]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdkfd/kfd_device.c
Merge remote-tracking branch 'riscv/riscv-fix-32bit' into fixes
[linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "kfd_pm4_headers_aldebaran.h"
30 #include "cwsr_trap_handler.h"
31 #include "kfd_iommu.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_migrate.h"
35
36 #define MQD_SIZE_ALIGNED 768
37
38 /*
39  * kfd_locked is used to lock the kfd driver during suspend or reset
40  * once locked, kfd driver will stop any further GPU execution.
41  * create process (open) will return -EAGAIN.
42  */
43 static atomic_t kfd_locked = ATOMIC_INIT(0);
44
45 #ifdef CONFIG_DRM_AMDGPU_CIK
46 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
47 #endif
48 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
49 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
50 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
51 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
53 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
54
55 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
56 #ifdef KFD_SUPPORT_IOMMU_V2
57 #ifdef CONFIG_DRM_AMDGPU_CIK
58         [CHIP_KAVERI] = &gfx_v7_kfd2kgd,
59 #endif
60         [CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
61         [CHIP_RAVEN] = &gfx_v9_kfd2kgd,
62 #endif
63 #ifdef CONFIG_DRM_AMDGPU_CIK
64         [CHIP_HAWAII] = &gfx_v7_kfd2kgd,
65 #endif
66         [CHIP_TONGA] = &gfx_v8_kfd2kgd,
67         [CHIP_FIJI] = &gfx_v8_kfd2kgd,
68         [CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
69         [CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
70         [CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
71         [CHIP_VEGAM] = &gfx_v8_kfd2kgd,
72         [CHIP_VEGA10] = &gfx_v9_kfd2kgd,
73         [CHIP_VEGA12] = &gfx_v9_kfd2kgd,
74         [CHIP_VEGA20] = &gfx_v9_kfd2kgd,
75         [CHIP_RENOIR] = &gfx_v9_kfd2kgd,
76         [CHIP_ARCTURUS] = &arcturus_kfd2kgd,
77         [CHIP_ALDEBARAN] = &aldebaran_kfd2kgd,
78         [CHIP_NAVI10] = &gfx_v10_kfd2kgd,
79         [CHIP_NAVI12] = &gfx_v10_kfd2kgd,
80         [CHIP_NAVI14] = &gfx_v10_kfd2kgd,
81         [CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd,
82         [CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd,
83         [CHIP_VANGOGH] = &gfx_v10_3_kfd2kgd,
84         [CHIP_DIMGREY_CAVEFISH] = &gfx_v10_3_kfd2kgd,
85         [CHIP_BEIGE_GOBY] = &gfx_v10_3_kfd2kgd,
86         [CHIP_YELLOW_CARP] = &gfx_v10_3_kfd2kgd,
87 };
88
89 #ifdef KFD_SUPPORT_IOMMU_V2
90 static const struct kfd_device_info kaveri_device_info = {
91         .asic_family = CHIP_KAVERI,
92         .asic_name = "kaveri",
93         .max_pasid_bits = 16,
94         /* max num of queues for KV.TODO should be a dynamic value */
95         .max_no_of_hqd  = 24,
96         .doorbell_size  = 4,
97         .ih_ring_entry_size = 4 * sizeof(uint32_t),
98         .event_interrupt_class = &event_interrupt_class_cik,
99         .num_of_watch_points = 4,
100         .mqd_size_aligned = MQD_SIZE_ALIGNED,
101         .supports_cwsr = false,
102         .needs_iommu_device = true,
103         .needs_pci_atomics = false,
104         .num_sdma_engines = 2,
105         .num_xgmi_sdma_engines = 0,
106         .num_sdma_queues_per_engine = 2,
107 };
108
109 static const struct kfd_device_info carrizo_device_info = {
110         .asic_family = CHIP_CARRIZO,
111         .asic_name = "carrizo",
112         .max_pasid_bits = 16,
113         /* max num of queues for CZ.TODO should be a dynamic value */
114         .max_no_of_hqd  = 24,
115         .doorbell_size  = 4,
116         .ih_ring_entry_size = 4 * sizeof(uint32_t),
117         .event_interrupt_class = &event_interrupt_class_cik,
118         .num_of_watch_points = 4,
119         .mqd_size_aligned = MQD_SIZE_ALIGNED,
120         .supports_cwsr = true,
121         .needs_iommu_device = true,
122         .needs_pci_atomics = false,
123         .num_sdma_engines = 2,
124         .num_xgmi_sdma_engines = 0,
125         .num_sdma_queues_per_engine = 2,
126 };
127 #endif
128
129 static const struct kfd_device_info raven_device_info = {
130         .asic_family = CHIP_RAVEN,
131         .asic_name = "raven",
132         .max_pasid_bits = 16,
133         .max_no_of_hqd  = 24,
134         .doorbell_size  = 8,
135         .ih_ring_entry_size = 8 * sizeof(uint32_t),
136         .event_interrupt_class = &event_interrupt_class_v9,
137         .num_of_watch_points = 4,
138         .mqd_size_aligned = MQD_SIZE_ALIGNED,
139         .supports_cwsr = true,
140         .needs_iommu_device = true,
141         .needs_pci_atomics = true,
142         .num_sdma_engines = 1,
143         .num_xgmi_sdma_engines = 0,
144         .num_sdma_queues_per_engine = 2,
145 };
146
147 static const struct kfd_device_info hawaii_device_info = {
148         .asic_family = CHIP_HAWAII,
149         .asic_name = "hawaii",
150         .max_pasid_bits = 16,
151         /* max num of queues for KV.TODO should be a dynamic value */
152         .max_no_of_hqd  = 24,
153         .doorbell_size  = 4,
154         .ih_ring_entry_size = 4 * sizeof(uint32_t),
155         .event_interrupt_class = &event_interrupt_class_cik,
156         .num_of_watch_points = 4,
157         .mqd_size_aligned = MQD_SIZE_ALIGNED,
158         .supports_cwsr = false,
159         .needs_iommu_device = false,
160         .needs_pci_atomics = false,
161         .num_sdma_engines = 2,
162         .num_xgmi_sdma_engines = 0,
163         .num_sdma_queues_per_engine = 2,
164 };
165
166 static const struct kfd_device_info tonga_device_info = {
167         .asic_family = CHIP_TONGA,
168         .asic_name = "tonga",
169         .max_pasid_bits = 16,
170         .max_no_of_hqd  = 24,
171         .doorbell_size  = 4,
172         .ih_ring_entry_size = 4 * sizeof(uint32_t),
173         .event_interrupt_class = &event_interrupt_class_cik,
174         .num_of_watch_points = 4,
175         .mqd_size_aligned = MQD_SIZE_ALIGNED,
176         .supports_cwsr = false,
177         .needs_iommu_device = false,
178         .needs_pci_atomics = true,
179         .num_sdma_engines = 2,
180         .num_xgmi_sdma_engines = 0,
181         .num_sdma_queues_per_engine = 2,
182 };
183
184 static const struct kfd_device_info fiji_device_info = {
185         .asic_family = CHIP_FIJI,
186         .asic_name = "fiji",
187         .max_pasid_bits = 16,
188         .max_no_of_hqd  = 24,
189         .doorbell_size  = 4,
190         .ih_ring_entry_size = 4 * sizeof(uint32_t),
191         .event_interrupt_class = &event_interrupt_class_cik,
192         .num_of_watch_points = 4,
193         .mqd_size_aligned = MQD_SIZE_ALIGNED,
194         .supports_cwsr = true,
195         .needs_iommu_device = false,
196         .needs_pci_atomics = true,
197         .num_sdma_engines = 2,
198         .num_xgmi_sdma_engines = 0,
199         .num_sdma_queues_per_engine = 2,
200 };
201
202 static const struct kfd_device_info fiji_vf_device_info = {
203         .asic_family = CHIP_FIJI,
204         .asic_name = "fiji",
205         .max_pasid_bits = 16,
206         .max_no_of_hqd  = 24,
207         .doorbell_size  = 4,
208         .ih_ring_entry_size = 4 * sizeof(uint32_t),
209         .event_interrupt_class = &event_interrupt_class_cik,
210         .num_of_watch_points = 4,
211         .mqd_size_aligned = MQD_SIZE_ALIGNED,
212         .supports_cwsr = true,
213         .needs_iommu_device = false,
214         .needs_pci_atomics = false,
215         .num_sdma_engines = 2,
216         .num_xgmi_sdma_engines = 0,
217         .num_sdma_queues_per_engine = 2,
218 };
219
220
221 static const struct kfd_device_info polaris10_device_info = {
222         .asic_family = CHIP_POLARIS10,
223         .asic_name = "polaris10",
224         .max_pasid_bits = 16,
225         .max_no_of_hqd  = 24,
226         .doorbell_size  = 4,
227         .ih_ring_entry_size = 4 * sizeof(uint32_t),
228         .event_interrupt_class = &event_interrupt_class_cik,
229         .num_of_watch_points = 4,
230         .mqd_size_aligned = MQD_SIZE_ALIGNED,
231         .supports_cwsr = true,
232         .needs_iommu_device = false,
233         .needs_pci_atomics = true,
234         .num_sdma_engines = 2,
235         .num_xgmi_sdma_engines = 0,
236         .num_sdma_queues_per_engine = 2,
237 };
238
239 static const struct kfd_device_info polaris10_vf_device_info = {
240         .asic_family = CHIP_POLARIS10,
241         .asic_name = "polaris10",
242         .max_pasid_bits = 16,
243         .max_no_of_hqd  = 24,
244         .doorbell_size  = 4,
245         .ih_ring_entry_size = 4 * sizeof(uint32_t),
246         .event_interrupt_class = &event_interrupt_class_cik,
247         .num_of_watch_points = 4,
248         .mqd_size_aligned = MQD_SIZE_ALIGNED,
249         .supports_cwsr = true,
250         .needs_iommu_device = false,
251         .needs_pci_atomics = false,
252         .num_sdma_engines = 2,
253         .num_xgmi_sdma_engines = 0,
254         .num_sdma_queues_per_engine = 2,
255 };
256
257 static const struct kfd_device_info polaris11_device_info = {
258         .asic_family = CHIP_POLARIS11,
259         .asic_name = "polaris11",
260         .max_pasid_bits = 16,
261         .max_no_of_hqd  = 24,
262         .doorbell_size  = 4,
263         .ih_ring_entry_size = 4 * sizeof(uint32_t),
264         .event_interrupt_class = &event_interrupt_class_cik,
265         .num_of_watch_points = 4,
266         .mqd_size_aligned = MQD_SIZE_ALIGNED,
267         .supports_cwsr = true,
268         .needs_iommu_device = false,
269         .needs_pci_atomics = true,
270         .num_sdma_engines = 2,
271         .num_xgmi_sdma_engines = 0,
272         .num_sdma_queues_per_engine = 2,
273 };
274
275 static const struct kfd_device_info polaris12_device_info = {
276         .asic_family = CHIP_POLARIS12,
277         .asic_name = "polaris12",
278         .max_pasid_bits = 16,
279         .max_no_of_hqd  = 24,
280         .doorbell_size  = 4,
281         .ih_ring_entry_size = 4 * sizeof(uint32_t),
282         .event_interrupt_class = &event_interrupt_class_cik,
283         .num_of_watch_points = 4,
284         .mqd_size_aligned = MQD_SIZE_ALIGNED,
285         .supports_cwsr = true,
286         .needs_iommu_device = false,
287         .needs_pci_atomics = true,
288         .num_sdma_engines = 2,
289         .num_xgmi_sdma_engines = 0,
290         .num_sdma_queues_per_engine = 2,
291 };
292
293 static const struct kfd_device_info vegam_device_info = {
294         .asic_family = CHIP_VEGAM,
295         .asic_name = "vegam",
296         .max_pasid_bits = 16,
297         .max_no_of_hqd  = 24,
298         .doorbell_size  = 4,
299         .ih_ring_entry_size = 4 * sizeof(uint32_t),
300         .event_interrupt_class = &event_interrupt_class_cik,
301         .num_of_watch_points = 4,
302         .mqd_size_aligned = MQD_SIZE_ALIGNED,
303         .supports_cwsr = true,
304         .needs_iommu_device = false,
305         .needs_pci_atomics = true,
306         .num_sdma_engines = 2,
307         .num_xgmi_sdma_engines = 0,
308         .num_sdma_queues_per_engine = 2,
309 };
310
311 static const struct kfd_device_info vega10_device_info = {
312         .asic_family = CHIP_VEGA10,
313         .asic_name = "vega10",
314         .max_pasid_bits = 16,
315         .max_no_of_hqd  = 24,
316         .doorbell_size  = 8,
317         .ih_ring_entry_size = 8 * sizeof(uint32_t),
318         .event_interrupt_class = &event_interrupt_class_v9,
319         .num_of_watch_points = 4,
320         .mqd_size_aligned = MQD_SIZE_ALIGNED,
321         .supports_cwsr = true,
322         .needs_iommu_device = false,
323         .needs_pci_atomics = false,
324         .num_sdma_engines = 2,
325         .num_xgmi_sdma_engines = 0,
326         .num_sdma_queues_per_engine = 2,
327 };
328
329 static const struct kfd_device_info vega10_vf_device_info = {
330         .asic_family = CHIP_VEGA10,
331         .asic_name = "vega10",
332         .max_pasid_bits = 16,
333         .max_no_of_hqd  = 24,
334         .doorbell_size  = 8,
335         .ih_ring_entry_size = 8 * sizeof(uint32_t),
336         .event_interrupt_class = &event_interrupt_class_v9,
337         .num_of_watch_points = 4,
338         .mqd_size_aligned = MQD_SIZE_ALIGNED,
339         .supports_cwsr = true,
340         .needs_iommu_device = false,
341         .needs_pci_atomics = false,
342         .num_sdma_engines = 2,
343         .num_xgmi_sdma_engines = 0,
344         .num_sdma_queues_per_engine = 2,
345 };
346
347 static const struct kfd_device_info vega12_device_info = {
348         .asic_family = CHIP_VEGA12,
349         .asic_name = "vega12",
350         .max_pasid_bits = 16,
351         .max_no_of_hqd  = 24,
352         .doorbell_size  = 8,
353         .ih_ring_entry_size = 8 * sizeof(uint32_t),
354         .event_interrupt_class = &event_interrupt_class_v9,
355         .num_of_watch_points = 4,
356         .mqd_size_aligned = MQD_SIZE_ALIGNED,
357         .supports_cwsr = true,
358         .needs_iommu_device = false,
359         .needs_pci_atomics = false,
360         .num_sdma_engines = 2,
361         .num_xgmi_sdma_engines = 0,
362         .num_sdma_queues_per_engine = 2,
363 };
364
365 static const struct kfd_device_info vega20_device_info = {
366         .asic_family = CHIP_VEGA20,
367         .asic_name = "vega20",
368         .max_pasid_bits = 16,
369         .max_no_of_hqd  = 24,
370         .doorbell_size  = 8,
371         .ih_ring_entry_size = 8 * sizeof(uint32_t),
372         .event_interrupt_class = &event_interrupt_class_v9,
373         .num_of_watch_points = 4,
374         .mqd_size_aligned = MQD_SIZE_ALIGNED,
375         .supports_cwsr = true,
376         .needs_iommu_device = false,
377         .needs_pci_atomics = false,
378         .num_sdma_engines = 2,
379         .num_xgmi_sdma_engines = 0,
380         .num_sdma_queues_per_engine = 8,
381 };
382
383 static const struct kfd_device_info arcturus_device_info = {
384         .asic_family = CHIP_ARCTURUS,
385         .asic_name = "arcturus",
386         .max_pasid_bits = 16,
387         .max_no_of_hqd  = 24,
388         .doorbell_size  = 8,
389         .ih_ring_entry_size = 8 * sizeof(uint32_t),
390         .event_interrupt_class = &event_interrupt_class_v9,
391         .num_of_watch_points = 4,
392         .mqd_size_aligned = MQD_SIZE_ALIGNED,
393         .supports_cwsr = true,
394         .needs_iommu_device = false,
395         .needs_pci_atomics = false,
396         .num_sdma_engines = 2,
397         .num_xgmi_sdma_engines = 6,
398         .num_sdma_queues_per_engine = 8,
399 };
400
401 static const struct kfd_device_info aldebaran_device_info = {
402         .asic_family = CHIP_ALDEBARAN,
403         .asic_name = "aldebaran",
404         .max_pasid_bits = 16,
405         .max_no_of_hqd  = 24,
406         .doorbell_size  = 8,
407         .ih_ring_entry_size = 8 * sizeof(uint32_t),
408         .event_interrupt_class = &event_interrupt_class_v9,
409         .num_of_watch_points = 4,
410         .mqd_size_aligned = MQD_SIZE_ALIGNED,
411         .supports_cwsr = true,
412         .needs_iommu_device = false,
413         .needs_pci_atomics = false,
414         .num_sdma_engines = 2,
415         .num_xgmi_sdma_engines = 3,
416         .num_sdma_queues_per_engine = 8,
417 };
418
419 static const struct kfd_device_info renoir_device_info = {
420         .asic_family = CHIP_RENOIR,
421         .asic_name = "renoir",
422         .max_pasid_bits = 16,
423         .max_no_of_hqd  = 24,
424         .doorbell_size  = 8,
425         .ih_ring_entry_size = 8 * sizeof(uint32_t),
426         .event_interrupt_class = &event_interrupt_class_v9,
427         .num_of_watch_points = 4,
428         .mqd_size_aligned = MQD_SIZE_ALIGNED,
429         .supports_cwsr = true,
430         .needs_iommu_device = false,
431         .needs_pci_atomics = false,
432         .num_sdma_engines = 1,
433         .num_xgmi_sdma_engines = 0,
434         .num_sdma_queues_per_engine = 2,
435 };
436
437 static const struct kfd_device_info navi10_device_info = {
438         .asic_family = CHIP_NAVI10,
439         .asic_name = "navi10",
440         .max_pasid_bits = 16,
441         .max_no_of_hqd  = 24,
442         .doorbell_size  = 8,
443         .ih_ring_entry_size = 8 * sizeof(uint32_t),
444         .event_interrupt_class = &event_interrupt_class_v9,
445         .num_of_watch_points = 4,
446         .mqd_size_aligned = MQD_SIZE_ALIGNED,
447         .needs_iommu_device = false,
448         .supports_cwsr = true,
449         .needs_pci_atomics = true,
450         .num_sdma_engines = 2,
451         .num_xgmi_sdma_engines = 0,
452         .num_sdma_queues_per_engine = 8,
453 };
454
455 static const struct kfd_device_info navi12_device_info = {
456         .asic_family = CHIP_NAVI12,
457         .asic_name = "navi12",
458         .max_pasid_bits = 16,
459         .max_no_of_hqd  = 24,
460         .doorbell_size  = 8,
461         .ih_ring_entry_size = 8 * sizeof(uint32_t),
462         .event_interrupt_class = &event_interrupt_class_v9,
463         .num_of_watch_points = 4,
464         .mqd_size_aligned = MQD_SIZE_ALIGNED,
465         .needs_iommu_device = false,
466         .supports_cwsr = true,
467         .needs_pci_atomics = true,
468         .num_sdma_engines = 2,
469         .num_xgmi_sdma_engines = 0,
470         .num_sdma_queues_per_engine = 8,
471 };
472
473 static const struct kfd_device_info navi14_device_info = {
474         .asic_family = CHIP_NAVI14,
475         .asic_name = "navi14",
476         .max_pasid_bits = 16,
477         .max_no_of_hqd  = 24,
478         .doorbell_size  = 8,
479         .ih_ring_entry_size = 8 * sizeof(uint32_t),
480         .event_interrupt_class = &event_interrupt_class_v9,
481         .num_of_watch_points = 4,
482         .mqd_size_aligned = MQD_SIZE_ALIGNED,
483         .needs_iommu_device = false,
484         .supports_cwsr = true,
485         .needs_pci_atomics = true,
486         .num_sdma_engines = 2,
487         .num_xgmi_sdma_engines = 0,
488         .num_sdma_queues_per_engine = 8,
489 };
490
491 static const struct kfd_device_info sienna_cichlid_device_info = {
492         .asic_family = CHIP_SIENNA_CICHLID,
493         .asic_name = "sienna_cichlid",
494         .max_pasid_bits = 16,
495         .max_no_of_hqd  = 24,
496         .doorbell_size  = 8,
497         .ih_ring_entry_size = 8 * sizeof(uint32_t),
498         .event_interrupt_class = &event_interrupt_class_v9,
499         .num_of_watch_points = 4,
500         .mqd_size_aligned = MQD_SIZE_ALIGNED,
501         .needs_iommu_device = false,
502         .supports_cwsr = true,
503         .needs_pci_atomics = true,
504         .num_sdma_engines = 4,
505         .num_xgmi_sdma_engines = 0,
506         .num_sdma_queues_per_engine = 8,
507 };
508
509 static const struct kfd_device_info navy_flounder_device_info = {
510         .asic_family = CHIP_NAVY_FLOUNDER,
511         .asic_name = "navy_flounder",
512         .max_pasid_bits = 16,
513         .max_no_of_hqd  = 24,
514         .doorbell_size  = 8,
515         .ih_ring_entry_size = 8 * sizeof(uint32_t),
516         .event_interrupt_class = &event_interrupt_class_v9,
517         .num_of_watch_points = 4,
518         .mqd_size_aligned = MQD_SIZE_ALIGNED,
519         .needs_iommu_device = false,
520         .supports_cwsr = true,
521         .needs_pci_atomics = true,
522         .num_sdma_engines = 2,
523         .num_xgmi_sdma_engines = 0,
524         .num_sdma_queues_per_engine = 8,
525 };
526
527 static const struct kfd_device_info vangogh_device_info = {
528         .asic_family = CHIP_VANGOGH,
529         .asic_name = "vangogh",
530         .max_pasid_bits = 16,
531         .max_no_of_hqd  = 24,
532         .doorbell_size  = 8,
533         .ih_ring_entry_size = 8 * sizeof(uint32_t),
534         .event_interrupt_class = &event_interrupt_class_v9,
535         .num_of_watch_points = 4,
536         .mqd_size_aligned = MQD_SIZE_ALIGNED,
537         .needs_iommu_device = false,
538         .supports_cwsr = true,
539         .needs_pci_atomics = false,
540         .num_sdma_engines = 1,
541         .num_xgmi_sdma_engines = 0,
542         .num_sdma_queues_per_engine = 2,
543 };
544
545 static const struct kfd_device_info dimgrey_cavefish_device_info = {
546         .asic_family = CHIP_DIMGREY_CAVEFISH,
547         .asic_name = "dimgrey_cavefish",
548         .max_pasid_bits = 16,
549         .max_no_of_hqd  = 24,
550         .doorbell_size  = 8,
551         .ih_ring_entry_size = 8 * sizeof(uint32_t),
552         .event_interrupt_class = &event_interrupt_class_v9,
553         .num_of_watch_points = 4,
554         .mqd_size_aligned = MQD_SIZE_ALIGNED,
555         .needs_iommu_device = false,
556         .supports_cwsr = true,
557         .needs_pci_atomics = true,
558         .num_sdma_engines = 2,
559         .num_xgmi_sdma_engines = 0,
560         .num_sdma_queues_per_engine = 8,
561 };
562
563 static const struct kfd_device_info beige_goby_device_info = {
564         .asic_family = CHIP_BEIGE_GOBY,
565         .asic_name = "beige_goby",
566         .max_pasid_bits = 16,
567         .max_no_of_hqd  = 24,
568         .doorbell_size  = 8,
569         .ih_ring_entry_size = 8 * sizeof(uint32_t),
570         .event_interrupt_class = &event_interrupt_class_v9,
571         .num_of_watch_points = 4,
572         .mqd_size_aligned = MQD_SIZE_ALIGNED,
573         .needs_iommu_device = false,
574         .supports_cwsr = true,
575         .needs_pci_atomics = true,
576         .num_sdma_engines = 1,
577         .num_xgmi_sdma_engines = 0,
578         .num_sdma_queues_per_engine = 8,
579 };
580
581 static const struct kfd_device_info yellow_carp_device_info = {
582         .asic_family = CHIP_YELLOW_CARP,
583         .asic_name = "yellow_carp",
584         .max_pasid_bits = 16,
585         .max_no_of_hqd  = 24,
586         .doorbell_size  = 8,
587         .ih_ring_entry_size = 8 * sizeof(uint32_t),
588         .event_interrupt_class = &event_interrupt_class_v9,
589         .num_of_watch_points = 4,
590         .mqd_size_aligned = MQD_SIZE_ALIGNED,
591         .needs_iommu_device = false,
592         .supports_cwsr = true,
593         .needs_pci_atomics = false,
594         .num_sdma_engines = 1,
595         .num_xgmi_sdma_engines = 0,
596         .num_sdma_queues_per_engine = 2,
597 };
598
599 /* For each entry, [0] is regular and [1] is virtualisation device. */
600 static const struct kfd_device_info *kfd_supported_devices[][2] = {
601 #ifdef KFD_SUPPORT_IOMMU_V2
602         [CHIP_KAVERI] = {&kaveri_device_info, NULL},
603         [CHIP_CARRIZO] = {&carrizo_device_info, NULL},
604 #endif
605         [CHIP_RAVEN] = {&raven_device_info, NULL},
606         [CHIP_HAWAII] = {&hawaii_device_info, NULL},
607         [CHIP_TONGA] = {&tonga_device_info, NULL},
608         [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
609         [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
610         [CHIP_POLARIS11] = {&polaris11_device_info, NULL},
611         [CHIP_POLARIS12] = {&polaris12_device_info, NULL},
612         [CHIP_VEGAM] = {&vegam_device_info, NULL},
613         [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
614         [CHIP_VEGA12] = {&vega12_device_info, NULL},
615         [CHIP_VEGA20] = {&vega20_device_info, NULL},
616         [CHIP_RENOIR] = {&renoir_device_info, NULL},
617         [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
618         [CHIP_ALDEBARAN] = {&aldebaran_device_info, &aldebaran_device_info},
619         [CHIP_NAVI10] = {&navi10_device_info, NULL},
620         [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
621         [CHIP_NAVI14] = {&navi14_device_info, NULL},
622         [CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info},
623         [CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info},
624         [CHIP_VANGOGH] = {&vangogh_device_info, NULL},
625         [CHIP_DIMGREY_CAVEFISH] = {&dimgrey_cavefish_device_info, &dimgrey_cavefish_device_info},
626         [CHIP_BEIGE_GOBY] = {&beige_goby_device_info, &beige_goby_device_info},
627         [CHIP_YELLOW_CARP] = {&yellow_carp_device_info, NULL},
628 };
629
630 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
631                                 unsigned int chunk_size);
632 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
633
634 static int kfd_resume(struct kfd_dev *kfd);
635
636 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
637         struct pci_dev *pdev, unsigned int asic_type, bool vf)
638 {
639         struct kfd_dev *kfd;
640         const struct kfd_device_info *device_info;
641         const struct kfd2kgd_calls *f2g;
642
643         if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
644                 || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
645                 dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
646                 return NULL; /* asic_type out of range */
647         }
648
649         device_info = kfd_supported_devices[asic_type][vf];
650         f2g = kfd2kgd_funcs[asic_type];
651
652         if (!device_info || !f2g) {
653                 dev_err(kfd_device, "%s %s not supported in kfd\n",
654                         amdgpu_asic_name[asic_type], vf ? "VF" : "");
655                 return NULL;
656         }
657
658         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
659         if (!kfd)
660                 return NULL;
661
662         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
663          * 32 and 64-bit requests are possible and must be
664          * supported.
665          */
666         kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
667         if (device_info->needs_pci_atomics &&
668             !kfd->pci_atomic_requested) {
669                 dev_info(kfd_device,
670                          "skipped device %x:%x, PCI rejects atomics\n",
671                          pdev->vendor, pdev->device);
672                 kfree(kfd);
673                 return NULL;
674         }
675
676         kfd->kgd = kgd;
677         kfd->device_info = device_info;
678         kfd->pdev = pdev;
679         kfd->init_complete = false;
680         kfd->kfd2kgd = f2g;
681         atomic_set(&kfd->compute_profile, 0);
682
683         mutex_init(&kfd->doorbell_mutex);
684         memset(&kfd->doorbell_available_index, 0,
685                 sizeof(kfd->doorbell_available_index));
686
687         atomic_set(&kfd->sram_ecc_flag, 0);
688
689         ida_init(&kfd->doorbell_ida);
690
691         return kfd;
692 }
693
694 static void kfd_cwsr_init(struct kfd_dev *kfd)
695 {
696         if (cwsr_enable && kfd->device_info->supports_cwsr) {
697                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
698                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
699                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
700                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
701                 } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
702                         BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
703                         kfd->cwsr_isa = cwsr_trap_arcturus_hex;
704                         kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
705                 } else if (kfd->device_info->asic_family == CHIP_ALDEBARAN) {
706                         BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE);
707                         kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
708                         kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
709                 } else if (kfd->device_info->asic_family < CHIP_NAVI10) {
710                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
711                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
712                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
713                 } else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
714                         BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
715                         kfd->cwsr_isa = cwsr_trap_nv1x_hex;
716                         kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
717                 } else {
718                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
719                         kfd->cwsr_isa = cwsr_trap_gfx10_hex;
720                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
721                 }
722
723                 kfd->cwsr_enabled = true;
724         }
725 }
726
727 static int kfd_gws_init(struct kfd_dev *kfd)
728 {
729         int ret = 0;
730
731         if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
732                 return 0;
733
734         if (hws_gws_support
735                 || (kfd->device_info->asic_family == CHIP_VEGA10
736                         && kfd->mec2_fw_version >= 0x81b3)
737                 || (kfd->device_info->asic_family >= CHIP_VEGA12
738                         && kfd->device_info->asic_family <= CHIP_RAVEN
739                         && kfd->mec2_fw_version >= 0x1b3)
740                 || (kfd->device_info->asic_family == CHIP_ARCTURUS
741                         && kfd->mec2_fw_version >= 0x30)
742                 || (kfd->device_info->asic_family == CHIP_ALDEBARAN
743                         && kfd->mec2_fw_version >= 0x28))
744                 ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
745                                 amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
746
747         return ret;
748 }
749
750 static void kfd_smi_init(struct kfd_dev *dev) {
751         INIT_LIST_HEAD(&dev->smi_clients);
752         spin_lock_init(&dev->smi_lock);
753 }
754
755 bool kgd2kfd_device_init(struct kfd_dev *kfd,
756                          struct drm_device *ddev,
757                          const struct kgd2kfd_shared_resources *gpu_resources)
758 {
759         unsigned int size, map_process_packet_size;
760
761         kfd->ddev = ddev;
762         kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
763                         KGD_ENGINE_MEC1);
764         kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
765                         KGD_ENGINE_MEC2);
766         kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
767                         KGD_ENGINE_SDMA1);
768         kfd->shared_resources = *gpu_resources;
769
770         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
771         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
772         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
773                         - kfd->vm_info.first_vmid_kfd + 1;
774
775         /* Verify module parameters regarding mapped process number*/
776         if ((hws_max_conc_proc < 0)
777                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
778                 dev_err(kfd_device,
779                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
780                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
781                         kfd->vm_info.vmid_num_kfd);
782                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
783         } else
784                 kfd->max_proc_per_quantum = hws_max_conc_proc;
785
786         /* calculate max size of mqds needed for queues */
787         size = max_num_of_queues_per_device *
788                         kfd->device_info->mqd_size_aligned;
789
790         /*
791          * calculate max size of runlist packet.
792          * There can be only 2 packets at once
793          */
794         map_process_packet_size =
795                         kfd->device_info->asic_family == CHIP_ALDEBARAN ?
796                                 sizeof(struct pm4_mes_map_process_aldebaran) :
797                                         sizeof(struct pm4_mes_map_process);
798         size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
799                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
800                 + sizeof(struct pm4_mes_runlist)) * 2;
801
802         /* Add size of HIQ & DIQ */
803         size += KFD_KERNEL_QUEUE_SIZE * 2;
804
805         /* add another 512KB for all other allocations on gart (HPD, fences) */
806         size += 512 * 1024;
807
808         if (amdgpu_amdkfd_alloc_gtt_mem(
809                         kfd->kgd, size, &kfd->gtt_mem,
810                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
811                         false)) {
812                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
813                 goto alloc_gtt_mem_failure;
814         }
815
816         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
817
818         /* Initialize GTT sa with 512 byte chunk size */
819         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
820                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
821                 goto kfd_gtt_sa_init_error;
822         }
823
824         if (kfd_doorbell_init(kfd)) {
825                 dev_err(kfd_device,
826                         "Error initializing doorbell aperture\n");
827                 goto kfd_doorbell_error;
828         }
829
830         kfd->hive_id = amdgpu_amdkfd_get_hive_id(kfd->kgd);
831
832         kfd->noretry = amdgpu_amdkfd_get_noretry(kfd->kgd);
833
834         if (kfd_interrupt_init(kfd)) {
835                 dev_err(kfd_device, "Error initializing interrupts\n");
836                 goto kfd_interrupt_error;
837         }
838
839         kfd->dqm = device_queue_manager_init(kfd);
840         if (!kfd->dqm) {
841                 dev_err(kfd_device, "Error initializing queue manager\n");
842                 goto device_queue_manager_error;
843         }
844
845         /* If supported on this device, allocate global GWS that is shared
846          * by all KFD processes
847          */
848         if (kfd_gws_init(kfd)) {
849                 dev_err(kfd_device, "Could not allocate %d gws\n",
850                         amdgpu_amdkfd_get_num_gws(kfd->kgd));
851                 goto gws_error;
852         }
853
854         /* If CRAT is broken, won't set iommu enabled */
855         kfd_double_confirm_iommu_support(kfd);
856
857         if (kfd_iommu_device_init(kfd)) {
858                 dev_err(kfd_device, "Error initializing iommuv2\n");
859                 goto device_iommu_error;
860         }
861
862         kfd_cwsr_init(kfd);
863
864         svm_migrate_init((struct amdgpu_device *)kfd->kgd);
865
866         if (kfd_resume(kfd))
867                 goto kfd_resume_error;
868
869         kfd->dbgmgr = NULL;
870
871         if (kfd_topology_add_device(kfd)) {
872                 dev_err(kfd_device, "Error adding device to topology\n");
873                 goto kfd_topology_add_device_error;
874         }
875
876         kfd_smi_init(kfd);
877
878         kfd->init_complete = true;
879         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
880                  kfd->pdev->device);
881
882         pr_debug("Starting kfd with the following scheduling policy %d\n",
883                 kfd->dqm->sched_policy);
884
885         goto out;
886
887 kfd_topology_add_device_error:
888 kfd_resume_error:
889 device_iommu_error:
890 gws_error:
891         device_queue_manager_uninit(kfd->dqm);
892 device_queue_manager_error:
893         kfd_interrupt_exit(kfd);
894 kfd_interrupt_error:
895         kfd_doorbell_fini(kfd);
896 kfd_doorbell_error:
897         kfd_gtt_sa_fini(kfd);
898 kfd_gtt_sa_init_error:
899         amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
900 alloc_gtt_mem_failure:
901         if (kfd->gws)
902                 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
903         dev_err(kfd_device,
904                 "device %x:%x NOT added due to errors\n",
905                 kfd->pdev->vendor, kfd->pdev->device);
906 out:
907         return kfd->init_complete;
908 }
909
910 void kgd2kfd_device_exit(struct kfd_dev *kfd)
911 {
912         if (kfd->init_complete) {
913                 svm_migrate_fini((struct amdgpu_device *)kfd->kgd);
914                 device_queue_manager_uninit(kfd->dqm);
915                 kfd_interrupt_exit(kfd);
916                 kfd_topology_remove_device(kfd);
917                 kfd_doorbell_fini(kfd);
918                 ida_destroy(&kfd->doorbell_ida);
919                 kfd_gtt_sa_fini(kfd);
920                 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
921                 if (kfd->gws)
922                         amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
923         }
924
925         kfree(kfd);
926 }
927
928 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
929 {
930         if (!kfd->init_complete)
931                 return 0;
932
933         kfd_smi_event_update_gpu_reset(kfd, false);
934
935         kfd->dqm->ops.pre_reset(kfd->dqm);
936
937         kgd2kfd_suspend(kfd, false);
938
939         kfd_signal_reset_event(kfd);
940         return 0;
941 }
942
943 /*
944  * Fix me. KFD won't be able to resume existing process for now.
945  * We will keep all existing process in a evicted state and
946  * wait the process to be terminated.
947  */
948
949 int kgd2kfd_post_reset(struct kfd_dev *kfd)
950 {
951         int ret;
952
953         if (!kfd->init_complete)
954                 return 0;
955
956         ret = kfd_resume(kfd);
957         if (ret)
958                 return ret;
959         atomic_dec(&kfd_locked);
960
961         atomic_set(&kfd->sram_ecc_flag, 0);
962
963         kfd_smi_event_update_gpu_reset(kfd, true);
964
965         return 0;
966 }
967
968 bool kfd_is_locked(void)
969 {
970         return  (atomic_read(&kfd_locked) > 0);
971 }
972
973 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
974 {
975         if (!kfd->init_complete)
976                 return;
977
978         /* for runtime suspend, skip locking kfd */
979         if (!run_pm) {
980                 /* For first KFD device suspend all the KFD processes */
981                 if (atomic_inc_return(&kfd_locked) == 1)
982                         kfd_suspend_all_processes();
983         }
984
985         kfd->dqm->ops.stop(kfd->dqm);
986         kfd_iommu_suspend(kfd);
987 }
988
989 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
990 {
991         int ret, count;
992
993         if (!kfd->init_complete)
994                 return 0;
995
996         ret = kfd_resume(kfd);
997         if (ret)
998                 return ret;
999
1000         /* for runtime resume, skip unlocking kfd */
1001         if (!run_pm) {
1002                 count = atomic_dec_return(&kfd_locked);
1003                 WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
1004                 if (count == 0)
1005                         ret = kfd_resume_all_processes();
1006         }
1007
1008         return ret;
1009 }
1010
1011 static int kfd_resume(struct kfd_dev *kfd)
1012 {
1013         int err = 0;
1014
1015         err = kfd_iommu_resume(kfd);
1016         if (err) {
1017                 dev_err(kfd_device,
1018                         "Failed to resume IOMMU for device %x:%x\n",
1019                         kfd->pdev->vendor, kfd->pdev->device);
1020                 return err;
1021         }
1022
1023         err = kfd->dqm->ops.start(kfd->dqm);
1024         if (err) {
1025                 dev_err(kfd_device,
1026                         "Error starting queue manager for device %x:%x\n",
1027                         kfd->pdev->vendor, kfd->pdev->device);
1028                 goto dqm_start_error;
1029         }
1030
1031         return err;
1032
1033 dqm_start_error:
1034         kfd_iommu_suspend(kfd);
1035         return err;
1036 }
1037
1038 static inline void kfd_queue_work(struct workqueue_struct *wq,
1039                                   struct work_struct *work)
1040 {
1041         int cpu, new_cpu;
1042
1043         cpu = new_cpu = smp_processor_id();
1044         do {
1045                 new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1046                 if (cpu_to_node(new_cpu) == numa_node_id())
1047                         break;
1048         } while (cpu != new_cpu);
1049
1050         queue_work_on(new_cpu, wq, work);
1051 }
1052
1053 /* This is called directly from KGD at ISR. */
1054 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1055 {
1056         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
1057         bool is_patched = false;
1058         unsigned long flags;
1059
1060         if (!kfd->init_complete)
1061                 return;
1062
1063         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
1064                 dev_err_once(kfd_device, "Ring entry too small\n");
1065                 return;
1066         }
1067
1068         spin_lock_irqsave(&kfd->interrupt_lock, flags);
1069
1070         if (kfd->interrupts_active
1071             && interrupt_is_wanted(kfd, ih_ring_entry,
1072                                    patched_ihre, &is_patched)
1073             && enqueue_ih_ring_entry(kfd,
1074                                      is_patched ? patched_ihre : ih_ring_entry))
1075                 kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
1076
1077         spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
1078 }
1079
1080 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
1081 {
1082         struct kfd_process *p;
1083         int r;
1084
1085         /* Because we are called from arbitrary context (workqueue) as opposed
1086          * to process context, kfd_process could attempt to exit while we are
1087          * running so the lookup function increments the process ref count.
1088          */
1089         p = kfd_lookup_process_by_mm(mm);
1090         if (!p)
1091                 return -ESRCH;
1092
1093         WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1094         r = kfd_process_evict_queues(p);
1095
1096         kfd_unref_process(p);
1097         return r;
1098 }
1099
1100 int kgd2kfd_resume_mm(struct mm_struct *mm)
1101 {
1102         struct kfd_process *p;
1103         int r;
1104
1105         /* Because we are called from arbitrary context (workqueue) as opposed
1106          * to process context, kfd_process could attempt to exit while we are
1107          * running so the lookup function increments the process ref count.
1108          */
1109         p = kfd_lookup_process_by_mm(mm);
1110         if (!p)
1111                 return -ESRCH;
1112
1113         r = kfd_process_restore_queues(p);
1114
1115         kfd_unref_process(p);
1116         return r;
1117 }
1118
1119 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1120  *   prepare for safe eviction of KFD BOs that belong to the specified
1121  *   process.
1122  *
1123  * @mm: mm_struct that identifies the specified KFD process
1124  * @fence: eviction fence attached to KFD process BOs
1125  *
1126  */
1127 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1128                                                struct dma_fence *fence)
1129 {
1130         struct kfd_process *p;
1131         unsigned long active_time;
1132         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1133
1134         if (!fence)
1135                 return -EINVAL;
1136
1137         if (dma_fence_is_signaled(fence))
1138                 return 0;
1139
1140         p = kfd_lookup_process_by_mm(mm);
1141         if (!p)
1142                 return -ENODEV;
1143
1144         if (fence->seqno == p->last_eviction_seqno)
1145                 goto out;
1146
1147         p->last_eviction_seqno = fence->seqno;
1148
1149         /* Avoid KFD process starvation. Wait for at least
1150          * PROCESS_ACTIVE_TIME_MS before evicting the process again
1151          */
1152         active_time = get_jiffies_64() - p->last_restore_timestamp;
1153         if (delay_jiffies > active_time)
1154                 delay_jiffies -= active_time;
1155         else
1156                 delay_jiffies = 0;
1157
1158         /* During process initialization eviction_work.dwork is initialized
1159          * to kfd_evict_bo_worker
1160          */
1161         WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1162              p->lead_thread->pid, delay_jiffies);
1163         schedule_delayed_work(&p->eviction_work, delay_jiffies);
1164 out:
1165         kfd_unref_process(p);
1166         return 0;
1167 }
1168
1169 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1170                                 unsigned int chunk_size)
1171 {
1172         unsigned int num_of_longs;
1173
1174         if (WARN_ON(buf_size < chunk_size))
1175                 return -EINVAL;
1176         if (WARN_ON(buf_size == 0))
1177                 return -EINVAL;
1178         if (WARN_ON(chunk_size == 0))
1179                 return -EINVAL;
1180
1181         kfd->gtt_sa_chunk_size = chunk_size;
1182         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1183
1184         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1185                 BITS_PER_LONG;
1186
1187         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1188
1189         if (!kfd->gtt_sa_bitmap)
1190                 return -ENOMEM;
1191
1192         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1193                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1194
1195         mutex_init(&kfd->gtt_sa_lock);
1196
1197         return 0;
1198
1199 }
1200
1201 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1202 {
1203         mutex_destroy(&kfd->gtt_sa_lock);
1204         kfree(kfd->gtt_sa_bitmap);
1205 }
1206
1207 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1208                                                 unsigned int bit_num,
1209                                                 unsigned int chunk_size)
1210 {
1211         return start_addr + bit_num * chunk_size;
1212 }
1213
1214 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1215                                                 unsigned int bit_num,
1216                                                 unsigned int chunk_size)
1217 {
1218         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1219 }
1220
1221 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1222                         struct kfd_mem_obj **mem_obj)
1223 {
1224         unsigned int found, start_search, cur_size;
1225
1226         if (size == 0)
1227                 return -EINVAL;
1228
1229         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1230                 return -ENOMEM;
1231
1232         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1233         if (!(*mem_obj))
1234                 return -ENOMEM;
1235
1236         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1237
1238         start_search = 0;
1239
1240         mutex_lock(&kfd->gtt_sa_lock);
1241
1242 kfd_gtt_restart_search:
1243         /* Find the first chunk that is free */
1244         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1245                                         kfd->gtt_sa_num_of_chunks,
1246                                         start_search);
1247
1248         pr_debug("Found = %d\n", found);
1249
1250         /* If there wasn't any free chunk, bail out */
1251         if (found == kfd->gtt_sa_num_of_chunks)
1252                 goto kfd_gtt_no_free_chunk;
1253
1254         /* Update fields of mem_obj */
1255         (*mem_obj)->range_start = found;
1256         (*mem_obj)->range_end = found;
1257         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1258                                         kfd->gtt_start_gpu_addr,
1259                                         found,
1260                                         kfd->gtt_sa_chunk_size);
1261         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1262                                         kfd->gtt_start_cpu_ptr,
1263                                         found,
1264                                         kfd->gtt_sa_chunk_size);
1265
1266         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1267                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1268
1269         /* If we need only one chunk, mark it as allocated and get out */
1270         if (size <= kfd->gtt_sa_chunk_size) {
1271                 pr_debug("Single bit\n");
1272                 set_bit(found, kfd->gtt_sa_bitmap);
1273                 goto kfd_gtt_out;
1274         }
1275
1276         /* Otherwise, try to see if we have enough contiguous chunks */
1277         cur_size = size - kfd->gtt_sa_chunk_size;
1278         do {
1279                 (*mem_obj)->range_end =
1280                         find_next_zero_bit(kfd->gtt_sa_bitmap,
1281                                         kfd->gtt_sa_num_of_chunks, ++found);
1282                 /*
1283                  * If next free chunk is not contiguous than we need to
1284                  * restart our search from the last free chunk we found (which
1285                  * wasn't contiguous to the previous ones
1286                  */
1287                 if ((*mem_obj)->range_end != found) {
1288                         start_search = found;
1289                         goto kfd_gtt_restart_search;
1290                 }
1291
1292                 /*
1293                  * If we reached end of buffer, bail out with error
1294                  */
1295                 if (found == kfd->gtt_sa_num_of_chunks)
1296                         goto kfd_gtt_no_free_chunk;
1297
1298                 /* Check if we don't need another chunk */
1299                 if (cur_size <= kfd->gtt_sa_chunk_size)
1300                         cur_size = 0;
1301                 else
1302                         cur_size -= kfd->gtt_sa_chunk_size;
1303
1304         } while (cur_size > 0);
1305
1306         pr_debug("range_start = %d, range_end = %d\n",
1307                 (*mem_obj)->range_start, (*mem_obj)->range_end);
1308
1309         /* Mark the chunks as allocated */
1310         for (found = (*mem_obj)->range_start;
1311                 found <= (*mem_obj)->range_end;
1312                 found++)
1313                 set_bit(found, kfd->gtt_sa_bitmap);
1314
1315 kfd_gtt_out:
1316         mutex_unlock(&kfd->gtt_sa_lock);
1317         return 0;
1318
1319 kfd_gtt_no_free_chunk:
1320         pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1321         mutex_unlock(&kfd->gtt_sa_lock);
1322         kfree(*mem_obj);
1323         return -ENOMEM;
1324 }
1325
1326 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1327 {
1328         unsigned int bit;
1329
1330         /* Act like kfree when trying to free a NULL object */
1331         if (!mem_obj)
1332                 return 0;
1333
1334         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1335                         mem_obj, mem_obj->range_start, mem_obj->range_end);
1336
1337         mutex_lock(&kfd->gtt_sa_lock);
1338
1339         /* Mark the chunks as free */
1340         for (bit = mem_obj->range_start;
1341                 bit <= mem_obj->range_end;
1342                 bit++)
1343                 clear_bit(bit, kfd->gtt_sa_bitmap);
1344
1345         mutex_unlock(&kfd->gtt_sa_lock);
1346
1347         kfree(mem_obj);
1348         return 0;
1349 }
1350
1351 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1352 {
1353         if (kfd)
1354                 atomic_inc(&kfd->sram_ecc_flag);
1355 }
1356
1357 void kfd_inc_compute_active(struct kfd_dev *kfd)
1358 {
1359         if (atomic_inc_return(&kfd->compute_profile) == 1)
1360                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1361 }
1362
1363 void kfd_dec_compute_active(struct kfd_dev *kfd)
1364 {
1365         int count = atomic_dec_return(&kfd->compute_profile);
1366
1367         if (count == 0)
1368                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1369         WARN_ONCE(count < 0, "Compute profile ref. count error");
1370 }
1371
1372 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint32_t throttle_bitmask)
1373 {
1374         if (kfd && kfd->init_complete)
1375                 kfd_smi_event_update_thermal_throttling(kfd, throttle_bitmask);
1376 }
1377
1378 #if defined(CONFIG_DEBUG_FS)
1379
1380 /* This function will send a package to HIQ to hang the HWS
1381  * which will trigger a GPU reset and bring the HWS back to normal state
1382  */
1383 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1384 {
1385         int r = 0;
1386
1387         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1388                 pr_err("HWS is not enabled");
1389                 return -EINVAL;
1390         }
1391
1392         r = pm_debugfs_hang_hws(&dev->dqm->packets);
1393         if (!r)
1394                 r = dqm_debugfs_execute_queues(dev->dqm);
1395
1396         return r;
1397 }
1398
1399 #endif
This page took 0.116821 seconds and 4 git commands to generate.