
2674 ret = link_free_space(ctl, info);
2676 kmem_cache_free(btrfs_free_space_cachep, info);
2678 btrfs_discard_update_discardable(block_group);
2679 spin_unlock(&ctl->tree_lock);
2682 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2683 ASSERT(ret != -EEXIST);
2686 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2687 btrfs_discard_check_filter(block_group, filter_bytes);
2688 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2694 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2695 u64 bytenr, u64 size, bool used)
2697 struct btrfs_space_info *sinfo = block_group->space_info;
2698 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2699 u64 offset = bytenr - block_group->start;
2700 u64 to_free, to_unusable;
2701 int bg_reclaim_threshold = 0;
2702 bool initial = (size == block_group->length);
2703 u64 reclaimable_unusable;
2705 WARN_ON(!initial && offset + size > block_group->zone_capacity);
2708 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2710 spin_lock(&ctl->tree_lock);
2714 to_free = block_group->zone_capacity;
2715 else if (offset >= block_group->alloc_offset)
2717 else if (offset + size <= block_group->alloc_offset)
2720 to_free = offset + size - block_group->alloc_offset;
2721 to_unusable = size - to_free;
2723 ctl->free_space += to_free;
2725 * If the block group is read-only, we should account freed space into
2728 if (!block_group->ro)
2729 block_group->zone_unusable += to_unusable;
2730 spin_unlock(&ctl->tree_lock);
2732 spin_lock(&block_group->lock);
2733 block_group->alloc_offset -= size;
2734 spin_unlock(&block_group->lock);
2737 reclaimable_unusable = block_group->zone_unusable -
2738 (block_group->length - block_group->zone_capacity);
2739 /* All the region is now unusable. Mark it as unused and reclaim */
2740 if (block_group->zone_unusable == block_group->length) {
2741 btrfs_mark_bg_unused(block_group);
2742 } else if (bg_reclaim_threshold &&
2743 reclaimable_unusable >=
2744 mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2745 btrfs_mark_bg_to_reclaim(block_group);
2751 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2752 u64 bytenr, u64 size)
2754 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2756 if (btrfs_is_zoned(block_group->fs_info))
2757 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2760 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2761 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2763 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2766 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2767 u64 bytenr, u64 size)
2769 if (btrfs_is_zoned(block_group->fs_info))
2770 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2773 return btrfs_add_free_space(block_group, bytenr, size);
2777 * This is a subtle distinction because when adding free space back in general,
2778 * we want it to be added as untrimmed for async. But in the case where we add
2779 * it on loading of a block group, we want to consider it trimmed.
2781 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2782 u64 bytenr, u64 size)
2784 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2786 if (btrfs_is_zoned(block_group->fs_info))
2787 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2790 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2791 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2792 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2794 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2797 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2798 u64 offset, u64 bytes)
2800 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2801 struct btrfs_free_space *info;
2803 bool re_search = false;
2805 if (btrfs_is_zoned(block_group->fs_info)) {
2807 * This can happen with conventional zones when replaying log.
2808 * Since the allocation info of tree-log nodes are not recorded
2809 * to the extent-tree, calculate_alloc_pointer() failed to
2810 * advance the allocation pointer after last allocated tree log
2813 * This function is called from
2814 * btrfs_pin_extent_for_log_replay() when replaying the log.
2815 * Advance the pointer not to overwrite the tree-log nodes.
2817 if (block_group->start + block_group->alloc_offset <
2819 block_group->alloc_offset =
2820 offset + bytes - block_group->start;
2825 spin_lock(&ctl->tree_lock);
2832 info = tree_search_offset(ctl, offset, 0, 0);
2835 * oops didn't find an extent that matched the space we wanted
2836 * to remove, look for a bitmap instead
2838 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2842 * If we found a partial bit of our free space in a
2843 * bitmap but then couldn't find the other part this may
2844 * be a problem, so WARN about it.
2852 if (!info->bitmap) {
2853 unlink_free_space(ctl, info, true);
2854 if (offset == info->offset) {
2855 u64 to_free = min(bytes, info->bytes);
2857 info->bytes -= to_free;
2858 info->offset += to_free;
2860 ret = link_free_space(ctl, info);
2863 kmem_cache_free(btrfs_free_space_cachep, info);
2870 u64 old_end = info->bytes + info->offset;
2872 info->bytes = offset - info->offset;
2873 ret = link_free_space(ctl, info);
2878 /* Not enough bytes in this entry to satisfy us */
2879 if (old_end < offset + bytes) {
2880 bytes -= old_end - offset;
2883 } else if (old_end == offset + bytes) {
2887 spin_unlock(&ctl->tree_lock);
2889 ret = __btrfs_add_free_space(block_group,
2891 old_end - (offset + bytes),
2898 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2899 if (ret == -EAGAIN) {
2904 btrfs_discard_update_discardable(block_group);
2905 spin_unlock(&ctl->tree_lock);
2910 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2913 struct btrfs_fs_info *fs_info = block_group->fs_info;
2914 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2915 struct btrfs_free_space *info;
2920 * Zoned btrfs does not use free space tree and cluster. Just print
2921 * out the free space after the allocation offset.
2923 if (btrfs_is_zoned(fs_info)) {
2924 btrfs_info(fs_info, "free space %llu active %d",
2925 block_group->zone_capacity - block_group->alloc_offset,
2926 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2927 &block_group->runtime_flags));
2931 spin_lock(&ctl->tree_lock);
2932 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2933 info = rb_entry(n, struct btrfs_free_space, offset_index);
2934 if (info->bytes >= bytes && !block_group->ro)
2936 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2937 info->offset, info->bytes,
2938 (info->bitmap) ? "yes" : "no");
2940 spin_unlock(&ctl->tree_lock);
2941 btrfs_info(fs_info, "block group has cluster?: %s",
2942 list_empty(&block_group->cluster_list) ? "no" : "yes");
2944 "%d free space entries at or bigger than %llu bytes",
2948 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2949 struct btrfs_free_space_ctl *ctl)
2951 struct btrfs_fs_info *fs_info = block_group->fs_info;
2953 spin_lock_init(&ctl->tree_lock);
2954 ctl->unit = fs_info->sectorsize;
2955 ctl->start = block_group->start;
2956 ctl->block_group = block_group;
2957 ctl->op = &free_space_op;
2958 ctl->free_space_bytes = RB_ROOT_CACHED;
2959 INIT_LIST_HEAD(&ctl->trimming_ranges);
2960 mutex_init(&ctl->cache_writeout_mutex);
2963 * we only want to have 32k of ram per block group for keeping
2964 * track of free space, and if we pass 1/2 of that we want to
2965 * start converting things over to using bitmaps
2967 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2971 * for a given cluster, put all of its extents back into the free
2972 * space cache. If the block group passed doesn't match the block group
2973 * pointed to by the cluster, someone else raced in and freed the
2974 * cluster already. In that case, we just return without changing anything
2976 static void __btrfs_return_cluster_to_free_space(
2977 struct btrfs_block_group *block_group,
2978 struct btrfs_free_cluster *cluster)
2980 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2981 struct rb_node *node;
2983 lockdep_assert_held(&ctl->tree_lock);
2985 spin_lock(&cluster->lock);
2986 if (cluster->block_group != block_group) {
2987 spin_unlock(&cluster->lock);
2991 cluster->block_group = NULL;
2992 cluster->window_start = 0;
2993 list_del_init(&cluster->block_group_list);
2995 node = rb_first(&cluster->root);
2997 struct btrfs_free_space *entry;
2999 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3000 node = rb_next(&entry->offset_index);
3001 rb_erase(&entry->offset_index, &cluster->root);
3002 RB_CLEAR_NODE(&entry->offset_index);
3004 if (!entry->bitmap) {
3005 /* Merging treats extents as if they were new */
3006 if (!btrfs_free_space_trimmed(entry)) {
3007 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3008 ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3012 try_merge_free_space(ctl, entry, false);
3013 steal_from_bitmap(ctl, entry, false);
3015 /* As we insert directly, update these statistics */
3016 if (!btrfs_free_space_trimmed(entry)) {
3017 ctl->discardable_extents[BTRFS_STAT_CURR]++;
3018 ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3022 tree_insert_offset(ctl, NULL, entry);
3023 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3026 cluster->root = RB_ROOT;
3027 spin_unlock(&cluster->lock);
3028 btrfs_put_block_group(block_group);
3031 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3033 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3034 struct btrfs_free_cluster *cluster;
3035 struct list_head *head;
3037 spin_lock(&ctl->tree_lock);
3038 while ((head = block_group->cluster_list.next) !=
3039 &block_group->cluster_list) {
3040 cluster = list_entry(head, struct btrfs_free_cluster,
3043 WARN_ON(cluster->block_group != block_group);
3044 __btrfs_return_cluster_to_free_space(block_group, cluster);
3046 cond_resched_lock(&ctl->tree_lock);
3048 __btrfs_remove_free_space_cache(ctl);
3049 btrfs_discard_update_discardable(block_group);
3050 spin_unlock(&ctl->tree_lock);
3055 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3057 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3059 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3060 struct btrfs_free_space *info;
3061 struct rb_node *node;
3064 spin_lock(&ctl->tree_lock);
3065 node = rb_first(&ctl->free_space_offset);
3068 info = rb_entry(node, struct btrfs_free_space, offset_index);
3070 if (!btrfs_free_space_trimmed(info)) {
3075 node = rb_next(node);
3078 spin_unlock(&ctl->tree_lock);
3082 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3083 u64 offset, u64 bytes, u64 empty_size,
3084 u64 *max_extent_size)
3086 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3087 struct btrfs_discard_ctl *discard_ctl =
3088 &block_group->fs_info->discard_ctl;
3089 struct btrfs_free_space *entry = NULL;
3090 u64 bytes_search = bytes + empty_size;
3093 u64 align_gap_len = 0;
3094 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3095 bool use_bytes_index = (offset == block_group->start);
3097 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3099 spin_lock(&ctl->tree_lock);
3100 entry = find_free_space(ctl, &offset, &bytes_search,
3101 block_group->full_stripe_len, max_extent_size,
3107 if (entry->bitmap) {
3108 bitmap_clear_bits(ctl, entry, offset, bytes, true);
3110 if (!btrfs_free_space_trimmed(entry))
3111 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3114 free_bitmap(ctl, entry);
3116 unlink_free_space(ctl, entry, true);
3117 align_gap_len = offset - entry->offset;
3118 align_gap = entry->offset;
3119 align_gap_trim_state = entry->trim_state;
3121 if (!btrfs_free_space_trimmed(entry))
3122 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3124 entry->offset = offset + bytes;
3125 WARN_ON(entry->bytes < bytes + align_gap_len);
3127 entry->bytes -= bytes + align_gap_len;
3129 kmem_cache_free(btrfs_free_space_cachep, entry);
3131 link_free_space(ctl, entry);
3134 btrfs_discard_update_discardable(block_group);
3135 spin_unlock(&ctl->tree_lock);
3138 __btrfs_add_free_space(block_group, align_gap, align_gap_len,
3139 align_gap_trim_state);
3144 * given a cluster, put all of its extents back into the free space
3145 * cache. If a block group is passed, this function will only free
3146 * a cluster that belongs to the passed block group.
3148 * Otherwise, it'll get a reference on the block group pointed to by the
3149 * cluster and remove the cluster from it.
3151 void btrfs_return_cluster_to_free_space(
3152 struct btrfs_block_group *block_group,
3153 struct btrfs_free_cluster *cluster)
3155 struct btrfs_free_space_ctl *ctl;
3157 /* first, get a safe pointer to the block group */
3158 spin_lock(&cluster->lock);
3160 block_group = cluster->block_group;
3162 spin_unlock(&cluster->lock);
3165 } else if (cluster->block_group != block_group) {
3166 /* someone else has already freed it don't redo their work */
3167 spin_unlock(&cluster->lock);
3170 btrfs_get_block_group(block_group);
3171 spin_unlock(&cluster->lock);
3173 ctl = block_group->free_space_ctl;
3175 /* now return any extents the cluster had on it */
3176 spin_lock(&ctl->tree_lock);
3177 __btrfs_return_cluster_to_free_space(block_group, cluster);
3178 spin_unlock(&ctl->tree_lock);
3180 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3182 /* finally drop our ref */
3183 btrfs_put_block_group(block_group);
3186 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3187 struct btrfs_free_cluster *cluster,
3188 struct btrfs_free_space *entry,
3189 u64 bytes, u64 min_start,
3190 u64 *max_extent_size)
3192 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3194 u64 search_start = cluster->window_start;
3195 u64 search_bytes = bytes;
3198 search_start = min_start;
3199 search_bytes = bytes;
3201 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3203 *max_extent_size = max(get_max_extent_size(entry),
3209 bitmap_clear_bits(ctl, entry, ret, bytes, false);
3215 * given a cluster, try to allocate 'bytes' from it, returns 0
3216 * if it couldn't find anything suitably large, or a logical disk offset
3217 * if things worked out
3219 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3220 struct btrfs_free_cluster *cluster, u64 bytes,
3221 u64 min_start, u64 *max_extent_size)
3223 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3224 struct btrfs_discard_ctl *discard_ctl =
3225 &block_group->fs_info->discard_ctl;
3226 struct btrfs_free_space *entry = NULL;
3227 struct rb_node *node;
3230 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3232 spin_lock(&cluster->lock);
3233 if (bytes > cluster->max_size)
3236 if (cluster->block_group != block_group)
3239 node = rb_first(&cluster->root);
3243 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3245 if (entry->bytes < bytes)
3246 *max_extent_size = max(get_max_extent_size(entry),
3249 if (entry->bytes < bytes ||
3250 (!entry->bitmap && entry->offset < min_start)) {
3251 node = rb_next(&entry->offset_index);
3254 entry = rb_entry(node, struct btrfs_free_space,
3259 if (entry->bitmap) {
3260 ret = btrfs_alloc_from_bitmap(block_group,
3261 cluster, entry, bytes,
3262 cluster->window_start,
3265 node = rb_next(&entry->offset_index);
3268 entry = rb_entry(node, struct btrfs_free_space,
3272 cluster->window_start += bytes;
3274 ret = entry->offset;
3276 entry->offset += bytes;
3277 entry->bytes -= bytes;
3283 spin_unlock(&cluster->lock);
3288 spin_lock(&ctl->tree_lock);
3290 if (!btrfs_free_space_trimmed(entry))
3291 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3293 ctl->free_space -= bytes;
3294 if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3295 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3297 spin_lock(&cluster->lock);
3298 if (entry->bytes == 0) {
3299 rb_erase(&entry->offset_index, &cluster->root);
3300 ctl->free_extents--;
3301 if (entry->bitmap) {
3302 kmem_cache_free(btrfs_free_space_bitmap_cachep,
3304 ctl->total_bitmaps--;
3305 recalculate_thresholds(ctl);
3306 } else if (!btrfs_free_space_trimmed(entry)) {
3307 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3309 kmem_cache_free(btrfs_free_space_cachep, entry);
3312 spin_unlock(&cluster->lock);
3313 spin_unlock(&ctl->tree_lock);
3318 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3319 struct btrfs_free_space *entry,
3320 struct btrfs_free_cluster *cluster,
3321 u64 offset, u64 bytes,
3322 u64 cont1_bytes, u64 min_bytes)
3324 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3325 unsigned long next_zero;
3327 unsigned long want_bits;
3328 unsigned long min_bits;
3329 unsigned long found_bits;
3330 unsigned long max_bits = 0;
3331 unsigned long start = 0;
3332 unsigned long total_found = 0;
3335 lockdep_assert_held(&ctl->tree_lock);
3337 i = offset_to_bit(entry->offset, ctl->unit,
3338 max_t(u64, offset, entry->offset));
3339 want_bits = bytes_to_bits(bytes, ctl->unit);
3340 min_bits = bytes_to_bits(min_bytes, ctl->unit);
3343 * Don't bother looking for a cluster in this bitmap if it's heavily
3346 if (entry->max_extent_size &&
3347 entry->max_extent_size < cont1_bytes)
3351 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3352 next_zero = find_next_zero_bit(entry->bitmap,
3353 BITS_PER_BITMAP, i);
3354 if (next_zero - i >= min_bits) {
3355 found_bits = next_zero - i;
3356 if (found_bits > max_bits)
3357 max_bits = found_bits;
3360 if (next_zero - i > max_bits)
3361 max_bits = next_zero - i;
3366 entry->max_extent_size = (u64)max_bits * ctl->unit;
3372 cluster->max_size = 0;
3375 total_found += found_bits;
3377 if (cluster->max_size < found_bits * ctl->unit)
3378 cluster->max_size = found_bits * ctl->unit;
3380 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3385 cluster->window_start = start * ctl->unit + entry->offset;
3386 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3387 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3390 * We need to know if we're currently on the normal space index when we
3391 * manipulate the bitmap so that we know we need to remove and re-insert
3392 * it into the space_index tree. Clear the bytes_index node here so the
3393 * bitmap manipulation helpers know not to mess with the space_index
3394 * until this bitmap entry is added back into the normal cache.
3396 RB_CLEAR_NODE(&entry->bytes_index);
3398 ret = tree_insert_offset(ctl, cluster, entry);
3399 ASSERT(!ret); /* -EEXIST; Logic error */
3401 trace_btrfs_setup_cluster(block_group, cluster,
3402 total_found * ctl->unit, 1);
3407 * This searches the block group for just extents to fill the cluster with.
3408 * Try to find a cluster with at least bytes total bytes, at least one
3409 * extent of cont1_bytes, and other clusters of at least min_bytes.
3412 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3413 struct btrfs_free_cluster *cluster,
3414 struct list_head *bitmaps, u64 offset, u64 bytes,
3415 u64 cont1_bytes, u64 min_bytes)
3417 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3418 struct btrfs_free_space *first = NULL;
3419 struct btrfs_free_space *entry = NULL;
3420 struct btrfs_free_space *last;
3421 struct rb_node *node;
3426 lockdep_assert_held(&ctl->tree_lock);
3428 entry = tree_search_offset(ctl, offset, 0, 1);
3433 * We don't want bitmaps, so just move along until we find a normal
3436 while (entry->bitmap || entry->bytes < min_bytes) {
3437 if (entry->bitmap && list_empty(&entry->list))
3438 list_add_tail(&entry->list, bitmaps);
3439 node = rb_next(&entry->offset_index);
3442 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3445 window_free = entry->bytes;
3446 max_extent = entry->bytes;
3450 for (node = rb_next(&entry->offset_index); node;
3451 node = rb_next(&entry->offset_index)) {
3452 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3454 if (entry->bitmap) {
3455 if (list_empty(&entry->list))
3456 list_add_tail(&entry->list, bitmaps);
3460 if (entry->bytes < min_bytes)
3464 window_free += entry->bytes;
3465 if (entry->bytes > max_extent)
3466 max_extent = entry->bytes;
3469 if (window_free < bytes || max_extent < cont1_bytes)
3472 cluster->window_start = first->offset;
3474 node = &first->offset_index;
3477 * now we've found our entries, pull them out of the free space
3478 * cache and put them into the cluster rbtree
3483 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3484 node = rb_next(&entry->offset_index);
3485 if (entry->bitmap || entry->bytes < min_bytes)
3488 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3489 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3490 ret = tree_insert_offset(ctl, cluster, entry);
3491 total_size += entry->bytes;
3492 ASSERT(!ret); /* -EEXIST; Logic error */
3493 } while (node && entry != last);
3495 cluster->max_size = max_extent;
3496 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3501 * This specifically looks for bitmaps that may work in the cluster, we assume
3502 * that we have already failed to find extents that will work.
3505 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3506 struct btrfs_free_cluster *cluster,
3507 struct list_head *bitmaps, u64 offset, u64 bytes,
3508 u64 cont1_bytes, u64 min_bytes)
3510 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3511 struct btrfs_free_space *entry = NULL;
3513 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3515 if (ctl->total_bitmaps == 0)
3519 * The bitmap that covers offset won't be in the list unless offset
3520 * is just its start offset.
3522 if (!list_empty(bitmaps))
3523 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3525 if (!entry || entry->offset != bitmap_offset) {
3526 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3527 if (entry && list_empty(&entry->list))
3528 list_add(&entry->list, bitmaps);
3531 list_for_each_entry(entry, bitmaps, list) {
3532 if (entry->bytes < bytes)
3534 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3535 bytes, cont1_bytes, min_bytes);
3541 * The bitmaps list has all the bitmaps that record free space
3542 * starting after offset, so no more search is required.
3548 * here we try to find a cluster of blocks in a block group. The goal
3549 * is to find at least bytes+empty_size.
3550 * We might not find them all in one contiguous area.
3552 * returns zero and sets up cluster if things worked out, otherwise
3553 * it returns -enospc
3555 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3556 struct btrfs_free_cluster *cluster,
3557 u64 offset, u64 bytes, u64 empty_size)
3559 struct btrfs_fs_info *fs_info = block_group->fs_info;
3560 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3561 struct btrfs_free_space *entry, *tmp;
3568 * Choose the minimum extent size we'll require for this
3569 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3570 * For metadata, allow allocates with smaller extents. For
3571 * data, keep it dense.
3573 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3574 cont1_bytes = bytes + empty_size;
3575 min_bytes = cont1_bytes;
3576 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3577 cont1_bytes = bytes;
3578 min_bytes = fs_info->sectorsize;
3580 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3581 min_bytes = fs_info->sectorsize;
3584 spin_lock(&ctl->tree_lock);
3587 * If we know we don't have enough space to make a cluster don't even
3588 * bother doing all the work to try and find one.
3590 if (ctl->free_space < bytes) {
3591 spin_unlock(&ctl->tree_lock);
3595 spin_lock(&cluster->lock);
3597 /* someone already found a cluster, hooray */
3598 if (cluster->block_group) {
3603 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3606 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3608 cont1_bytes, min_bytes);
3610 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3611 offset, bytes + empty_size,
3612 cont1_bytes, min_bytes);
3614 /* Clear our temporary list */
3615 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3616 list_del_init(&entry->list);
3619 btrfs_get_block_group(block_group);
3620 list_add_tail(&cluster->block_group_list,
3621 &block_group->cluster_list);
3622 cluster->block_group = block_group;
3624 trace_btrfs_failed_cluster_setup(block_group);
3627 spin_unlock(&cluster->lock);
3628 spin_unlock(&ctl->tree_lock);
3634 * simple code to zero out a cluster
3636 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3638 spin_lock_init(&cluster->lock);
3639 spin_lock_init(&cluster->refill_lock);
3640 cluster->root = RB_ROOT;
3641 cluster->max_size = 0;
3642 cluster->fragmented = false;
3643 INIT_LIST_HEAD(&cluster->block_group_list);
3644 cluster->block_group = NULL;
3647 static int do_trimming(struct btrfs_block_group *block_group,
3648 u64 *total_trimmed, u64 start, u64 bytes,
3649 u64 reserved_start, u64 reserved_bytes,
3650 enum btrfs_trim_state reserved_trim_state,
3651 struct btrfs_trim_range *trim_entry)
3653 struct btrfs_space_info *space_info = block_group->space_info;
3654 struct btrfs_fs_info *fs_info = block_group->fs_info;
3655 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3658 const u64 end = start + bytes;
3659 const u64 reserved_end = reserved_start + reserved_bytes;
3660 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3663 spin_lock(&space_info->lock);
3664 spin_lock(&block_group->lock);
3665 if (!block_group->ro) {
3666 block_group->reserved += reserved_bytes;
3667 space_info->bytes_reserved += reserved_bytes;
3670 spin_unlock(&block_group->lock);
3671 spin_unlock(&space_info->lock);
3673 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3675 *total_trimmed += trimmed;
3676 trim_state = BTRFS_TRIM_STATE_TRIMMED;
3679 mutex_lock(&ctl->cache_writeout_mutex);
3680 if (reserved_start < start)
3681 __btrfs_add_free_space(block_group, reserved_start,
3682 start - reserved_start,
3683 reserved_trim_state);
3684 if (end < reserved_end)
3685 __btrfs_add_free_space(block_group, end, reserved_end - end,
3686 reserved_trim_state);
3687 __btrfs_add_free_space(block_group, start, bytes, trim_state);
3688 list_del(&trim_entry->list);
3689 mutex_unlock(&ctl->cache_writeout_mutex);
3692 spin_lock(&space_info->lock);
3693 spin_lock(&block_group->lock);
3694 if (block_group->ro)
3695 space_info->bytes_readonly += reserved_bytes;
3696 block_group->reserved -= reserved_bytes;
3697 space_info->bytes_reserved -= reserved_bytes;
3698 spin_unlock(&block_group->lock);
3699 spin_unlock(&space_info->lock);
3706 * If @async is set, then we will trim 1 region and return.
3708 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3709 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3712 struct btrfs_discard_ctl *discard_ctl =
3713 &block_group->fs_info->discard_ctl;
3714 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3715 struct btrfs_free_space *entry;
3716 struct rb_node *node;
3720 enum btrfs_trim_state extent_trim_state;
3722 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3724 while (start < end) {
3725 struct btrfs_trim_range trim_entry;
3727 mutex_lock(&ctl->cache_writeout_mutex);
3728 spin_lock(&ctl->tree_lock);
3730 if (ctl->free_space < minlen)
3733 entry = tree_search_offset(ctl, start, 0, 1);
3737 /* Skip bitmaps and if async, already trimmed entries */
3738 while (entry->bitmap ||
3739 (async && btrfs_free_space_trimmed(entry))) {
3740 node = rb_next(&entry->offset_index);
3743 entry = rb_entry(node, struct btrfs_free_space,
3747 if (entry->offset >= end)
3750 extent_start = entry->offset;
3751 extent_bytes = entry->bytes;
3752 extent_trim_state = entry->trim_state;
3754 start = entry->offset;
3755 bytes = entry->bytes;
3756 if (bytes < minlen) {
3757 spin_unlock(&ctl->tree_lock);
3758 mutex_unlock(&ctl->cache_writeout_mutex);
3761 unlink_free_space(ctl, entry, true);
3763 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3764 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3765 * X when we come back around. So trim it now.
3767 if (max_discard_size &&
3768 bytes >= (max_discard_size +
3769 BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3770 bytes = max_discard_size;
3771 extent_bytes = max_discard_size;
3772 entry->offset += max_discard_size;
3773 entry->bytes -= max_discard_size;
3774 link_free_space(ctl, entry);
3776 kmem_cache_free(btrfs_free_space_cachep, entry);
3779 start = max(start, extent_start);
3780 bytes = min(extent_start + extent_bytes, end) - start;
3781 if (bytes < minlen) {
3782 spin_unlock(&ctl->tree_lock);
3783 mutex_unlock(&ctl->cache_writeout_mutex);
3787 unlink_free_space(ctl, entry, true);
3788 kmem_cache_free(btrfs_free_space_cachep, entry);
3791 spin_unlock(&ctl->tree_lock);
3792 trim_entry.start = extent_start;
3793 trim_entry.bytes = extent_bytes;
3794 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3795 mutex_unlock(&ctl->cache_writeout_mutex);
3797 ret = do_trimming(block_group, total_trimmed, start, bytes,
3798 extent_start, extent_bytes, extent_trim_state,
3801 block_group->discard_cursor = start + bytes;
3806 block_group->discard_cursor = start;
3807 if (async && *total_trimmed)
3810 if (fatal_signal_pending(current)) {
3821 block_group->discard_cursor = btrfs_block_group_end(block_group);
3822 spin_unlock(&ctl->tree_lock);
3823 mutex_unlock(&ctl->cache_writeout_mutex);
3829 * If we break out of trimming a bitmap prematurely, we should reset the
3830 * trimming bit. In a rather contrieved case, it's possible to race here so
3831 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3833 * start = start of bitmap
3834 * end = near end of bitmap
3836 * Thread 1: Thread 2:
3837 * trim_bitmaps(start)
3839 * end_trimming_bitmap()
3840 * reset_trimming_bitmap()
3842 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3844 struct btrfs_free_space *entry;
3846 spin_lock(&ctl->tree_lock);
3847 entry = tree_search_offset(ctl, offset, 1, 0);
3849 if (btrfs_free_space_trimmed(entry)) {
3850 ctl->discardable_extents[BTRFS_STAT_CURR] +=
3851 entry->bitmap_extents;
3852 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3854 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3857 spin_unlock(&ctl->tree_lock);
3860 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3861 struct btrfs_free_space *entry)
3863 if (btrfs_free_space_trimming_bitmap(entry)) {
3864 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3865 ctl->discardable_extents[BTRFS_STAT_CURR] -=
3866 entry->bitmap_extents;
3867 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3872 * If @async is set, then we will trim 1 region and return.
3874 static int trim_bitmaps(struct btrfs_block_group *block_group,
3875 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3876 u64 maxlen, bool async)
3878 struct btrfs_discard_ctl *discard_ctl =
3879 &block_group->fs_info->discard_ctl;
3880 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3881 struct btrfs_free_space *entry;
3885 u64 offset = offset_to_bitmap(ctl, start);
3886 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3888 while (offset < end) {
3889 bool next_bitmap = false;
3890 struct btrfs_trim_range trim_entry;
3892 mutex_lock(&ctl->cache_writeout_mutex);
3893 spin_lock(&ctl->tree_lock);
3895 if (ctl->free_space < minlen) {
3896 block_group->discard_cursor =
3897 btrfs_block_group_end(block_group);
3898 spin_unlock(&ctl->tree_lock);
3899 mutex_unlock(&ctl->cache_writeout_mutex);
3903 entry = tree_search_offset(ctl, offset, 1, 0);
3905 * Bitmaps are marked trimmed lossily now to prevent constant
3906 * discarding of the same bitmap (the reason why we are bound
3907 * by the filters). So, retrim the block group bitmaps when we
3908 * are preparing to punt to the unused_bgs list. This uses
3909 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3910 * which is the only discard index which sets minlen to 0.
3912 if (!entry || (async && minlen && start == offset &&
3913 btrfs_free_space_trimmed(entry))) {
3914 spin_unlock(&ctl->tree_lock);
3915 mutex_unlock(&ctl->cache_writeout_mutex);
3921 * Async discard bitmap trimming begins at by setting the start
3922 * to be key.objectid and the offset_to_bitmap() aligns to the
3923 * start of the bitmap. This lets us know we are fully
3924 * scanning the bitmap rather than only some portion of it.
3926 if (start == offset)
3927 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3930 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3931 if (ret2 || start >= end) {
3933 * We lossily consider a bitmap trimmed if we only skip
3934 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3936 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3937 end_trimming_bitmap(ctl, entry);
3939 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3940 spin_unlock(&ctl->tree_lock);
3941 mutex_unlock(&ctl->cache_writeout_mutex);
3947 * We already trimmed a region, but are using the locking above
3948 * to reset the trim_state.
3950 if (async && *total_trimmed) {
3951 spin_unlock(&ctl->tree_lock);
3952 mutex_unlock(&ctl->cache_writeout_mutex);
3956 bytes = min(bytes, end - start);
3957 if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3958 spin_unlock(&ctl->tree_lock);
3959 mutex_unlock(&ctl->cache_writeout_mutex);
3964 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3965 * If X < @minlen, we won't trim X when we come back around.
3966 * So trim it now. We differ here from trimming extents as we
3967 * don't keep individual state per bit.
3971 bytes > (max_discard_size + minlen))
3972 bytes = max_discard_size;
3974 bitmap_clear_bits(ctl, entry, start, bytes, true);
3975 if (entry->bytes == 0)
3976 free_bitmap(ctl, entry);
3978 spin_unlock(&ctl->tree_lock);
3979 trim_entry.start = start;
3980 trim_entry.bytes = bytes;
3981 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3982 mutex_unlock(&ctl->cache_writeout_mutex);
3984 ret = do_trimming(block_group, total_trimmed, start, bytes,
3985 start, bytes, 0, &trim_entry);
3987 reset_trimming_bitmap(ctl, offset);
3988 block_group->discard_cursor =
3989 btrfs_block_group_end(block_group);
3994 offset += BITS_PER_BITMAP * ctl->unit;
3999 block_group->discard_cursor = start;
4001 if (fatal_signal_pending(current)) {
4002 if (start != offset)
4003 reset_trimming_bitmap(ctl, offset);
4012 block_group->discard_cursor = end;
4018 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4019 u64 *trimmed, u64 start, u64 end, u64 minlen)
4021 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4025 ASSERT(!btrfs_is_zoned(block_group->fs_info));
4029 spin_lock(&block_group->lock);
4030 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4031 spin_unlock(&block_group->lock);
4034 btrfs_freeze_block_group(block_group);
4035 spin_unlock(&block_group->lock);
4037 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4041 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4042 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4043 /* If we ended in the middle of a bitmap, reset the trimming flag */
4045 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4047 btrfs_unfreeze_block_group(block_group);
4051 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4052 u64 *trimmed, u64 start, u64 end, u64 minlen,
4059 spin_lock(&block_group->lock);
4060 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4061 spin_unlock(&block_group->lock);
4064 btrfs_freeze_block_group(block_group);
4065 spin_unlock(&block_group->lock);
4067 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4068 btrfs_unfreeze_block_group(block_group);
4073 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4074 u64 *trimmed, u64 start, u64 end, u64 minlen,
4075 u64 maxlen, bool async)
4081 spin_lock(&block_group->lock);
4082 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4083 spin_unlock(&block_group->lock);
4086 btrfs_freeze_block_group(block_group);
4087 spin_unlock(&block_group->lock);
4089 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4092 btrfs_unfreeze_block_group(block_group);
4097 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4099 return btrfs_super_cache_generation(fs_info->super_copy);
4102 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4103 struct btrfs_trans_handle *trans)
4105 struct btrfs_block_group *block_group;
4106 struct rb_node *node;
4109 btrfs_info(fs_info, "cleaning free space cache v1");
4111 node = rb_first_cached(&fs_info->block_group_cache_tree);
4113 block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4114 ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4117 node = rb_next(node);
4123 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4125 struct btrfs_trans_handle *trans;
4129 * update_super_roots will appropriately set or unset
4130 * super_copy->cache_generation based on SPACE_CACHE and
4131 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4132 * transaction commit whether we are enabling space cache v1 and don't
4133 * have any other work to do, or are disabling it and removing free
4136 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4138 return PTR_ERR(trans);
4141 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4142 ret = cleanup_free_space_cache_v1(fs_info, trans);
4144 btrfs_abort_transaction(trans, ret);
4145 btrfs_end_transaction(trans);
4150 ret = btrfs_commit_transaction(trans);
4152 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4157 int __init btrfs_free_space_init(void)
4159 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
4160 sizeof(struct btrfs_free_space), 0,
4161 SLAB_MEM_SPREAD, NULL);
4162 if (!btrfs_free_space_cachep)
4165 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4166 PAGE_SIZE, PAGE_SIZE,
4167 SLAB_MEM_SPREAD, NULL);
4168 if (!btrfs_free_space_bitmap_cachep) {
4169 kmem_cache_destroy(btrfs_free_space_cachep);
4176 void __cold btrfs_free_space_exit(void)
4178 kmem_cache_destroy(btrfs_free_space_cachep);
4179 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4182 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4184 * Use this if you need to make a bitmap or extent entry specifically, it
4185 * doesn't do any of the merging that add_free_space does, this acts a lot like
4186 * how the free space cache loading stuff works, so you can get really weird
4189 int test_add_free_space_entry(struct btrfs_block_group *cache,
4190 u64 offset, u64 bytes, bool bitmap)
4192 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4193 struct btrfs_free_space *info = NULL, *bitmap_info;
4195 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4201 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4207 spin_lock(&ctl->tree_lock);
4208 info->offset = offset;
4209 info->bytes = bytes;
4210 info->max_extent_size = 0;
4211 ret = link_free_space(ctl, info);
4212 spin_unlock(&ctl->tree_lock);
4214 kmem_cache_free(btrfs_free_space_cachep, info);
4219 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4221 kmem_cache_free(btrfs_free_space_cachep, info);
4226 spin_lock(&ctl->tree_lock);
4227 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4232 add_new_bitmap(ctl, info, offset);
4237 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4240 bytes -= bytes_added;
4241 offset += bytes_added;
4242 spin_unlock(&ctl->tree_lock);
4248 kmem_cache_free(btrfs_free_space_cachep, info);
4250 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4255 * Checks to see if the given range is in the free space cache. This is really
4256 * just used to check the absence of space, so if there is free space in the
4257 * range at all we will return 1.
4259 int test_check_exists(struct btrfs_block_group *cache,
4260 u64 offset, u64 bytes)
4262 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4263 struct btrfs_free_space *info;
4266 spin_lock(&ctl->tree_lock);
4267 info = tree_search_offset(ctl, offset, 0, 0);
4269 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4277 u64 bit_off, bit_bytes;
4279 struct btrfs_free_space *tmp;
4282 bit_bytes = ctl->unit;
4283 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4285 if (bit_off == offset) {
4288 } else if (bit_off > offset &&
4289 offset + bytes > bit_off) {
4295 n = rb_prev(&info->offset_index);
4297 tmp = rb_entry(n, struct btrfs_free_space,
4299 if (tmp->offset + tmp->bytes < offset)
4301 if (offset + bytes < tmp->offset) {
4302 n = rb_prev(&tmp->offset_index);
4309 n = rb_next(&info->offset_index);
4311 tmp = rb_entry(n, struct btrfs_free_space,
4313 if (offset + bytes < tmp->offset)
4315 if (tmp->offset + tmp->bytes < offset) {
4316 n = rb_next(&tmp->offset_index);
4327 if (info->offset == offset) {
4332 if (offset > info->offset && offset < info->offset + info->bytes)
4335 spin_unlock(&ctl->tree_lock);
4338 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */