]> Git Repo - linux.git/blob - drivers/firewire/ohci.c
drm/vc4: Run DRM default client setup
[linux.git] / drivers / firewire / ohci.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for OHCI 1394 controllers
4  *
5  * Copyright (C) 2003-2006 Kristian Hoegsberg <[email protected]>
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "core.h"
42 #include "ohci.h"
43 #include "packet-header-definitions.h"
44 #include "phy-packet-definitions.h"
45
46 #include <trace/events/firewire.h>
47
48 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/firewire_ohci.h>
52
53 #define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
54 #define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
55 #define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
56
57 #define DESCRIPTOR_OUTPUT_MORE          0
58 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
61 #define DESCRIPTOR_STATUS               (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
63 #define DESCRIPTOR_PING                 (1 << 7)
64 #define DESCRIPTOR_YY                   (1 << 6)
65 #define DESCRIPTOR_NO_IRQ               (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
69 #define DESCRIPTOR_WAIT                 (3 << 0)
70
71 #define DESCRIPTOR_CMD                  (0xf << 12)
72
73 struct descriptor {
74         __le16 req_count;
75         __le16 control;
76         __le32 data_address;
77         __le32 branch_address;
78         __le16 res_count;
79         __le16 transfer_status;
80 } __attribute__((aligned(16)));
81
82 #define CONTROL_SET(regs)       (regs)
83 #define CONTROL_CLEAR(regs)     ((regs) + 4)
84 #define COMMAND_PTR(regs)       ((regs) + 12)
85 #define CONTEXT_MATCH(regs)     ((regs) + 16)
86
87 #define AR_BUFFER_SIZE  (32*1024)
88 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
89 /* we need at least two pages for proper list management */
90 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
91
92 #define MAX_ASYNC_PAYLOAD       4096
93 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
94 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
95
96 struct ar_context {
97         struct fw_ohci *ohci;
98         struct page *pages[AR_BUFFERS];
99         void *buffer;
100         struct descriptor *descriptors;
101         dma_addr_t descriptors_bus;
102         void *pointer;
103         unsigned int last_buffer_index;
104         u32 regs;
105         struct tasklet_struct tasklet;
106 };
107
108 struct context;
109
110 typedef int (*descriptor_callback_t)(struct context *ctx,
111                                      struct descriptor *d,
112                                      struct descriptor *last);
113
114 /*
115  * A buffer that contains a block of DMA-able coherent memory used for
116  * storing a portion of a DMA descriptor program.
117  */
118 struct descriptor_buffer {
119         struct list_head list;
120         dma_addr_t buffer_bus;
121         size_t buffer_size;
122         size_t used;
123         struct descriptor buffer[];
124 };
125
126 struct context {
127         struct fw_ohci *ohci;
128         u32 regs;
129         int total_allocation;
130         u32 current_bus;
131         bool running;
132         bool flushing;
133
134         /*
135          * List of page-sized buffers for storing DMA descriptors.
136          * Head of list contains buffers in use and tail of list contains
137          * free buffers.
138          */
139         struct list_head buffer_list;
140
141         /*
142          * Pointer to a buffer inside buffer_list that contains the tail
143          * end of the current DMA program.
144          */
145         struct descriptor_buffer *buffer_tail;
146
147         /*
148          * The descriptor containing the branch address of the first
149          * descriptor that has not yet been filled by the device.
150          */
151         struct descriptor *last;
152
153         /*
154          * The last descriptor block in the DMA program. It contains the branch
155          * address that must be updated upon appending a new descriptor.
156          */
157         struct descriptor *prev;
158         int prev_z;
159
160         descriptor_callback_t callback;
161
162         struct tasklet_struct tasklet;
163 };
164
165 #define IT_HEADER_SY(v)          ((v) <<  0)
166 #define IT_HEADER_TCODE(v)       ((v) <<  4)
167 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
168 #define IT_HEADER_TAG(v)         ((v) << 14)
169 #define IT_HEADER_SPEED(v)       ((v) << 16)
170 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
171
172 struct iso_context {
173         struct fw_iso_context base;
174         struct context context;
175         void *header;
176         size_t header_length;
177         unsigned long flushing_completions;
178         u32 mc_buffer_bus;
179         u16 mc_completed;
180         u16 last_timestamp;
181         u8 sync;
182         u8 tags;
183 };
184
185 #define CONFIG_ROM_SIZE 1024
186
187 struct fw_ohci {
188         struct fw_card card;
189
190         __iomem char *registers;
191         int node_id;
192         int generation;
193         int request_generation; /* for timestamping incoming requests */
194         unsigned quirks;
195         unsigned int pri_req_max;
196         u32 bus_time;
197         bool bus_time_running;
198         bool is_root;
199         bool csr_state_setclear_abdicate;
200         int n_ir;
201         int n_it;
202         /*
203          * Spinlock for accessing fw_ohci data.  Never call out of
204          * this driver with this lock held.
205          */
206         spinlock_t lock;
207
208         struct mutex phy_reg_mutex;
209
210         void *misc_buffer;
211         dma_addr_t misc_buffer_bus;
212
213         struct ar_context ar_request_ctx;
214         struct ar_context ar_response_ctx;
215         struct context at_request_ctx;
216         struct context at_response_ctx;
217
218         u32 it_context_support;
219         u32 it_context_mask;     /* unoccupied IT contexts */
220         struct iso_context *it_context_list;
221         u64 ir_context_channels; /* unoccupied channels */
222         u32 ir_context_support;
223         u32 ir_context_mask;     /* unoccupied IR contexts */
224         struct iso_context *ir_context_list;
225         u64 mc_channels; /* channels in use by the multichannel IR context */
226         bool mc_allocated;
227
228         __be32    *config_rom;
229         dma_addr_t config_rom_bus;
230         __be32    *next_config_rom;
231         dma_addr_t next_config_rom_bus;
232         __be32     next_header;
233
234         __le32    *self_id;
235         dma_addr_t self_id_bus;
236         struct work_struct bus_reset_work;
237
238         u32 self_id_buffer[512];
239 };
240
241 static struct workqueue_struct *selfid_workqueue;
242
243 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
244 {
245         return container_of(card, struct fw_ohci, card);
246 }
247
248 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
249 #define IR_CONTEXT_BUFFER_FILL          0x80000000
250 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
251 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
252 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
253 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
254
255 #define CONTEXT_RUN     0x8000
256 #define CONTEXT_WAKE    0x1000
257 #define CONTEXT_DEAD    0x0800
258 #define CONTEXT_ACTIVE  0x0400
259
260 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
261 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
262 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
263
264 #define OHCI1394_REGISTER_SIZE          0x800
265 #define OHCI1394_PCI_HCI_Control        0x40
266 #define SELF_ID_BUF_SIZE                0x800
267 #define OHCI_TCODE_PHY_PACKET           0x0e
268 #define OHCI_VERSION_1_1                0x010010
269
270 static char ohci_driver_name[] = KBUILD_MODNAME;
271
272 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
273 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
274 #define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
275 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
276 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
277 #define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
278 #define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
279 #define PCI_DEVICE_ID_VIA_VT630X        0x3044
280 #define PCI_REV_ID_VIA_VT6306           0x46
281 #define PCI_DEVICE_ID_VIA_VT6315        0x3403
282
283 #define QUIRK_CYCLE_TIMER               0x1
284 #define QUIRK_RESET_PACKET              0x2
285 #define QUIRK_BE_HEADERS                0x4
286 #define QUIRK_NO_1394A                  0x8
287 #define QUIRK_NO_MSI                    0x10
288 #define QUIRK_TI_SLLZ059                0x20
289 #define QUIRK_IR_WAKE                   0x40
290
291 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
292 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
293 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
294 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
295 // while it is probable due to detection of any type of PCIe error.
296 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ        0x80000000
297
298 #if IS_ENABLED(CONFIG_X86)
299
300 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
301 {
302         return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
303 }
304
305 #define PCI_DEVICE_ID_ASMEDIA_ASM108X   0x1080
306
307 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
308 {
309         const struct pci_dev *pcie_to_pci_bridge;
310
311         // Detect any type of AMD Ryzen machine.
312         if (!static_cpu_has(X86_FEATURE_ZEN))
313                 return false;
314
315         // Detect VIA VT6306/6307/6308.
316         if (pdev->vendor != PCI_VENDOR_ID_VIA)
317                 return false;
318         if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
319                 return false;
320
321         // Detect Asmedia ASM1083/1085.
322         pcie_to_pci_bridge = pdev->bus->self;
323         if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
324                 return false;
325         if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
326                 return false;
327
328         return true;
329 }
330
331 #else
332 #define has_reboot_by_cycle_timer_read_quirk(ohci) false
333 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)   false
334 #endif
335
336 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
337 static const struct {
338         unsigned short vendor, device, revision, flags;
339 } ohci_quirks[] = {
340         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
341                 QUIRK_CYCLE_TIMER},
342
343         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
344                 QUIRK_BE_HEADERS},
345
346         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
347                 QUIRK_NO_MSI},
348
349         {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
350                 QUIRK_RESET_PACKET},
351
352         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
353                 QUIRK_NO_MSI},
354
355         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
356                 QUIRK_CYCLE_TIMER},
357
358         {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
359                 QUIRK_NO_MSI},
360
361         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
362                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
363
364         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
365                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
366
367         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
368                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
369
370         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
371                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
372
373         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
374                 QUIRK_RESET_PACKET},
375
376         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
377                 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
378
379         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
380                 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
381
382         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
383                 QUIRK_NO_MSI},
384
385         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
386                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
387 };
388
389 /* This overrides anything that was found in ohci_quirks[]. */
390 static int param_quirks;
391 module_param_named(quirks, param_quirks, int, 0644);
392 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
393         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
394         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
395         ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
396         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
397         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
398         ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
399         ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
400         ")");
401
402 #define OHCI_PARAM_DEBUG_AT_AR          1
403 #define OHCI_PARAM_DEBUG_SELFIDS        2
404 #define OHCI_PARAM_DEBUG_IRQS           4
405
406 static int param_debug;
407 module_param_named(debug, param_debug, int, 0644);
408 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
409         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
410         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
411         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
412         ", or a combination, or all = -1)");
413
414 static bool param_remote_dma;
415 module_param_named(remote_dma, param_remote_dma, bool, 0444);
416 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
417
418 static void log_irqs(struct fw_ohci *ohci, u32 evt)
419 {
420         if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
421                 return;
422
423         ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
424             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
425             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
426             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
427             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
428             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
429             evt & OHCI1394_isochRx              ? " IR"                 : "",
430             evt & OHCI1394_isochTx              ? " IT"                 : "",
431             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
432             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
433             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
434             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
435             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
436             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
437             evt & OHCI1394_busReset             ? " busReset"           : "",
438             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
439                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
440                     OHCI1394_respTxComplete | OHCI1394_isochRx |
441                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
442                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
443                     OHCI1394_cycleInconsistent |
444                     OHCI1394_regAccessFail | OHCI1394_busReset)
445                                                 ? " ?"                  : "");
446 }
447
448 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
449 {
450         static const char *const speed[] = {
451                 [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
452         };
453         static const char *const power[] = {
454                 [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
455                 [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
456         };
457         static const char port[] = {
458                 [PHY_PACKET_SELF_ID_PORT_STATUS_NONE] = '.',
459                 [PHY_PACKET_SELF_ID_PORT_STATUS_NCONN] = '-',
460                 [PHY_PACKET_SELF_ID_PORT_STATUS_PARENT] = 'p',
461                 [PHY_PACKET_SELF_ID_PORT_STATUS_CHILD] = 'c',
462         };
463         struct self_id_sequence_enumerator enumerator = {
464                 .cursor = ohci->self_id_buffer,
465                 .quadlet_count = self_id_count,
466         };
467
468         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
469                 return;
470
471         ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
472                     self_id_count, generation, ohci->node_id);
473
474         while (enumerator.quadlet_count > 0) {
475                 unsigned int quadlet_count;
476                 unsigned int port_index;
477                 const u32 *s;
478                 int i;
479
480                 s = self_id_sequence_enumerator_next(&enumerator, &quadlet_count);
481                 if (IS_ERR(s))
482                         break;
483
484                 ohci_notice(ohci,
485                     "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
486                     *s,
487                     phy_packet_self_id_get_phy_id(*s),
488                     port[self_id_sequence_get_port_status(s, quadlet_count, 0)],
489                     port[self_id_sequence_get_port_status(s, quadlet_count, 1)],
490                     port[self_id_sequence_get_port_status(s, quadlet_count, 2)],
491                     speed[*s >> 14 & 3], *s >> 16 & 63,
492                     power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
493                     *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
494
495                 port_index = 3;
496                 for (i = 1; i < quadlet_count; ++i) {
497                         ohci_notice(ohci,
498                             "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
499                             s[i],
500                             phy_packet_self_id_get_phy_id(s[i]),
501                             port[self_id_sequence_get_port_status(s, quadlet_count, port_index)],
502                             port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 1)],
503                             port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 2)],
504                             port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 3)],
505                             port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 4)],
506                             port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 5)],
507                             port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 6)],
508                             port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 7)]
509                         );
510
511                         port_index += 8;
512                 }
513         }
514 }
515
516 static const char *evts[] = {
517         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
518         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
519         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
520         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
521         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
522         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
523         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
524         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
525         [0x10] = "-reserved-",          [0x11] = "ack_complete",
526         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
527         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
528         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
529         [0x18] = "-reserved-",          [0x19] = "-reserved-",
530         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
531         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
532         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
533         [0x20] = "pending/cancelled",
534 };
535 static const char *tcodes[] = {
536         [0x0] = "QW req",               [0x1] = "BW req",
537         [0x2] = "W resp",               [0x3] = "-reserved-",
538         [0x4] = "QR req",               [0x5] = "BR req",
539         [0x6] = "QR resp",              [0x7] = "BR resp",
540         [0x8] = "cycle start",          [0x9] = "Lk req",
541         [0xa] = "async stream packet",  [0xb] = "Lk resp",
542         [0xc] = "-reserved-",           [0xd] = "-reserved-",
543         [0xe] = "link internal",        [0xf] = "-reserved-",
544 };
545
546 static void log_ar_at_event(struct fw_ohci *ohci,
547                             char dir, int speed, u32 *header, int evt)
548 {
549         int tcode = async_header_get_tcode(header);
550         char specific[12];
551
552         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
553                 return;
554
555         if (unlikely(evt >= ARRAY_SIZE(evts)))
556                 evt = 0x1f;
557
558         if (evt == OHCI1394_evt_bus_reset) {
559                 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
560                             dir, (header[2] >> 16) & 0xff);
561                 return;
562         }
563
564         switch (tcode) {
565         case TCODE_WRITE_QUADLET_REQUEST:
566         case TCODE_READ_QUADLET_RESPONSE:
567         case TCODE_CYCLE_START:
568                 snprintf(specific, sizeof(specific), " = %08x",
569                          be32_to_cpu((__force __be32)header[3]));
570                 break;
571         case TCODE_WRITE_BLOCK_REQUEST:
572         case TCODE_READ_BLOCK_REQUEST:
573         case TCODE_READ_BLOCK_RESPONSE:
574         case TCODE_LOCK_REQUEST:
575         case TCODE_LOCK_RESPONSE:
576                 snprintf(specific, sizeof(specific), " %x,%x",
577                          async_header_get_data_length(header),
578                          async_header_get_extended_tcode(header));
579                 break;
580         default:
581                 specific[0] = '\0';
582         }
583
584         switch (tcode) {
585         case TCODE_STREAM_DATA:
586                 ohci_notice(ohci, "A%c %s, %s\n",
587                             dir, evts[evt], tcodes[tcode]);
588                 break;
589         case 0xe:
590                 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
591                             dir, evts[evt], header[1], header[2]);
592                 break;
593         case TCODE_WRITE_QUADLET_REQUEST:
594         case TCODE_WRITE_BLOCK_REQUEST:
595         case TCODE_READ_QUADLET_REQUEST:
596         case TCODE_READ_BLOCK_REQUEST:
597         case TCODE_LOCK_REQUEST:
598                 ohci_notice(ohci,
599                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %012llx%s\n",
600                             dir, speed, async_header_get_tlabel(header),
601                             async_header_get_source(header), async_header_get_destination(header),
602                             evts[evt], tcodes[tcode], async_header_get_offset(header), specific);
603                 break;
604         default:
605                 ohci_notice(ohci,
606                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
607                             dir, speed, async_header_get_tlabel(header),
608                             async_header_get_source(header), async_header_get_destination(header),
609                             evts[evt], tcodes[tcode], specific);
610         }
611 }
612
613 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
614 {
615         writel(data, ohci->registers + offset);
616 }
617
618 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
619 {
620         return readl(ohci->registers + offset);
621 }
622
623 static inline void flush_writes(const struct fw_ohci *ohci)
624 {
625         /* Do a dummy read to flush writes. */
626         reg_read(ohci, OHCI1394_Version);
627 }
628
629 /*
630  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
631  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
632  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
633  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
634  */
635 static int read_phy_reg(struct fw_ohci *ohci, int addr)
636 {
637         u32 val;
638         int i;
639
640         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
641         for (i = 0; i < 3 + 100; i++) {
642                 val = reg_read(ohci, OHCI1394_PhyControl);
643                 if (!~val)
644                         return -ENODEV; /* Card was ejected. */
645
646                 if (val & OHCI1394_PhyControl_ReadDone)
647                         return OHCI1394_PhyControl_ReadData(val);
648
649                 /*
650                  * Try a few times without waiting.  Sleeping is necessary
651                  * only when the link/PHY interface is busy.
652                  */
653                 if (i >= 3)
654                         msleep(1);
655         }
656         ohci_err(ohci, "failed to read phy reg %d\n", addr);
657         dump_stack();
658
659         return -EBUSY;
660 }
661
662 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
663 {
664         int i;
665
666         reg_write(ohci, OHCI1394_PhyControl,
667                   OHCI1394_PhyControl_Write(addr, val));
668         for (i = 0; i < 3 + 100; i++) {
669                 val = reg_read(ohci, OHCI1394_PhyControl);
670                 if (!~val)
671                         return -ENODEV; /* Card was ejected. */
672
673                 if (!(val & OHCI1394_PhyControl_WritePending))
674                         return 0;
675
676                 if (i >= 3)
677                         msleep(1);
678         }
679         ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
680         dump_stack();
681
682         return -EBUSY;
683 }
684
685 static int update_phy_reg(struct fw_ohci *ohci, int addr,
686                           int clear_bits, int set_bits)
687 {
688         int ret = read_phy_reg(ohci, addr);
689         if (ret < 0)
690                 return ret;
691
692         /*
693          * The interrupt status bits are cleared by writing a one bit.
694          * Avoid clearing them unless explicitly requested in set_bits.
695          */
696         if (addr == 5)
697                 clear_bits |= PHY_INT_STATUS_BITS;
698
699         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
700 }
701
702 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
703 {
704         int ret;
705
706         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
707         if (ret < 0)
708                 return ret;
709
710         return read_phy_reg(ohci, addr);
711 }
712
713 static int ohci_read_phy_reg(struct fw_card *card, int addr)
714 {
715         struct fw_ohci *ohci = fw_ohci(card);
716         int ret;
717
718         mutex_lock(&ohci->phy_reg_mutex);
719         ret = read_phy_reg(ohci, addr);
720         mutex_unlock(&ohci->phy_reg_mutex);
721
722         return ret;
723 }
724
725 static int ohci_update_phy_reg(struct fw_card *card, int addr,
726                                int clear_bits, int set_bits)
727 {
728         struct fw_ohci *ohci = fw_ohci(card);
729         int ret;
730
731         mutex_lock(&ohci->phy_reg_mutex);
732         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
733         mutex_unlock(&ohci->phy_reg_mutex);
734
735         return ret;
736 }
737
738 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
739 {
740         return page_private(ctx->pages[i]);
741 }
742
743 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
744 {
745         struct descriptor *d;
746
747         d = &ctx->descriptors[index];
748         d->branch_address  &= cpu_to_le32(~0xf);
749         d->res_count       =  cpu_to_le16(PAGE_SIZE);
750         d->transfer_status =  0;
751
752         wmb(); /* finish init of new descriptors before branch_address update */
753         d = &ctx->descriptors[ctx->last_buffer_index];
754         d->branch_address  |= cpu_to_le32(1);
755
756         ctx->last_buffer_index = index;
757
758         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
759 }
760
761 static void ar_context_release(struct ar_context *ctx)
762 {
763         struct device *dev = ctx->ohci->card.device;
764         unsigned int i;
765
766         if (!ctx->buffer)
767                 return;
768
769         vunmap(ctx->buffer);
770
771         for (i = 0; i < AR_BUFFERS; i++) {
772                 if (ctx->pages[i])
773                         dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
774                                        ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
775         }
776 }
777
778 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
779 {
780         struct fw_ohci *ohci = ctx->ohci;
781
782         if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
783                 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
784                 flush_writes(ohci);
785
786                 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
787         }
788         /* FIXME: restart? */
789 }
790
791 static inline unsigned int ar_next_buffer_index(unsigned int index)
792 {
793         return (index + 1) % AR_BUFFERS;
794 }
795
796 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
797 {
798         return ar_next_buffer_index(ctx->last_buffer_index);
799 }
800
801 /*
802  * We search for the buffer that contains the last AR packet DMA data written
803  * by the controller.
804  */
805 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
806                                                  unsigned int *buffer_offset)
807 {
808         unsigned int i, next_i, last = ctx->last_buffer_index;
809         __le16 res_count, next_res_count;
810
811         i = ar_first_buffer_index(ctx);
812         res_count = READ_ONCE(ctx->descriptors[i].res_count);
813
814         /* A buffer that is not yet completely filled must be the last one. */
815         while (i != last && res_count == 0) {
816
817                 /* Peek at the next descriptor. */
818                 next_i = ar_next_buffer_index(i);
819                 rmb(); /* read descriptors in order */
820                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
821                 /*
822                  * If the next descriptor is still empty, we must stop at this
823                  * descriptor.
824                  */
825                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
826                         /*
827                          * The exception is when the DMA data for one packet is
828                          * split over three buffers; in this case, the middle
829                          * buffer's descriptor might be never updated by the
830                          * controller and look still empty, and we have to peek
831                          * at the third one.
832                          */
833                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
834                                 next_i = ar_next_buffer_index(next_i);
835                                 rmb();
836                                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
837                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
838                                         goto next_buffer_is_active;
839                         }
840
841                         break;
842                 }
843
844 next_buffer_is_active:
845                 i = next_i;
846                 res_count = next_res_count;
847         }
848
849         rmb(); /* read res_count before the DMA data */
850
851         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
852         if (*buffer_offset > PAGE_SIZE) {
853                 *buffer_offset = 0;
854                 ar_context_abort(ctx, "corrupted descriptor");
855         }
856
857         return i;
858 }
859
860 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
861                                     unsigned int end_buffer_index,
862                                     unsigned int end_buffer_offset)
863 {
864         unsigned int i;
865
866         i = ar_first_buffer_index(ctx);
867         while (i != end_buffer_index) {
868                 dma_sync_single_for_cpu(ctx->ohci->card.device,
869                                         ar_buffer_bus(ctx, i),
870                                         PAGE_SIZE, DMA_FROM_DEVICE);
871                 i = ar_next_buffer_index(i);
872         }
873         if (end_buffer_offset > 0)
874                 dma_sync_single_for_cpu(ctx->ohci->card.device,
875                                         ar_buffer_bus(ctx, i),
876                                         end_buffer_offset, DMA_FROM_DEVICE);
877 }
878
879 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
880 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
881 {
882         return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
883 }
884
885 static bool has_be_header_quirk(const struct fw_ohci *ohci)
886 {
887         return !!(ohci->quirks & QUIRK_BE_HEADERS);
888 }
889 #else
890 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
891 {
892         return le32_to_cpu(value);
893 }
894
895 static bool has_be_header_quirk(const struct fw_ohci *ohci)
896 {
897         return false;
898 }
899 #endif
900
901 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
902 {
903         struct fw_ohci *ohci = ctx->ohci;
904         struct fw_packet p;
905         u32 status, length, tcode;
906         int evt;
907
908         p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
909         p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
910         p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
911
912         tcode = async_header_get_tcode(p.header);
913         switch (tcode) {
914         case TCODE_WRITE_QUADLET_REQUEST:
915         case TCODE_READ_QUADLET_RESPONSE:
916                 p.header[3] = (__force __u32) buffer[3];
917                 p.header_length = 16;
918                 p.payload_length = 0;
919                 break;
920
921         case TCODE_READ_BLOCK_REQUEST :
922                 p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
923                 p.header_length = 16;
924                 p.payload_length = 0;
925                 break;
926
927         case TCODE_WRITE_BLOCK_REQUEST:
928         case TCODE_READ_BLOCK_RESPONSE:
929         case TCODE_LOCK_REQUEST:
930         case TCODE_LOCK_RESPONSE:
931                 p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
932                 p.header_length = 16;
933                 p.payload_length = async_header_get_data_length(p.header);
934                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
935                         ar_context_abort(ctx, "invalid packet length");
936                         return NULL;
937                 }
938                 break;
939
940         case TCODE_WRITE_RESPONSE:
941         case TCODE_READ_QUADLET_REQUEST:
942         case OHCI_TCODE_PHY_PACKET:
943                 p.header_length = 12;
944                 p.payload_length = 0;
945                 break;
946
947         default:
948                 ar_context_abort(ctx, "invalid tcode");
949                 return NULL;
950         }
951
952         p.payload = (void *) buffer + p.header_length;
953
954         /* FIXME: What to do about evt_* errors? */
955         length = (p.header_length + p.payload_length + 3) / 4;
956         status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
957         evt    = (status >> 16) & 0x1f;
958
959         p.ack        = evt - 16;
960         p.speed      = (status >> 21) & 0x7;
961         p.timestamp  = status & 0xffff;
962         p.generation = ohci->request_generation;
963
964         log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
965
966         /*
967          * Several controllers, notably from NEC and VIA, forget to
968          * write ack_complete status at PHY packet reception.
969          */
970         if (evt == OHCI1394_evt_no_status && tcode == OHCI1394_phy_tcode)
971                 p.ack = ACK_COMPLETE;
972
973         /*
974          * The OHCI bus reset handler synthesizes a PHY packet with
975          * the new generation number when a bus reset happens (see
976          * section 8.4.2.3).  This helps us determine when a request
977          * was received and make sure we send the response in the same
978          * generation.  We only need this for requests; for responses
979          * we use the unique tlabel for finding the matching
980          * request.
981          *
982          * Alas some chips sometimes emit bus reset packets with a
983          * wrong generation.  We set the correct generation for these
984          * at a slightly incorrect time (in bus_reset_work).
985          */
986         if (evt == OHCI1394_evt_bus_reset) {
987                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
988                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
989         } else if (ctx == &ohci->ar_request_ctx) {
990                 fw_core_handle_request(&ohci->card, &p);
991         } else {
992                 fw_core_handle_response(&ohci->card, &p);
993         }
994
995         return buffer + length + 1;
996 }
997
998 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
999 {
1000         void *next;
1001
1002         while (p < end) {
1003                 next = handle_ar_packet(ctx, p);
1004                 if (!next)
1005                         return p;
1006                 p = next;
1007         }
1008
1009         return p;
1010 }
1011
1012 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
1013 {
1014         unsigned int i;
1015
1016         i = ar_first_buffer_index(ctx);
1017         while (i != end_buffer) {
1018                 dma_sync_single_for_device(ctx->ohci->card.device,
1019                                            ar_buffer_bus(ctx, i),
1020                                            PAGE_SIZE, DMA_FROM_DEVICE);
1021                 ar_context_link_page(ctx, i);
1022                 i = ar_next_buffer_index(i);
1023         }
1024 }
1025
1026 static void ar_context_tasklet(unsigned long data)
1027 {
1028         struct ar_context *ctx = (struct ar_context *)data;
1029         unsigned int end_buffer_index, end_buffer_offset;
1030         void *p, *end;
1031
1032         p = ctx->pointer;
1033         if (!p)
1034                 return;
1035
1036         end_buffer_index = ar_search_last_active_buffer(ctx,
1037                                                         &end_buffer_offset);
1038         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
1039         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
1040
1041         if (end_buffer_index < ar_first_buffer_index(ctx)) {
1042                 /*
1043                  * The filled part of the overall buffer wraps around; handle
1044                  * all packets up to the buffer end here.  If the last packet
1045                  * wraps around, its tail will be visible after the buffer end
1046                  * because the buffer start pages are mapped there again.
1047                  */
1048                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
1049                 p = handle_ar_packets(ctx, p, buffer_end);
1050                 if (p < buffer_end)
1051                         goto error;
1052                 /* adjust p to point back into the actual buffer */
1053                 p -= AR_BUFFERS * PAGE_SIZE;
1054         }
1055
1056         p = handle_ar_packets(ctx, p, end);
1057         if (p != end) {
1058                 if (p > end)
1059                         ar_context_abort(ctx, "inconsistent descriptor");
1060                 goto error;
1061         }
1062
1063         ctx->pointer = p;
1064         ar_recycle_buffers(ctx, end_buffer_index);
1065
1066         return;
1067
1068 error:
1069         ctx->pointer = NULL;
1070 }
1071
1072 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1073                            unsigned int descriptors_offset, u32 regs)
1074 {
1075         struct device *dev = ohci->card.device;
1076         unsigned int i;
1077         dma_addr_t dma_addr;
1078         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1079         struct descriptor *d;
1080
1081         ctx->regs        = regs;
1082         ctx->ohci        = ohci;
1083         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1084
1085         for (i = 0; i < AR_BUFFERS; i++) {
1086                 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1087                                                 DMA_FROM_DEVICE, GFP_KERNEL);
1088                 if (!ctx->pages[i])
1089                         goto out_of_memory;
1090                 set_page_private(ctx->pages[i], dma_addr);
1091                 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1092                                            DMA_FROM_DEVICE);
1093         }
1094
1095         for (i = 0; i < AR_BUFFERS; i++)
1096                 pages[i]              = ctx->pages[i];
1097         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1098                 pages[AR_BUFFERS + i] = ctx->pages[i];
1099         ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1100         if (!ctx->buffer)
1101                 goto out_of_memory;
1102
1103         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1104         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1105
1106         for (i = 0; i < AR_BUFFERS; i++) {
1107                 d = &ctx->descriptors[i];
1108                 d->req_count      = cpu_to_le16(PAGE_SIZE);
1109                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1110                                                 DESCRIPTOR_STATUS |
1111                                                 DESCRIPTOR_BRANCH_ALWAYS);
1112                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1113                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1114                         ar_next_buffer_index(i) * sizeof(struct descriptor));
1115         }
1116
1117         return 0;
1118
1119 out_of_memory:
1120         ar_context_release(ctx);
1121
1122         return -ENOMEM;
1123 }
1124
1125 static void ar_context_run(struct ar_context *ctx)
1126 {
1127         unsigned int i;
1128
1129         for (i = 0; i < AR_BUFFERS; i++)
1130                 ar_context_link_page(ctx, i);
1131
1132         ctx->pointer = ctx->buffer;
1133
1134         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1135         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1136 }
1137
1138 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1139 {
1140         __le16 branch;
1141
1142         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1143
1144         /* figure out which descriptor the branch address goes in */
1145         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1146                 return d;
1147         else
1148                 return d + z - 1;
1149 }
1150
1151 static void context_tasklet(unsigned long data)
1152 {
1153         struct context *ctx = (struct context *) data;
1154         struct descriptor *d, *last;
1155         u32 address;
1156         int z;
1157         struct descriptor_buffer *desc;
1158
1159         desc = list_entry(ctx->buffer_list.next,
1160                         struct descriptor_buffer, list);
1161         last = ctx->last;
1162         while (last->branch_address != 0) {
1163                 struct descriptor_buffer *old_desc = desc;
1164                 address = le32_to_cpu(last->branch_address);
1165                 z = address & 0xf;
1166                 address &= ~0xf;
1167                 ctx->current_bus = address;
1168
1169                 /* If the branch address points to a buffer outside of the
1170                  * current buffer, advance to the next buffer. */
1171                 if (address < desc->buffer_bus ||
1172                                 address >= desc->buffer_bus + desc->used)
1173                         desc = list_entry(desc->list.next,
1174                                         struct descriptor_buffer, list);
1175                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1176                 last = find_branch_descriptor(d, z);
1177
1178                 if (!ctx->callback(ctx, d, last))
1179                         break;
1180
1181                 if (old_desc != desc) {
1182                         /* If we've advanced to the next buffer, move the
1183                          * previous buffer to the free list. */
1184                         unsigned long flags;
1185                         old_desc->used = 0;
1186                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1187                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1188                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1189                 }
1190                 ctx->last = last;
1191         }
1192 }
1193
1194 /*
1195  * Allocate a new buffer and add it to the list of free buffers for this
1196  * context.  Must be called with ohci->lock held.
1197  */
1198 static int context_add_buffer(struct context *ctx)
1199 {
1200         struct descriptor_buffer *desc;
1201         dma_addr_t bus_addr;
1202         int offset;
1203
1204         /*
1205          * 16MB of descriptors should be far more than enough for any DMA
1206          * program.  This will catch run-away userspace or DoS attacks.
1207          */
1208         if (ctx->total_allocation >= 16*1024*1024)
1209                 return -ENOMEM;
1210
1211         desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1212         if (!desc)
1213                 return -ENOMEM;
1214
1215         offset = (void *)&desc->buffer - (void *)desc;
1216         /*
1217          * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1218          * for descriptors, even 0x10-byte ones. This can cause page faults when
1219          * an IOMMU is in use and the oversized read crosses a page boundary.
1220          * Work around this by always leaving at least 0x10 bytes of padding.
1221          */
1222         desc->buffer_size = PAGE_SIZE - offset - 0x10;
1223         desc->buffer_bus = bus_addr + offset;
1224         desc->used = 0;
1225
1226         list_add_tail(&desc->list, &ctx->buffer_list);
1227         ctx->total_allocation += PAGE_SIZE;
1228
1229         return 0;
1230 }
1231
1232 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1233                         u32 regs, descriptor_callback_t callback)
1234 {
1235         ctx->ohci = ohci;
1236         ctx->regs = regs;
1237         ctx->total_allocation = 0;
1238
1239         INIT_LIST_HEAD(&ctx->buffer_list);
1240         if (context_add_buffer(ctx) < 0)
1241                 return -ENOMEM;
1242
1243         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1244                         struct descriptor_buffer, list);
1245
1246         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1247         ctx->callback = callback;
1248
1249         /*
1250          * We put a dummy descriptor in the buffer that has a NULL
1251          * branch address and looks like it's been sent.  That way we
1252          * have a descriptor to append DMA programs to.
1253          */
1254         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1255         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1256         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1257         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1258         ctx->last = ctx->buffer_tail->buffer;
1259         ctx->prev = ctx->buffer_tail->buffer;
1260         ctx->prev_z = 1;
1261
1262         return 0;
1263 }
1264
1265 static void context_release(struct context *ctx)
1266 {
1267         struct fw_card *card = &ctx->ohci->card;
1268         struct descriptor_buffer *desc, *tmp;
1269
1270         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1271                 dmam_free_coherent(card->device, PAGE_SIZE, desc,
1272                                    desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1273         }
1274 }
1275
1276 /* Must be called with ohci->lock held */
1277 static struct descriptor *context_get_descriptors(struct context *ctx,
1278                                                   int z, dma_addr_t *d_bus)
1279 {
1280         struct descriptor *d = NULL;
1281         struct descriptor_buffer *desc = ctx->buffer_tail;
1282
1283         if (z * sizeof(*d) > desc->buffer_size)
1284                 return NULL;
1285
1286         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1287                 /* No room for the descriptor in this buffer, so advance to the
1288                  * next one. */
1289
1290                 if (desc->list.next == &ctx->buffer_list) {
1291                         /* If there is no free buffer next in the list,
1292                          * allocate one. */
1293                         if (context_add_buffer(ctx) < 0)
1294                                 return NULL;
1295                 }
1296                 desc = list_entry(desc->list.next,
1297                                 struct descriptor_buffer, list);
1298                 ctx->buffer_tail = desc;
1299         }
1300
1301         d = desc->buffer + desc->used / sizeof(*d);
1302         memset(d, 0, z * sizeof(*d));
1303         *d_bus = desc->buffer_bus + desc->used;
1304
1305         return d;
1306 }
1307
1308 static void context_run(struct context *ctx, u32 extra)
1309 {
1310         struct fw_ohci *ohci = ctx->ohci;
1311
1312         reg_write(ohci, COMMAND_PTR(ctx->regs),
1313                   le32_to_cpu(ctx->last->branch_address));
1314         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1315         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1316         ctx->running = true;
1317         flush_writes(ohci);
1318 }
1319
1320 static void context_append(struct context *ctx,
1321                            struct descriptor *d, int z, int extra)
1322 {
1323         dma_addr_t d_bus;
1324         struct descriptor_buffer *desc = ctx->buffer_tail;
1325         struct descriptor *d_branch;
1326
1327         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1328
1329         desc->used += (z + extra) * sizeof(*d);
1330
1331         wmb(); /* finish init of new descriptors before branch_address update */
1332
1333         d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1334         d_branch->branch_address = cpu_to_le32(d_bus | z);
1335
1336         /*
1337          * VT6306 incorrectly checks only the single descriptor at the
1338          * CommandPtr when the wake bit is written, so if it's a
1339          * multi-descriptor block starting with an INPUT_MORE, put a copy of
1340          * the branch address in the first descriptor.
1341          *
1342          * Not doing this for transmit contexts since not sure how it interacts
1343          * with skip addresses.
1344          */
1345         if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1346             d_branch != ctx->prev &&
1347             (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1348              cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1349                 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1350         }
1351
1352         ctx->prev = d;
1353         ctx->prev_z = z;
1354 }
1355
1356 static void context_stop(struct context *ctx)
1357 {
1358         struct fw_ohci *ohci = ctx->ohci;
1359         u32 reg;
1360         int i;
1361
1362         reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1363         ctx->running = false;
1364
1365         for (i = 0; i < 1000; i++) {
1366                 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1367                 if ((reg & CONTEXT_ACTIVE) == 0)
1368                         return;
1369
1370                 if (i)
1371                         udelay(10);
1372         }
1373         ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1374 }
1375
1376 struct driver_data {
1377         u8 inline_data[8];
1378         struct fw_packet *packet;
1379 };
1380
1381 /*
1382  * This function apppends a packet to the DMA queue for transmission.
1383  * Must always be called with the ochi->lock held to ensure proper
1384  * generation handling and locking around packet queue manipulation.
1385  */
1386 static int at_context_queue_packet(struct context *ctx,
1387                                    struct fw_packet *packet)
1388 {
1389         struct fw_ohci *ohci = ctx->ohci;
1390         dma_addr_t d_bus, payload_bus;
1391         struct driver_data *driver_data;
1392         struct descriptor *d, *last;
1393         __le32 *header;
1394         int z, tcode;
1395
1396         d = context_get_descriptors(ctx, 4, &d_bus);
1397         if (d == NULL) {
1398                 packet->ack = RCODE_SEND_ERROR;
1399                 return -1;
1400         }
1401
1402         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1403         d[0].res_count = cpu_to_le16(packet->timestamp);
1404
1405         /*
1406          * The DMA format for asynchronous link packets is different
1407          * from the IEEE1394 layout, so shift the fields around
1408          * accordingly.
1409          */
1410
1411         tcode = async_header_get_tcode(packet->header);
1412         header = (__le32 *) &d[1];
1413         switch (tcode) {
1414         case TCODE_WRITE_QUADLET_REQUEST:
1415         case TCODE_WRITE_BLOCK_REQUEST:
1416         case TCODE_WRITE_RESPONSE:
1417         case TCODE_READ_QUADLET_REQUEST:
1418         case TCODE_READ_BLOCK_REQUEST:
1419         case TCODE_READ_QUADLET_RESPONSE:
1420         case TCODE_READ_BLOCK_RESPONSE:
1421         case TCODE_LOCK_REQUEST:
1422         case TCODE_LOCK_RESPONSE:
1423                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1424                                         (packet->speed << 16));
1425                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1426                                         (packet->header[0] & 0xffff0000));
1427                 header[2] = cpu_to_le32(packet->header[2]);
1428
1429                 if (tcode_is_block_packet(tcode))
1430                         header[3] = cpu_to_le32(packet->header[3]);
1431                 else
1432                         header[3] = (__force __le32) packet->header[3];
1433
1434                 d[0].req_count = cpu_to_le16(packet->header_length);
1435                 break;
1436
1437         case TCODE_LINK_INTERNAL:
1438                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1439                                         (packet->speed << 16));
1440                 header[1] = cpu_to_le32(packet->header[1]);
1441                 header[2] = cpu_to_le32(packet->header[2]);
1442                 d[0].req_count = cpu_to_le16(12);
1443
1444                 if (is_ping_packet(&packet->header[1]))
1445                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1446                 break;
1447
1448         case TCODE_STREAM_DATA:
1449                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1450                                         (packet->speed << 16));
1451                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1452                 d[0].req_count = cpu_to_le16(8);
1453                 break;
1454
1455         default:
1456                 /* BUG(); */
1457                 packet->ack = RCODE_SEND_ERROR;
1458                 return -1;
1459         }
1460
1461         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1462         driver_data = (struct driver_data *) &d[3];
1463         driver_data->packet = packet;
1464         packet->driver_data = driver_data;
1465
1466         if (packet->payload_length > 0) {
1467                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1468                         payload_bus = dma_map_single(ohci->card.device,
1469                                                      packet->payload,
1470                                                      packet->payload_length,
1471                                                      DMA_TO_DEVICE);
1472                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1473                                 packet->ack = RCODE_SEND_ERROR;
1474                                 return -1;
1475                         }
1476                         packet->payload_bus     = payload_bus;
1477                         packet->payload_mapped  = true;
1478                 } else {
1479                         memcpy(driver_data->inline_data, packet->payload,
1480                                packet->payload_length);
1481                         payload_bus = d_bus + 3 * sizeof(*d);
1482                 }
1483
1484                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1485                 d[2].data_address = cpu_to_le32(payload_bus);
1486                 last = &d[2];
1487                 z = 3;
1488         } else {
1489                 last = &d[0];
1490                 z = 2;
1491         }
1492
1493         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1494                                      DESCRIPTOR_IRQ_ALWAYS |
1495                                      DESCRIPTOR_BRANCH_ALWAYS);
1496
1497         /* FIXME: Document how the locking works. */
1498         if (ohci->generation != packet->generation) {
1499                 if (packet->payload_mapped)
1500                         dma_unmap_single(ohci->card.device, payload_bus,
1501                                          packet->payload_length, DMA_TO_DEVICE);
1502                 packet->ack = RCODE_GENERATION;
1503                 return -1;
1504         }
1505
1506         context_append(ctx, d, z, 4 - z);
1507
1508         if (ctx->running)
1509                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1510         else
1511                 context_run(ctx, 0);
1512
1513         return 0;
1514 }
1515
1516 static void at_context_flush(struct context *ctx)
1517 {
1518         tasklet_disable(&ctx->tasklet);
1519
1520         ctx->flushing = true;
1521         context_tasklet((unsigned long)ctx);
1522         ctx->flushing = false;
1523
1524         tasklet_enable(&ctx->tasklet);
1525 }
1526
1527 static int handle_at_packet(struct context *context,
1528                             struct descriptor *d,
1529                             struct descriptor *last)
1530 {
1531         struct driver_data *driver_data;
1532         struct fw_packet *packet;
1533         struct fw_ohci *ohci = context->ohci;
1534         int evt;
1535
1536         if (last->transfer_status == 0 && !context->flushing)
1537                 /* This descriptor isn't done yet, stop iteration. */
1538                 return 0;
1539
1540         driver_data = (struct driver_data *) &d[3];
1541         packet = driver_data->packet;
1542         if (packet == NULL)
1543                 /* This packet was cancelled, just continue. */
1544                 return 1;
1545
1546         if (packet->payload_mapped)
1547                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1548                                  packet->payload_length, DMA_TO_DEVICE);
1549
1550         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1551         packet->timestamp = le16_to_cpu(last->res_count);
1552
1553         log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1554
1555         switch (evt) {
1556         case OHCI1394_evt_timeout:
1557                 /* Async response transmit timed out. */
1558                 packet->ack = RCODE_CANCELLED;
1559                 break;
1560
1561         case OHCI1394_evt_flushed:
1562                 /*
1563                  * The packet was flushed should give same error as
1564                  * when we try to use a stale generation count.
1565                  */
1566                 packet->ack = RCODE_GENERATION;
1567                 break;
1568
1569         case OHCI1394_evt_missing_ack:
1570                 if (context->flushing)
1571                         packet->ack = RCODE_GENERATION;
1572                 else {
1573                         /*
1574                          * Using a valid (current) generation count, but the
1575                          * node is not on the bus or not sending acks.
1576                          */
1577                         packet->ack = RCODE_NO_ACK;
1578                 }
1579                 break;
1580
1581         case ACK_COMPLETE + 0x10:
1582         case ACK_PENDING + 0x10:
1583         case ACK_BUSY_X + 0x10:
1584         case ACK_BUSY_A + 0x10:
1585         case ACK_BUSY_B + 0x10:
1586         case ACK_DATA_ERROR + 0x10:
1587         case ACK_TYPE_ERROR + 0x10:
1588                 packet->ack = evt - 0x10;
1589                 break;
1590
1591         case OHCI1394_evt_no_status:
1592                 if (context->flushing) {
1593                         packet->ack = RCODE_GENERATION;
1594                         break;
1595                 }
1596                 fallthrough;
1597
1598         default:
1599                 packet->ack = RCODE_SEND_ERROR;
1600                 break;
1601         }
1602
1603         packet->callback(packet, &ohci->card, packet->ack);
1604
1605         return 1;
1606 }
1607
1608 static u32 get_cycle_time(struct fw_ohci *ohci);
1609
1610 static void handle_local_rom(struct fw_ohci *ohci,
1611                              struct fw_packet *packet, u32 csr)
1612 {
1613         struct fw_packet response;
1614         int tcode, length, i;
1615
1616         tcode = async_header_get_tcode(packet->header);
1617         if (tcode_is_block_packet(tcode))
1618                 length = async_header_get_data_length(packet->header);
1619         else
1620                 length = 4;
1621
1622         i = csr - CSR_CONFIG_ROM;
1623         if (i + length > CONFIG_ROM_SIZE) {
1624                 fw_fill_response(&response, packet->header,
1625                                  RCODE_ADDRESS_ERROR, NULL, 0);
1626         } else if (!tcode_is_read_request(tcode)) {
1627                 fw_fill_response(&response, packet->header,
1628                                  RCODE_TYPE_ERROR, NULL, 0);
1629         } else {
1630                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1631                                  (void *) ohci->config_rom + i, length);
1632         }
1633
1634         // Timestamping on behalf of the hardware.
1635         response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1636         fw_core_handle_response(&ohci->card, &response);
1637 }
1638
1639 static void handle_local_lock(struct fw_ohci *ohci,
1640                               struct fw_packet *packet, u32 csr)
1641 {
1642         struct fw_packet response;
1643         int tcode, length, ext_tcode, sel, try;
1644         __be32 *payload, lock_old;
1645         u32 lock_arg, lock_data;
1646
1647         tcode = async_header_get_tcode(packet->header);
1648         length = async_header_get_data_length(packet->header);
1649         payload = packet->payload;
1650         ext_tcode = async_header_get_extended_tcode(packet->header);
1651
1652         if (tcode == TCODE_LOCK_REQUEST &&
1653             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1654                 lock_arg = be32_to_cpu(payload[0]);
1655                 lock_data = be32_to_cpu(payload[1]);
1656         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1657                 lock_arg = 0;
1658                 lock_data = 0;
1659         } else {
1660                 fw_fill_response(&response, packet->header,
1661                                  RCODE_TYPE_ERROR, NULL, 0);
1662                 goto out;
1663         }
1664
1665         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1666         reg_write(ohci, OHCI1394_CSRData, lock_data);
1667         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1668         reg_write(ohci, OHCI1394_CSRControl, sel);
1669
1670         for (try = 0; try < 20; try++)
1671                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1672                         lock_old = cpu_to_be32(reg_read(ohci,
1673                                                         OHCI1394_CSRData));
1674                         fw_fill_response(&response, packet->header,
1675                                          RCODE_COMPLETE,
1676                                          &lock_old, sizeof(lock_old));
1677                         goto out;
1678                 }
1679
1680         ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1681         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1682
1683  out:
1684         // Timestamping on behalf of the hardware.
1685         response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1686         fw_core_handle_response(&ohci->card, &response);
1687 }
1688
1689 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1690 {
1691         u64 offset, csr;
1692
1693         if (ctx == &ctx->ohci->at_request_ctx) {
1694                 packet->ack = ACK_PENDING;
1695                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1696         }
1697
1698         offset = async_header_get_offset(packet->header);
1699         csr = offset - CSR_REGISTER_BASE;
1700
1701         /* Handle config rom reads. */
1702         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1703                 handle_local_rom(ctx->ohci, packet, csr);
1704         else switch (csr) {
1705         case CSR_BUS_MANAGER_ID:
1706         case CSR_BANDWIDTH_AVAILABLE:
1707         case CSR_CHANNELS_AVAILABLE_HI:
1708         case CSR_CHANNELS_AVAILABLE_LO:
1709                 handle_local_lock(ctx->ohci, packet, csr);
1710                 break;
1711         default:
1712                 if (ctx == &ctx->ohci->at_request_ctx)
1713                         fw_core_handle_request(&ctx->ohci->card, packet);
1714                 else
1715                         fw_core_handle_response(&ctx->ohci->card, packet);
1716                 break;
1717         }
1718
1719         if (ctx == &ctx->ohci->at_response_ctx) {
1720                 packet->ack = ACK_COMPLETE;
1721                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1722         }
1723 }
1724
1725 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1726 {
1727         unsigned long flags;
1728         int ret;
1729
1730         spin_lock_irqsave(&ctx->ohci->lock, flags);
1731
1732         if (async_header_get_destination(packet->header) == ctx->ohci->node_id &&
1733             ctx->ohci->generation == packet->generation) {
1734                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1735
1736                 // Timestamping on behalf of the hardware.
1737                 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1738
1739                 handle_local_request(ctx, packet);
1740                 return;
1741         }
1742
1743         ret = at_context_queue_packet(ctx, packet);
1744         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1745
1746         if (ret < 0) {
1747                 // Timestamping on behalf of the hardware.
1748                 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1749
1750                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1751         }
1752 }
1753
1754 static void detect_dead_context(struct fw_ohci *ohci,
1755                                 const char *name, unsigned int regs)
1756 {
1757         u32 ctl;
1758
1759         ctl = reg_read(ohci, CONTROL_SET(regs));
1760         if (ctl & CONTEXT_DEAD)
1761                 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1762                         name, evts[ctl & 0x1f]);
1763 }
1764
1765 static void handle_dead_contexts(struct fw_ohci *ohci)
1766 {
1767         unsigned int i;
1768         char name[8];
1769
1770         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1771         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1772         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1773         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1774         for (i = 0; i < 32; ++i) {
1775                 if (!(ohci->it_context_support & (1 << i)))
1776                         continue;
1777                 sprintf(name, "IT%u", i);
1778                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1779         }
1780         for (i = 0; i < 32; ++i) {
1781                 if (!(ohci->ir_context_support & (1 << i)))
1782                         continue;
1783                 sprintf(name, "IR%u", i);
1784                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1785         }
1786         /* TODO: maybe try to flush and restart the dead contexts */
1787 }
1788
1789 static u32 cycle_timer_ticks(u32 cycle_timer)
1790 {
1791         u32 ticks;
1792
1793         ticks = cycle_timer & 0xfff;
1794         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1795         ticks += (3072 * 8000) * (cycle_timer >> 25);
1796
1797         return ticks;
1798 }
1799
1800 /*
1801  * Some controllers exhibit one or more of the following bugs when updating the
1802  * iso cycle timer register:
1803  *  - When the lowest six bits are wrapping around to zero, a read that happens
1804  *    at the same time will return garbage in the lowest ten bits.
1805  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1806  *    not incremented for about 60 ns.
1807  *  - Occasionally, the entire register reads zero.
1808  *
1809  * To catch these, we read the register three times and ensure that the
1810  * difference between each two consecutive reads is approximately the same, i.e.
1811  * less than twice the other.  Furthermore, any negative difference indicates an
1812  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1813  * execute, so we have enough precision to compute the ratio of the differences.)
1814  */
1815 static u32 get_cycle_time(struct fw_ohci *ohci)
1816 {
1817         u32 c0, c1, c2;
1818         u32 t0, t1, t2;
1819         s32 diff01, diff12;
1820         int i;
1821
1822         if (has_reboot_by_cycle_timer_read_quirk(ohci))
1823                 return 0;
1824
1825         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1826
1827         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1828                 i = 0;
1829                 c1 = c2;
1830                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1831                 do {
1832                         c0 = c1;
1833                         c1 = c2;
1834                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1835                         t0 = cycle_timer_ticks(c0);
1836                         t1 = cycle_timer_ticks(c1);
1837                         t2 = cycle_timer_ticks(c2);
1838                         diff01 = t1 - t0;
1839                         diff12 = t2 - t1;
1840                 } while ((diff01 <= 0 || diff12 <= 0 ||
1841                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1842                          && i++ < 20);
1843         }
1844
1845         return c2;
1846 }
1847
1848 /*
1849  * This function has to be called at least every 64 seconds.  The bus_time
1850  * field stores not only the upper 25 bits of the BUS_TIME register but also
1851  * the most significant bit of the cycle timer in bit 6 so that we can detect
1852  * changes in this bit.
1853  */
1854 static u32 update_bus_time(struct fw_ohci *ohci)
1855 {
1856         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1857
1858         if (unlikely(!ohci->bus_time_running)) {
1859                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1860                 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1861                                  (cycle_time_seconds & 0x40);
1862                 ohci->bus_time_running = true;
1863         }
1864
1865         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1866                 ohci->bus_time += 0x40;
1867
1868         return ohci->bus_time | cycle_time_seconds;
1869 }
1870
1871 static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1872                                enum phy_packet_self_id_port_status *status)
1873 {
1874         int reg;
1875
1876         mutex_lock(&ohci->phy_reg_mutex);
1877         reg = write_phy_reg(ohci, 7, port_index);
1878         if (reg >= 0)
1879                 reg = read_phy_reg(ohci, 8);
1880         mutex_unlock(&ohci->phy_reg_mutex);
1881         if (reg < 0)
1882                 return reg;
1883
1884         switch (reg & 0x0f) {
1885         case 0x06:
1886                 // is child node (connected to parent node)
1887                 *status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1888                 break;
1889         case 0x0e:
1890                 // is parent node (connected to child node)
1891                 *status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1892                 break;
1893         default:
1894                 // not connected
1895                 *status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1896                 break;
1897         }
1898
1899         return 0;
1900 }
1901
1902 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1903         int self_id_count)
1904 {
1905         unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1906         int i;
1907
1908         for (i = 0; i < self_id_count; i++) {
1909                 u32 entry = ohci->self_id_buffer[i];
1910                 unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1911
1912                 if (left_phy_id == right_phy_id)
1913                         return -1;
1914                 if (left_phy_id < right_phy_id)
1915                         return i;
1916         }
1917         return i;
1918 }
1919
1920 static bool initiated_reset(struct fw_ohci *ohci)
1921 {
1922         int reg;
1923         int ret = false;
1924
1925         mutex_lock(&ohci->phy_reg_mutex);
1926         reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1927         if (reg >= 0) {
1928                 reg = read_phy_reg(ohci, 8);
1929                 reg |= 0x40;
1930                 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1931                 if (reg >= 0) {
1932                         reg = read_phy_reg(ohci, 12); /* read register 12 */
1933                         if (reg >= 0) {
1934                                 if ((reg & 0x08) == 0x08) {
1935                                         /* bit 3 indicates "initiated reset" */
1936                                         ret = true;
1937                                 }
1938                         }
1939                 }
1940         }
1941         mutex_unlock(&ohci->phy_reg_mutex);
1942         return ret;
1943 }
1944
1945 /*
1946  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1947  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1948  * Construct the selfID from phy register contents.
1949  */
1950 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1951 {
1952         int reg, i, pos;
1953         u32 self_id = 0;
1954
1955         // link active 1, speed 3, bridge 0, contender 1, more packets 0.
1956         phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1957         phy_packet_self_id_zero_set_link_active(&self_id, true);
1958         phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1959         phy_packet_self_id_zero_set_contender(&self_id, true);
1960
1961         reg = reg_read(ohci, OHCI1394_NodeID);
1962         if (!(reg & OHCI1394_NodeID_idValid)) {
1963                 ohci_notice(ohci,
1964                             "node ID not valid, new bus reset in progress\n");
1965                 return -EBUSY;
1966         }
1967         phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1968
1969         reg = ohci_read_phy_reg(&ohci->card, 4);
1970         if (reg < 0)
1971                 return reg;
1972         phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
1973
1974         reg = ohci_read_phy_reg(&ohci->card, 1);
1975         if (reg < 0)
1976                 return reg;
1977         phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
1978
1979         for (i = 0; i < 3; i++) {
1980                 enum phy_packet_self_id_port_status status;
1981                 int err;
1982
1983                 err = get_status_for_port(ohci, i, &status);
1984                 if (err < 0)
1985                         return err;
1986
1987                 self_id_sequence_set_port_status(&self_id, 1, i, status);
1988         }
1989
1990         phy_packet_self_id_zero_set_initiated_reset(&self_id, initiated_reset(ohci));
1991
1992         pos = get_self_id_pos(ohci, self_id, self_id_count);
1993         if (pos >= 0) {
1994                 memmove(&(ohci->self_id_buffer[pos+1]),
1995                         &(ohci->self_id_buffer[pos]),
1996                         (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1997                 ohci->self_id_buffer[pos] = self_id;
1998                 self_id_count++;
1999         }
2000         return self_id_count;
2001 }
2002
2003 static void bus_reset_work(struct work_struct *work)
2004 {
2005         struct fw_ohci *ohci =
2006                 container_of(work, struct fw_ohci, bus_reset_work);
2007         int self_id_count, generation, new_generation, i, j;
2008         u32 reg, quadlet;
2009         void *free_rom = NULL;
2010         dma_addr_t free_rom_bus = 0;
2011         bool is_new_root;
2012
2013         reg = reg_read(ohci, OHCI1394_NodeID);
2014         if (!(reg & OHCI1394_NodeID_idValid)) {
2015                 ohci_notice(ohci,
2016                             "node ID not valid, new bus reset in progress\n");
2017                 return;
2018         }
2019         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
2020                 ohci_notice(ohci, "malconfigured bus\n");
2021                 return;
2022         }
2023         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
2024                                OHCI1394_NodeID_nodeNumber);
2025
2026         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
2027         if (!(ohci->is_root && is_new_root))
2028                 reg_write(ohci, OHCI1394_LinkControlSet,
2029                           OHCI1394_LinkControl_cycleMaster);
2030         ohci->is_root = is_new_root;
2031
2032         reg = reg_read(ohci, OHCI1394_SelfIDCount);
2033         if (ohci1394_self_id_count_is_error(reg)) {
2034                 ohci_notice(ohci, "self ID receive error\n");
2035                 return;
2036         }
2037         /*
2038          * The count in the SelfIDCount register is the number of
2039          * bytes in the self ID receive buffer.  Since we also receive
2040          * the inverted quadlets and a header quadlet, we shift one
2041          * bit extra to get the actual number of self IDs.
2042          */
2043         self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
2044
2045         if (self_id_count > 252) {
2046                 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
2047                 return;
2048         }
2049
2050         quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
2051         generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
2052         rmb();
2053
2054         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
2055                 u32 id  = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
2056                 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
2057
2058                 if (id != ~id2) {
2059                         /*
2060                          * If the invalid data looks like a cycle start packet,
2061                          * it's likely to be the result of the cycle master
2062                          * having a wrong gap count.  In this case, the self IDs
2063                          * so far are valid and should be processed so that the
2064                          * bus manager can then correct the gap count.
2065                          */
2066                         if (id == 0xffff008f) {
2067                                 ohci_notice(ohci, "ignoring spurious self IDs\n");
2068                                 self_id_count = j;
2069                                 break;
2070                         }
2071
2072                         ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2073                                     j, self_id_count, id, id2);
2074                         return;
2075                 }
2076                 ohci->self_id_buffer[j] = id;
2077         }
2078
2079         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2080                 self_id_count = find_and_insert_self_id(ohci, self_id_count);
2081                 if (self_id_count < 0) {
2082                         ohci_notice(ohci,
2083                                     "could not construct local self ID\n");
2084                         return;
2085                 }
2086         }
2087
2088         if (self_id_count == 0) {
2089                 ohci_notice(ohci, "no self IDs\n");
2090                 return;
2091         }
2092         rmb();
2093
2094         /*
2095          * Check the consistency of the self IDs we just read.  The
2096          * problem we face is that a new bus reset can start while we
2097          * read out the self IDs from the DMA buffer. If this happens,
2098          * the DMA buffer will be overwritten with new self IDs and we
2099          * will read out inconsistent data.  The OHCI specification
2100          * (section 11.2) recommends a technique similar to
2101          * linux/seqlock.h, where we remember the generation of the
2102          * self IDs in the buffer before reading them out and compare
2103          * it to the current generation after reading them out.  If
2104          * the two generations match we know we have a consistent set
2105          * of self IDs.
2106          */
2107
2108         reg = reg_read(ohci, OHCI1394_SelfIDCount);
2109         new_generation = ohci1394_self_id_count_get_generation(reg);
2110         if (new_generation != generation) {
2111                 ohci_notice(ohci, "new bus reset, discarding self ids\n");
2112                 return;
2113         }
2114
2115         /* FIXME: Document how the locking works. */
2116         spin_lock_irq(&ohci->lock);
2117
2118         ohci->generation = -1; /* prevent AT packet queueing */
2119         context_stop(&ohci->at_request_ctx);
2120         context_stop(&ohci->at_response_ctx);
2121
2122         spin_unlock_irq(&ohci->lock);
2123
2124         /*
2125          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2126          * packets in the AT queues and software needs to drain them.
2127          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2128          */
2129         at_context_flush(&ohci->at_request_ctx);
2130         at_context_flush(&ohci->at_response_ctx);
2131
2132         spin_lock_irq(&ohci->lock);
2133
2134         ohci->generation = generation;
2135         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2136         reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2137
2138         if (ohci->quirks & QUIRK_RESET_PACKET)
2139                 ohci->request_generation = generation;
2140
2141         /*
2142          * This next bit is unrelated to the AT context stuff but we
2143          * have to do it under the spinlock also.  If a new config rom
2144          * was set up before this reset, the old one is now no longer
2145          * in use and we can free it. Update the config rom pointers
2146          * to point to the current config rom and clear the
2147          * next_config_rom pointer so a new update can take place.
2148          */
2149
2150         if (ohci->next_config_rom != NULL) {
2151                 if (ohci->next_config_rom != ohci->config_rom) {
2152                         free_rom      = ohci->config_rom;
2153                         free_rom_bus  = ohci->config_rom_bus;
2154                 }
2155                 ohci->config_rom      = ohci->next_config_rom;
2156                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
2157                 ohci->next_config_rom = NULL;
2158
2159                 /*
2160                  * Restore config_rom image and manually update
2161                  * config_rom registers.  Writing the header quadlet
2162                  * will indicate that the config rom is ready, so we
2163                  * do that last.
2164                  */
2165                 reg_write(ohci, OHCI1394_BusOptions,
2166                           be32_to_cpu(ohci->config_rom[2]));
2167                 ohci->config_rom[0] = ohci->next_header;
2168                 reg_write(ohci, OHCI1394_ConfigROMhdr,
2169                           be32_to_cpu(ohci->next_header));
2170         }
2171
2172         if (param_remote_dma) {
2173                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2174                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2175         }
2176
2177         spin_unlock_irq(&ohci->lock);
2178
2179         if (free_rom)
2180                 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2181
2182         log_selfids(ohci, generation, self_id_count);
2183
2184         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2185                                  self_id_count, ohci->self_id_buffer,
2186                                  ohci->csr_state_setclear_abdicate);
2187         ohci->csr_state_setclear_abdicate = false;
2188 }
2189
2190 static irqreturn_t irq_handler(int irq, void *data)
2191 {
2192         struct fw_ohci *ohci = data;
2193         u32 event, iso_event;
2194         int i;
2195
2196         event = reg_read(ohci, OHCI1394_IntEventClear);
2197
2198         if (!event || !~event)
2199                 return IRQ_NONE;
2200
2201         /*
2202          * busReset and postedWriteErr events must not be cleared yet
2203          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2204          */
2205         reg_write(ohci, OHCI1394_IntEventClear,
2206                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2207         trace_irqs(ohci->card.index, event);
2208         log_irqs(ohci, event);
2209         // The flag is masked again at bus_reset_work() scheduled by selfID event.
2210         if (event & OHCI1394_busReset)
2211                 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2212
2213         if (event & OHCI1394_selfIDComplete) {
2214                 if (trace_self_id_complete_enabled()) {
2215                         u32 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2216
2217                         trace_self_id_complete(ohci->card.index, reg, ohci->self_id,
2218                                                has_be_header_quirk(ohci));
2219                 }
2220                 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2221         }
2222
2223         if (event & OHCI1394_RQPkt)
2224                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2225
2226         if (event & OHCI1394_RSPkt)
2227                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2228
2229         if (event & OHCI1394_reqTxComplete)
2230                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2231
2232         if (event & OHCI1394_respTxComplete)
2233                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2234
2235         if (event & OHCI1394_isochRx) {
2236                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2237                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2238
2239                 while (iso_event) {
2240                         i = ffs(iso_event) - 1;
2241                         tasklet_schedule(
2242                                 &ohci->ir_context_list[i].context.tasklet);
2243                         iso_event &= ~(1 << i);
2244                 }
2245         }
2246
2247         if (event & OHCI1394_isochTx) {
2248                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2249                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2250
2251                 while (iso_event) {
2252                         i = ffs(iso_event) - 1;
2253                         tasklet_schedule(
2254                                 &ohci->it_context_list[i].context.tasklet);
2255                         iso_event &= ~(1 << i);
2256                 }
2257         }
2258
2259         if (unlikely(event & OHCI1394_regAccessFail))
2260                 ohci_err(ohci, "register access failure\n");
2261
2262         if (unlikely(event & OHCI1394_postedWriteErr)) {
2263                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2264                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2265                 reg_write(ohci, OHCI1394_IntEventClear,
2266                           OHCI1394_postedWriteErr);
2267                 if (printk_ratelimit())
2268                         ohci_err(ohci, "PCI posted write error\n");
2269         }
2270
2271         if (unlikely(event & OHCI1394_cycleTooLong)) {
2272                 if (printk_ratelimit())
2273                         ohci_notice(ohci, "isochronous cycle too long\n");
2274                 reg_write(ohci, OHCI1394_LinkControlSet,
2275                           OHCI1394_LinkControl_cycleMaster);
2276         }
2277
2278         if (unlikely(event & OHCI1394_cycleInconsistent)) {
2279                 /*
2280                  * We need to clear this event bit in order to make
2281                  * cycleMatch isochronous I/O work.  In theory we should
2282                  * stop active cycleMatch iso contexts now and restart
2283                  * them at least two cycles later.  (FIXME?)
2284                  */
2285                 if (printk_ratelimit())
2286                         ohci_notice(ohci, "isochronous cycle inconsistent\n");
2287         }
2288
2289         if (unlikely(event & OHCI1394_unrecoverableError))
2290                 handle_dead_contexts(ohci);
2291
2292         if (event & OHCI1394_cycle64Seconds) {
2293                 spin_lock(&ohci->lock);
2294                 update_bus_time(ohci);
2295                 spin_unlock(&ohci->lock);
2296         } else
2297                 flush_writes(ohci);
2298
2299         return IRQ_HANDLED;
2300 }
2301
2302 static int software_reset(struct fw_ohci *ohci)
2303 {
2304         u32 val;
2305         int i;
2306
2307         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2308         for (i = 0; i < 500; i++) {
2309                 val = reg_read(ohci, OHCI1394_HCControlSet);
2310                 if (!~val)
2311                         return -ENODEV; /* Card was ejected. */
2312
2313                 if (!(val & OHCI1394_HCControl_softReset))
2314                         return 0;
2315
2316                 msleep(1);
2317         }
2318
2319         return -EBUSY;
2320 }
2321
2322 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2323 {
2324         size_t size = length * 4;
2325
2326         memcpy(dest, src, size);
2327         if (size < CONFIG_ROM_SIZE)
2328                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2329 }
2330
2331 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2332 {
2333         bool enable_1394a;
2334         int ret, clear, set, offset;
2335
2336         /* Check if the driver should configure link and PHY. */
2337         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2338               OHCI1394_HCControl_programPhyEnable))
2339                 return 0;
2340
2341         /* Paranoia: check whether the PHY supports 1394a, too. */
2342         enable_1394a = false;
2343         ret = read_phy_reg(ohci, 2);
2344         if (ret < 0)
2345                 return ret;
2346         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2347                 ret = read_paged_phy_reg(ohci, 1, 8);
2348                 if (ret < 0)
2349                         return ret;
2350                 if (ret >= 1)
2351                         enable_1394a = true;
2352         }
2353
2354         if (ohci->quirks & QUIRK_NO_1394A)
2355                 enable_1394a = false;
2356
2357         /* Configure PHY and link consistently. */
2358         if (enable_1394a) {
2359                 clear = 0;
2360                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2361         } else {
2362                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2363                 set = 0;
2364         }
2365         ret = update_phy_reg(ohci, 5, clear, set);
2366         if (ret < 0)
2367                 return ret;
2368
2369         if (enable_1394a)
2370                 offset = OHCI1394_HCControlSet;
2371         else
2372                 offset = OHCI1394_HCControlClear;
2373         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2374
2375         /* Clean up: configuration has been taken care of. */
2376         reg_write(ohci, OHCI1394_HCControlClear,
2377                   OHCI1394_HCControl_programPhyEnable);
2378
2379         return 0;
2380 }
2381
2382 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2383 {
2384         /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2385         static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2386         int reg, i;
2387
2388         reg = read_phy_reg(ohci, 2);
2389         if (reg < 0)
2390                 return reg;
2391         if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2392                 return 0;
2393
2394         for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2395                 reg = read_paged_phy_reg(ohci, 1, i + 10);
2396                 if (reg < 0)
2397                         return reg;
2398                 if (reg != id[i])
2399                         return 0;
2400         }
2401         return 1;
2402 }
2403
2404 static int ohci_enable(struct fw_card *card,
2405                        const __be32 *config_rom, size_t length)
2406 {
2407         struct fw_ohci *ohci = fw_ohci(card);
2408         u32 lps, version, irqs;
2409         int i, ret;
2410
2411         ret = software_reset(ohci);
2412         if (ret < 0) {
2413                 ohci_err(ohci, "failed to reset ohci card\n");
2414                 return ret;
2415         }
2416
2417         /*
2418          * Now enable LPS, which we need in order to start accessing
2419          * most of the registers.  In fact, on some cards (ALI M5251),
2420          * accessing registers in the SClk domain without LPS enabled
2421          * will lock up the machine.  Wait 50msec to make sure we have
2422          * full link enabled.  However, with some cards (well, at least
2423          * a JMicron PCIe card), we have to try again sometimes.
2424          *
2425          * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2426          * cannot actually use the phy at that time.  These need tens of
2427          * millisecods pause between LPS write and first phy access too.
2428          */
2429
2430         reg_write(ohci, OHCI1394_HCControlSet,
2431                   OHCI1394_HCControl_LPS |
2432                   OHCI1394_HCControl_postedWriteEnable);
2433         flush_writes(ohci);
2434
2435         for (lps = 0, i = 0; !lps && i < 3; i++) {
2436                 msleep(50);
2437                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2438                       OHCI1394_HCControl_LPS;
2439         }
2440
2441         if (!lps) {
2442                 ohci_err(ohci, "failed to set Link Power Status\n");
2443                 return -EIO;
2444         }
2445
2446         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2447                 ret = probe_tsb41ba3d(ohci);
2448                 if (ret < 0)
2449                         return ret;
2450                 if (ret)
2451                         ohci_notice(ohci, "local TSB41BA3D phy\n");
2452                 else
2453                         ohci->quirks &= ~QUIRK_TI_SLLZ059;
2454         }
2455
2456         reg_write(ohci, OHCI1394_HCControlClear,
2457                   OHCI1394_HCControl_noByteSwapData);
2458
2459         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2460         reg_write(ohci, OHCI1394_LinkControlSet,
2461                   OHCI1394_LinkControl_cycleTimerEnable |
2462                   OHCI1394_LinkControl_cycleMaster);
2463
2464         reg_write(ohci, OHCI1394_ATRetries,
2465                   OHCI1394_MAX_AT_REQ_RETRIES |
2466                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2467                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2468                   (200 << 16));
2469
2470         ohci->bus_time_running = false;
2471
2472         for (i = 0; i < 32; i++)
2473                 if (ohci->ir_context_support & (1 << i))
2474                         reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2475                                   IR_CONTEXT_MULTI_CHANNEL_MODE);
2476
2477         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2478         if (version >= OHCI_VERSION_1_1) {
2479                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2480                           0xfffffffe);
2481                 card->broadcast_channel_auto_allocated = true;
2482         }
2483
2484         /* Get implemented bits of the priority arbitration request counter. */
2485         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2486         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2487         reg_write(ohci, OHCI1394_FairnessControl, 0);
2488         card->priority_budget_implemented = ohci->pri_req_max != 0;
2489
2490         reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2491         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2492         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2493
2494         ret = configure_1394a_enhancements(ohci);
2495         if (ret < 0)
2496                 return ret;
2497
2498         /* Activate link_on bit and contender bit in our self ID packets.*/
2499         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2500         if (ret < 0)
2501                 return ret;
2502
2503         /*
2504          * When the link is not yet enabled, the atomic config rom
2505          * update mechanism described below in ohci_set_config_rom()
2506          * is not active.  We have to update ConfigRomHeader and
2507          * BusOptions manually, and the write to ConfigROMmap takes
2508          * effect immediately.  We tie this to the enabling of the
2509          * link, so we have a valid config rom before enabling - the
2510          * OHCI requires that ConfigROMhdr and BusOptions have valid
2511          * values before enabling.
2512          *
2513          * However, when the ConfigROMmap is written, some controllers
2514          * always read back quadlets 0 and 2 from the config rom to
2515          * the ConfigRomHeader and BusOptions registers on bus reset.
2516          * They shouldn't do that in this initial case where the link
2517          * isn't enabled.  This means we have to use the same
2518          * workaround here, setting the bus header to 0 and then write
2519          * the right values in the bus reset tasklet.
2520          */
2521
2522         if (config_rom) {
2523                 ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2524                                                             &ohci->next_config_rom_bus, GFP_KERNEL);
2525                 if (ohci->next_config_rom == NULL)
2526                         return -ENOMEM;
2527
2528                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2529         } else {
2530                 /*
2531                  * In the suspend case, config_rom is NULL, which
2532                  * means that we just reuse the old config rom.
2533                  */
2534                 ohci->next_config_rom = ohci->config_rom;
2535                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2536         }
2537
2538         ohci->next_header = ohci->next_config_rom[0];
2539         ohci->next_config_rom[0] = 0;
2540         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2541         reg_write(ohci, OHCI1394_BusOptions,
2542                   be32_to_cpu(ohci->next_config_rom[2]));
2543         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2544
2545         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2546
2547         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2548                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2549                 OHCI1394_isochTx | OHCI1394_isochRx |
2550                 OHCI1394_postedWriteErr |
2551                 OHCI1394_selfIDComplete |
2552                 OHCI1394_regAccessFail |
2553                 OHCI1394_cycleInconsistent |
2554                 OHCI1394_unrecoverableError |
2555                 OHCI1394_cycleTooLong |
2556                 OHCI1394_masterIntEnable |
2557                 OHCI1394_busReset;
2558         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2559
2560         reg_write(ohci, OHCI1394_HCControlSet,
2561                   OHCI1394_HCControl_linkEnable |
2562                   OHCI1394_HCControl_BIBimageValid);
2563
2564         reg_write(ohci, OHCI1394_LinkControlSet,
2565                   OHCI1394_LinkControl_rcvSelfID |
2566                   OHCI1394_LinkControl_rcvPhyPkt);
2567
2568         ar_context_run(&ohci->ar_request_ctx);
2569         ar_context_run(&ohci->ar_response_ctx);
2570
2571         flush_writes(ohci);
2572
2573         /* We are ready to go, reset bus to finish initialization. */
2574         fw_schedule_bus_reset(&ohci->card, false, true);
2575
2576         return 0;
2577 }
2578
2579 static int ohci_set_config_rom(struct fw_card *card,
2580                                const __be32 *config_rom, size_t length)
2581 {
2582         struct fw_ohci *ohci;
2583         __be32 *next_config_rom;
2584         dma_addr_t next_config_rom_bus;
2585
2586         ohci = fw_ohci(card);
2587
2588         /*
2589          * When the OHCI controller is enabled, the config rom update
2590          * mechanism is a bit tricky, but easy enough to use.  See
2591          * section 5.5.6 in the OHCI specification.
2592          *
2593          * The OHCI controller caches the new config rom address in a
2594          * shadow register (ConfigROMmapNext) and needs a bus reset
2595          * for the changes to take place.  When the bus reset is
2596          * detected, the controller loads the new values for the
2597          * ConfigRomHeader and BusOptions registers from the specified
2598          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2599          * shadow register. All automatically and atomically.
2600          *
2601          * Now, there's a twist to this story.  The automatic load of
2602          * ConfigRomHeader and BusOptions doesn't honor the
2603          * noByteSwapData bit, so with a be32 config rom, the
2604          * controller will load be32 values in to these registers
2605          * during the atomic update, even on litte endian
2606          * architectures.  The workaround we use is to put a 0 in the
2607          * header quadlet; 0 is endian agnostic and means that the
2608          * config rom isn't ready yet.  In the bus reset tasklet we
2609          * then set up the real values for the two registers.
2610          *
2611          * We use ohci->lock to avoid racing with the code that sets
2612          * ohci->next_config_rom to NULL (see bus_reset_work).
2613          */
2614
2615         next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2616                                               &next_config_rom_bus, GFP_KERNEL);
2617         if (next_config_rom == NULL)
2618                 return -ENOMEM;
2619
2620         spin_lock_irq(&ohci->lock);
2621
2622         /*
2623          * If there is not an already pending config_rom update,
2624          * push our new allocation into the ohci->next_config_rom
2625          * and then mark the local variable as null so that we
2626          * won't deallocate the new buffer.
2627          *
2628          * OTOH, if there is a pending config_rom update, just
2629          * use that buffer with the new config_rom data, and
2630          * let this routine free the unused DMA allocation.
2631          */
2632
2633         if (ohci->next_config_rom == NULL) {
2634                 ohci->next_config_rom = next_config_rom;
2635                 ohci->next_config_rom_bus = next_config_rom_bus;
2636                 next_config_rom = NULL;
2637         }
2638
2639         copy_config_rom(ohci->next_config_rom, config_rom, length);
2640
2641         ohci->next_header = config_rom[0];
2642         ohci->next_config_rom[0] = 0;
2643
2644         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2645
2646         spin_unlock_irq(&ohci->lock);
2647
2648         /* If we didn't use the DMA allocation, delete it. */
2649         if (next_config_rom != NULL) {
2650                 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2651                                    next_config_rom_bus);
2652         }
2653
2654         /*
2655          * Now initiate a bus reset to have the changes take
2656          * effect. We clean up the old config rom memory and DMA
2657          * mappings in the bus reset tasklet, since the OHCI
2658          * controller could need to access it before the bus reset
2659          * takes effect.
2660          */
2661
2662         fw_schedule_bus_reset(&ohci->card, true, true);
2663
2664         return 0;
2665 }
2666
2667 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2668 {
2669         struct fw_ohci *ohci = fw_ohci(card);
2670
2671         at_context_transmit(&ohci->at_request_ctx, packet);
2672 }
2673
2674 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2675 {
2676         struct fw_ohci *ohci = fw_ohci(card);
2677
2678         at_context_transmit(&ohci->at_response_ctx, packet);
2679 }
2680
2681 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2682 {
2683         struct fw_ohci *ohci = fw_ohci(card);
2684         struct context *ctx = &ohci->at_request_ctx;
2685         struct driver_data *driver_data = packet->driver_data;
2686         int ret = -ENOENT;
2687
2688         tasklet_disable_in_atomic(&ctx->tasklet);
2689
2690         if (packet->ack != 0)
2691                 goto out;
2692
2693         if (packet->payload_mapped)
2694                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2695                                  packet->payload_length, DMA_TO_DEVICE);
2696
2697         log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2698         driver_data->packet = NULL;
2699         packet->ack = RCODE_CANCELLED;
2700
2701         // Timestamping on behalf of the hardware.
2702         packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2703
2704         packet->callback(packet, &ohci->card, packet->ack);
2705         ret = 0;
2706  out:
2707         tasklet_enable(&ctx->tasklet);
2708
2709         return ret;
2710 }
2711
2712 static int ohci_enable_phys_dma(struct fw_card *card,
2713                                 int node_id, int generation)
2714 {
2715         struct fw_ohci *ohci = fw_ohci(card);
2716         unsigned long flags;
2717         int n, ret = 0;
2718
2719         if (param_remote_dma)
2720                 return 0;
2721
2722         /*
2723          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2724          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2725          */
2726
2727         spin_lock_irqsave(&ohci->lock, flags);
2728
2729         if (ohci->generation != generation) {
2730                 ret = -ESTALE;
2731                 goto out;
2732         }
2733
2734         /*
2735          * Note, if the node ID contains a non-local bus ID, physical DMA is
2736          * enabled for _all_ nodes on remote buses.
2737          */
2738
2739         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2740         if (n < 32)
2741                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2742         else
2743                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2744
2745         flush_writes(ohci);
2746  out:
2747         spin_unlock_irqrestore(&ohci->lock, flags);
2748
2749         return ret;
2750 }
2751
2752 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2753 {
2754         struct fw_ohci *ohci = fw_ohci(card);
2755         unsigned long flags;
2756         u32 value;
2757
2758         switch (csr_offset) {
2759         case CSR_STATE_CLEAR:
2760         case CSR_STATE_SET:
2761                 if (ohci->is_root &&
2762                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2763                      OHCI1394_LinkControl_cycleMaster))
2764                         value = CSR_STATE_BIT_CMSTR;
2765                 else
2766                         value = 0;
2767                 if (ohci->csr_state_setclear_abdicate)
2768                         value |= CSR_STATE_BIT_ABDICATE;
2769
2770                 return value;
2771
2772         case CSR_NODE_IDS:
2773                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2774
2775         case CSR_CYCLE_TIME:
2776                 return get_cycle_time(ohci);
2777
2778         case CSR_BUS_TIME:
2779                 /*
2780                  * We might be called just after the cycle timer has wrapped
2781                  * around but just before the cycle64Seconds handler, so we
2782                  * better check here, too, if the bus time needs to be updated.
2783                  */
2784                 spin_lock_irqsave(&ohci->lock, flags);
2785                 value = update_bus_time(ohci);
2786                 spin_unlock_irqrestore(&ohci->lock, flags);
2787                 return value;
2788
2789         case CSR_BUSY_TIMEOUT:
2790                 value = reg_read(ohci, OHCI1394_ATRetries);
2791                 return (value >> 4) & 0x0ffff00f;
2792
2793         case CSR_PRIORITY_BUDGET:
2794                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2795                         (ohci->pri_req_max << 8);
2796
2797         default:
2798                 WARN_ON(1);
2799                 return 0;
2800         }
2801 }
2802
2803 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2804 {
2805         struct fw_ohci *ohci = fw_ohci(card);
2806         unsigned long flags;
2807
2808         switch (csr_offset) {
2809         case CSR_STATE_CLEAR:
2810                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2811                         reg_write(ohci, OHCI1394_LinkControlClear,
2812                                   OHCI1394_LinkControl_cycleMaster);
2813                         flush_writes(ohci);
2814                 }
2815                 if (value & CSR_STATE_BIT_ABDICATE)
2816                         ohci->csr_state_setclear_abdicate = false;
2817                 break;
2818
2819         case CSR_STATE_SET:
2820                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2821                         reg_write(ohci, OHCI1394_LinkControlSet,
2822                                   OHCI1394_LinkControl_cycleMaster);
2823                         flush_writes(ohci);
2824                 }
2825                 if (value & CSR_STATE_BIT_ABDICATE)
2826                         ohci->csr_state_setclear_abdicate = true;
2827                 break;
2828
2829         case CSR_NODE_IDS:
2830                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2831                 flush_writes(ohci);
2832                 break;
2833
2834         case CSR_CYCLE_TIME:
2835                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2836                 reg_write(ohci, OHCI1394_IntEventSet,
2837                           OHCI1394_cycleInconsistent);
2838                 flush_writes(ohci);
2839                 break;
2840
2841         case CSR_BUS_TIME:
2842                 spin_lock_irqsave(&ohci->lock, flags);
2843                 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2844                                  (value & ~0x7f);
2845                 spin_unlock_irqrestore(&ohci->lock, flags);
2846                 break;
2847
2848         case CSR_BUSY_TIMEOUT:
2849                 value = (value & 0xf) | ((value & 0xf) << 4) |
2850                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2851                 reg_write(ohci, OHCI1394_ATRetries, value);
2852                 flush_writes(ohci);
2853                 break;
2854
2855         case CSR_PRIORITY_BUDGET:
2856                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2857                 flush_writes(ohci);
2858                 break;
2859
2860         default:
2861                 WARN_ON(1);
2862                 break;
2863         }
2864 }
2865
2866 static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2867 {
2868         trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2869                                               ctx->header_length);
2870         trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2871                                         ctx->header_length);
2872
2873         ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2874                               ctx->header_length, ctx->header,
2875                               ctx->base.callback_data);
2876         ctx->header_length = 0;
2877 }
2878
2879 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2880 {
2881         u32 *ctx_hdr;
2882
2883         if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2884                 if (ctx->base.drop_overflow_headers)
2885                         return;
2886                 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2887         }
2888
2889         ctx_hdr = ctx->header + ctx->header_length;
2890         ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2891
2892         /*
2893          * The two iso header quadlets are byteswapped to little
2894          * endian by the controller, but we want to present them
2895          * as big endian for consistency with the bus endianness.
2896          */
2897         if (ctx->base.header_size > 0)
2898                 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2899         if (ctx->base.header_size > 4)
2900                 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2901         if (ctx->base.header_size > 8)
2902                 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2903         ctx->header_length += ctx->base.header_size;
2904 }
2905
2906 static int handle_ir_packet_per_buffer(struct context *context,
2907                                        struct descriptor *d,
2908                                        struct descriptor *last)
2909 {
2910         struct iso_context *ctx =
2911                 container_of(context, struct iso_context, context);
2912         struct descriptor *pd;
2913         u32 buffer_dma;
2914
2915         for (pd = d; pd <= last; pd++)
2916                 if (pd->transfer_status)
2917                         break;
2918         if (pd > last)
2919                 /* Descriptor(s) not done yet, stop iteration */
2920                 return 0;
2921
2922         while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2923                 d++;
2924                 buffer_dma = le32_to_cpu(d->data_address);
2925                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2926                                               buffer_dma & PAGE_MASK,
2927                                               buffer_dma & ~PAGE_MASK,
2928                                               le16_to_cpu(d->req_count),
2929                                               DMA_FROM_DEVICE);
2930         }
2931
2932         copy_iso_headers(ctx, (u32 *) (last + 1));
2933
2934         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2935                 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_IRQ);
2936
2937         return 1;
2938 }
2939
2940 /* d == last because each descriptor block is only a single descriptor. */
2941 static int handle_ir_buffer_fill(struct context *context,
2942                                  struct descriptor *d,
2943                                  struct descriptor *last)
2944 {
2945         struct iso_context *ctx =
2946                 container_of(context, struct iso_context, context);
2947         unsigned int req_count, res_count, completed;
2948         u32 buffer_dma;
2949
2950         req_count = le16_to_cpu(last->req_count);
2951         res_count = le16_to_cpu(READ_ONCE(last->res_count));
2952         completed = req_count - res_count;
2953         buffer_dma = le32_to_cpu(last->data_address);
2954
2955         if (completed > 0) {
2956                 ctx->mc_buffer_bus = buffer_dma;
2957                 ctx->mc_completed = completed;
2958         }
2959
2960         if (res_count != 0)
2961                 /* Descriptor(s) not done yet, stop iteration */
2962                 return 0;
2963
2964         dma_sync_single_range_for_cpu(context->ohci->card.device,
2965                                       buffer_dma & PAGE_MASK,
2966                                       buffer_dma & ~PAGE_MASK,
2967                                       completed, DMA_FROM_DEVICE);
2968
2969         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2970                 trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2971                                                         FW_ISO_CONTEXT_COMPLETIONS_CAUSE_IRQ);
2972
2973                 ctx->base.callback.mc(&ctx->base,
2974                                       buffer_dma + completed,
2975                                       ctx->base.callback_data);
2976                 ctx->mc_completed = 0;
2977         }
2978
2979         return 1;
2980 }
2981
2982 static void flush_ir_buffer_fill(struct iso_context *ctx)
2983 {
2984         dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2985                                       ctx->mc_buffer_bus & PAGE_MASK,
2986                                       ctx->mc_buffer_bus & ~PAGE_MASK,
2987                                       ctx->mc_completed, DMA_FROM_DEVICE);
2988
2989         trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed,
2990                                                 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2991
2992         ctx->base.callback.mc(&ctx->base,
2993                               ctx->mc_buffer_bus + ctx->mc_completed,
2994                               ctx->base.callback_data);
2995         ctx->mc_completed = 0;
2996 }
2997
2998 static inline void sync_it_packet_for_cpu(struct context *context,
2999                                           struct descriptor *pd)
3000 {
3001         __le16 control;
3002         u32 buffer_dma;
3003
3004         /* only packets beginning with OUTPUT_MORE* have data buffers */
3005         if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3006                 return;
3007
3008         /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
3009         pd += 2;
3010
3011         /*
3012          * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
3013          * data buffer is in the context program's coherent page and must not
3014          * be synced.
3015          */
3016         if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
3017             (context->current_bus          & PAGE_MASK)) {
3018                 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3019                         return;
3020                 pd++;
3021         }
3022
3023         do {
3024                 buffer_dma = le32_to_cpu(pd->data_address);
3025                 dma_sync_single_range_for_cpu(context->ohci->card.device,
3026                                               buffer_dma & PAGE_MASK,
3027                                               buffer_dma & ~PAGE_MASK,
3028                                               le16_to_cpu(pd->req_count),
3029                                               DMA_TO_DEVICE);
3030                 control = pd->control;
3031                 pd++;
3032         } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
3033 }
3034
3035 static int handle_it_packet(struct context *context,
3036                             struct descriptor *d,
3037                             struct descriptor *last)
3038 {
3039         struct iso_context *ctx =
3040                 container_of(context, struct iso_context, context);
3041         struct descriptor *pd;
3042         __be32 *ctx_hdr;
3043
3044         for (pd = d; pd <= last; pd++)
3045                 if (pd->transfer_status)
3046                         break;
3047         if (pd > last)
3048                 /* Descriptor(s) not done yet, stop iteration */
3049                 return 0;
3050
3051         sync_it_packet_for_cpu(context, d);
3052
3053         if (ctx->header_length + 4 > PAGE_SIZE) {
3054                 if (ctx->base.drop_overflow_headers)
3055                         return 1;
3056                 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
3057         }
3058
3059         ctx_hdr = ctx->header + ctx->header_length;
3060         ctx->last_timestamp = le16_to_cpu(last->res_count);
3061         /* Present this value as big-endian to match the receive code */
3062         *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
3063                                le16_to_cpu(pd->res_count));
3064         ctx->header_length += 4;
3065
3066         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
3067                 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_IRQ);
3068
3069         return 1;
3070 }
3071
3072 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
3073 {
3074         u32 hi = channels >> 32, lo = channels;
3075
3076         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
3077         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
3078         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
3079         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
3080         ohci->mc_channels = channels;
3081 }
3082
3083 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
3084                                 int type, int channel, size_t header_size)
3085 {
3086         struct fw_ohci *ohci = fw_ohci(card);
3087         struct iso_context *ctx;
3088         descriptor_callback_t callback;
3089         u64 *channels;
3090         u32 *mask, regs;
3091         int index, ret = -EBUSY;
3092
3093         spin_lock_irq(&ohci->lock);
3094
3095         switch (type) {
3096         case FW_ISO_CONTEXT_TRANSMIT:
3097                 mask     = &ohci->it_context_mask;
3098                 callback = handle_it_packet;
3099                 index    = ffs(*mask) - 1;
3100                 if (index >= 0) {
3101                         *mask &= ~(1 << index);
3102                         regs = OHCI1394_IsoXmitContextBase(index);
3103                         ctx  = &ohci->it_context_list[index];
3104                 }
3105                 break;
3106
3107         case FW_ISO_CONTEXT_RECEIVE:
3108                 channels = &ohci->ir_context_channels;
3109                 mask     = &ohci->ir_context_mask;
3110                 callback = handle_ir_packet_per_buffer;
3111                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3112                 if (index >= 0) {
3113                         *channels &= ~(1ULL << channel);
3114                         *mask     &= ~(1 << index);
3115                         regs = OHCI1394_IsoRcvContextBase(index);
3116                         ctx  = &ohci->ir_context_list[index];
3117                 }
3118                 break;
3119
3120         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3121                 mask     = &ohci->ir_context_mask;
3122                 callback = handle_ir_buffer_fill;
3123                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3124                 if (index >= 0) {
3125                         ohci->mc_allocated = true;
3126                         *mask &= ~(1 << index);
3127                         regs = OHCI1394_IsoRcvContextBase(index);
3128                         ctx  = &ohci->ir_context_list[index];
3129                 }
3130                 break;
3131
3132         default:
3133                 index = -1;
3134                 ret = -ENOSYS;
3135         }
3136
3137         spin_unlock_irq(&ohci->lock);
3138
3139         if (index < 0)
3140                 return ERR_PTR(ret);
3141
3142         memset(ctx, 0, sizeof(*ctx));
3143         ctx->header_length = 0;
3144         ctx->header = (void *) __get_free_page(GFP_KERNEL);
3145         if (ctx->header == NULL) {
3146                 ret = -ENOMEM;
3147                 goto out;
3148         }
3149         ret = context_init(&ctx->context, ohci, regs, callback);
3150         if (ret < 0)
3151                 goto out_with_header;
3152
3153         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3154                 set_multichannel_mask(ohci, 0);
3155                 ctx->mc_completed = 0;
3156         }
3157
3158         return &ctx->base;
3159
3160  out_with_header:
3161         free_page((unsigned long)ctx->header);
3162  out:
3163         spin_lock_irq(&ohci->lock);
3164
3165         switch (type) {
3166         case FW_ISO_CONTEXT_RECEIVE:
3167                 *channels |= 1ULL << channel;
3168                 break;
3169
3170         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3171                 ohci->mc_allocated = false;
3172                 break;
3173         }
3174         *mask |= 1 << index;
3175
3176         spin_unlock_irq(&ohci->lock);
3177
3178         return ERR_PTR(ret);
3179 }
3180
3181 static int ohci_start_iso(struct fw_iso_context *base,
3182                           s32 cycle, u32 sync, u32 tags)
3183 {
3184         struct iso_context *ctx = container_of(base, struct iso_context, base);
3185         struct fw_ohci *ohci = ctx->context.ohci;
3186         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3187         int index;
3188
3189         /* the controller cannot start without any queued packets */
3190         if (ctx->context.last->branch_address == 0)
3191                 return -ENODATA;
3192
3193         switch (ctx->base.type) {
3194         case FW_ISO_CONTEXT_TRANSMIT:
3195                 index = ctx - ohci->it_context_list;
3196                 match = 0;
3197                 if (cycle >= 0)
3198                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3199                                 (cycle & 0x7fff) << 16;
3200
3201                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3202                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3203                 context_run(&ctx->context, match);
3204                 break;
3205
3206         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3207                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3208                 fallthrough;
3209         case FW_ISO_CONTEXT_RECEIVE:
3210                 index = ctx - ohci->ir_context_list;
3211                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3212                 if (cycle >= 0) {
3213                         match |= (cycle & 0x07fff) << 12;
3214                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3215                 }
3216
3217                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3218                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3219                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3220                 context_run(&ctx->context, control);
3221
3222                 ctx->sync = sync;
3223                 ctx->tags = tags;
3224
3225                 break;
3226         }
3227
3228         return 0;
3229 }
3230
3231 static int ohci_stop_iso(struct fw_iso_context *base)
3232 {
3233         struct fw_ohci *ohci = fw_ohci(base->card);
3234         struct iso_context *ctx = container_of(base, struct iso_context, base);
3235         int index;
3236
3237         switch (ctx->base.type) {
3238         case FW_ISO_CONTEXT_TRANSMIT:
3239                 index = ctx - ohci->it_context_list;
3240                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3241                 break;
3242
3243         case FW_ISO_CONTEXT_RECEIVE:
3244         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3245                 index = ctx - ohci->ir_context_list;
3246                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3247                 break;
3248         }
3249         flush_writes(ohci);
3250         context_stop(&ctx->context);
3251         tasklet_kill(&ctx->context.tasklet);
3252
3253         return 0;
3254 }
3255
3256 static void ohci_free_iso_context(struct fw_iso_context *base)
3257 {
3258         struct fw_ohci *ohci = fw_ohci(base->card);
3259         struct iso_context *ctx = container_of(base, struct iso_context, base);
3260         unsigned long flags;
3261         int index;
3262
3263         ohci_stop_iso(base);
3264         context_release(&ctx->context);
3265         free_page((unsigned long)ctx->header);
3266
3267         spin_lock_irqsave(&ohci->lock, flags);
3268
3269         switch (base->type) {
3270         case FW_ISO_CONTEXT_TRANSMIT:
3271                 index = ctx - ohci->it_context_list;
3272                 ohci->it_context_mask |= 1 << index;
3273                 break;
3274
3275         case FW_ISO_CONTEXT_RECEIVE:
3276                 index = ctx - ohci->ir_context_list;
3277                 ohci->ir_context_mask |= 1 << index;
3278                 ohci->ir_context_channels |= 1ULL << base->channel;
3279                 break;
3280
3281         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3282                 index = ctx - ohci->ir_context_list;
3283                 ohci->ir_context_mask |= 1 << index;
3284                 ohci->ir_context_channels |= ohci->mc_channels;
3285                 ohci->mc_channels = 0;
3286                 ohci->mc_allocated = false;
3287                 break;
3288         }
3289
3290         spin_unlock_irqrestore(&ohci->lock, flags);
3291 }
3292
3293 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3294 {
3295         struct fw_ohci *ohci = fw_ohci(base->card);
3296         unsigned long flags;
3297         int ret;
3298
3299         switch (base->type) {
3300         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3301
3302                 spin_lock_irqsave(&ohci->lock, flags);
3303
3304                 /* Don't allow multichannel to grab other contexts' channels. */
3305                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3306                         *channels = ohci->ir_context_channels;
3307                         ret = -EBUSY;
3308                 } else {
3309                         set_multichannel_mask(ohci, *channels);
3310                         ret = 0;
3311                 }
3312
3313                 spin_unlock_irqrestore(&ohci->lock, flags);
3314
3315                 break;
3316         default:
3317                 ret = -EINVAL;
3318         }
3319
3320         return ret;
3321 }
3322
3323 #ifdef CONFIG_PM
3324 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3325 {
3326         int i;
3327         struct iso_context *ctx;
3328
3329         for (i = 0 ; i < ohci->n_ir ; i++) {
3330                 ctx = &ohci->ir_context_list[i];
3331                 if (ctx->context.running)
3332                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3333         }
3334
3335         for (i = 0 ; i < ohci->n_it ; i++) {
3336                 ctx = &ohci->it_context_list[i];
3337                 if (ctx->context.running)
3338                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3339         }
3340 }
3341 #endif
3342
3343 static int queue_iso_transmit(struct iso_context *ctx,
3344                               struct fw_iso_packet *packet,
3345                               struct fw_iso_buffer *buffer,
3346                               unsigned long payload)
3347 {
3348         struct descriptor *d, *last, *pd;
3349         struct fw_iso_packet *p;
3350         __le32 *header;
3351         dma_addr_t d_bus, page_bus;
3352         u32 z, header_z, payload_z, irq;
3353         u32 payload_index, payload_end_index, next_page_index;
3354         int page, end_page, i, length, offset;
3355
3356         p = packet;
3357         payload_index = payload;
3358
3359         if (p->skip)
3360                 z = 1;
3361         else
3362                 z = 2;
3363         if (p->header_length > 0)
3364                 z++;
3365
3366         /* Determine the first page the payload isn't contained in. */
3367         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3368         if (p->payload_length > 0)
3369                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3370         else
3371                 payload_z = 0;
3372
3373         z += payload_z;
3374
3375         /* Get header size in number of descriptors. */
3376         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3377
3378         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3379         if (d == NULL)
3380                 return -ENOMEM;
3381
3382         if (!p->skip) {
3383                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3384                 d[0].req_count = cpu_to_le16(8);
3385                 /*
3386                  * Link the skip address to this descriptor itself.  This causes
3387                  * a context to skip a cycle whenever lost cycles or FIFO
3388                  * overruns occur, without dropping the data.  The application
3389                  * should then decide whether this is an error condition or not.
3390                  * FIXME:  Make the context's cycle-lost behaviour configurable?
3391                  */
3392                 d[0].branch_address = cpu_to_le32(d_bus | z);
3393
3394                 header = (__le32 *) &d[1];
3395                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3396                                         IT_HEADER_TAG(p->tag) |
3397                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3398                                         IT_HEADER_CHANNEL(ctx->base.channel) |
3399                                         IT_HEADER_SPEED(ctx->base.speed));
3400                 header[1] =
3401                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3402                                                           p->payload_length));
3403         }
3404
3405         if (p->header_length > 0) {
3406                 d[2].req_count    = cpu_to_le16(p->header_length);
3407                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3408                 memcpy(&d[z], p->header, p->header_length);
3409         }
3410
3411         pd = d + z - payload_z;
3412         payload_end_index = payload_index + p->payload_length;
3413         for (i = 0; i < payload_z; i++) {
3414                 page               = payload_index >> PAGE_SHIFT;
3415                 offset             = payload_index & ~PAGE_MASK;
3416                 next_page_index    = (page + 1) << PAGE_SHIFT;
3417                 length             =
3418                         min(next_page_index, payload_end_index) - payload_index;
3419                 pd[i].req_count    = cpu_to_le16(length);
3420
3421                 page_bus = page_private(buffer->pages[page]);
3422                 pd[i].data_address = cpu_to_le32(page_bus + offset);
3423
3424                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3425                                                  page_bus, offset, length,
3426                                                  DMA_TO_DEVICE);
3427
3428                 payload_index += length;
3429         }
3430
3431         if (p->interrupt)
3432                 irq = DESCRIPTOR_IRQ_ALWAYS;
3433         else
3434                 irq = DESCRIPTOR_NO_IRQ;
3435
3436         last = z == 2 ? d : d + z - 1;
3437         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3438                                      DESCRIPTOR_STATUS |
3439                                      DESCRIPTOR_BRANCH_ALWAYS |
3440                                      irq);
3441
3442         context_append(&ctx->context, d, z, header_z);
3443
3444         return 0;
3445 }
3446
3447 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3448                                        struct fw_iso_packet *packet,
3449                                        struct fw_iso_buffer *buffer,
3450                                        unsigned long payload)
3451 {
3452         struct device *device = ctx->context.ohci->card.device;
3453         struct descriptor *d, *pd;
3454         dma_addr_t d_bus, page_bus;
3455         u32 z, header_z, rest;
3456         int i, j, length;
3457         int page, offset, packet_count, header_size, payload_per_buffer;
3458
3459         /*
3460          * The OHCI controller puts the isochronous header and trailer in the
3461          * buffer, so we need at least 8 bytes.
3462          */
3463         packet_count = packet->header_length / ctx->base.header_size;
3464         header_size  = max(ctx->base.header_size, (size_t)8);
3465
3466         /* Get header size in number of descriptors. */
3467         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3468         page     = payload >> PAGE_SHIFT;
3469         offset   = payload & ~PAGE_MASK;
3470         payload_per_buffer = packet->payload_length / packet_count;
3471
3472         for (i = 0; i < packet_count; i++) {
3473                 /* d points to the header descriptor */
3474                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3475                 d = context_get_descriptors(&ctx->context,
3476                                 z + header_z, &d_bus);
3477                 if (d == NULL)
3478                         return -ENOMEM;
3479
3480                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3481                                               DESCRIPTOR_INPUT_MORE);
3482                 if (packet->skip && i == 0)
3483                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3484                 d->req_count    = cpu_to_le16(header_size);
3485                 d->res_count    = d->req_count;
3486                 d->transfer_status = 0;
3487                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3488
3489                 rest = payload_per_buffer;
3490                 pd = d;
3491                 for (j = 1; j < z; j++) {
3492                         pd++;
3493                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3494                                                   DESCRIPTOR_INPUT_MORE);
3495
3496                         if (offset + rest < PAGE_SIZE)
3497                                 length = rest;
3498                         else
3499                                 length = PAGE_SIZE - offset;
3500                         pd->req_count = cpu_to_le16(length);
3501                         pd->res_count = pd->req_count;
3502                         pd->transfer_status = 0;
3503
3504                         page_bus = page_private(buffer->pages[page]);
3505                         pd->data_address = cpu_to_le32(page_bus + offset);
3506
3507                         dma_sync_single_range_for_device(device, page_bus,
3508                                                          offset, length,
3509                                                          DMA_FROM_DEVICE);
3510
3511                         offset = (offset + length) & ~PAGE_MASK;
3512                         rest -= length;
3513                         if (offset == 0)
3514                                 page++;
3515                 }
3516                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3517                                           DESCRIPTOR_INPUT_LAST |
3518                                           DESCRIPTOR_BRANCH_ALWAYS);
3519                 if (packet->interrupt && i == packet_count - 1)
3520                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3521
3522                 context_append(&ctx->context, d, z, header_z);
3523         }
3524
3525         return 0;
3526 }
3527
3528 static int queue_iso_buffer_fill(struct iso_context *ctx,
3529                                  struct fw_iso_packet *packet,
3530                                  struct fw_iso_buffer *buffer,
3531                                  unsigned long payload)
3532 {
3533         struct descriptor *d;
3534         dma_addr_t d_bus, page_bus;
3535         int page, offset, rest, z, i, length;
3536
3537         page   = payload >> PAGE_SHIFT;
3538         offset = payload & ~PAGE_MASK;
3539         rest   = packet->payload_length;
3540
3541         /* We need one descriptor for each page in the buffer. */
3542         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3543
3544         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3545                 return -EFAULT;
3546
3547         for (i = 0; i < z; i++) {
3548                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3549                 if (d == NULL)
3550                         return -ENOMEM;
3551
3552                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3553                                          DESCRIPTOR_BRANCH_ALWAYS);
3554                 if (packet->skip && i == 0)
3555                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3556                 if (packet->interrupt && i == z - 1)
3557                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3558
3559                 if (offset + rest < PAGE_SIZE)
3560                         length = rest;
3561                 else
3562                         length = PAGE_SIZE - offset;
3563                 d->req_count = cpu_to_le16(length);
3564                 d->res_count = d->req_count;
3565                 d->transfer_status = 0;
3566
3567                 page_bus = page_private(buffer->pages[page]);
3568                 d->data_address = cpu_to_le32(page_bus + offset);
3569
3570                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3571                                                  page_bus, offset, length,
3572                                                  DMA_FROM_DEVICE);
3573
3574                 rest -= length;
3575                 offset = 0;
3576                 page++;
3577
3578                 context_append(&ctx->context, d, 1, 0);
3579         }
3580
3581         return 0;
3582 }
3583
3584 static int ohci_queue_iso(struct fw_iso_context *base,
3585                           struct fw_iso_packet *packet,
3586                           struct fw_iso_buffer *buffer,
3587                           unsigned long payload)
3588 {
3589         struct iso_context *ctx = container_of(base, struct iso_context, base);
3590         unsigned long flags;
3591         int ret = -ENOSYS;
3592
3593         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3594         switch (base->type) {
3595         case FW_ISO_CONTEXT_TRANSMIT:
3596                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3597                 break;
3598         case FW_ISO_CONTEXT_RECEIVE:
3599                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3600                 break;
3601         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3602                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3603                 break;
3604         }
3605         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3606
3607         return ret;
3608 }
3609
3610 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3611 {
3612         struct context *ctx =
3613                         &container_of(base, struct iso_context, base)->context;
3614
3615         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3616 }
3617
3618 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3619 {
3620         struct iso_context *ctx = container_of(base, struct iso_context, base);
3621         int ret = 0;
3622
3623         tasklet_disable_in_atomic(&ctx->context.tasklet);
3624
3625         if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3626                 context_tasklet((unsigned long)&ctx->context);
3627
3628                 switch (base->type) {
3629                 case FW_ISO_CONTEXT_TRANSMIT:
3630                 case FW_ISO_CONTEXT_RECEIVE:
3631                         if (ctx->header_length != 0)
3632                                 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3633                         break;
3634                 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3635                         if (ctx->mc_completed != 0)
3636                                 flush_ir_buffer_fill(ctx);
3637                         break;
3638                 default:
3639                         ret = -ENOSYS;
3640                 }
3641
3642                 clear_bit_unlock(0, &ctx->flushing_completions);
3643                 smp_mb__after_atomic();
3644         }
3645
3646         tasklet_enable(&ctx->context.tasklet);
3647
3648         return ret;
3649 }
3650
3651 static const struct fw_card_driver ohci_driver = {
3652         .enable                 = ohci_enable,
3653         .read_phy_reg           = ohci_read_phy_reg,
3654         .update_phy_reg         = ohci_update_phy_reg,
3655         .set_config_rom         = ohci_set_config_rom,
3656         .send_request           = ohci_send_request,
3657         .send_response          = ohci_send_response,
3658         .cancel_packet          = ohci_cancel_packet,
3659         .enable_phys_dma        = ohci_enable_phys_dma,
3660         .read_csr               = ohci_read_csr,
3661         .write_csr              = ohci_write_csr,
3662
3663         .allocate_iso_context   = ohci_allocate_iso_context,
3664         .free_iso_context       = ohci_free_iso_context,
3665         .set_iso_channels       = ohci_set_iso_channels,
3666         .queue_iso              = ohci_queue_iso,
3667         .flush_queue_iso        = ohci_flush_queue_iso,
3668         .flush_iso_completions  = ohci_flush_iso_completions,
3669         .start_iso              = ohci_start_iso,
3670         .stop_iso               = ohci_stop_iso,
3671 };
3672
3673 #ifdef CONFIG_PPC_PMAC
3674 static void pmac_ohci_on(struct pci_dev *dev)
3675 {
3676         if (machine_is(powermac)) {
3677                 struct device_node *ofn = pci_device_to_OF_node(dev);
3678
3679                 if (ofn) {
3680                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3681                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3682                 }
3683         }
3684 }
3685
3686 static void pmac_ohci_off(struct pci_dev *dev)
3687 {
3688         if (machine_is(powermac)) {
3689                 struct device_node *ofn = pci_device_to_OF_node(dev);
3690
3691                 if (ofn) {
3692                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3693                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3694                 }
3695         }
3696 }
3697 #else
3698 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3699 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3700 #endif /* CONFIG_PPC_PMAC */
3701
3702 static void release_ohci(struct device *dev, void *data)
3703 {
3704         struct pci_dev *pdev = to_pci_dev(dev);
3705         struct fw_ohci *ohci = pci_get_drvdata(pdev);
3706
3707         pmac_ohci_off(pdev);
3708
3709         ar_context_release(&ohci->ar_response_ctx);
3710         ar_context_release(&ohci->ar_request_ctx);
3711
3712         dev_notice(dev, "removed fw-ohci device\n");
3713 }
3714
3715 static int pci_probe(struct pci_dev *dev,
3716                                const struct pci_device_id *ent)
3717 {
3718         struct fw_ohci *ohci;
3719         u32 bus_options, max_receive, link_speed, version;
3720         u64 guid;
3721         int i, flags, irq, err;
3722         size_t size;
3723
3724         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3725                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3726                 return -ENOSYS;
3727         }
3728
3729         ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3730         if (ohci == NULL)
3731                 return -ENOMEM;
3732         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3733         pci_set_drvdata(dev, ohci);
3734         pmac_ohci_on(dev);
3735         devres_add(&dev->dev, ohci);
3736
3737         err = pcim_enable_device(dev);
3738         if (err) {
3739                 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3740                 return err;
3741         }
3742
3743         pci_set_master(dev);
3744         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3745
3746         spin_lock_init(&ohci->lock);
3747         mutex_init(&ohci->phy_reg_mutex);
3748
3749         INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3750
3751         if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3752             pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3753                 ohci_err(ohci, "invalid MMIO resource\n");
3754                 return -ENXIO;
3755         }
3756
3757         err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3758         if (err) {
3759                 ohci_err(ohci, "request and map MMIO resource unavailable\n");
3760                 return -ENXIO;
3761         }
3762         ohci->registers = pcim_iomap_table(dev)[0];
3763
3764         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3765                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3766                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3767                      ohci_quirks[i].device == dev->device) &&
3768                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3769                      ohci_quirks[i].revision >= dev->revision)) {
3770                         ohci->quirks = ohci_quirks[i].flags;
3771                         break;
3772                 }
3773         if (param_quirks)
3774                 ohci->quirks = param_quirks;
3775
3776         if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3777                 ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3778
3779         /*
3780          * Because dma_alloc_coherent() allocates at least one page,
3781          * we save space by using a common buffer for the AR request/
3782          * response descriptors and the self IDs buffer.
3783          */
3784         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3785         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3786         ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3787                                                 GFP_KERNEL);
3788         if (!ohci->misc_buffer)
3789                 return -ENOMEM;
3790
3791         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3792                               OHCI1394_AsReqRcvContextControlSet);
3793         if (err < 0)
3794                 return err;
3795
3796         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3797                               OHCI1394_AsRspRcvContextControlSet);
3798         if (err < 0)
3799                 return err;
3800
3801         err = context_init(&ohci->at_request_ctx, ohci,
3802                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3803         if (err < 0)
3804                 return err;
3805
3806         err = context_init(&ohci->at_response_ctx, ohci,
3807                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3808         if (err < 0)
3809                 return err;
3810
3811         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3812         ohci->ir_context_channels = ~0ULL;
3813         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3814         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3815         ohci->ir_context_mask = ohci->ir_context_support;
3816         ohci->n_ir = hweight32(ohci->ir_context_mask);
3817         size = sizeof(struct iso_context) * ohci->n_ir;
3818         ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3819         if (!ohci->ir_context_list)
3820                 return -ENOMEM;
3821
3822         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3823         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3824         /* JMicron JMB38x often shows 0 at first read, just ignore it */
3825         if (!ohci->it_context_support) {
3826                 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3827                 ohci->it_context_support = 0xf;
3828         }
3829         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3830         ohci->it_context_mask = ohci->it_context_support;
3831         ohci->n_it = hweight32(ohci->it_context_mask);
3832         size = sizeof(struct iso_context) * ohci->n_it;
3833         ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3834         if (!ohci->it_context_list)
3835                 return -ENOMEM;
3836
3837         ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3838         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3839
3840         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3841         max_receive = (bus_options >> 12) & 0xf;
3842         link_speed = bus_options & 0x7;
3843         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3844                 reg_read(ohci, OHCI1394_GUIDLo);
3845
3846         flags = PCI_IRQ_INTX;
3847         if (!(ohci->quirks & QUIRK_NO_MSI))
3848                 flags |= PCI_IRQ_MSI;
3849         err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3850         if (err < 0)
3851                 return err;
3852         irq = pci_irq_vector(dev, 0);
3853         if (irq < 0) {
3854                 err = irq;
3855                 goto fail_msi;
3856         }
3857
3858         err = request_threaded_irq(irq, irq_handler, NULL,
3859                                    pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3860                                    ohci);
3861         if (err < 0) {
3862                 ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3863                 goto fail_msi;
3864         }
3865
3866         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3867         if (err)
3868                 goto fail_irq;
3869
3870         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3871         ohci_notice(ohci,
3872                     "added OHCI v%x.%x device as card %d, "
3873                     "%d IR + %d IT contexts, quirks 0x%x%s\n",
3874                     version >> 16, version & 0xff, ohci->card.index,
3875                     ohci->n_ir, ohci->n_it, ohci->quirks,
3876                     reg_read(ohci, OHCI1394_PhyUpperBound) ?
3877                         ", physUB" : "");
3878
3879         return 0;
3880
3881  fail_irq:
3882         free_irq(irq, ohci);
3883  fail_msi:
3884         pci_free_irq_vectors(dev);
3885
3886         return err;
3887 }
3888
3889 static void pci_remove(struct pci_dev *dev)
3890 {
3891         struct fw_ohci *ohci = pci_get_drvdata(dev);
3892         int irq;
3893
3894         /*
3895          * If the removal is happening from the suspend state, LPS won't be
3896          * enabled and host registers (eg., IntMaskClear) won't be accessible.
3897          */
3898         if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3899                 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3900                 flush_writes(ohci);
3901         }
3902         cancel_work_sync(&ohci->bus_reset_work);
3903         fw_core_remove_card(&ohci->card);
3904
3905         /*
3906          * FIXME: Fail all pending packets here, now that the upper
3907          * layers can't queue any more.
3908          */
3909
3910         software_reset(ohci);
3911
3912         irq = pci_irq_vector(dev, 0);
3913         if (irq >= 0)
3914                 free_irq(irq, ohci);
3915         pci_free_irq_vectors(dev);
3916
3917         dev_notice(&dev->dev, "removing fw-ohci device\n");
3918 }
3919
3920 #ifdef CONFIG_PM
3921 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3922 {
3923         struct fw_ohci *ohci = pci_get_drvdata(dev);
3924         int err;
3925
3926         software_reset(ohci);
3927         err = pci_save_state(dev);
3928         if (err) {
3929                 ohci_err(ohci, "pci_save_state failed\n");
3930                 return err;
3931         }
3932         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3933         if (err)
3934                 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3935         pmac_ohci_off(dev);
3936
3937         return 0;
3938 }
3939
3940 static int pci_resume(struct pci_dev *dev)
3941 {
3942         struct fw_ohci *ohci = pci_get_drvdata(dev);
3943         int err;
3944
3945         pmac_ohci_on(dev);
3946         pci_set_power_state(dev, PCI_D0);
3947         pci_restore_state(dev);
3948         err = pci_enable_device(dev);
3949         if (err) {
3950                 ohci_err(ohci, "pci_enable_device failed\n");
3951                 return err;
3952         }
3953
3954         /* Some systems don't setup GUID register on resume from ram  */
3955         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3956                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3957                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3958                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3959         }
3960
3961         err = ohci_enable(&ohci->card, NULL, 0);
3962         if (err)
3963                 return err;
3964
3965         ohci_resume_iso_dma(ohci);
3966
3967         return 0;
3968 }
3969 #endif
3970
3971 static const struct pci_device_id pci_table[] = {
3972         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3973         { }
3974 };
3975
3976 MODULE_DEVICE_TABLE(pci, pci_table);
3977
3978 static struct pci_driver fw_ohci_pci_driver = {
3979         .name           = ohci_driver_name,
3980         .id_table       = pci_table,
3981         .probe          = pci_probe,
3982         .remove         = pci_remove,
3983 #ifdef CONFIG_PM
3984         .resume         = pci_resume,
3985         .suspend        = pci_suspend,
3986 #endif
3987 };
3988
3989 static int __init fw_ohci_init(void)
3990 {
3991         selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3992         if (!selfid_workqueue)
3993                 return -ENOMEM;
3994
3995         return pci_register_driver(&fw_ohci_pci_driver);
3996 }
3997
3998 static void __exit fw_ohci_cleanup(void)
3999 {
4000         pci_unregister_driver(&fw_ohci_pci_driver);
4001         destroy_workqueue(selfid_workqueue);
4002 }
4003
4004 module_init(fw_ohci_init);
4005 module_exit(fw_ohci_cleanup);
4006
4007 MODULE_AUTHOR("Kristian Hoegsberg <[email protected]>");
4008 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
4009 MODULE_LICENSE("GPL");
4010
4011 /* Provide a module alias so root-on-sbp2 initrds don't break. */
4012 MODULE_ALIAS("ohci1394");
This page took 0.270392 seconds and 4 git commands to generate.