1 // SPDX-License-Identifier: GPL-2.0+
4 #include <linux/module.h>
5 #include <linux/device.h>
7 #include <linux/ptp_classify.h>
11 #define INCVALUE_MASK 0x7fffffff
12 #define ISGN 0x80000000
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15 * and this update value cannot be reprogrammed.
17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
18 * nanoseconds time values for very long. For the 82580, SYSTIM always
19 * counts nanoseconds, but the upper 24 bits are not available. The
20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
23 * For the 82576, the SYSTIM register time unit is affect by the
24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25 * field are needed to provide the nominal 16 nanosecond period,
26 * leaving 19 bits for fractional nanoseconds.
28 * We scale the NIC clock cycle by a large factor so that relatively
29 * small clock corrections can be added or subtracted at each clock
30 * tick. The drawbacks of a large factor are a) that the clock
31 * register overflows more quickly (not such a big deal) and b) that
32 * the increment per tick has to fit into 24 bits. As a result we
33 * need to use a shift of 19 so we can fit a value of 16 into the
38 * +--------------+ +---+---+------+
39 * 82576 | 32 | | 8 | 5 | 19 |
40 * +--------------+ +---+---+------+
41 * \________ 45 bits _______/ fract
43 * +----------+---+ +--------------+
44 * 82580 | 24 | 8 | | 32 |
45 * +----------+---+ +--------------+
46 * reserved \______ 40 bits _____/
49 * The 45 bit 82576 SYSTIM overflows every
50 * 2^45 * 10^-9 / 3600 = 9.77 hours.
52 * The 40 bit 82580 SYSTIM overflows every
53 * 2^40 * 10^-9 / 60 = 18.3 minutes.
55 * SYSTIM is converted to real time using a timecounter. As
56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
57 * to be updated at least once per half of the SYSTIM interval.
58 * Scheduling of delayed work is not very accurate, and also the NIC
59 * clock can be adjusted to run up to 6% faster and the system clock
60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
61 * interval in the NIC time is shorter than 9.16 minutes.
64 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
66 #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580 40
70 #define IGB_82580_BASE_PERIOD 0x800000000
72 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
73 static void igb_ptp_sdp_init(struct igb_adapter *adapter);
75 /* SYSTIM read access for the 82576 */
76 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
78 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
79 struct e1000_hw *hw = &igb->hw;
83 lo = rd32(E1000_SYSTIML);
84 hi = rd32(E1000_SYSTIMH);
86 val = ((u64) hi) << 32;
92 /* SYSTIM read access for the 82580 */
93 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
95 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
96 struct e1000_hw *hw = &igb->hw;
100 /* The timestamp latches on lowest register read. For the 82580
101 * the lowest register is SYSTIMR instead of SYSTIML. However we only
102 * need to provide nanosecond resolution, so we just ignore it.
105 lo = rd32(E1000_SYSTIML);
106 hi = rd32(E1000_SYSTIMH);
108 val = ((u64) hi) << 32;
114 /* SYSTIM read access for I210/I211 */
115 static void igb_ptp_read_i210(struct igb_adapter *adapter,
116 struct timespec64 *ts)
118 struct e1000_hw *hw = &adapter->hw;
121 /* The timestamp latches on lowest register read. For I210/I211, the
122 * lowest register is SYSTIMR. Since we only need to provide nanosecond
123 * resolution, we can ignore it.
126 nsec = rd32(E1000_SYSTIML);
127 sec = rd32(E1000_SYSTIMH);
133 static void igb_ptp_write_i210(struct igb_adapter *adapter,
134 const struct timespec64 *ts)
136 struct e1000_hw *hw = &adapter->hw;
138 /* Writing the SYSTIMR register is not necessary as it only provides
139 * sub-nanosecond resolution.
141 wr32(E1000_SYSTIML, ts->tv_nsec);
142 wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
146 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
147 * @adapter: board private structure
148 * @hwtstamps: timestamp structure to update
149 * @systim: unsigned 64bit system time value.
151 * We need to convert the system time value stored in the RX/TXSTMP registers
152 * into a hwtstamp which can be used by the upper level timestamping functions.
154 * The 'tmreg_lock' spinlock is used to protect the consistency of the
155 * system time value. This is needed because reading the 64 bit time
156 * value involves reading two (or three) 32 bit registers. The first
157 * read latches the value. Ditto for writing.
159 * In addition, here have extended the system time with an overflow
160 * counter in software.
162 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
163 struct skb_shared_hwtstamps *hwtstamps,
169 memset(hwtstamps, 0, sizeof(*hwtstamps));
171 switch (adapter->hw.mac.type) {
176 spin_lock_irqsave(&adapter->tmreg_lock, flags);
177 ns = timecounter_cyc2time(&adapter->tc, systim);
178 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
180 hwtstamps->hwtstamp = ns_to_ktime(ns);
184 /* Upper 32 bits contain s, lower 32 bits contain ns. */
185 hwtstamps->hwtstamp = ktime_set(systim >> 32,
186 systim & 0xFFFFFFFF);
193 /* PTP clock operations */
194 static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
196 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
198 struct e1000_hw *hw = &igb->hw;
201 incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm);
203 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
208 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
210 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
212 struct e1000_hw *hw = &igb->hw;
217 neg_adj = diff_by_scaled_ppm(IGB_82580_BASE_PERIOD, scaled_ppm, &rate);
219 inca = rate & INCVALUE_MASK;
223 wr32(E1000_TIMINCA, inca);
228 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
230 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
234 spin_lock_irqsave(&igb->tmreg_lock, flags);
235 timecounter_adjtime(&igb->tc, delta);
236 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
241 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
243 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
246 struct timespec64 now, then = ns_to_timespec64(delta);
248 spin_lock_irqsave(&igb->tmreg_lock, flags);
250 igb_ptp_read_i210(igb, &now);
251 now = timespec64_add(now, then);
252 igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
254 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
259 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
260 struct timespec64 *ts,
261 struct ptp_system_timestamp *sts)
263 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
265 struct e1000_hw *hw = &igb->hw;
270 spin_lock_irqsave(&igb->tmreg_lock, flags);
272 ptp_read_system_prets(sts);
273 lo = rd32(E1000_SYSTIML);
274 ptp_read_system_postts(sts);
275 hi = rd32(E1000_SYSTIMH);
277 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
279 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
281 *ts = ns_to_timespec64(ns);
286 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
287 struct timespec64 *ts,
288 struct ptp_system_timestamp *sts)
290 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
292 struct e1000_hw *hw = &igb->hw;
297 spin_lock_irqsave(&igb->tmreg_lock, flags);
299 ptp_read_system_prets(sts);
301 ptp_read_system_postts(sts);
302 lo = rd32(E1000_SYSTIML);
303 hi = rd32(E1000_SYSTIMH);
305 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
307 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
309 *ts = ns_to_timespec64(ns);
314 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
315 struct timespec64 *ts,
316 struct ptp_system_timestamp *sts)
318 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
320 struct e1000_hw *hw = &igb->hw;
323 spin_lock_irqsave(&igb->tmreg_lock, flags);
325 ptp_read_system_prets(sts);
327 ptp_read_system_postts(sts);
328 ts->tv_nsec = rd32(E1000_SYSTIML);
329 ts->tv_sec = rd32(E1000_SYSTIMH);
331 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
336 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
337 const struct timespec64 *ts)
339 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
344 ns = timespec64_to_ns(ts);
346 spin_lock_irqsave(&igb->tmreg_lock, flags);
348 timecounter_init(&igb->tc, &igb->cc, ns);
350 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
355 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
356 const struct timespec64 *ts)
358 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
362 spin_lock_irqsave(&igb->tmreg_lock, flags);
364 igb_ptp_write_i210(igb, ts);
366 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
371 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
373 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
374 static const u32 mask[IGB_N_SDP] = {
377 E1000_CTRL_EXT_SDP2_DIR,
378 E1000_CTRL_EXT_SDP3_DIR,
387 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
389 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
390 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
392 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
393 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
395 static const u32 ts_sdp_en[IGB_N_SDP] = {
396 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
398 struct e1000_hw *hw = &igb->hw;
399 u32 ctrl, ctrl_ext, tssdp = 0;
401 ctrl = rd32(E1000_CTRL);
402 ctrl_ext = rd32(E1000_CTRL_EXT);
403 tssdp = rd32(E1000_TSSDP);
405 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
407 /* Make sure this pin is not enabled as an output. */
408 tssdp &= ~ts_sdp_en[pin];
411 tssdp &= ~AUX1_SEL_SDP3;
412 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
414 tssdp &= ~AUX0_SEL_SDP3;
415 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
418 wr32(E1000_TSSDP, tssdp);
419 wr32(E1000_CTRL, ctrl);
420 wr32(E1000_CTRL_EXT, ctrl_ext);
423 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
425 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
426 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
428 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
429 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
431 static const u32 ts_sdp_en[IGB_N_SDP] = {
432 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
434 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
435 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
436 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
438 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
439 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
440 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
442 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
443 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
444 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
446 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
447 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
448 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
450 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
451 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
452 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
454 struct e1000_hw *hw = &igb->hw;
455 u32 ctrl, ctrl_ext, tssdp = 0;
457 ctrl = rd32(E1000_CTRL);
458 ctrl_ext = rd32(E1000_CTRL_EXT);
459 tssdp = rd32(E1000_TSSDP);
461 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
463 /* Make sure this pin is not enabled as an input. */
464 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
465 tssdp &= ~AUX0_TS_SDP_EN;
467 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
468 tssdp &= ~AUX1_TS_SDP_EN;
470 tssdp &= ~ts_sdp_sel_clr[pin];
473 tssdp |= ts_sdp_sel_fc1[pin];
475 tssdp |= ts_sdp_sel_fc0[pin];
478 tssdp |= ts_sdp_sel_tt1[pin];
480 tssdp |= ts_sdp_sel_tt0[pin];
482 tssdp |= ts_sdp_en[pin];
484 wr32(E1000_TSSDP, tssdp);
485 wr32(E1000_CTRL, ctrl);
486 wr32(E1000_CTRL_EXT, ctrl_ext);
489 static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
490 struct ptp_clock_request *rq, int on)
492 struct igb_adapter *igb =
493 container_of(ptp, struct igb_adapter, ptp_caps);
494 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
495 systimh, level_mask, level, rem;
496 struct e1000_hw *hw = &igb->hw;
497 struct timespec64 ts, start;
504 case PTP_CLK_REQ_EXTTS:
505 /* Reject requests with unsupported flags */
506 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
513 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
518 if (rq->extts.index == 1) {
519 tsauxc_mask = TSAUXC_EN_TS1;
520 tsim_mask = TSINTR_AUTT1;
522 tsauxc_mask = TSAUXC_EN_TS0;
523 tsim_mask = TSINTR_AUTT0;
525 spin_lock_irqsave(&igb->tmreg_lock, flags);
526 tsauxc = rd32(E1000_TSAUXC);
527 tsim = rd32(E1000_TSIM);
529 igb_pin_extts(igb, rq->extts.index, pin);
530 tsauxc |= tsauxc_mask;
533 tsauxc &= ~tsauxc_mask;
536 wr32(E1000_TSAUXC, tsauxc);
537 wr32(E1000_TSIM, tsim);
538 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
541 case PTP_CLK_REQ_PEROUT:
542 /* Reject requests with unsupported flags */
543 if (rq->perout.flags)
547 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
552 ts.tv_sec = rq->perout.period.sec;
553 ts.tv_nsec = rq->perout.period.nsec;
554 ns = timespec64_to_ns(&ts);
558 ts = ns_to_timespec64(ns);
559 if (rq->perout.index == 1) {
560 tsauxc_mask = TSAUXC_EN_TT1;
561 tsim_mask = TSINTR_TT1;
562 trgttiml = E1000_TRGTTIML1;
563 trgttimh = E1000_TRGTTIMH1;
565 tsauxc_mask = TSAUXC_EN_TT0;
566 tsim_mask = TSINTR_TT0;
567 trgttiml = E1000_TRGTTIML0;
568 trgttimh = E1000_TRGTTIMH0;
570 spin_lock_irqsave(&igb->tmreg_lock, flags);
571 tsauxc = rd32(E1000_TSAUXC);
572 tsim = rd32(E1000_TSIM);
573 if (rq->perout.index == 1) {
574 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
577 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
581 int i = rq->perout.index;
583 /* read systim registers in sequence */
585 systiml = rd32(E1000_SYSTIML);
586 systimh = rd32(E1000_SYSTIMH);
587 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
588 now = timecounter_cyc2time(&igb->tc, systim);
591 level_mask = (i == 1) ? 0x80000 : 0x40000;
592 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
594 level_mask = (i == 1) ? 0x80 : 0x40;
595 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
598 div_u64_rem(now, ns, &rem);
599 systim = systim + (ns - rem);
601 /* synchronize pin level with rising/falling edges */
602 div_u64_rem(now, ns << 1, &rem);
604 /* first half of period */
606 /* output is already low, skip this period */
610 /* second half of period */
612 /* output is already high, skip this period */
617 start = ns_to_timespec64(systim + (ns - rem));
618 igb_pin_perout(igb, i, pin, 0);
619 igb->perout[i].start.tv_sec = start.tv_sec;
620 igb->perout[i].start.tv_nsec = start.tv_nsec;
621 igb->perout[i].period.tv_sec = ts.tv_sec;
622 igb->perout[i].period.tv_nsec = ts.tv_nsec;
624 wr32(trgttiml, (u32)systim);
625 wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
626 tsauxc |= tsauxc_mask;
629 wr32(E1000_TSAUXC, tsauxc);
630 wr32(E1000_TSIM, tsim);
631 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
634 case PTP_CLK_REQ_PPS:
641 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
642 struct ptp_clock_request *rq, int on)
644 struct igb_adapter *igb =
645 container_of(ptp, struct igb_adapter, ptp_caps);
646 struct e1000_hw *hw = &igb->hw;
647 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
649 struct timespec64 ts;
650 int use_freq = 0, pin = -1;
654 case PTP_CLK_REQ_EXTTS:
655 /* Reject requests with unsupported flags */
656 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
662 /* Reject requests failing to enable both edges. */
663 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
664 (rq->extts.flags & PTP_ENABLE_FEATURE) &&
665 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
669 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
674 if (rq->extts.index == 1) {
675 tsauxc_mask = TSAUXC_EN_TS1;
676 tsim_mask = TSINTR_AUTT1;
678 tsauxc_mask = TSAUXC_EN_TS0;
679 tsim_mask = TSINTR_AUTT0;
681 spin_lock_irqsave(&igb->tmreg_lock, flags);
682 tsauxc = rd32(E1000_TSAUXC);
683 tsim = rd32(E1000_TSIM);
685 igb_pin_extts(igb, rq->extts.index, pin);
686 tsauxc |= tsauxc_mask;
689 tsauxc &= ~tsauxc_mask;
692 wr32(E1000_TSAUXC, tsauxc);
693 wr32(E1000_TSIM, tsim);
694 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
697 case PTP_CLK_REQ_PEROUT:
698 /* Reject requests with unsupported flags */
699 if (rq->perout.flags)
703 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
708 ts.tv_sec = rq->perout.period.sec;
709 ts.tv_nsec = rq->perout.period.nsec;
710 ns = timespec64_to_ns(&ts);
712 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
713 (ns == 250000000LL) || (ns == 500000000LL))) {
718 ts = ns_to_timespec64(ns);
719 if (rq->perout.index == 1) {
721 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
724 tsauxc_mask = TSAUXC_EN_TT1;
725 tsim_mask = TSINTR_TT1;
727 trgttiml = E1000_TRGTTIML1;
728 trgttimh = E1000_TRGTTIMH1;
729 freqout = E1000_FREQOUT1;
732 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
735 tsauxc_mask = TSAUXC_EN_TT0;
736 tsim_mask = TSINTR_TT0;
738 trgttiml = E1000_TRGTTIML0;
739 trgttimh = E1000_TRGTTIMH0;
740 freqout = E1000_FREQOUT0;
742 spin_lock_irqsave(&igb->tmreg_lock, flags);
743 tsauxc = rd32(E1000_TSAUXC);
744 tsim = rd32(E1000_TSIM);
745 if (rq->perout.index == 1) {
746 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
749 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
753 int i = rq->perout.index;
754 igb_pin_perout(igb, i, pin, use_freq);
755 igb->perout[i].start.tv_sec = rq->perout.start.sec;
756 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
757 igb->perout[i].period.tv_sec = ts.tv_sec;
758 igb->perout[i].period.tv_nsec = ts.tv_nsec;
759 wr32(trgttimh, rq->perout.start.sec);
760 wr32(trgttiml, rq->perout.start.nsec);
763 tsauxc |= tsauxc_mask;
766 wr32(E1000_TSAUXC, tsauxc);
767 wr32(E1000_TSIM, tsim);
768 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
771 case PTP_CLK_REQ_PPS:
772 spin_lock_irqsave(&igb->tmreg_lock, flags);
773 tsim = rd32(E1000_TSIM);
775 tsim |= TSINTR_SYS_WRAP;
777 tsim &= ~TSINTR_SYS_WRAP;
778 igb->pps_sys_wrap_on = !!on;
779 wr32(E1000_TSIM, tsim);
780 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
787 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
788 struct ptp_clock_request *rq, int on)
793 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
794 enum ptp_pin_function func, unsigned int chan)
809 * @work: pointer to work struct
811 * This work function polls the TSYNCTXCTL valid bit to determine when a
812 * timestamp has been taken for the current stored skb.
814 static void igb_ptp_tx_work(struct work_struct *work)
816 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
818 struct e1000_hw *hw = &adapter->hw;
821 if (!adapter->ptp_tx_skb)
824 if (time_is_before_jiffies(adapter->ptp_tx_start +
825 IGB_PTP_TX_TIMEOUT)) {
826 dev_kfree_skb_any(adapter->ptp_tx_skb);
827 adapter->ptp_tx_skb = NULL;
828 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
829 adapter->tx_hwtstamp_timeouts++;
830 /* Clear the tx valid bit in TSYNCTXCTL register to enable
834 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
838 tsynctxctl = rd32(E1000_TSYNCTXCTL);
839 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
840 igb_ptp_tx_hwtstamp(adapter);
842 /* reschedule to check later */
843 schedule_work(&adapter->ptp_tx_work);
846 static void igb_ptp_overflow_check(struct work_struct *work)
848 struct igb_adapter *igb =
849 container_of(work, struct igb_adapter, ptp_overflow_work.work);
850 struct timespec64 ts;
853 /* Update the timecounter */
854 ns = timecounter_read(&igb->tc);
856 ts = ns_to_timespec64(ns);
857 pr_debug("igb overflow check at %lld.%09lu\n",
858 (long long) ts.tv_sec, ts.tv_nsec);
860 schedule_delayed_work(&igb->ptp_overflow_work,
861 IGB_SYSTIM_OVERFLOW_PERIOD);
865 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
866 * @adapter: private network adapter structure
868 * This watchdog task is scheduled to detect error case where hardware has
869 * dropped an Rx packet that was timestamped when the ring is full. The
870 * particular error is rare but leaves the device in a state unable to timestamp
871 * any future packets.
873 void igb_ptp_rx_hang(struct igb_adapter *adapter)
875 struct e1000_hw *hw = &adapter->hw;
876 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
877 unsigned long rx_event;
879 /* Other hardware uses per-packet timestamps */
880 if (hw->mac.type != e1000_82576)
883 /* If we don't have a valid timestamp in the registers, just update the
884 * timeout counter and exit
886 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
887 adapter->last_rx_ptp_check = jiffies;
891 /* Determine the most recent watchdog or rx_timestamp event */
892 rx_event = adapter->last_rx_ptp_check;
893 if (time_after(adapter->last_rx_timestamp, rx_event))
894 rx_event = adapter->last_rx_timestamp;
896 /* Only need to read the high RXSTMP register to clear the lock */
897 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
899 adapter->last_rx_ptp_check = jiffies;
900 adapter->rx_hwtstamp_cleared++;
901 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
906 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
907 * @adapter: private network adapter structure
909 void igb_ptp_tx_hang(struct igb_adapter *adapter)
911 struct e1000_hw *hw = &adapter->hw;
912 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
915 if (!adapter->ptp_tx_skb)
918 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
921 /* If we haven't received a timestamp within the timeout, it is
922 * reasonable to assume that it will never occur, so we can unlock the
923 * timestamp bit when this occurs.
926 cancel_work_sync(&adapter->ptp_tx_work);
927 dev_kfree_skb_any(adapter->ptp_tx_skb);
928 adapter->ptp_tx_skb = NULL;
929 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
930 adapter->tx_hwtstamp_timeouts++;
931 /* Clear the tx valid bit in TSYNCTXCTL register to enable
935 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
940 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
941 * @adapter: Board private structure.
943 * If we were asked to do hardware stamping and such a time stamp is
944 * available, then it must have been for this skb here because we only
945 * allow only one such packet into the queue.
947 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
949 struct sk_buff *skb = adapter->ptp_tx_skb;
950 struct e1000_hw *hw = &adapter->hw;
951 struct skb_shared_hwtstamps shhwtstamps;
955 regval = rd32(E1000_TXSTMPL);
956 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
958 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
959 /* adjust timestamp for the TX latency based on link speed */
960 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
961 switch (adapter->link_speed) {
963 adjust = IGB_I210_TX_LATENCY_10;
966 adjust = IGB_I210_TX_LATENCY_100;
969 adjust = IGB_I210_TX_LATENCY_1000;
974 shhwtstamps.hwtstamp =
975 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
977 /* Clear the lock early before calling skb_tstamp_tx so that
978 * applications are not woken up before the lock bit is clear. We use
979 * a copy of the skb pointer to ensure other threads can't change it
980 * while we're notifying the stack.
982 adapter->ptp_tx_skb = NULL;
983 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
985 /* Notify the stack and free the skb after we've unlocked */
986 skb_tstamp_tx(skb, &shhwtstamps);
987 dev_kfree_skb_any(skb);
991 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
992 * @q_vector: Pointer to interrupt specific structure
993 * @va: Pointer to address containing Rx buffer
994 * @timestamp: Pointer where timestamp will be stored
996 * This function is meant to retrieve a timestamp from the first buffer of an
997 * incoming frame. The value is stored in little endian format starting on
1000 * Returns: The timestamp header length or 0 if not available
1002 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1005 struct igb_adapter *adapter = q_vector->adapter;
1006 struct e1000_hw *hw = &adapter->hw;
1007 struct skb_shared_hwtstamps ts;
1008 __le64 *regval = (__le64 *)va;
1011 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1014 /* The timestamp is recorded in little endian format.
1016 * Field: Reserved Reserved SYSTIML SYSTIMH
1019 /* check reserved dwords are zero, be/le doesn't matter for zero */
1023 igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1025 /* adjust timestamp for the RX latency based on link speed */
1026 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1027 switch (adapter->link_speed) {
1029 adjust = IGB_I210_RX_LATENCY_10;
1032 adjust = IGB_I210_RX_LATENCY_100;
1035 adjust = IGB_I210_RX_LATENCY_1000;
1040 *timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1042 return IGB_TS_HDR_LEN;
1046 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1047 * @q_vector: Pointer to interrupt specific structure
1048 * @skb: Buffer containing timestamp and packet
1050 * This function is meant to retrieve a timestamp from the internal registers
1051 * of the adapter and store it in the skb.
1053 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1055 struct igb_adapter *adapter = q_vector->adapter;
1056 struct e1000_hw *hw = &adapter->hw;
1060 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1063 /* If this bit is set, then the RX registers contain the time stamp. No
1064 * other packet will be time stamped until we read these registers, so
1065 * read the registers to make them available again. Because only one
1066 * packet can be time stamped at a time, we know that the register
1067 * values must belong to this one here and therefore we don't need to
1068 * compare any of the additional attributes stored for it.
1070 * If nothing went wrong, then it should have a shared tx_flags that we
1071 * can turn into a skb_shared_hwtstamps.
1073 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1076 regval = rd32(E1000_RXSTMPL);
1077 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1079 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1081 /* adjust timestamp for the RX latency based on link speed */
1082 if (adapter->hw.mac.type == e1000_i210) {
1083 switch (adapter->link_speed) {
1085 adjust = IGB_I210_RX_LATENCY_10;
1088 adjust = IGB_I210_RX_LATENCY_100;
1091 adjust = IGB_I210_RX_LATENCY_1000;
1095 skb_hwtstamps(skb)->hwtstamp =
1096 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1098 /* Update the last_rx_timestamp timer in order to enable watchdog check
1099 * for error case of latched timestamp on a dropped packet.
1101 adapter->last_rx_timestamp = jiffies;
1105 * igb_ptp_get_ts_config - get hardware time stamping config
1106 * @netdev: netdev struct
1107 * @ifr: interface struct
1109 * Get the hwtstamp_config settings to return to the user. Rather than attempt
1110 * to deconstruct the settings from the registers, just return a shadow copy
1111 * of the last known settings.
1113 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1115 struct igb_adapter *adapter = netdev_priv(netdev);
1116 struct hwtstamp_config *config = &adapter->tstamp_config;
1118 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1123 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1124 * @adapter: networking device structure
1125 * @config: hwtstamp configuration
1127 * Outgoing time stamping can be enabled and disabled. Play nice and
1128 * disable it when requested, although it shouldn't case any overhead
1129 * when no packet needs it. At most one packet in the queue may be
1130 * marked for time stamping, otherwise it would be impossible to tell
1131 * for sure to which packet the hardware time stamp belongs.
1133 * Incoming time stamping has to be configured via the hardware
1134 * filters. Not all combinations are supported, in particular event
1135 * type has to be specified. Matching the kind of event packet is
1136 * not supported, with the exception of "all V2 events regardless of
1139 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1140 struct hwtstamp_config *config)
1142 struct e1000_hw *hw = &adapter->hw;
1143 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1144 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1145 u32 tsync_rx_cfg = 0;
1150 switch (config->tx_type) {
1151 case HWTSTAMP_TX_OFF:
1154 case HWTSTAMP_TX_ON:
1160 switch (config->rx_filter) {
1161 case HWTSTAMP_FILTER_NONE:
1164 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1165 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1166 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1169 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1170 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1171 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1174 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1175 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1176 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1177 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1178 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1179 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1180 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1181 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1182 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1183 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1184 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1188 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1189 case HWTSTAMP_FILTER_NTP_ALL:
1190 case HWTSTAMP_FILTER_ALL:
1191 /* 82576 cannot timestamp all packets, which it needs to do to
1192 * support both V1 Sync and Delay_Req messages
1194 if (hw->mac.type != e1000_82576) {
1195 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1196 config->rx_filter = HWTSTAMP_FILTER_ALL;
1201 config->rx_filter = HWTSTAMP_FILTER_NONE;
1205 if (hw->mac.type == e1000_82575) {
1206 if (tsync_rx_ctl | tsync_tx_ctl)
1211 /* Per-packet timestamping only works if all packets are
1212 * timestamped, so enable timestamping in all packets as
1213 * long as one Rx filter was configured.
1215 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1216 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1217 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1218 config->rx_filter = HWTSTAMP_FILTER_ALL;
1222 if ((hw->mac.type == e1000_i210) ||
1223 (hw->mac.type == e1000_i211)) {
1224 regval = rd32(E1000_RXPBS);
1225 regval |= E1000_RXPBS_CFG_TS_EN;
1226 wr32(E1000_RXPBS, regval);
1230 /* enable/disable TX */
1231 regval = rd32(E1000_TSYNCTXCTL);
1232 regval &= ~E1000_TSYNCTXCTL_ENABLED;
1233 regval |= tsync_tx_ctl;
1234 wr32(E1000_TSYNCTXCTL, regval);
1236 /* enable/disable RX */
1237 regval = rd32(E1000_TSYNCRXCTL);
1238 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1239 regval |= tsync_rx_ctl;
1240 wr32(E1000_TSYNCRXCTL, regval);
1242 /* define which PTP packets are time stamped */
1243 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1245 /* define ethertype filter for timestamped packets */
1247 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1248 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1249 E1000_ETQF_1588 | /* enable timestamping */
1250 ETH_P_1588)); /* 1588 eth protocol type */
1252 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1254 /* L4 Queue Filter[3]: filter by destination port and protocol */
1256 u32 ftqf = (IPPROTO_UDP /* UDP */
1257 | E1000_FTQF_VF_BP /* VF not compared */
1258 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1259 | E1000_FTQF_MASK); /* mask all inputs */
1260 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1262 wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1263 wr32(E1000_IMIREXT(3),
1264 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1265 if (hw->mac.type == e1000_82576) {
1266 /* enable source port check */
1267 wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1268 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1270 wr32(E1000_FTQF(3), ftqf);
1272 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1276 /* clear TX/RX time stamp registers, just to be sure */
1277 regval = rd32(E1000_TXSTMPL);
1278 regval = rd32(E1000_TXSTMPH);
1279 regval = rd32(E1000_RXSTMPL);
1280 regval = rd32(E1000_RXSTMPH);
1286 * igb_ptp_set_ts_config - set hardware time stamping config
1287 * @netdev: netdev struct
1288 * @ifr: interface struct
1291 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1293 struct igb_adapter *adapter = netdev_priv(netdev);
1294 struct hwtstamp_config config;
1297 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1300 err = igb_ptp_set_timestamp_mode(adapter, &config);
1304 /* save these settings for future reference */
1305 memcpy(&adapter->tstamp_config, &config,
1306 sizeof(adapter->tstamp_config));
1308 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1313 * igb_ptp_init - Initialize PTP functionality
1314 * @adapter: Board private structure
1316 * This function is called at device probe to initialize the PTP
1319 void igb_ptp_init(struct igb_adapter *adapter)
1321 struct e1000_hw *hw = &adapter->hw;
1322 struct net_device *netdev = adapter->netdev;
1324 switch (hw->mac.type) {
1326 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1327 adapter->ptp_caps.owner = THIS_MODULE;
1328 adapter->ptp_caps.max_adj = 999999881;
1329 adapter->ptp_caps.n_ext_ts = 0;
1330 adapter->ptp_caps.pps = 0;
1331 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1332 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1333 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1334 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1335 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1336 adapter->cc.read = igb_ptp_read_82576;
1337 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1338 adapter->cc.mult = 1;
1339 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1340 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1345 igb_ptp_sdp_init(adapter);
1346 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1347 adapter->ptp_caps.owner = THIS_MODULE;
1348 adapter->ptp_caps.max_adj = 62499999;
1349 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1350 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1351 adapter->ptp_caps.n_pins = IGB_N_SDP;
1352 adapter->ptp_caps.pps = 0;
1353 adapter->ptp_caps.pin_config = adapter->sdp_config;
1354 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1355 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1356 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1357 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1358 adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1359 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1360 adapter->cc.read = igb_ptp_read_82580;
1361 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1362 adapter->cc.mult = 1;
1363 adapter->cc.shift = 0;
1364 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1368 igb_ptp_sdp_init(adapter);
1369 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1370 adapter->ptp_caps.owner = THIS_MODULE;
1371 adapter->ptp_caps.max_adj = 62499999;
1372 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1373 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1374 adapter->ptp_caps.n_pins = IGB_N_SDP;
1375 adapter->ptp_caps.pps = 1;
1376 adapter->ptp_caps.pin_config = adapter->sdp_config;
1377 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1378 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1379 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1380 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1381 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1382 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1385 adapter->ptp_clock = NULL;
1389 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1390 &adapter->pdev->dev);
1391 if (IS_ERR(adapter->ptp_clock)) {
1392 adapter->ptp_clock = NULL;
1393 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1394 } else if (adapter->ptp_clock) {
1395 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1396 adapter->netdev->name);
1397 adapter->ptp_flags |= IGB_PTP_ENABLED;
1399 spin_lock_init(&adapter->tmreg_lock);
1400 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1402 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1403 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1404 igb_ptp_overflow_check);
1406 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1407 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1409 igb_ptp_reset(adapter);
1414 * igb_ptp_sdp_init - utility function which inits the SDP config structs
1415 * @adapter: Board private structure.
1417 void igb_ptp_sdp_init(struct igb_adapter *adapter)
1421 for (i = 0; i < IGB_N_SDP; i++) {
1422 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1424 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1426 ppd->func = PTP_PF_NONE;
1431 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1432 * @adapter: Board private structure
1434 * This function stops the overflow check work and PTP Tx timestamp work, and
1435 * will prepare the device for OS suspend.
1437 void igb_ptp_suspend(struct igb_adapter *adapter)
1439 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1442 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1443 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1445 cancel_work_sync(&adapter->ptp_tx_work);
1446 if (adapter->ptp_tx_skb) {
1447 dev_kfree_skb_any(adapter->ptp_tx_skb);
1448 adapter->ptp_tx_skb = NULL;
1449 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1454 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1455 * @adapter: Board private structure.
1457 * This function stops the PTP support and cancels the delayed work.
1459 void igb_ptp_stop(struct igb_adapter *adapter)
1461 igb_ptp_suspend(adapter);
1463 if (adapter->ptp_clock) {
1464 ptp_clock_unregister(adapter->ptp_clock);
1465 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1466 adapter->netdev->name);
1467 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1472 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1473 * @adapter: Board private structure.
1475 * This function handles the reset work required to re-enable the PTP device.
1477 void igb_ptp_reset(struct igb_adapter *adapter)
1479 struct e1000_hw *hw = &adapter->hw;
1480 unsigned long flags;
1482 /* reset the tstamp_config */
1483 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1485 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1487 switch (adapter->hw.mac.type) {
1489 /* Dial the nominal frequency. */
1490 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1497 wr32(E1000_TSAUXC, 0x0);
1498 wr32(E1000_TSSDP, 0x0);
1501 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1502 wr32(E1000_IMS, E1000_IMS_TS);
1505 /* No work to do. */
1509 /* Re-initialize the timer. */
1510 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1511 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1513 igb_ptp_write_i210(adapter, &ts);
1515 timecounter_init(&adapter->tc, &adapter->cc,
1516 ktime_to_ns(ktime_get_real()));
1519 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1523 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1524 schedule_delayed_work(&adapter->ptp_overflow_work,
1525 IGB_SYSTIM_OVERFLOW_PERIOD);