]> Git Repo - linux.git/blame - fs/btrfs/free-space-cache.c
Merge tag 'cgroup-for-6.8-rc7-fixes' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / fs / btrfs / free-space-cache.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0f9dd46c
JB
2/*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
0f9dd46c
JB
4 */
5
96303081 6#include <linux/pagemap.h>
0f9dd46c 7#include <linux/sched.h>
f361bf4a 8#include <linux/sched/signal.h>
5a0e3ad6 9#include <linux/slab.h>
96303081 10#include <linux/math64.h>
6ab60601 11#include <linux/ratelimit.h>
540adea3 12#include <linux/error-injection.h>
84de76a2 13#include <linux/sched/mm.h>
ec8eb376
JB
14#include "ctree.h"
15#include "fs.h"
9b569ea0 16#include "messages.h"
18bb8bbf 17#include "misc.h"
fa9c0d79
CM
18#include "free-space-cache.h"
19#include "transaction.h"
0af3d00b 20#include "disk-io.h"
43be2146 21#include "extent_io.h"
04216820 22#include "volumes.h"
8719aaae 23#include "space-info.h"
86736342 24#include "delalloc-space.h"
aac0023c 25#include "block-group.h"
b0643e59 26#include "discard.h"
e4f94347 27#include "subpage.h"
26c2c454 28#include "inode-item.h"
07e81dc9 29#include "accessors.h"
7c8ede16 30#include "file-item.h"
af142b6f 31#include "file.h"
7f0add25 32#include "super.h"
fa9c0d79 33
0ef6447a 34#define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
5d90c5c7
DZ
35#define MAX_CACHE_BYTES_PER_GIG SZ_64K
36#define FORCE_EXTENT_THRESHOLD SZ_1M
0f9dd46c 37
eda517fd
JB
38static struct kmem_cache *btrfs_free_space_cachep;
39static struct kmem_cache *btrfs_free_space_bitmap_cachep;
40
55507ce3
FM
41struct btrfs_trim_range {
42 u64 start;
43 u64 bytes;
44 struct list_head list;
45};
46
34d52cb6 47static int link_free_space(struct btrfs_free_space_ctl *ctl,
0cb59c99 48 struct btrfs_free_space *info);
cd023e7b 49static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
32e1649b 50 struct btrfs_free_space *info, bool update_stat);
cd79909b
JB
51static int search_bitmap(struct btrfs_free_space_ctl *ctl,
52 struct btrfs_free_space *bitmap_info, u64 *offset,
53 u64 *bytes, bool for_alloc);
54static void free_bitmap(struct btrfs_free_space_ctl *ctl,
55 struct btrfs_free_space *bitmap_info);
56static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
57 struct btrfs_free_space *info, u64 offset,
f594f13c 58 u64 bytes, bool update_stats);
0cb59c99 59
102f2640
JB
60static void btrfs_crc32c_final(u32 crc, u8 *result)
61{
62 put_unaligned_le32(~crc, result);
63}
64
fc80f7ac 65static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
8a1ae278
JB
66{
67 struct btrfs_free_space *info;
68 struct rb_node *node;
69
70 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
71 info = rb_entry(node, struct btrfs_free_space, offset_index);
72 if (!info->bitmap) {
73 unlink_free_space(ctl, info, true);
74 kmem_cache_free(btrfs_free_space_cachep, info);
75 } else {
76 free_bitmap(ctl, info);
77 }
78
79 cond_resched_lock(&ctl->tree_lock);
80 }
81}
82
0414efae
LZ
83static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
84 struct btrfs_path *path,
85 u64 offset)
0af3d00b 86{
0b246afa 87 struct btrfs_fs_info *fs_info = root->fs_info;
0af3d00b
JB
88 struct btrfs_key key;
89 struct btrfs_key location;
90 struct btrfs_disk_key disk_key;
91 struct btrfs_free_space_header *header;
92 struct extent_buffer *leaf;
93 struct inode *inode = NULL;
84de76a2 94 unsigned nofs_flag;
0af3d00b
JB
95 int ret;
96
0af3d00b 97 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 98 key.offset = offset;
0af3d00b
JB
99 key.type = 0;
100
101 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
102 if (ret < 0)
103 return ERR_PTR(ret);
104 if (ret > 0) {
b3b4aa74 105 btrfs_release_path(path);
0af3d00b
JB
106 return ERR_PTR(-ENOENT);
107 }
108
109 leaf = path->nodes[0];
110 header = btrfs_item_ptr(leaf, path->slots[0],
111 struct btrfs_free_space_header);
112 btrfs_free_space_key(leaf, header, &disk_key);
113 btrfs_disk_key_to_cpu(&location, &disk_key);
b3b4aa74 114 btrfs_release_path(path);
0af3d00b 115
84de76a2
JB
116 /*
117 * We are often under a trans handle at this point, so we need to make
118 * sure NOFS is set to keep us from deadlocking.
119 */
120 nofs_flag = memalloc_nofs_save();
0202e83f 121 inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
4222ea71 122 btrfs_release_path(path);
84de76a2 123 memalloc_nofs_restore(nofs_flag);
0af3d00b
JB
124 if (IS_ERR(inode))
125 return inode;
0af3d00b 126
528c0327 127 mapping_set_gfp_mask(inode->i_mapping,
c62d2555
MH
128 mapping_gfp_constraint(inode->i_mapping,
129 ~(__GFP_FS | __GFP_HIGHMEM)));
adae52b9 130
0414efae
LZ
131 return inode;
132}
133
32da5386 134struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
7949f339 135 struct btrfs_path *path)
0414efae 136{
7949f339 137 struct btrfs_fs_info *fs_info = block_group->fs_info;
0414efae 138 struct inode *inode = NULL;
5b0e95bf 139 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
0414efae
LZ
140
141 spin_lock(&block_group->lock);
142 if (block_group->inode)
143 inode = igrab(block_group->inode);
144 spin_unlock(&block_group->lock);
145 if (inode)
146 return inode;
147
77ab86bf 148 inode = __lookup_free_space_inode(fs_info->tree_root, path,
b3470b5d 149 block_group->start);
0414efae
LZ
150 if (IS_ERR(inode))
151 return inode;
152
0af3d00b 153 spin_lock(&block_group->lock);
5b0e95bf 154 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
0b246afa 155 btrfs_info(fs_info, "Old style space inode found, converting.");
5b0e95bf
JB
156 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
157 BTRFS_INODE_NODATACOW;
2f356126
JB
158 block_group->disk_cache_state = BTRFS_DC_CLEAR;
159 }
160
3349b57f 161 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
0af3d00b 162 block_group->inode = igrab(inode);
0af3d00b
JB
163 spin_unlock(&block_group->lock);
164
165 return inode;
166}
167
48a3b636
ES
168static int __create_free_space_inode(struct btrfs_root *root,
169 struct btrfs_trans_handle *trans,
170 struct btrfs_path *path,
171 u64 ino, u64 offset)
0af3d00b
JB
172{
173 struct btrfs_key key;
174 struct btrfs_disk_key disk_key;
175 struct btrfs_free_space_header *header;
176 struct btrfs_inode_item *inode_item;
177 struct extent_buffer *leaf;
f0d1219d
NB
178 /* We inline CRCs for the free disk space cache */
179 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
180 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
0af3d00b
JB
181 int ret;
182
0414efae 183 ret = btrfs_insert_empty_inode(trans, root, path, ino);
0af3d00b
JB
184 if (ret)
185 return ret;
186
187 leaf = path->nodes[0];
188 inode_item = btrfs_item_ptr(leaf, path->slots[0],
189 struct btrfs_inode_item);
190 btrfs_item_key(leaf, &disk_key, path->slots[0]);
b159fa28 191 memzero_extent_buffer(leaf, (unsigned long)inode_item,
0af3d00b
JB
192 sizeof(*inode_item));
193 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
194 btrfs_set_inode_size(leaf, inode_item, 0);
195 btrfs_set_inode_nbytes(leaf, inode_item, 0);
196 btrfs_set_inode_uid(leaf, inode_item, 0);
197 btrfs_set_inode_gid(leaf, inode_item, 0);
198 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
5b0e95bf 199 btrfs_set_inode_flags(leaf, inode_item, flags);
0af3d00b
JB
200 btrfs_set_inode_nlink(leaf, inode_item, 1);
201 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
0414efae 202 btrfs_set_inode_block_group(leaf, inode_item, offset);
50564b65 203 btrfs_mark_buffer_dirty(trans, leaf);
b3b4aa74 204 btrfs_release_path(path);
0af3d00b
JB
205
206 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 207 key.offset = offset;
0af3d00b 208 key.type = 0;
0af3d00b
JB
209 ret = btrfs_insert_empty_item(trans, root, path, &key,
210 sizeof(struct btrfs_free_space_header));
211 if (ret < 0) {
b3b4aa74 212 btrfs_release_path(path);
0af3d00b
JB
213 return ret;
214 }
c9dc4c65 215
0af3d00b
JB
216 leaf = path->nodes[0];
217 header = btrfs_item_ptr(leaf, path->slots[0],
218 struct btrfs_free_space_header);
b159fa28 219 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
0af3d00b 220 btrfs_set_free_space_key(leaf, header, &disk_key);
50564b65 221 btrfs_mark_buffer_dirty(trans, leaf);
b3b4aa74 222 btrfs_release_path(path);
0af3d00b
JB
223
224 return 0;
225}
226
4ca75f1b 227int create_free_space_inode(struct btrfs_trans_handle *trans,
32da5386 228 struct btrfs_block_group *block_group,
0414efae
LZ
229 struct btrfs_path *path)
230{
231 int ret;
232 u64 ino;
233
543068a2 234 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
0414efae
LZ
235 if (ret < 0)
236 return ret;
237
4ca75f1b 238 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
b3470b5d 239 ino, block_group->start);
0414efae
LZ
240}
241
36b216c8
BB
242/*
243 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
244 * handles lookup, otherwise it takes ownership and iputs the inode.
245 * Don't reuse an inode pointer after passing it into this function.
246 */
247int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
248 struct inode *inode,
249 struct btrfs_block_group *block_group)
250{
251 struct btrfs_path *path;
252 struct btrfs_key key;
253 int ret = 0;
254
255 path = btrfs_alloc_path();
256 if (!path)
257 return -ENOMEM;
258
259 if (!inode)
260 inode = lookup_free_space_inode(block_group, path);
261 if (IS_ERR(inode)) {
262 if (PTR_ERR(inode) != -ENOENT)
263 ret = PTR_ERR(inode);
264 goto out;
265 }
266 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
267 if (ret) {
e55cf7ca 268 btrfs_add_delayed_iput(BTRFS_I(inode));
36b216c8
BB
269 goto out;
270 }
271 clear_nlink(inode);
272 /* One for the block groups ref */
273 spin_lock(&block_group->lock);
3349b57f 274 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
36b216c8
BB
275 block_group->inode = NULL;
276 spin_unlock(&block_group->lock);
277 iput(inode);
278 } else {
279 spin_unlock(&block_group->lock);
280 }
281 /* One for the lookup ref */
e55cf7ca 282 btrfs_add_delayed_iput(BTRFS_I(inode));
36b216c8
BB
283
284 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
285 key.type = 0;
286 key.offset = block_group->start;
287 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
288 -1, 1);
289 if (ret) {
290 if (ret > 0)
291 ret = 0;
292 goto out;
293 }
294 ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
295out:
296 btrfs_free_path(path);
297 return ret;
298}
299
77ab86bf 300int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
32da5386 301 struct btrfs_block_group *block_group,
9a4a1429 302 struct inode *vfs_inode)
7b61cd92 303{
d9ac19c3 304 struct btrfs_truncate_control control = {
71d18b53 305 .inode = BTRFS_I(vfs_inode),
d9ac19c3 306 .new_size = 0,
487e81d2 307 .ino = btrfs_ino(BTRFS_I(vfs_inode)),
d9ac19c3 308 .min_type = BTRFS_EXTENT_DATA_KEY,
655807b8 309 .clear_extent_range = true,
d9ac19c3 310 };
9a4a1429
JB
311 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
312 struct btrfs_root *root = inode->root;
313 struct extent_state *cached_state = NULL;
7b61cd92 314 int ret = 0;
35c76642 315 bool locked = false;
1bbc621e 316
1bbc621e 317 if (block_group) {
21e75ffe
JM
318 struct btrfs_path *path = btrfs_alloc_path();
319
320 if (!path) {
321 ret = -ENOMEM;
322 goto fail;
323 }
35c76642 324 locked = true;
1bbc621e
CM
325 mutex_lock(&trans->transaction->cache_write_mutex);
326 if (!list_empty(&block_group->io_list)) {
327 list_del_init(&block_group->io_list);
328
afdb5718 329 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
330 btrfs_put_block_group(block_group);
331 }
332
333 /*
334 * now that we've truncated the cache away, its no longer
335 * setup or written
336 */
337 spin_lock(&block_group->lock);
338 block_group->disk_cache_state = BTRFS_DC_CLEAR;
339 spin_unlock(&block_group->lock);
21e75ffe 340 btrfs_free_path(path);
1bbc621e 341 }
0af3d00b 342
9a4a1429
JB
343 btrfs_i_size_write(inode, 0);
344 truncate_pagecache(vfs_inode, 0);
345
570eb97b 346 lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
4c0c8cfc 347 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
0af3d00b
JB
348
349 /*
f7e9e8fc
OS
350 * We skip the throttling logic for free space cache inodes, so we don't
351 * need to check for -EAGAIN.
0af3d00b 352 */
71d18b53 353 ret = btrfs_truncate_inode_items(trans, root, &control);
c2ddb612 354
462b728e 355 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
c2ddb612
JB
356 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
357
570eb97b 358 unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
35c76642
FM
359 if (ret)
360 goto fail;
0af3d00b 361
8b9d0322 362 ret = btrfs_update_inode(trans, inode);
1bbc621e 363
1bbc621e 364fail:
35c76642
FM
365 if (locked)
366 mutex_unlock(&trans->transaction->cache_write_mutex);
79787eaa 367 if (ret)
66642832 368 btrfs_abort_transaction(trans, ret);
c8174313 369
82d5902d 370 return ret;
0af3d00b
JB
371}
372
1d480538 373static void readahead_cache(struct inode *inode)
9d66e233 374{
98caf953 375 struct file_ra_state ra;
9d66e233
JB
376 unsigned long last_index;
377
98caf953 378 file_ra_state_init(&ra, inode->i_mapping);
09cbfeaf 379 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
9d66e233 380
98caf953 381 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
9d66e233
JB
382}
383
4c6d1d85 384static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
f15376df 385 int write)
a67509c3 386{
5349d6c3 387 int num_pages;
5349d6c3 388
09cbfeaf 389 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
5349d6c3 390
8f6c72a9 391 /* Make sure we can fit our crcs and generation into the first page */
7dbdb443 392 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
5349d6c3
MX
393 return -ENOSPC;
394
4c6d1d85 395 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
5349d6c3 396
31e818fe 397 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
a67509c3
JB
398 if (!io_ctl->pages)
399 return -ENOMEM;
5349d6c3
MX
400
401 io_ctl->num_pages = num_pages;
f15376df 402 io_ctl->fs_info = btrfs_sb(inode->i_sb);
c9dc4c65 403 io_ctl->inode = inode;
5349d6c3 404
a67509c3
JB
405 return 0;
406}
663faf9f 407ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
a67509c3 408
4c6d1d85 409static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
410{
411 kfree(io_ctl->pages);
c9dc4c65 412 io_ctl->pages = NULL;
a67509c3
JB
413}
414
4c6d1d85 415static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
416{
417 if (io_ctl->cur) {
a67509c3
JB
418 io_ctl->cur = NULL;
419 io_ctl->orig = NULL;
420 }
421}
422
4c6d1d85 423static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
a67509c3 424{
b12d6869 425 ASSERT(io_ctl->index < io_ctl->num_pages);
a67509c3 426 io_ctl->page = io_ctl->pages[io_ctl->index++];
2b108268 427 io_ctl->cur = page_address(io_ctl->page);
a67509c3 428 io_ctl->orig = io_ctl->cur;
09cbfeaf 429 io_ctl->size = PAGE_SIZE;
a67509c3 430 if (clear)
619a9742 431 clear_page(io_ctl->cur);
a67509c3
JB
432}
433
4c6d1d85 434static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
435{
436 int i;
437
438 io_ctl_unmap_page(io_ctl);
439
440 for (i = 0; i < io_ctl->num_pages; i++) {
a1ee5a45 441 if (io_ctl->pages[i]) {
55151ea9
QW
442 btrfs_folio_clear_checked(io_ctl->fs_info,
443 page_folio(io_ctl->pages[i]),
e4f94347
QW
444 page_offset(io_ctl->pages[i]),
445 PAGE_SIZE);
a1ee5a45 446 unlock_page(io_ctl->pages[i]);
09cbfeaf 447 put_page(io_ctl->pages[i]);
a1ee5a45 448 }
a67509c3
JB
449 }
450}
451
7a195f6d 452static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
a67509c3
JB
453{
454 struct page *page;
831fa14f 455 struct inode *inode = io_ctl->inode;
a67509c3
JB
456 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
457 int i;
458
459 for (i = 0; i < io_ctl->num_pages; i++) {
32443de3
QW
460 int ret;
461
a67509c3
JB
462 page = find_or_create_page(inode->i_mapping, i, mask);
463 if (!page) {
464 io_ctl_drop_pages(io_ctl);
465 return -ENOMEM;
466 }
32443de3
QW
467
468 ret = set_page_extent_mapped(page);
469 if (ret < 0) {
470 unlock_page(page);
471 put_page(page);
472 io_ctl_drop_pages(io_ctl);
473 return ret;
474 }
475
a67509c3
JB
476 io_ctl->pages[i] = page;
477 if (uptodate && !PageUptodate(page)) {
fb12489b 478 btrfs_read_folio(NULL, page_folio(page));
a67509c3 479 lock_page(page);
3797136b
JB
480 if (page->mapping != inode->i_mapping) {
481 btrfs_err(BTRFS_I(inode)->root->fs_info,
482 "free space cache page truncated");
483 io_ctl_drop_pages(io_ctl);
484 return -EIO;
485 }
a67509c3 486 if (!PageUptodate(page)) {
efe120a0
FH
487 btrfs_err(BTRFS_I(inode)->root->fs_info,
488 "error reading free space cache");
a67509c3
JB
489 io_ctl_drop_pages(io_ctl);
490 return -EIO;
491 }
492 }
493 }
494
32443de3 495 for (i = 0; i < io_ctl->num_pages; i++)
f7d61dcd 496 clear_page_dirty_for_io(io_ctl->pages[i]);
f7d61dcd 497
a67509c3
JB
498 return 0;
499}
500
4c6d1d85 501static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
a67509c3 502{
a67509c3
JB
503 io_ctl_map_page(io_ctl, 1);
504
505 /*
5b0e95bf
JB
506 * Skip the csum areas. If we don't check crcs then we just have a
507 * 64bit chunk at the front of the first page.
a67509c3 508 */
7dbdb443
NB
509 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
510 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
a67509c3 511
6994ca36 512 put_unaligned_le64(generation, io_ctl->cur);
a67509c3 513 io_ctl->cur += sizeof(u64);
a67509c3
JB
514}
515
4c6d1d85 516static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
a67509c3 517{
6994ca36 518 u64 cache_gen;
a67509c3 519
5b0e95bf
JB
520 /*
521 * Skip the crc area. If we don't check crcs then we just have a 64bit
522 * chunk at the front of the first page.
523 */
7dbdb443
NB
524 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
525 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
a67509c3 526
6994ca36
DS
527 cache_gen = get_unaligned_le64(io_ctl->cur);
528 if (cache_gen != generation) {
f15376df 529 btrfs_err_rl(io_ctl->fs_info,
94647322 530 "space cache generation (%llu) does not match inode (%llu)",
6994ca36 531 cache_gen, generation);
a67509c3
JB
532 io_ctl_unmap_page(io_ctl);
533 return -EIO;
534 }
535 io_ctl->cur += sizeof(u64);
5b0e95bf
JB
536 return 0;
537}
538
4c6d1d85 539static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
5b0e95bf
JB
540{
541 u32 *tmp;
542 u32 crc = ~(u32)0;
543 unsigned offset = 0;
544
5b0e95bf 545 if (index == 0)
cb54f257 546 offset = sizeof(u32) * io_ctl->num_pages;
5b0e95bf 547
03e86348 548 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
4bb3c2e2 549 btrfs_crc32c_final(crc, (u8 *)&crc);
5b0e95bf 550 io_ctl_unmap_page(io_ctl);
2b108268 551 tmp = page_address(io_ctl->pages[0]);
5b0e95bf
JB
552 tmp += index;
553 *tmp = crc;
5b0e95bf
JB
554}
555
4c6d1d85 556static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
5b0e95bf
JB
557{
558 u32 *tmp, val;
559 u32 crc = ~(u32)0;
560 unsigned offset = 0;
561
5b0e95bf
JB
562 if (index == 0)
563 offset = sizeof(u32) * io_ctl->num_pages;
564
2b108268 565 tmp = page_address(io_ctl->pages[0]);
5b0e95bf
JB
566 tmp += index;
567 val = *tmp;
5b0e95bf
JB
568
569 io_ctl_map_page(io_ctl, 0);
03e86348 570 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
4bb3c2e2 571 btrfs_crc32c_final(crc, (u8 *)&crc);
5b0e95bf 572 if (val != crc) {
f15376df 573 btrfs_err_rl(io_ctl->fs_info,
94647322 574 "csum mismatch on free space cache");
5b0e95bf
JB
575 io_ctl_unmap_page(io_ctl);
576 return -EIO;
577 }
578
a67509c3
JB
579 return 0;
580}
581
4c6d1d85 582static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
a67509c3
JB
583 void *bitmap)
584{
585 struct btrfs_free_space_entry *entry;
586
587 if (!io_ctl->cur)
588 return -ENOSPC;
589
590 entry = io_ctl->cur;
6994ca36
DS
591 put_unaligned_le64(offset, &entry->offset);
592 put_unaligned_le64(bytes, &entry->bytes);
a67509c3
JB
593 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
594 BTRFS_FREE_SPACE_EXTENT;
595 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
596 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
597
598 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
599 return 0;
600
5b0e95bf 601 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
602
603 /* No more pages to map */
604 if (io_ctl->index >= io_ctl->num_pages)
605 return 0;
606
607 /* map the next page */
608 io_ctl_map_page(io_ctl, 1);
609 return 0;
610}
611
4c6d1d85 612static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
a67509c3
JB
613{
614 if (!io_ctl->cur)
615 return -ENOSPC;
616
617 /*
618 * If we aren't at the start of the current page, unmap this one and
619 * map the next one if there is any left.
620 */
621 if (io_ctl->cur != io_ctl->orig) {
5b0e95bf 622 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
623 if (io_ctl->index >= io_ctl->num_pages)
624 return -ENOSPC;
625 io_ctl_map_page(io_ctl, 0);
626 }
627
69d24804 628 copy_page(io_ctl->cur, bitmap);
5b0e95bf 629 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
630 if (io_ctl->index < io_ctl->num_pages)
631 io_ctl_map_page(io_ctl, 0);
632 return 0;
633}
634
4c6d1d85 635static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
a67509c3 636{
5b0e95bf
JB
637 /*
638 * If we're not on the boundary we know we've modified the page and we
639 * need to crc the page.
640 */
641 if (io_ctl->cur != io_ctl->orig)
642 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
643 else
644 io_ctl_unmap_page(io_ctl);
a67509c3
JB
645
646 while (io_ctl->index < io_ctl->num_pages) {
647 io_ctl_map_page(io_ctl, 1);
5b0e95bf 648 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
649 }
650}
651
4c6d1d85 652static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
5b0e95bf 653 struct btrfs_free_space *entry, u8 *type)
a67509c3
JB
654{
655 struct btrfs_free_space_entry *e;
2f120c05
JB
656 int ret;
657
658 if (!io_ctl->cur) {
659 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
660 if (ret)
661 return ret;
662 }
a67509c3
JB
663
664 e = io_ctl->cur;
6994ca36
DS
665 entry->offset = get_unaligned_le64(&e->offset);
666 entry->bytes = get_unaligned_le64(&e->bytes);
5b0e95bf 667 *type = e->type;
a67509c3
JB
668 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
669 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
670
671 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
5b0e95bf 672 return 0;
a67509c3
JB
673
674 io_ctl_unmap_page(io_ctl);
675
2f120c05 676 return 0;
a67509c3
JB
677}
678
4c6d1d85 679static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
5b0e95bf 680 struct btrfs_free_space *entry)
a67509c3 681{
5b0e95bf
JB
682 int ret;
683
5b0e95bf
JB
684 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
685 if (ret)
686 return ret;
687
69d24804 688 copy_page(entry->bitmap, io_ctl->cur);
a67509c3 689 io_ctl_unmap_page(io_ctl);
5b0e95bf
JB
690
691 return 0;
a67509c3
JB
692}
693
fa598b06
DS
694static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
695{
364be842 696 struct btrfs_block_group *block_group = ctl->block_group;
fa598b06
DS
697 u64 max_bytes;
698 u64 bitmap_bytes;
699 u64 extent_bytes;
700 u64 size = block_group->length;
701 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
702 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
703
704 max_bitmaps = max_t(u64, max_bitmaps, 1);
705
62cd9d44
QW
706 if (ctl->total_bitmaps > max_bitmaps)
707 btrfs_err(block_group->fs_info,
708"invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
709 block_group->start, block_group->length,
710 ctl->total_bitmaps, ctl->unit, max_bitmaps,
711 bytes_per_bg);
fa598b06
DS
712 ASSERT(ctl->total_bitmaps <= max_bitmaps);
713
714 /*
715 * We are trying to keep the total amount of memory used per 1GiB of
716 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
717 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
718 * bitmaps, we may end up using more memory than this.
719 */
720 if (size < SZ_1G)
721 max_bytes = MAX_CACHE_BYTES_PER_GIG;
722 else
723 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
724
725 bitmap_bytes = ctl->total_bitmaps * ctl->unit;
726
727 /*
728 * we want the extent entry threshold to always be at most 1/2 the max
729 * bytes we can have, or whatever is less than that.
730 */
731 extent_bytes = max_bytes - bitmap_bytes;
732 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
733
734 ctl->extents_thresh =
735 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
736}
737
48a3b636
ES
738static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
739 struct btrfs_free_space_ctl *ctl,
740 struct btrfs_path *path, u64 offset)
9d66e233 741{
3ffbd68c 742 struct btrfs_fs_info *fs_info = root->fs_info;
9d66e233
JB
743 struct btrfs_free_space_header *header;
744 struct extent_buffer *leaf;
4c6d1d85 745 struct btrfs_io_ctl io_ctl;
9d66e233 746 struct btrfs_key key;
a67509c3 747 struct btrfs_free_space *e, *n;
b76808fc 748 LIST_HEAD(bitmaps);
9d66e233
JB
749 u64 num_entries;
750 u64 num_bitmaps;
751 u64 generation;
a67509c3 752 u8 type;
f6a39829 753 int ret = 0;
9d66e233 754
9d66e233 755 /* Nothing in the space cache, goodbye */
0414efae 756 if (!i_size_read(inode))
a67509c3 757 return 0;
9d66e233
JB
758
759 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 760 key.offset = offset;
9d66e233
JB
761 key.type = 0;
762
763 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0414efae 764 if (ret < 0)
a67509c3 765 return 0;
0414efae 766 else if (ret > 0) {
945d8962 767 btrfs_release_path(path);
a67509c3 768 return 0;
9d66e233
JB
769 }
770
0414efae
LZ
771 ret = -1;
772
9d66e233
JB
773 leaf = path->nodes[0];
774 header = btrfs_item_ptr(leaf, path->slots[0],
775 struct btrfs_free_space_header);
776 num_entries = btrfs_free_space_entries(leaf, header);
777 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
778 generation = btrfs_free_space_generation(leaf, header);
945d8962 779 btrfs_release_path(path);
9d66e233 780
e570fd27 781 if (!BTRFS_I(inode)->generation) {
0b246afa 782 btrfs_info(fs_info,
913e1535 783 "the free space cache file (%llu) is invalid, skip it",
e570fd27
MX
784 offset);
785 return 0;
786 }
787
9d66e233 788 if (BTRFS_I(inode)->generation != generation) {
0b246afa
JM
789 btrfs_err(fs_info,
790 "free space inode generation (%llu) did not match free space cache generation (%llu)",
791 BTRFS_I(inode)->generation, generation);
a67509c3 792 return 0;
9d66e233
JB
793 }
794
795 if (!num_entries)
a67509c3 796 return 0;
9d66e233 797
f15376df 798 ret = io_ctl_init(&io_ctl, inode, 0);
706efc66
LZ
799 if (ret)
800 return ret;
801
1d480538 802 readahead_cache(inode);
9d66e233 803
7a195f6d 804 ret = io_ctl_prepare_pages(&io_ctl, true);
a67509c3
JB
805 if (ret)
806 goto out;
9d66e233 807
5b0e95bf
JB
808 ret = io_ctl_check_crc(&io_ctl, 0);
809 if (ret)
810 goto free_cache;
811
a67509c3
JB
812 ret = io_ctl_check_generation(&io_ctl, generation);
813 if (ret)
814 goto free_cache;
9d66e233 815
a67509c3
JB
816 while (num_entries) {
817 e = kmem_cache_zalloc(btrfs_free_space_cachep,
818 GFP_NOFS);
3cc64e7e
ZC
819 if (!e) {
820 ret = -ENOMEM;
9d66e233 821 goto free_cache;
3cc64e7e 822 }
9d66e233 823
5b0e95bf
JB
824 ret = io_ctl_read_entry(&io_ctl, e, &type);
825 if (ret) {
826 kmem_cache_free(btrfs_free_space_cachep, e);
827 goto free_cache;
828 }
829
a67509c3 830 if (!e->bytes) {
3cc64e7e 831 ret = -1;
a67509c3
JB
832 kmem_cache_free(btrfs_free_space_cachep, e);
833 goto free_cache;
9d66e233 834 }
a67509c3
JB
835
836 if (type == BTRFS_FREE_SPACE_EXTENT) {
837 spin_lock(&ctl->tree_lock);
838 ret = link_free_space(ctl, e);
839 spin_unlock(&ctl->tree_lock);
840 if (ret) {
0b246afa 841 btrfs_err(fs_info,
c2cf52eb 842 "Duplicate entries in free space cache, dumping");
a67509c3 843 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
844 goto free_cache;
845 }
a67509c3 846 } else {
b12d6869 847 ASSERT(num_bitmaps);
a67509c3 848 num_bitmaps--;
3acd4850
CL
849 e->bitmap = kmem_cache_zalloc(
850 btrfs_free_space_bitmap_cachep, GFP_NOFS);
a67509c3 851 if (!e->bitmap) {
3cc64e7e 852 ret = -ENOMEM;
a67509c3
JB
853 kmem_cache_free(
854 btrfs_free_space_cachep, e);
9d66e233
JB
855 goto free_cache;
856 }
a67509c3
JB
857 spin_lock(&ctl->tree_lock);
858 ret = link_free_space(ctl, e);
a67509c3 859 if (ret) {
0004ff15 860 spin_unlock(&ctl->tree_lock);
0b246afa 861 btrfs_err(fs_info,
c2cf52eb 862 "Duplicate entries in free space cache, dumping");
dc89e982 863 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
864 goto free_cache;
865 }
0004ff15
FM
866 ctl->total_bitmaps++;
867 recalculate_thresholds(ctl);
868 spin_unlock(&ctl->tree_lock);
a67509c3 869 list_add_tail(&e->list, &bitmaps);
9d66e233
JB
870 }
871
a67509c3
JB
872 num_entries--;
873 }
9d66e233 874
2f120c05
JB
875 io_ctl_unmap_page(&io_ctl);
876
a67509c3
JB
877 /*
878 * We add the bitmaps at the end of the entries in order that
879 * the bitmap entries are added to the cache.
880 */
881 list_for_each_entry_safe(e, n, &bitmaps, list) {
9d66e233 882 list_del_init(&e->list);
5b0e95bf
JB
883 ret = io_ctl_read_bitmap(&io_ctl, e);
884 if (ret)
885 goto free_cache;
9d66e233
JB
886 }
887
a67509c3 888 io_ctl_drop_pages(&io_ctl);
9d66e233
JB
889 ret = 1;
890out:
a67509c3 891 io_ctl_free(&io_ctl);
9d66e233 892 return ret;
9d66e233 893free_cache:
a67509c3 894 io_ctl_drop_pages(&io_ctl);
8a1ae278 895
8a1ae278 896 spin_lock(&ctl->tree_lock);
fc80f7ac 897 __btrfs_remove_free_space_cache(ctl);
8a1ae278 898 spin_unlock(&ctl->tree_lock);
9d66e233
JB
899 goto out;
900}
901
cd79909b
JB
902static int copy_free_space_cache(struct btrfs_block_group *block_group,
903 struct btrfs_free_space_ctl *ctl)
904{
905 struct btrfs_free_space *info;
906 struct rb_node *n;
907 int ret = 0;
908
909 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
910 info = rb_entry(n, struct btrfs_free_space, offset_index);
911 if (!info->bitmap) {
fbb2e654
FM
912 const u64 offset = info->offset;
913 const u64 bytes = info->bytes;
914
32e1649b 915 unlink_free_space(ctl, info, true);
7e5ba559 916 spin_unlock(&ctl->tree_lock);
cd79909b 917 kmem_cache_free(btrfs_free_space_cachep, info);
fbb2e654 918 ret = btrfs_add_free_space(block_group, offset, bytes);
7e5ba559 919 spin_lock(&ctl->tree_lock);
cd79909b
JB
920 } else {
921 u64 offset = info->offset;
922 u64 bytes = ctl->unit;
923
7e5ba559
FM
924 ret = search_bitmap(ctl, info, &offset, &bytes, false);
925 if (ret == 0) {
926 bitmap_clear_bits(ctl, info, offset, bytes, true);
927 spin_unlock(&ctl->tree_lock);
cd79909b
JB
928 ret = btrfs_add_free_space(block_group, offset,
929 bytes);
7e5ba559
FM
930 spin_lock(&ctl->tree_lock);
931 } else {
932 free_bitmap(ctl, info);
933 ret = 0;
cd79909b 934 }
cd79909b 935 }
7e5ba559 936 cond_resched_lock(&ctl->tree_lock);
cd79909b
JB
937 }
938 return ret;
939}
940
9d7464c8
IA
941static struct lock_class_key btrfs_free_space_inode_key;
942
32da5386 943int load_free_space_cache(struct btrfs_block_group *block_group)
0cb59c99 944{
bb6cb1c5 945 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 946 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
cd79909b 947 struct btrfs_free_space_ctl tmp_ctl = {};
0414efae
LZ
948 struct inode *inode;
949 struct btrfs_path *path;
5b0e95bf 950 int ret = 0;
0414efae 951 bool matched;
bf38be65 952 u64 used = block_group->used;
0414efae 953
cd79909b
JB
954 /*
955 * Because we could potentially discard our loaded free space, we want
956 * to load everything into a temporary structure first, and then if it's
957 * valid copy it all into the actual free space ctl.
958 */
959 btrfs_init_free_space_ctl(block_group, &tmp_ctl);
960
0414efae
LZ
961 /*
962 * If this block group has been marked to be cleared for one reason or
963 * another then we can't trust the on disk cache, so just return.
964 */
9d66e233 965 spin_lock(&block_group->lock);
0414efae
LZ
966 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
967 spin_unlock(&block_group->lock);
968 return 0;
969 }
9d66e233 970 spin_unlock(&block_group->lock);
0414efae
LZ
971
972 path = btrfs_alloc_path();
973 if (!path)
974 return 0;
d53ba474
JB
975 path->search_commit_root = 1;
976 path->skip_locking = 1;
0414efae 977
4222ea71
FM
978 /*
979 * We must pass a path with search_commit_root set to btrfs_iget in
980 * order to avoid a deadlock when allocating extents for the tree root.
981 *
982 * When we are COWing an extent buffer from the tree root, when looking
983 * for a free extent, at extent-tree.c:find_free_extent(), we can find
984 * block group without its free space cache loaded. When we find one
985 * we must load its space cache which requires reading its free space
986 * cache's inode item from the root tree. If this inode item is located
987 * in the same leaf that we started COWing before, then we end up in
988 * deadlock on the extent buffer (trying to read lock it when we
989 * previously write locked it).
990 *
991 * It's safe to read the inode item using the commit root because
992 * block groups, once loaded, stay in memory forever (until they are
993 * removed) as well as their space caches once loaded. New block groups
994 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
995 * we will never try to read their inode item while the fs is mounted.
996 */
7949f339 997 inode = lookup_free_space_inode(block_group, path);
0414efae
LZ
998 if (IS_ERR(inode)) {
999 btrfs_free_path(path);
1000 return 0;
1001 }
1002
5b0e95bf
JB
1003 /* We may have converted the inode and made the cache invalid. */
1004 spin_lock(&block_group->lock);
1005 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1006 spin_unlock(&block_group->lock);
a7e221e9 1007 btrfs_free_path(path);
5b0e95bf
JB
1008 goto out;
1009 }
1010 spin_unlock(&block_group->lock);
1011
9d7464c8
IA
1012 /*
1013 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1014 * free space inodes to prevent false positives related to locks for normal
1015 * inodes.
1016 */
1017 lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1018 &btrfs_free_space_inode_key);
1019
cd79909b 1020 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
b3470b5d 1021 path, block_group->start);
0414efae
LZ
1022 btrfs_free_path(path);
1023 if (ret <= 0)
1024 goto out;
1025
cd79909b
JB
1026 matched = (tmp_ctl.free_space == (block_group->length - used -
1027 block_group->bytes_super));
0414efae 1028
cd79909b 1029 if (matched) {
7e5ba559 1030 spin_lock(&tmp_ctl.tree_lock);
cd79909b 1031 ret = copy_free_space_cache(block_group, &tmp_ctl);
7e5ba559 1032 spin_unlock(&tmp_ctl.tree_lock);
cd79909b
JB
1033 /*
1034 * ret == 1 means we successfully loaded the free space cache,
1035 * so we need to re-set it here.
1036 */
1037 if (ret == 0)
1038 ret = 1;
1039 } else {
8a1ae278
JB
1040 /*
1041 * We need to call the _locked variant so we don't try to update
1042 * the discard counters.
1043 */
1044 spin_lock(&tmp_ctl.tree_lock);
cd79909b 1045 __btrfs_remove_free_space_cache(&tmp_ctl);
8a1ae278 1046 spin_unlock(&tmp_ctl.tree_lock);
5d163e0e
JM
1047 btrfs_warn(fs_info,
1048 "block group %llu has wrong amount of free space",
b3470b5d 1049 block_group->start);
0414efae
LZ
1050 ret = -1;
1051 }
1052out:
1053 if (ret < 0) {
1054 /* This cache is bogus, make sure it gets cleared */
1055 spin_lock(&block_group->lock);
1056 block_group->disk_cache_state = BTRFS_DC_CLEAR;
1057 spin_unlock(&block_group->lock);
82d5902d 1058 ret = 0;
0414efae 1059
5d163e0e
JM
1060 btrfs_warn(fs_info,
1061 "failed to load free space cache for block group %llu, rebuilding it now",
b3470b5d 1062 block_group->start);
0414efae
LZ
1063 }
1064
66b53bae
JB
1065 spin_lock(&ctl->tree_lock);
1066 btrfs_discard_update_discardable(block_group);
1067 spin_unlock(&ctl->tree_lock);
0414efae
LZ
1068 iput(inode);
1069 return ret;
9d66e233
JB
1070}
1071
d4452bc5 1072static noinline_for_stack
4c6d1d85 1073int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
d4452bc5 1074 struct btrfs_free_space_ctl *ctl,
32da5386 1075 struct btrfs_block_group *block_group,
d4452bc5
CM
1076 int *entries, int *bitmaps,
1077 struct list_head *bitmap_list)
0cb59c99 1078{
c09544e0 1079 int ret;
d4452bc5 1080 struct btrfs_free_cluster *cluster = NULL;
1bbc621e 1081 struct btrfs_free_cluster *cluster_locked = NULL;
d4452bc5 1082 struct rb_node *node = rb_first(&ctl->free_space_offset);
55507ce3 1083 struct btrfs_trim_range *trim_entry;
be1a12a0 1084
43be2146 1085 /* Get the cluster for this block_group if it exists */
d4452bc5 1086 if (block_group && !list_empty(&block_group->cluster_list)) {
43be2146
JB
1087 cluster = list_entry(block_group->cluster_list.next,
1088 struct btrfs_free_cluster,
1089 block_group_list);
d4452bc5 1090 }
43be2146 1091
f75b130e 1092 if (!node && cluster) {
1bbc621e
CM
1093 cluster_locked = cluster;
1094 spin_lock(&cluster_locked->lock);
f75b130e
JB
1095 node = rb_first(&cluster->root);
1096 cluster = NULL;
1097 }
1098
a67509c3
JB
1099 /* Write out the extent entries */
1100 while (node) {
1101 struct btrfs_free_space *e;
0cb59c99 1102
a67509c3 1103 e = rb_entry(node, struct btrfs_free_space, offset_index);
d4452bc5 1104 *entries += 1;
0cb59c99 1105
d4452bc5 1106 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
a67509c3
JB
1107 e->bitmap);
1108 if (ret)
d4452bc5 1109 goto fail;
2f356126 1110
a67509c3 1111 if (e->bitmap) {
d4452bc5
CM
1112 list_add_tail(&e->list, bitmap_list);
1113 *bitmaps += 1;
2f356126 1114 }
a67509c3
JB
1115 node = rb_next(node);
1116 if (!node && cluster) {
1117 node = rb_first(&cluster->root);
1bbc621e
CM
1118 cluster_locked = cluster;
1119 spin_lock(&cluster_locked->lock);
a67509c3 1120 cluster = NULL;
43be2146 1121 }
a67509c3 1122 }
1bbc621e
CM
1123 if (cluster_locked) {
1124 spin_unlock(&cluster_locked->lock);
1125 cluster_locked = NULL;
1126 }
55507ce3
FM
1127
1128 /*
1129 * Make sure we don't miss any range that was removed from our rbtree
1130 * because trimming is running. Otherwise after a umount+mount (or crash
1131 * after committing the transaction) we would leak free space and get
1132 * an inconsistent free space cache report from fsck.
1133 */
1134 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1135 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1136 trim_entry->bytes, NULL);
1137 if (ret)
1138 goto fail;
1139 *entries += 1;
1140 }
1141
d4452bc5
CM
1142 return 0;
1143fail:
1bbc621e
CM
1144 if (cluster_locked)
1145 spin_unlock(&cluster_locked->lock);
d4452bc5
CM
1146 return -ENOSPC;
1147}
1148
1149static noinline_for_stack int
1150update_cache_item(struct btrfs_trans_handle *trans,
1151 struct btrfs_root *root,
1152 struct inode *inode,
1153 struct btrfs_path *path, u64 offset,
1154 int entries, int bitmaps)
1155{
1156 struct btrfs_key key;
1157 struct btrfs_free_space_header *header;
1158 struct extent_buffer *leaf;
1159 int ret;
1160
1161 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1162 key.offset = offset;
1163 key.type = 0;
1164
1165 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1166 if (ret < 0) {
1167 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
bd015294 1168 EXTENT_DELALLOC, NULL);
d4452bc5
CM
1169 goto fail;
1170 }
1171 leaf = path->nodes[0];
1172 if (ret > 0) {
1173 struct btrfs_key found_key;
1174 ASSERT(path->slots[0]);
1175 path->slots[0]--;
1176 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1177 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1178 found_key.offset != offset) {
1179 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
bd015294 1180 inode->i_size - 1, EXTENT_DELALLOC,
dbbf4992 1181 NULL);
d4452bc5
CM
1182 btrfs_release_path(path);
1183 goto fail;
1184 }
1185 }
1186
1187 BTRFS_I(inode)->generation = trans->transid;
1188 header = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_free_space_header);
1190 btrfs_set_free_space_entries(leaf, header, entries);
1191 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1192 btrfs_set_free_space_generation(leaf, header, trans->transid);
50564b65 1193 btrfs_mark_buffer_dirty(trans, leaf);
d4452bc5
CM
1194 btrfs_release_path(path);
1195
1196 return 0;
1197
1198fail:
1199 return -1;
1200}
1201
6701bdb3 1202static noinline_for_stack int write_pinned_extent_entries(
6b45f641 1203 struct btrfs_trans_handle *trans,
32da5386 1204 struct btrfs_block_group *block_group,
4c6d1d85 1205 struct btrfs_io_ctl *io_ctl,
5349d6c3 1206 int *entries)
d4452bc5
CM
1207{
1208 u64 start, extent_start, extent_end, len;
d4452bc5
CM
1209 struct extent_io_tree *unpin = NULL;
1210 int ret;
43be2146 1211
5349d6c3
MX
1212 if (!block_group)
1213 return 0;
1214
a67509c3
JB
1215 /*
1216 * We want to add any pinned extents to our free space cache
1217 * so we don't leak the space
d4452bc5 1218 *
db804f23
LZ
1219 * We shouldn't have switched the pinned extents yet so this is the
1220 * right one
1221 */
fe119a6e 1222 unpin = &trans->transaction->pinned_extents;
db804f23 1223
b3470b5d 1224 start = block_group->start;
db804f23 1225
b3470b5d 1226 while (start < block_group->start + block_group->length) {
e5860f82
FM
1227 if (!find_first_extent_bit(unpin, start,
1228 &extent_start, &extent_end,
1229 EXTENT_DIRTY, NULL))
5349d6c3 1230 return 0;
0cb59c99 1231
a67509c3 1232 /* This pinned extent is out of our range */
b3470b5d 1233 if (extent_start >= block_group->start + block_group->length)
5349d6c3 1234 return 0;
2f356126 1235
db804f23 1236 extent_start = max(extent_start, start);
b3470b5d
DS
1237 extent_end = min(block_group->start + block_group->length,
1238 extent_end + 1);
db804f23 1239 len = extent_end - extent_start;
0cb59c99 1240
d4452bc5
CM
1241 *entries += 1;
1242 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
a67509c3 1243 if (ret)
5349d6c3 1244 return -ENOSPC;
0cb59c99 1245
db804f23 1246 start = extent_end;
a67509c3 1247 }
0cb59c99 1248
5349d6c3
MX
1249 return 0;
1250}
1251
1252static noinline_for_stack int
4c6d1d85 1253write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
5349d6c3 1254{
7ae1681e 1255 struct btrfs_free_space *entry, *next;
5349d6c3
MX
1256 int ret;
1257
0cb59c99 1258 /* Write out the bitmaps */
7ae1681e 1259 list_for_each_entry_safe(entry, next, bitmap_list, list) {
d4452bc5 1260 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
a67509c3 1261 if (ret)
5349d6c3 1262 return -ENOSPC;
0cb59c99 1263 list_del_init(&entry->list);
be1a12a0
JB
1264 }
1265
5349d6c3
MX
1266 return 0;
1267}
0cb59c99 1268
5349d6c3
MX
1269static int flush_dirty_cache(struct inode *inode)
1270{
1271 int ret;
be1a12a0 1272
0ef8b726 1273 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5349d6c3 1274 if (ret)
0ef8b726 1275 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
bd015294 1276 EXTENT_DELALLOC, NULL);
0cb59c99 1277
5349d6c3 1278 return ret;
d4452bc5
CM
1279}
1280
1281static void noinline_for_stack
a3bdccc4 1282cleanup_bitmap_list(struct list_head *bitmap_list)
d4452bc5 1283{
7ae1681e 1284 struct btrfs_free_space *entry, *next;
5349d6c3 1285
7ae1681e 1286 list_for_each_entry_safe(entry, next, bitmap_list, list)
d4452bc5 1287 list_del_init(&entry->list);
a3bdccc4
CM
1288}
1289
1290static void noinline_for_stack
1291cleanup_write_cache_enospc(struct inode *inode,
1292 struct btrfs_io_ctl *io_ctl,
7bf1a159 1293 struct extent_state **cached_state)
a3bdccc4 1294{
d4452bc5 1295 io_ctl_drop_pages(io_ctl);
570eb97b
JB
1296 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1297 cached_state);
d4452bc5 1298}
549b4fdb 1299
afdb5718
JM
1300static int __btrfs_wait_cache_io(struct btrfs_root *root,
1301 struct btrfs_trans_handle *trans,
32da5386 1302 struct btrfs_block_group *block_group,
afdb5718
JM
1303 struct btrfs_io_ctl *io_ctl,
1304 struct btrfs_path *path, u64 offset)
c9dc4c65
CM
1305{
1306 int ret;
1307 struct inode *inode = io_ctl->inode;
1308
1bbc621e
CM
1309 if (!inode)
1310 return 0;
1311
c9dc4c65
CM
1312 /* Flush the dirty pages in the cache file. */
1313 ret = flush_dirty_cache(inode);
1314 if (ret)
1315 goto out;
1316
1317 /* Update the cache item to tell everyone this cache file is valid. */
1318 ret = update_cache_item(trans, root, inode, path, offset,
1319 io_ctl->entries, io_ctl->bitmaps);
1320out:
c9dc4c65
CM
1321 if (ret) {
1322 invalidate_inode_pages2(inode->i_mapping);
1323 BTRFS_I(inode)->generation = 0;
bbcd1f4d
FM
1324 if (block_group)
1325 btrfs_debug(root->fs_info,
2e69a7a6
FM
1326 "failed to write free space cache for block group %llu error %d",
1327 block_group->start, ret);
c9dc4c65 1328 }
8b9d0322 1329 btrfs_update_inode(trans, BTRFS_I(inode));
c9dc4c65
CM
1330
1331 if (block_group) {
1bbc621e
CM
1332 /* the dirty list is protected by the dirty_bgs_lock */
1333 spin_lock(&trans->transaction->dirty_bgs_lock);
1334
1335 /* the disk_cache_state is protected by the block group lock */
c9dc4c65
CM
1336 spin_lock(&block_group->lock);
1337
1338 /*
1339 * only mark this as written if we didn't get put back on
1bbc621e
CM
1340 * the dirty list while waiting for IO. Otherwise our
1341 * cache state won't be right, and we won't get written again
c9dc4c65
CM
1342 */
1343 if (!ret && list_empty(&block_group->dirty_list))
1344 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1345 else if (ret)
1346 block_group->disk_cache_state = BTRFS_DC_ERROR;
1347
1348 spin_unlock(&block_group->lock);
1bbc621e 1349 spin_unlock(&trans->transaction->dirty_bgs_lock);
c9dc4c65
CM
1350 io_ctl->inode = NULL;
1351 iput(inode);
1352 }
1353
1354 return ret;
1355
1356}
1357
afdb5718 1358int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
32da5386 1359 struct btrfs_block_group *block_group,
afdb5718
JM
1360 struct btrfs_path *path)
1361{
1362 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1363 block_group, &block_group->io_ctl,
b3470b5d 1364 path, block_group->start);
afdb5718
JM
1365}
1366
43dd529a
DS
1367/*
1368 * Write out cached info to an inode.
f092cf3c 1369 *
f092cf3c
NB
1370 * @inode: freespace inode we are writing out
1371 * @ctl: free space cache we are going to write out
1372 * @block_group: block_group for this cache if it belongs to a block_group
1373 * @io_ctl: holds context for the io
1374 * @trans: the trans handle
d4452bc5
CM
1375 *
1376 * This function writes out a free space cache struct to disk for quick recovery
8cd1e731 1377 * on mount. This will return 0 if it was successful in writing the cache out,
b8605454 1378 * or an errno if it was not.
d4452bc5 1379 */
8b9d0322 1380static int __btrfs_write_out_cache(struct inode *inode,
d4452bc5 1381 struct btrfs_free_space_ctl *ctl,
32da5386 1382 struct btrfs_block_group *block_group,
c9dc4c65 1383 struct btrfs_io_ctl *io_ctl,
0e8d931a 1384 struct btrfs_trans_handle *trans)
d4452bc5
CM
1385{
1386 struct extent_state *cached_state = NULL;
5349d6c3 1387 LIST_HEAD(bitmap_list);
d4452bc5
CM
1388 int entries = 0;
1389 int bitmaps = 0;
1390 int ret;
c9dc4c65 1391 int must_iput = 0;
d4452bc5
CM
1392
1393 if (!i_size_read(inode))
b8605454 1394 return -EIO;
d4452bc5 1395
c9dc4c65 1396 WARN_ON(io_ctl->pages);
f15376df 1397 ret = io_ctl_init(io_ctl, inode, 1);
d4452bc5 1398 if (ret)
b8605454 1399 return ret;
d4452bc5 1400
e570fd27
MX
1401 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1402 down_write(&block_group->data_rwsem);
1403 spin_lock(&block_group->lock);
1404 if (block_group->delalloc_bytes) {
1405 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1406 spin_unlock(&block_group->lock);
1407 up_write(&block_group->data_rwsem);
1408 BTRFS_I(inode)->generation = 0;
1409 ret = 0;
c9dc4c65 1410 must_iput = 1;
e570fd27
MX
1411 goto out;
1412 }
1413 spin_unlock(&block_group->lock);
1414 }
1415
d4452bc5 1416 /* Lock all pages first so we can lock the extent safely. */
7a195f6d 1417 ret = io_ctl_prepare_pages(io_ctl, false);
b8605454 1418 if (ret)
b77000ed 1419 goto out_unlock;
d4452bc5 1420
570eb97b
JB
1421 lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1422 &cached_state);
d4452bc5 1423
c9dc4c65 1424 io_ctl_set_generation(io_ctl, trans->transid);
d4452bc5 1425
55507ce3 1426 mutex_lock(&ctl->cache_writeout_mutex);
5349d6c3 1427 /* Write out the extent entries in the free space cache */
1bbc621e 1428 spin_lock(&ctl->tree_lock);
c9dc4c65 1429 ret = write_cache_extent_entries(io_ctl, ctl,
d4452bc5
CM
1430 block_group, &entries, &bitmaps,
1431 &bitmap_list);
a3bdccc4
CM
1432 if (ret)
1433 goto out_nospc_locked;
d4452bc5 1434
5349d6c3
MX
1435 /*
1436 * Some spaces that are freed in the current transaction are pinned,
1437 * they will be added into free space cache after the transaction is
1438 * committed, we shouldn't lose them.
1bbc621e
CM
1439 *
1440 * If this changes while we are working we'll get added back to
1441 * the dirty list and redo it. No locking needed
5349d6c3 1442 */
6b45f641 1443 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
a3bdccc4
CM
1444 if (ret)
1445 goto out_nospc_locked;
5349d6c3 1446
55507ce3
FM
1447 /*
1448 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1449 * locked while doing it because a concurrent trim can be manipulating
1450 * or freeing the bitmap.
1451 */
c9dc4c65 1452 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1bbc621e 1453 spin_unlock(&ctl->tree_lock);
55507ce3 1454 mutex_unlock(&ctl->cache_writeout_mutex);
5349d6c3
MX
1455 if (ret)
1456 goto out_nospc;
1457
1458 /* Zero out the rest of the pages just to make sure */
c9dc4c65 1459 io_ctl_zero_remaining_pages(io_ctl);
d4452bc5 1460
5349d6c3 1461 /* Everything is written out, now we dirty the pages in the file. */
088545f6
NB
1462 ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1463 io_ctl->num_pages, 0, i_size_read(inode),
aa8c1a41 1464 &cached_state, false);
5349d6c3 1465 if (ret)
d4452bc5 1466 goto out_nospc;
5349d6c3 1467
e570fd27
MX
1468 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1469 up_write(&block_group->data_rwsem);
5349d6c3
MX
1470 /*
1471 * Release the pages and unlock the extent, we will flush
1472 * them out later
1473 */
c9dc4c65 1474 io_ctl_drop_pages(io_ctl);
bbc37d6e 1475 io_ctl_free(io_ctl);
5349d6c3 1476
570eb97b
JB
1477 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1478 &cached_state);
5349d6c3 1479
c9dc4c65
CM
1480 /*
1481 * at this point the pages are under IO and we're happy,
260db43c 1482 * The caller is responsible for waiting on them and updating
c9dc4c65
CM
1483 * the cache and the inode
1484 */
1485 io_ctl->entries = entries;
1486 io_ctl->bitmaps = bitmaps;
1487
1488 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
5349d6c3 1489 if (ret)
d4452bc5
CM
1490 goto out;
1491
c9dc4c65
CM
1492 return 0;
1493
a3bdccc4
CM
1494out_nospc_locked:
1495 cleanup_bitmap_list(&bitmap_list);
1496 spin_unlock(&ctl->tree_lock);
1497 mutex_unlock(&ctl->cache_writeout_mutex);
1498
a67509c3 1499out_nospc:
7bf1a159 1500 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
e570fd27 1501
b77000ed 1502out_unlock:
e570fd27
MX
1503 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1504 up_write(&block_group->data_rwsem);
1505
fd8efa81
JT
1506out:
1507 io_ctl->inode = NULL;
1508 io_ctl_free(io_ctl);
1509 if (ret) {
1510 invalidate_inode_pages2(inode->i_mapping);
1511 BTRFS_I(inode)->generation = 0;
1512 }
8b9d0322 1513 btrfs_update_inode(trans, BTRFS_I(inode));
fd8efa81
JT
1514 if (must_iput)
1515 iput(inode);
1516 return ret;
0414efae
LZ
1517}
1518
fe041534 1519int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
32da5386 1520 struct btrfs_block_group *block_group,
0414efae
LZ
1521 struct btrfs_path *path)
1522{
fe041534 1523 struct btrfs_fs_info *fs_info = trans->fs_info;
0414efae
LZ
1524 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1525 struct inode *inode;
1526 int ret = 0;
1527
0414efae
LZ
1528 spin_lock(&block_group->lock);
1529 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1530 spin_unlock(&block_group->lock);
e570fd27
MX
1531 return 0;
1532 }
0414efae
LZ
1533 spin_unlock(&block_group->lock);
1534
7949f339 1535 inode = lookup_free_space_inode(block_group, path);
0414efae
LZ
1536 if (IS_ERR(inode))
1537 return 0;
1538
8b9d0322
FM
1539 ret = __btrfs_write_out_cache(inode, ctl, block_group,
1540 &block_group->io_ctl, trans);
c09544e0 1541 if (ret) {
bbcd1f4d 1542 btrfs_debug(fs_info,
2e69a7a6
FM
1543 "failed to write free space cache for block group %llu error %d",
1544 block_group->start, ret);
c9dc4c65
CM
1545 spin_lock(&block_group->lock);
1546 block_group->disk_cache_state = BTRFS_DC_ERROR;
1547 spin_unlock(&block_group->lock);
1548
1549 block_group->io_ctl.inode = NULL;
1550 iput(inode);
0414efae
LZ
1551 }
1552
c9dc4c65
CM
1553 /*
1554 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1555 * to wait for IO and put the inode
1556 */
1557
0cb59c99
JB
1558 return ret;
1559}
1560
34d52cb6 1561static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
96303081 1562 u64 offset)
0f9dd46c 1563{
b12d6869 1564 ASSERT(offset >= bitmap_start);
96303081 1565 offset -= bitmap_start;
34d52cb6 1566 return (unsigned long)(div_u64(offset, unit));
96303081 1567}
0f9dd46c 1568
34d52cb6 1569static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
96303081 1570{
34d52cb6 1571 return (unsigned long)(div_u64(bytes, unit));
96303081 1572}
0f9dd46c 1573
34d52cb6 1574static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1575 u64 offset)
1576{
1577 u64 bitmap_start;
0ef6447a 1578 u64 bytes_per_bitmap;
0f9dd46c 1579
34d52cb6
LZ
1580 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1581 bitmap_start = offset - ctl->start;
0ef6447a 1582 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
96303081 1583 bitmap_start *= bytes_per_bitmap;
34d52cb6 1584 bitmap_start += ctl->start;
0f9dd46c 1585
96303081 1586 return bitmap_start;
0f9dd46c
JB
1587}
1588
13c2018f
FM
1589static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1590 struct btrfs_free_cluster *cluster,
0d6bac4d 1591 struct btrfs_free_space *new_entry)
0f9dd46c 1592{
13c2018f
FM
1593 struct rb_root *root;
1594 struct rb_node **p;
0f9dd46c 1595 struct rb_node *parent = NULL;
0f9dd46c 1596
13c2018f
FM
1597 lockdep_assert_held(&ctl->tree_lock);
1598
1599 if (cluster) {
1600 lockdep_assert_held(&cluster->lock);
1601 root = &cluster->root;
1602 } else {
1603 root = &ctl->free_space_offset;
1604 }
1605
1606 p = &root->rb_node;
1607
0f9dd46c 1608 while (*p) {
0d6bac4d
FM
1609 struct btrfs_free_space *info;
1610
0f9dd46c 1611 parent = *p;
96303081 1612 info = rb_entry(parent, struct btrfs_free_space, offset_index);
0f9dd46c 1613
0d6bac4d 1614 if (new_entry->offset < info->offset) {
0f9dd46c 1615 p = &(*p)->rb_left;
0d6bac4d 1616 } else if (new_entry->offset > info->offset) {
0f9dd46c 1617 p = &(*p)->rb_right;
96303081
JB
1618 } else {
1619 /*
1620 * we could have a bitmap entry and an extent entry
1621 * share the same offset. If this is the case, we want
1622 * the extent entry to always be found first if we do a
1623 * linear search through the tree, since we want to have
1624 * the quickest allocation time, and allocating from an
1625 * extent is faster than allocating from a bitmap. So
1626 * if we're inserting a bitmap and we find an entry at
1627 * this offset, we want to go right, or after this entry
1628 * logically. If we are inserting an extent and we've
1629 * found a bitmap, we want to go left, or before
1630 * logically.
1631 */
0d6bac4d 1632 if (new_entry->bitmap) {
207dde82
JB
1633 if (info->bitmap) {
1634 WARN_ON_ONCE(1);
1635 return -EEXIST;
1636 }
96303081
JB
1637 p = &(*p)->rb_right;
1638 } else {
207dde82
JB
1639 if (!info->bitmap) {
1640 WARN_ON_ONCE(1);
1641 return -EEXIST;
1642 }
96303081
JB
1643 p = &(*p)->rb_left;
1644 }
1645 }
0f9dd46c
JB
1646 }
1647
0d6bac4d
FM
1648 rb_link_node(&new_entry->offset_index, parent, p);
1649 rb_insert_color(&new_entry->offset_index, root);
0f9dd46c
JB
1650
1651 return 0;
1652}
1653
59c7b566
JB
1654/*
1655 * This is a little subtle. We *only* have ->max_extent_size set if we actually
1656 * searched through the bitmap and figured out the largest ->max_extent_size,
1657 * otherwise it's 0. In the case that it's 0 we don't want to tell the
1658 * allocator the wrong thing, we want to use the actual real max_extent_size
1659 * we've found already if it's larger, or we want to use ->bytes.
1660 *
1661 * This matters because find_free_space() will skip entries who's ->bytes is
1662 * less than the required bytes. So if we didn't search down this bitmap, we
1663 * may pick some previous entry that has a smaller ->max_extent_size than we
1664 * have. For example, assume we have two entries, one that has
1665 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set
1666 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will
1667 * call into find_free_space(), and return with max_extent_size == 4K, because
1668 * that first bitmap entry had ->max_extent_size set, but the second one did
1669 * not. If instead we returned 8K we'd come in searching for 8K, and find the
1670 * 8K contiguous range.
1671 *
1672 * Consider the other case, we have 2 8K chunks in that second entry and still
1673 * don't have ->max_extent_size set. We'll return 16K, and the next time the
1674 * allocator comes in it'll fully search our second bitmap, and this time it'll
1675 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the
1676 * right allocation the next loop through.
1677 */
1678static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1679{
1680 if (entry->bitmap && entry->max_extent_size)
1681 return entry->max_extent_size;
1682 return entry->bytes;
1683}
1684
1685/*
1686 * We want the largest entry to be leftmost, so this is inverted from what you'd
1687 * normally expect.
1688 */
1689static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1690{
1691 const struct btrfs_free_space *entry, *exist;
1692
1693 entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1694 exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1695 return get_max_extent_size(exist) < get_max_extent_size(entry);
1696}
1697
0f9dd46c 1698/*
70cb0743
JB
1699 * searches the tree for the given offset.
1700 *
96303081
JB
1701 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1702 * want a section that has at least bytes size and comes at or after the given
1703 * offset.
0f9dd46c 1704 */
96303081 1705static struct btrfs_free_space *
34d52cb6 1706tree_search_offset(struct btrfs_free_space_ctl *ctl,
96303081 1707 u64 offset, int bitmap_only, int fuzzy)
0f9dd46c 1708{
34d52cb6 1709 struct rb_node *n = ctl->free_space_offset.rb_node;
f1a8fc62 1710 struct btrfs_free_space *entry = NULL, *prev = NULL;
96303081 1711
91de9e97
FM
1712 lockdep_assert_held(&ctl->tree_lock);
1713
96303081 1714 /* find entry that is closest to the 'offset' */
f1a8fc62 1715 while (n) {
0f9dd46c 1716 entry = rb_entry(n, struct btrfs_free_space, offset_index);
96303081 1717 prev = entry;
0f9dd46c 1718
96303081 1719 if (offset < entry->offset)
0f9dd46c 1720 n = n->rb_left;
96303081 1721 else if (offset > entry->offset)
0f9dd46c 1722 n = n->rb_right;
96303081 1723 else
0f9dd46c 1724 break;
f1a8fc62
NB
1725
1726 entry = NULL;
0f9dd46c
JB
1727 }
1728
96303081
JB
1729 if (bitmap_only) {
1730 if (!entry)
1731 return NULL;
1732 if (entry->bitmap)
1733 return entry;
0f9dd46c 1734
96303081
JB
1735 /*
1736 * bitmap entry and extent entry may share same offset,
1737 * in that case, bitmap entry comes after extent entry.
1738 */
1739 n = rb_next(n);
1740 if (!n)
1741 return NULL;
1742 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1743 if (entry->offset != offset)
1744 return NULL;
0f9dd46c 1745
96303081
JB
1746 WARN_ON(!entry->bitmap);
1747 return entry;
1748 } else if (entry) {
1749 if (entry->bitmap) {
0f9dd46c 1750 /*
96303081
JB
1751 * if previous extent entry covers the offset,
1752 * we should return it instead of the bitmap entry
0f9dd46c 1753 */
de6c4115
MX
1754 n = rb_prev(&entry->offset_index);
1755 if (n) {
96303081
JB
1756 prev = rb_entry(n, struct btrfs_free_space,
1757 offset_index);
de6c4115
MX
1758 if (!prev->bitmap &&
1759 prev->offset + prev->bytes > offset)
1760 entry = prev;
0f9dd46c 1761 }
96303081
JB
1762 }
1763 return entry;
1764 }
1765
1766 if (!prev)
1767 return NULL;
1768
1769 /* find last entry before the 'offset' */
1770 entry = prev;
1771 if (entry->offset > offset) {
1772 n = rb_prev(&entry->offset_index);
1773 if (n) {
1774 entry = rb_entry(n, struct btrfs_free_space,
1775 offset_index);
b12d6869 1776 ASSERT(entry->offset <= offset);
0f9dd46c 1777 } else {
96303081
JB
1778 if (fuzzy)
1779 return entry;
1780 else
1781 return NULL;
0f9dd46c
JB
1782 }
1783 }
1784
96303081 1785 if (entry->bitmap) {
de6c4115
MX
1786 n = rb_prev(&entry->offset_index);
1787 if (n) {
96303081
JB
1788 prev = rb_entry(n, struct btrfs_free_space,
1789 offset_index);
de6c4115
MX
1790 if (!prev->bitmap &&
1791 prev->offset + prev->bytes > offset)
1792 return prev;
96303081 1793 }
34d52cb6 1794 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
96303081
JB
1795 return entry;
1796 } else if (entry->offset + entry->bytes > offset)
1797 return entry;
1798
1799 if (!fuzzy)
1800 return NULL;
1801
1802 while (1) {
167c0bd3
NB
1803 n = rb_next(&entry->offset_index);
1804 if (!n)
1805 return NULL;
1806 entry = rb_entry(n, struct btrfs_free_space, offset_index);
96303081
JB
1807 if (entry->bitmap) {
1808 if (entry->offset + BITS_PER_BITMAP *
34d52cb6 1809 ctl->unit > offset)
96303081
JB
1810 break;
1811 } else {
1812 if (entry->offset + entry->bytes > offset)
1813 break;
1814 }
96303081
JB
1815 }
1816 return entry;
0f9dd46c
JB
1817}
1818
32e1649b
NB
1819static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1820 struct btrfs_free_space *info,
1821 bool update_stat)
0f9dd46c 1822{
7e5ba559
FM
1823 lockdep_assert_held(&ctl->tree_lock);
1824
34d52cb6 1825 rb_erase(&info->offset_index, &ctl->free_space_offset);
59c7b566 1826 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
34d52cb6 1827 ctl->free_extents--;
dfb79ddb 1828
5dc7c10b 1829 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
dfb79ddb 1830 ctl->discardable_extents[BTRFS_STAT_CURR]--;
5dc7c10b
DZ
1831 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1832 }
f333adb5 1833
32e1649b
NB
1834 if (update_stat)
1835 ctl->free_space -= info->bytes;
0f9dd46c
JB
1836}
1837
34d52cb6 1838static int link_free_space(struct btrfs_free_space_ctl *ctl,
0f9dd46c
JB
1839 struct btrfs_free_space *info)
1840{
1841 int ret = 0;
1842
9649bd9a
FM
1843 lockdep_assert_held(&ctl->tree_lock);
1844
b12d6869 1845 ASSERT(info->bytes || info->bitmap);
13c2018f 1846 ret = tree_insert_offset(ctl, NULL, info);
0f9dd46c
JB
1847 if (ret)
1848 return ret;
1849
59c7b566
JB
1850 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1851
5dc7c10b 1852 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
dfb79ddb 1853 ctl->discardable_extents[BTRFS_STAT_CURR]++;
5dc7c10b
DZ
1854 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1855 }
dfb79ddb 1856
34d52cb6
LZ
1857 ctl->free_space += info->bytes;
1858 ctl->free_extents++;
96303081
JB
1859 return ret;
1860}
1861
59c7b566
JB
1862static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1863 struct btrfs_free_space *info)
1864{
1865 ASSERT(info->bitmap);
1866
1867 /*
1868 * If our entry is empty it's because we're on a cluster and we don't
1869 * want to re-link it into our ctl bytes index.
1870 */
1871 if (RB_EMPTY_NODE(&info->bytes_index))
1872 return;
1873
7e5ba559
FM
1874 lockdep_assert_held(&ctl->tree_lock);
1875
59c7b566
JB
1876 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1877 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1878}
1879
f594f13c
NB
1880static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1881 struct btrfs_free_space *info,
1882 u64 offset, u64 bytes, bool update_stat)
96303081 1883{
dfb79ddb
DZ
1884 unsigned long start, count, end;
1885 int extent_delta = -1;
96303081 1886
34d52cb6
LZ
1887 start = offset_to_bit(info->offset, ctl->unit, offset);
1888 count = bytes_to_bits(bytes, ctl->unit);
dfb79ddb
DZ
1889 end = start + count;
1890 ASSERT(end <= BITS_PER_BITMAP);
96303081 1891
f38b6e75 1892 bitmap_clear(info->bitmap, start, count);
96303081
JB
1893
1894 info->bytes -= bytes;
553cceb4
JB
1895 if (info->max_extent_size > ctl->unit)
1896 info->max_extent_size = 0;
dfb79ddb 1897
59c7b566
JB
1898 relink_bitmap_entry(ctl, info);
1899
dfb79ddb
DZ
1900 if (start && test_bit(start - 1, info->bitmap))
1901 extent_delta++;
1902
1903 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1904 extent_delta++;
1905
1906 info->bitmap_extents += extent_delta;
5dc7c10b 1907 if (!btrfs_free_space_trimmed(info)) {
dfb79ddb 1908 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
5dc7c10b
DZ
1909 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1910 }
bb3ac5a4 1911
f594f13c
NB
1912 if (update_stat)
1913 ctl->free_space -= bytes;
96303081
JB
1914}
1915
34d52cb6 1916static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
817d52f8
JB
1917 struct btrfs_free_space *info, u64 offset,
1918 u64 bytes)
96303081 1919{
dfb79ddb
DZ
1920 unsigned long start, count, end;
1921 int extent_delta = 1;
96303081 1922
34d52cb6
LZ
1923 start = offset_to_bit(info->offset, ctl->unit, offset);
1924 count = bytes_to_bits(bytes, ctl->unit);
dfb79ddb
DZ
1925 end = start + count;
1926 ASSERT(end <= BITS_PER_BITMAP);
96303081 1927
f38b6e75 1928 bitmap_set(info->bitmap, start, count);
96303081 1929
59c7b566
JB
1930 /*
1931 * We set some bytes, we have no idea what the max extent size is
1932 * anymore.
1933 */
1934 info->max_extent_size = 0;
96303081 1935 info->bytes += bytes;
34d52cb6 1936 ctl->free_space += bytes;
dfb79ddb 1937
59c7b566
JB
1938 relink_bitmap_entry(ctl, info);
1939
dfb79ddb
DZ
1940 if (start && test_bit(start - 1, info->bitmap))
1941 extent_delta--;
1942
1943 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1944 extent_delta--;
1945
1946 info->bitmap_extents += extent_delta;
5dc7c10b 1947 if (!btrfs_free_space_trimmed(info)) {
dfb79ddb 1948 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
5dc7c10b
DZ
1949 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1950 }
96303081
JB
1951}
1952
a4820398
MX
1953/*
1954 * If we can not find suitable extent, we will use bytes to record
1955 * the size of the max extent.
1956 */
34d52cb6 1957static int search_bitmap(struct btrfs_free_space_ctl *ctl,
96303081 1958 struct btrfs_free_space *bitmap_info, u64 *offset,
0584f718 1959 u64 *bytes, bool for_alloc)
96303081
JB
1960{
1961 unsigned long found_bits = 0;
a4820398 1962 unsigned long max_bits = 0;
96303081
JB
1963 unsigned long bits, i;
1964 unsigned long next_zero;
a4820398 1965 unsigned long extent_bits;
96303081 1966
cef40483
JB
1967 /*
1968 * Skip searching the bitmap if we don't have a contiguous section that
1969 * is large enough for this allocation.
1970 */
0584f718
JB
1971 if (for_alloc &&
1972 bitmap_info->max_extent_size &&
cef40483
JB
1973 bitmap_info->max_extent_size < *bytes) {
1974 *bytes = bitmap_info->max_extent_size;
1975 return -1;
1976 }
1977
34d52cb6 1978 i = offset_to_bit(bitmap_info->offset, ctl->unit,
96303081 1979 max_t(u64, *offset, bitmap_info->offset));
34d52cb6 1980 bits = bytes_to_bits(*bytes, ctl->unit);
96303081 1981
ebb3dad4 1982 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
0584f718
JB
1983 if (for_alloc && bits == 1) {
1984 found_bits = 1;
1985 break;
1986 }
96303081
JB
1987 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1988 BITS_PER_BITMAP, i);
a4820398
MX
1989 extent_bits = next_zero - i;
1990 if (extent_bits >= bits) {
1991 found_bits = extent_bits;
96303081 1992 break;
a4820398
MX
1993 } else if (extent_bits > max_bits) {
1994 max_bits = extent_bits;
96303081
JB
1995 }
1996 i = next_zero;
1997 }
1998
1999 if (found_bits) {
34d52cb6
LZ
2000 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
2001 *bytes = (u64)(found_bits) * ctl->unit;
96303081
JB
2002 return 0;
2003 }
2004
a4820398 2005 *bytes = (u64)(max_bits) * ctl->unit;
cef40483 2006 bitmap_info->max_extent_size = *bytes;
59c7b566 2007 relink_bitmap_entry(ctl, bitmap_info);
96303081
JB
2008 return -1;
2009}
2010
a4820398 2011/* Cache the size of the max extent in bytes */
34d52cb6 2012static struct btrfs_free_space *
53b381b3 2013find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
59c7b566 2014 unsigned long align, u64 *max_extent_size, bool use_bytes_index)
96303081
JB
2015{
2016 struct btrfs_free_space *entry;
2017 struct rb_node *node;
53b381b3
DW
2018 u64 tmp;
2019 u64 align_off;
96303081
JB
2020 int ret;
2021
34d52cb6 2022 if (!ctl->free_space_offset.rb_node)
a4820398 2023 goto out;
59c7b566
JB
2024again:
2025 if (use_bytes_index) {
2026 node = rb_first_cached(&ctl->free_space_bytes);
2027 } else {
2028 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2029 0, 1);
2030 if (!entry)
2031 goto out;
2032 node = &entry->offset_index;
2033 }
96303081 2034
59c7b566
JB
2035 for (; node; node = rb_next(node)) {
2036 if (use_bytes_index)
2037 entry = rb_entry(node, struct btrfs_free_space,
2038 bytes_index);
2039 else
2040 entry = rb_entry(node, struct btrfs_free_space,
2041 offset_index);
96303081 2042
59c7b566
JB
2043 /*
2044 * If we are using the bytes index then all subsequent entries
2045 * in this tree are going to be < bytes, so simply set the max
2046 * extent size and exit the loop.
2047 *
2048 * If we're using the offset index then we need to keep going
2049 * through the rest of the tree.
2050 */
a4820398 2051 if (entry->bytes < *bytes) {
ad22cf6e
JB
2052 *max_extent_size = max(get_max_extent_size(entry),
2053 *max_extent_size);
59c7b566
JB
2054 if (use_bytes_index)
2055 break;
96303081 2056 continue;
a4820398 2057 }
96303081 2058
53b381b3
DW
2059 /* make sure the space returned is big enough
2060 * to match our requested alignment
2061 */
2062 if (*bytes >= align) {
a4820398 2063 tmp = entry->offset - ctl->start + align - 1;
47c5713f 2064 tmp = div64_u64(tmp, align);
53b381b3
DW
2065 tmp = tmp * align + ctl->start;
2066 align_off = tmp - entry->offset;
2067 } else {
2068 align_off = 0;
2069 tmp = entry->offset;
2070 }
2071
59c7b566
JB
2072 /*
2073 * We don't break here if we're using the bytes index because we
2074 * may have another entry that has the correct alignment that is
2075 * the right size, so we don't want to miss that possibility.
2076 * At worst this adds another loop through the logic, but if we
2077 * broke here we could prematurely ENOSPC.
2078 */
a4820398 2079 if (entry->bytes < *bytes + align_off) {
ad22cf6e
JB
2080 *max_extent_size = max(get_max_extent_size(entry),
2081 *max_extent_size);
53b381b3 2082 continue;
a4820398 2083 }
53b381b3 2084
96303081 2085 if (entry->bitmap) {
59c7b566 2086 struct rb_node *old_next = rb_next(node);
a4820398
MX
2087 u64 size = *bytes;
2088
0584f718 2089 ret = search_bitmap(ctl, entry, &tmp, &size, true);
53b381b3
DW
2090 if (!ret) {
2091 *offset = tmp;
a4820398 2092 *bytes = size;
96303081 2093 return entry;
ad22cf6e
JB
2094 } else {
2095 *max_extent_size =
2096 max(get_max_extent_size(entry),
2097 *max_extent_size);
53b381b3 2098 }
59c7b566
JB
2099
2100 /*
2101 * The bitmap may have gotten re-arranged in the space
2102 * index here because the max_extent_size may have been
2103 * updated. Start from the beginning again if this
2104 * happened.
2105 */
2106 if (use_bytes_index && old_next != rb_next(node))
2107 goto again;
96303081
JB
2108 continue;
2109 }
2110
53b381b3
DW
2111 *offset = tmp;
2112 *bytes = entry->bytes - align_off;
96303081
JB
2113 return entry;
2114 }
a4820398 2115out:
96303081
JB
2116 return NULL;
2117}
2118
34d52cb6 2119static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
2120 struct btrfs_free_space *info, u64 offset)
2121{
34d52cb6 2122 info->offset = offset_to_bitmap(ctl, offset);
f019f426 2123 info->bytes = 0;
dfb79ddb 2124 info->bitmap_extents = 0;
f2d0f676 2125 INIT_LIST_HEAD(&info->list);
34d52cb6
LZ
2126 link_free_space(ctl, info);
2127 ctl->total_bitmaps++;
fa598b06 2128 recalculate_thresholds(ctl);
96303081
JB
2129}
2130
34d52cb6 2131static void free_bitmap(struct btrfs_free_space_ctl *ctl,
edf6e2d1
LZ
2132 struct btrfs_free_space *bitmap_info)
2133{
27f0afc7
DZ
2134 /*
2135 * Normally when this is called, the bitmap is completely empty. However,
2136 * if we are blowing up the free space cache for one reason or another
2137 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2138 * we may leave stats on the table.
2139 */
2140 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2141 ctl->discardable_extents[BTRFS_STAT_CURR] -=
2142 bitmap_info->bitmap_extents;
2143 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2144
2145 }
32e1649b 2146 unlink_free_space(ctl, bitmap_info, true);
3acd4850 2147 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
dc89e982 2148 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
34d52cb6 2149 ctl->total_bitmaps--;
fa598b06 2150 recalculate_thresholds(ctl);
edf6e2d1
LZ
2151}
2152
34d52cb6 2153static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
2154 struct btrfs_free_space *bitmap_info,
2155 u64 *offset, u64 *bytes)
2156{
2157 u64 end;
6606bb97
JB
2158 u64 search_start, search_bytes;
2159 int ret;
96303081
JB
2160
2161again:
34d52cb6 2162 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
96303081 2163
6606bb97 2164 /*
bdb7d303
JB
2165 * We need to search for bits in this bitmap. We could only cover some
2166 * of the extent in this bitmap thanks to how we add space, so we need
2167 * to search for as much as it as we can and clear that amount, and then
2168 * go searching for the next bit.
6606bb97
JB
2169 */
2170 search_start = *offset;
bdb7d303 2171 search_bytes = ctl->unit;
13dbc089 2172 search_bytes = min(search_bytes, end - search_start + 1);
0584f718
JB
2173 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2174 false);
b50c6e25
JB
2175 if (ret < 0 || search_start != *offset)
2176 return -EINVAL;
6606bb97 2177
bdb7d303
JB
2178 /* We may have found more bits than what we need */
2179 search_bytes = min(search_bytes, *bytes);
2180
2181 /* Cannot clear past the end of the bitmap */
2182 search_bytes = min(search_bytes, end - search_start + 1);
2183
f594f13c 2184 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
bdb7d303
JB
2185 *offset += search_bytes;
2186 *bytes -= search_bytes;
96303081
JB
2187
2188 if (*bytes) {
6606bb97 2189 struct rb_node *next = rb_next(&bitmap_info->offset_index);
edf6e2d1 2190 if (!bitmap_info->bytes)
34d52cb6 2191 free_bitmap(ctl, bitmap_info);
96303081 2192
6606bb97
JB
2193 /*
2194 * no entry after this bitmap, but we still have bytes to
2195 * remove, so something has gone wrong.
2196 */
2197 if (!next)
96303081
JB
2198 return -EINVAL;
2199
6606bb97
JB
2200 bitmap_info = rb_entry(next, struct btrfs_free_space,
2201 offset_index);
2202
2203 /*
2204 * if the next entry isn't a bitmap we need to return to let the
2205 * extent stuff do its work.
2206 */
96303081
JB
2207 if (!bitmap_info->bitmap)
2208 return -EAGAIN;
2209
6606bb97
JB
2210 /*
2211 * Ok the next item is a bitmap, but it may not actually hold
2212 * the information for the rest of this free space stuff, so
2213 * look for it, and if we don't find it return so we can try
2214 * everything over again.
2215 */
2216 search_start = *offset;
bdb7d303 2217 search_bytes = ctl->unit;
34d52cb6 2218 ret = search_bitmap(ctl, bitmap_info, &search_start,
0584f718 2219 &search_bytes, false);
6606bb97
JB
2220 if (ret < 0 || search_start != *offset)
2221 return -EAGAIN;
2222
96303081 2223 goto again;
edf6e2d1 2224 } else if (!bitmap_info->bytes)
34d52cb6 2225 free_bitmap(ctl, bitmap_info);
96303081
JB
2226
2227 return 0;
2228}
2229
2cdc342c
JB
2230static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2231 struct btrfs_free_space *info, u64 offset,
da080fe1 2232 u64 bytes, enum btrfs_trim_state trim_state)
2cdc342c
JB
2233{
2234 u64 bytes_to_set = 0;
2235 u64 end;
2236
da080fe1
DZ
2237 /*
2238 * This is a tradeoff to make bitmap trim state minimal. We mark the
2239 * whole bitmap untrimmed if at any point we add untrimmed regions.
2240 */
dfb79ddb 2241 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
5dc7c10b 2242 if (btrfs_free_space_trimmed(info)) {
dfb79ddb
DZ
2243 ctl->discardable_extents[BTRFS_STAT_CURR] +=
2244 info->bitmap_extents;
5dc7c10b
DZ
2245 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2246 }
da080fe1 2247 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
dfb79ddb 2248 }
da080fe1 2249
2cdc342c
JB
2250 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2251
2252 bytes_to_set = min(end - offset, bytes);
2253
2254 bitmap_set_bits(ctl, info, offset, bytes_to_set);
2255
2256 return bytes_to_set;
2257
2258}
2259
34d52cb6
LZ
2260static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2261 struct btrfs_free_space *info)
96303081 2262{
364be842 2263 struct btrfs_block_group *block_group = ctl->block_group;
0b246afa 2264 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
2265 bool forced = false;
2266
2267#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 2268 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
2269 forced = true;
2270#endif
96303081 2271
5d90c5c7
DZ
2272 /* This is a way to reclaim large regions from the bitmaps. */
2273 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2274 return false;
2275
96303081
JB
2276 /*
2277 * If we are below the extents threshold then we can add this as an
2278 * extent, and don't have to deal with the bitmap
2279 */
d0bd4560 2280 if (!forced && ctl->free_extents < ctl->extents_thresh) {
32cb0840
JB
2281 /*
2282 * If this block group has some small extents we don't want to
2283 * use up all of our free slots in the cache with them, we want
01327610 2284 * to reserve them to larger extents, however if we have plenty
32cb0840
JB
2285 * of cache left then go ahead an dadd them, no sense in adding
2286 * the overhead of a bitmap if we don't have to.
2287 */
f9bb615a
DZ
2288 if (info->bytes <= fs_info->sectorsize * 8) {
2289 if (ctl->free_extents * 3 <= ctl->extents_thresh)
34d52cb6 2290 return false;
32cb0840 2291 } else {
34d52cb6 2292 return false;
32cb0840
JB
2293 }
2294 }
96303081
JB
2295
2296 /*
dde5740f
JB
2297 * The original block groups from mkfs can be really small, like 8
2298 * megabytes, so don't bother with a bitmap for those entries. However
2299 * some block groups can be smaller than what a bitmap would cover but
2300 * are still large enough that they could overflow the 32k memory limit,
2301 * so allow those block groups to still be allowed to have a bitmap
2302 * entry.
96303081 2303 */
b3470b5d 2304 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
34d52cb6
LZ
2305 return false;
2306
2307 return true;
2308}
2309
20e5506b 2310static const struct btrfs_free_space_op free_space_op = {
2cdc342c
JB
2311 .use_bitmap = use_bitmap,
2312};
2313
34d52cb6
LZ
2314static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2315 struct btrfs_free_space *info)
2316{
2317 struct btrfs_free_space *bitmap_info;
32da5386 2318 struct btrfs_block_group *block_group = NULL;
34d52cb6 2319 int added = 0;
2cdc342c 2320 u64 bytes, offset, bytes_added;
da080fe1 2321 enum btrfs_trim_state trim_state;
34d52cb6 2322 int ret;
96303081
JB
2323
2324 bytes = info->bytes;
2325 offset = info->offset;
da080fe1 2326 trim_state = info->trim_state;
96303081 2327
34d52cb6
LZ
2328 if (!ctl->op->use_bitmap(ctl, info))
2329 return 0;
2330
2cdc342c 2331 if (ctl->op == &free_space_op)
364be842 2332 block_group = ctl->block_group;
38e87880 2333again:
2cdc342c
JB
2334 /*
2335 * Since we link bitmaps right into the cluster we need to see if we
2336 * have a cluster here, and if so and it has our bitmap we need to add
2337 * the free space to that bitmap.
2338 */
2339 if (block_group && !list_empty(&block_group->cluster_list)) {
2340 struct btrfs_free_cluster *cluster;
2341 struct rb_node *node;
2342 struct btrfs_free_space *entry;
2343
2344 cluster = list_entry(block_group->cluster_list.next,
2345 struct btrfs_free_cluster,
2346 block_group_list);
2347 spin_lock(&cluster->lock);
2348 node = rb_first(&cluster->root);
2349 if (!node) {
2350 spin_unlock(&cluster->lock);
38e87880 2351 goto no_cluster_bitmap;
2cdc342c
JB
2352 }
2353
2354 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2355 if (!entry->bitmap) {
2356 spin_unlock(&cluster->lock);
38e87880 2357 goto no_cluster_bitmap;
2cdc342c
JB
2358 }
2359
2360 if (entry->offset == offset_to_bitmap(ctl, offset)) {
da080fe1
DZ
2361 bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2362 bytes, trim_state);
2cdc342c
JB
2363 bytes -= bytes_added;
2364 offset += bytes_added;
2365 }
2366 spin_unlock(&cluster->lock);
2367 if (!bytes) {
2368 ret = 1;
2369 goto out;
2370 }
2371 }
38e87880
CM
2372
2373no_cluster_bitmap:
34d52cb6 2374 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
96303081
JB
2375 1, 0);
2376 if (!bitmap_info) {
b12d6869 2377 ASSERT(added == 0);
96303081
JB
2378 goto new_bitmap;
2379 }
2380
da080fe1
DZ
2381 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2382 trim_state);
2cdc342c
JB
2383 bytes -= bytes_added;
2384 offset += bytes_added;
2385 added = 0;
96303081
JB
2386
2387 if (!bytes) {
2388 ret = 1;
2389 goto out;
2390 } else
2391 goto again;
2392
2393new_bitmap:
2394 if (info && info->bitmap) {
34d52cb6 2395 add_new_bitmap(ctl, info, offset);
96303081
JB
2396 added = 1;
2397 info = NULL;
2398 goto again;
2399 } else {
34d52cb6 2400 spin_unlock(&ctl->tree_lock);
96303081
JB
2401
2402 /* no pre-allocated info, allocate a new one */
2403 if (!info) {
dc89e982
JB
2404 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2405 GFP_NOFS);
96303081 2406 if (!info) {
34d52cb6 2407 spin_lock(&ctl->tree_lock);
96303081
JB
2408 ret = -ENOMEM;
2409 goto out;
2410 }
2411 }
2412
2413 /* allocate the bitmap */
3acd4850
CL
2414 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2415 GFP_NOFS);
da080fe1 2416 info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
34d52cb6 2417 spin_lock(&ctl->tree_lock);
96303081
JB
2418 if (!info->bitmap) {
2419 ret = -ENOMEM;
2420 goto out;
2421 }
2422 goto again;
2423 }
2424
2425out:
2426 if (info) {
3acd4850
CL
2427 if (info->bitmap)
2428 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2429 info->bitmap);
dc89e982 2430 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 2431 }
0f9dd46c
JB
2432
2433 return ret;
2434}
2435
a7ccb255
DZ
2436/*
2437 * Free space merging rules:
2438 * 1) Merge trimmed areas together
2439 * 2) Let untrimmed areas coalesce with trimmed areas
2440 * 3) Always pull neighboring regions from bitmaps
2441 *
2442 * The above rules are for when we merge free space based on btrfs_trim_state.
2443 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2444 * same reason: to promote larger extent regions which makes life easier for
2445 * find_free_extent(). Rule 2 enables coalescing based on the common path
2446 * being returning free space from btrfs_finish_extent_commit(). So when free
2447 * space is trimmed, it will prevent aggregating trimmed new region and
2448 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2449 * and provide find_free_extent() with the largest extents possible hoping for
2450 * the reuse path.
2451 */
945d8962 2452static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 2453 struct btrfs_free_space *info, bool update_stat)
0f9dd46c 2454{
bf53d468 2455 struct btrfs_free_space *left_info = NULL;
120d66ee
LZ
2456 struct btrfs_free_space *right_info;
2457 bool merged = false;
2458 u64 offset = info->offset;
2459 u64 bytes = info->bytes;
a7ccb255 2460 const bool is_trimmed = btrfs_free_space_trimmed(info);
9085f425 2461 struct rb_node *right_prev = NULL;
6226cb0a 2462
0f9dd46c
JB
2463 /*
2464 * first we want to see if there is free space adjacent to the range we
2465 * are adding, if there is remove that struct and add a new one to
2466 * cover the entire range
2467 */
34d52cb6 2468 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
9085f425
FM
2469 if (right_info)
2470 right_prev = rb_prev(&right_info->offset_index);
2471
2472 if (right_prev)
2473 left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
bf53d468 2474 else if (!right_info)
34d52cb6 2475 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
0f9dd46c 2476
a7ccb255
DZ
2477 /* See try_merge_free_space() comment. */
2478 if (right_info && !right_info->bitmap &&
2479 (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
32e1649b 2480 unlink_free_space(ctl, right_info, update_stat);
6226cb0a 2481 info->bytes += right_info->bytes;
dc89e982 2482 kmem_cache_free(btrfs_free_space_cachep, right_info);
120d66ee 2483 merged = true;
0f9dd46c
JB
2484 }
2485
a7ccb255 2486 /* See try_merge_free_space() comment. */
96303081 2487 if (left_info && !left_info->bitmap &&
a7ccb255
DZ
2488 left_info->offset + left_info->bytes == offset &&
2489 (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
32e1649b 2490 unlink_free_space(ctl, left_info, update_stat);
6226cb0a
JB
2491 info->offset = left_info->offset;
2492 info->bytes += left_info->bytes;
dc89e982 2493 kmem_cache_free(btrfs_free_space_cachep, left_info);
120d66ee 2494 merged = true;
0f9dd46c
JB
2495 }
2496
120d66ee
LZ
2497 return merged;
2498}
2499
20005523
FM
2500static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2501 struct btrfs_free_space *info,
2502 bool update_stat)
2503{
2504 struct btrfs_free_space *bitmap;
2505 unsigned long i;
2506 unsigned long j;
2507 const u64 end = info->offset + info->bytes;
2508 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2509 u64 bytes;
2510
2511 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2512 if (!bitmap)
2513 return false;
2514
2515 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2516 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2517 if (j == i)
2518 return false;
2519 bytes = (j - i) * ctl->unit;
2520 info->bytes += bytes;
2521
a7ccb255
DZ
2522 /* See try_merge_free_space() comment. */
2523 if (!btrfs_free_space_trimmed(bitmap))
2524 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2525
f594f13c 2526 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
20005523
FM
2527
2528 if (!bitmap->bytes)
2529 free_bitmap(ctl, bitmap);
2530
2531 return true;
2532}
2533
2534static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2535 struct btrfs_free_space *info,
2536 bool update_stat)
2537{
2538 struct btrfs_free_space *bitmap;
2539 u64 bitmap_offset;
2540 unsigned long i;
2541 unsigned long j;
2542 unsigned long prev_j;
2543 u64 bytes;
2544
2545 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2546 /* If we're on a boundary, try the previous logical bitmap. */
2547 if (bitmap_offset == info->offset) {
2548 if (info->offset == 0)
2549 return false;
2550 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2551 }
2552
2553 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2554 if (!bitmap)
2555 return false;
2556
2557 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2558 j = 0;
2559 prev_j = (unsigned long)-1;
2560 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2561 if (j > i)
2562 break;
2563 prev_j = j;
2564 }
2565 if (prev_j == i)
2566 return false;
2567
2568 if (prev_j == (unsigned long)-1)
2569 bytes = (i + 1) * ctl->unit;
2570 else
2571 bytes = (i - prev_j) * ctl->unit;
2572
2573 info->offset -= bytes;
2574 info->bytes += bytes;
2575
a7ccb255
DZ
2576 /* See try_merge_free_space() comment. */
2577 if (!btrfs_free_space_trimmed(bitmap))
2578 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2579
f594f13c 2580 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
20005523
FM
2581
2582 if (!bitmap->bytes)
2583 free_bitmap(ctl, bitmap);
2584
2585 return true;
2586}
2587
2588/*
2589 * We prefer always to allocate from extent entries, both for clustered and
2590 * non-clustered allocation requests. So when attempting to add a new extent
2591 * entry, try to see if there's adjacent free space in bitmap entries, and if
2592 * there is, migrate that space from the bitmaps to the extent.
2593 * Like this we get better chances of satisfying space allocation requests
2594 * because we attempt to satisfy them based on a single cache entry, and never
2595 * on 2 or more entries - even if the entries represent a contiguous free space
2596 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2597 * ends).
2598 */
2599static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2600 struct btrfs_free_space *info,
2601 bool update_stat)
2602{
2603 /*
2604 * Only work with disconnected entries, as we can change their offset,
2605 * and must be extent entries.
2606 */
2607 ASSERT(!info->bitmap);
2608 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2609
2610 if (ctl->total_bitmaps > 0) {
2611 bool stole_end;
2612 bool stole_front = false;
2613
2614 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2615 if (ctl->total_bitmaps > 0)
2616 stole_front = steal_from_bitmap_to_front(ctl, info,
2617 update_stat);
2618
2619 if (stole_end || stole_front)
2620 try_merge_free_space(ctl, info, update_stat);
2621 }
2622}
2623
290ef19a 2624int __btrfs_add_free_space(struct btrfs_block_group *block_group,
a7ccb255
DZ
2625 u64 offset, u64 bytes,
2626 enum btrfs_trim_state trim_state)
120d66ee 2627{
290ef19a
NB
2628 struct btrfs_fs_info *fs_info = block_group->fs_info;
2629 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
120d66ee
LZ
2630 struct btrfs_free_space *info;
2631 int ret = 0;
7fe6d45e 2632 u64 filter_bytes = bytes;
120d66ee 2633
169e0da9
NA
2634 ASSERT(!btrfs_is_zoned(fs_info));
2635
dc89e982 2636 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
120d66ee
LZ
2637 if (!info)
2638 return -ENOMEM;
2639
2640 info->offset = offset;
2641 info->bytes = bytes;
a7ccb255 2642 info->trim_state = trim_state;
20005523 2643 RB_CLEAR_NODE(&info->offset_index);
59c7b566 2644 RB_CLEAR_NODE(&info->bytes_index);
120d66ee 2645
34d52cb6 2646 spin_lock(&ctl->tree_lock);
120d66ee 2647
34d52cb6 2648 if (try_merge_free_space(ctl, info, true))
120d66ee
LZ
2649 goto link;
2650
2651 /*
2652 * There was no extent directly to the left or right of this new
2653 * extent then we know we're going to have to allocate a new extent, so
2654 * before we do that see if we need to drop this into a bitmap
2655 */
34d52cb6 2656 ret = insert_into_bitmap(ctl, info);
120d66ee
LZ
2657 if (ret < 0) {
2658 goto out;
2659 } else if (ret) {
2660 ret = 0;
2661 goto out;
2662 }
2663link:
20005523
FM
2664 /*
2665 * Only steal free space from adjacent bitmaps if we're sure we're not
2666 * going to add the new free space to existing bitmap entries - because
2667 * that would mean unnecessary work that would be reverted. Therefore
2668 * attempt to steal space from bitmaps if we're adding an extent entry.
2669 */
2670 steal_from_bitmap(ctl, info, true);
2671
7fe6d45e
DZ
2672 filter_bytes = max(filter_bytes, info->bytes);
2673
34d52cb6 2674 ret = link_free_space(ctl, info);
0f9dd46c 2675 if (ret)
dc89e982 2676 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 2677out:
66b53bae 2678 btrfs_discard_update_discardable(block_group);
34d52cb6 2679 spin_unlock(&ctl->tree_lock);
6226cb0a 2680
0f9dd46c 2681 if (ret) {
ab8d0fc4 2682 btrfs_crit(fs_info, "unable to add free space :%d", ret);
b12d6869 2683 ASSERT(ret != -EEXIST);
0f9dd46c
JB
2684 }
2685
7fe6d45e
DZ
2686 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2687 btrfs_discard_check_filter(block_group, filter_bytes);
b0643e59 2688 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
7fe6d45e 2689 }
b0643e59 2690
0f9dd46c
JB
2691 return ret;
2692}
2693
169e0da9
NA
2694static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2695 u64 bytenr, u64 size, bool used)
2696{
bb5a098d 2697 struct btrfs_space_info *sinfo = block_group->space_info;
169e0da9
NA
2698 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2699 u64 offset = bytenr - block_group->start;
2700 u64 to_free, to_unusable;
bb5a098d 2701 int bg_reclaim_threshold = 0;
98173255 2702 bool initial = (size == block_group->length);
d8da0e85 2703 u64 reclaimable_unusable;
98173255
NA
2704
2705 WARN_ON(!initial && offset + size > block_group->zone_capacity);
169e0da9 2706
bb5a098d
JB
2707 if (!initial)
2708 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2709
169e0da9
NA
2710 spin_lock(&ctl->tree_lock);
2711 if (!used)
2712 to_free = size;
98173255
NA
2713 else if (initial)
2714 to_free = block_group->zone_capacity;
169e0da9
NA
2715 else if (offset >= block_group->alloc_offset)
2716 to_free = size;
2717 else if (offset + size <= block_group->alloc_offset)
2718 to_free = 0;
2719 else
2720 to_free = offset + size - block_group->alloc_offset;
2721 to_unusable = size - to_free;
2722
2723 ctl->free_space += to_free;
badae9c8
NA
2724 /*
2725 * If the block group is read-only, we should account freed space into
2726 * bytes_readonly.
2727 */
2728 if (!block_group->ro)
2729 block_group->zone_unusable += to_unusable;
169e0da9
NA
2730 spin_unlock(&ctl->tree_lock);
2731 if (!used) {
2732 spin_lock(&block_group->lock);
2733 block_group->alloc_offset -= size;
2734 spin_unlock(&block_group->lock);
2735 }
2736
d8da0e85
NA
2737 reclaimable_unusable = block_group->zone_unusable -
2738 (block_group->length - block_group->zone_capacity);
169e0da9 2739 /* All the region is now unusable. Mark it as unused and reclaim */
6a8ebc77 2740 if (block_group->zone_unusable == block_group->length) {
169e0da9 2741 btrfs_mark_bg_unused(block_group);
77233c2d 2742 } else if (bg_reclaim_threshold &&
d8da0e85 2743 reclaimable_unusable >=
428c8e03 2744 mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
18bb8bbf
JT
2745 btrfs_mark_bg_to_reclaim(block_group);
2746 }
169e0da9
NA
2747
2748 return 0;
2749}
2750
32da5386 2751int btrfs_add_free_space(struct btrfs_block_group *block_group,
478b4d9f
JB
2752 u64 bytenr, u64 size)
2753{
a7ccb255
DZ
2754 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2755
169e0da9
NA
2756 if (btrfs_is_zoned(block_group->fs_info))
2757 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2758 true);
2759
a7ccb255
DZ
2760 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2761 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2762
290ef19a 2763 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
478b4d9f
JB
2764}
2765
169e0da9
NA
2766int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2767 u64 bytenr, u64 size)
2768{
2769 if (btrfs_is_zoned(block_group->fs_info))
2770 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2771 false);
2772
2773 return btrfs_add_free_space(block_group, bytenr, size);
2774}
2775
b0643e59
DZ
2776/*
2777 * This is a subtle distinction because when adding free space back in general,
2778 * we want it to be added as untrimmed for async. But in the case where we add
2779 * it on loading of a block group, we want to consider it trimmed.
2780 */
2781int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2782 u64 bytenr, u64 size)
2783{
2784 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2785
169e0da9
NA
2786 if (btrfs_is_zoned(block_group->fs_info))
2787 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2788 true);
2789
b0643e59
DZ
2790 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2791 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2792 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2793
290ef19a 2794 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
b0643e59
DZ
2795}
2796
32da5386 2797int btrfs_remove_free_space(struct btrfs_block_group *block_group,
6226cb0a 2798 u64 offset, u64 bytes)
0f9dd46c 2799{
34d52cb6 2800 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 2801 struct btrfs_free_space *info;
b0175117
JB
2802 int ret;
2803 bool re_search = false;
0f9dd46c 2804
011b41bf
NA
2805 if (btrfs_is_zoned(block_group->fs_info)) {
2806 /*
2807 * This can happen with conventional zones when replaying log.
2808 * Since the allocation info of tree-log nodes are not recorded
2809 * to the extent-tree, calculate_alloc_pointer() failed to
2810 * advance the allocation pointer after last allocated tree log
2811 * node blocks.
2812 *
2813 * This function is called from
2814 * btrfs_pin_extent_for_log_replay() when replaying the log.
2815 * Advance the pointer not to overwrite the tree-log nodes.
2816 */
0ae79c6f
NA
2817 if (block_group->start + block_group->alloc_offset <
2818 offset + bytes) {
2819 block_group->alloc_offset =
2820 offset + bytes - block_group->start;
2821 }
169e0da9 2822 return 0;
011b41bf 2823 }
169e0da9 2824
34d52cb6 2825 spin_lock(&ctl->tree_lock);
6226cb0a 2826
96303081 2827again:
b0175117 2828 ret = 0;
bdb7d303
JB
2829 if (!bytes)
2830 goto out_lock;
2831
34d52cb6 2832 info = tree_search_offset(ctl, offset, 0, 0);
96303081 2833 if (!info) {
6606bb97
JB
2834 /*
2835 * oops didn't find an extent that matched the space we wanted
2836 * to remove, look for a bitmap instead
2837 */
34d52cb6 2838 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
6606bb97
JB
2839 1, 0);
2840 if (!info) {
b0175117
JB
2841 /*
2842 * If we found a partial bit of our free space in a
2843 * bitmap but then couldn't find the other part this may
2844 * be a problem, so WARN about it.
24a70313 2845 */
b0175117 2846 WARN_ON(re_search);
6606bb97
JB
2847 goto out_lock;
2848 }
96303081
JB
2849 }
2850
b0175117 2851 re_search = false;
bdb7d303 2852 if (!info->bitmap) {
32e1649b 2853 unlink_free_space(ctl, info, true);
bdb7d303
JB
2854 if (offset == info->offset) {
2855 u64 to_free = min(bytes, info->bytes);
2856
2857 info->bytes -= to_free;
2858 info->offset += to_free;
2859 if (info->bytes) {
2860 ret = link_free_space(ctl, info);
2861 WARN_ON(ret);
2862 } else {
2863 kmem_cache_free(btrfs_free_space_cachep, info);
2864 }
0f9dd46c 2865
bdb7d303
JB
2866 offset += to_free;
2867 bytes -= to_free;
2868 goto again;
2869 } else {
2870 u64 old_end = info->bytes + info->offset;
9b49c9b9 2871
bdb7d303 2872 info->bytes = offset - info->offset;
34d52cb6 2873 ret = link_free_space(ctl, info);
96303081
JB
2874 WARN_ON(ret);
2875 if (ret)
2876 goto out_lock;
96303081 2877
bdb7d303
JB
2878 /* Not enough bytes in this entry to satisfy us */
2879 if (old_end < offset + bytes) {
2880 bytes -= old_end - offset;
2881 offset = old_end;
2882 goto again;
2883 } else if (old_end == offset + bytes) {
2884 /* all done */
2885 goto out_lock;
2886 }
2887 spin_unlock(&ctl->tree_lock);
2888
290ef19a 2889 ret = __btrfs_add_free_space(block_group,
a7ccb255
DZ
2890 offset + bytes,
2891 old_end - (offset + bytes),
2892 info->trim_state);
bdb7d303
JB
2893 WARN_ON(ret);
2894 goto out;
2895 }
0f9dd46c 2896 }
96303081 2897
34d52cb6 2898 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
b0175117
JB
2899 if (ret == -EAGAIN) {
2900 re_search = true;
96303081 2901 goto again;
b0175117 2902 }
96303081 2903out_lock:
66b53bae 2904 btrfs_discard_update_discardable(block_group);
34d52cb6 2905 spin_unlock(&ctl->tree_lock);
0f9dd46c 2906out:
25179201
JB
2907 return ret;
2908}
2909
32da5386 2910void btrfs_dump_free_space(struct btrfs_block_group *block_group,
0f9dd46c
JB
2911 u64 bytes)
2912{
0b246afa 2913 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 2914 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c
JB
2915 struct btrfs_free_space *info;
2916 struct rb_node *n;
2917 int count = 0;
2918
169e0da9
NA
2919 /*
2920 * Zoned btrfs does not use free space tree and cluster. Just print
2921 * out the free space after the allocation offset.
2922 */
2923 if (btrfs_is_zoned(fs_info)) {
afba2bc0
NA
2924 btrfs_info(fs_info, "free space %llu active %d",
2925 block_group->zone_capacity - block_group->alloc_offset,
3349b57f
JB
2926 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2927 &block_group->runtime_flags));
169e0da9
NA
2928 return;
2929 }
2930
9084cb6a 2931 spin_lock(&ctl->tree_lock);
34d52cb6 2932 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
0f9dd46c 2933 info = rb_entry(n, struct btrfs_free_space, offset_index);
f6175efa 2934 if (info->bytes >= bytes && !block_group->ro)
0f9dd46c 2935 count++;
0b246afa 2936 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
efe120a0 2937 info->offset, info->bytes,
96303081 2938 (info->bitmap) ? "yes" : "no");
0f9dd46c 2939 }
9084cb6a 2940 spin_unlock(&ctl->tree_lock);
0b246afa 2941 btrfs_info(fs_info, "block group has cluster?: %s",
96303081 2942 list_empty(&block_group->cluster_list) ? "no" : "yes");
0b246afa 2943 btrfs_info(fs_info,
4d2024e9
FM
2944 "%d free space entries at or bigger than %llu bytes",
2945 count, bytes);
0f9dd46c
JB
2946}
2947
cd79909b
JB
2948void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2949 struct btrfs_free_space_ctl *ctl)
0f9dd46c 2950{
0b246afa 2951 struct btrfs_fs_info *fs_info = block_group->fs_info;
0f9dd46c 2952
34d52cb6 2953 spin_lock_init(&ctl->tree_lock);
0b246afa 2954 ctl->unit = fs_info->sectorsize;
b3470b5d 2955 ctl->start = block_group->start;
364be842 2956 ctl->block_group = block_group;
34d52cb6 2957 ctl->op = &free_space_op;
59c7b566 2958 ctl->free_space_bytes = RB_ROOT_CACHED;
55507ce3
FM
2959 INIT_LIST_HEAD(&ctl->trimming_ranges);
2960 mutex_init(&ctl->cache_writeout_mutex);
0f9dd46c 2961
34d52cb6
LZ
2962 /*
2963 * we only want to have 32k of ram per block group for keeping
2964 * track of free space, and if we pass 1/2 of that we want to
2965 * start converting things over to using bitmaps
2966 */
ee22184b 2967 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
0f9dd46c
JB
2968}
2969
fa9c0d79
CM
2970/*
2971 * for a given cluster, put all of its extents back into the free
2972 * space cache. If the block group passed doesn't match the block group
2973 * pointed to by the cluster, someone else raced in and freed the
2974 * cluster already. In that case, we just return without changing anything
2975 */
69b0e093 2976static void __btrfs_return_cluster_to_free_space(
32da5386 2977 struct btrfs_block_group *block_group,
fa9c0d79
CM
2978 struct btrfs_free_cluster *cluster)
2979{
7e5ba559 2980 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2981 struct rb_node *node;
2982
7e5ba559
FM
2983 lockdep_assert_held(&ctl->tree_lock);
2984
fa9c0d79 2985 spin_lock(&cluster->lock);
95c85fba
JB
2986 if (cluster->block_group != block_group) {
2987 spin_unlock(&cluster->lock);
2988 return;
2989 }
fa9c0d79 2990
96303081 2991 cluster->block_group = NULL;
fa9c0d79 2992 cluster->window_start = 0;
96303081 2993 list_del_init(&cluster->block_group_list);
96303081 2994
fa9c0d79 2995 node = rb_first(&cluster->root);
96303081 2996 while (node) {
0d6bac4d 2997 struct btrfs_free_space *entry;
4e69b598 2998
fa9c0d79
CM
2999 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3000 node = rb_next(&entry->offset_index);
3001 rb_erase(&entry->offset_index, &cluster->root);
20005523 3002 RB_CLEAR_NODE(&entry->offset_index);
4e69b598 3003
0d6bac4d 3004 if (!entry->bitmap) {
dfb79ddb 3005 /* Merging treats extents as if they were new */
5dc7c10b 3006 if (!btrfs_free_space_trimmed(entry)) {
dfb79ddb 3007 ctl->discardable_extents[BTRFS_STAT_CURR]--;
5dc7c10b
DZ
3008 ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3009 entry->bytes;
3010 }
dfb79ddb 3011
34d52cb6 3012 try_merge_free_space(ctl, entry, false);
20005523 3013 steal_from_bitmap(ctl, entry, false);
dfb79ddb
DZ
3014
3015 /* As we insert directly, update these statistics */
5dc7c10b 3016 if (!btrfs_free_space_trimmed(entry)) {
dfb79ddb 3017 ctl->discardable_extents[BTRFS_STAT_CURR]++;
5dc7c10b
DZ
3018 ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3019 entry->bytes;
3020 }
20005523 3021 }
13c2018f 3022 tree_insert_offset(ctl, NULL, entry);
59c7b566
JB
3023 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3024 entry_less);
fa9c0d79 3025 }
6bef4d31 3026 cluster->root = RB_ROOT;
fa9c0d79 3027 spin_unlock(&cluster->lock);
96303081 3028 btrfs_put_block_group(block_group);
fa9c0d79
CM
3029}
3030
32da5386 3031void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
581bb050
LZ
3032{
3033 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79 3034 struct btrfs_free_cluster *cluster;
96303081 3035 struct list_head *head;
0f9dd46c 3036
34d52cb6 3037 spin_lock(&ctl->tree_lock);
96303081
JB
3038 while ((head = block_group->cluster_list.next) !=
3039 &block_group->cluster_list) {
3040 cluster = list_entry(head, struct btrfs_free_cluster,
3041 block_group_list);
fa9c0d79
CM
3042
3043 WARN_ON(cluster->block_group != block_group);
3044 __btrfs_return_cluster_to_free_space(block_group, cluster);
351810c1
DS
3045
3046 cond_resched_lock(&ctl->tree_lock);
fa9c0d79 3047 }
fc80f7ac 3048 __btrfs_remove_free_space_cache(ctl);
66b53bae 3049 btrfs_discard_update_discardable(block_group);
34d52cb6 3050 spin_unlock(&ctl->tree_lock);
fa9c0d79 3051
0f9dd46c
JB
3052}
3053
43dd529a 3054/*
6e80d4f8
DZ
3055 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3056 */
3057bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3058{
3059 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3060 struct btrfs_free_space *info;
3061 struct rb_node *node;
3062 bool ret = true;
3063
3064 spin_lock(&ctl->tree_lock);
3065 node = rb_first(&ctl->free_space_offset);
3066
3067 while (node) {
3068 info = rb_entry(node, struct btrfs_free_space, offset_index);
3069
3070 if (!btrfs_free_space_trimmed(info)) {
3071 ret = false;
3072 break;
3073 }
3074
3075 node = rb_next(node);
3076 }
3077
3078 spin_unlock(&ctl->tree_lock);
3079 return ret;
3080}
3081
32da5386 3082u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
a4820398
MX
3083 u64 offset, u64 bytes, u64 empty_size,
3084 u64 *max_extent_size)
0f9dd46c 3085{
34d52cb6 3086 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
9ddf648f
DZ
3087 struct btrfs_discard_ctl *discard_ctl =
3088 &block_group->fs_info->discard_ctl;
6226cb0a 3089 struct btrfs_free_space *entry = NULL;
96303081 3090 u64 bytes_search = bytes + empty_size;
6226cb0a 3091 u64 ret = 0;
53b381b3
DW
3092 u64 align_gap = 0;
3093 u64 align_gap_len = 0;
a7ccb255 3094 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
59c7b566 3095 bool use_bytes_index = (offset == block_group->start);
0f9dd46c 3096
2eda5708
NA
3097 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3098
34d52cb6 3099 spin_lock(&ctl->tree_lock);
53b381b3 3100 entry = find_free_space(ctl, &offset, &bytes_search,
59c7b566
JB
3101 block_group->full_stripe_len, max_extent_size,
3102 use_bytes_index);
6226cb0a 3103 if (!entry)
96303081
JB
3104 goto out;
3105
3106 ret = offset;
3107 if (entry->bitmap) {
f594f13c 3108 bitmap_clear_bits(ctl, entry, offset, bytes, true);
9ddf648f
DZ
3109
3110 if (!btrfs_free_space_trimmed(entry))
3111 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3112
edf6e2d1 3113 if (!entry->bytes)
34d52cb6 3114 free_bitmap(ctl, entry);
96303081 3115 } else {
32e1649b 3116 unlink_free_space(ctl, entry, true);
53b381b3
DW
3117 align_gap_len = offset - entry->offset;
3118 align_gap = entry->offset;
a7ccb255 3119 align_gap_trim_state = entry->trim_state;
53b381b3 3120
9ddf648f
DZ
3121 if (!btrfs_free_space_trimmed(entry))
3122 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3123
53b381b3
DW
3124 entry->offset = offset + bytes;
3125 WARN_ON(entry->bytes < bytes + align_gap_len);
3126
3127 entry->bytes -= bytes + align_gap_len;
6226cb0a 3128 if (!entry->bytes)
dc89e982 3129 kmem_cache_free(btrfs_free_space_cachep, entry);
6226cb0a 3130 else
34d52cb6 3131 link_free_space(ctl, entry);
6226cb0a 3132 }
96303081 3133out:
66b53bae 3134 btrfs_discard_update_discardable(block_group);
34d52cb6 3135 spin_unlock(&ctl->tree_lock);
817d52f8 3136
53b381b3 3137 if (align_gap_len)
290ef19a 3138 __btrfs_add_free_space(block_group, align_gap, align_gap_len,
a7ccb255 3139 align_gap_trim_state);
0f9dd46c
JB
3140 return ret;
3141}
fa9c0d79
CM
3142
3143/*
3144 * given a cluster, put all of its extents back into the free space
3145 * cache. If a block group is passed, this function will only free
3146 * a cluster that belongs to the passed block group.
3147 *
3148 * Otherwise, it'll get a reference on the block group pointed to by the
3149 * cluster and remove the cluster from it.
3150 */
69b0e093 3151void btrfs_return_cluster_to_free_space(
32da5386 3152 struct btrfs_block_group *block_group,
fa9c0d79
CM
3153 struct btrfs_free_cluster *cluster)
3154{
34d52cb6 3155 struct btrfs_free_space_ctl *ctl;
fa9c0d79
CM
3156
3157 /* first, get a safe pointer to the block group */
3158 spin_lock(&cluster->lock);
3159 if (!block_group) {
3160 block_group = cluster->block_group;
3161 if (!block_group) {
3162 spin_unlock(&cluster->lock);
69b0e093 3163 return;
fa9c0d79
CM
3164 }
3165 } else if (cluster->block_group != block_group) {
3166 /* someone else has already freed it don't redo their work */
3167 spin_unlock(&cluster->lock);
69b0e093 3168 return;
fa9c0d79 3169 }
b5790d51 3170 btrfs_get_block_group(block_group);
fa9c0d79
CM
3171 spin_unlock(&cluster->lock);
3172
34d52cb6
LZ
3173 ctl = block_group->free_space_ctl;
3174
fa9c0d79 3175 /* now return any extents the cluster had on it */
34d52cb6 3176 spin_lock(&ctl->tree_lock);
69b0e093 3177 __btrfs_return_cluster_to_free_space(block_group, cluster);
34d52cb6 3178 spin_unlock(&ctl->tree_lock);
fa9c0d79 3179
6e80d4f8
DZ
3180 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3181
fa9c0d79
CM
3182 /* finally drop our ref */
3183 btrfs_put_block_group(block_group);
fa9c0d79
CM
3184}
3185
32da5386 3186static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
96303081 3187 struct btrfs_free_cluster *cluster,
4e69b598 3188 struct btrfs_free_space *entry,
a4820398
MX
3189 u64 bytes, u64 min_start,
3190 u64 *max_extent_size)
96303081 3191{
34d52cb6 3192 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
3193 int err;
3194 u64 search_start = cluster->window_start;
3195 u64 search_bytes = bytes;
3196 u64 ret = 0;
3197
96303081
JB
3198 search_start = min_start;
3199 search_bytes = bytes;
3200
0584f718 3201 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
a4820398 3202 if (err) {
ad22cf6e
JB
3203 *max_extent_size = max(get_max_extent_size(entry),
3204 *max_extent_size);
4e69b598 3205 return 0;
a4820398 3206 }
96303081
JB
3207
3208 ret = search_start;
f594f13c 3209 bitmap_clear_bits(ctl, entry, ret, bytes, false);
96303081
JB
3210
3211 return ret;
3212}
3213
fa9c0d79
CM
3214/*
3215 * given a cluster, try to allocate 'bytes' from it, returns 0
3216 * if it couldn't find anything suitably large, or a logical disk offset
3217 * if things worked out
3218 */
32da5386 3219u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
fa9c0d79 3220 struct btrfs_free_cluster *cluster, u64 bytes,
a4820398 3221 u64 min_start, u64 *max_extent_size)
fa9c0d79 3222{
34d52cb6 3223 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
9ddf648f
DZ
3224 struct btrfs_discard_ctl *discard_ctl =
3225 &block_group->fs_info->discard_ctl;
fa9c0d79
CM
3226 struct btrfs_free_space *entry = NULL;
3227 struct rb_node *node;
3228 u64 ret = 0;
3229
2eda5708
NA
3230 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3231
fa9c0d79
CM
3232 spin_lock(&cluster->lock);
3233 if (bytes > cluster->max_size)
3234 goto out;
3235
3236 if (cluster->block_group != block_group)
3237 goto out;
3238
3239 node = rb_first(&cluster->root);
3240 if (!node)
3241 goto out;
3242
3243 entry = rb_entry(node, struct btrfs_free_space, offset_index);
67871254 3244 while (1) {
ad22cf6e
JB
3245 if (entry->bytes < bytes)
3246 *max_extent_size = max(get_max_extent_size(entry),
3247 *max_extent_size);
a4820398 3248
4e69b598
JB
3249 if (entry->bytes < bytes ||
3250 (!entry->bitmap && entry->offset < min_start)) {
fa9c0d79
CM
3251 node = rb_next(&entry->offset_index);
3252 if (!node)
3253 break;
3254 entry = rb_entry(node, struct btrfs_free_space,
3255 offset_index);
3256 continue;
3257 }
fa9c0d79 3258
4e69b598
JB
3259 if (entry->bitmap) {
3260 ret = btrfs_alloc_from_bitmap(block_group,
3261 cluster, entry, bytes,
a4820398
MX
3262 cluster->window_start,
3263 max_extent_size);
4e69b598 3264 if (ret == 0) {
4e69b598
JB
3265 node = rb_next(&entry->offset_index);
3266 if (!node)
3267 break;
3268 entry = rb_entry(node, struct btrfs_free_space,
3269 offset_index);
3270 continue;
3271 }
9b230628 3272 cluster->window_start += bytes;
4e69b598 3273 } else {
4e69b598
JB
3274 ret = entry->offset;
3275
3276 entry->offset += bytes;
3277 entry->bytes -= bytes;
3278 }
fa9c0d79 3279
fa9c0d79
CM
3280 break;
3281 }
3282out:
3283 spin_unlock(&cluster->lock);
96303081 3284
5e71b5d5
LZ
3285 if (!ret)
3286 return 0;
3287
34d52cb6 3288 spin_lock(&ctl->tree_lock);
5e71b5d5 3289
9ddf648f
DZ
3290 if (!btrfs_free_space_trimmed(entry))
3291 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3292
34d52cb6 3293 ctl->free_space -= bytes;
5dc7c10b
DZ
3294 if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3295 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3c179165
NB
3296
3297 spin_lock(&cluster->lock);
5e71b5d5 3298 if (entry->bytes == 0) {
3c179165 3299 rb_erase(&entry->offset_index, &cluster->root);
34d52cb6 3300 ctl->free_extents--;
4e69b598 3301 if (entry->bitmap) {
3acd4850
CL
3302 kmem_cache_free(btrfs_free_space_bitmap_cachep,
3303 entry->bitmap);
34d52cb6 3304 ctl->total_bitmaps--;
fa598b06 3305 recalculate_thresholds(ctl);
dfb79ddb
DZ
3306 } else if (!btrfs_free_space_trimmed(entry)) {
3307 ctl->discardable_extents[BTRFS_STAT_CURR]--;
4e69b598 3308 }
dc89e982 3309 kmem_cache_free(btrfs_free_space_cachep, entry);
5e71b5d5
LZ
3310 }
3311
3c179165 3312 spin_unlock(&cluster->lock);
34d52cb6 3313 spin_unlock(&ctl->tree_lock);
5e71b5d5 3314
fa9c0d79
CM
3315 return ret;
3316}
3317
32da5386 3318static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
96303081
JB
3319 struct btrfs_free_space *entry,
3320 struct btrfs_free_cluster *cluster,
1bb91902
AO
3321 u64 offset, u64 bytes,
3322 u64 cont1_bytes, u64 min_bytes)
96303081 3323{
34d52cb6 3324 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
3325 unsigned long next_zero;
3326 unsigned long i;
1bb91902
AO
3327 unsigned long want_bits;
3328 unsigned long min_bits;
96303081 3329 unsigned long found_bits;
cef40483 3330 unsigned long max_bits = 0;
96303081
JB
3331 unsigned long start = 0;
3332 unsigned long total_found = 0;
4e69b598 3333 int ret;
96303081 3334
7e5ba559
FM
3335 lockdep_assert_held(&ctl->tree_lock);
3336
96009762 3337 i = offset_to_bit(entry->offset, ctl->unit,
96303081 3338 max_t(u64, offset, entry->offset));
96009762
WSH
3339 want_bits = bytes_to_bits(bytes, ctl->unit);
3340 min_bits = bytes_to_bits(min_bytes, ctl->unit);
96303081 3341
cef40483
JB
3342 /*
3343 * Don't bother looking for a cluster in this bitmap if it's heavily
3344 * fragmented.
3345 */
3346 if (entry->max_extent_size &&
3347 entry->max_extent_size < cont1_bytes)
3348 return -ENOSPC;
96303081
JB
3349again:
3350 found_bits = 0;
ebb3dad4 3351 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
96303081
JB
3352 next_zero = find_next_zero_bit(entry->bitmap,
3353 BITS_PER_BITMAP, i);
1bb91902 3354 if (next_zero - i >= min_bits) {
96303081 3355 found_bits = next_zero - i;
cef40483
JB
3356 if (found_bits > max_bits)
3357 max_bits = found_bits;
96303081
JB
3358 break;
3359 }
cef40483
JB
3360 if (next_zero - i > max_bits)
3361 max_bits = next_zero - i;
96303081
JB
3362 i = next_zero;
3363 }
3364
cef40483
JB
3365 if (!found_bits) {
3366 entry->max_extent_size = (u64)max_bits * ctl->unit;
4e69b598 3367 return -ENOSPC;
cef40483 3368 }
96303081 3369
1bb91902 3370 if (!total_found) {
96303081 3371 start = i;
b78d09bc 3372 cluster->max_size = 0;
96303081
JB
3373 }
3374
3375 total_found += found_bits;
3376
96009762
WSH
3377 if (cluster->max_size < found_bits * ctl->unit)
3378 cluster->max_size = found_bits * ctl->unit;
96303081 3379
1bb91902
AO
3380 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3381 i = next_zero + 1;
96303081
JB
3382 goto again;
3383 }
3384
96009762 3385 cluster->window_start = start * ctl->unit + entry->offset;
34d52cb6 3386 rb_erase(&entry->offset_index, &ctl->free_space_offset);
59c7b566
JB
3387 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3388
3389 /*
3390 * We need to know if we're currently on the normal space index when we
3391 * manipulate the bitmap so that we know we need to remove and re-insert
3392 * it into the space_index tree. Clear the bytes_index node here so the
3393 * bitmap manipulation helpers know not to mess with the space_index
3394 * until this bitmap entry is added back into the normal cache.
3395 */
3396 RB_CLEAR_NODE(&entry->bytes_index);
3397
13c2018f 3398 ret = tree_insert_offset(ctl, cluster, entry);
b12d6869 3399 ASSERT(!ret); /* -EEXIST; Logic error */
96303081 3400
3f7de037 3401 trace_btrfs_setup_cluster(block_group, cluster,
96009762 3402 total_found * ctl->unit, 1);
96303081
JB
3403 return 0;
3404}
3405
4e69b598
JB
3406/*
3407 * This searches the block group for just extents to fill the cluster with.
1bb91902
AO
3408 * Try to find a cluster with at least bytes total bytes, at least one
3409 * extent of cont1_bytes, and other clusters of at least min_bytes.
4e69b598 3410 */
3de85bb9 3411static noinline int
32da5386 3412setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3de85bb9
JB
3413 struct btrfs_free_cluster *cluster,
3414 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 3415 u64 cont1_bytes, u64 min_bytes)
4e69b598 3416{
34d52cb6 3417 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598
JB
3418 struct btrfs_free_space *first = NULL;
3419 struct btrfs_free_space *entry = NULL;
4e69b598
JB
3420 struct btrfs_free_space *last;
3421 struct rb_node *node;
4e69b598
JB
3422 u64 window_free;
3423 u64 max_extent;
3f7de037 3424 u64 total_size = 0;
4e69b598 3425
7e5ba559
FM
3426 lockdep_assert_held(&ctl->tree_lock);
3427
34d52cb6 3428 entry = tree_search_offset(ctl, offset, 0, 1);
4e69b598
JB
3429 if (!entry)
3430 return -ENOSPC;
3431
3432 /*
3433 * We don't want bitmaps, so just move along until we find a normal
3434 * extent entry.
3435 */
1bb91902
AO
3436 while (entry->bitmap || entry->bytes < min_bytes) {
3437 if (entry->bitmap && list_empty(&entry->list))
86d4a77b 3438 list_add_tail(&entry->list, bitmaps);
4e69b598
JB
3439 node = rb_next(&entry->offset_index);
3440 if (!node)
3441 return -ENOSPC;
3442 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3443 }
3444
4e69b598
JB
3445 window_free = entry->bytes;
3446 max_extent = entry->bytes;
3447 first = entry;
3448 last = entry;
4e69b598 3449
1bb91902
AO
3450 for (node = rb_next(&entry->offset_index); node;
3451 node = rb_next(&entry->offset_index)) {
4e69b598
JB
3452 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3453
86d4a77b
JB
3454 if (entry->bitmap) {
3455 if (list_empty(&entry->list))
3456 list_add_tail(&entry->list, bitmaps);
4e69b598 3457 continue;
86d4a77b
JB
3458 }
3459
1bb91902
AO
3460 if (entry->bytes < min_bytes)
3461 continue;
3462
3463 last = entry;
3464 window_free += entry->bytes;
3465 if (entry->bytes > max_extent)
4e69b598 3466 max_extent = entry->bytes;
4e69b598
JB
3467 }
3468
1bb91902
AO
3469 if (window_free < bytes || max_extent < cont1_bytes)
3470 return -ENOSPC;
3471
4e69b598
JB
3472 cluster->window_start = first->offset;
3473
3474 node = &first->offset_index;
3475
3476 /*
3477 * now we've found our entries, pull them out of the free space
3478 * cache and put them into the cluster rbtree
3479 */
3480 do {
3481 int ret;
3482
3483 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3484 node = rb_next(&entry->offset_index);
1bb91902 3485 if (entry->bitmap || entry->bytes < min_bytes)
4e69b598
JB
3486 continue;
3487
34d52cb6 3488 rb_erase(&entry->offset_index, &ctl->free_space_offset);
59c7b566 3489 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
13c2018f 3490 ret = tree_insert_offset(ctl, cluster, entry);
3f7de037 3491 total_size += entry->bytes;
b12d6869 3492 ASSERT(!ret); /* -EEXIST; Logic error */
4e69b598
JB
3493 } while (node && entry != last);
3494
3495 cluster->max_size = max_extent;
3f7de037 3496 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
4e69b598
JB
3497 return 0;
3498}
3499
3500/*
3501 * This specifically looks for bitmaps that may work in the cluster, we assume
3502 * that we have already failed to find extents that will work.
3503 */
3de85bb9 3504static noinline int
32da5386 3505setup_cluster_bitmap(struct btrfs_block_group *block_group,
3de85bb9
JB
3506 struct btrfs_free_cluster *cluster,
3507 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 3508 u64 cont1_bytes, u64 min_bytes)
4e69b598 3509{
34d52cb6 3510 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1b9b922a 3511 struct btrfs_free_space *entry = NULL;
4e69b598 3512 int ret = -ENOSPC;
0f0fbf1d 3513 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
4e69b598 3514
34d52cb6 3515 if (ctl->total_bitmaps == 0)
4e69b598
JB
3516 return -ENOSPC;
3517
0f0fbf1d
LZ
3518 /*
3519 * The bitmap that covers offset won't be in the list unless offset
3520 * is just its start offset.
3521 */
1b9b922a
CM
3522 if (!list_empty(bitmaps))
3523 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3524
3525 if (!entry || entry->offset != bitmap_offset) {
0f0fbf1d
LZ
3526 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3527 if (entry && list_empty(&entry->list))
3528 list_add(&entry->list, bitmaps);
3529 }
3530
86d4a77b 3531 list_for_each_entry(entry, bitmaps, list) {
357b9784 3532 if (entry->bytes < bytes)
86d4a77b
JB
3533 continue;
3534 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
1bb91902 3535 bytes, cont1_bytes, min_bytes);
86d4a77b
JB
3536 if (!ret)
3537 return 0;
3538 }
3539
3540 /*
52621cb6
LZ
3541 * The bitmaps list has all the bitmaps that record free space
3542 * starting after offset, so no more search is required.
86d4a77b 3543 */
52621cb6 3544 return -ENOSPC;
4e69b598
JB
3545}
3546
fa9c0d79
CM
3547/*
3548 * here we try to find a cluster of blocks in a block group. The goal
1bb91902 3549 * is to find at least bytes+empty_size.
fa9c0d79
CM
3550 * We might not find them all in one contiguous area.
3551 *
3552 * returns zero and sets up cluster if things worked out, otherwise
3553 * it returns -enospc
3554 */
32da5386 3555int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
fa9c0d79
CM
3556 struct btrfs_free_cluster *cluster,
3557 u64 offset, u64 bytes, u64 empty_size)
3558{
2ceeae2e 3559 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 3560 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
86d4a77b 3561 struct btrfs_free_space *entry, *tmp;
52621cb6 3562 LIST_HEAD(bitmaps);
fa9c0d79 3563 u64 min_bytes;
1bb91902 3564 u64 cont1_bytes;
fa9c0d79
CM
3565 int ret;
3566
1bb91902
AO
3567 /*
3568 * Choose the minimum extent size we'll require for this
3569 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3570 * For metadata, allow allocates with smaller extents. For
3571 * data, keep it dense.
3572 */
0b246afa 3573 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
c1867eb3
DS
3574 cont1_bytes = bytes + empty_size;
3575 min_bytes = cont1_bytes;
451d7585 3576 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
1bb91902 3577 cont1_bytes = bytes;
0b246afa 3578 min_bytes = fs_info->sectorsize;
1bb91902
AO
3579 } else {
3580 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
0b246afa 3581 min_bytes = fs_info->sectorsize;
1bb91902 3582 }
fa9c0d79 3583
34d52cb6 3584 spin_lock(&ctl->tree_lock);
7d0d2e8e
JB
3585
3586 /*
3587 * If we know we don't have enough space to make a cluster don't even
3588 * bother doing all the work to try and find one.
3589 */
1bb91902 3590 if (ctl->free_space < bytes) {
34d52cb6 3591 spin_unlock(&ctl->tree_lock);
7d0d2e8e
JB
3592 return -ENOSPC;
3593 }
3594
fa9c0d79
CM
3595 spin_lock(&cluster->lock);
3596
3597 /* someone already found a cluster, hooray */
3598 if (cluster->block_group) {
3599 ret = 0;
3600 goto out;
3601 }
fa9c0d79 3602
3f7de037
JB
3603 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3604 min_bytes);
3605
86d4a77b 3606 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
1bb91902
AO
3607 bytes + empty_size,
3608 cont1_bytes, min_bytes);
4e69b598 3609 if (ret)
86d4a77b 3610 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
1bb91902
AO
3611 offset, bytes + empty_size,
3612 cont1_bytes, min_bytes);
86d4a77b
JB
3613
3614 /* Clear our temporary list */
3615 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3616 list_del_init(&entry->list);
fa9c0d79 3617
4e69b598 3618 if (!ret) {
b5790d51 3619 btrfs_get_block_group(block_group);
4e69b598
JB
3620 list_add_tail(&cluster->block_group_list,
3621 &block_group->cluster_list);
3622 cluster->block_group = block_group;
3f7de037
JB
3623 } else {
3624 trace_btrfs_failed_cluster_setup(block_group);
fa9c0d79 3625 }
fa9c0d79
CM
3626out:
3627 spin_unlock(&cluster->lock);
34d52cb6 3628 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
3629
3630 return ret;
3631}
3632
3633/*
3634 * simple code to zero out a cluster
3635 */
3636void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3637{
3638 spin_lock_init(&cluster->lock);
3639 spin_lock_init(&cluster->refill_lock);
6bef4d31 3640 cluster->root = RB_ROOT;
fa9c0d79 3641 cluster->max_size = 0;
c759c4e1 3642 cluster->fragmented = false;
fa9c0d79
CM
3643 INIT_LIST_HEAD(&cluster->block_group_list);
3644 cluster->block_group = NULL;
3645}
3646
32da5386 3647static int do_trimming(struct btrfs_block_group *block_group,
7fe1e641 3648 u64 *total_trimmed, u64 start, u64 bytes,
55507ce3 3649 u64 reserved_start, u64 reserved_bytes,
b0643e59 3650 enum btrfs_trim_state reserved_trim_state,
55507ce3 3651 struct btrfs_trim_range *trim_entry)
f7039b1d 3652{
7fe1e641 3653 struct btrfs_space_info *space_info = block_group->space_info;
f7039b1d 3654 struct btrfs_fs_info *fs_info = block_group->fs_info;
55507ce3 3655 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
7fe1e641
LZ
3656 int ret;
3657 int update = 0;
b0643e59
DZ
3658 const u64 end = start + bytes;
3659 const u64 reserved_end = reserved_start + reserved_bytes;
3660 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
7fe1e641 3661 u64 trimmed = 0;
f7039b1d 3662
7fe1e641
LZ
3663 spin_lock(&space_info->lock);
3664 spin_lock(&block_group->lock);
3665 if (!block_group->ro) {
3666 block_group->reserved += reserved_bytes;
3667 space_info->bytes_reserved += reserved_bytes;
3668 update = 1;
3669 }
3670 spin_unlock(&block_group->lock);
3671 spin_unlock(&space_info->lock);
3672
2ff7e61e 3673 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
b0643e59 3674 if (!ret) {
7fe1e641 3675 *total_trimmed += trimmed;
b0643e59
DZ
3676 trim_state = BTRFS_TRIM_STATE_TRIMMED;
3677 }
7fe1e641 3678
55507ce3 3679 mutex_lock(&ctl->cache_writeout_mutex);
b0643e59 3680 if (reserved_start < start)
290ef19a 3681 __btrfs_add_free_space(block_group, reserved_start,
b0643e59
DZ
3682 start - reserved_start,
3683 reserved_trim_state);
b77433b1 3684 if (end < reserved_end)
290ef19a 3685 __btrfs_add_free_space(block_group, end, reserved_end - end,
b0643e59 3686 reserved_trim_state);
290ef19a 3687 __btrfs_add_free_space(block_group, start, bytes, trim_state);
55507ce3
FM
3688 list_del(&trim_entry->list);
3689 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3690
3691 if (update) {
3692 spin_lock(&space_info->lock);
3693 spin_lock(&block_group->lock);
3694 if (block_group->ro)
3695 space_info->bytes_readonly += reserved_bytes;
3696 block_group->reserved -= reserved_bytes;
3697 space_info->bytes_reserved -= reserved_bytes;
7fe1e641 3698 spin_unlock(&block_group->lock);
8f63a840 3699 spin_unlock(&space_info->lock);
7fe1e641
LZ
3700 }
3701
3702 return ret;
3703}
3704
2bee7eb8
DZ
3705/*
3706 * If @async is set, then we will trim 1 region and return.
3707 */
32da5386 3708static int trim_no_bitmap(struct btrfs_block_group *block_group,
2bee7eb8
DZ
3709 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3710 bool async)
7fe1e641 3711{
19b2a2c7
DZ
3712 struct btrfs_discard_ctl *discard_ctl =
3713 &block_group->fs_info->discard_ctl;
7fe1e641
LZ
3714 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3715 struct btrfs_free_space *entry;
3716 struct rb_node *node;
3717 int ret = 0;
3718 u64 extent_start;
3719 u64 extent_bytes;
b0643e59 3720 enum btrfs_trim_state extent_trim_state;
7fe1e641 3721 u64 bytes;
19b2a2c7 3722 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
f7039b1d
LD
3723
3724 while (start < end) {
55507ce3
FM
3725 struct btrfs_trim_range trim_entry;
3726
3727 mutex_lock(&ctl->cache_writeout_mutex);
34d52cb6 3728 spin_lock(&ctl->tree_lock);
f7039b1d 3729
2bee7eb8
DZ
3730 if (ctl->free_space < minlen)
3731 goto out_unlock;
f7039b1d 3732
34d52cb6 3733 entry = tree_search_offset(ctl, start, 0, 1);
2bee7eb8
DZ
3734 if (!entry)
3735 goto out_unlock;
f7039b1d 3736
2bee7eb8
DZ
3737 /* Skip bitmaps and if async, already trimmed entries */
3738 while (entry->bitmap ||
3739 (async && btrfs_free_space_trimmed(entry))) {
7fe1e641 3740 node = rb_next(&entry->offset_index);
2bee7eb8
DZ
3741 if (!node)
3742 goto out_unlock;
7fe1e641
LZ
3743 entry = rb_entry(node, struct btrfs_free_space,
3744 offset_index);
f7039b1d
LD
3745 }
3746
2bee7eb8
DZ
3747 if (entry->offset >= end)
3748 goto out_unlock;
f7039b1d 3749
7fe1e641
LZ
3750 extent_start = entry->offset;
3751 extent_bytes = entry->bytes;
b0643e59 3752 extent_trim_state = entry->trim_state;
4aa9ad52
DZ
3753 if (async) {
3754 start = entry->offset;
3755 bytes = entry->bytes;
3756 if (bytes < minlen) {
3757 spin_unlock(&ctl->tree_lock);
3758 mutex_unlock(&ctl->cache_writeout_mutex);
3759 goto next;
3760 }
32e1649b 3761 unlink_free_space(ctl, entry, true);
7fe6d45e
DZ
3762 /*
3763 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3764 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3765 * X when we come back around. So trim it now.
3766 */
3767 if (max_discard_size &&
3768 bytes >= (max_discard_size +
3769 BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
19b2a2c7
DZ
3770 bytes = max_discard_size;
3771 extent_bytes = max_discard_size;
3772 entry->offset += max_discard_size;
3773 entry->bytes -= max_discard_size;
4aa9ad52
DZ
3774 link_free_space(ctl, entry);
3775 } else {
3776 kmem_cache_free(btrfs_free_space_cachep, entry);
3777 }
3778 } else {
3779 start = max(start, extent_start);
3780 bytes = min(extent_start + extent_bytes, end) - start;
3781 if (bytes < minlen) {
3782 spin_unlock(&ctl->tree_lock);
3783 mutex_unlock(&ctl->cache_writeout_mutex);
3784 goto next;
3785 }
f7039b1d 3786
32e1649b 3787 unlink_free_space(ctl, entry, true);
4aa9ad52
DZ
3788 kmem_cache_free(btrfs_free_space_cachep, entry);
3789 }
7fe1e641 3790
34d52cb6 3791 spin_unlock(&ctl->tree_lock);
55507ce3
FM
3792 trim_entry.start = extent_start;
3793 trim_entry.bytes = extent_bytes;
3794 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3795 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d 3796
7fe1e641 3797 ret = do_trimming(block_group, total_trimmed, start, bytes,
b0643e59
DZ
3798 extent_start, extent_bytes, extent_trim_state,
3799 &trim_entry);
2bee7eb8
DZ
3800 if (ret) {
3801 block_group->discard_cursor = start + bytes;
7fe1e641 3802 break;
2bee7eb8 3803 }
7fe1e641
LZ
3804next:
3805 start += bytes;
2bee7eb8
DZ
3806 block_group->discard_cursor = start;
3807 if (async && *total_trimmed)
3808 break;
f7039b1d 3809
7fe1e641
LZ
3810 if (fatal_signal_pending(current)) {
3811 ret = -ERESTARTSYS;
3812 break;
3813 }
3814
3815 cond_resched();
3816 }
2bee7eb8
DZ
3817
3818 return ret;
3819
3820out_unlock:
3821 block_group->discard_cursor = btrfs_block_group_end(block_group);
3822 spin_unlock(&ctl->tree_lock);
3823 mutex_unlock(&ctl->cache_writeout_mutex);
3824
7fe1e641
LZ
3825 return ret;
3826}
3827
da080fe1
DZ
3828/*
3829 * If we break out of trimming a bitmap prematurely, we should reset the
3830 * trimming bit. In a rather contrieved case, it's possible to race here so
3831 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3832 *
3833 * start = start of bitmap
3834 * end = near end of bitmap
3835 *
3836 * Thread 1: Thread 2:
3837 * trim_bitmaps(start)
3838 * trim_bitmaps(end)
3839 * end_trimming_bitmap()
3840 * reset_trimming_bitmap()
3841 */
3842static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3843{
3844 struct btrfs_free_space *entry;
3845
3846 spin_lock(&ctl->tree_lock);
3847 entry = tree_search_offset(ctl, offset, 1, 0);
dfb79ddb 3848 if (entry) {
5dc7c10b 3849 if (btrfs_free_space_trimmed(entry)) {
dfb79ddb
DZ
3850 ctl->discardable_extents[BTRFS_STAT_CURR] +=
3851 entry->bitmap_extents;
5dc7c10b
DZ
3852 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3853 }
da080fe1 3854 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
dfb79ddb
DZ
3855 }
3856
da080fe1
DZ
3857 spin_unlock(&ctl->tree_lock);
3858}
3859
dfb79ddb
DZ
3860static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3861 struct btrfs_free_space *entry)
da080fe1 3862{
dfb79ddb 3863 if (btrfs_free_space_trimming_bitmap(entry)) {
da080fe1 3864 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
dfb79ddb
DZ
3865 ctl->discardable_extents[BTRFS_STAT_CURR] -=
3866 entry->bitmap_extents;
5dc7c10b 3867 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
dfb79ddb 3868 }
da080fe1
DZ
3869}
3870
2bee7eb8
DZ
3871/*
3872 * If @async is set, then we will trim 1 region and return.
3873 */
32da5386 3874static int trim_bitmaps(struct btrfs_block_group *block_group,
2bee7eb8 3875 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
7fe6d45e 3876 u64 maxlen, bool async)
7fe1e641 3877{
19b2a2c7
DZ
3878 struct btrfs_discard_ctl *discard_ctl =
3879 &block_group->fs_info->discard_ctl;
7fe1e641
LZ
3880 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3881 struct btrfs_free_space *entry;
3882 int ret = 0;
3883 int ret2;
3884 u64 bytes;
3885 u64 offset = offset_to_bitmap(ctl, start);
19b2a2c7 3886 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
7fe1e641
LZ
3887
3888 while (offset < end) {
3889 bool next_bitmap = false;
55507ce3 3890 struct btrfs_trim_range trim_entry;
7fe1e641 3891
55507ce3 3892 mutex_lock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3893 spin_lock(&ctl->tree_lock);
3894
3895 if (ctl->free_space < minlen) {
2bee7eb8
DZ
3896 block_group->discard_cursor =
3897 btrfs_block_group_end(block_group);
7fe1e641 3898 spin_unlock(&ctl->tree_lock);
55507ce3 3899 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3900 break;
3901 }
3902
3903 entry = tree_search_offset(ctl, offset, 1, 0);
7fe6d45e
DZ
3904 /*
3905 * Bitmaps are marked trimmed lossily now to prevent constant
3906 * discarding of the same bitmap (the reason why we are bound
3907 * by the filters). So, retrim the block group bitmaps when we
3908 * are preparing to punt to the unused_bgs list. This uses
3909 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3910 * which is the only discard index which sets minlen to 0.
3911 */
3912 if (!entry || (async && minlen && start == offset &&
2bee7eb8 3913 btrfs_free_space_trimmed(entry))) {
7fe1e641 3914 spin_unlock(&ctl->tree_lock);
55507ce3 3915 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3916 next_bitmap = true;
3917 goto next;
3918 }
3919
da080fe1
DZ
3920 /*
3921 * Async discard bitmap trimming begins at by setting the start
3922 * to be key.objectid and the offset_to_bitmap() aligns to the
3923 * start of the bitmap. This lets us know we are fully
3924 * scanning the bitmap rather than only some portion of it.
3925 */
3926 if (start == offset)
3927 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3928
7fe1e641 3929 bytes = minlen;
0584f718 3930 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
7fe1e641 3931 if (ret2 || start >= end) {
da080fe1 3932 /*
7fe6d45e
DZ
3933 * We lossily consider a bitmap trimmed if we only skip
3934 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
da080fe1 3935 */
7fe6d45e 3936 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
dfb79ddb 3937 end_trimming_bitmap(ctl, entry);
da080fe1
DZ
3938 else
3939 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
7fe1e641 3940 spin_unlock(&ctl->tree_lock);
55507ce3 3941 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3942 next_bitmap = true;
3943 goto next;
3944 }
3945
2bee7eb8
DZ
3946 /*
3947 * We already trimmed a region, but are using the locking above
3948 * to reset the trim_state.
3949 */
3950 if (async && *total_trimmed) {
3951 spin_unlock(&ctl->tree_lock);
3952 mutex_unlock(&ctl->cache_writeout_mutex);
3953 goto out;
3954 }
3955
7fe1e641 3956 bytes = min(bytes, end - start);
7fe6d45e 3957 if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
7fe1e641 3958 spin_unlock(&ctl->tree_lock);
55507ce3 3959 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3960 goto next;
3961 }
3962
7fe6d45e
DZ
3963 /*
3964 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3965 * If X < @minlen, we won't trim X when we come back around.
3966 * So trim it now. We differ here from trimming extents as we
3967 * don't keep individual state per bit.
3968 */
3969 if (async &&
3970 max_discard_size &&
3971 bytes > (max_discard_size + minlen))
19b2a2c7 3972 bytes = max_discard_size;
4aa9ad52 3973
f594f13c 3974 bitmap_clear_bits(ctl, entry, start, bytes, true);
7fe1e641
LZ
3975 if (entry->bytes == 0)
3976 free_bitmap(ctl, entry);
3977
3978 spin_unlock(&ctl->tree_lock);
55507ce3
FM
3979 trim_entry.start = start;
3980 trim_entry.bytes = bytes;
3981 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3982 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3983
3984 ret = do_trimming(block_group, total_trimmed, start, bytes,
b0643e59 3985 start, bytes, 0, &trim_entry);
da080fe1
DZ
3986 if (ret) {
3987 reset_trimming_bitmap(ctl, offset);
2bee7eb8
DZ
3988 block_group->discard_cursor =
3989 btrfs_block_group_end(block_group);
7fe1e641 3990 break;
da080fe1 3991 }
7fe1e641
LZ
3992next:
3993 if (next_bitmap) {
3994 offset += BITS_PER_BITMAP * ctl->unit;
da080fe1 3995 start = offset;
7fe1e641
LZ
3996 } else {
3997 start += bytes;
f7039b1d 3998 }
2bee7eb8 3999 block_group->discard_cursor = start;
f7039b1d
LD
4000
4001 if (fatal_signal_pending(current)) {
da080fe1
DZ
4002 if (start != offset)
4003 reset_trimming_bitmap(ctl, offset);
f7039b1d
LD
4004 ret = -ERESTARTSYS;
4005 break;
4006 }
4007
4008 cond_resched();
4009 }
4010
2bee7eb8
DZ
4011 if (offset >= end)
4012 block_group->discard_cursor = end;
4013
4014out:
f7039b1d
LD
4015 return ret;
4016}
581bb050 4017
32da5386 4018int btrfs_trim_block_group(struct btrfs_block_group *block_group,
e33e17ee
JM
4019 u64 *trimmed, u64 start, u64 end, u64 minlen)
4020{
da080fe1 4021 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
e33e17ee 4022 int ret;
da080fe1 4023 u64 rem = 0;
e33e17ee 4024
2eda5708
NA
4025 ASSERT(!btrfs_is_zoned(block_group->fs_info));
4026
e33e17ee
JM
4027 *trimmed = 0;
4028
4029 spin_lock(&block_group->lock);
3349b57f 4030 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
04216820 4031 spin_unlock(&block_group->lock);
e33e17ee 4032 return 0;
04216820 4033 }
6b7304af 4034 btrfs_freeze_block_group(block_group);
e33e17ee
JM
4035 spin_unlock(&block_group->lock);
4036
2bee7eb8 4037 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
e33e17ee
JM
4038 if (ret)
4039 goto out;
7fe1e641 4040
7fe6d45e 4041 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
da080fe1
DZ
4042 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4043 /* If we ended in the middle of a bitmap, reset the trimming flag */
4044 if (rem)
4045 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
e33e17ee 4046out:
6b7304af 4047 btrfs_unfreeze_block_group(block_group);
7fe1e641
LZ
4048 return ret;
4049}
4050
2bee7eb8
DZ
4051int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4052 u64 *trimmed, u64 start, u64 end, u64 minlen,
4053 bool async)
4054{
4055 int ret;
4056
4057 *trimmed = 0;
4058
4059 spin_lock(&block_group->lock);
3349b57f 4060 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
2bee7eb8
DZ
4061 spin_unlock(&block_group->lock);
4062 return 0;
4063 }
6b7304af 4064 btrfs_freeze_block_group(block_group);
2bee7eb8
DZ
4065 spin_unlock(&block_group->lock);
4066
4067 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
6b7304af 4068 btrfs_unfreeze_block_group(block_group);
2bee7eb8
DZ
4069
4070 return ret;
4071}
4072
4073int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4074 u64 *trimmed, u64 start, u64 end, u64 minlen,
7fe6d45e 4075 u64 maxlen, bool async)
2bee7eb8
DZ
4076{
4077 int ret;
4078
4079 *trimmed = 0;
4080
4081 spin_lock(&block_group->lock);
3349b57f 4082 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
2bee7eb8
DZ
4083 spin_unlock(&block_group->lock);
4084 return 0;
4085 }
6b7304af 4086 btrfs_freeze_block_group(block_group);
2bee7eb8
DZ
4087 spin_unlock(&block_group->lock);
4088
7fe6d45e
DZ
4089 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4090 async);
4091
6b7304af 4092 btrfs_unfreeze_block_group(block_group);
2bee7eb8
DZ
4093
4094 return ret;
4095}
4096
94846229
BB
4097bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4098{
4099 return btrfs_super_cache_generation(fs_info->super_copy);
4100}
4101
36b216c8
BB
4102static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4103 struct btrfs_trans_handle *trans)
4104{
4105 struct btrfs_block_group *block_group;
4106 struct rb_node *node;
77364faf 4107 int ret = 0;
36b216c8
BB
4108
4109 btrfs_info(fs_info, "cleaning free space cache v1");
4110
08dddb29 4111 node = rb_first_cached(&fs_info->block_group_cache_tree);
36b216c8
BB
4112 while (node) {
4113 block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4114 ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4115 if (ret)
4116 goto out;
4117 node = rb_next(node);
4118 }
4119out:
4120 return ret;
4121}
4122
94846229
BB
4123int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4124{
4125 struct btrfs_trans_handle *trans;
4126 int ret;
4127
4128 /*
36b216c8
BB
4129 * update_super_roots will appropriately set or unset
4130 * super_copy->cache_generation based on SPACE_CACHE and
4131 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4132 * transaction commit whether we are enabling space cache v1 and don't
4133 * have any other work to do, or are disabling it and removing free
4134 * space inodes.
94846229
BB
4135 */
4136 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4137 if (IS_ERR(trans))
4138 return PTR_ERR(trans);
4139
36b216c8 4140 if (!active) {
94846229 4141 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
36b216c8
BB
4142 ret = cleanup_free_space_cache_v1(fs_info, trans);
4143 if (ret) {
4144 btrfs_abort_transaction(trans, ret);
4145 btrfs_end_transaction(trans);
4146 goto out;
4147 }
4148 }
94846229
BB
4149
4150 ret = btrfs_commit_transaction(trans);
36b216c8 4151out:
94846229
BB
4152 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4153
4154 return ret;
4155}
4156
eda517fd
JB
4157int __init btrfs_free_space_init(void)
4158{
4159 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
4160 sizeof(struct btrfs_free_space), 0,
4161 SLAB_MEM_SPREAD, NULL);
4162 if (!btrfs_free_space_cachep)
4163 return -ENOMEM;
4164
4165 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4166 PAGE_SIZE, PAGE_SIZE,
4167 SLAB_MEM_SPREAD, NULL);
4168 if (!btrfs_free_space_bitmap_cachep) {
4169 kmem_cache_destroy(btrfs_free_space_cachep);
4170 return -ENOMEM;
4171 }
4172
4173 return 0;
4174}
4175
4176void __cold btrfs_free_space_exit(void)
4177{
4178 kmem_cache_destroy(btrfs_free_space_cachep);
4179 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4180}
4181
74255aa0 4182#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
dc11dd5d
JB
4183/*
4184 * Use this if you need to make a bitmap or extent entry specifically, it
4185 * doesn't do any of the merging that add_free_space does, this acts a lot like
4186 * how the free space cache loading stuff works, so you can get really weird
4187 * configurations.
4188 */
32da5386 4189int test_add_free_space_entry(struct btrfs_block_group *cache,
dc11dd5d 4190 u64 offset, u64 bytes, bool bitmap)
74255aa0 4191{
dc11dd5d
JB
4192 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4193 struct btrfs_free_space *info = NULL, *bitmap_info;
4194 void *map = NULL;
da080fe1 4195 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
dc11dd5d
JB
4196 u64 bytes_added;
4197 int ret;
74255aa0 4198
dc11dd5d
JB
4199again:
4200 if (!info) {
4201 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4202 if (!info)
4203 return -ENOMEM;
74255aa0
JB
4204 }
4205
dc11dd5d
JB
4206 if (!bitmap) {
4207 spin_lock(&ctl->tree_lock);
4208 info->offset = offset;
4209 info->bytes = bytes;
cef40483 4210 info->max_extent_size = 0;
dc11dd5d
JB
4211 ret = link_free_space(ctl, info);
4212 spin_unlock(&ctl->tree_lock);
4213 if (ret)
4214 kmem_cache_free(btrfs_free_space_cachep, info);
4215 return ret;
4216 }
4217
4218 if (!map) {
3acd4850 4219 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
dc11dd5d
JB
4220 if (!map) {
4221 kmem_cache_free(btrfs_free_space_cachep, info);
4222 return -ENOMEM;
4223 }
4224 }
4225
4226 spin_lock(&ctl->tree_lock);
4227 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4228 1, 0);
4229 if (!bitmap_info) {
4230 info->bitmap = map;
4231 map = NULL;
4232 add_new_bitmap(ctl, info, offset);
4233 bitmap_info = info;
20005523 4234 info = NULL;
dc11dd5d 4235 }
74255aa0 4236
da080fe1
DZ
4237 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4238 trim_state);
cef40483 4239
dc11dd5d
JB
4240 bytes -= bytes_added;
4241 offset += bytes_added;
4242 spin_unlock(&ctl->tree_lock);
74255aa0 4243
dc11dd5d
JB
4244 if (bytes)
4245 goto again;
74255aa0 4246
20005523
FM
4247 if (info)
4248 kmem_cache_free(btrfs_free_space_cachep, info);
3acd4850
CL
4249 if (map)
4250 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
dc11dd5d 4251 return 0;
74255aa0
JB
4252}
4253
4254/*
4255 * Checks to see if the given range is in the free space cache. This is really
4256 * just used to check the absence of space, so if there is free space in the
4257 * range at all we will return 1.
4258 */
32da5386 4259int test_check_exists(struct btrfs_block_group *cache,
dc11dd5d 4260 u64 offset, u64 bytes)
74255aa0
JB
4261{
4262 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4263 struct btrfs_free_space *info;
4264 int ret = 0;
4265
4266 spin_lock(&ctl->tree_lock);
4267 info = tree_search_offset(ctl, offset, 0, 0);
4268 if (!info) {
4269 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4270 1, 0);
4271 if (!info)
4272 goto out;
4273 }
4274
4275have_info:
4276 if (info->bitmap) {
4277 u64 bit_off, bit_bytes;
4278 struct rb_node *n;
4279 struct btrfs_free_space *tmp;
4280
4281 bit_off = offset;
4282 bit_bytes = ctl->unit;
0584f718 4283 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
74255aa0
JB
4284 if (!ret) {
4285 if (bit_off == offset) {
4286 ret = 1;
4287 goto out;
4288 } else if (bit_off > offset &&
4289 offset + bytes > bit_off) {
4290 ret = 1;
4291 goto out;
4292 }
4293 }
4294
4295 n = rb_prev(&info->offset_index);
4296 while (n) {
4297 tmp = rb_entry(n, struct btrfs_free_space,
4298 offset_index);
4299 if (tmp->offset + tmp->bytes < offset)
4300 break;
4301 if (offset + bytes < tmp->offset) {
5473e0c4 4302 n = rb_prev(&tmp->offset_index);
74255aa0
JB
4303 continue;
4304 }
4305 info = tmp;
4306 goto have_info;
4307 }
4308
4309 n = rb_next(&info->offset_index);
4310 while (n) {
4311 tmp = rb_entry(n, struct btrfs_free_space,
4312 offset_index);
4313 if (offset + bytes < tmp->offset)
4314 break;
4315 if (tmp->offset + tmp->bytes < offset) {
5473e0c4 4316 n = rb_next(&tmp->offset_index);
74255aa0
JB
4317 continue;
4318 }
4319 info = tmp;
4320 goto have_info;
4321 }
4322
20005523 4323 ret = 0;
74255aa0
JB
4324 goto out;
4325 }
4326
4327 if (info->offset == offset) {
4328 ret = 1;
4329 goto out;
4330 }
4331
4332 if (offset > info->offset && offset < info->offset + info->bytes)
4333 ret = 1;
4334out:
4335 spin_unlock(&ctl->tree_lock);
4336 return ret;
4337}
dc11dd5d 4338#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
This page took 1.63679 seconds and 4 git commands to generate.