]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/igb/igb_ptp.c
drm/display/selftests: drop extra word 'for' in comments for MST selftests
[linux.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <[email protected]> */
3
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8
9 #include "igb.h"
10
11 #define INCVALUE_MASK           0x7fffffff
12 #define ISGN                    0x80000000
13
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter needs
57  * to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, and also the NIC
59  * clock can be adjusted to run up to 6% faster and the system clock
60  * up to 10% slower, so we aim for 6 minutes to be sure the actual
61  * interval in the NIC time is shorter than 9.16 minutes.
62  */
63
64 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
66 #define INCPERIOD_82576                 BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK             GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576                  (16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580                 40
70
71 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
72 static void igb_ptp_sdp_init(struct igb_adapter *adapter);
73
74 /* SYSTIM read access for the 82576 */
75 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
76 {
77         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
78         struct e1000_hw *hw = &igb->hw;
79         u64 val;
80         u32 lo, hi;
81
82         lo = rd32(E1000_SYSTIML);
83         hi = rd32(E1000_SYSTIMH);
84
85         val = ((u64) hi) << 32;
86         val |= lo;
87
88         return val;
89 }
90
91 /* SYSTIM read access for the 82580 */
92 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
93 {
94         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
95         struct e1000_hw *hw = &igb->hw;
96         u32 lo, hi;
97         u64 val;
98
99         /* The timestamp latches on lowest register read. For the 82580
100          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
101          * need to provide nanosecond resolution, so we just ignore it.
102          */
103         rd32(E1000_SYSTIMR);
104         lo = rd32(E1000_SYSTIML);
105         hi = rd32(E1000_SYSTIMH);
106
107         val = ((u64) hi) << 32;
108         val |= lo;
109
110         return val;
111 }
112
113 /* SYSTIM read access for I210/I211 */
114 static void igb_ptp_read_i210(struct igb_adapter *adapter,
115                               struct timespec64 *ts)
116 {
117         struct e1000_hw *hw = &adapter->hw;
118         u32 sec, nsec;
119
120         /* The timestamp latches on lowest register read. For I210/I211, the
121          * lowest register is SYSTIMR. Since we only need to provide nanosecond
122          * resolution, we can ignore it.
123          */
124         rd32(E1000_SYSTIMR);
125         nsec = rd32(E1000_SYSTIML);
126         sec = rd32(E1000_SYSTIMH);
127
128         ts->tv_sec = sec;
129         ts->tv_nsec = nsec;
130 }
131
132 static void igb_ptp_write_i210(struct igb_adapter *adapter,
133                                const struct timespec64 *ts)
134 {
135         struct e1000_hw *hw = &adapter->hw;
136
137         /* Writing the SYSTIMR register is not necessary as it only provides
138          * sub-nanosecond resolution.
139          */
140         wr32(E1000_SYSTIML, ts->tv_nsec);
141         wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
142 }
143
144 /**
145  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
146  * @adapter: board private structure
147  * @hwtstamps: timestamp structure to update
148  * @systim: unsigned 64bit system time value.
149  *
150  * We need to convert the system time value stored in the RX/TXSTMP registers
151  * into a hwtstamp which can be used by the upper level timestamping functions.
152  *
153  * The 'tmreg_lock' spinlock is used to protect the consistency of the
154  * system time value. This is needed because reading the 64 bit time
155  * value involves reading two (or three) 32 bit registers. The first
156  * read latches the value. Ditto for writing.
157  *
158  * In addition, here have extended the system time with an overflow
159  * counter in software.
160  **/
161 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
162                                        struct skb_shared_hwtstamps *hwtstamps,
163                                        u64 systim)
164 {
165         unsigned long flags;
166         u64 ns;
167
168         memset(hwtstamps, 0, sizeof(*hwtstamps));
169
170         switch (adapter->hw.mac.type) {
171         case e1000_82576:
172         case e1000_82580:
173         case e1000_i354:
174         case e1000_i350:
175                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
176                 ns = timecounter_cyc2time(&adapter->tc, systim);
177                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
178
179                 hwtstamps->hwtstamp = ns_to_ktime(ns);
180                 break;
181         case e1000_i210:
182         case e1000_i211:
183                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
184                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
185                                                 systim & 0xFFFFFFFF);
186                 break;
187         default:
188                 break;
189         }
190 }
191
192 /* PTP clock operations */
193 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
194 {
195         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
196                                                ptp_caps);
197         struct e1000_hw *hw = &igb->hw;
198         int neg_adj = 0;
199         u64 rate;
200         u32 incvalue;
201
202         if (ppb < 0) {
203                 neg_adj = 1;
204                 ppb = -ppb;
205         }
206         rate = ppb;
207         rate <<= 14;
208         rate = div_u64(rate, 1953125);
209
210         incvalue = 16 << IGB_82576_TSYNC_SHIFT;
211
212         if (neg_adj)
213                 incvalue -= rate;
214         else
215                 incvalue += rate;
216
217         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
218
219         return 0;
220 }
221
222 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
223 {
224         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
225                                                ptp_caps);
226         struct e1000_hw *hw = &igb->hw;
227         int neg_adj = 0;
228         u64 rate;
229         u32 inca;
230
231         if (scaled_ppm < 0) {
232                 neg_adj = 1;
233                 scaled_ppm = -scaled_ppm;
234         }
235         rate = scaled_ppm;
236         rate <<= 13;
237         rate = div_u64(rate, 15625);
238
239         inca = rate & INCVALUE_MASK;
240         if (neg_adj)
241                 inca |= ISGN;
242
243         wr32(E1000_TIMINCA, inca);
244
245         return 0;
246 }
247
248 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
249 {
250         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
251                                                ptp_caps);
252         unsigned long flags;
253
254         spin_lock_irqsave(&igb->tmreg_lock, flags);
255         timecounter_adjtime(&igb->tc, delta);
256         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
257
258         return 0;
259 }
260
261 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
262 {
263         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
264                                                ptp_caps);
265         unsigned long flags;
266         struct timespec64 now, then = ns_to_timespec64(delta);
267
268         spin_lock_irqsave(&igb->tmreg_lock, flags);
269
270         igb_ptp_read_i210(igb, &now);
271         now = timespec64_add(now, then);
272         igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
273
274         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
275
276         return 0;
277 }
278
279 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
280                                   struct timespec64 *ts,
281                                   struct ptp_system_timestamp *sts)
282 {
283         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
284                                                ptp_caps);
285         struct e1000_hw *hw = &igb->hw;
286         unsigned long flags;
287         u32 lo, hi;
288         u64 ns;
289
290         spin_lock_irqsave(&igb->tmreg_lock, flags);
291
292         ptp_read_system_prets(sts);
293         lo = rd32(E1000_SYSTIML);
294         ptp_read_system_postts(sts);
295         hi = rd32(E1000_SYSTIMH);
296
297         ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
298
299         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
300
301         *ts = ns_to_timespec64(ns);
302
303         return 0;
304 }
305
306 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
307                                   struct timespec64 *ts,
308                                   struct ptp_system_timestamp *sts)
309 {
310         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
311                                                ptp_caps);
312         struct e1000_hw *hw = &igb->hw;
313         unsigned long flags;
314         u32 lo, hi;
315         u64 ns;
316
317         spin_lock_irqsave(&igb->tmreg_lock, flags);
318
319         ptp_read_system_prets(sts);
320         rd32(E1000_SYSTIMR);
321         ptp_read_system_postts(sts);
322         lo = rd32(E1000_SYSTIML);
323         hi = rd32(E1000_SYSTIMH);
324
325         ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
326
327         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
328
329         *ts = ns_to_timespec64(ns);
330
331         return 0;
332 }
333
334 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
335                                  struct timespec64 *ts,
336                                  struct ptp_system_timestamp *sts)
337 {
338         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
339                                                ptp_caps);
340         struct e1000_hw *hw = &igb->hw;
341         unsigned long flags;
342
343         spin_lock_irqsave(&igb->tmreg_lock, flags);
344
345         ptp_read_system_prets(sts);
346         rd32(E1000_SYSTIMR);
347         ptp_read_system_postts(sts);
348         ts->tv_nsec = rd32(E1000_SYSTIML);
349         ts->tv_sec = rd32(E1000_SYSTIMH);
350
351         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
352
353         return 0;
354 }
355
356 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
357                                  const struct timespec64 *ts)
358 {
359         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
360                                                ptp_caps);
361         unsigned long flags;
362         u64 ns;
363
364         ns = timespec64_to_ns(ts);
365
366         spin_lock_irqsave(&igb->tmreg_lock, flags);
367
368         timecounter_init(&igb->tc, &igb->cc, ns);
369
370         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
371
372         return 0;
373 }
374
375 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
376                                 const struct timespec64 *ts)
377 {
378         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
379                                                ptp_caps);
380         unsigned long flags;
381
382         spin_lock_irqsave(&igb->tmreg_lock, flags);
383
384         igb_ptp_write_i210(igb, ts);
385
386         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
387
388         return 0;
389 }
390
391 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
392 {
393         u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
394         static const u32 mask[IGB_N_SDP] = {
395                 E1000_CTRL_SDP0_DIR,
396                 E1000_CTRL_SDP1_DIR,
397                 E1000_CTRL_EXT_SDP2_DIR,
398                 E1000_CTRL_EXT_SDP3_DIR,
399         };
400
401         if (input)
402                 *ptr &= ~mask[pin];
403         else
404                 *ptr |= mask[pin];
405 }
406
407 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
408 {
409         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
410                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
411         };
412         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
413                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
414         };
415         static const u32 ts_sdp_en[IGB_N_SDP] = {
416                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
417         };
418         struct e1000_hw *hw = &igb->hw;
419         u32 ctrl, ctrl_ext, tssdp = 0;
420
421         ctrl = rd32(E1000_CTRL);
422         ctrl_ext = rd32(E1000_CTRL_EXT);
423         tssdp = rd32(E1000_TSSDP);
424
425         igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
426
427         /* Make sure this pin is not enabled as an output. */
428         tssdp &= ~ts_sdp_en[pin];
429
430         if (chan == 1) {
431                 tssdp &= ~AUX1_SEL_SDP3;
432                 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
433         } else {
434                 tssdp &= ~AUX0_SEL_SDP3;
435                 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
436         }
437
438         wr32(E1000_TSSDP, tssdp);
439         wr32(E1000_CTRL, ctrl);
440         wr32(E1000_CTRL_EXT, ctrl_ext);
441 }
442
443 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
444 {
445         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
446                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
447         };
448         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
449                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
450         };
451         static const u32 ts_sdp_en[IGB_N_SDP] = {
452                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
453         };
454         static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
455                 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
456                 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
457         };
458         static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
459                 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
460                 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
461         };
462         static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
463                 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
464                 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
465         };
466         static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
467                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
468                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
469         };
470         static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
471                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
472                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
473         };
474         struct e1000_hw *hw = &igb->hw;
475         u32 ctrl, ctrl_ext, tssdp = 0;
476
477         ctrl = rd32(E1000_CTRL);
478         ctrl_ext = rd32(E1000_CTRL_EXT);
479         tssdp = rd32(E1000_TSSDP);
480
481         igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
482
483         /* Make sure this pin is not enabled as an input. */
484         if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
485                 tssdp &= ~AUX0_TS_SDP_EN;
486
487         if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
488                 tssdp &= ~AUX1_TS_SDP_EN;
489
490         tssdp &= ~ts_sdp_sel_clr[pin];
491         if (freq) {
492                 if (chan == 1)
493                         tssdp |= ts_sdp_sel_fc1[pin];
494                 else
495                         tssdp |= ts_sdp_sel_fc0[pin];
496         } else {
497                 if (chan == 1)
498                         tssdp |= ts_sdp_sel_tt1[pin];
499                 else
500                         tssdp |= ts_sdp_sel_tt0[pin];
501         }
502         tssdp |= ts_sdp_en[pin];
503
504         wr32(E1000_TSSDP, tssdp);
505         wr32(E1000_CTRL, ctrl);
506         wr32(E1000_CTRL_EXT, ctrl_ext);
507 }
508
509 static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
510                                         struct ptp_clock_request *rq, int on)
511 {
512         struct igb_adapter *igb =
513                 container_of(ptp, struct igb_adapter, ptp_caps);
514         u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
515                 systimh, level_mask, level, rem;
516         struct e1000_hw *hw = &igb->hw;
517         struct timespec64 ts, start;
518         unsigned long flags;
519         u64 systim, now;
520         int pin = -1;
521         s64 ns;
522
523         switch (rq->type) {
524         case PTP_CLK_REQ_EXTTS:
525                 /* Reject requests with unsupported flags */
526                 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
527                                         PTP_RISING_EDGE |
528                                         PTP_FALLING_EDGE |
529                                         PTP_STRICT_FLAGS))
530                         return -EOPNOTSUPP;
531
532                 if (on) {
533                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
534                                            rq->extts.index);
535                         if (pin < 0)
536                                 return -EBUSY;
537                 }
538                 if (rq->extts.index == 1) {
539                         tsauxc_mask = TSAUXC_EN_TS1;
540                         tsim_mask = TSINTR_AUTT1;
541                 } else {
542                         tsauxc_mask = TSAUXC_EN_TS0;
543                         tsim_mask = TSINTR_AUTT0;
544                 }
545                 spin_lock_irqsave(&igb->tmreg_lock, flags);
546                 tsauxc = rd32(E1000_TSAUXC);
547                 tsim = rd32(E1000_TSIM);
548                 if (on) {
549                         igb_pin_extts(igb, rq->extts.index, pin);
550                         tsauxc |= tsauxc_mask;
551                         tsim |= tsim_mask;
552                 } else {
553                         tsauxc &= ~tsauxc_mask;
554                         tsim &= ~tsim_mask;
555                 }
556                 wr32(E1000_TSAUXC, tsauxc);
557                 wr32(E1000_TSIM, tsim);
558                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
559                 return 0;
560
561         case PTP_CLK_REQ_PEROUT:
562                 /* Reject requests with unsupported flags */
563                 if (rq->perout.flags)
564                         return -EOPNOTSUPP;
565
566                 if (on) {
567                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
568                                            rq->perout.index);
569                         if (pin < 0)
570                                 return -EBUSY;
571                 }
572                 ts.tv_sec = rq->perout.period.sec;
573                 ts.tv_nsec = rq->perout.period.nsec;
574                 ns = timespec64_to_ns(&ts);
575                 ns = ns >> 1;
576                 if (on && ns < 8LL)
577                         return -EINVAL;
578                 ts = ns_to_timespec64(ns);
579                 if (rq->perout.index == 1) {
580                         tsauxc_mask = TSAUXC_EN_TT1;
581                         tsim_mask = TSINTR_TT1;
582                         trgttiml = E1000_TRGTTIML1;
583                         trgttimh = E1000_TRGTTIMH1;
584                 } else {
585                         tsauxc_mask = TSAUXC_EN_TT0;
586                         tsim_mask = TSINTR_TT0;
587                         trgttiml = E1000_TRGTTIML0;
588                         trgttimh = E1000_TRGTTIMH0;
589                 }
590                 spin_lock_irqsave(&igb->tmreg_lock, flags);
591                 tsauxc = rd32(E1000_TSAUXC);
592                 tsim = rd32(E1000_TSIM);
593                 if (rq->perout.index == 1) {
594                         tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
595                         tsim &= ~TSINTR_TT1;
596                 } else {
597                         tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
598                         tsim &= ~TSINTR_TT0;
599                 }
600                 if (on) {
601                         int i = rq->perout.index;
602
603                         /* read systim registers in sequence */
604                         rd32(E1000_SYSTIMR);
605                         systiml = rd32(E1000_SYSTIML);
606                         systimh = rd32(E1000_SYSTIMH);
607                         systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
608                         now = timecounter_cyc2time(&igb->tc, systim);
609
610                         if (pin < 2) {
611                                 level_mask = (i == 1) ? 0x80000 : 0x40000;
612                                 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
613                         } else {
614                                 level_mask = (i == 1) ? 0x80 : 0x40;
615                                 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
616                         }
617
618                         div_u64_rem(now, ns, &rem);
619                         systim = systim + (ns - rem);
620
621                         /* synchronize pin level with rising/falling edges */
622                         div_u64_rem(now, ns << 1, &rem);
623                         if (rem < ns) {
624                                 /* first half of period */
625                                 if (level == 0) {
626                                         /* output is already low, skip this period */
627                                         systim += ns;
628                                 }
629                         } else {
630                                 /* second half of period */
631                                 if (level == 1) {
632                                         /* output is already high, skip this period */
633                                         systim += ns;
634                                 }
635                         }
636
637                         start = ns_to_timespec64(systim + (ns - rem));
638                         igb_pin_perout(igb, i, pin, 0);
639                         igb->perout[i].start.tv_sec = start.tv_sec;
640                         igb->perout[i].start.tv_nsec = start.tv_nsec;
641                         igb->perout[i].period.tv_sec = ts.tv_sec;
642                         igb->perout[i].period.tv_nsec = ts.tv_nsec;
643
644                         wr32(trgttiml, (u32)systim);
645                         wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
646                         tsauxc |= tsauxc_mask;
647                         tsim |= tsim_mask;
648                 }
649                 wr32(E1000_TSAUXC, tsauxc);
650                 wr32(E1000_TSIM, tsim);
651                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
652                 return 0;
653
654         case PTP_CLK_REQ_PPS:
655                 return -EOPNOTSUPP;
656         }
657
658         return -EOPNOTSUPP;
659 }
660
661 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
662                                        struct ptp_clock_request *rq, int on)
663 {
664         struct igb_adapter *igb =
665                 container_of(ptp, struct igb_adapter, ptp_caps);
666         struct e1000_hw *hw = &igb->hw;
667         u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
668         unsigned long flags;
669         struct timespec64 ts;
670         int use_freq = 0, pin = -1;
671         s64 ns;
672
673         switch (rq->type) {
674         case PTP_CLK_REQ_EXTTS:
675                 /* Reject requests with unsupported flags */
676                 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
677                                         PTP_RISING_EDGE |
678                                         PTP_FALLING_EDGE |
679                                         PTP_STRICT_FLAGS))
680                         return -EOPNOTSUPP;
681
682                 /* Reject requests failing to enable both edges. */
683                 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
684                     (rq->extts.flags & PTP_ENABLE_FEATURE) &&
685                     (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
686                         return -EOPNOTSUPP;
687
688                 if (on) {
689                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
690                                            rq->extts.index);
691                         if (pin < 0)
692                                 return -EBUSY;
693                 }
694                 if (rq->extts.index == 1) {
695                         tsauxc_mask = TSAUXC_EN_TS1;
696                         tsim_mask = TSINTR_AUTT1;
697                 } else {
698                         tsauxc_mask = TSAUXC_EN_TS0;
699                         tsim_mask = TSINTR_AUTT0;
700                 }
701                 spin_lock_irqsave(&igb->tmreg_lock, flags);
702                 tsauxc = rd32(E1000_TSAUXC);
703                 tsim = rd32(E1000_TSIM);
704                 if (on) {
705                         igb_pin_extts(igb, rq->extts.index, pin);
706                         tsauxc |= tsauxc_mask;
707                         tsim |= tsim_mask;
708                 } else {
709                         tsauxc &= ~tsauxc_mask;
710                         tsim &= ~tsim_mask;
711                 }
712                 wr32(E1000_TSAUXC, tsauxc);
713                 wr32(E1000_TSIM, tsim);
714                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
715                 return 0;
716
717         case PTP_CLK_REQ_PEROUT:
718                 /* Reject requests with unsupported flags */
719                 if (rq->perout.flags)
720                         return -EOPNOTSUPP;
721
722                 if (on) {
723                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
724                                            rq->perout.index);
725                         if (pin < 0)
726                                 return -EBUSY;
727                 }
728                 ts.tv_sec = rq->perout.period.sec;
729                 ts.tv_nsec = rq->perout.period.nsec;
730                 ns = timespec64_to_ns(&ts);
731                 ns = ns >> 1;
732                 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
733                            (ns == 250000000LL) || (ns == 500000000LL))) {
734                         if (ns < 8LL)
735                                 return -EINVAL;
736                         use_freq = 1;
737                 }
738                 ts = ns_to_timespec64(ns);
739                 if (rq->perout.index == 1) {
740                         if (use_freq) {
741                                 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
742                                 tsim_mask = 0;
743                         } else {
744                                 tsauxc_mask = TSAUXC_EN_TT1;
745                                 tsim_mask = TSINTR_TT1;
746                         }
747                         trgttiml = E1000_TRGTTIML1;
748                         trgttimh = E1000_TRGTTIMH1;
749                         freqout = E1000_FREQOUT1;
750                 } else {
751                         if (use_freq) {
752                                 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
753                                 tsim_mask = 0;
754                         } else {
755                                 tsauxc_mask = TSAUXC_EN_TT0;
756                                 tsim_mask = TSINTR_TT0;
757                         }
758                         trgttiml = E1000_TRGTTIML0;
759                         trgttimh = E1000_TRGTTIMH0;
760                         freqout = E1000_FREQOUT0;
761                 }
762                 spin_lock_irqsave(&igb->tmreg_lock, flags);
763                 tsauxc = rd32(E1000_TSAUXC);
764                 tsim = rd32(E1000_TSIM);
765                 if (rq->perout.index == 1) {
766                         tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
767                         tsim &= ~TSINTR_TT1;
768                 } else {
769                         tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
770                         tsim &= ~TSINTR_TT0;
771                 }
772                 if (on) {
773                         int i = rq->perout.index;
774                         igb_pin_perout(igb, i, pin, use_freq);
775                         igb->perout[i].start.tv_sec = rq->perout.start.sec;
776                         igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
777                         igb->perout[i].period.tv_sec = ts.tv_sec;
778                         igb->perout[i].period.tv_nsec = ts.tv_nsec;
779                         wr32(trgttimh, rq->perout.start.sec);
780                         wr32(trgttiml, rq->perout.start.nsec);
781                         if (use_freq)
782                                 wr32(freqout, ns);
783                         tsauxc |= tsauxc_mask;
784                         tsim |= tsim_mask;
785                 }
786                 wr32(E1000_TSAUXC, tsauxc);
787                 wr32(E1000_TSIM, tsim);
788                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
789                 return 0;
790
791         case PTP_CLK_REQ_PPS:
792                 spin_lock_irqsave(&igb->tmreg_lock, flags);
793                 tsim = rd32(E1000_TSIM);
794                 if (on)
795                         tsim |= TSINTR_SYS_WRAP;
796                 else
797                         tsim &= ~TSINTR_SYS_WRAP;
798                 igb->pps_sys_wrap_on = !!on;
799                 wr32(E1000_TSIM, tsim);
800                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
801                 return 0;
802         }
803
804         return -EOPNOTSUPP;
805 }
806
807 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
808                                   struct ptp_clock_request *rq, int on)
809 {
810         return -EOPNOTSUPP;
811 }
812
813 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
814                               enum ptp_pin_function func, unsigned int chan)
815 {
816         switch (func) {
817         case PTP_PF_NONE:
818         case PTP_PF_EXTTS:
819         case PTP_PF_PEROUT:
820                 break;
821         case PTP_PF_PHYSYNC:
822                 return -1;
823         }
824         return 0;
825 }
826
827 /**
828  * igb_ptp_tx_work
829  * @work: pointer to work struct
830  *
831  * This work function polls the TSYNCTXCTL valid bit to determine when a
832  * timestamp has been taken for the current stored skb.
833  **/
834 static void igb_ptp_tx_work(struct work_struct *work)
835 {
836         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
837                                                    ptp_tx_work);
838         struct e1000_hw *hw = &adapter->hw;
839         u32 tsynctxctl;
840
841         if (!adapter->ptp_tx_skb)
842                 return;
843
844         if (time_is_before_jiffies(adapter->ptp_tx_start +
845                                    IGB_PTP_TX_TIMEOUT)) {
846                 dev_kfree_skb_any(adapter->ptp_tx_skb);
847                 adapter->ptp_tx_skb = NULL;
848                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
849                 adapter->tx_hwtstamp_timeouts++;
850                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
851                  * interrupt
852                  */
853                 rd32(E1000_TXSTMPH);
854                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
855                 return;
856         }
857
858         tsynctxctl = rd32(E1000_TSYNCTXCTL);
859         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
860                 igb_ptp_tx_hwtstamp(adapter);
861         else
862                 /* reschedule to check later */
863                 schedule_work(&adapter->ptp_tx_work);
864 }
865
866 static void igb_ptp_overflow_check(struct work_struct *work)
867 {
868         struct igb_adapter *igb =
869                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
870         struct timespec64 ts;
871         u64 ns;
872
873         /* Update the timecounter */
874         ns = timecounter_read(&igb->tc);
875
876         ts = ns_to_timespec64(ns);
877         pr_debug("igb overflow check at %lld.%09lu\n",
878                  (long long) ts.tv_sec, ts.tv_nsec);
879
880         schedule_delayed_work(&igb->ptp_overflow_work,
881                               IGB_SYSTIM_OVERFLOW_PERIOD);
882 }
883
884 /**
885  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
886  * @adapter: private network adapter structure
887  *
888  * This watchdog task is scheduled to detect error case where hardware has
889  * dropped an Rx packet that was timestamped when the ring is full. The
890  * particular error is rare but leaves the device in a state unable to timestamp
891  * any future packets.
892  **/
893 void igb_ptp_rx_hang(struct igb_adapter *adapter)
894 {
895         struct e1000_hw *hw = &adapter->hw;
896         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
897         unsigned long rx_event;
898
899         /* Other hardware uses per-packet timestamps */
900         if (hw->mac.type != e1000_82576)
901                 return;
902
903         /* If we don't have a valid timestamp in the registers, just update the
904          * timeout counter and exit
905          */
906         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
907                 adapter->last_rx_ptp_check = jiffies;
908                 return;
909         }
910
911         /* Determine the most recent watchdog or rx_timestamp event */
912         rx_event = adapter->last_rx_ptp_check;
913         if (time_after(adapter->last_rx_timestamp, rx_event))
914                 rx_event = adapter->last_rx_timestamp;
915
916         /* Only need to read the high RXSTMP register to clear the lock */
917         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
918                 rd32(E1000_RXSTMPH);
919                 adapter->last_rx_ptp_check = jiffies;
920                 adapter->rx_hwtstamp_cleared++;
921                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
922         }
923 }
924
925 /**
926  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
927  * @adapter: private network adapter structure
928  */
929 void igb_ptp_tx_hang(struct igb_adapter *adapter)
930 {
931         struct e1000_hw *hw = &adapter->hw;
932         bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
933                                               IGB_PTP_TX_TIMEOUT);
934
935         if (!adapter->ptp_tx_skb)
936                 return;
937
938         if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
939                 return;
940
941         /* If we haven't received a timestamp within the timeout, it is
942          * reasonable to assume that it will never occur, so we can unlock the
943          * timestamp bit when this occurs.
944          */
945         if (timeout) {
946                 cancel_work_sync(&adapter->ptp_tx_work);
947                 dev_kfree_skb_any(adapter->ptp_tx_skb);
948                 adapter->ptp_tx_skb = NULL;
949                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
950                 adapter->tx_hwtstamp_timeouts++;
951                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
952                  * interrupt
953                  */
954                 rd32(E1000_TXSTMPH);
955                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
956         }
957 }
958
959 /**
960  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
961  * @adapter: Board private structure.
962  *
963  * If we were asked to do hardware stamping and such a time stamp is
964  * available, then it must have been for this skb here because we only
965  * allow only one such packet into the queue.
966  **/
967 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
968 {
969         struct sk_buff *skb = adapter->ptp_tx_skb;
970         struct e1000_hw *hw = &adapter->hw;
971         struct skb_shared_hwtstamps shhwtstamps;
972         u64 regval;
973         int adjust = 0;
974
975         regval = rd32(E1000_TXSTMPL);
976         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
977
978         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
979         /* adjust timestamp for the TX latency based on link speed */
980         if (adapter->hw.mac.type == e1000_i210) {
981                 switch (adapter->link_speed) {
982                 case SPEED_10:
983                         adjust = IGB_I210_TX_LATENCY_10;
984                         break;
985                 case SPEED_100:
986                         adjust = IGB_I210_TX_LATENCY_100;
987                         break;
988                 case SPEED_1000:
989                         adjust = IGB_I210_TX_LATENCY_1000;
990                         break;
991                 }
992         }
993
994         shhwtstamps.hwtstamp =
995                 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
996
997         /* Clear the lock early before calling skb_tstamp_tx so that
998          * applications are not woken up before the lock bit is clear. We use
999          * a copy of the skb pointer to ensure other threads can't change it
1000          * while we're notifying the stack.
1001          */
1002         adapter->ptp_tx_skb = NULL;
1003         clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1004
1005         /* Notify the stack and free the skb after we've unlocked */
1006         skb_tstamp_tx(skb, &shhwtstamps);
1007         dev_kfree_skb_any(skb);
1008 }
1009
1010 /**
1011  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
1012  * @q_vector: Pointer to interrupt specific structure
1013  * @va: Pointer to address containing Rx buffer
1014  * @timestamp: Pointer where timestamp will be stored
1015  *
1016  * This function is meant to retrieve a timestamp from the first buffer of an
1017  * incoming frame.  The value is stored in little endian format starting on
1018  * byte 8
1019  *
1020  * Returns: The timestamp header length or 0 if not available
1021  **/
1022 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1023                         ktime_t *timestamp)
1024 {
1025         struct igb_adapter *adapter = q_vector->adapter;
1026         struct skb_shared_hwtstamps ts;
1027         __le64 *regval = (__le64 *)va;
1028         int adjust = 0;
1029
1030         if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1031                 return 0;
1032
1033         /* The timestamp is recorded in little endian format.
1034          * DWORD: 0        1        2        3
1035          * Field: Reserved Reserved SYSTIML  SYSTIMH
1036          */
1037
1038         /* check reserved dwords are zero, be/le doesn't matter for zero */
1039         if (regval[0])
1040                 return 0;
1041
1042         igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1043
1044         /* adjust timestamp for the RX latency based on link speed */
1045         if (adapter->hw.mac.type == e1000_i210) {
1046                 switch (adapter->link_speed) {
1047                 case SPEED_10:
1048                         adjust = IGB_I210_RX_LATENCY_10;
1049                         break;
1050                 case SPEED_100:
1051                         adjust = IGB_I210_RX_LATENCY_100;
1052                         break;
1053                 case SPEED_1000:
1054                         adjust = IGB_I210_RX_LATENCY_1000;
1055                         break;
1056                 }
1057         }
1058
1059         *timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1060
1061         return IGB_TS_HDR_LEN;
1062 }
1063
1064 /**
1065  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1066  * @q_vector: Pointer to interrupt specific structure
1067  * @skb: Buffer containing timestamp and packet
1068  *
1069  * This function is meant to retrieve a timestamp from the internal registers
1070  * of the adapter and store it in the skb.
1071  **/
1072 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1073 {
1074         struct igb_adapter *adapter = q_vector->adapter;
1075         struct e1000_hw *hw = &adapter->hw;
1076         int adjust = 0;
1077         u64 regval;
1078
1079         if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1080                 return;
1081
1082         /* If this bit is set, then the RX registers contain the time stamp. No
1083          * other packet will be time stamped until we read these registers, so
1084          * read the registers to make them available again. Because only one
1085          * packet can be time stamped at a time, we know that the register
1086          * values must belong to this one here and therefore we don't need to
1087          * compare any of the additional attributes stored for it.
1088          *
1089          * If nothing went wrong, then it should have a shared tx_flags that we
1090          * can turn into a skb_shared_hwtstamps.
1091          */
1092         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1093                 return;
1094
1095         regval = rd32(E1000_RXSTMPL);
1096         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1097
1098         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1099
1100         /* adjust timestamp for the RX latency based on link speed */
1101         if (adapter->hw.mac.type == e1000_i210) {
1102                 switch (adapter->link_speed) {
1103                 case SPEED_10:
1104                         adjust = IGB_I210_RX_LATENCY_10;
1105                         break;
1106                 case SPEED_100:
1107                         adjust = IGB_I210_RX_LATENCY_100;
1108                         break;
1109                 case SPEED_1000:
1110                         adjust = IGB_I210_RX_LATENCY_1000;
1111                         break;
1112                 }
1113         }
1114         skb_hwtstamps(skb)->hwtstamp =
1115                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1116
1117         /* Update the last_rx_timestamp timer in order to enable watchdog check
1118          * for error case of latched timestamp on a dropped packet.
1119          */
1120         adapter->last_rx_timestamp = jiffies;
1121 }
1122
1123 /**
1124  * igb_ptp_get_ts_config - get hardware time stamping config
1125  * @netdev: netdev struct
1126  * @ifr: interface struct
1127  *
1128  * Get the hwtstamp_config settings to return to the user. Rather than attempt
1129  * to deconstruct the settings from the registers, just return a shadow copy
1130  * of the last known settings.
1131  **/
1132 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1133 {
1134         struct igb_adapter *adapter = netdev_priv(netdev);
1135         struct hwtstamp_config *config = &adapter->tstamp_config;
1136
1137         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1138                 -EFAULT : 0;
1139 }
1140
1141 /**
1142  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1143  * @adapter: networking device structure
1144  * @config: hwtstamp configuration
1145  *
1146  * Outgoing time stamping can be enabled and disabled. Play nice and
1147  * disable it when requested, although it shouldn't case any overhead
1148  * when no packet needs it. At most one packet in the queue may be
1149  * marked for time stamping, otherwise it would be impossible to tell
1150  * for sure to which packet the hardware time stamp belongs.
1151  *
1152  * Incoming time stamping has to be configured via the hardware
1153  * filters. Not all combinations are supported, in particular event
1154  * type has to be specified. Matching the kind of event packet is
1155  * not supported, with the exception of "all V2 events regardless of
1156  * level 2 or 4".
1157  */
1158 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1159                                       struct hwtstamp_config *config)
1160 {
1161         struct e1000_hw *hw = &adapter->hw;
1162         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1163         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1164         u32 tsync_rx_cfg = 0;
1165         bool is_l4 = false;
1166         bool is_l2 = false;
1167         u32 regval;
1168
1169         switch (config->tx_type) {
1170         case HWTSTAMP_TX_OFF:
1171                 tsync_tx_ctl = 0;
1172                 break;
1173         case HWTSTAMP_TX_ON:
1174                 break;
1175         default:
1176                 return -ERANGE;
1177         }
1178
1179         switch (config->rx_filter) {
1180         case HWTSTAMP_FILTER_NONE:
1181                 tsync_rx_ctl = 0;
1182                 break;
1183         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1184                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1185                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1186                 is_l4 = true;
1187                 break;
1188         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1189                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1190                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1191                 is_l4 = true;
1192                 break;
1193         case HWTSTAMP_FILTER_PTP_V2_EVENT:
1194         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1195         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1196         case HWTSTAMP_FILTER_PTP_V2_SYNC:
1197         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1198         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1199         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1200         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1201         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1202                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1203                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1204                 is_l2 = true;
1205                 is_l4 = true;
1206                 break;
1207         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1208         case HWTSTAMP_FILTER_NTP_ALL:
1209         case HWTSTAMP_FILTER_ALL:
1210                 /* 82576 cannot timestamp all packets, which it needs to do to
1211                  * support both V1 Sync and Delay_Req messages
1212                  */
1213                 if (hw->mac.type != e1000_82576) {
1214                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1215                         config->rx_filter = HWTSTAMP_FILTER_ALL;
1216                         break;
1217                 }
1218                 fallthrough;
1219         default:
1220                 config->rx_filter = HWTSTAMP_FILTER_NONE;
1221                 return -ERANGE;
1222         }
1223
1224         if (hw->mac.type == e1000_82575) {
1225                 if (tsync_rx_ctl | tsync_tx_ctl)
1226                         return -EINVAL;
1227                 return 0;
1228         }
1229
1230         /* Per-packet timestamping only works if all packets are
1231          * timestamped, so enable timestamping in all packets as
1232          * long as one Rx filter was configured.
1233          */
1234         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1235                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1236                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1237                 config->rx_filter = HWTSTAMP_FILTER_ALL;
1238                 is_l2 = true;
1239                 is_l4 = true;
1240
1241                 if ((hw->mac.type == e1000_i210) ||
1242                     (hw->mac.type == e1000_i211)) {
1243                         regval = rd32(E1000_RXPBS);
1244                         regval |= E1000_RXPBS_CFG_TS_EN;
1245                         wr32(E1000_RXPBS, regval);
1246                 }
1247         }
1248
1249         /* enable/disable TX */
1250         regval = rd32(E1000_TSYNCTXCTL);
1251         regval &= ~E1000_TSYNCTXCTL_ENABLED;
1252         regval |= tsync_tx_ctl;
1253         wr32(E1000_TSYNCTXCTL, regval);
1254
1255         /* enable/disable RX */
1256         regval = rd32(E1000_TSYNCRXCTL);
1257         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1258         regval |= tsync_rx_ctl;
1259         wr32(E1000_TSYNCRXCTL, regval);
1260
1261         /* define which PTP packets are time stamped */
1262         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1263
1264         /* define ethertype filter for timestamped packets */
1265         if (is_l2)
1266                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1267                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1268                       E1000_ETQF_1588 | /* enable timestamping */
1269                       ETH_P_1588));     /* 1588 eth protocol type */
1270         else
1271                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1272
1273         /* L4 Queue Filter[3]: filter by destination port and protocol */
1274         if (is_l4) {
1275                 u32 ftqf = (IPPROTO_UDP /* UDP */
1276                         | E1000_FTQF_VF_BP /* VF not compared */
1277                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1278                         | E1000_FTQF_MASK); /* mask all inputs */
1279                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1280
1281                 wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1282                 wr32(E1000_IMIREXT(3),
1283                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1284                 if (hw->mac.type == e1000_82576) {
1285                         /* enable source port check */
1286                         wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1287                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1288                 }
1289                 wr32(E1000_FTQF(3), ftqf);
1290         } else {
1291                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1292         }
1293         wrfl();
1294
1295         /* clear TX/RX time stamp registers, just to be sure */
1296         regval = rd32(E1000_TXSTMPL);
1297         regval = rd32(E1000_TXSTMPH);
1298         regval = rd32(E1000_RXSTMPL);
1299         regval = rd32(E1000_RXSTMPH);
1300
1301         return 0;
1302 }
1303
1304 /**
1305  * igb_ptp_set_ts_config - set hardware time stamping config
1306  * @netdev: netdev struct
1307  * @ifr: interface struct
1308  *
1309  **/
1310 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1311 {
1312         struct igb_adapter *adapter = netdev_priv(netdev);
1313         struct hwtstamp_config config;
1314         int err;
1315
1316         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1317                 return -EFAULT;
1318
1319         err = igb_ptp_set_timestamp_mode(adapter, &config);
1320         if (err)
1321                 return err;
1322
1323         /* save these settings for future reference */
1324         memcpy(&adapter->tstamp_config, &config,
1325                sizeof(adapter->tstamp_config));
1326
1327         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1328                 -EFAULT : 0;
1329 }
1330
1331 /**
1332  * igb_ptp_init - Initialize PTP functionality
1333  * @adapter: Board private structure
1334  *
1335  * This function is called at device probe to initialize the PTP
1336  * functionality.
1337  */
1338 void igb_ptp_init(struct igb_adapter *adapter)
1339 {
1340         struct e1000_hw *hw = &adapter->hw;
1341         struct net_device *netdev = adapter->netdev;
1342
1343         switch (hw->mac.type) {
1344         case e1000_82576:
1345                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1346                 adapter->ptp_caps.owner = THIS_MODULE;
1347                 adapter->ptp_caps.max_adj = 999999881;
1348                 adapter->ptp_caps.n_ext_ts = 0;
1349                 adapter->ptp_caps.pps = 0;
1350                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1351                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1352                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1353                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1354                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1355                 adapter->cc.read = igb_ptp_read_82576;
1356                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1357                 adapter->cc.mult = 1;
1358                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1359                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1360                 break;
1361         case e1000_82580:
1362         case e1000_i354:
1363         case e1000_i350:
1364                 igb_ptp_sdp_init(adapter);
1365                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1366                 adapter->ptp_caps.owner = THIS_MODULE;
1367                 adapter->ptp_caps.max_adj = 62499999;
1368                 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1369                 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1370                 adapter->ptp_caps.n_pins = IGB_N_SDP;
1371                 adapter->ptp_caps.pps = 0;
1372                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1373                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1374                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1375                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1376                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1377                 adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1378                 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1379                 adapter->cc.read = igb_ptp_read_82580;
1380                 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1381                 adapter->cc.mult = 1;
1382                 adapter->cc.shift = 0;
1383                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1384                 break;
1385         case e1000_i210:
1386         case e1000_i211:
1387                 igb_ptp_sdp_init(adapter);
1388                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1389                 adapter->ptp_caps.owner = THIS_MODULE;
1390                 adapter->ptp_caps.max_adj = 62499999;
1391                 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1392                 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1393                 adapter->ptp_caps.n_pins = IGB_N_SDP;
1394                 adapter->ptp_caps.pps = 1;
1395                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1396                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1397                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1398                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1399                 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1400                 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1401                 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1402                 break;
1403         default:
1404                 adapter->ptp_clock = NULL;
1405                 return;
1406         }
1407
1408         spin_lock_init(&adapter->tmreg_lock);
1409         INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1410
1411         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1412                 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1413                                   igb_ptp_overflow_check);
1414
1415         adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1416         adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1417
1418         igb_ptp_reset(adapter);
1419
1420         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1421                                                 &adapter->pdev->dev);
1422         if (IS_ERR(adapter->ptp_clock)) {
1423                 adapter->ptp_clock = NULL;
1424                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1425         } else if (adapter->ptp_clock) {
1426                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1427                          adapter->netdev->name);
1428                 adapter->ptp_flags |= IGB_PTP_ENABLED;
1429         }
1430 }
1431
1432 /**
1433  * igb_ptp_sdp_init - utility function which inits the SDP config structs
1434  * @adapter: Board private structure.
1435  **/
1436 void igb_ptp_sdp_init(struct igb_adapter *adapter)
1437 {
1438         int i;
1439
1440         for (i = 0; i < IGB_N_SDP; i++) {
1441                 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1442
1443                 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1444                 ppd->index = i;
1445                 ppd->func = PTP_PF_NONE;
1446         }
1447 }
1448
1449 /**
1450  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1451  * @adapter: Board private structure
1452  *
1453  * This function stops the overflow check work and PTP Tx timestamp work, and
1454  * will prepare the device for OS suspend.
1455  */
1456 void igb_ptp_suspend(struct igb_adapter *adapter)
1457 {
1458         if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1459                 return;
1460
1461         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1462                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1463
1464         cancel_work_sync(&adapter->ptp_tx_work);
1465         if (adapter->ptp_tx_skb) {
1466                 dev_kfree_skb_any(adapter->ptp_tx_skb);
1467                 adapter->ptp_tx_skb = NULL;
1468                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1469         }
1470 }
1471
1472 /**
1473  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1474  * @adapter: Board private structure.
1475  *
1476  * This function stops the PTP support and cancels the delayed work.
1477  **/
1478 void igb_ptp_stop(struct igb_adapter *adapter)
1479 {
1480         igb_ptp_suspend(adapter);
1481
1482         if (adapter->ptp_clock) {
1483                 ptp_clock_unregister(adapter->ptp_clock);
1484                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1485                          adapter->netdev->name);
1486                 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1487         }
1488 }
1489
1490 /**
1491  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1492  * @adapter: Board private structure.
1493  *
1494  * This function handles the reset work required to re-enable the PTP device.
1495  **/
1496 void igb_ptp_reset(struct igb_adapter *adapter)
1497 {
1498         struct e1000_hw *hw = &adapter->hw;
1499         unsigned long flags;
1500
1501         /* reset the tstamp_config */
1502         igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1503
1504         spin_lock_irqsave(&adapter->tmreg_lock, flags);
1505
1506         switch (adapter->hw.mac.type) {
1507         case e1000_82576:
1508                 /* Dial the nominal frequency. */
1509                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1510                 break;
1511         case e1000_82580:
1512         case e1000_i354:
1513         case e1000_i350:
1514         case e1000_i210:
1515         case e1000_i211:
1516                 wr32(E1000_TSAUXC, 0x0);
1517                 wr32(E1000_TSSDP, 0x0);
1518                 wr32(E1000_TSIM,
1519                      TSYNC_INTERRUPTS |
1520                      (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1521                 wr32(E1000_IMS, E1000_IMS_TS);
1522                 break;
1523         default:
1524                 /* No work to do. */
1525                 goto out;
1526         }
1527
1528         /* Re-initialize the timer. */
1529         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1530                 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1531
1532                 igb_ptp_write_i210(adapter, &ts);
1533         } else {
1534                 timecounter_init(&adapter->tc, &adapter->cc,
1535                                  ktime_to_ns(ktime_get_real()));
1536         }
1537 out:
1538         spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1539
1540         wrfl();
1541
1542         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1543                 schedule_delayed_work(&adapter->ptp_overflow_work,
1544                                       IGB_SYSTIM_OVERFLOW_PERIOD);
1545 }
This page took 0.128912 seconds and 4 git commands to generate.