]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/igb/igb_ptp.c
Linux 6.14-rc3
[linux.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <[email protected]> */
3
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8
9 #include "igb.h"
10
11 #define INCVALUE_MASK           0x7fffffff
12 #define ISGN                    0x80000000
13
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter needs
57  * to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, and also the NIC
59  * clock can be adjusted to run up to 6% faster and the system clock
60  * up to 10% slower, so we aim for 6 minutes to be sure the actual
61  * interval in the NIC time is shorter than 9.16 minutes.
62  */
63
64 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
66 #define INCPERIOD_82576                 BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK             GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576                  (16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580                 40
70 #define IGB_82580_BASE_PERIOD           0x800000000
71
72 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
73 static void igb_ptp_sdp_init(struct igb_adapter *adapter);
74
75 /* SYSTIM read access for the 82576 */
76 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
77 {
78         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
79         struct e1000_hw *hw = &igb->hw;
80         u64 val;
81         u32 lo, hi;
82
83         lo = rd32(E1000_SYSTIML);
84         hi = rd32(E1000_SYSTIMH);
85
86         val = ((u64) hi) << 32;
87         val |= lo;
88
89         return val;
90 }
91
92 /* SYSTIM read access for the 82580 */
93 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
94 {
95         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
96         struct e1000_hw *hw = &igb->hw;
97         u32 lo, hi;
98         u64 val;
99
100         /* The timestamp latches on lowest register read. For the 82580
101          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
102          * need to provide nanosecond resolution, so we just ignore it.
103          */
104         rd32(E1000_SYSTIMR);
105         lo = rd32(E1000_SYSTIML);
106         hi = rd32(E1000_SYSTIMH);
107
108         val = ((u64) hi) << 32;
109         val |= lo;
110
111         return val;
112 }
113
114 /* SYSTIM read access for I210/I211 */
115 static void igb_ptp_read_i210(struct igb_adapter *adapter,
116                               struct timespec64 *ts)
117 {
118         struct e1000_hw *hw = &adapter->hw;
119         u32 sec, nsec;
120
121         /* The timestamp latches on lowest register read. For I210/I211, the
122          * lowest register is SYSTIMR. Since we only need to provide nanosecond
123          * resolution, we can ignore it.
124          */
125         rd32(E1000_SYSTIMR);
126         nsec = rd32(E1000_SYSTIML);
127         sec = rd32(E1000_SYSTIMH);
128
129         ts->tv_sec = sec;
130         ts->tv_nsec = nsec;
131 }
132
133 static void igb_ptp_write_i210(struct igb_adapter *adapter,
134                                const struct timespec64 *ts)
135 {
136         struct e1000_hw *hw = &adapter->hw;
137
138         /* Writing the SYSTIMR register is not necessary as it only provides
139          * sub-nanosecond resolution.
140          */
141         wr32(E1000_SYSTIML, ts->tv_nsec);
142         wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
143 }
144
145 /**
146  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
147  * @adapter: board private structure
148  * @hwtstamps: timestamp structure to update
149  * @systim: unsigned 64bit system time value.
150  *
151  * We need to convert the system time value stored in the RX/TXSTMP registers
152  * into a hwtstamp which can be used by the upper level timestamping functions.
153  *
154  * The 'tmreg_lock' spinlock is used to protect the consistency of the
155  * system time value. This is needed because reading the 64 bit time
156  * value involves reading two (or three) 32 bit registers. The first
157  * read latches the value. Ditto for writing.
158  *
159  * In addition, here have extended the system time with an overflow
160  * counter in software.
161  **/
162 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
163                                        struct skb_shared_hwtstamps *hwtstamps,
164                                        u64 systim)
165 {
166         unsigned long flags;
167         u64 ns;
168
169         memset(hwtstamps, 0, sizeof(*hwtstamps));
170
171         switch (adapter->hw.mac.type) {
172         case e1000_82576:
173         case e1000_82580:
174         case e1000_i354:
175         case e1000_i350:
176                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
177                 ns = timecounter_cyc2time(&adapter->tc, systim);
178                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
179
180                 hwtstamps->hwtstamp = ns_to_ktime(ns);
181                 break;
182         case e1000_i210:
183         case e1000_i211:
184                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
185                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
186                                                 systim & 0xFFFFFFFF);
187                 break;
188         default:
189                 break;
190         }
191 }
192
193 /* PTP clock operations */
194 static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
195 {
196         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197                                                ptp_caps);
198         struct e1000_hw *hw = &igb->hw;
199         u64 incvalue;
200
201         incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm);
202
203         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
204
205         return 0;
206 }
207
208 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
209 {
210         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
211                                                ptp_caps);
212         struct e1000_hw *hw = &igb->hw;
213         bool neg_adj;
214         u64 rate;
215         u32 inca;
216
217         neg_adj = diff_by_scaled_ppm(IGB_82580_BASE_PERIOD, scaled_ppm, &rate);
218
219         inca = rate & INCVALUE_MASK;
220         if (neg_adj)
221                 inca |= ISGN;
222
223         wr32(E1000_TIMINCA, inca);
224
225         return 0;
226 }
227
228 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
229 {
230         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231                                                ptp_caps);
232         unsigned long flags;
233
234         spin_lock_irqsave(&igb->tmreg_lock, flags);
235         timecounter_adjtime(&igb->tc, delta);
236         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
237
238         return 0;
239 }
240
241 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
242 {
243         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244                                                ptp_caps);
245         unsigned long flags;
246         struct timespec64 now, then = ns_to_timespec64(delta);
247
248         spin_lock_irqsave(&igb->tmreg_lock, flags);
249
250         igb_ptp_read_i210(igb, &now);
251         now = timespec64_add(now, then);
252         igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
253
254         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
255
256         return 0;
257 }
258
259 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
260                                   struct timespec64 *ts,
261                                   struct ptp_system_timestamp *sts)
262 {
263         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
264                                                ptp_caps);
265         struct e1000_hw *hw = &igb->hw;
266         unsigned long flags;
267         u32 lo, hi;
268         u64 ns;
269
270         spin_lock_irqsave(&igb->tmreg_lock, flags);
271
272         ptp_read_system_prets(sts);
273         lo = rd32(E1000_SYSTIML);
274         ptp_read_system_postts(sts);
275         hi = rd32(E1000_SYSTIMH);
276
277         ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
278
279         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
280
281         *ts = ns_to_timespec64(ns);
282
283         return 0;
284 }
285
286 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
287                                   struct timespec64 *ts,
288                                   struct ptp_system_timestamp *sts)
289 {
290         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
291                                                ptp_caps);
292         struct e1000_hw *hw = &igb->hw;
293         unsigned long flags;
294         u32 lo, hi;
295         u64 ns;
296
297         spin_lock_irqsave(&igb->tmreg_lock, flags);
298
299         ptp_read_system_prets(sts);
300         rd32(E1000_SYSTIMR);
301         ptp_read_system_postts(sts);
302         lo = rd32(E1000_SYSTIML);
303         hi = rd32(E1000_SYSTIMH);
304
305         ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
306
307         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
308
309         *ts = ns_to_timespec64(ns);
310
311         return 0;
312 }
313
314 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
315                                  struct timespec64 *ts,
316                                  struct ptp_system_timestamp *sts)
317 {
318         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
319                                                ptp_caps);
320         struct e1000_hw *hw = &igb->hw;
321         unsigned long flags;
322
323         spin_lock_irqsave(&igb->tmreg_lock, flags);
324
325         ptp_read_system_prets(sts);
326         rd32(E1000_SYSTIMR);
327         ptp_read_system_postts(sts);
328         ts->tv_nsec = rd32(E1000_SYSTIML);
329         ts->tv_sec = rd32(E1000_SYSTIMH);
330
331         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
332
333         return 0;
334 }
335
336 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
337                                  const struct timespec64 *ts)
338 {
339         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
340                                                ptp_caps);
341         unsigned long flags;
342         u64 ns;
343
344         ns = timespec64_to_ns(ts);
345
346         spin_lock_irqsave(&igb->tmreg_lock, flags);
347
348         timecounter_init(&igb->tc, &igb->cc, ns);
349
350         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
351
352         return 0;
353 }
354
355 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
356                                 const struct timespec64 *ts)
357 {
358         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
359                                                ptp_caps);
360         unsigned long flags;
361
362         spin_lock_irqsave(&igb->tmreg_lock, flags);
363
364         igb_ptp_write_i210(igb, ts);
365
366         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
367
368         return 0;
369 }
370
371 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
372 {
373         u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
374         static const u32 mask[IGB_N_SDP] = {
375                 E1000_CTRL_SDP0_DIR,
376                 E1000_CTRL_SDP1_DIR,
377                 E1000_CTRL_EXT_SDP2_DIR,
378                 E1000_CTRL_EXT_SDP3_DIR,
379         };
380
381         if (input)
382                 *ptr &= ~mask[pin];
383         else
384                 *ptr |= mask[pin];
385 }
386
387 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
388 {
389         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
390                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
391         };
392         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
393                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
394         };
395         static const u32 ts_sdp_en[IGB_N_SDP] = {
396                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
397         };
398         struct e1000_hw *hw = &igb->hw;
399         u32 ctrl, ctrl_ext, tssdp = 0;
400
401         ctrl = rd32(E1000_CTRL);
402         ctrl_ext = rd32(E1000_CTRL_EXT);
403         tssdp = rd32(E1000_TSSDP);
404
405         igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
406
407         /* Make sure this pin is not enabled as an output. */
408         tssdp &= ~ts_sdp_en[pin];
409
410         if (chan == 1) {
411                 tssdp &= ~AUX1_SEL_SDP3;
412                 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
413         } else {
414                 tssdp &= ~AUX0_SEL_SDP3;
415                 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
416         }
417
418         wr32(E1000_TSSDP, tssdp);
419         wr32(E1000_CTRL, ctrl);
420         wr32(E1000_CTRL_EXT, ctrl_ext);
421 }
422
423 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
424 {
425         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
426                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
427         };
428         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
429                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
430         };
431         static const u32 ts_sdp_en[IGB_N_SDP] = {
432                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
433         };
434         static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
435                 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
436                 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
437         };
438         static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
439                 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
440                 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
441         };
442         static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
443                 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
444                 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
445         };
446         static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
447                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
448                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
449         };
450         static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
451                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
452                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
453         };
454         struct e1000_hw *hw = &igb->hw;
455         u32 ctrl, ctrl_ext, tssdp = 0;
456
457         ctrl = rd32(E1000_CTRL);
458         ctrl_ext = rd32(E1000_CTRL_EXT);
459         tssdp = rd32(E1000_TSSDP);
460
461         igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
462
463         /* Make sure this pin is not enabled as an input. */
464         if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
465                 tssdp &= ~AUX0_TS_SDP_EN;
466
467         if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
468                 tssdp &= ~AUX1_TS_SDP_EN;
469
470         tssdp &= ~ts_sdp_sel_clr[pin];
471         if (freq) {
472                 if (chan == 1)
473                         tssdp |= ts_sdp_sel_fc1[pin];
474                 else
475                         tssdp |= ts_sdp_sel_fc0[pin];
476         } else {
477                 if (chan == 1)
478                         tssdp |= ts_sdp_sel_tt1[pin];
479                 else
480                         tssdp |= ts_sdp_sel_tt0[pin];
481         }
482         tssdp |= ts_sdp_en[pin];
483
484         wr32(E1000_TSSDP, tssdp);
485         wr32(E1000_CTRL, ctrl);
486         wr32(E1000_CTRL_EXT, ctrl_ext);
487 }
488
489 static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
490                                         struct ptp_clock_request *rq, int on)
491 {
492         struct igb_adapter *igb =
493                 container_of(ptp, struct igb_adapter, ptp_caps);
494         u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
495                 systimh, level_mask, level, rem;
496         struct e1000_hw *hw = &igb->hw;
497         struct timespec64 ts, start;
498         unsigned long flags;
499         u64 systim, now;
500         int pin = -1;
501         s64 ns;
502
503         switch (rq->type) {
504         case PTP_CLK_REQ_EXTTS:
505                 /* Reject requests with unsupported flags */
506                 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
507                                         PTP_RISING_EDGE |
508                                         PTP_FALLING_EDGE |
509                                         PTP_STRICT_FLAGS))
510                         return -EOPNOTSUPP;
511
512                 if (on) {
513                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
514                                            rq->extts.index);
515                         if (pin < 0)
516                                 return -EBUSY;
517                 }
518                 if (rq->extts.index == 1) {
519                         tsauxc_mask = TSAUXC_EN_TS1;
520                         tsim_mask = TSINTR_AUTT1;
521                 } else {
522                         tsauxc_mask = TSAUXC_EN_TS0;
523                         tsim_mask = TSINTR_AUTT0;
524                 }
525                 spin_lock_irqsave(&igb->tmreg_lock, flags);
526                 tsauxc = rd32(E1000_TSAUXC);
527                 tsim = rd32(E1000_TSIM);
528                 if (on) {
529                         igb_pin_extts(igb, rq->extts.index, pin);
530                         tsauxc |= tsauxc_mask;
531                         tsim |= tsim_mask;
532                 } else {
533                         tsauxc &= ~tsauxc_mask;
534                         tsim &= ~tsim_mask;
535                 }
536                 wr32(E1000_TSAUXC, tsauxc);
537                 wr32(E1000_TSIM, tsim);
538                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
539                 return 0;
540
541         case PTP_CLK_REQ_PEROUT:
542                 /* Reject requests with unsupported flags */
543                 if (rq->perout.flags)
544                         return -EOPNOTSUPP;
545
546                 if (on) {
547                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
548                                            rq->perout.index);
549                         if (pin < 0)
550                                 return -EBUSY;
551                 }
552                 ts.tv_sec = rq->perout.period.sec;
553                 ts.tv_nsec = rq->perout.period.nsec;
554                 ns = timespec64_to_ns(&ts);
555                 ns = ns >> 1;
556                 if (on && ns < 8LL)
557                         return -EINVAL;
558                 ts = ns_to_timespec64(ns);
559                 if (rq->perout.index == 1) {
560                         tsauxc_mask = TSAUXC_EN_TT1;
561                         tsim_mask = TSINTR_TT1;
562                         trgttiml = E1000_TRGTTIML1;
563                         trgttimh = E1000_TRGTTIMH1;
564                 } else {
565                         tsauxc_mask = TSAUXC_EN_TT0;
566                         tsim_mask = TSINTR_TT0;
567                         trgttiml = E1000_TRGTTIML0;
568                         trgttimh = E1000_TRGTTIMH0;
569                 }
570                 spin_lock_irqsave(&igb->tmreg_lock, flags);
571                 tsauxc = rd32(E1000_TSAUXC);
572                 tsim = rd32(E1000_TSIM);
573                 if (rq->perout.index == 1) {
574                         tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
575                         tsim &= ~TSINTR_TT1;
576                 } else {
577                         tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
578                         tsim &= ~TSINTR_TT0;
579                 }
580                 if (on) {
581                         int i = rq->perout.index;
582
583                         /* read systim registers in sequence */
584                         rd32(E1000_SYSTIMR);
585                         systiml = rd32(E1000_SYSTIML);
586                         systimh = rd32(E1000_SYSTIMH);
587                         systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
588                         now = timecounter_cyc2time(&igb->tc, systim);
589
590                         if (pin < 2) {
591                                 level_mask = (i == 1) ? 0x80000 : 0x40000;
592                                 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
593                         } else {
594                                 level_mask = (i == 1) ? 0x80 : 0x40;
595                                 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
596                         }
597
598                         div_u64_rem(now, ns, &rem);
599                         systim = systim + (ns - rem);
600
601                         /* synchronize pin level with rising/falling edges */
602                         div_u64_rem(now, ns << 1, &rem);
603                         if (rem < ns) {
604                                 /* first half of period */
605                                 if (level == 0) {
606                                         /* output is already low, skip this period */
607                                         systim += ns;
608                                 }
609                         } else {
610                                 /* second half of period */
611                                 if (level == 1) {
612                                         /* output is already high, skip this period */
613                                         systim += ns;
614                                 }
615                         }
616
617                         start = ns_to_timespec64(systim + (ns - rem));
618                         igb_pin_perout(igb, i, pin, 0);
619                         igb->perout[i].start.tv_sec = start.tv_sec;
620                         igb->perout[i].start.tv_nsec = start.tv_nsec;
621                         igb->perout[i].period.tv_sec = ts.tv_sec;
622                         igb->perout[i].period.tv_nsec = ts.tv_nsec;
623
624                         wr32(trgttiml, (u32)systim);
625                         wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
626                         tsauxc |= tsauxc_mask;
627                         tsim |= tsim_mask;
628                 }
629                 wr32(E1000_TSAUXC, tsauxc);
630                 wr32(E1000_TSIM, tsim);
631                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
632                 return 0;
633
634         case PTP_CLK_REQ_PPS:
635                 return -EOPNOTSUPP;
636         }
637
638         return -EOPNOTSUPP;
639 }
640
641 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
642                                        struct ptp_clock_request *rq, int on)
643 {
644         struct igb_adapter *igb =
645                 container_of(ptp, struct igb_adapter, ptp_caps);
646         struct e1000_hw *hw = &igb->hw;
647         u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
648         unsigned long flags;
649         struct timespec64 ts;
650         int use_freq = 0, pin = -1;
651         s64 ns;
652
653         switch (rq->type) {
654         case PTP_CLK_REQ_EXTTS:
655                 /* Reject requests with unsupported flags */
656                 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
657                                         PTP_RISING_EDGE |
658                                         PTP_FALLING_EDGE |
659                                         PTP_STRICT_FLAGS))
660                         return -EOPNOTSUPP;
661
662                 /* Reject requests failing to enable both edges. */
663                 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
664                     (rq->extts.flags & PTP_ENABLE_FEATURE) &&
665                     (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
666                         return -EOPNOTSUPP;
667
668                 if (on) {
669                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
670                                            rq->extts.index);
671                         if (pin < 0)
672                                 return -EBUSY;
673                 }
674                 if (rq->extts.index == 1) {
675                         tsauxc_mask = TSAUXC_EN_TS1;
676                         tsim_mask = TSINTR_AUTT1;
677                 } else {
678                         tsauxc_mask = TSAUXC_EN_TS0;
679                         tsim_mask = TSINTR_AUTT0;
680                 }
681                 spin_lock_irqsave(&igb->tmreg_lock, flags);
682                 tsauxc = rd32(E1000_TSAUXC);
683                 tsim = rd32(E1000_TSIM);
684                 if (on) {
685                         igb_pin_extts(igb, rq->extts.index, pin);
686                         tsauxc |= tsauxc_mask;
687                         tsim |= tsim_mask;
688                 } else {
689                         tsauxc &= ~tsauxc_mask;
690                         tsim &= ~tsim_mask;
691                 }
692                 wr32(E1000_TSAUXC, tsauxc);
693                 wr32(E1000_TSIM, tsim);
694                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
695                 return 0;
696
697         case PTP_CLK_REQ_PEROUT:
698                 /* Reject requests with unsupported flags */
699                 if (rq->perout.flags)
700                         return -EOPNOTSUPP;
701
702                 if (on) {
703                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
704                                            rq->perout.index);
705                         if (pin < 0)
706                                 return -EBUSY;
707                 }
708                 ts.tv_sec = rq->perout.period.sec;
709                 ts.tv_nsec = rq->perout.period.nsec;
710                 ns = timespec64_to_ns(&ts);
711                 ns = ns >> 1;
712                 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
713                            (ns == 250000000LL) || (ns == 500000000LL))) {
714                         if (ns < 8LL)
715                                 return -EINVAL;
716                         use_freq = 1;
717                 }
718                 ts = ns_to_timespec64(ns);
719                 if (rq->perout.index == 1) {
720                         if (use_freq) {
721                                 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
722                                 tsim_mask = 0;
723                         } else {
724                                 tsauxc_mask = TSAUXC_EN_TT1;
725                                 tsim_mask = TSINTR_TT1;
726                         }
727                         trgttiml = E1000_TRGTTIML1;
728                         trgttimh = E1000_TRGTTIMH1;
729                         freqout = E1000_FREQOUT1;
730                 } else {
731                         if (use_freq) {
732                                 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
733                                 tsim_mask = 0;
734                         } else {
735                                 tsauxc_mask = TSAUXC_EN_TT0;
736                                 tsim_mask = TSINTR_TT0;
737                         }
738                         trgttiml = E1000_TRGTTIML0;
739                         trgttimh = E1000_TRGTTIMH0;
740                         freqout = E1000_FREQOUT0;
741                 }
742                 spin_lock_irqsave(&igb->tmreg_lock, flags);
743                 tsauxc = rd32(E1000_TSAUXC);
744                 tsim = rd32(E1000_TSIM);
745                 if (rq->perout.index == 1) {
746                         tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
747                         tsim &= ~TSINTR_TT1;
748                 } else {
749                         tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
750                         tsim &= ~TSINTR_TT0;
751                 }
752                 if (on) {
753                         int i = rq->perout.index;
754                         igb_pin_perout(igb, i, pin, use_freq);
755                         igb->perout[i].start.tv_sec = rq->perout.start.sec;
756                         igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
757                         igb->perout[i].period.tv_sec = ts.tv_sec;
758                         igb->perout[i].period.tv_nsec = ts.tv_nsec;
759                         wr32(trgttimh, rq->perout.start.sec);
760                         wr32(trgttiml, rq->perout.start.nsec);
761                         if (use_freq)
762                                 wr32(freqout, ns);
763                         tsauxc |= tsauxc_mask;
764                         tsim |= tsim_mask;
765                 }
766                 wr32(E1000_TSAUXC, tsauxc);
767                 wr32(E1000_TSIM, tsim);
768                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
769                 return 0;
770
771         case PTP_CLK_REQ_PPS:
772                 spin_lock_irqsave(&igb->tmreg_lock, flags);
773                 tsim = rd32(E1000_TSIM);
774                 if (on)
775                         tsim |= TSINTR_SYS_WRAP;
776                 else
777                         tsim &= ~TSINTR_SYS_WRAP;
778                 igb->pps_sys_wrap_on = !!on;
779                 wr32(E1000_TSIM, tsim);
780                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
781                 return 0;
782         }
783
784         return -EOPNOTSUPP;
785 }
786
787 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
788                                   struct ptp_clock_request *rq, int on)
789 {
790         return -EOPNOTSUPP;
791 }
792
793 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
794                               enum ptp_pin_function func, unsigned int chan)
795 {
796         switch (func) {
797         case PTP_PF_NONE:
798         case PTP_PF_EXTTS:
799         case PTP_PF_PEROUT:
800                 break;
801         case PTP_PF_PHYSYNC:
802                 return -1;
803         }
804         return 0;
805 }
806
807 /**
808  * igb_ptp_tx_work
809  * @work: pointer to work struct
810  *
811  * This work function polls the TSYNCTXCTL valid bit to determine when a
812  * timestamp has been taken for the current stored skb.
813  **/
814 static void igb_ptp_tx_work(struct work_struct *work)
815 {
816         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
817                                                    ptp_tx_work);
818         struct e1000_hw *hw = &adapter->hw;
819         u32 tsynctxctl;
820
821         if (!adapter->ptp_tx_skb)
822                 return;
823
824         if (time_is_before_jiffies(adapter->ptp_tx_start +
825                                    IGB_PTP_TX_TIMEOUT)) {
826                 dev_kfree_skb_any(adapter->ptp_tx_skb);
827                 adapter->ptp_tx_skb = NULL;
828                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
829                 adapter->tx_hwtstamp_timeouts++;
830                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
831                  * interrupt
832                  */
833                 rd32(E1000_TXSTMPH);
834                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
835                 return;
836         }
837
838         tsynctxctl = rd32(E1000_TSYNCTXCTL);
839         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
840                 igb_ptp_tx_hwtstamp(adapter);
841         else
842                 /* reschedule to check later */
843                 schedule_work(&adapter->ptp_tx_work);
844 }
845
846 static void igb_ptp_overflow_check(struct work_struct *work)
847 {
848         struct igb_adapter *igb =
849                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
850         struct timespec64 ts;
851         u64 ns;
852
853         /* Update the timecounter */
854         ns = timecounter_read(&igb->tc);
855
856         ts = ns_to_timespec64(ns);
857         pr_debug("igb overflow check at %lld.%09lu\n",
858                  (long long) ts.tv_sec, ts.tv_nsec);
859
860         schedule_delayed_work(&igb->ptp_overflow_work,
861                               IGB_SYSTIM_OVERFLOW_PERIOD);
862 }
863
864 /**
865  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
866  * @adapter: private network adapter structure
867  *
868  * This watchdog task is scheduled to detect error case where hardware has
869  * dropped an Rx packet that was timestamped when the ring is full. The
870  * particular error is rare but leaves the device in a state unable to timestamp
871  * any future packets.
872  **/
873 void igb_ptp_rx_hang(struct igb_adapter *adapter)
874 {
875         struct e1000_hw *hw = &adapter->hw;
876         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
877         unsigned long rx_event;
878
879         /* Other hardware uses per-packet timestamps */
880         if (hw->mac.type != e1000_82576)
881                 return;
882
883         /* If we don't have a valid timestamp in the registers, just update the
884          * timeout counter and exit
885          */
886         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
887                 adapter->last_rx_ptp_check = jiffies;
888                 return;
889         }
890
891         /* Determine the most recent watchdog or rx_timestamp event */
892         rx_event = adapter->last_rx_ptp_check;
893         if (time_after(adapter->last_rx_timestamp, rx_event))
894                 rx_event = adapter->last_rx_timestamp;
895
896         /* Only need to read the high RXSTMP register to clear the lock */
897         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
898                 rd32(E1000_RXSTMPH);
899                 adapter->last_rx_ptp_check = jiffies;
900                 adapter->rx_hwtstamp_cleared++;
901                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
902         }
903 }
904
905 /**
906  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
907  * @adapter: private network adapter structure
908  */
909 void igb_ptp_tx_hang(struct igb_adapter *adapter)
910 {
911         struct e1000_hw *hw = &adapter->hw;
912         bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
913                                               IGB_PTP_TX_TIMEOUT);
914
915         if (!adapter->ptp_tx_skb)
916                 return;
917
918         if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
919                 return;
920
921         /* If we haven't received a timestamp within the timeout, it is
922          * reasonable to assume that it will never occur, so we can unlock the
923          * timestamp bit when this occurs.
924          */
925         if (timeout) {
926                 cancel_work_sync(&adapter->ptp_tx_work);
927                 dev_kfree_skb_any(adapter->ptp_tx_skb);
928                 adapter->ptp_tx_skb = NULL;
929                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
930                 adapter->tx_hwtstamp_timeouts++;
931                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
932                  * interrupt
933                  */
934                 rd32(E1000_TXSTMPH);
935                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
936         }
937 }
938
939 /**
940  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
941  * @adapter: Board private structure.
942  *
943  * If we were asked to do hardware stamping and such a time stamp is
944  * available, then it must have been for this skb here because we only
945  * allow only one such packet into the queue.
946  **/
947 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
948 {
949         struct sk_buff *skb = adapter->ptp_tx_skb;
950         struct e1000_hw *hw = &adapter->hw;
951         struct skb_shared_hwtstamps shhwtstamps;
952         u64 regval;
953         int adjust = 0;
954
955         regval = rd32(E1000_TXSTMPL);
956         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
957
958         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
959         /* adjust timestamp for the TX latency based on link speed */
960         if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
961                 switch (adapter->link_speed) {
962                 case SPEED_10:
963                         adjust = IGB_I210_TX_LATENCY_10;
964                         break;
965                 case SPEED_100:
966                         adjust = IGB_I210_TX_LATENCY_100;
967                         break;
968                 case SPEED_1000:
969                         adjust = IGB_I210_TX_LATENCY_1000;
970                         break;
971                 }
972         }
973
974         shhwtstamps.hwtstamp =
975                 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
976
977         /* Clear the lock early before calling skb_tstamp_tx so that
978          * applications are not woken up before the lock bit is clear. We use
979          * a copy of the skb pointer to ensure other threads can't change it
980          * while we're notifying the stack.
981          */
982         adapter->ptp_tx_skb = NULL;
983         clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
984
985         /* Notify the stack and free the skb after we've unlocked */
986         skb_tstamp_tx(skb, &shhwtstamps);
987         dev_kfree_skb_any(skb);
988 }
989
990 /**
991  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
992  * @q_vector: Pointer to interrupt specific structure
993  * @va: Pointer to address containing Rx buffer
994  * @timestamp: Pointer where timestamp will be stored
995  *
996  * This function is meant to retrieve a timestamp from the first buffer of an
997  * incoming frame.  The value is stored in little endian format starting on
998  * byte 8
999  *
1000  * Returns: The timestamp header length or 0 if not available
1001  **/
1002 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1003                         ktime_t *timestamp)
1004 {
1005         struct igb_adapter *adapter = q_vector->adapter;
1006         struct e1000_hw *hw = &adapter->hw;
1007         struct skb_shared_hwtstamps ts;
1008         __le64 *regval = (__le64 *)va;
1009         int adjust = 0;
1010
1011         if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1012                 return 0;
1013
1014         /* The timestamp is recorded in little endian format.
1015          * DWORD: 0        1        2        3
1016          * Field: Reserved Reserved SYSTIML  SYSTIMH
1017          */
1018
1019         /* check reserved dwords are zero, be/le doesn't matter for zero */
1020         if (regval[0])
1021                 return 0;
1022
1023         igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1024
1025         /* adjust timestamp for the RX latency based on link speed */
1026         if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1027                 switch (adapter->link_speed) {
1028                 case SPEED_10:
1029                         adjust = IGB_I210_RX_LATENCY_10;
1030                         break;
1031                 case SPEED_100:
1032                         adjust = IGB_I210_RX_LATENCY_100;
1033                         break;
1034                 case SPEED_1000:
1035                         adjust = IGB_I210_RX_LATENCY_1000;
1036                         break;
1037                 }
1038         }
1039
1040         *timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1041
1042         return IGB_TS_HDR_LEN;
1043 }
1044
1045 /**
1046  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1047  * @q_vector: Pointer to interrupt specific structure
1048  * @skb: Buffer containing timestamp and packet
1049  *
1050  * This function is meant to retrieve a timestamp from the internal registers
1051  * of the adapter and store it in the skb.
1052  **/
1053 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1054 {
1055         struct igb_adapter *adapter = q_vector->adapter;
1056         struct e1000_hw *hw = &adapter->hw;
1057         int adjust = 0;
1058         u64 regval;
1059
1060         if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1061                 return;
1062
1063         /* If this bit is set, then the RX registers contain the time stamp. No
1064          * other packet will be time stamped until we read these registers, so
1065          * read the registers to make them available again. Because only one
1066          * packet can be time stamped at a time, we know that the register
1067          * values must belong to this one here and therefore we don't need to
1068          * compare any of the additional attributes stored for it.
1069          *
1070          * If nothing went wrong, then it should have a shared tx_flags that we
1071          * can turn into a skb_shared_hwtstamps.
1072          */
1073         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1074                 return;
1075
1076         regval = rd32(E1000_RXSTMPL);
1077         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1078
1079         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1080
1081         /* adjust timestamp for the RX latency based on link speed */
1082         if (adapter->hw.mac.type == e1000_i210) {
1083                 switch (adapter->link_speed) {
1084                 case SPEED_10:
1085                         adjust = IGB_I210_RX_LATENCY_10;
1086                         break;
1087                 case SPEED_100:
1088                         adjust = IGB_I210_RX_LATENCY_100;
1089                         break;
1090                 case SPEED_1000:
1091                         adjust = IGB_I210_RX_LATENCY_1000;
1092                         break;
1093                 }
1094         }
1095         skb_hwtstamps(skb)->hwtstamp =
1096                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1097
1098         /* Update the last_rx_timestamp timer in order to enable watchdog check
1099          * for error case of latched timestamp on a dropped packet.
1100          */
1101         adapter->last_rx_timestamp = jiffies;
1102 }
1103
1104 /**
1105  * igb_ptp_get_ts_config - get hardware time stamping config
1106  * @netdev: netdev struct
1107  * @ifr: interface struct
1108  *
1109  * Get the hwtstamp_config settings to return to the user. Rather than attempt
1110  * to deconstruct the settings from the registers, just return a shadow copy
1111  * of the last known settings.
1112  **/
1113 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1114 {
1115         struct igb_adapter *adapter = netdev_priv(netdev);
1116         struct hwtstamp_config *config = &adapter->tstamp_config;
1117
1118         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1119                 -EFAULT : 0;
1120 }
1121
1122 /**
1123  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1124  * @adapter: networking device structure
1125  * @config: hwtstamp configuration
1126  *
1127  * Outgoing time stamping can be enabled and disabled. Play nice and
1128  * disable it when requested, although it shouldn't case any overhead
1129  * when no packet needs it. At most one packet in the queue may be
1130  * marked for time stamping, otherwise it would be impossible to tell
1131  * for sure to which packet the hardware time stamp belongs.
1132  *
1133  * Incoming time stamping has to be configured via the hardware
1134  * filters. Not all combinations are supported, in particular event
1135  * type has to be specified. Matching the kind of event packet is
1136  * not supported, with the exception of "all V2 events regardless of
1137  * level 2 or 4".
1138  */
1139 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1140                                       struct hwtstamp_config *config)
1141 {
1142         struct e1000_hw *hw = &adapter->hw;
1143         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1144         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1145         u32 tsync_rx_cfg = 0;
1146         bool is_l4 = false;
1147         bool is_l2 = false;
1148         u32 regval;
1149
1150         switch (config->tx_type) {
1151         case HWTSTAMP_TX_OFF:
1152                 tsync_tx_ctl = 0;
1153                 break;
1154         case HWTSTAMP_TX_ON:
1155                 break;
1156         default:
1157                 return -ERANGE;
1158         }
1159
1160         switch (config->rx_filter) {
1161         case HWTSTAMP_FILTER_NONE:
1162                 tsync_rx_ctl = 0;
1163                 break;
1164         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1165                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1166                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1167                 is_l4 = true;
1168                 break;
1169         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1170                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1171                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1172                 is_l4 = true;
1173                 break;
1174         case HWTSTAMP_FILTER_PTP_V2_EVENT:
1175         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1176         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1177         case HWTSTAMP_FILTER_PTP_V2_SYNC:
1178         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1179         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1180         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1181         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1182         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1183                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1184                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1185                 is_l2 = true;
1186                 is_l4 = true;
1187                 break;
1188         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1189         case HWTSTAMP_FILTER_NTP_ALL:
1190         case HWTSTAMP_FILTER_ALL:
1191                 /* 82576 cannot timestamp all packets, which it needs to do to
1192                  * support both V1 Sync and Delay_Req messages
1193                  */
1194                 if (hw->mac.type != e1000_82576) {
1195                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1196                         config->rx_filter = HWTSTAMP_FILTER_ALL;
1197                         break;
1198                 }
1199                 fallthrough;
1200         default:
1201                 config->rx_filter = HWTSTAMP_FILTER_NONE;
1202                 return -ERANGE;
1203         }
1204
1205         if (hw->mac.type == e1000_82575) {
1206                 if (tsync_rx_ctl | tsync_tx_ctl)
1207                         return -EINVAL;
1208                 return 0;
1209         }
1210
1211         /* Per-packet timestamping only works if all packets are
1212          * timestamped, so enable timestamping in all packets as
1213          * long as one Rx filter was configured.
1214          */
1215         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1216                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1217                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1218                 config->rx_filter = HWTSTAMP_FILTER_ALL;
1219                 is_l2 = true;
1220                 is_l4 = true;
1221
1222                 if ((hw->mac.type == e1000_i210) ||
1223                     (hw->mac.type == e1000_i211)) {
1224                         regval = rd32(E1000_RXPBS);
1225                         regval |= E1000_RXPBS_CFG_TS_EN;
1226                         wr32(E1000_RXPBS, regval);
1227                 }
1228         }
1229
1230         /* enable/disable TX */
1231         regval = rd32(E1000_TSYNCTXCTL);
1232         regval &= ~E1000_TSYNCTXCTL_ENABLED;
1233         regval |= tsync_tx_ctl;
1234         wr32(E1000_TSYNCTXCTL, regval);
1235
1236         /* enable/disable RX */
1237         regval = rd32(E1000_TSYNCRXCTL);
1238         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1239         regval |= tsync_rx_ctl;
1240         wr32(E1000_TSYNCRXCTL, regval);
1241
1242         /* define which PTP packets are time stamped */
1243         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1244
1245         /* define ethertype filter for timestamped packets */
1246         if (is_l2)
1247                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1248                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1249                       E1000_ETQF_1588 | /* enable timestamping */
1250                       ETH_P_1588));     /* 1588 eth protocol type */
1251         else
1252                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1253
1254         /* L4 Queue Filter[3]: filter by destination port and protocol */
1255         if (is_l4) {
1256                 u32 ftqf = (IPPROTO_UDP /* UDP */
1257                         | E1000_FTQF_VF_BP /* VF not compared */
1258                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1259                         | E1000_FTQF_MASK); /* mask all inputs */
1260                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1261
1262                 wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1263                 wr32(E1000_IMIREXT(3),
1264                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1265                 if (hw->mac.type == e1000_82576) {
1266                         /* enable source port check */
1267                         wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1268                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1269                 }
1270                 wr32(E1000_FTQF(3), ftqf);
1271         } else {
1272                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1273         }
1274         wrfl();
1275
1276         /* clear TX/RX time stamp registers, just to be sure */
1277         regval = rd32(E1000_TXSTMPL);
1278         regval = rd32(E1000_TXSTMPH);
1279         regval = rd32(E1000_RXSTMPL);
1280         regval = rd32(E1000_RXSTMPH);
1281
1282         return 0;
1283 }
1284
1285 /**
1286  * igb_ptp_set_ts_config - set hardware time stamping config
1287  * @netdev: netdev struct
1288  * @ifr: interface struct
1289  *
1290  **/
1291 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1292 {
1293         struct igb_adapter *adapter = netdev_priv(netdev);
1294         struct hwtstamp_config config;
1295         int err;
1296
1297         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1298                 return -EFAULT;
1299
1300         err = igb_ptp_set_timestamp_mode(adapter, &config);
1301         if (err)
1302                 return err;
1303
1304         /* save these settings for future reference */
1305         memcpy(&adapter->tstamp_config, &config,
1306                sizeof(adapter->tstamp_config));
1307
1308         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1309                 -EFAULT : 0;
1310 }
1311
1312 /**
1313  * igb_ptp_init - Initialize PTP functionality
1314  * @adapter: Board private structure
1315  *
1316  * This function is called at device probe to initialize the PTP
1317  * functionality.
1318  */
1319 void igb_ptp_init(struct igb_adapter *adapter)
1320 {
1321         struct e1000_hw *hw = &adapter->hw;
1322         struct net_device *netdev = adapter->netdev;
1323
1324         switch (hw->mac.type) {
1325         case e1000_82576:
1326                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1327                 adapter->ptp_caps.owner = THIS_MODULE;
1328                 adapter->ptp_caps.max_adj = 999999881;
1329                 adapter->ptp_caps.n_ext_ts = 0;
1330                 adapter->ptp_caps.pps = 0;
1331                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1332                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1333                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1334                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1335                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1336                 adapter->cc.read = igb_ptp_read_82576;
1337                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1338                 adapter->cc.mult = 1;
1339                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1340                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1341                 break;
1342         case e1000_82580:
1343         case e1000_i354:
1344         case e1000_i350:
1345                 igb_ptp_sdp_init(adapter);
1346                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1347                 adapter->ptp_caps.owner = THIS_MODULE;
1348                 adapter->ptp_caps.max_adj = 62499999;
1349                 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1350                 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1351                 adapter->ptp_caps.n_pins = IGB_N_SDP;
1352                 adapter->ptp_caps.pps = 0;
1353                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1354                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1355                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1356                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1357                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1358                 adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1359                 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1360                 adapter->cc.read = igb_ptp_read_82580;
1361                 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1362                 adapter->cc.mult = 1;
1363                 adapter->cc.shift = 0;
1364                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1365                 break;
1366         case e1000_i210:
1367         case e1000_i211:
1368                 igb_ptp_sdp_init(adapter);
1369                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1370                 adapter->ptp_caps.owner = THIS_MODULE;
1371                 adapter->ptp_caps.max_adj = 62499999;
1372                 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1373                 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1374                 adapter->ptp_caps.n_pins = IGB_N_SDP;
1375                 adapter->ptp_caps.pps = 1;
1376                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1377                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1378                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1379                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1380                 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1381                 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1382                 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1383                 break;
1384         default:
1385                 adapter->ptp_clock = NULL;
1386                 return;
1387         }
1388
1389         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1390                                                 &adapter->pdev->dev);
1391         if (IS_ERR(adapter->ptp_clock)) {
1392                 adapter->ptp_clock = NULL;
1393                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1394         } else if (adapter->ptp_clock) {
1395                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1396                          adapter->netdev->name);
1397                 adapter->ptp_flags |= IGB_PTP_ENABLED;
1398
1399                 spin_lock_init(&adapter->tmreg_lock);
1400                 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1401
1402                 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1403                         INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1404                                           igb_ptp_overflow_check);
1405
1406                 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1407                 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1408
1409                 igb_ptp_reset(adapter);
1410         }
1411 }
1412
1413 /**
1414  * igb_ptp_sdp_init - utility function which inits the SDP config structs
1415  * @adapter: Board private structure.
1416  **/
1417 void igb_ptp_sdp_init(struct igb_adapter *adapter)
1418 {
1419         int i;
1420
1421         for (i = 0; i < IGB_N_SDP; i++) {
1422                 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1423
1424                 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1425                 ppd->index = i;
1426                 ppd->func = PTP_PF_NONE;
1427         }
1428 }
1429
1430 /**
1431  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1432  * @adapter: Board private structure
1433  *
1434  * This function stops the overflow check work and PTP Tx timestamp work, and
1435  * will prepare the device for OS suspend.
1436  */
1437 void igb_ptp_suspend(struct igb_adapter *adapter)
1438 {
1439         if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1440                 return;
1441
1442         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1443                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1444
1445         cancel_work_sync(&adapter->ptp_tx_work);
1446         if (adapter->ptp_tx_skb) {
1447                 dev_kfree_skb_any(adapter->ptp_tx_skb);
1448                 adapter->ptp_tx_skb = NULL;
1449                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1450         }
1451 }
1452
1453 /**
1454  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1455  * @adapter: Board private structure.
1456  *
1457  * This function stops the PTP support and cancels the delayed work.
1458  **/
1459 void igb_ptp_stop(struct igb_adapter *adapter)
1460 {
1461         igb_ptp_suspend(adapter);
1462
1463         if (adapter->ptp_clock) {
1464                 ptp_clock_unregister(adapter->ptp_clock);
1465                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1466                          adapter->netdev->name);
1467                 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1468         }
1469 }
1470
1471 /**
1472  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1473  * @adapter: Board private structure.
1474  *
1475  * This function handles the reset work required to re-enable the PTP device.
1476  **/
1477 void igb_ptp_reset(struct igb_adapter *adapter)
1478 {
1479         struct e1000_hw *hw = &adapter->hw;
1480         unsigned long flags;
1481
1482         /* reset the tstamp_config */
1483         igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1484
1485         spin_lock_irqsave(&adapter->tmreg_lock, flags);
1486
1487         switch (adapter->hw.mac.type) {
1488         case e1000_82576:
1489                 /* Dial the nominal frequency. */
1490                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1491                 break;
1492         case e1000_82580:
1493         case e1000_i354:
1494         case e1000_i350:
1495         case e1000_i210:
1496         case e1000_i211:
1497                 wr32(E1000_TSAUXC, 0x0);
1498                 wr32(E1000_TSSDP, 0x0);
1499                 wr32(E1000_TSIM,
1500                      TSYNC_INTERRUPTS |
1501                      (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1502                 wr32(E1000_IMS, E1000_IMS_TS);
1503                 break;
1504         default:
1505                 /* No work to do. */
1506                 goto out;
1507         }
1508
1509         /* Re-initialize the timer. */
1510         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1511                 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1512
1513                 igb_ptp_write_i210(adapter, &ts);
1514         } else {
1515                 timecounter_init(&adapter->tc, &adapter->cc,
1516                                  ktime_to_ns(ktime_get_real()));
1517         }
1518 out:
1519         spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1520
1521         wrfl();
1522
1523         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1524                 schedule_delayed_work(&adapter->ptp_overflow_work,
1525                                       IGB_SYSTIM_OVERFLOW_PERIOD);
1526 }
This page took 0.11756 seconds and 4 git commands to generate.