]> Git Repo - linux.git/blob - fs/ext4/inode.c
Merge tag 'exfat-for-6.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/linki...
[linux.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card ([email protected])
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      ([email protected])
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static void ext4_journalled_zero_new_buffers(handle_t *handle,
53                                             struct inode *inode,
54                                             struct folio *folio,
55                                             unsigned from, unsigned to);
56
57 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
58                               struct ext4_inode_info *ei)
59 {
60         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
61         __u32 csum;
62         __u16 dummy_csum = 0;
63         int offset = offsetof(struct ext4_inode, i_checksum_lo);
64         unsigned int csum_size = sizeof(dummy_csum);
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
67         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
68         offset += csum_size;
69         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
70                            EXT4_GOOD_OLD_INODE_SIZE - offset);
71
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
73                 offset = offsetof(struct ext4_inode, i_checksum_hi);
74                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
75                                    EXT4_GOOD_OLD_INODE_SIZE,
76                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
77                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
78                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
79                                            csum_size);
80                         offset += csum_size;
81                 }
82                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
83                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
84         }
85
86         return csum;
87 }
88
89 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
90                                   struct ext4_inode_info *ei)
91 {
92         __u32 provided, calculated;
93
94         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
95             cpu_to_le32(EXT4_OS_LINUX) ||
96             !ext4_has_metadata_csum(inode->i_sb))
97                 return 1;
98
99         provided = le16_to_cpu(raw->i_checksum_lo);
100         calculated = ext4_inode_csum(inode, raw, ei);
101         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
102             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
103                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
104         else
105                 calculated &= 0xFFFF;
106
107         return provided == calculated;
108 }
109
110 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
111                          struct ext4_inode_info *ei)
112 {
113         __u32 csum;
114
115         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
116             cpu_to_le32(EXT4_OS_LINUX) ||
117             !ext4_has_metadata_csum(inode->i_sb))
118                 return;
119
120         csum = ext4_inode_csum(inode, raw, ei);
121         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
122         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
123             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
124                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
125 }
126
127 static inline int ext4_begin_ordered_truncate(struct inode *inode,
128                                               loff_t new_size)
129 {
130         trace_ext4_begin_ordered_truncate(inode, new_size);
131         /*
132          * If jinode is zero, then we never opened the file for
133          * writing, so there's no need to call
134          * jbd2_journal_begin_ordered_truncate() since there's no
135          * outstanding writes we need to flush.
136          */
137         if (!EXT4_I(inode)->jinode)
138                 return 0;
139         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
140                                                    EXT4_I(inode)->jinode,
141                                                    new_size);
142 }
143
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Called at the last iput() if i_nlink is zero.
168  */
169 void ext4_evict_inode(struct inode *inode)
170 {
171         handle_t *handle;
172         int err;
173         /*
174          * Credits for final inode cleanup and freeing:
175          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
176          * (xattr block freeing), bitmap, group descriptor (inode freeing)
177          */
178         int extra_credits = 6;
179         struct ext4_xattr_inode_array *ea_inode_array = NULL;
180         bool freeze_protected = false;
181
182         trace_ext4_evict_inode(inode);
183
184         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
185                 ext4_evict_ea_inode(inode);
186         if (inode->i_nlink) {
187                 truncate_inode_pages_final(&inode->i_data);
188
189                 goto no_delete;
190         }
191
192         if (is_bad_inode(inode))
193                 goto no_delete;
194         dquot_initialize(inode);
195
196         if (ext4_should_order_data(inode))
197                 ext4_begin_ordered_truncate(inode, 0);
198         truncate_inode_pages_final(&inode->i_data);
199
200         /*
201          * For inodes with journalled data, transaction commit could have
202          * dirtied the inode. And for inodes with dioread_nolock, unwritten
203          * extents converting worker could merge extents and also have dirtied
204          * the inode. Flush worker is ignoring it because of I_FREEING flag but
205          * we still need to remove the inode from the writeback lists.
206          */
207         if (!list_empty_careful(&inode->i_io_list))
208                 inode_io_list_del(inode);
209
210         /*
211          * Protect us against freezing - iput() caller didn't have to have any
212          * protection against it. When we are in a running transaction though,
213          * we are already protected against freezing and we cannot grab further
214          * protection due to lock ordering constraints.
215          */
216         if (!ext4_journal_current_handle()) {
217                 sb_start_intwrite(inode->i_sb);
218                 freeze_protected = true;
219         }
220
221         if (!IS_NOQUOTA(inode))
222                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
223
224         /*
225          * Block bitmap, group descriptor, and inode are accounted in both
226          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
227          */
228         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
229                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
230         if (IS_ERR(handle)) {
231                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
232                 /*
233                  * If we're going to skip the normal cleanup, we still need to
234                  * make sure that the in-core orphan linked list is properly
235                  * cleaned up.
236                  */
237                 ext4_orphan_del(NULL, inode);
238                 if (freeze_protected)
239                         sb_end_intwrite(inode->i_sb);
240                 goto no_delete;
241         }
242
243         if (IS_SYNC(inode))
244                 ext4_handle_sync(handle);
245
246         /*
247          * Set inode->i_size to 0 before calling ext4_truncate(). We need
248          * special handling of symlinks here because i_size is used to
249          * determine whether ext4_inode_info->i_data contains symlink data or
250          * block mappings. Setting i_size to 0 will remove its fast symlink
251          * status. Erase i_data so that it becomes a valid empty block map.
252          */
253         if (ext4_inode_is_fast_symlink(inode))
254                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks) {
263                 err = ext4_truncate(inode);
264                 if (err) {
265                         ext4_error_err(inode->i_sb, -err,
266                                        "couldn't truncate inode %lu (err %d)",
267                                        inode->i_ino, err);
268                         goto stop_handle;
269                 }
270         }
271
272         /* Remove xattr references. */
273         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
274                                       extra_credits);
275         if (err) {
276                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
277 stop_handle:
278                 ext4_journal_stop(handle);
279                 ext4_orphan_del(NULL, inode);
280                 if (freeze_protected)
281                         sb_end_intwrite(inode->i_sb);
282                 ext4_xattr_inode_array_free(ea_inode_array);
283                 goto no_delete;
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         if (freeze_protected)
311                 sb_end_intwrite(inode->i_sb);
312         ext4_xattr_inode_array_free(ea_inode_array);
313         return;
314 no_delete:
315         /*
316          * Check out some where else accidentally dirty the evicting inode,
317          * which may probably cause inode use-after-free issues later.
318          */
319         WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
320
321         if (!list_empty(&EXT4_I(inode)->i_fc_list))
322                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
323         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
324 }
325
326 #ifdef CONFIG_QUOTA
327 qsize_t *ext4_get_reserved_space(struct inode *inode)
328 {
329         return &EXT4_I(inode)->i_reserved_quota;
330 }
331 #endif
332
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338                                         int used, int quota_claim)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341         struct ext4_inode_info *ei = EXT4_I(inode);
342
343         spin_lock(&ei->i_block_reservation_lock);
344         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345         if (unlikely(used > ei->i_reserved_data_blocks)) {
346                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347                          "with only %d reserved data blocks",
348                          __func__, inode->i_ino, used,
349                          ei->i_reserved_data_blocks);
350                 WARN_ON(1);
351                 used = ei->i_reserved_data_blocks;
352         }
353
354         /* Update per-inode reservations */
355         ei->i_reserved_data_blocks -= used;
356         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
357
358         spin_unlock(&ei->i_block_reservation_lock);
359
360         /* Update quota subsystem for data blocks */
361         if (quota_claim)
362                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
363         else {
364                 /*
365                  * We did fallocate with an offset that is already delayed
366                  * allocated. So on delayed allocated writeback we should
367                  * not re-claim the quota for fallocated blocks.
368                  */
369                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
370         }
371
372         /*
373          * If we have done all the pending block allocations and if
374          * there aren't any writers on the inode, we can discard the
375          * inode's preallocations.
376          */
377         if ((ei->i_reserved_data_blocks == 0) &&
378             !inode_is_open_for_write(inode))
379                 ext4_discard_preallocations(inode);
380 }
381
382 static int __check_block_validity(struct inode *inode, const char *func,
383                                 unsigned int line,
384                                 struct ext4_map_blocks *map)
385 {
386         if (ext4_has_feature_journal(inode->i_sb) &&
387             (inode->i_ino ==
388              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
389                 return 0;
390         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
391                 ext4_error_inode(inode, func, line, map->m_pblk,
392                                  "lblock %lu mapped to illegal pblock %llu "
393                                  "(length %d)", (unsigned long) map->m_lblk,
394                                  map->m_pblk, map->m_len);
395                 return -EFSCORRUPTED;
396         }
397         return 0;
398 }
399
400 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
401                        ext4_lblk_t len)
402 {
403         int ret;
404
405         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
406                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
407
408         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
409         if (ret > 0)
410                 ret = 0;
411
412         return ret;
413 }
414
415 #define check_block_validity(inode, map)        \
416         __check_block_validity((inode), __func__, __LINE__, (map))
417
418 #ifdef ES_AGGRESSIVE_TEST
419 static void ext4_map_blocks_es_recheck(handle_t *handle,
420                                        struct inode *inode,
421                                        struct ext4_map_blocks *es_map,
422                                        struct ext4_map_blocks *map,
423                                        int flags)
424 {
425         int retval;
426
427         map->m_flags = 0;
428         /*
429          * There is a race window that the result is not the same.
430          * e.g. xfstests #223 when dioread_nolock enables.  The reason
431          * is that we lookup a block mapping in extent status tree with
432          * out taking i_data_sem.  So at the time the unwritten extent
433          * could be converted.
434          */
435         down_read(&EXT4_I(inode)->i_data_sem);
436         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
437                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
438         } else {
439                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
440         }
441         up_read((&EXT4_I(inode)->i_data_sem));
442
443         /*
444          * We don't check m_len because extent will be collpased in status
445          * tree.  So the m_len might not equal.
446          */
447         if (es_map->m_lblk != map->m_lblk ||
448             es_map->m_flags != map->m_flags ||
449             es_map->m_pblk != map->m_pblk) {
450                 printk("ES cache assertion failed for inode: %lu "
451                        "es_cached ex [%d/%d/%llu/%x] != "
452                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
453                        inode->i_ino, es_map->m_lblk, es_map->m_len,
454                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
455                        map->m_len, map->m_pblk, map->m_flags,
456                        retval, flags);
457         }
458 }
459 #endif /* ES_AGGRESSIVE_TEST */
460
461 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
462                                  struct ext4_map_blocks *map)
463 {
464         unsigned int status;
465         int retval;
466
467         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
468                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
469         else
470                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
471
472         if (retval <= 0)
473                 return retval;
474
475         if (unlikely(retval != map->m_len)) {
476                 ext4_warning(inode->i_sb,
477                              "ES len assertion failed for inode "
478                              "%lu: retval %d != map->m_len %d",
479                              inode->i_ino, retval, map->m_len);
480                 WARN_ON(1);
481         }
482
483         status = map->m_flags & EXT4_MAP_UNWRITTEN ?
484                         EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
485         ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
486                               map->m_pblk, status, 0);
487         return retval;
488 }
489
490 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
491                                   struct ext4_map_blocks *map, int flags)
492 {
493         struct extent_status es;
494         unsigned int status;
495         int err, retval = 0;
496
497         /*
498          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
499          * indicates that the blocks and quotas has already been
500          * checked when the data was copied into the page cache.
501          */
502         if (map->m_flags & EXT4_MAP_DELAYED)
503                 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
504
505         /*
506          * Here we clear m_flags because after allocating an new extent,
507          * it will be set again.
508          */
509         map->m_flags &= ~EXT4_MAP_FLAGS;
510
511         /*
512          * We need to check for EXT4 here because migrate could have
513          * changed the inode type in between.
514          */
515         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
516                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
517         } else {
518                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
519
520                 /*
521                  * We allocated new blocks which will result in i_data's
522                  * format changing. Force the migrate to fail by clearing
523                  * migrate flags.
524                  */
525                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
526                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
527         }
528         if (retval <= 0)
529                 return retval;
530
531         if (unlikely(retval != map->m_len)) {
532                 ext4_warning(inode->i_sb,
533                              "ES len assertion failed for inode %lu: "
534                              "retval %d != map->m_len %d",
535                              inode->i_ino, retval, map->m_len);
536                 WARN_ON(1);
537         }
538
539         /*
540          * We have to zeroout blocks before inserting them into extent
541          * status tree. Otherwise someone could look them up there and
542          * use them before they are really zeroed. We also have to
543          * unmap metadata before zeroing as otherwise writeback can
544          * overwrite zeros with stale data from block device.
545          */
546         if (flags & EXT4_GET_BLOCKS_ZERO &&
547             map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
548                 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
549                                          map->m_len);
550                 if (err)
551                         return err;
552         }
553
554         /*
555          * If the extent has been zeroed out, we don't need to update
556          * extent status tree.
557          */
558         if (flags & EXT4_GET_BLOCKS_PRE_IO &&
559             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
560                 if (ext4_es_is_written(&es))
561                         return retval;
562         }
563
564         status = map->m_flags & EXT4_MAP_UNWRITTEN ?
565                         EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
566         ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
567                               map->m_pblk, status, flags);
568
569         return retval;
570 }
571
572 /*
573  * The ext4_map_blocks() function tries to look up the requested blocks,
574  * and returns if the blocks are already mapped.
575  *
576  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
577  * and store the allocated blocks in the result buffer head and mark it
578  * mapped.
579  *
580  * If file type is extents based, it will call ext4_ext_map_blocks(),
581  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
582  * based files
583  *
584  * On success, it returns the number of blocks being mapped or allocated.
585  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
586  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
587  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
588  *
589  * It returns 0 if plain look up failed (blocks have not been allocated), in
590  * that case, @map is returned as unmapped but we still do fill map->m_len to
591  * indicate the length of a hole starting at map->m_lblk.
592  *
593  * It returns the error in case of allocation failure.
594  */
595 int ext4_map_blocks(handle_t *handle, struct inode *inode,
596                     struct ext4_map_blocks *map, int flags)
597 {
598         struct extent_status es;
599         int retval;
600         int ret = 0;
601 #ifdef ES_AGGRESSIVE_TEST
602         struct ext4_map_blocks orig_map;
603
604         memcpy(&orig_map, map, sizeof(*map));
605 #endif
606
607         map->m_flags = 0;
608         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
609                   flags, map->m_len, (unsigned long) map->m_lblk);
610
611         /*
612          * ext4_map_blocks returns an int, and m_len is an unsigned int
613          */
614         if (unlikely(map->m_len > INT_MAX))
615                 map->m_len = INT_MAX;
616
617         /* We can handle the block number less than EXT_MAX_BLOCKS */
618         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
619                 return -EFSCORRUPTED;
620
621         /* Lookup extent status tree firstly */
622         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
623             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
624                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
625                         map->m_pblk = ext4_es_pblock(&es) +
626                                         map->m_lblk - es.es_lblk;
627                         map->m_flags |= ext4_es_is_written(&es) ?
628                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
629                         retval = es.es_len - (map->m_lblk - es.es_lblk);
630                         if (retval > map->m_len)
631                                 retval = map->m_len;
632                         map->m_len = retval;
633                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
634                         map->m_pblk = 0;
635                         map->m_flags |= ext4_es_is_delayed(&es) ?
636                                         EXT4_MAP_DELAYED : 0;
637                         retval = es.es_len - (map->m_lblk - es.es_lblk);
638                         if (retval > map->m_len)
639                                 retval = map->m_len;
640                         map->m_len = retval;
641                         retval = 0;
642                 } else {
643                         BUG();
644                 }
645
646                 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
647                         return retval;
648 #ifdef ES_AGGRESSIVE_TEST
649                 ext4_map_blocks_es_recheck(handle, inode, map,
650                                            &orig_map, flags);
651 #endif
652                 goto found;
653         }
654         /*
655          * In the query cache no-wait mode, nothing we can do more if we
656          * cannot find extent in the cache.
657          */
658         if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
659                 return 0;
660
661         /*
662          * Try to see if we can get the block without requesting a new
663          * file system block.
664          */
665         down_read(&EXT4_I(inode)->i_data_sem);
666         retval = ext4_map_query_blocks(handle, inode, map);
667         up_read((&EXT4_I(inode)->i_data_sem));
668
669 found:
670         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
671                 ret = check_block_validity(inode, map);
672                 if (ret != 0)
673                         return ret;
674         }
675
676         /* If it is only a block(s) look up */
677         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
678                 return retval;
679
680         /*
681          * Returns if the blocks have already allocated
682          *
683          * Note that if blocks have been preallocated
684          * ext4_ext_map_blocks() returns with buffer head unmapped
685          */
686         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
687                 /*
688                  * If we need to convert extent to unwritten
689                  * we continue and do the actual work in
690                  * ext4_ext_map_blocks()
691                  */
692                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
693                         return retval;
694
695         /*
696          * New blocks allocate and/or writing to unwritten extent
697          * will possibly result in updating i_data, so we take
698          * the write lock of i_data_sem, and call get_block()
699          * with create == 1 flag.
700          */
701         down_write(&EXT4_I(inode)->i_data_sem);
702         retval = ext4_map_create_blocks(handle, inode, map, flags);
703         up_write((&EXT4_I(inode)->i_data_sem));
704         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705                 ret = check_block_validity(inode, map);
706                 if (ret != 0)
707                         return ret;
708
709                 /*
710                  * Inodes with freshly allocated blocks where contents will be
711                  * visible after transaction commit must be on transaction's
712                  * ordered data list.
713                  */
714                 if (map->m_flags & EXT4_MAP_NEW &&
715                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
717                     !ext4_is_quota_file(inode) &&
718                     ext4_should_order_data(inode)) {
719                         loff_t start_byte =
720                                 (loff_t)map->m_lblk << inode->i_blkbits;
721                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
722
723                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
724                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
725                                                 start_byte, length);
726                         else
727                                 ret = ext4_jbd2_inode_add_write(handle, inode,
728                                                 start_byte, length);
729                         if (ret)
730                                 return ret;
731                 }
732         }
733         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
734                                 map->m_flags & EXT4_MAP_MAPPED))
735                 ext4_fc_track_range(handle, inode, map->m_lblk,
736                                         map->m_lblk + map->m_len - 1);
737         if (retval < 0)
738                 ext_debug(inode, "failed with err %d\n", retval);
739         return retval;
740 }
741
742 /*
743  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
744  * we have to be careful as someone else may be manipulating b_state as well.
745  */
746 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
747 {
748         unsigned long old_state;
749         unsigned long new_state;
750
751         flags &= EXT4_MAP_FLAGS;
752
753         /* Dummy buffer_head? Set non-atomically. */
754         if (!bh->b_page) {
755                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
756                 return;
757         }
758         /*
759          * Someone else may be modifying b_state. Be careful! This is ugly but
760          * once we get rid of using bh as a container for mapping information
761          * to pass to / from get_block functions, this can go away.
762          */
763         old_state = READ_ONCE(bh->b_state);
764         do {
765                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
766         } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
767 }
768
769 static int _ext4_get_block(struct inode *inode, sector_t iblock,
770                            struct buffer_head *bh, int flags)
771 {
772         struct ext4_map_blocks map;
773         int ret = 0;
774
775         if (ext4_has_inline_data(inode))
776                 return -ERANGE;
777
778         map.m_lblk = iblock;
779         map.m_len = bh->b_size >> inode->i_blkbits;
780
781         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
782                               flags);
783         if (ret > 0) {
784                 map_bh(bh, inode->i_sb, map.m_pblk);
785                 ext4_update_bh_state(bh, map.m_flags);
786                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
787                 ret = 0;
788         } else if (ret == 0) {
789                 /* hole case, need to fill in bh->b_size */
790                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791         }
792         return ret;
793 }
794
795 int ext4_get_block(struct inode *inode, sector_t iblock,
796                    struct buffer_head *bh, int create)
797 {
798         return _ext4_get_block(inode, iblock, bh,
799                                create ? EXT4_GET_BLOCKS_CREATE : 0);
800 }
801
802 /*
803  * Get block function used when preparing for buffered write if we require
804  * creating an unwritten extent if blocks haven't been allocated.  The extent
805  * will be converted to written after the IO is complete.
806  */
807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808                              struct buffer_head *bh_result, int create)
809 {
810         int ret = 0;
811
812         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813                    inode->i_ino, create);
814         ret = _ext4_get_block(inode, iblock, bh_result,
815                                EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
816
817         /*
818          * If the buffer is marked unwritten, mark it as new to make sure it is
819          * zeroed out correctly in case of partial writes. Otherwise, there is
820          * a chance of stale data getting exposed.
821          */
822         if (ret == 0 && buffer_unwritten(bh_result))
823                 set_buffer_new(bh_result);
824
825         return ret;
826 }
827
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835                                 ext4_lblk_t block, int map_flags)
836 {
837         struct ext4_map_blocks map;
838         struct buffer_head *bh;
839         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840         bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
841         int err;
842
843         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844                     || handle != NULL || create == 0);
845         ASSERT(create == 0 || !nowait);
846
847         map.m_lblk = block;
848         map.m_len = 1;
849         err = ext4_map_blocks(handle, inode, &map, map_flags);
850
851         if (err == 0)
852                 return create ? ERR_PTR(-ENOSPC) : NULL;
853         if (err < 0)
854                 return ERR_PTR(err);
855
856         if (nowait)
857                 return sb_find_get_block(inode->i_sb, map.m_pblk);
858
859         bh = sb_getblk(inode->i_sb, map.m_pblk);
860         if (unlikely(!bh))
861                 return ERR_PTR(-ENOMEM);
862         if (map.m_flags & EXT4_MAP_NEW) {
863                 ASSERT(create != 0);
864                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
865                             || (handle != NULL));
866
867                 /*
868                  * Now that we do not always journal data, we should
869                  * keep in mind whether this should always journal the
870                  * new buffer as metadata.  For now, regular file
871                  * writes use ext4_get_block instead, so it's not a
872                  * problem.
873                  */
874                 lock_buffer(bh);
875                 BUFFER_TRACE(bh, "call get_create_access");
876                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
877                                                      EXT4_JTR_NONE);
878                 if (unlikely(err)) {
879                         unlock_buffer(bh);
880                         goto errout;
881                 }
882                 if (!buffer_uptodate(bh)) {
883                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
884                         set_buffer_uptodate(bh);
885                 }
886                 unlock_buffer(bh);
887                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
888                 err = ext4_handle_dirty_metadata(handle, inode, bh);
889                 if (unlikely(err))
890                         goto errout;
891         } else
892                 BUFFER_TRACE(bh, "not a new buffer");
893         return bh;
894 errout:
895         brelse(bh);
896         return ERR_PTR(err);
897 }
898
899 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
900                                ext4_lblk_t block, int map_flags)
901 {
902         struct buffer_head *bh;
903         int ret;
904
905         bh = ext4_getblk(handle, inode, block, map_flags);
906         if (IS_ERR(bh))
907                 return bh;
908         if (!bh || ext4_buffer_uptodate(bh))
909                 return bh;
910
911         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
912         if (ret) {
913                 put_bh(bh);
914                 return ERR_PTR(ret);
915         }
916         return bh;
917 }
918
919 /* Read a contiguous batch of blocks. */
920 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
921                      bool wait, struct buffer_head **bhs)
922 {
923         int i, err;
924
925         for (i = 0; i < bh_count; i++) {
926                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
927                 if (IS_ERR(bhs[i])) {
928                         err = PTR_ERR(bhs[i]);
929                         bh_count = i;
930                         goto out_brelse;
931                 }
932         }
933
934         for (i = 0; i < bh_count; i++)
935                 /* Note that NULL bhs[i] is valid because of holes. */
936                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
937                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
938
939         if (!wait)
940                 return 0;
941
942         for (i = 0; i < bh_count; i++)
943                 if (bhs[i])
944                         wait_on_buffer(bhs[i]);
945
946         for (i = 0; i < bh_count; i++) {
947                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
948                         err = -EIO;
949                         goto out_brelse;
950                 }
951         }
952         return 0;
953
954 out_brelse:
955         for (i = 0; i < bh_count; i++) {
956                 brelse(bhs[i]);
957                 bhs[i] = NULL;
958         }
959         return err;
960 }
961
962 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
963                            struct buffer_head *head,
964                            unsigned from,
965                            unsigned to,
966                            int *partial,
967                            int (*fn)(handle_t *handle, struct inode *inode,
968                                      struct buffer_head *bh))
969 {
970         struct buffer_head *bh;
971         unsigned block_start, block_end;
972         unsigned blocksize = head->b_size;
973         int err, ret = 0;
974         struct buffer_head *next;
975
976         for (bh = head, block_start = 0;
977              ret == 0 && (bh != head || !block_start);
978              block_start = block_end, bh = next) {
979                 next = bh->b_this_page;
980                 block_end = block_start + blocksize;
981                 if (block_end <= from || block_start >= to) {
982                         if (partial && !buffer_uptodate(bh))
983                                 *partial = 1;
984                         continue;
985                 }
986                 err = (*fn)(handle, inode, bh);
987                 if (!ret)
988                         ret = err;
989         }
990         return ret;
991 }
992
993 /*
994  * Helper for handling dirtying of journalled data. We also mark the folio as
995  * dirty so that writeback code knows about this page (and inode) contains
996  * dirty data. ext4_writepages() then commits appropriate transaction to
997  * make data stable.
998  */
999 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1000 {
1001         folio_mark_dirty(bh->b_folio);
1002         return ext4_handle_dirty_metadata(handle, NULL, bh);
1003 }
1004
1005 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1006                                 struct buffer_head *bh)
1007 {
1008         if (!buffer_mapped(bh) || buffer_freed(bh))
1009                 return 0;
1010         BUFFER_TRACE(bh, "get write access");
1011         return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1012                                             EXT4_JTR_NONE);
1013 }
1014
1015 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1016                            loff_t pos, unsigned len,
1017                            get_block_t *get_block)
1018 {
1019         unsigned from = pos & (PAGE_SIZE - 1);
1020         unsigned to = from + len;
1021         struct inode *inode = folio->mapping->host;
1022         unsigned block_start, block_end;
1023         sector_t block;
1024         int err = 0;
1025         unsigned blocksize = inode->i_sb->s_blocksize;
1026         unsigned bbits;
1027         struct buffer_head *bh, *head, *wait[2];
1028         int nr_wait = 0;
1029         int i;
1030         bool should_journal_data = ext4_should_journal_data(inode);
1031
1032         BUG_ON(!folio_test_locked(folio));
1033         BUG_ON(from > PAGE_SIZE);
1034         BUG_ON(to > PAGE_SIZE);
1035         BUG_ON(from > to);
1036
1037         head = folio_buffers(folio);
1038         if (!head)
1039                 head = create_empty_buffers(folio, blocksize, 0);
1040         bbits = ilog2(blocksize);
1041         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1042
1043         for (bh = head, block_start = 0; bh != head || !block_start;
1044             block++, block_start = block_end, bh = bh->b_this_page) {
1045                 block_end = block_start + blocksize;
1046                 if (block_end <= from || block_start >= to) {
1047                         if (folio_test_uptodate(folio)) {
1048                                 set_buffer_uptodate(bh);
1049                         }
1050                         continue;
1051                 }
1052                 if (buffer_new(bh))
1053                         clear_buffer_new(bh);
1054                 if (!buffer_mapped(bh)) {
1055                         WARN_ON(bh->b_size != blocksize);
1056                         err = get_block(inode, block, bh, 1);
1057                         if (err)
1058                                 break;
1059                         if (buffer_new(bh)) {
1060                                 /*
1061                                  * We may be zeroing partial buffers or all new
1062                                  * buffers in case of failure. Prepare JBD2 for
1063                                  * that.
1064                                  */
1065                                 if (should_journal_data)
1066                                         do_journal_get_write_access(handle,
1067                                                                     inode, bh);
1068                                 if (folio_test_uptodate(folio)) {
1069                                         /*
1070                                          * Unlike __block_write_begin() we leave
1071                                          * dirtying of new uptodate buffers to
1072                                          * ->write_end() time or
1073                                          * folio_zero_new_buffers().
1074                                          */
1075                                         set_buffer_uptodate(bh);
1076                                         continue;
1077                                 }
1078                                 if (block_end > to || block_start < from)
1079                                         folio_zero_segments(folio, to,
1080                                                             block_end,
1081                                                             block_start, from);
1082                                 continue;
1083                         }
1084                 }
1085                 if (folio_test_uptodate(folio)) {
1086                         set_buffer_uptodate(bh);
1087                         continue;
1088                 }
1089                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1090                     !buffer_unwritten(bh) &&
1091                     (block_start < from || block_end > to)) {
1092                         ext4_read_bh_lock(bh, 0, false);
1093                         wait[nr_wait++] = bh;
1094                 }
1095         }
1096         /*
1097          * If we issued read requests, let them complete.
1098          */
1099         for (i = 0; i < nr_wait; i++) {
1100                 wait_on_buffer(wait[i]);
1101                 if (!buffer_uptodate(wait[i]))
1102                         err = -EIO;
1103         }
1104         if (unlikely(err)) {
1105                 if (should_journal_data)
1106                         ext4_journalled_zero_new_buffers(handle, inode, folio,
1107                                                          from, to);
1108                 else
1109                         folio_zero_new_buffers(folio, from, to);
1110         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1111                 for (i = 0; i < nr_wait; i++) {
1112                         int err2;
1113
1114                         err2 = fscrypt_decrypt_pagecache_blocks(folio,
1115                                                 blocksize, bh_offset(wait[i]));
1116                         if (err2) {
1117                                 clear_buffer_uptodate(wait[i]);
1118                                 err = err2;
1119                         }
1120                 }
1121         }
1122
1123         return err;
1124 }
1125
1126 /*
1127  * To preserve ordering, it is essential that the hole instantiation and
1128  * the data write be encapsulated in a single transaction.  We cannot
1129  * close off a transaction and start a new one between the ext4_get_block()
1130  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1131  * ext4_write_begin() is the right place.
1132  */
1133 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1134                             loff_t pos, unsigned len,
1135                             struct folio **foliop, void **fsdata)
1136 {
1137         struct inode *inode = mapping->host;
1138         int ret, needed_blocks;
1139         handle_t *handle;
1140         int retries = 0;
1141         struct folio *folio;
1142         pgoff_t index;
1143         unsigned from, to;
1144
1145         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1146                 return -EIO;
1147
1148         trace_ext4_write_begin(inode, pos, len);
1149         /*
1150          * Reserve one block more for addition to orphan list in case
1151          * we allocate blocks but write fails for some reason
1152          */
1153         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1154         index = pos >> PAGE_SHIFT;
1155         from = pos & (PAGE_SIZE - 1);
1156         to = from + len;
1157
1158         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1159                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1160                                                     foliop);
1161                 if (ret < 0)
1162                         return ret;
1163                 if (ret == 1)
1164                         return 0;
1165         }
1166
1167         /*
1168          * __filemap_get_folio() can take a long time if the
1169          * system is thrashing due to memory pressure, or if the folio
1170          * is being written back.  So grab it first before we start
1171          * the transaction handle.  This also allows us to allocate
1172          * the folio (if needed) without using GFP_NOFS.
1173          */
1174 retry_grab:
1175         folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1176                                         mapping_gfp_mask(mapping));
1177         if (IS_ERR(folio))
1178                 return PTR_ERR(folio);
1179         /*
1180          * The same as page allocation, we prealloc buffer heads before
1181          * starting the handle.
1182          */
1183         if (!folio_buffers(folio))
1184                 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1185
1186         folio_unlock(folio);
1187
1188 retry_journal:
1189         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1190         if (IS_ERR(handle)) {
1191                 folio_put(folio);
1192                 return PTR_ERR(handle);
1193         }
1194
1195         folio_lock(folio);
1196         if (folio->mapping != mapping) {
1197                 /* The folio got truncated from under us */
1198                 folio_unlock(folio);
1199                 folio_put(folio);
1200                 ext4_journal_stop(handle);
1201                 goto retry_grab;
1202         }
1203         /* In case writeback began while the folio was unlocked */
1204         folio_wait_stable(folio);
1205
1206         if (ext4_should_dioread_nolock(inode))
1207                 ret = ext4_block_write_begin(handle, folio, pos, len,
1208                                              ext4_get_block_unwritten);
1209         else
1210                 ret = ext4_block_write_begin(handle, folio, pos, len,
1211                                              ext4_get_block);
1212         if (!ret && ext4_should_journal_data(inode)) {
1213                 ret = ext4_walk_page_buffers(handle, inode,
1214                                              folio_buffers(folio), from, to,
1215                                              NULL, do_journal_get_write_access);
1216         }
1217
1218         if (ret) {
1219                 bool extended = (pos + len > inode->i_size) &&
1220                                 !ext4_verity_in_progress(inode);
1221
1222                 folio_unlock(folio);
1223                 /*
1224                  * ext4_block_write_begin may have instantiated a few blocks
1225                  * outside i_size.  Trim these off again. Don't need
1226                  * i_size_read because we hold i_rwsem.
1227                  *
1228                  * Add inode to orphan list in case we crash before
1229                  * truncate finishes
1230                  */
1231                 if (extended && ext4_can_truncate(inode))
1232                         ext4_orphan_add(handle, inode);
1233
1234                 ext4_journal_stop(handle);
1235                 if (extended) {
1236                         ext4_truncate_failed_write(inode);
1237                         /*
1238                          * If truncate failed early the inode might
1239                          * still be on the orphan list; we need to
1240                          * make sure the inode is removed from the
1241                          * orphan list in that case.
1242                          */
1243                         if (inode->i_nlink)
1244                                 ext4_orphan_del(NULL, inode);
1245                 }
1246
1247                 if (ret == -ENOSPC &&
1248                     ext4_should_retry_alloc(inode->i_sb, &retries))
1249                         goto retry_journal;
1250                 folio_put(folio);
1251                 return ret;
1252         }
1253         *foliop = folio;
1254         return ret;
1255 }
1256
1257 /* For write_end() in data=journal mode */
1258 static int write_end_fn(handle_t *handle, struct inode *inode,
1259                         struct buffer_head *bh)
1260 {
1261         int ret;
1262         if (!buffer_mapped(bh) || buffer_freed(bh))
1263                 return 0;
1264         set_buffer_uptodate(bh);
1265         ret = ext4_dirty_journalled_data(handle, bh);
1266         clear_buffer_meta(bh);
1267         clear_buffer_prio(bh);
1268         return ret;
1269 }
1270
1271 /*
1272  * We need to pick up the new inode size which generic_commit_write gave us
1273  * `file' can be NULL - eg, when called from page_symlink().
1274  *
1275  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1276  * buffers are managed internally.
1277  */
1278 static int ext4_write_end(struct file *file,
1279                           struct address_space *mapping,
1280                           loff_t pos, unsigned len, unsigned copied,
1281                           struct folio *folio, void *fsdata)
1282 {
1283         handle_t *handle = ext4_journal_current_handle();
1284         struct inode *inode = mapping->host;
1285         loff_t old_size = inode->i_size;
1286         int ret = 0, ret2;
1287         int i_size_changed = 0;
1288         bool verity = ext4_verity_in_progress(inode);
1289
1290         trace_ext4_write_end(inode, pos, len, copied);
1291
1292         if (ext4_has_inline_data(inode) &&
1293             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1294                 return ext4_write_inline_data_end(inode, pos, len, copied,
1295                                                   folio);
1296
1297         copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1298         /*
1299          * it's important to update i_size while still holding folio lock:
1300          * page writeout could otherwise come in and zero beyond i_size.
1301          *
1302          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1303          * blocks are being written past EOF, so skip the i_size update.
1304          */
1305         if (!verity)
1306                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1307         folio_unlock(folio);
1308         folio_put(folio);
1309
1310         if (old_size < pos && !verity)
1311                 pagecache_isize_extended(inode, old_size, pos);
1312         /*
1313          * Don't mark the inode dirty under folio lock. First, it unnecessarily
1314          * makes the holding time of folio lock longer. Second, it forces lock
1315          * ordering of folio lock and transaction start for journaling
1316          * filesystems.
1317          */
1318         if (i_size_changed)
1319                 ret = ext4_mark_inode_dirty(handle, inode);
1320
1321         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1322                 /* if we have allocated more blocks and copied
1323                  * less. We will have blocks allocated outside
1324                  * inode->i_size. So truncate them
1325                  */
1326                 ext4_orphan_add(handle, inode);
1327
1328         ret2 = ext4_journal_stop(handle);
1329         if (!ret)
1330                 ret = ret2;
1331
1332         if (pos + len > inode->i_size && !verity) {
1333                 ext4_truncate_failed_write(inode);
1334                 /*
1335                  * If truncate failed early the inode might still be
1336                  * on the orphan list; we need to make sure the inode
1337                  * is removed from the orphan list in that case.
1338                  */
1339                 if (inode->i_nlink)
1340                         ext4_orphan_del(NULL, inode);
1341         }
1342
1343         return ret ? ret : copied;
1344 }
1345
1346 /*
1347  * This is a private version of folio_zero_new_buffers() which doesn't
1348  * set the buffer to be dirty, since in data=journalled mode we need
1349  * to call ext4_dirty_journalled_data() instead.
1350  */
1351 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1352                                             struct inode *inode,
1353                                             struct folio *folio,
1354                                             unsigned from, unsigned to)
1355 {
1356         unsigned int block_start = 0, block_end;
1357         struct buffer_head *head, *bh;
1358
1359         bh = head = folio_buffers(folio);
1360         do {
1361                 block_end = block_start + bh->b_size;
1362                 if (buffer_new(bh)) {
1363                         if (block_end > from && block_start < to) {
1364                                 if (!folio_test_uptodate(folio)) {
1365                                         unsigned start, size;
1366
1367                                         start = max(from, block_start);
1368                                         size = min(to, block_end) - start;
1369
1370                                         folio_zero_range(folio, start, size);
1371                                 }
1372                                 clear_buffer_new(bh);
1373                                 write_end_fn(handle, inode, bh);
1374                         }
1375                 }
1376                 block_start = block_end;
1377                 bh = bh->b_this_page;
1378         } while (bh != head);
1379 }
1380
1381 static int ext4_journalled_write_end(struct file *file,
1382                                      struct address_space *mapping,
1383                                      loff_t pos, unsigned len, unsigned copied,
1384                                      struct folio *folio, void *fsdata)
1385 {
1386         handle_t *handle = ext4_journal_current_handle();
1387         struct inode *inode = mapping->host;
1388         loff_t old_size = inode->i_size;
1389         int ret = 0, ret2;
1390         int partial = 0;
1391         unsigned from, to;
1392         int size_changed = 0;
1393         bool verity = ext4_verity_in_progress(inode);
1394
1395         trace_ext4_journalled_write_end(inode, pos, len, copied);
1396         from = pos & (PAGE_SIZE - 1);
1397         to = from + len;
1398
1399         BUG_ON(!ext4_handle_valid(handle));
1400
1401         if (ext4_has_inline_data(inode))
1402                 return ext4_write_inline_data_end(inode, pos, len, copied,
1403                                                   folio);
1404
1405         if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1406                 copied = 0;
1407                 ext4_journalled_zero_new_buffers(handle, inode, folio,
1408                                                  from, to);
1409         } else {
1410                 if (unlikely(copied < len))
1411                         ext4_journalled_zero_new_buffers(handle, inode, folio,
1412                                                          from + copied, to);
1413                 ret = ext4_walk_page_buffers(handle, inode,
1414                                              folio_buffers(folio),
1415                                              from, from + copied, &partial,
1416                                              write_end_fn);
1417                 if (!partial)
1418                         folio_mark_uptodate(folio);
1419         }
1420         if (!verity)
1421                 size_changed = ext4_update_inode_size(inode, pos + copied);
1422         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1423         folio_unlock(folio);
1424         folio_put(folio);
1425
1426         if (old_size < pos && !verity)
1427                 pagecache_isize_extended(inode, old_size, pos);
1428
1429         if (size_changed) {
1430                 ret2 = ext4_mark_inode_dirty(handle, inode);
1431                 if (!ret)
1432                         ret = ret2;
1433         }
1434
1435         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1436                 /* if we have allocated more blocks and copied
1437                  * less. We will have blocks allocated outside
1438                  * inode->i_size. So truncate them
1439                  */
1440                 ext4_orphan_add(handle, inode);
1441
1442         ret2 = ext4_journal_stop(handle);
1443         if (!ret)
1444                 ret = ret2;
1445         if (pos + len > inode->i_size && !verity) {
1446                 ext4_truncate_failed_write(inode);
1447                 /*
1448                  * If truncate failed early the inode might still be
1449                  * on the orphan list; we need to make sure the inode
1450                  * is removed from the orphan list in that case.
1451                  */
1452                 if (inode->i_nlink)
1453                         ext4_orphan_del(NULL, inode);
1454         }
1455
1456         return ret ? ret : copied;
1457 }
1458
1459 /*
1460  * Reserve space for 'nr_resv' clusters
1461  */
1462 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1463 {
1464         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1465         struct ext4_inode_info *ei = EXT4_I(inode);
1466         int ret;
1467
1468         /*
1469          * We will charge metadata quota at writeout time; this saves
1470          * us from metadata over-estimation, though we may go over by
1471          * a small amount in the end.  Here we just reserve for data.
1472          */
1473         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1474         if (ret)
1475                 return ret;
1476
1477         spin_lock(&ei->i_block_reservation_lock);
1478         if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1479                 spin_unlock(&ei->i_block_reservation_lock);
1480                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1481                 return -ENOSPC;
1482         }
1483         ei->i_reserved_data_blocks += nr_resv;
1484         trace_ext4_da_reserve_space(inode, nr_resv);
1485         spin_unlock(&ei->i_block_reservation_lock);
1486
1487         return 0;       /* success */
1488 }
1489
1490 void ext4_da_release_space(struct inode *inode, int to_free)
1491 {
1492         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493         struct ext4_inode_info *ei = EXT4_I(inode);
1494
1495         if (!to_free)
1496                 return;         /* Nothing to release, exit */
1497
1498         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1499
1500         trace_ext4_da_release_space(inode, to_free);
1501         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1502                 /*
1503                  * if there aren't enough reserved blocks, then the
1504                  * counter is messed up somewhere.  Since this
1505                  * function is called from invalidate page, it's
1506                  * harmless to return without any action.
1507                  */
1508                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1509                          "ino %lu, to_free %d with only %d reserved "
1510                          "data blocks", inode->i_ino, to_free,
1511                          ei->i_reserved_data_blocks);
1512                 WARN_ON(1);
1513                 to_free = ei->i_reserved_data_blocks;
1514         }
1515         ei->i_reserved_data_blocks -= to_free;
1516
1517         /* update fs dirty data blocks counter */
1518         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1519
1520         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1521
1522         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1523 }
1524
1525 /*
1526  * Delayed allocation stuff
1527  */
1528
1529 struct mpage_da_data {
1530         /* These are input fields for ext4_do_writepages() */
1531         struct inode *inode;
1532         struct writeback_control *wbc;
1533         unsigned int can_map:1; /* Can writepages call map blocks? */
1534
1535         /* These are internal state of ext4_do_writepages() */
1536         pgoff_t first_page;     /* The first page to write */
1537         pgoff_t next_page;      /* Current page to examine */
1538         pgoff_t last_page;      /* Last page to examine */
1539         /*
1540          * Extent to map - this can be after first_page because that can be
1541          * fully mapped. We somewhat abuse m_flags to store whether the extent
1542          * is delalloc or unwritten.
1543          */
1544         struct ext4_map_blocks map;
1545         struct ext4_io_submit io_submit;        /* IO submission data */
1546         unsigned int do_map:1;
1547         unsigned int scanned_until_end:1;
1548         unsigned int journalled_more_data:1;
1549 };
1550
1551 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1552                                        bool invalidate)
1553 {
1554         unsigned nr, i;
1555         pgoff_t index, end;
1556         struct folio_batch fbatch;
1557         struct inode *inode = mpd->inode;
1558         struct address_space *mapping = inode->i_mapping;
1559
1560         /* This is necessary when next_page == 0. */
1561         if (mpd->first_page >= mpd->next_page)
1562                 return;
1563
1564         mpd->scanned_until_end = 0;
1565         index = mpd->first_page;
1566         end   = mpd->next_page - 1;
1567         if (invalidate) {
1568                 ext4_lblk_t start, last;
1569                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1570                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1571
1572                 /*
1573                  * avoid racing with extent status tree scans made by
1574                  * ext4_insert_delayed_block()
1575                  */
1576                 down_write(&EXT4_I(inode)->i_data_sem);
1577                 ext4_es_remove_extent(inode, start, last - start + 1);
1578                 up_write(&EXT4_I(inode)->i_data_sem);
1579         }
1580
1581         folio_batch_init(&fbatch);
1582         while (index <= end) {
1583                 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1584                 if (nr == 0)
1585                         break;
1586                 for (i = 0; i < nr; i++) {
1587                         struct folio *folio = fbatch.folios[i];
1588
1589                         if (folio->index < mpd->first_page)
1590                                 continue;
1591                         if (folio_next_index(folio) - 1 > end)
1592                                 continue;
1593                         BUG_ON(!folio_test_locked(folio));
1594                         BUG_ON(folio_test_writeback(folio));
1595                         if (invalidate) {
1596                                 if (folio_mapped(folio))
1597                                         folio_clear_dirty_for_io(folio);
1598                                 block_invalidate_folio(folio, 0,
1599                                                 folio_size(folio));
1600                                 folio_clear_uptodate(folio);
1601                         }
1602                         folio_unlock(folio);
1603                 }
1604                 folio_batch_release(&fbatch);
1605         }
1606 }
1607
1608 static void ext4_print_free_blocks(struct inode *inode)
1609 {
1610         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1611         struct super_block *sb = inode->i_sb;
1612         struct ext4_inode_info *ei = EXT4_I(inode);
1613
1614         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1615                EXT4_C2B(EXT4_SB(inode->i_sb),
1616                         ext4_count_free_clusters(sb)));
1617         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1618         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1619                (long long) EXT4_C2B(EXT4_SB(sb),
1620                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1621         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1622                (long long) EXT4_C2B(EXT4_SB(sb),
1623                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1624         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1625         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1626                  ei->i_reserved_data_blocks);
1627         return;
1628 }
1629
1630 /*
1631  * Check whether the cluster containing lblk has been allocated or has
1632  * delalloc reservation.
1633  *
1634  * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1635  * reservation, 2 if it's already been allocated, negative error code on
1636  * failure.
1637  */
1638 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1639 {
1640         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1641         int ret;
1642
1643         /* Has delalloc reservation? */
1644         if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1645                 return 1;
1646
1647         /* Already been allocated? */
1648         if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1649                 return 2;
1650         ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1651         if (ret < 0)
1652                 return ret;
1653         if (ret > 0)
1654                 return 2;
1655
1656         return 0;
1657 }
1658
1659 /*
1660  * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1661  *                              status tree, incrementing the reserved
1662  *                              cluster/block count or making pending
1663  *                              reservations where needed
1664  *
1665  * @inode - file containing the newly added block
1666  * @lblk - start logical block to be added
1667  * @len - length of blocks to be added
1668  *
1669  * Returns 0 on success, negative error code on failure.
1670  */
1671 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1672                                       ext4_lblk_t len)
1673 {
1674         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1675         int ret;
1676         bool lclu_allocated = false;
1677         bool end_allocated = false;
1678         ext4_lblk_t resv_clu;
1679         ext4_lblk_t end = lblk + len - 1;
1680
1681         /*
1682          * If the cluster containing lblk or end is shared with a delayed,
1683          * written, or unwritten extent in a bigalloc file system, it's
1684          * already been accounted for and does not need to be reserved.
1685          * A pending reservation must be made for the cluster if it's
1686          * shared with a written or unwritten extent and doesn't already
1687          * have one.  Written and unwritten extents can be purged from the
1688          * extents status tree if the system is under memory pressure, so
1689          * it's necessary to examine the extent tree if a search of the
1690          * extents status tree doesn't get a match.
1691          */
1692         if (sbi->s_cluster_ratio == 1) {
1693                 ret = ext4_da_reserve_space(inode, len);
1694                 if (ret != 0)   /* ENOSPC */
1695                         return ret;
1696         } else {   /* bigalloc */
1697                 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1698
1699                 ret = ext4_clu_alloc_state(inode, lblk);
1700                 if (ret < 0)
1701                         return ret;
1702                 if (ret > 0) {
1703                         resv_clu--;
1704                         lclu_allocated = (ret == 2);
1705                 }
1706
1707                 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1708                         ret = ext4_clu_alloc_state(inode, end);
1709                         if (ret < 0)
1710                                 return ret;
1711                         if (ret > 0) {
1712                                 resv_clu--;
1713                                 end_allocated = (ret == 2);
1714                         }
1715                 }
1716
1717                 if (resv_clu) {
1718                         ret = ext4_da_reserve_space(inode, resv_clu);
1719                         if (ret != 0)   /* ENOSPC */
1720                                 return ret;
1721                 }
1722         }
1723
1724         ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1725                                       end_allocated);
1726         return 0;
1727 }
1728
1729 /*
1730  * Looks up the requested blocks and sets the delalloc extent map.
1731  * First try to look up for the extent entry that contains the requested
1732  * blocks in the extent status tree without i_data_sem, then try to look
1733  * up for the ondisk extent mapping with i_data_sem in read mode,
1734  * finally hold i_data_sem in write mode, looks up again and add a
1735  * delalloc extent entry if it still couldn't find any extent. Pass out
1736  * the mapped extent through @map and return 0 on success.
1737  */
1738 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1739 {
1740         struct extent_status es;
1741         int retval;
1742 #ifdef ES_AGGRESSIVE_TEST
1743         struct ext4_map_blocks orig_map;
1744
1745         memcpy(&orig_map, map, sizeof(*map));
1746 #endif
1747
1748         map->m_flags = 0;
1749         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1750                   (unsigned long) map->m_lblk);
1751
1752         /* Lookup extent status tree firstly */
1753         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1754                 map->m_len = min_t(unsigned int, map->m_len,
1755                                    es.es_len - (map->m_lblk - es.es_lblk));
1756
1757                 if (ext4_es_is_hole(&es))
1758                         goto add_delayed;
1759
1760 found:
1761                 /*
1762                  * Delayed extent could be allocated by fallocate.
1763                  * So we need to check it.
1764                  */
1765                 if (ext4_es_is_delayed(&es)) {
1766                         map->m_flags |= EXT4_MAP_DELAYED;
1767                         return 0;
1768                 }
1769
1770                 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1771                 if (ext4_es_is_written(&es))
1772                         map->m_flags |= EXT4_MAP_MAPPED;
1773                 else if (ext4_es_is_unwritten(&es))
1774                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1775                 else
1776                         BUG();
1777
1778 #ifdef ES_AGGRESSIVE_TEST
1779                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1780 #endif
1781                 return 0;
1782         }
1783
1784         /*
1785          * Try to see if we can get the block without requesting a new
1786          * file system block.
1787          */
1788         down_read(&EXT4_I(inode)->i_data_sem);
1789         if (ext4_has_inline_data(inode))
1790                 retval = 0;
1791         else
1792                 retval = ext4_map_query_blocks(NULL, inode, map);
1793         up_read(&EXT4_I(inode)->i_data_sem);
1794         if (retval)
1795                 return retval < 0 ? retval : 0;
1796
1797 add_delayed:
1798         down_write(&EXT4_I(inode)->i_data_sem);
1799         /*
1800          * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1801          * and fallocate path (no folio lock) can race. Make sure we
1802          * lookup the extent status tree here again while i_data_sem
1803          * is held in write mode, before inserting a new da entry in
1804          * the extent status tree.
1805          */
1806         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1807                 map->m_len = min_t(unsigned int, map->m_len,
1808                                    es.es_len - (map->m_lblk - es.es_lblk));
1809
1810                 if (!ext4_es_is_hole(&es)) {
1811                         up_write(&EXT4_I(inode)->i_data_sem);
1812                         goto found;
1813                 }
1814         } else if (!ext4_has_inline_data(inode)) {
1815                 retval = ext4_map_query_blocks(NULL, inode, map);
1816                 if (retval) {
1817                         up_write(&EXT4_I(inode)->i_data_sem);
1818                         return retval < 0 ? retval : 0;
1819                 }
1820         }
1821
1822         map->m_flags |= EXT4_MAP_DELAYED;
1823         retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1824         up_write(&EXT4_I(inode)->i_data_sem);
1825
1826         return retval;
1827 }
1828
1829 /*
1830  * This is a special get_block_t callback which is used by
1831  * ext4_da_write_begin().  It will either return mapped block or
1832  * reserve space for a single block.
1833  *
1834  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1835  * We also have b_blocknr = -1 and b_bdev initialized properly
1836  *
1837  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1838  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1839  * initialized properly.
1840  */
1841 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1842                            struct buffer_head *bh, int create)
1843 {
1844         struct ext4_map_blocks map;
1845         sector_t invalid_block = ~((sector_t) 0xffff);
1846         int ret = 0;
1847
1848         BUG_ON(create == 0);
1849         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1850
1851         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1852                 invalid_block = ~0;
1853
1854         map.m_lblk = iblock;
1855         map.m_len = 1;
1856
1857         /*
1858          * first, we need to know whether the block is allocated already
1859          * preallocated blocks are unmapped but should treated
1860          * the same as allocated blocks.
1861          */
1862         ret = ext4_da_map_blocks(inode, &map);
1863         if (ret < 0)
1864                 return ret;
1865
1866         if (map.m_flags & EXT4_MAP_DELAYED) {
1867                 map_bh(bh, inode->i_sb, invalid_block);
1868                 set_buffer_new(bh);
1869                 set_buffer_delay(bh);
1870                 return 0;
1871         }
1872
1873         map_bh(bh, inode->i_sb, map.m_pblk);
1874         ext4_update_bh_state(bh, map.m_flags);
1875
1876         if (buffer_unwritten(bh)) {
1877                 /* A delayed write to unwritten bh should be marked
1878                  * new and mapped.  Mapped ensures that we don't do
1879                  * get_block multiple times when we write to the same
1880                  * offset and new ensures that we do proper zero out
1881                  * for partial write.
1882                  */
1883                 set_buffer_new(bh);
1884                 set_buffer_mapped(bh);
1885         }
1886         return 0;
1887 }
1888
1889 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1890 {
1891         mpd->first_page += folio_nr_pages(folio);
1892         folio_unlock(folio);
1893 }
1894
1895 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1896 {
1897         size_t len;
1898         loff_t size;
1899         int err;
1900
1901         BUG_ON(folio->index != mpd->first_page);
1902         folio_clear_dirty_for_io(folio);
1903         /*
1904          * We have to be very careful here!  Nothing protects writeback path
1905          * against i_size changes and the page can be writeably mapped into
1906          * page tables. So an application can be growing i_size and writing
1907          * data through mmap while writeback runs. folio_clear_dirty_for_io()
1908          * write-protects our page in page tables and the page cannot get
1909          * written to again until we release folio lock. So only after
1910          * folio_clear_dirty_for_io() we are safe to sample i_size for
1911          * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1912          * on the barrier provided by folio_test_clear_dirty() in
1913          * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1914          * after page tables are updated.
1915          */
1916         size = i_size_read(mpd->inode);
1917         len = folio_size(folio);
1918         if (folio_pos(folio) + len > size &&
1919             !ext4_verity_in_progress(mpd->inode))
1920                 len = size & (len - 1);
1921         err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1922         if (!err)
1923                 mpd->wbc->nr_to_write--;
1924
1925         return err;
1926 }
1927
1928 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1929
1930 /*
1931  * mballoc gives us at most this number of blocks...
1932  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1933  * The rest of mballoc seems to handle chunks up to full group size.
1934  */
1935 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1936
1937 /*
1938  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1939  *
1940  * @mpd - extent of blocks
1941  * @lblk - logical number of the block in the file
1942  * @bh - buffer head we want to add to the extent
1943  *
1944  * The function is used to collect contig. blocks in the same state. If the
1945  * buffer doesn't require mapping for writeback and we haven't started the
1946  * extent of buffers to map yet, the function returns 'true' immediately - the
1947  * caller can write the buffer right away. Otherwise the function returns true
1948  * if the block has been added to the extent, false if the block couldn't be
1949  * added.
1950  */
1951 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1952                                    struct buffer_head *bh)
1953 {
1954         struct ext4_map_blocks *map = &mpd->map;
1955
1956         /* Buffer that doesn't need mapping for writeback? */
1957         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1958             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1959                 /* So far no extent to map => we write the buffer right away */
1960                 if (map->m_len == 0)
1961                         return true;
1962                 return false;
1963         }
1964
1965         /* First block in the extent? */
1966         if (map->m_len == 0) {
1967                 /* We cannot map unless handle is started... */
1968                 if (!mpd->do_map)
1969                         return false;
1970                 map->m_lblk = lblk;
1971                 map->m_len = 1;
1972                 map->m_flags = bh->b_state & BH_FLAGS;
1973                 return true;
1974         }
1975
1976         /* Don't go larger than mballoc is willing to allocate */
1977         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1978                 return false;
1979
1980         /* Can we merge the block to our big extent? */
1981         if (lblk == map->m_lblk + map->m_len &&
1982             (bh->b_state & BH_FLAGS) == map->m_flags) {
1983                 map->m_len++;
1984                 return true;
1985         }
1986         return false;
1987 }
1988
1989 /*
1990  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1991  *
1992  * @mpd - extent of blocks for mapping
1993  * @head - the first buffer in the page
1994  * @bh - buffer we should start processing from
1995  * @lblk - logical number of the block in the file corresponding to @bh
1996  *
1997  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1998  * the page for IO if all buffers in this page were mapped and there's no
1999  * accumulated extent of buffers to map or add buffers in the page to the
2000  * extent of buffers to map. The function returns 1 if the caller can continue
2001  * by processing the next page, 0 if it should stop adding buffers to the
2002  * extent to map because we cannot extend it anymore. It can also return value
2003  * < 0 in case of error during IO submission.
2004  */
2005 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2006                                    struct buffer_head *head,
2007                                    struct buffer_head *bh,
2008                                    ext4_lblk_t lblk)
2009 {
2010         struct inode *inode = mpd->inode;
2011         int err;
2012         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2013                                                         >> inode->i_blkbits;
2014
2015         if (ext4_verity_in_progress(inode))
2016                 blocks = EXT_MAX_BLOCKS;
2017
2018         do {
2019                 BUG_ON(buffer_locked(bh));
2020
2021                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2022                         /* Found extent to map? */
2023                         if (mpd->map.m_len)
2024                                 return 0;
2025                         /* Buffer needs mapping and handle is not started? */
2026                         if (!mpd->do_map)
2027                                 return 0;
2028                         /* Everything mapped so far and we hit EOF */
2029                         break;
2030                 }
2031         } while (lblk++, (bh = bh->b_this_page) != head);
2032         /* So far everything mapped? Submit the page for IO. */
2033         if (mpd->map.m_len == 0) {
2034                 err = mpage_submit_folio(mpd, head->b_folio);
2035                 if (err < 0)
2036                         return err;
2037                 mpage_folio_done(mpd, head->b_folio);
2038         }
2039         if (lblk >= blocks) {
2040                 mpd->scanned_until_end = 1;
2041                 return 0;
2042         }
2043         return 1;
2044 }
2045
2046 /*
2047  * mpage_process_folio - update folio buffers corresponding to changed extent
2048  *                       and may submit fully mapped page for IO
2049  * @mpd: description of extent to map, on return next extent to map
2050  * @folio: Contains these buffers.
2051  * @m_lblk: logical block mapping.
2052  * @m_pblk: corresponding physical mapping.
2053  * @map_bh: determines on return whether this page requires any further
2054  *                mapping or not.
2055  *
2056  * Scan given folio buffers corresponding to changed extent and update buffer
2057  * state according to new extent state.
2058  * We map delalloc buffers to their physical location, clear unwritten bits.
2059  * If the given folio is not fully mapped, we update @mpd to the next extent in
2060  * the given folio that needs mapping & return @map_bh as true.
2061  */
2062 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2063                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2064                               bool *map_bh)
2065 {
2066         struct buffer_head *head, *bh;
2067         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2068         ext4_lblk_t lblk = *m_lblk;
2069         ext4_fsblk_t pblock = *m_pblk;
2070         int err = 0;
2071         int blkbits = mpd->inode->i_blkbits;
2072         ssize_t io_end_size = 0;
2073         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2074
2075         bh = head = folio_buffers(folio);
2076         do {
2077                 if (lblk < mpd->map.m_lblk)
2078                         continue;
2079                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2080                         /*
2081                          * Buffer after end of mapped extent.
2082                          * Find next buffer in the folio to map.
2083                          */
2084                         mpd->map.m_len = 0;
2085                         mpd->map.m_flags = 0;
2086                         io_end_vec->size += io_end_size;
2087
2088                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2089                         if (err > 0)
2090                                 err = 0;
2091                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2092                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2093                                 if (IS_ERR(io_end_vec)) {
2094                                         err = PTR_ERR(io_end_vec);
2095                                         goto out;
2096                                 }
2097                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2098                         }
2099                         *map_bh = true;
2100                         goto out;
2101                 }
2102                 if (buffer_delay(bh)) {
2103                         clear_buffer_delay(bh);
2104                         bh->b_blocknr = pblock++;
2105                 }
2106                 clear_buffer_unwritten(bh);
2107                 io_end_size += (1 << blkbits);
2108         } while (lblk++, (bh = bh->b_this_page) != head);
2109
2110         io_end_vec->size += io_end_size;
2111         *map_bh = false;
2112 out:
2113         *m_lblk = lblk;
2114         *m_pblk = pblock;
2115         return err;
2116 }
2117
2118 /*
2119  * mpage_map_buffers - update buffers corresponding to changed extent and
2120  *                     submit fully mapped pages for IO
2121  *
2122  * @mpd - description of extent to map, on return next extent to map
2123  *
2124  * Scan buffers corresponding to changed extent (we expect corresponding pages
2125  * to be already locked) and update buffer state according to new extent state.
2126  * We map delalloc buffers to their physical location, clear unwritten bits,
2127  * and mark buffers as uninit when we perform writes to unwritten extents
2128  * and do extent conversion after IO is finished. If the last page is not fully
2129  * mapped, we update @map to the next extent in the last page that needs
2130  * mapping. Otherwise we submit the page for IO.
2131  */
2132 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2133 {
2134         struct folio_batch fbatch;
2135         unsigned nr, i;
2136         struct inode *inode = mpd->inode;
2137         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2138         pgoff_t start, end;
2139         ext4_lblk_t lblk;
2140         ext4_fsblk_t pblock;
2141         int err;
2142         bool map_bh = false;
2143
2144         start = mpd->map.m_lblk >> bpp_bits;
2145         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2146         lblk = start << bpp_bits;
2147         pblock = mpd->map.m_pblk;
2148
2149         folio_batch_init(&fbatch);
2150         while (start <= end) {
2151                 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2152                 if (nr == 0)
2153                         break;
2154                 for (i = 0; i < nr; i++) {
2155                         struct folio *folio = fbatch.folios[i];
2156
2157                         err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2158                                                  &map_bh);
2159                         /*
2160                          * If map_bh is true, means page may require further bh
2161                          * mapping, or maybe the page was submitted for IO.
2162                          * So we return to call further extent mapping.
2163                          */
2164                         if (err < 0 || map_bh)
2165                                 goto out;
2166                         /* Page fully mapped - let IO run! */
2167                         err = mpage_submit_folio(mpd, folio);
2168                         if (err < 0)
2169                                 goto out;
2170                         mpage_folio_done(mpd, folio);
2171                 }
2172                 folio_batch_release(&fbatch);
2173         }
2174         /* Extent fully mapped and matches with page boundary. We are done. */
2175         mpd->map.m_len = 0;
2176         mpd->map.m_flags = 0;
2177         return 0;
2178 out:
2179         folio_batch_release(&fbatch);
2180         return err;
2181 }
2182
2183 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2184 {
2185         struct inode *inode = mpd->inode;
2186         struct ext4_map_blocks *map = &mpd->map;
2187         int get_blocks_flags;
2188         int err, dioread_nolock;
2189
2190         trace_ext4_da_write_pages_extent(inode, map);
2191         /*
2192          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2193          * to convert an unwritten extent to be initialized (in the case
2194          * where we have written into one or more preallocated blocks).  It is
2195          * possible that we're going to need more metadata blocks than
2196          * previously reserved. However we must not fail because we're in
2197          * writeback and there is nothing we can do about it so it might result
2198          * in data loss.  So use reserved blocks to allocate metadata if
2199          * possible.
2200          */
2201         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2202                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2203                            EXT4_GET_BLOCKS_IO_SUBMIT;
2204         dioread_nolock = ext4_should_dioread_nolock(inode);
2205         if (dioread_nolock)
2206                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2207
2208         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2209         if (err < 0)
2210                 return err;
2211         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2212                 if (!mpd->io_submit.io_end->handle &&
2213                     ext4_handle_valid(handle)) {
2214                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2215                         handle->h_rsv_handle = NULL;
2216                 }
2217                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2218         }
2219
2220         BUG_ON(map->m_len == 0);
2221         return 0;
2222 }
2223
2224 /*
2225  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2226  *                               mpd->len and submit pages underlying it for IO
2227  *
2228  * @handle - handle for journal operations
2229  * @mpd - extent to map
2230  * @give_up_on_write - we set this to true iff there is a fatal error and there
2231  *                     is no hope of writing the data. The caller should discard
2232  *                     dirty pages to avoid infinite loops.
2233  *
2234  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2235  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2236  * them to initialized or split the described range from larger unwritten
2237  * extent. Note that we need not map all the described range since allocation
2238  * can return less blocks or the range is covered by more unwritten extents. We
2239  * cannot map more because we are limited by reserved transaction credits. On
2240  * the other hand we always make sure that the last touched page is fully
2241  * mapped so that it can be written out (and thus forward progress is
2242  * guaranteed). After mapping we submit all mapped pages for IO.
2243  */
2244 static int mpage_map_and_submit_extent(handle_t *handle,
2245                                        struct mpage_da_data *mpd,
2246                                        bool *give_up_on_write)
2247 {
2248         struct inode *inode = mpd->inode;
2249         struct ext4_map_blocks *map = &mpd->map;
2250         int err;
2251         loff_t disksize;
2252         int progress = 0;
2253         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2254         struct ext4_io_end_vec *io_end_vec;
2255
2256         io_end_vec = ext4_alloc_io_end_vec(io_end);
2257         if (IS_ERR(io_end_vec))
2258                 return PTR_ERR(io_end_vec);
2259         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2260         do {
2261                 err = mpage_map_one_extent(handle, mpd);
2262                 if (err < 0) {
2263                         struct super_block *sb = inode->i_sb;
2264
2265                         if (ext4_forced_shutdown(sb))
2266                                 goto invalidate_dirty_pages;
2267                         /*
2268                          * Let the uper layers retry transient errors.
2269                          * In the case of ENOSPC, if ext4_count_free_blocks()
2270                          * is non-zero, a commit should free up blocks.
2271                          */
2272                         if ((err == -ENOMEM) ||
2273                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2274                                 if (progress)
2275                                         goto update_disksize;
2276                                 return err;
2277                         }
2278                         ext4_msg(sb, KERN_CRIT,
2279                                  "Delayed block allocation failed for "
2280                                  "inode %lu at logical offset %llu with"
2281                                  " max blocks %u with error %d",
2282                                  inode->i_ino,
2283                                  (unsigned long long)map->m_lblk,
2284                                  (unsigned)map->m_len, -err);
2285                         ext4_msg(sb, KERN_CRIT,
2286                                  "This should not happen!! Data will "
2287                                  "be lost\n");
2288                         if (err == -ENOSPC)
2289                                 ext4_print_free_blocks(inode);
2290                 invalidate_dirty_pages:
2291                         *give_up_on_write = true;
2292                         return err;
2293                 }
2294                 progress = 1;
2295                 /*
2296                  * Update buffer state, submit mapped pages, and get us new
2297                  * extent to map
2298                  */
2299                 err = mpage_map_and_submit_buffers(mpd);
2300                 if (err < 0)
2301                         goto update_disksize;
2302         } while (map->m_len);
2303
2304 update_disksize:
2305         /*
2306          * Update on-disk size after IO is submitted.  Races with
2307          * truncate are avoided by checking i_size under i_data_sem.
2308          */
2309         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2310         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2311                 int err2;
2312                 loff_t i_size;
2313
2314                 down_write(&EXT4_I(inode)->i_data_sem);
2315                 i_size = i_size_read(inode);
2316                 if (disksize > i_size)
2317                         disksize = i_size;
2318                 if (disksize > EXT4_I(inode)->i_disksize)
2319                         EXT4_I(inode)->i_disksize = disksize;
2320                 up_write(&EXT4_I(inode)->i_data_sem);
2321                 err2 = ext4_mark_inode_dirty(handle, inode);
2322                 if (err2) {
2323                         ext4_error_err(inode->i_sb, -err2,
2324                                        "Failed to mark inode %lu dirty",
2325                                        inode->i_ino);
2326                 }
2327                 if (!err)
2328                         err = err2;
2329         }
2330         return err;
2331 }
2332
2333 /*
2334  * Calculate the total number of credits to reserve for one writepages
2335  * iteration. This is called from ext4_writepages(). We map an extent of
2336  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2337  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2338  * bpp - 1 blocks in bpp different extents.
2339  */
2340 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2341 {
2342         int bpp = ext4_journal_blocks_per_page(inode);
2343
2344         return ext4_meta_trans_blocks(inode,
2345                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2346 }
2347
2348 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2349                                      size_t len)
2350 {
2351         struct buffer_head *page_bufs = folio_buffers(folio);
2352         struct inode *inode = folio->mapping->host;
2353         int ret, err;
2354
2355         ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2356                                      NULL, do_journal_get_write_access);
2357         err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2358                                      NULL, write_end_fn);
2359         if (ret == 0)
2360                 ret = err;
2361         err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2362         if (ret == 0)
2363                 ret = err;
2364         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2365
2366         return ret;
2367 }
2368
2369 static int mpage_journal_page_buffers(handle_t *handle,
2370                                       struct mpage_da_data *mpd,
2371                                       struct folio *folio)
2372 {
2373         struct inode *inode = mpd->inode;
2374         loff_t size = i_size_read(inode);
2375         size_t len = folio_size(folio);
2376
2377         folio_clear_checked(folio);
2378         mpd->wbc->nr_to_write--;
2379
2380         if (folio_pos(folio) + len > size &&
2381             !ext4_verity_in_progress(inode))
2382                 len = size & (len - 1);
2383
2384         return ext4_journal_folio_buffers(handle, folio, len);
2385 }
2386
2387 /*
2388  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2389  *                               needing mapping, submit mapped pages
2390  *
2391  * @mpd - where to look for pages
2392  *
2393  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2394  * IO immediately. If we cannot map blocks, we submit just already mapped
2395  * buffers in the page for IO and keep page dirty. When we can map blocks and
2396  * we find a page which isn't mapped we start accumulating extent of buffers
2397  * underlying these pages that needs mapping (formed by either delayed or
2398  * unwritten buffers). We also lock the pages containing these buffers. The
2399  * extent found is returned in @mpd structure (starting at mpd->lblk with
2400  * length mpd->len blocks).
2401  *
2402  * Note that this function can attach bios to one io_end structure which are
2403  * neither logically nor physically contiguous. Although it may seem as an
2404  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2405  * case as we need to track IO to all buffers underlying a page in one io_end.
2406  */
2407 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2408 {
2409         struct address_space *mapping = mpd->inode->i_mapping;
2410         struct folio_batch fbatch;
2411         unsigned int nr_folios;
2412         pgoff_t index = mpd->first_page;
2413         pgoff_t end = mpd->last_page;
2414         xa_mark_t tag;
2415         int i, err = 0;
2416         int blkbits = mpd->inode->i_blkbits;
2417         ext4_lblk_t lblk;
2418         struct buffer_head *head;
2419         handle_t *handle = NULL;
2420         int bpp = ext4_journal_blocks_per_page(mpd->inode);
2421
2422         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2423                 tag = PAGECACHE_TAG_TOWRITE;
2424         else
2425                 tag = PAGECACHE_TAG_DIRTY;
2426
2427         mpd->map.m_len = 0;
2428         mpd->next_page = index;
2429         if (ext4_should_journal_data(mpd->inode)) {
2430                 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2431                                             bpp);
2432                 if (IS_ERR(handle))
2433                         return PTR_ERR(handle);
2434         }
2435         folio_batch_init(&fbatch);
2436         while (index <= end) {
2437                 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2438                                 tag, &fbatch);
2439                 if (nr_folios == 0)
2440                         break;
2441
2442                 for (i = 0; i < nr_folios; i++) {
2443                         struct folio *folio = fbatch.folios[i];
2444
2445                         /*
2446                          * Accumulated enough dirty pages? This doesn't apply
2447                          * to WB_SYNC_ALL mode. For integrity sync we have to
2448                          * keep going because someone may be concurrently
2449                          * dirtying pages, and we might have synced a lot of
2450                          * newly appeared dirty pages, but have not synced all
2451                          * of the old dirty pages.
2452                          */
2453                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2454                             mpd->wbc->nr_to_write <=
2455                             mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2456                                 goto out;
2457
2458                         /* If we can't merge this page, we are done. */
2459                         if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2460                                 goto out;
2461
2462                         if (handle) {
2463                                 err = ext4_journal_ensure_credits(handle, bpp,
2464                                                                   0);
2465                                 if (err < 0)
2466                                         goto out;
2467                         }
2468
2469                         folio_lock(folio);
2470                         /*
2471                          * If the page is no longer dirty, or its mapping no
2472                          * longer corresponds to inode we are writing (which
2473                          * means it has been truncated or invalidated), or the
2474                          * page is already under writeback and we are not doing
2475                          * a data integrity writeback, skip the page
2476                          */
2477                         if (!folio_test_dirty(folio) ||
2478                             (folio_test_writeback(folio) &&
2479                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2480                             unlikely(folio->mapping != mapping)) {
2481                                 folio_unlock(folio);
2482                                 continue;
2483                         }
2484
2485                         folio_wait_writeback(folio);
2486                         BUG_ON(folio_test_writeback(folio));
2487
2488                         /*
2489                          * Should never happen but for buggy code in
2490                          * other subsystems that call
2491                          * set_page_dirty() without properly warning
2492                          * the file system first.  See [1] for more
2493                          * information.
2494                          *
2495                          * [1] https://lore.kernel.org/linux-mm/[email protected]
2496                          */
2497                         if (!folio_buffers(folio)) {
2498                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2499                                 folio_clear_dirty(folio);
2500                                 folio_unlock(folio);
2501                                 continue;
2502                         }
2503
2504                         if (mpd->map.m_len == 0)
2505                                 mpd->first_page = folio->index;
2506                         mpd->next_page = folio_next_index(folio);
2507                         /*
2508                          * Writeout when we cannot modify metadata is simple.
2509                          * Just submit the page. For data=journal mode we
2510                          * first handle writeout of the page for checkpoint and
2511                          * only after that handle delayed page dirtying. This
2512                          * makes sure current data is checkpointed to the final
2513                          * location before possibly journalling it again which
2514                          * is desirable when the page is frequently dirtied
2515                          * through a pin.
2516                          */
2517                         if (!mpd->can_map) {
2518                                 err = mpage_submit_folio(mpd, folio);
2519                                 if (err < 0)
2520                                         goto out;
2521                                 /* Pending dirtying of journalled data? */
2522                                 if (folio_test_checked(folio)) {
2523                                         err = mpage_journal_page_buffers(handle,
2524                                                 mpd, folio);
2525                                         if (err < 0)
2526                                                 goto out;
2527                                         mpd->journalled_more_data = 1;
2528                                 }
2529                                 mpage_folio_done(mpd, folio);
2530                         } else {
2531                                 /* Add all dirty buffers to mpd */
2532                                 lblk = ((ext4_lblk_t)folio->index) <<
2533                                         (PAGE_SHIFT - blkbits);
2534                                 head = folio_buffers(folio);
2535                                 err = mpage_process_page_bufs(mpd, head, head,
2536                                                 lblk);
2537                                 if (err <= 0)
2538                                         goto out;
2539                                 err = 0;
2540                         }
2541                 }
2542                 folio_batch_release(&fbatch);
2543                 cond_resched();
2544         }
2545         mpd->scanned_until_end = 1;
2546         if (handle)
2547                 ext4_journal_stop(handle);
2548         return 0;
2549 out:
2550         folio_batch_release(&fbatch);
2551         if (handle)
2552                 ext4_journal_stop(handle);
2553         return err;
2554 }
2555
2556 static int ext4_do_writepages(struct mpage_da_data *mpd)
2557 {
2558         struct writeback_control *wbc = mpd->wbc;
2559         pgoff_t writeback_index = 0;
2560         long nr_to_write = wbc->nr_to_write;
2561         int range_whole = 0;
2562         int cycled = 1;
2563         handle_t *handle = NULL;
2564         struct inode *inode = mpd->inode;
2565         struct address_space *mapping = inode->i_mapping;
2566         int needed_blocks, rsv_blocks = 0, ret = 0;
2567         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2568         struct blk_plug plug;
2569         bool give_up_on_write = false;
2570
2571         trace_ext4_writepages(inode, wbc);
2572
2573         /*
2574          * No pages to write? This is mainly a kludge to avoid starting
2575          * a transaction for special inodes like journal inode on last iput()
2576          * because that could violate lock ordering on umount
2577          */
2578         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2579                 goto out_writepages;
2580
2581         /*
2582          * If the filesystem has aborted, it is read-only, so return
2583          * right away instead of dumping stack traces later on that
2584          * will obscure the real source of the problem.  We test
2585          * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2586          * the latter could be true if the filesystem is mounted
2587          * read-only, and in that case, ext4_writepages should
2588          * *never* be called, so if that ever happens, we would want
2589          * the stack trace.
2590          */
2591         if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2592                 ret = -EROFS;
2593                 goto out_writepages;
2594         }
2595
2596         /*
2597          * If we have inline data and arrive here, it means that
2598          * we will soon create the block for the 1st page, so
2599          * we'd better clear the inline data here.
2600          */
2601         if (ext4_has_inline_data(inode)) {
2602                 /* Just inode will be modified... */
2603                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2604                 if (IS_ERR(handle)) {
2605                         ret = PTR_ERR(handle);
2606                         goto out_writepages;
2607                 }
2608                 BUG_ON(ext4_test_inode_state(inode,
2609                                 EXT4_STATE_MAY_INLINE_DATA));
2610                 ext4_destroy_inline_data(handle, inode);
2611                 ext4_journal_stop(handle);
2612         }
2613
2614         /*
2615          * data=journal mode does not do delalloc so we just need to writeout /
2616          * journal already mapped buffers. On the other hand we need to commit
2617          * transaction to make data stable. We expect all the data to be
2618          * already in the journal (the only exception are DMA pinned pages
2619          * dirtied behind our back) so we commit transaction here and run the
2620          * writeback loop to checkpoint them. The checkpointing is not actually
2621          * necessary to make data persistent *but* quite a few places (extent
2622          * shifting operations, fsverity, ...) depend on being able to drop
2623          * pagecache pages after calling filemap_write_and_wait() and for that
2624          * checkpointing needs to happen.
2625          */
2626         if (ext4_should_journal_data(inode)) {
2627                 mpd->can_map = 0;
2628                 if (wbc->sync_mode == WB_SYNC_ALL)
2629                         ext4_fc_commit(sbi->s_journal,
2630                                        EXT4_I(inode)->i_datasync_tid);
2631         }
2632         mpd->journalled_more_data = 0;
2633
2634         if (ext4_should_dioread_nolock(inode)) {
2635                 /*
2636                  * We may need to convert up to one extent per block in
2637                  * the page and we may dirty the inode.
2638                  */
2639                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2640                                                 PAGE_SIZE >> inode->i_blkbits);
2641         }
2642
2643         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2644                 range_whole = 1;
2645
2646         if (wbc->range_cyclic) {
2647                 writeback_index = mapping->writeback_index;
2648                 if (writeback_index)
2649                         cycled = 0;
2650                 mpd->first_page = writeback_index;
2651                 mpd->last_page = -1;
2652         } else {
2653                 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2654                 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2655         }
2656
2657         ext4_io_submit_init(&mpd->io_submit, wbc);
2658 retry:
2659         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2660                 tag_pages_for_writeback(mapping, mpd->first_page,
2661                                         mpd->last_page);
2662         blk_start_plug(&plug);
2663
2664         /*
2665          * First writeback pages that don't need mapping - we can avoid
2666          * starting a transaction unnecessarily and also avoid being blocked
2667          * in the block layer on device congestion while having transaction
2668          * started.
2669          */
2670         mpd->do_map = 0;
2671         mpd->scanned_until_end = 0;
2672         mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2673         if (!mpd->io_submit.io_end) {
2674                 ret = -ENOMEM;
2675                 goto unplug;
2676         }
2677         ret = mpage_prepare_extent_to_map(mpd);
2678         /* Unlock pages we didn't use */
2679         mpage_release_unused_pages(mpd, false);
2680         /* Submit prepared bio */
2681         ext4_io_submit(&mpd->io_submit);
2682         ext4_put_io_end_defer(mpd->io_submit.io_end);
2683         mpd->io_submit.io_end = NULL;
2684         if (ret < 0)
2685                 goto unplug;
2686
2687         while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2688                 /* For each extent of pages we use new io_end */
2689                 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2690                 if (!mpd->io_submit.io_end) {
2691                         ret = -ENOMEM;
2692                         break;
2693                 }
2694
2695                 WARN_ON_ONCE(!mpd->can_map);
2696                 /*
2697                  * We have two constraints: We find one extent to map and we
2698                  * must always write out whole page (makes a difference when
2699                  * blocksize < pagesize) so that we don't block on IO when we
2700                  * try to write out the rest of the page. Journalled mode is
2701                  * not supported by delalloc.
2702                  */
2703                 BUG_ON(ext4_should_journal_data(inode));
2704                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2705
2706                 /* start a new transaction */
2707                 handle = ext4_journal_start_with_reserve(inode,
2708                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2709                 if (IS_ERR(handle)) {
2710                         ret = PTR_ERR(handle);
2711                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2712                                "%ld pages, ino %lu; err %d", __func__,
2713                                 wbc->nr_to_write, inode->i_ino, ret);
2714                         /* Release allocated io_end */
2715                         ext4_put_io_end(mpd->io_submit.io_end);
2716                         mpd->io_submit.io_end = NULL;
2717                         break;
2718                 }
2719                 mpd->do_map = 1;
2720
2721                 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2722                 ret = mpage_prepare_extent_to_map(mpd);
2723                 if (!ret && mpd->map.m_len)
2724                         ret = mpage_map_and_submit_extent(handle, mpd,
2725                                         &give_up_on_write);
2726                 /*
2727                  * Caution: If the handle is synchronous,
2728                  * ext4_journal_stop() can wait for transaction commit
2729                  * to finish which may depend on writeback of pages to
2730                  * complete or on page lock to be released.  In that
2731                  * case, we have to wait until after we have
2732                  * submitted all the IO, released page locks we hold,
2733                  * and dropped io_end reference (for extent conversion
2734                  * to be able to complete) before stopping the handle.
2735                  */
2736                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2737                         ext4_journal_stop(handle);
2738                         handle = NULL;
2739                         mpd->do_map = 0;
2740                 }
2741                 /* Unlock pages we didn't use */
2742                 mpage_release_unused_pages(mpd, give_up_on_write);
2743                 /* Submit prepared bio */
2744                 ext4_io_submit(&mpd->io_submit);
2745
2746                 /*
2747                  * Drop our io_end reference we got from init. We have
2748                  * to be careful and use deferred io_end finishing if
2749                  * we are still holding the transaction as we can
2750                  * release the last reference to io_end which may end
2751                  * up doing unwritten extent conversion.
2752                  */
2753                 if (handle) {
2754                         ext4_put_io_end_defer(mpd->io_submit.io_end);
2755                         ext4_journal_stop(handle);
2756                 } else
2757                         ext4_put_io_end(mpd->io_submit.io_end);
2758                 mpd->io_submit.io_end = NULL;
2759
2760                 if (ret == -ENOSPC && sbi->s_journal) {
2761                         /*
2762                          * Commit the transaction which would
2763                          * free blocks released in the transaction
2764                          * and try again
2765                          */
2766                         jbd2_journal_force_commit_nested(sbi->s_journal);
2767                         ret = 0;
2768                         continue;
2769                 }
2770                 /* Fatal error - ENOMEM, EIO... */
2771                 if (ret)
2772                         break;
2773         }
2774 unplug:
2775         blk_finish_plug(&plug);
2776         if (!ret && !cycled && wbc->nr_to_write > 0) {
2777                 cycled = 1;
2778                 mpd->last_page = writeback_index - 1;
2779                 mpd->first_page = 0;
2780                 goto retry;
2781         }
2782
2783         /* Update index */
2784         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2785                 /*
2786                  * Set the writeback_index so that range_cyclic
2787                  * mode will write it back later
2788                  */
2789                 mapping->writeback_index = mpd->first_page;
2790
2791 out_writepages:
2792         trace_ext4_writepages_result(inode, wbc, ret,
2793                                      nr_to_write - wbc->nr_to_write);
2794         return ret;
2795 }
2796
2797 static int ext4_writepages(struct address_space *mapping,
2798                            struct writeback_control *wbc)
2799 {
2800         struct super_block *sb = mapping->host->i_sb;
2801         struct mpage_da_data mpd = {
2802                 .inode = mapping->host,
2803                 .wbc = wbc,
2804                 .can_map = 1,
2805         };
2806         int ret;
2807         int alloc_ctx;
2808
2809         if (unlikely(ext4_forced_shutdown(sb)))
2810                 return -EIO;
2811
2812         alloc_ctx = ext4_writepages_down_read(sb);
2813         ret = ext4_do_writepages(&mpd);
2814         /*
2815          * For data=journal writeback we could have come across pages marked
2816          * for delayed dirtying (PageChecked) which were just added to the
2817          * running transaction. Try once more to get them to stable storage.
2818          */
2819         if (!ret && mpd.journalled_more_data)
2820                 ret = ext4_do_writepages(&mpd);
2821         ext4_writepages_up_read(sb, alloc_ctx);
2822
2823         return ret;
2824 }
2825
2826 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2827 {
2828         struct writeback_control wbc = {
2829                 .sync_mode = WB_SYNC_ALL,
2830                 .nr_to_write = LONG_MAX,
2831                 .range_start = jinode->i_dirty_start,
2832                 .range_end = jinode->i_dirty_end,
2833         };
2834         struct mpage_da_data mpd = {
2835                 .inode = jinode->i_vfs_inode,
2836                 .wbc = &wbc,
2837                 .can_map = 0,
2838         };
2839         return ext4_do_writepages(&mpd);
2840 }
2841
2842 static int ext4_dax_writepages(struct address_space *mapping,
2843                                struct writeback_control *wbc)
2844 {
2845         int ret;
2846         long nr_to_write = wbc->nr_to_write;
2847         struct inode *inode = mapping->host;
2848         int alloc_ctx;
2849
2850         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2851                 return -EIO;
2852
2853         alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2854         trace_ext4_writepages(inode, wbc);
2855
2856         ret = dax_writeback_mapping_range(mapping,
2857                                           EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2858         trace_ext4_writepages_result(inode, wbc, ret,
2859                                      nr_to_write - wbc->nr_to_write);
2860         ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2861         return ret;
2862 }
2863
2864 static int ext4_nonda_switch(struct super_block *sb)
2865 {
2866         s64 free_clusters, dirty_clusters;
2867         struct ext4_sb_info *sbi = EXT4_SB(sb);
2868
2869         /*
2870          * switch to non delalloc mode if we are running low
2871          * on free block. The free block accounting via percpu
2872          * counters can get slightly wrong with percpu_counter_batch getting
2873          * accumulated on each CPU without updating global counters
2874          * Delalloc need an accurate free block accounting. So switch
2875          * to non delalloc when we are near to error range.
2876          */
2877         free_clusters =
2878                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2879         dirty_clusters =
2880                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2881         /*
2882          * Start pushing delalloc when 1/2 of free blocks are dirty.
2883          */
2884         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2885                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2886
2887         if (2 * free_clusters < 3 * dirty_clusters ||
2888             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2889                 /*
2890                  * free block count is less than 150% of dirty blocks
2891                  * or free blocks is less than watermark
2892                  */
2893                 return 1;
2894         }
2895         return 0;
2896 }
2897
2898 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2899                                loff_t pos, unsigned len,
2900                                struct folio **foliop, void **fsdata)
2901 {
2902         int ret, retries = 0;
2903         struct folio *folio;
2904         pgoff_t index;
2905         struct inode *inode = mapping->host;
2906
2907         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2908                 return -EIO;
2909
2910         index = pos >> PAGE_SHIFT;
2911
2912         if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2913                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2914                 return ext4_write_begin(file, mapping, pos,
2915                                         len, foliop, fsdata);
2916         }
2917         *fsdata = (void *)0;
2918         trace_ext4_da_write_begin(inode, pos, len);
2919
2920         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2921                 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2922                                                       foliop, fsdata);
2923                 if (ret < 0)
2924                         return ret;
2925                 if (ret == 1)
2926                         return 0;
2927         }
2928
2929 retry:
2930         folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2931                         mapping_gfp_mask(mapping));
2932         if (IS_ERR(folio))
2933                 return PTR_ERR(folio);
2934
2935         ret = ext4_block_write_begin(NULL, folio, pos, len,
2936                                      ext4_da_get_block_prep);
2937         if (ret < 0) {
2938                 folio_unlock(folio);
2939                 folio_put(folio);
2940                 /*
2941                  * block_write_begin may have instantiated a few blocks
2942                  * outside i_size.  Trim these off again. Don't need
2943                  * i_size_read because we hold inode lock.
2944                  */
2945                 if (pos + len > inode->i_size)
2946                         ext4_truncate_failed_write(inode);
2947
2948                 if (ret == -ENOSPC &&
2949                     ext4_should_retry_alloc(inode->i_sb, &retries))
2950                         goto retry;
2951                 return ret;
2952         }
2953
2954         *foliop = folio;
2955         return ret;
2956 }
2957
2958 /*
2959  * Check if we should update i_disksize
2960  * when write to the end of file but not require block allocation
2961  */
2962 static int ext4_da_should_update_i_disksize(struct folio *folio,
2963                                             unsigned long offset)
2964 {
2965         struct buffer_head *bh;
2966         struct inode *inode = folio->mapping->host;
2967         unsigned int idx;
2968         int i;
2969
2970         bh = folio_buffers(folio);
2971         idx = offset >> inode->i_blkbits;
2972
2973         for (i = 0; i < idx; i++)
2974                 bh = bh->b_this_page;
2975
2976         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2977                 return 0;
2978         return 1;
2979 }
2980
2981 static int ext4_da_do_write_end(struct address_space *mapping,
2982                         loff_t pos, unsigned len, unsigned copied,
2983                         struct folio *folio)
2984 {
2985         struct inode *inode = mapping->host;
2986         loff_t old_size = inode->i_size;
2987         bool disksize_changed = false;
2988         loff_t new_i_size;
2989
2990         if (unlikely(!folio_buffers(folio))) {
2991                 folio_unlock(folio);
2992                 folio_put(folio);
2993                 return -EIO;
2994         }
2995         /*
2996          * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2997          * flag, which all that's needed to trigger page writeback.
2998          */
2999         copied = block_write_end(NULL, mapping, pos, len, copied,
3000                         folio, NULL);
3001         new_i_size = pos + copied;
3002
3003         /*
3004          * It's important to update i_size while still holding folio lock,
3005          * because folio writeout could otherwise come in and zero beyond
3006          * i_size.
3007          *
3008          * Since we are holding inode lock, we are sure i_disksize <=
3009          * i_size. We also know that if i_disksize < i_size, there are
3010          * delalloc writes pending in the range up to i_size. If the end of
3011          * the current write is <= i_size, there's no need to touch
3012          * i_disksize since writeback will push i_disksize up to i_size
3013          * eventually. If the end of the current write is > i_size and
3014          * inside an allocated block which ext4_da_should_update_i_disksize()
3015          * checked, we need to update i_disksize here as certain
3016          * ext4_writepages() paths not allocating blocks and update i_disksize.
3017          */
3018         if (new_i_size > inode->i_size) {
3019                 unsigned long end;
3020
3021                 i_size_write(inode, new_i_size);
3022                 end = (new_i_size - 1) & (PAGE_SIZE - 1);
3023                 if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3024                         ext4_update_i_disksize(inode, new_i_size);
3025                         disksize_changed = true;
3026                 }
3027         }
3028
3029         folio_unlock(folio);
3030         folio_put(folio);
3031
3032         if (old_size < pos)
3033                 pagecache_isize_extended(inode, old_size, pos);
3034
3035         if (disksize_changed) {
3036                 handle_t *handle;
3037
3038                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3039                 if (IS_ERR(handle))
3040                         return PTR_ERR(handle);
3041                 ext4_mark_inode_dirty(handle, inode);
3042                 ext4_journal_stop(handle);
3043         }
3044
3045         return copied;
3046 }
3047
3048 static int ext4_da_write_end(struct file *file,
3049                              struct address_space *mapping,
3050                              loff_t pos, unsigned len, unsigned copied,
3051                              struct folio *folio, void *fsdata)
3052 {
3053         struct inode *inode = mapping->host;
3054         int write_mode = (int)(unsigned long)fsdata;
3055
3056         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3057                 return ext4_write_end(file, mapping, pos,
3058                                       len, copied, folio, fsdata);
3059
3060         trace_ext4_da_write_end(inode, pos, len, copied);
3061
3062         if (write_mode != CONVERT_INLINE_DATA &&
3063             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3064             ext4_has_inline_data(inode))
3065                 return ext4_write_inline_data_end(inode, pos, len, copied,
3066                                                   folio);
3067
3068         if (unlikely(copied < len) && !folio_test_uptodate(folio))
3069                 copied = 0;
3070
3071         return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3072 }
3073
3074 /*
3075  * Force all delayed allocation blocks to be allocated for a given inode.
3076  */
3077 int ext4_alloc_da_blocks(struct inode *inode)
3078 {
3079         trace_ext4_alloc_da_blocks(inode);
3080
3081         if (!EXT4_I(inode)->i_reserved_data_blocks)
3082                 return 0;
3083
3084         /*
3085          * We do something simple for now.  The filemap_flush() will
3086          * also start triggering a write of the data blocks, which is
3087          * not strictly speaking necessary (and for users of
3088          * laptop_mode, not even desirable).  However, to do otherwise
3089          * would require replicating code paths in:
3090          *
3091          * ext4_writepages() ->
3092          *    write_cache_pages() ---> (via passed in callback function)
3093          *        __mpage_da_writepage() -->
3094          *           mpage_add_bh_to_extent()
3095          *           mpage_da_map_blocks()
3096          *
3097          * The problem is that write_cache_pages(), located in
3098          * mm/page-writeback.c, marks pages clean in preparation for
3099          * doing I/O, which is not desirable if we're not planning on
3100          * doing I/O at all.
3101          *
3102          * We could call write_cache_pages(), and then redirty all of
3103          * the pages by calling redirty_page_for_writepage() but that
3104          * would be ugly in the extreme.  So instead we would need to
3105          * replicate parts of the code in the above functions,
3106          * simplifying them because we wouldn't actually intend to
3107          * write out the pages, but rather only collect contiguous
3108          * logical block extents, call the multi-block allocator, and
3109          * then update the buffer heads with the block allocations.
3110          *
3111          * For now, though, we'll cheat by calling filemap_flush(),
3112          * which will map the blocks, and start the I/O, but not
3113          * actually wait for the I/O to complete.
3114          */
3115         return filemap_flush(inode->i_mapping);
3116 }
3117
3118 /*
3119  * bmap() is special.  It gets used by applications such as lilo and by
3120  * the swapper to find the on-disk block of a specific piece of data.
3121  *
3122  * Naturally, this is dangerous if the block concerned is still in the
3123  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3124  * filesystem and enables swap, then they may get a nasty shock when the
3125  * data getting swapped to that swapfile suddenly gets overwritten by
3126  * the original zero's written out previously to the journal and
3127  * awaiting writeback in the kernel's buffer cache.
3128  *
3129  * So, if we see any bmap calls here on a modified, data-journaled file,
3130  * take extra steps to flush any blocks which might be in the cache.
3131  */
3132 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3133 {
3134         struct inode *inode = mapping->host;
3135         sector_t ret = 0;
3136
3137         inode_lock_shared(inode);
3138         /*
3139          * We can get here for an inline file via the FIBMAP ioctl
3140          */
3141         if (ext4_has_inline_data(inode))
3142                 goto out;
3143
3144         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3145             (test_opt(inode->i_sb, DELALLOC) ||
3146              ext4_should_journal_data(inode))) {
3147                 /*
3148                  * With delalloc or journalled data we want to sync the file so
3149                  * that we can make sure we allocate blocks for file and data
3150                  * is in place for the user to see it
3151                  */
3152                 filemap_write_and_wait(mapping);
3153         }
3154
3155         ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3156
3157 out:
3158         inode_unlock_shared(inode);
3159         return ret;
3160 }
3161
3162 static int ext4_read_folio(struct file *file, struct folio *folio)
3163 {
3164         int ret = -EAGAIN;
3165         struct inode *inode = folio->mapping->host;
3166
3167         trace_ext4_read_folio(inode, folio);
3168
3169         if (ext4_has_inline_data(inode))
3170                 ret = ext4_readpage_inline(inode, folio);
3171
3172         if (ret == -EAGAIN)
3173                 return ext4_mpage_readpages(inode, NULL, folio);
3174
3175         return ret;
3176 }
3177
3178 static void ext4_readahead(struct readahead_control *rac)
3179 {
3180         struct inode *inode = rac->mapping->host;
3181
3182         /* If the file has inline data, no need to do readahead. */
3183         if (ext4_has_inline_data(inode))
3184                 return;
3185
3186         ext4_mpage_readpages(inode, rac, NULL);
3187 }
3188
3189 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3190                                 size_t length)
3191 {
3192         trace_ext4_invalidate_folio(folio, offset, length);
3193
3194         /* No journalling happens on data buffers when this function is used */
3195         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3196
3197         block_invalidate_folio(folio, offset, length);
3198 }
3199
3200 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3201                                             size_t offset, size_t length)
3202 {
3203         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3204
3205         trace_ext4_journalled_invalidate_folio(folio, offset, length);
3206
3207         /*
3208          * If it's a full truncate we just forget about the pending dirtying
3209          */
3210         if (offset == 0 && length == folio_size(folio))
3211                 folio_clear_checked(folio);
3212
3213         return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3214 }
3215
3216 /* Wrapper for aops... */
3217 static void ext4_journalled_invalidate_folio(struct folio *folio,
3218                                            size_t offset,
3219                                            size_t length)
3220 {
3221         WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3222 }
3223
3224 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3225 {
3226         struct inode *inode = folio->mapping->host;
3227         journal_t *journal = EXT4_JOURNAL(inode);
3228
3229         trace_ext4_release_folio(inode, folio);
3230
3231         /* Page has dirty journalled data -> cannot release */
3232         if (folio_test_checked(folio))
3233                 return false;
3234         if (journal)
3235                 return jbd2_journal_try_to_free_buffers(journal, folio);
3236         else
3237                 return try_to_free_buffers(folio);
3238 }
3239
3240 static bool ext4_inode_datasync_dirty(struct inode *inode)
3241 {
3242         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3243
3244         if (journal) {
3245                 if (jbd2_transaction_committed(journal,
3246                         EXT4_I(inode)->i_datasync_tid))
3247                         return false;
3248                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3249                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3250                 return true;
3251         }
3252
3253         /* Any metadata buffers to write? */
3254         if (!list_empty(&inode->i_mapping->i_private_list))
3255                 return true;
3256         return inode->i_state & I_DIRTY_DATASYNC;
3257 }
3258
3259 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3260                            struct ext4_map_blocks *map, loff_t offset,
3261                            loff_t length, unsigned int flags)
3262 {
3263         u8 blkbits = inode->i_blkbits;
3264
3265         /*
3266          * Writes that span EOF might trigger an I/O size update on completion,
3267          * so consider them to be dirty for the purpose of O_DSYNC, even if
3268          * there is no other metadata changes being made or are pending.
3269          */
3270         iomap->flags = 0;
3271         if (ext4_inode_datasync_dirty(inode) ||
3272             offset + length > i_size_read(inode))
3273                 iomap->flags |= IOMAP_F_DIRTY;
3274
3275         if (map->m_flags & EXT4_MAP_NEW)
3276                 iomap->flags |= IOMAP_F_NEW;
3277
3278         if (flags & IOMAP_DAX)
3279                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3280         else
3281                 iomap->bdev = inode->i_sb->s_bdev;
3282         iomap->offset = (u64) map->m_lblk << blkbits;
3283         iomap->length = (u64) map->m_len << blkbits;
3284
3285         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3286             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3287                 iomap->flags |= IOMAP_F_MERGED;
3288
3289         /*
3290          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3291          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3292          * set. In order for any allocated unwritten extents to be converted
3293          * into written extents correctly within the ->end_io() handler, we
3294          * need to ensure that the iomap->type is set appropriately. Hence, the
3295          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3296          * been set first.
3297          */
3298         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3299                 iomap->type = IOMAP_UNWRITTEN;
3300                 iomap->addr = (u64) map->m_pblk << blkbits;
3301                 if (flags & IOMAP_DAX)
3302                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3303         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3304                 iomap->type = IOMAP_MAPPED;
3305                 iomap->addr = (u64) map->m_pblk << blkbits;
3306                 if (flags & IOMAP_DAX)
3307                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3308         } else if (map->m_flags & EXT4_MAP_DELAYED) {
3309                 iomap->type = IOMAP_DELALLOC;
3310                 iomap->addr = IOMAP_NULL_ADDR;
3311         } else {
3312                 iomap->type = IOMAP_HOLE;
3313                 iomap->addr = IOMAP_NULL_ADDR;
3314         }
3315 }
3316
3317 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3318                             unsigned int flags)
3319 {
3320         handle_t *handle;
3321         u8 blkbits = inode->i_blkbits;
3322         int ret, dio_credits, m_flags = 0, retries = 0;
3323
3324         /*
3325          * Trim the mapping request to the maximum value that we can map at
3326          * once for direct I/O.
3327          */
3328         if (map->m_len > DIO_MAX_BLOCKS)
3329                 map->m_len = DIO_MAX_BLOCKS;
3330         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3331
3332 retry:
3333         /*
3334          * Either we allocate blocks and then don't get an unwritten extent, so
3335          * in that case we have reserved enough credits. Or, the blocks are
3336          * already allocated and unwritten. In that case, the extent conversion
3337          * fits into the credits as well.
3338          */
3339         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3340         if (IS_ERR(handle))
3341                 return PTR_ERR(handle);
3342
3343         /*
3344          * DAX and direct I/O are the only two operations that are currently
3345          * supported with IOMAP_WRITE.
3346          */
3347         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3348         if (flags & IOMAP_DAX)
3349                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3350         /*
3351          * We use i_size instead of i_disksize here because delalloc writeback
3352          * can complete at any point during the I/O and subsequently push the
3353          * i_disksize out to i_size. This could be beyond where direct I/O is
3354          * happening and thus expose allocated blocks to direct I/O reads.
3355          */
3356         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3357                 m_flags = EXT4_GET_BLOCKS_CREATE;
3358         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3359                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3360
3361         ret = ext4_map_blocks(handle, inode, map, m_flags);
3362
3363         /*
3364          * We cannot fill holes in indirect tree based inodes as that could
3365          * expose stale data in the case of a crash. Use the magic error code
3366          * to fallback to buffered I/O.
3367          */
3368         if (!m_flags && !ret)
3369                 ret = -ENOTBLK;
3370
3371         ext4_journal_stop(handle);
3372         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3373                 goto retry;
3374
3375         return ret;
3376 }
3377
3378
3379 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3380                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3381 {
3382         int ret;
3383         struct ext4_map_blocks map;
3384         u8 blkbits = inode->i_blkbits;
3385
3386         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3387                 return -EINVAL;
3388
3389         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3390                 return -ERANGE;
3391
3392         /*
3393          * Calculate the first and last logical blocks respectively.
3394          */
3395         map.m_lblk = offset >> blkbits;
3396         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3397                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3398
3399         if (flags & IOMAP_WRITE) {
3400                 /*
3401                  * We check here if the blocks are already allocated, then we
3402                  * don't need to start a journal txn and we can directly return
3403                  * the mapping information. This could boost performance
3404                  * especially in multi-threaded overwrite requests.
3405                  */
3406                 if (offset + length <= i_size_read(inode)) {
3407                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3408                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3409                                 goto out;
3410                 }
3411                 ret = ext4_iomap_alloc(inode, &map, flags);
3412         } else {
3413                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3414         }
3415
3416         if (ret < 0)
3417                 return ret;
3418 out:
3419         /*
3420          * When inline encryption is enabled, sometimes I/O to an encrypted file
3421          * has to be broken up to guarantee DUN contiguity.  Handle this by
3422          * limiting the length of the mapping returned.
3423          */
3424         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3425
3426         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3427
3428         return 0;
3429 }
3430
3431 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3432                 loff_t length, unsigned flags, struct iomap *iomap,
3433                 struct iomap *srcmap)
3434 {
3435         int ret;
3436
3437         /*
3438          * Even for writes we don't need to allocate blocks, so just pretend
3439          * we are reading to save overhead of starting a transaction.
3440          */
3441         flags &= ~IOMAP_WRITE;
3442         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3443         WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3444         return ret;
3445 }
3446
3447 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3448                           ssize_t written, unsigned flags, struct iomap *iomap)
3449 {
3450         /*
3451          * Check to see whether an error occurred while writing out the data to
3452          * the allocated blocks. If so, return the magic error code so that we
3453          * fallback to buffered I/O and attempt to complete the remainder of
3454          * the I/O. Any blocks that may have been allocated in preparation for
3455          * the direct I/O will be reused during buffered I/O.
3456          */
3457         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3458                 return -ENOTBLK;
3459
3460         return 0;
3461 }
3462
3463 const struct iomap_ops ext4_iomap_ops = {
3464         .iomap_begin            = ext4_iomap_begin,
3465         .iomap_end              = ext4_iomap_end,
3466 };
3467
3468 const struct iomap_ops ext4_iomap_overwrite_ops = {
3469         .iomap_begin            = ext4_iomap_overwrite_begin,
3470         .iomap_end              = ext4_iomap_end,
3471 };
3472
3473 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3474                                    loff_t length, unsigned int flags,
3475                                    struct iomap *iomap, struct iomap *srcmap)
3476 {
3477         int ret;
3478         struct ext4_map_blocks map;
3479         u8 blkbits = inode->i_blkbits;
3480
3481         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3482                 return -EINVAL;
3483
3484         if (ext4_has_inline_data(inode)) {
3485                 ret = ext4_inline_data_iomap(inode, iomap);
3486                 if (ret != -EAGAIN) {
3487                         if (ret == 0 && offset >= iomap->length)
3488                                 ret = -ENOENT;
3489                         return ret;
3490                 }
3491         }
3492
3493         /*
3494          * Calculate the first and last logical block respectively.
3495          */
3496         map.m_lblk = offset >> blkbits;
3497         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3498                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3499
3500         /*
3501          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3502          * So handle it here itself instead of querying ext4_map_blocks().
3503          * Since ext4_map_blocks() will warn about it and will return
3504          * -EIO error.
3505          */
3506         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3507                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3508
3509                 if (offset >= sbi->s_bitmap_maxbytes) {
3510                         map.m_flags = 0;
3511                         goto set_iomap;
3512                 }
3513         }
3514
3515         ret = ext4_map_blocks(NULL, inode, &map, 0);
3516         if (ret < 0)
3517                 return ret;
3518 set_iomap:
3519         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3520
3521         return 0;
3522 }
3523
3524 const struct iomap_ops ext4_iomap_report_ops = {
3525         .iomap_begin = ext4_iomap_begin_report,
3526 };
3527
3528 /*
3529  * For data=journal mode, folio should be marked dirty only when it was
3530  * writeably mapped. When that happens, it was already attached to the
3531  * transaction and marked as jbddirty (we take care of this in
3532  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3533  * so we should have nothing to do here, except for the case when someone
3534  * had the page pinned and dirtied the page through this pin (e.g. by doing
3535  * direct IO to it). In that case we'd need to attach buffers here to the
3536  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3537  * folio and leave attached buffers clean, because the buffers' dirty state is
3538  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3539  * the journalling code will explode.  So what we do is to mark the folio
3540  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3541  * to the transaction appropriately.
3542  */
3543 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3544                 struct folio *folio)
3545 {
3546         WARN_ON_ONCE(!folio_buffers(folio));
3547         if (folio_maybe_dma_pinned(folio))
3548                 folio_set_checked(folio);
3549         return filemap_dirty_folio(mapping, folio);
3550 }
3551
3552 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3553 {
3554         WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3555         WARN_ON_ONCE(!folio_buffers(folio));
3556         return block_dirty_folio(mapping, folio);
3557 }
3558
3559 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3560                                     struct file *file, sector_t *span)
3561 {
3562         return iomap_swapfile_activate(sis, file, span,
3563                                        &ext4_iomap_report_ops);
3564 }
3565
3566 static const struct address_space_operations ext4_aops = {
3567         .read_folio             = ext4_read_folio,
3568         .readahead              = ext4_readahead,
3569         .writepages             = ext4_writepages,
3570         .write_begin            = ext4_write_begin,
3571         .write_end              = ext4_write_end,
3572         .dirty_folio            = ext4_dirty_folio,
3573         .bmap                   = ext4_bmap,
3574         .invalidate_folio       = ext4_invalidate_folio,
3575         .release_folio          = ext4_release_folio,
3576         .migrate_folio          = buffer_migrate_folio,
3577         .is_partially_uptodate  = block_is_partially_uptodate,
3578         .error_remove_folio     = generic_error_remove_folio,
3579         .swap_activate          = ext4_iomap_swap_activate,
3580 };
3581
3582 static const struct address_space_operations ext4_journalled_aops = {
3583         .read_folio             = ext4_read_folio,
3584         .readahead              = ext4_readahead,
3585         .writepages             = ext4_writepages,
3586         .write_begin            = ext4_write_begin,
3587         .write_end              = ext4_journalled_write_end,
3588         .dirty_folio            = ext4_journalled_dirty_folio,
3589         .bmap                   = ext4_bmap,
3590         .invalidate_folio       = ext4_journalled_invalidate_folio,
3591         .release_folio          = ext4_release_folio,
3592         .migrate_folio          = buffer_migrate_folio_norefs,
3593         .is_partially_uptodate  = block_is_partially_uptodate,
3594         .error_remove_folio     = generic_error_remove_folio,
3595         .swap_activate          = ext4_iomap_swap_activate,
3596 };
3597
3598 static const struct address_space_operations ext4_da_aops = {
3599         .read_folio             = ext4_read_folio,
3600         .readahead              = ext4_readahead,
3601         .writepages             = ext4_writepages,
3602         .write_begin            = ext4_da_write_begin,
3603         .write_end              = ext4_da_write_end,
3604         .dirty_folio            = ext4_dirty_folio,
3605         .bmap                   = ext4_bmap,
3606         .invalidate_folio       = ext4_invalidate_folio,
3607         .release_folio          = ext4_release_folio,
3608         .migrate_folio          = buffer_migrate_folio,
3609         .is_partially_uptodate  = block_is_partially_uptodate,
3610         .error_remove_folio     = generic_error_remove_folio,
3611         .swap_activate          = ext4_iomap_swap_activate,
3612 };
3613
3614 static const struct address_space_operations ext4_dax_aops = {
3615         .writepages             = ext4_dax_writepages,
3616         .dirty_folio            = noop_dirty_folio,
3617         .bmap                   = ext4_bmap,
3618         .swap_activate          = ext4_iomap_swap_activate,
3619 };
3620
3621 void ext4_set_aops(struct inode *inode)
3622 {
3623         switch (ext4_inode_journal_mode(inode)) {
3624         case EXT4_INODE_ORDERED_DATA_MODE:
3625         case EXT4_INODE_WRITEBACK_DATA_MODE:
3626                 break;
3627         case EXT4_INODE_JOURNAL_DATA_MODE:
3628                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3629                 return;
3630         default:
3631                 BUG();
3632         }
3633         if (IS_DAX(inode))
3634                 inode->i_mapping->a_ops = &ext4_dax_aops;
3635         else if (test_opt(inode->i_sb, DELALLOC))
3636                 inode->i_mapping->a_ops = &ext4_da_aops;
3637         else
3638                 inode->i_mapping->a_ops = &ext4_aops;
3639 }
3640
3641 /*
3642  * Here we can't skip an unwritten buffer even though it usually reads zero
3643  * because it might have data in pagecache (eg, if called from ext4_zero_range,
3644  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3645  * racing writeback can come later and flush the stale pagecache to disk.
3646  */
3647 static int __ext4_block_zero_page_range(handle_t *handle,
3648                 struct address_space *mapping, loff_t from, loff_t length)
3649 {
3650         ext4_fsblk_t index = from >> PAGE_SHIFT;
3651         unsigned offset = from & (PAGE_SIZE-1);
3652         unsigned blocksize, pos;
3653         ext4_lblk_t iblock;
3654         struct inode *inode = mapping->host;
3655         struct buffer_head *bh;
3656         struct folio *folio;
3657         int err = 0;
3658
3659         folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3660                                     FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3661                                     mapping_gfp_constraint(mapping, ~__GFP_FS));
3662         if (IS_ERR(folio))
3663                 return PTR_ERR(folio);
3664
3665         blocksize = inode->i_sb->s_blocksize;
3666
3667         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3668
3669         bh = folio_buffers(folio);
3670         if (!bh)
3671                 bh = create_empty_buffers(folio, blocksize, 0);
3672
3673         /* Find the buffer that contains "offset" */
3674         pos = blocksize;
3675         while (offset >= pos) {
3676                 bh = bh->b_this_page;
3677                 iblock++;
3678                 pos += blocksize;
3679         }
3680         if (buffer_freed(bh)) {
3681                 BUFFER_TRACE(bh, "freed: skip");
3682                 goto unlock;
3683         }
3684         if (!buffer_mapped(bh)) {
3685                 BUFFER_TRACE(bh, "unmapped");
3686                 ext4_get_block(inode, iblock, bh, 0);
3687                 /* unmapped? It's a hole - nothing to do */
3688                 if (!buffer_mapped(bh)) {
3689                         BUFFER_TRACE(bh, "still unmapped");
3690                         goto unlock;
3691                 }
3692         }
3693
3694         /* Ok, it's mapped. Make sure it's up-to-date */
3695         if (folio_test_uptodate(folio))
3696                 set_buffer_uptodate(bh);
3697
3698         if (!buffer_uptodate(bh)) {
3699                 err = ext4_read_bh_lock(bh, 0, true);
3700                 if (err)
3701                         goto unlock;
3702                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3703                         /* We expect the key to be set. */
3704                         BUG_ON(!fscrypt_has_encryption_key(inode));
3705                         err = fscrypt_decrypt_pagecache_blocks(folio,
3706                                                                blocksize,
3707                                                                bh_offset(bh));
3708                         if (err) {
3709                                 clear_buffer_uptodate(bh);
3710                                 goto unlock;
3711                         }
3712                 }
3713         }
3714         if (ext4_should_journal_data(inode)) {
3715                 BUFFER_TRACE(bh, "get write access");
3716                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3717                                                     EXT4_JTR_NONE);
3718                 if (err)
3719                         goto unlock;
3720         }
3721         folio_zero_range(folio, offset, length);
3722         BUFFER_TRACE(bh, "zeroed end of block");
3723
3724         if (ext4_should_journal_data(inode)) {
3725                 err = ext4_dirty_journalled_data(handle, bh);
3726         } else {
3727                 err = 0;
3728                 mark_buffer_dirty(bh);
3729                 if (ext4_should_order_data(inode))
3730                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3731                                         length);
3732         }
3733
3734 unlock:
3735         folio_unlock(folio);
3736         folio_put(folio);
3737         return err;
3738 }
3739
3740 /*
3741  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3742  * starting from file offset 'from'.  The range to be zero'd must
3743  * be contained with in one block.  If the specified range exceeds
3744  * the end of the block it will be shortened to end of the block
3745  * that corresponds to 'from'
3746  */
3747 static int ext4_block_zero_page_range(handle_t *handle,
3748                 struct address_space *mapping, loff_t from, loff_t length)
3749 {
3750         struct inode *inode = mapping->host;
3751         unsigned offset = from & (PAGE_SIZE-1);
3752         unsigned blocksize = inode->i_sb->s_blocksize;
3753         unsigned max = blocksize - (offset & (blocksize - 1));
3754
3755         /*
3756          * correct length if it does not fall between
3757          * 'from' and the end of the block
3758          */
3759         if (length > max || length < 0)
3760                 length = max;
3761
3762         if (IS_DAX(inode)) {
3763                 return dax_zero_range(inode, from, length, NULL,
3764                                       &ext4_iomap_ops);
3765         }
3766         return __ext4_block_zero_page_range(handle, mapping, from, length);
3767 }
3768
3769 /*
3770  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3771  * up to the end of the block which corresponds to `from'.
3772  * This required during truncate. We need to physically zero the tail end
3773  * of that block so it doesn't yield old data if the file is later grown.
3774  */
3775 static int ext4_block_truncate_page(handle_t *handle,
3776                 struct address_space *mapping, loff_t from)
3777 {
3778         unsigned offset = from & (PAGE_SIZE-1);
3779         unsigned length;
3780         unsigned blocksize;
3781         struct inode *inode = mapping->host;
3782
3783         /* If we are processing an encrypted inode during orphan list handling */
3784         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3785                 return 0;
3786
3787         blocksize = inode->i_sb->s_blocksize;
3788         length = blocksize - (offset & (blocksize - 1));
3789
3790         return ext4_block_zero_page_range(handle, mapping, from, length);
3791 }
3792
3793 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3794                              loff_t lstart, loff_t length)
3795 {
3796         struct super_block *sb = inode->i_sb;
3797         struct address_space *mapping = inode->i_mapping;
3798         unsigned partial_start, partial_end;
3799         ext4_fsblk_t start, end;
3800         loff_t byte_end = (lstart + length - 1);
3801         int err = 0;
3802
3803         partial_start = lstart & (sb->s_blocksize - 1);
3804         partial_end = byte_end & (sb->s_blocksize - 1);
3805
3806         start = lstart >> sb->s_blocksize_bits;
3807         end = byte_end >> sb->s_blocksize_bits;
3808
3809         /* Handle partial zero within the single block */
3810         if (start == end &&
3811             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3812                 err = ext4_block_zero_page_range(handle, mapping,
3813                                                  lstart, length);
3814                 return err;
3815         }
3816         /* Handle partial zero out on the start of the range */
3817         if (partial_start) {
3818                 err = ext4_block_zero_page_range(handle, mapping,
3819                                                  lstart, sb->s_blocksize);
3820                 if (err)
3821                         return err;
3822         }
3823         /* Handle partial zero out on the end of the range */
3824         if (partial_end != sb->s_blocksize - 1)
3825                 err = ext4_block_zero_page_range(handle, mapping,
3826                                                  byte_end - partial_end,
3827                                                  partial_end + 1);
3828         return err;
3829 }
3830
3831 int ext4_can_truncate(struct inode *inode)
3832 {
3833         if (S_ISREG(inode->i_mode))
3834                 return 1;
3835         if (S_ISDIR(inode->i_mode))
3836                 return 1;
3837         if (S_ISLNK(inode->i_mode))
3838                 return !ext4_inode_is_fast_symlink(inode);
3839         return 0;
3840 }
3841
3842 /*
3843  * We have to make sure i_disksize gets properly updated before we truncate
3844  * page cache due to hole punching or zero range. Otherwise i_disksize update
3845  * can get lost as it may have been postponed to submission of writeback but
3846  * that will never happen after we truncate page cache.
3847  */
3848 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3849                                       loff_t len)
3850 {
3851         handle_t *handle;
3852         int ret;
3853
3854         loff_t size = i_size_read(inode);
3855
3856         WARN_ON(!inode_is_locked(inode));
3857         if (offset > size || offset + len < size)
3858                 return 0;
3859
3860         if (EXT4_I(inode)->i_disksize >= size)
3861                 return 0;
3862
3863         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3864         if (IS_ERR(handle))
3865                 return PTR_ERR(handle);
3866         ext4_update_i_disksize(inode, size);
3867         ret = ext4_mark_inode_dirty(handle, inode);
3868         ext4_journal_stop(handle);
3869
3870         return ret;
3871 }
3872
3873 static void ext4_wait_dax_page(struct inode *inode)
3874 {
3875         filemap_invalidate_unlock(inode->i_mapping);
3876         schedule();
3877         filemap_invalidate_lock(inode->i_mapping);
3878 }
3879
3880 int ext4_break_layouts(struct inode *inode)
3881 {
3882         struct page *page;
3883         int error;
3884
3885         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3886                 return -EINVAL;
3887
3888         do {
3889                 page = dax_layout_busy_page(inode->i_mapping);
3890                 if (!page)
3891                         return 0;
3892
3893                 error = ___wait_var_event(&page->_refcount,
3894                                 atomic_read(&page->_refcount) == 1,
3895                                 TASK_INTERRUPTIBLE, 0, 0,
3896                                 ext4_wait_dax_page(inode));
3897         } while (error == 0);
3898
3899         return error;
3900 }
3901
3902 /*
3903  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3904  * associated with the given offset and length
3905  *
3906  * @inode:  File inode
3907  * @offset: The offset where the hole will begin
3908  * @len:    The length of the hole
3909  *
3910  * Returns: 0 on success or negative on failure
3911  */
3912
3913 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3914 {
3915         struct inode *inode = file_inode(file);
3916         struct super_block *sb = inode->i_sb;
3917         ext4_lblk_t first_block, stop_block;
3918         struct address_space *mapping = inode->i_mapping;
3919         loff_t first_block_offset, last_block_offset, max_length;
3920         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3921         handle_t *handle;
3922         unsigned int credits;
3923         int ret = 0, ret2 = 0;
3924
3925         trace_ext4_punch_hole(inode, offset, length, 0);
3926
3927         /*
3928          * Write out all dirty pages to avoid race conditions
3929          * Then release them.
3930          */
3931         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3932                 ret = filemap_write_and_wait_range(mapping, offset,
3933                                                    offset + length - 1);
3934                 if (ret)
3935                         return ret;
3936         }
3937
3938         inode_lock(inode);
3939
3940         /* No need to punch hole beyond i_size */
3941         if (offset >= inode->i_size)
3942                 goto out_mutex;
3943
3944         /*
3945          * If the hole extends beyond i_size, set the hole
3946          * to end after the page that contains i_size
3947          */
3948         if (offset + length > inode->i_size) {
3949                 length = inode->i_size +
3950                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3951                    offset;
3952         }
3953
3954         /*
3955          * For punch hole the length + offset needs to be within one block
3956          * before last range. Adjust the length if it goes beyond that limit.
3957          */
3958         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3959         if (offset + length > max_length)
3960                 length = max_length - offset;
3961
3962         if (offset & (sb->s_blocksize - 1) ||
3963             (offset + length) & (sb->s_blocksize - 1)) {
3964                 /*
3965                  * Attach jinode to inode for jbd2 if we do any zeroing of
3966                  * partial block
3967                  */
3968                 ret = ext4_inode_attach_jinode(inode);
3969                 if (ret < 0)
3970                         goto out_mutex;
3971
3972         }
3973
3974         /* Wait all existing dio workers, newcomers will block on i_rwsem */
3975         inode_dio_wait(inode);
3976
3977         ret = file_modified(file);
3978         if (ret)
3979                 goto out_mutex;
3980
3981         /*
3982          * Prevent page faults from reinstantiating pages we have released from
3983          * page cache.
3984          */
3985         filemap_invalidate_lock(mapping);
3986
3987         ret = ext4_break_layouts(inode);
3988         if (ret)
3989                 goto out_dio;
3990
3991         first_block_offset = round_up(offset, sb->s_blocksize);
3992         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3993
3994         /* Now release the pages and zero block aligned part of pages*/
3995         if (last_block_offset > first_block_offset) {
3996                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3997                 if (ret)
3998                         goto out_dio;
3999                 truncate_pagecache_range(inode, first_block_offset,
4000                                          last_block_offset);
4001         }
4002
4003         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4004                 credits = ext4_writepage_trans_blocks(inode);
4005         else
4006                 credits = ext4_blocks_for_truncate(inode);
4007         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4008         if (IS_ERR(handle)) {
4009                 ret = PTR_ERR(handle);
4010                 ext4_std_error(sb, ret);
4011                 goto out_dio;
4012         }
4013
4014         ret = ext4_zero_partial_blocks(handle, inode, offset,
4015                                        length);
4016         if (ret)
4017                 goto out_stop;
4018
4019         first_block = (offset + sb->s_blocksize - 1) >>
4020                 EXT4_BLOCK_SIZE_BITS(sb);
4021         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4022
4023         /* If there are blocks to remove, do it */
4024         if (stop_block > first_block) {
4025                 ext4_lblk_t hole_len = stop_block - first_block;
4026
4027                 down_write(&EXT4_I(inode)->i_data_sem);
4028                 ext4_discard_preallocations(inode);
4029
4030                 ext4_es_remove_extent(inode, first_block, hole_len);
4031
4032                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4033                         ret = ext4_ext_remove_space(inode, first_block,
4034                                                     stop_block - 1);
4035                 else
4036                         ret = ext4_ind_remove_space(handle, inode, first_block,
4037                                                     stop_block);
4038
4039                 ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4040                                       EXTENT_STATUS_HOLE, 0);
4041                 up_write(&EXT4_I(inode)->i_data_sem);
4042         }
4043         ext4_fc_track_range(handle, inode, first_block, stop_block);
4044         if (IS_SYNC(inode))
4045                 ext4_handle_sync(handle);
4046
4047         inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4048         ret2 = ext4_mark_inode_dirty(handle, inode);
4049         if (unlikely(ret2))
4050                 ret = ret2;
4051         if (ret >= 0)
4052                 ext4_update_inode_fsync_trans(handle, inode, 1);
4053 out_stop:
4054         ext4_journal_stop(handle);
4055 out_dio:
4056         filemap_invalidate_unlock(mapping);
4057 out_mutex:
4058         inode_unlock(inode);
4059         return ret;
4060 }
4061
4062 int ext4_inode_attach_jinode(struct inode *inode)
4063 {
4064         struct ext4_inode_info *ei = EXT4_I(inode);
4065         struct jbd2_inode *jinode;
4066
4067         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4068                 return 0;
4069
4070         jinode = jbd2_alloc_inode(GFP_KERNEL);
4071         spin_lock(&inode->i_lock);
4072         if (!ei->jinode) {
4073                 if (!jinode) {
4074                         spin_unlock(&inode->i_lock);
4075                         return -ENOMEM;
4076                 }
4077                 ei->jinode = jinode;
4078                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4079                 jinode = NULL;
4080         }
4081         spin_unlock(&inode->i_lock);
4082         if (unlikely(jinode != NULL))
4083                 jbd2_free_inode(jinode);
4084         return 0;
4085 }
4086
4087 /*
4088  * ext4_truncate()
4089  *
4090  * We block out ext4_get_block() block instantiations across the entire
4091  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4092  * simultaneously on behalf of the same inode.
4093  *
4094  * As we work through the truncate and commit bits of it to the journal there
4095  * is one core, guiding principle: the file's tree must always be consistent on
4096  * disk.  We must be able to restart the truncate after a crash.
4097  *
4098  * The file's tree may be transiently inconsistent in memory (although it
4099  * probably isn't), but whenever we close off and commit a journal transaction,
4100  * the contents of (the filesystem + the journal) must be consistent and
4101  * restartable.  It's pretty simple, really: bottom up, right to left (although
4102  * left-to-right works OK too).
4103  *
4104  * Note that at recovery time, journal replay occurs *before* the restart of
4105  * truncate against the orphan inode list.
4106  *
4107  * The committed inode has the new, desired i_size (which is the same as
4108  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4109  * that this inode's truncate did not complete and it will again call
4110  * ext4_truncate() to have another go.  So there will be instantiated blocks
4111  * to the right of the truncation point in a crashed ext4 filesystem.  But
4112  * that's fine - as long as they are linked from the inode, the post-crash
4113  * ext4_truncate() run will find them and release them.
4114  */
4115 int ext4_truncate(struct inode *inode)
4116 {
4117         struct ext4_inode_info *ei = EXT4_I(inode);
4118         unsigned int credits;
4119         int err = 0, err2;
4120         handle_t *handle;
4121         struct address_space *mapping = inode->i_mapping;
4122
4123         /*
4124          * There is a possibility that we're either freeing the inode
4125          * or it's a completely new inode. In those cases we might not
4126          * have i_rwsem locked because it's not necessary.
4127          */
4128         if (!(inode->i_state & (I_NEW|I_FREEING)))
4129                 WARN_ON(!inode_is_locked(inode));
4130         trace_ext4_truncate_enter(inode);
4131
4132         if (!ext4_can_truncate(inode))
4133                 goto out_trace;
4134
4135         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4136                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4137
4138         if (ext4_has_inline_data(inode)) {
4139                 int has_inline = 1;
4140
4141                 err = ext4_inline_data_truncate(inode, &has_inline);
4142                 if (err || has_inline)
4143                         goto out_trace;
4144         }
4145
4146         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4147         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4148                 err = ext4_inode_attach_jinode(inode);
4149                 if (err)
4150                         goto out_trace;
4151         }
4152
4153         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4154                 credits = ext4_writepage_trans_blocks(inode);
4155         else
4156                 credits = ext4_blocks_for_truncate(inode);
4157
4158         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4159         if (IS_ERR(handle)) {
4160                 err = PTR_ERR(handle);
4161                 goto out_trace;
4162         }
4163
4164         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4165                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4166
4167         /*
4168          * We add the inode to the orphan list, so that if this
4169          * truncate spans multiple transactions, and we crash, we will
4170          * resume the truncate when the filesystem recovers.  It also
4171          * marks the inode dirty, to catch the new size.
4172          *
4173          * Implication: the file must always be in a sane, consistent
4174          * truncatable state while each transaction commits.
4175          */
4176         err = ext4_orphan_add(handle, inode);
4177         if (err)
4178                 goto out_stop;
4179
4180         down_write(&EXT4_I(inode)->i_data_sem);
4181
4182         ext4_discard_preallocations(inode);
4183
4184         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4185                 err = ext4_ext_truncate(handle, inode);
4186         else
4187                 ext4_ind_truncate(handle, inode);
4188
4189         up_write(&ei->i_data_sem);
4190         if (err)
4191                 goto out_stop;
4192
4193         if (IS_SYNC(inode))
4194                 ext4_handle_sync(handle);
4195
4196 out_stop:
4197         /*
4198          * If this was a simple ftruncate() and the file will remain alive,
4199          * then we need to clear up the orphan record which we created above.
4200          * However, if this was a real unlink then we were called by
4201          * ext4_evict_inode(), and we allow that function to clean up the
4202          * orphan info for us.
4203          */
4204         if (inode->i_nlink)
4205                 ext4_orphan_del(handle, inode);
4206
4207         inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4208         err2 = ext4_mark_inode_dirty(handle, inode);
4209         if (unlikely(err2 && !err))
4210                 err = err2;
4211         ext4_journal_stop(handle);
4212
4213 out_trace:
4214         trace_ext4_truncate_exit(inode);
4215         return err;
4216 }
4217
4218 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4219 {
4220         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4221                 return inode_peek_iversion_raw(inode);
4222         else
4223                 return inode_peek_iversion(inode);
4224 }
4225
4226 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4227                                  struct ext4_inode_info *ei)
4228 {
4229         struct inode *inode = &(ei->vfs_inode);
4230         u64 i_blocks = READ_ONCE(inode->i_blocks);
4231         struct super_block *sb = inode->i_sb;
4232
4233         if (i_blocks <= ~0U) {
4234                 /*
4235                  * i_blocks can be represented in a 32 bit variable
4236                  * as multiple of 512 bytes
4237                  */
4238                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4239                 raw_inode->i_blocks_high = 0;
4240                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4241                 return 0;
4242         }
4243
4244         /*
4245          * This should never happen since sb->s_maxbytes should not have
4246          * allowed this, sb->s_maxbytes was set according to the huge_file
4247          * feature in ext4_fill_super().
4248          */
4249         if (!ext4_has_feature_huge_file(sb))
4250                 return -EFSCORRUPTED;
4251
4252         if (i_blocks <= 0xffffffffffffULL) {
4253                 /*
4254                  * i_blocks can be represented in a 48 bit variable
4255                  * as multiple of 512 bytes
4256                  */
4257                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4258                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4259                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4260         } else {
4261                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4262                 /* i_block is stored in file system block size */
4263                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4264                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4265                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4266         }
4267         return 0;
4268 }
4269
4270 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4271 {
4272         struct ext4_inode_info *ei = EXT4_I(inode);
4273         uid_t i_uid;
4274         gid_t i_gid;
4275         projid_t i_projid;
4276         int block;
4277         int err;
4278
4279         err = ext4_inode_blocks_set(raw_inode, ei);
4280
4281         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4282         i_uid = i_uid_read(inode);
4283         i_gid = i_gid_read(inode);
4284         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4285         if (!(test_opt(inode->i_sb, NO_UID32))) {
4286                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4287                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4288                 /*
4289                  * Fix up interoperability with old kernels. Otherwise,
4290                  * old inodes get re-used with the upper 16 bits of the
4291                  * uid/gid intact.
4292                  */
4293                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4294                         raw_inode->i_uid_high = 0;
4295                         raw_inode->i_gid_high = 0;
4296                 } else {
4297                         raw_inode->i_uid_high =
4298                                 cpu_to_le16(high_16_bits(i_uid));
4299                         raw_inode->i_gid_high =
4300                                 cpu_to_le16(high_16_bits(i_gid));
4301                 }
4302         } else {
4303                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4304                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4305                 raw_inode->i_uid_high = 0;
4306                 raw_inode->i_gid_high = 0;
4307         }
4308         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4309
4310         EXT4_INODE_SET_CTIME(inode, raw_inode);
4311         EXT4_INODE_SET_MTIME(inode, raw_inode);
4312         EXT4_INODE_SET_ATIME(inode, raw_inode);
4313         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4314
4315         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4316         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4317         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4318                 raw_inode->i_file_acl_high =
4319                         cpu_to_le16(ei->i_file_acl >> 32);
4320         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4321         ext4_isize_set(raw_inode, ei->i_disksize);
4322
4323         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4324         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4325                 if (old_valid_dev(inode->i_rdev)) {
4326                         raw_inode->i_block[0] =
4327                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4328                         raw_inode->i_block[1] = 0;
4329                 } else {
4330                         raw_inode->i_block[0] = 0;
4331                         raw_inode->i_block[1] =
4332                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4333                         raw_inode->i_block[2] = 0;
4334                 }
4335         } else if (!ext4_has_inline_data(inode)) {
4336                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4337                         raw_inode->i_block[block] = ei->i_data[block];
4338         }
4339
4340         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4341                 u64 ivers = ext4_inode_peek_iversion(inode);
4342
4343                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4344                 if (ei->i_extra_isize) {
4345                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4346                                 raw_inode->i_version_hi =
4347                                         cpu_to_le32(ivers >> 32);
4348                         raw_inode->i_extra_isize =
4349                                 cpu_to_le16(ei->i_extra_isize);
4350                 }
4351         }
4352
4353         if (i_projid != EXT4_DEF_PROJID &&
4354             !ext4_has_feature_project(inode->i_sb))
4355                 err = err ?: -EFSCORRUPTED;
4356
4357         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4358             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4359                 raw_inode->i_projid = cpu_to_le32(i_projid);
4360
4361         ext4_inode_csum_set(inode, raw_inode, ei);
4362         return err;
4363 }
4364
4365 /*
4366  * ext4_get_inode_loc returns with an extra refcount against the inode's
4367  * underlying buffer_head on success. If we pass 'inode' and it does not
4368  * have in-inode xattr, we have all inode data in memory that is needed
4369  * to recreate the on-disk version of this inode.
4370  */
4371 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4372                                 struct inode *inode, struct ext4_iloc *iloc,
4373                                 ext4_fsblk_t *ret_block)
4374 {
4375         struct ext4_group_desc  *gdp;
4376         struct buffer_head      *bh;
4377         ext4_fsblk_t            block;
4378         struct blk_plug         plug;
4379         int                     inodes_per_block, inode_offset;
4380
4381         iloc->bh = NULL;
4382         if (ino < EXT4_ROOT_INO ||
4383             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4384                 return -EFSCORRUPTED;
4385
4386         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4387         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4388         if (!gdp)
4389                 return -EIO;
4390
4391         /*
4392          * Figure out the offset within the block group inode table
4393          */
4394         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4395         inode_offset = ((ino - 1) %
4396                         EXT4_INODES_PER_GROUP(sb));
4397         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4398
4399         block = ext4_inode_table(sb, gdp);
4400         if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4401             (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4402                 ext4_error(sb, "Invalid inode table block %llu in "
4403                            "block_group %u", block, iloc->block_group);
4404                 return -EFSCORRUPTED;
4405         }
4406         block += (inode_offset / inodes_per_block);
4407
4408         bh = sb_getblk(sb, block);
4409         if (unlikely(!bh))
4410                 return -ENOMEM;
4411         if (ext4_buffer_uptodate(bh))
4412                 goto has_buffer;
4413
4414         lock_buffer(bh);
4415         if (ext4_buffer_uptodate(bh)) {
4416                 /* Someone brought it uptodate while we waited */
4417                 unlock_buffer(bh);
4418                 goto has_buffer;
4419         }
4420
4421         /*
4422          * If we have all information of the inode in memory and this
4423          * is the only valid inode in the block, we need not read the
4424          * block.
4425          */
4426         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4427                 struct buffer_head *bitmap_bh;
4428                 int i, start;
4429
4430                 start = inode_offset & ~(inodes_per_block - 1);
4431
4432                 /* Is the inode bitmap in cache? */
4433                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4434                 if (unlikely(!bitmap_bh))
4435                         goto make_io;
4436
4437                 /*
4438                  * If the inode bitmap isn't in cache then the
4439                  * optimisation may end up performing two reads instead
4440                  * of one, so skip it.
4441                  */
4442                 if (!buffer_uptodate(bitmap_bh)) {
4443                         brelse(bitmap_bh);
4444                         goto make_io;
4445                 }
4446                 for (i = start; i < start + inodes_per_block; i++) {
4447                         if (i == inode_offset)
4448                                 continue;
4449                         if (ext4_test_bit(i, bitmap_bh->b_data))
4450                                 break;
4451                 }
4452                 brelse(bitmap_bh);
4453                 if (i == start + inodes_per_block) {
4454                         struct ext4_inode *raw_inode =
4455                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4456
4457                         /* all other inodes are free, so skip I/O */
4458                         memset(bh->b_data, 0, bh->b_size);
4459                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4460                                 ext4_fill_raw_inode(inode, raw_inode);
4461                         set_buffer_uptodate(bh);
4462                         unlock_buffer(bh);
4463                         goto has_buffer;
4464                 }
4465         }
4466
4467 make_io:
4468         /*
4469          * If we need to do any I/O, try to pre-readahead extra
4470          * blocks from the inode table.
4471          */
4472         blk_start_plug(&plug);
4473         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4474                 ext4_fsblk_t b, end, table;
4475                 unsigned num;
4476                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4477
4478                 table = ext4_inode_table(sb, gdp);
4479                 /* s_inode_readahead_blks is always a power of 2 */
4480                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4481                 if (table > b)
4482                         b = table;
4483                 end = b + ra_blks;
4484                 num = EXT4_INODES_PER_GROUP(sb);
4485                 if (ext4_has_group_desc_csum(sb))
4486                         num -= ext4_itable_unused_count(sb, gdp);
4487                 table += num / inodes_per_block;
4488                 if (end > table)
4489                         end = table;
4490                 while (b <= end)
4491                         ext4_sb_breadahead_unmovable(sb, b++);
4492         }
4493
4494         /*
4495          * There are other valid inodes in the buffer, this inode
4496          * has in-inode xattrs, or we don't have this inode in memory.
4497          * Read the block from disk.
4498          */
4499         trace_ext4_load_inode(sb, ino);
4500         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4501         blk_finish_plug(&plug);
4502         wait_on_buffer(bh);
4503         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4504         if (!buffer_uptodate(bh)) {
4505                 if (ret_block)
4506                         *ret_block = block;
4507                 brelse(bh);
4508                 return -EIO;
4509         }
4510 has_buffer:
4511         iloc->bh = bh;
4512         return 0;
4513 }
4514
4515 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4516                                         struct ext4_iloc *iloc)
4517 {
4518         ext4_fsblk_t err_blk = 0;
4519         int ret;
4520
4521         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4522                                         &err_blk);
4523
4524         if (ret == -EIO)
4525                 ext4_error_inode_block(inode, err_blk, EIO,
4526                                         "unable to read itable block");
4527
4528         return ret;
4529 }
4530
4531 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4532 {
4533         ext4_fsblk_t err_blk = 0;
4534         int ret;
4535
4536         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4537                                         &err_blk);
4538
4539         if (ret == -EIO)
4540                 ext4_error_inode_block(inode, err_blk, EIO,
4541                                         "unable to read itable block");
4542
4543         return ret;
4544 }
4545
4546
4547 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4548                           struct ext4_iloc *iloc)
4549 {
4550         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4551 }
4552
4553 static bool ext4_should_enable_dax(struct inode *inode)
4554 {
4555         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4556
4557         if (test_opt2(inode->i_sb, DAX_NEVER))
4558                 return false;
4559         if (!S_ISREG(inode->i_mode))
4560                 return false;
4561         if (ext4_should_journal_data(inode))
4562                 return false;
4563         if (ext4_has_inline_data(inode))
4564                 return false;
4565         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4566                 return false;
4567         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4568                 return false;
4569         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4570                 return false;
4571         if (test_opt(inode->i_sb, DAX_ALWAYS))
4572                 return true;
4573
4574         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4575 }
4576
4577 void ext4_set_inode_flags(struct inode *inode, bool init)
4578 {
4579         unsigned int flags = EXT4_I(inode)->i_flags;
4580         unsigned int new_fl = 0;
4581
4582         WARN_ON_ONCE(IS_DAX(inode) && init);
4583
4584         if (flags & EXT4_SYNC_FL)
4585                 new_fl |= S_SYNC;
4586         if (flags & EXT4_APPEND_FL)
4587                 new_fl |= S_APPEND;
4588         if (flags & EXT4_IMMUTABLE_FL)
4589                 new_fl |= S_IMMUTABLE;
4590         if (flags & EXT4_NOATIME_FL)
4591                 new_fl |= S_NOATIME;
4592         if (flags & EXT4_DIRSYNC_FL)
4593                 new_fl |= S_DIRSYNC;
4594
4595         /* Because of the way inode_set_flags() works we must preserve S_DAX
4596          * here if already set. */
4597         new_fl |= (inode->i_flags & S_DAX);
4598         if (init && ext4_should_enable_dax(inode))
4599                 new_fl |= S_DAX;
4600
4601         if (flags & EXT4_ENCRYPT_FL)
4602                 new_fl |= S_ENCRYPTED;
4603         if (flags & EXT4_CASEFOLD_FL)
4604                 new_fl |= S_CASEFOLD;
4605         if (flags & EXT4_VERITY_FL)
4606                 new_fl |= S_VERITY;
4607         inode_set_flags(inode, new_fl,
4608                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4609                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4610 }
4611
4612 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4613                                   struct ext4_inode_info *ei)
4614 {
4615         blkcnt_t i_blocks ;
4616         struct inode *inode = &(ei->vfs_inode);
4617         struct super_block *sb = inode->i_sb;
4618
4619         if (ext4_has_feature_huge_file(sb)) {
4620                 /* we are using combined 48 bit field */
4621                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4622                                         le32_to_cpu(raw_inode->i_blocks_lo);
4623                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4624                         /* i_blocks represent file system block size */
4625                         return i_blocks  << (inode->i_blkbits - 9);
4626                 } else {
4627                         return i_blocks;
4628                 }
4629         } else {
4630                 return le32_to_cpu(raw_inode->i_blocks_lo);
4631         }
4632 }
4633
4634 static inline int ext4_iget_extra_inode(struct inode *inode,
4635                                          struct ext4_inode *raw_inode,
4636                                          struct ext4_inode_info *ei)
4637 {
4638         __le32 *magic = (void *)raw_inode +
4639                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4640
4641         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4642             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4643                 int err;
4644
4645                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4646                 err = ext4_find_inline_data_nolock(inode);
4647                 if (!err && ext4_has_inline_data(inode))
4648                         ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4649                 return err;
4650         } else
4651                 EXT4_I(inode)->i_inline_off = 0;
4652         return 0;
4653 }
4654
4655 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4656 {
4657         if (!ext4_has_feature_project(inode->i_sb))
4658                 return -EOPNOTSUPP;
4659         *projid = EXT4_I(inode)->i_projid;
4660         return 0;
4661 }
4662
4663 /*
4664  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4665  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4666  * set.
4667  */
4668 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4669 {
4670         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4671                 inode_set_iversion_raw(inode, val);
4672         else
4673                 inode_set_iversion_queried(inode, val);
4674 }
4675
4676 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4677
4678 {
4679         if (flags & EXT4_IGET_EA_INODE) {
4680                 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4681                         return "missing EA_INODE flag";
4682                 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4683                     EXT4_I(inode)->i_file_acl)
4684                         return "ea_inode with extended attributes";
4685         } else {
4686                 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4687                         return "unexpected EA_INODE flag";
4688         }
4689         if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4690                 return "unexpected bad inode w/o EXT4_IGET_BAD";
4691         return NULL;
4692 }
4693
4694 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4695                           ext4_iget_flags flags, const char *function,
4696                           unsigned int line)
4697 {
4698         struct ext4_iloc iloc;
4699         struct ext4_inode *raw_inode;
4700         struct ext4_inode_info *ei;
4701         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4702         struct inode *inode;
4703         const char *err_str;
4704         journal_t *journal = EXT4_SB(sb)->s_journal;
4705         long ret;
4706         loff_t size;
4707         int block;
4708         uid_t i_uid;
4709         gid_t i_gid;
4710         projid_t i_projid;
4711
4712         if ((!(flags & EXT4_IGET_SPECIAL) &&
4713              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4714               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4715               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4716               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4717               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4718             (ino < EXT4_ROOT_INO) ||
4719             (ino > le32_to_cpu(es->s_inodes_count))) {
4720                 if (flags & EXT4_IGET_HANDLE)
4721                         return ERR_PTR(-ESTALE);
4722                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4723                              "inode #%lu: comm %s: iget: illegal inode #",
4724                              ino, current->comm);
4725                 return ERR_PTR(-EFSCORRUPTED);
4726         }
4727
4728         inode = iget_locked(sb, ino);
4729         if (!inode)
4730                 return ERR_PTR(-ENOMEM);
4731         if (!(inode->i_state & I_NEW)) {
4732                 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4733                         ext4_error_inode(inode, function, line, 0, err_str);
4734                         iput(inode);
4735                         return ERR_PTR(-EFSCORRUPTED);
4736                 }
4737                 return inode;
4738         }
4739
4740         ei = EXT4_I(inode);
4741         iloc.bh = NULL;
4742
4743         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4744         if (ret < 0)
4745                 goto bad_inode;
4746         raw_inode = ext4_raw_inode(&iloc);
4747
4748         if ((flags & EXT4_IGET_HANDLE) &&
4749             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4750                 ret = -ESTALE;
4751                 goto bad_inode;
4752         }
4753
4754         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4755                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4756                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4757                         EXT4_INODE_SIZE(inode->i_sb) ||
4758                     (ei->i_extra_isize & 3)) {
4759                         ext4_error_inode(inode, function, line, 0,
4760                                          "iget: bad extra_isize %u "
4761                                          "(inode size %u)",
4762                                          ei->i_extra_isize,
4763                                          EXT4_INODE_SIZE(inode->i_sb));
4764                         ret = -EFSCORRUPTED;
4765                         goto bad_inode;
4766                 }
4767         } else
4768                 ei->i_extra_isize = 0;
4769
4770         /* Precompute checksum seed for inode metadata */
4771         if (ext4_has_metadata_csum(sb)) {
4772                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4773                 __u32 csum;
4774                 __le32 inum = cpu_to_le32(inode->i_ino);
4775                 __le32 gen = raw_inode->i_generation;
4776                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4777                                    sizeof(inum));
4778                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4779                                               sizeof(gen));
4780         }
4781
4782         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4783             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4784              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4785                 ext4_error_inode_err(inode, function, line, 0,
4786                                 EFSBADCRC, "iget: checksum invalid");
4787                 ret = -EFSBADCRC;
4788                 goto bad_inode;
4789         }
4790
4791         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4792         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4793         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4794         if (ext4_has_feature_project(sb) &&
4795             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4796             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4797                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4798         else
4799                 i_projid = EXT4_DEF_PROJID;
4800
4801         if (!(test_opt(inode->i_sb, NO_UID32))) {
4802                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4803                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4804         }
4805         i_uid_write(inode, i_uid);
4806         i_gid_write(inode, i_gid);
4807         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4808         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4809
4810         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4811         ei->i_inline_off = 0;
4812         ei->i_dir_start_lookup = 0;
4813         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4814         /* We now have enough fields to check if the inode was active or not.
4815          * This is needed because nfsd might try to access dead inodes
4816          * the test is that same one that e2fsck uses
4817          * NeilBrown 1999oct15
4818          */
4819         if (inode->i_nlink == 0) {
4820                 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4821                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4822                     ino != EXT4_BOOT_LOADER_INO) {
4823                         /* this inode is deleted or unallocated */
4824                         if (flags & EXT4_IGET_SPECIAL) {
4825                                 ext4_error_inode(inode, function, line, 0,
4826                                                  "iget: special inode unallocated");
4827                                 ret = -EFSCORRUPTED;
4828                         } else
4829                                 ret = -ESTALE;
4830                         goto bad_inode;
4831                 }
4832                 /* The only unlinked inodes we let through here have
4833                  * valid i_mode and are being read by the orphan
4834                  * recovery code: that's fine, we're about to complete
4835                  * the process of deleting those.
4836                  * OR it is the EXT4_BOOT_LOADER_INO which is
4837                  * not initialized on a new filesystem. */
4838         }
4839         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4840         ext4_set_inode_flags(inode, true);
4841         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4842         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4843         if (ext4_has_feature_64bit(sb))
4844                 ei->i_file_acl |=
4845                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4846         inode->i_size = ext4_isize(sb, raw_inode);
4847         if ((size = i_size_read(inode)) < 0) {
4848                 ext4_error_inode(inode, function, line, 0,
4849                                  "iget: bad i_size value: %lld", size);
4850                 ret = -EFSCORRUPTED;
4851                 goto bad_inode;
4852         }
4853         /*
4854          * If dir_index is not enabled but there's dir with INDEX flag set,
4855          * we'd normally treat htree data as empty space. But with metadata
4856          * checksumming that corrupts checksums so forbid that.
4857          */
4858         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4859             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4860                 ext4_error_inode(inode, function, line, 0,
4861                          "iget: Dir with htree data on filesystem without dir_index feature.");
4862                 ret = -EFSCORRUPTED;
4863                 goto bad_inode;
4864         }
4865         ei->i_disksize = inode->i_size;
4866 #ifdef CONFIG_QUOTA
4867         ei->i_reserved_quota = 0;
4868 #endif
4869         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4870         ei->i_block_group = iloc.block_group;
4871         ei->i_last_alloc_group = ~0;
4872         /*
4873          * NOTE! The in-memory inode i_data array is in little-endian order
4874          * even on big-endian machines: we do NOT byteswap the block numbers!
4875          */
4876         for (block = 0; block < EXT4_N_BLOCKS; block++)
4877                 ei->i_data[block] = raw_inode->i_block[block];
4878         INIT_LIST_HEAD(&ei->i_orphan);
4879         ext4_fc_init_inode(&ei->vfs_inode);
4880
4881         /*
4882          * Set transaction id's of transactions that have to be committed
4883          * to finish f[data]sync. We set them to currently running transaction
4884          * as we cannot be sure that the inode or some of its metadata isn't
4885          * part of the transaction - the inode could have been reclaimed and
4886          * now it is reread from disk.
4887          */
4888         if (journal) {
4889                 transaction_t *transaction;
4890                 tid_t tid;
4891
4892                 read_lock(&journal->j_state_lock);
4893                 if (journal->j_running_transaction)
4894                         transaction = journal->j_running_transaction;
4895                 else
4896                         transaction = journal->j_committing_transaction;
4897                 if (transaction)
4898                         tid = transaction->t_tid;
4899                 else
4900                         tid = journal->j_commit_sequence;
4901                 read_unlock(&journal->j_state_lock);
4902                 ei->i_sync_tid = tid;
4903                 ei->i_datasync_tid = tid;
4904         }
4905
4906         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4907                 if (ei->i_extra_isize == 0) {
4908                         /* The extra space is currently unused. Use it. */
4909                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4910                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4911                                             EXT4_GOOD_OLD_INODE_SIZE;
4912                 } else {
4913                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4914                         if (ret)
4915                                 goto bad_inode;
4916                 }
4917         }
4918
4919         EXT4_INODE_GET_CTIME(inode, raw_inode);
4920         EXT4_INODE_GET_ATIME(inode, raw_inode);
4921         EXT4_INODE_GET_MTIME(inode, raw_inode);
4922         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4923
4924         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4925                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4926
4927                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4928                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4929                                 ivers |=
4930                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4931                 }
4932                 ext4_inode_set_iversion_queried(inode, ivers);
4933         }
4934
4935         ret = 0;
4936         if (ei->i_file_acl &&
4937             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4938                 ext4_error_inode(inode, function, line, 0,
4939                                  "iget: bad extended attribute block %llu",
4940                                  ei->i_file_acl);
4941                 ret = -EFSCORRUPTED;
4942                 goto bad_inode;
4943         } else if (!ext4_has_inline_data(inode)) {
4944                 /* validate the block references in the inode */
4945                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4946                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4947                         (S_ISLNK(inode->i_mode) &&
4948                         !ext4_inode_is_fast_symlink(inode)))) {
4949                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4950                                 ret = ext4_ext_check_inode(inode);
4951                         else
4952                                 ret = ext4_ind_check_inode(inode);
4953                 }
4954         }
4955         if (ret)
4956                 goto bad_inode;
4957
4958         if (S_ISREG(inode->i_mode)) {
4959                 inode->i_op = &ext4_file_inode_operations;
4960                 inode->i_fop = &ext4_file_operations;
4961                 ext4_set_aops(inode);
4962         } else if (S_ISDIR(inode->i_mode)) {
4963                 inode->i_op = &ext4_dir_inode_operations;
4964                 inode->i_fop = &ext4_dir_operations;
4965         } else if (S_ISLNK(inode->i_mode)) {
4966                 /* VFS does not allow setting these so must be corruption */
4967                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4968                         ext4_error_inode(inode, function, line, 0,
4969                                          "iget: immutable or append flags "
4970                                          "not allowed on symlinks");
4971                         ret = -EFSCORRUPTED;
4972                         goto bad_inode;
4973                 }
4974                 if (IS_ENCRYPTED(inode)) {
4975                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4976                 } else if (ext4_inode_is_fast_symlink(inode)) {
4977                         inode->i_link = (char *)ei->i_data;
4978                         inode->i_op = &ext4_fast_symlink_inode_operations;
4979                         nd_terminate_link(ei->i_data, inode->i_size,
4980                                 sizeof(ei->i_data) - 1);
4981                 } else {
4982                         inode->i_op = &ext4_symlink_inode_operations;
4983                 }
4984         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4985               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4986                 inode->i_op = &ext4_special_inode_operations;
4987                 if (raw_inode->i_block[0])
4988                         init_special_inode(inode, inode->i_mode,
4989                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4990                 else
4991                         init_special_inode(inode, inode->i_mode,
4992                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4993         } else if (ino == EXT4_BOOT_LOADER_INO) {
4994                 make_bad_inode(inode);
4995         } else {
4996                 ret = -EFSCORRUPTED;
4997                 ext4_error_inode(inode, function, line, 0,
4998                                  "iget: bogus i_mode (%o)", inode->i_mode);
4999                 goto bad_inode;
5000         }
5001         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5002                 ext4_error_inode(inode, function, line, 0,
5003                                  "casefold flag without casefold feature");
5004                 ret = -EFSCORRUPTED;
5005                 goto bad_inode;
5006         }
5007         if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5008                 ext4_error_inode(inode, function, line, 0, err_str);
5009                 ret = -EFSCORRUPTED;
5010                 goto bad_inode;
5011         }
5012
5013         brelse(iloc.bh);
5014         unlock_new_inode(inode);
5015         return inode;
5016
5017 bad_inode:
5018         brelse(iloc.bh);
5019         iget_failed(inode);
5020         return ERR_PTR(ret);
5021 }
5022
5023 static void __ext4_update_other_inode_time(struct super_block *sb,
5024                                            unsigned long orig_ino,
5025                                            unsigned long ino,
5026                                            struct ext4_inode *raw_inode)
5027 {
5028         struct inode *inode;
5029
5030         inode = find_inode_by_ino_rcu(sb, ino);
5031         if (!inode)
5032                 return;
5033
5034         if (!inode_is_dirtytime_only(inode))
5035                 return;
5036
5037         spin_lock(&inode->i_lock);
5038         if (inode_is_dirtytime_only(inode)) {
5039                 struct ext4_inode_info  *ei = EXT4_I(inode);
5040
5041                 inode->i_state &= ~I_DIRTY_TIME;
5042                 spin_unlock(&inode->i_lock);
5043
5044                 spin_lock(&ei->i_raw_lock);
5045                 EXT4_INODE_SET_CTIME(inode, raw_inode);
5046                 EXT4_INODE_SET_MTIME(inode, raw_inode);
5047                 EXT4_INODE_SET_ATIME(inode, raw_inode);
5048                 ext4_inode_csum_set(inode, raw_inode, ei);
5049                 spin_unlock(&ei->i_raw_lock);
5050                 trace_ext4_other_inode_update_time(inode, orig_ino);
5051                 return;
5052         }
5053         spin_unlock(&inode->i_lock);
5054 }
5055
5056 /*
5057  * Opportunistically update the other time fields for other inodes in
5058  * the same inode table block.
5059  */
5060 static void ext4_update_other_inodes_time(struct super_block *sb,
5061                                           unsigned long orig_ino, char *buf)
5062 {
5063         unsigned long ino;
5064         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5065         int inode_size = EXT4_INODE_SIZE(sb);
5066
5067         /*
5068          * Calculate the first inode in the inode table block.  Inode
5069          * numbers are one-based.  That is, the first inode in a block
5070          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5071          */
5072         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5073         rcu_read_lock();
5074         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5075                 if (ino == orig_ino)
5076                         continue;
5077                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5078                                                (struct ext4_inode *)buf);
5079         }
5080         rcu_read_unlock();
5081 }
5082
5083 /*
5084  * Post the struct inode info into an on-disk inode location in the
5085  * buffer-cache.  This gobbles the caller's reference to the
5086  * buffer_head in the inode location struct.
5087  *
5088  * The caller must have write access to iloc->bh.
5089  */
5090 static int ext4_do_update_inode(handle_t *handle,
5091                                 struct inode *inode,
5092                                 struct ext4_iloc *iloc)
5093 {
5094         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5095         struct ext4_inode_info *ei = EXT4_I(inode);
5096         struct buffer_head *bh = iloc->bh;
5097         struct super_block *sb = inode->i_sb;
5098         int err;
5099         int need_datasync = 0, set_large_file = 0;
5100
5101         spin_lock(&ei->i_raw_lock);
5102
5103         /*
5104          * For fields not tracked in the in-memory inode, initialise them
5105          * to zero for new inodes.
5106          */
5107         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5108                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5109
5110         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5111                 need_datasync = 1;
5112         if (ei->i_disksize > 0x7fffffffULL) {
5113                 if (!ext4_has_feature_large_file(sb) ||
5114                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5115                         set_large_file = 1;
5116         }
5117
5118         err = ext4_fill_raw_inode(inode, raw_inode);
5119         spin_unlock(&ei->i_raw_lock);
5120         if (err) {
5121                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5122                 goto out_brelse;
5123         }
5124
5125         if (inode->i_sb->s_flags & SB_LAZYTIME)
5126                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5127                                               bh->b_data);
5128
5129         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5130         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5131         if (err)
5132                 goto out_error;
5133         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5134         if (set_large_file) {
5135                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5136                 err = ext4_journal_get_write_access(handle, sb,
5137                                                     EXT4_SB(sb)->s_sbh,
5138                                                     EXT4_JTR_NONE);
5139                 if (err)
5140                         goto out_error;
5141                 lock_buffer(EXT4_SB(sb)->s_sbh);
5142                 ext4_set_feature_large_file(sb);
5143                 ext4_superblock_csum_set(sb);
5144                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5145                 ext4_handle_sync(handle);
5146                 err = ext4_handle_dirty_metadata(handle, NULL,
5147                                                  EXT4_SB(sb)->s_sbh);
5148         }
5149         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5150 out_error:
5151         ext4_std_error(inode->i_sb, err);
5152 out_brelse:
5153         brelse(bh);
5154         return err;
5155 }
5156
5157 /*
5158  * ext4_write_inode()
5159  *
5160  * We are called from a few places:
5161  *
5162  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5163  *   Here, there will be no transaction running. We wait for any running
5164  *   transaction to commit.
5165  *
5166  * - Within flush work (sys_sync(), kupdate and such).
5167  *   We wait on commit, if told to.
5168  *
5169  * - Within iput_final() -> write_inode_now()
5170  *   We wait on commit, if told to.
5171  *
5172  * In all cases it is actually safe for us to return without doing anything,
5173  * because the inode has been copied into a raw inode buffer in
5174  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5175  * writeback.
5176  *
5177  * Note that we are absolutely dependent upon all inode dirtiers doing the
5178  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5179  * which we are interested.
5180  *
5181  * It would be a bug for them to not do this.  The code:
5182  *
5183  *      mark_inode_dirty(inode)
5184  *      stuff();
5185  *      inode->i_size = expr;
5186  *
5187  * is in error because write_inode() could occur while `stuff()' is running,
5188  * and the new i_size will be lost.  Plus the inode will no longer be on the
5189  * superblock's dirty inode list.
5190  */
5191 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5192 {
5193         int err;
5194
5195         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5196                 return 0;
5197
5198         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5199                 return -EIO;
5200
5201         if (EXT4_SB(inode->i_sb)->s_journal) {
5202                 if (ext4_journal_current_handle()) {
5203                         ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5204                         dump_stack();
5205                         return -EIO;
5206                 }
5207
5208                 /*
5209                  * No need to force transaction in WB_SYNC_NONE mode. Also
5210                  * ext4_sync_fs() will force the commit after everything is
5211                  * written.
5212                  */
5213                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5214                         return 0;
5215
5216                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5217                                                 EXT4_I(inode)->i_sync_tid);
5218         } else {
5219                 struct ext4_iloc iloc;
5220
5221                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5222                 if (err)
5223                         return err;
5224                 /*
5225                  * sync(2) will flush the whole buffer cache. No need to do
5226                  * it here separately for each inode.
5227                  */
5228                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5229                         sync_dirty_buffer(iloc.bh);
5230                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5231                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5232                                                "IO error syncing inode");
5233                         err = -EIO;
5234                 }
5235                 brelse(iloc.bh);
5236         }
5237         return err;
5238 }
5239
5240 /*
5241  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5242  * buffers that are attached to a folio straddling i_size and are undergoing
5243  * commit. In that case we have to wait for commit to finish and try again.
5244  */
5245 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5246 {
5247         unsigned offset;
5248         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5249         tid_t commit_tid;
5250         int ret;
5251         bool has_transaction;
5252
5253         offset = inode->i_size & (PAGE_SIZE - 1);
5254         /*
5255          * If the folio is fully truncated, we don't need to wait for any commit
5256          * (and we even should not as __ext4_journalled_invalidate_folio() may
5257          * strip all buffers from the folio but keep the folio dirty which can then
5258          * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5259          * buffers). Also we don't need to wait for any commit if all buffers in
5260          * the folio remain valid. This is most beneficial for the common case of
5261          * blocksize == PAGESIZE.
5262          */
5263         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5264                 return;
5265         while (1) {
5266                 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5267                                       inode->i_size >> PAGE_SHIFT);
5268                 if (IS_ERR(folio))
5269                         return;
5270                 ret = __ext4_journalled_invalidate_folio(folio, offset,
5271                                                 folio_size(folio) - offset);
5272                 folio_unlock(folio);
5273                 folio_put(folio);
5274                 if (ret != -EBUSY)
5275                         return;
5276                 has_transaction = false;
5277                 read_lock(&journal->j_state_lock);
5278                 if (journal->j_committing_transaction) {
5279                         commit_tid = journal->j_committing_transaction->t_tid;
5280                         has_transaction = true;
5281                 }
5282                 read_unlock(&journal->j_state_lock);
5283                 if (has_transaction)
5284                         jbd2_log_wait_commit(journal, commit_tid);
5285         }
5286 }
5287
5288 /*
5289  * ext4_setattr()
5290  *
5291  * Called from notify_change.
5292  *
5293  * We want to trap VFS attempts to truncate the file as soon as
5294  * possible.  In particular, we want to make sure that when the VFS
5295  * shrinks i_size, we put the inode on the orphan list and modify
5296  * i_disksize immediately, so that during the subsequent flushing of
5297  * dirty pages and freeing of disk blocks, we can guarantee that any
5298  * commit will leave the blocks being flushed in an unused state on
5299  * disk.  (On recovery, the inode will get truncated and the blocks will
5300  * be freed, so we have a strong guarantee that no future commit will
5301  * leave these blocks visible to the user.)
5302  *
5303  * Another thing we have to assure is that if we are in ordered mode
5304  * and inode is still attached to the committing transaction, we must
5305  * we start writeout of all the dirty pages which are being truncated.
5306  * This way we are sure that all the data written in the previous
5307  * transaction are already on disk (truncate waits for pages under
5308  * writeback).
5309  *
5310  * Called with inode->i_rwsem down.
5311  */
5312 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5313                  struct iattr *attr)
5314 {
5315         struct inode *inode = d_inode(dentry);
5316         int error, rc = 0;
5317         int orphan = 0;
5318         const unsigned int ia_valid = attr->ia_valid;
5319         bool inc_ivers = true;
5320
5321         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5322                 return -EIO;
5323
5324         if (unlikely(IS_IMMUTABLE(inode)))
5325                 return -EPERM;
5326
5327         if (unlikely(IS_APPEND(inode) &&
5328                      (ia_valid & (ATTR_MODE | ATTR_UID |
5329                                   ATTR_GID | ATTR_TIMES_SET))))
5330                 return -EPERM;
5331
5332         error = setattr_prepare(idmap, dentry, attr);
5333         if (error)
5334                 return error;
5335
5336         error = fscrypt_prepare_setattr(dentry, attr);
5337         if (error)
5338                 return error;
5339
5340         error = fsverity_prepare_setattr(dentry, attr);
5341         if (error)
5342                 return error;
5343
5344         if (is_quota_modification(idmap, inode, attr)) {
5345                 error = dquot_initialize(inode);
5346                 if (error)
5347                         return error;
5348         }
5349
5350         if (i_uid_needs_update(idmap, attr, inode) ||
5351             i_gid_needs_update(idmap, attr, inode)) {
5352                 handle_t *handle;
5353
5354                 /* (user+group)*(old+new) structure, inode write (sb,
5355                  * inode block, ? - but truncate inode update has it) */
5356                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5357                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5358                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5359                 if (IS_ERR(handle)) {
5360                         error = PTR_ERR(handle);
5361                         goto err_out;
5362                 }
5363
5364                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5365                  * counts xattr inode references.
5366                  */
5367                 down_read(&EXT4_I(inode)->xattr_sem);
5368                 error = dquot_transfer(idmap, inode, attr);
5369                 up_read(&EXT4_I(inode)->xattr_sem);
5370
5371                 if (error) {
5372                         ext4_journal_stop(handle);
5373                         return error;
5374                 }
5375                 /* Update corresponding info in inode so that everything is in
5376                  * one transaction */
5377                 i_uid_update(idmap, attr, inode);
5378                 i_gid_update(idmap, attr, inode);
5379                 error = ext4_mark_inode_dirty(handle, inode);
5380                 ext4_journal_stop(handle);
5381                 if (unlikely(error)) {
5382                         return error;
5383                 }
5384         }
5385
5386         if (attr->ia_valid & ATTR_SIZE) {
5387                 handle_t *handle;
5388                 loff_t oldsize = inode->i_size;
5389                 loff_t old_disksize;
5390                 int shrink = (attr->ia_size < inode->i_size);
5391
5392                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5393                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5394
5395                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5396                                 return -EFBIG;
5397                         }
5398                 }
5399                 if (!S_ISREG(inode->i_mode)) {
5400                         return -EINVAL;
5401                 }
5402
5403                 if (attr->ia_size == inode->i_size)
5404                         inc_ivers = false;
5405
5406                 if (shrink) {
5407                         if (ext4_should_order_data(inode)) {
5408                                 error = ext4_begin_ordered_truncate(inode,
5409                                                             attr->ia_size);
5410                                 if (error)
5411                                         goto err_out;
5412                         }
5413                         /*
5414                          * Blocks are going to be removed from the inode. Wait
5415                          * for dio in flight.
5416                          */
5417                         inode_dio_wait(inode);
5418                 }
5419
5420                 filemap_invalidate_lock(inode->i_mapping);
5421
5422                 rc = ext4_break_layouts(inode);
5423                 if (rc) {
5424                         filemap_invalidate_unlock(inode->i_mapping);
5425                         goto err_out;
5426                 }
5427
5428                 if (attr->ia_size != inode->i_size) {
5429                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5430                         if (IS_ERR(handle)) {
5431                                 error = PTR_ERR(handle);
5432                                 goto out_mmap_sem;
5433                         }
5434                         if (ext4_handle_valid(handle) && shrink) {
5435                                 error = ext4_orphan_add(handle, inode);
5436                                 orphan = 1;
5437                         }
5438                         /*
5439                          * Update c/mtime on truncate up, ext4_truncate() will
5440                          * update c/mtime in shrink case below
5441                          */
5442                         if (!shrink)
5443                                 inode_set_mtime_to_ts(inode,
5444                                                       inode_set_ctime_current(inode));
5445
5446                         if (shrink)
5447                                 ext4_fc_track_range(handle, inode,
5448                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5449                                         inode->i_sb->s_blocksize_bits,
5450                                         EXT_MAX_BLOCKS - 1);
5451                         else
5452                                 ext4_fc_track_range(
5453                                         handle, inode,
5454                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5455                                         inode->i_sb->s_blocksize_bits,
5456                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5457                                         inode->i_sb->s_blocksize_bits);
5458
5459                         down_write(&EXT4_I(inode)->i_data_sem);
5460                         old_disksize = EXT4_I(inode)->i_disksize;
5461                         EXT4_I(inode)->i_disksize = attr->ia_size;
5462                         rc = ext4_mark_inode_dirty(handle, inode);
5463                         if (!error)
5464                                 error = rc;
5465                         /*
5466                          * We have to update i_size under i_data_sem together
5467                          * with i_disksize to avoid races with writeback code
5468                          * running ext4_wb_update_i_disksize().
5469                          */
5470                         if (!error)
5471                                 i_size_write(inode, attr->ia_size);
5472                         else
5473                                 EXT4_I(inode)->i_disksize = old_disksize;
5474                         up_write(&EXT4_I(inode)->i_data_sem);
5475                         ext4_journal_stop(handle);
5476                         if (error)
5477                                 goto out_mmap_sem;
5478                         if (!shrink) {
5479                                 pagecache_isize_extended(inode, oldsize,
5480                                                          inode->i_size);
5481                         } else if (ext4_should_journal_data(inode)) {
5482                                 ext4_wait_for_tail_page_commit(inode);
5483                         }
5484                 }
5485
5486                 /*
5487                  * Truncate pagecache after we've waited for commit
5488                  * in data=journal mode to make pages freeable.
5489                  */
5490                 truncate_pagecache(inode, inode->i_size);
5491                 /*
5492                  * Call ext4_truncate() even if i_size didn't change to
5493                  * truncate possible preallocated blocks.
5494                  */
5495                 if (attr->ia_size <= oldsize) {
5496                         rc = ext4_truncate(inode);
5497                         if (rc)
5498                                 error = rc;
5499                 }
5500 out_mmap_sem:
5501                 filemap_invalidate_unlock(inode->i_mapping);
5502         }
5503
5504         if (!error) {
5505                 if (inc_ivers)
5506                         inode_inc_iversion(inode);
5507                 setattr_copy(idmap, inode, attr);
5508                 mark_inode_dirty(inode);
5509         }
5510
5511         /*
5512          * If the call to ext4_truncate failed to get a transaction handle at
5513          * all, we need to clean up the in-core orphan list manually.
5514          */
5515         if (orphan && inode->i_nlink)
5516                 ext4_orphan_del(NULL, inode);
5517
5518         if (!error && (ia_valid & ATTR_MODE))
5519                 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5520
5521 err_out:
5522         if  (error)
5523                 ext4_std_error(inode->i_sb, error);
5524         if (!error)
5525                 error = rc;
5526         return error;
5527 }
5528
5529 u32 ext4_dio_alignment(struct inode *inode)
5530 {
5531         if (fsverity_active(inode))
5532                 return 0;
5533         if (ext4_should_journal_data(inode))
5534                 return 0;
5535         if (ext4_has_inline_data(inode))
5536                 return 0;
5537         if (IS_ENCRYPTED(inode)) {
5538                 if (!fscrypt_dio_supported(inode))
5539                         return 0;
5540                 return i_blocksize(inode);
5541         }
5542         return 1; /* use the iomap defaults */
5543 }
5544
5545 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5546                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5547 {
5548         struct inode *inode = d_inode(path->dentry);
5549         struct ext4_inode *raw_inode;
5550         struct ext4_inode_info *ei = EXT4_I(inode);
5551         unsigned int flags;
5552
5553         if ((request_mask & STATX_BTIME) &&
5554             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5555                 stat->result_mask |= STATX_BTIME;
5556                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5557                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5558         }
5559
5560         /*
5561          * Return the DIO alignment restrictions if requested.  We only return
5562          * this information when requested, since on encrypted files it might
5563          * take a fair bit of work to get if the file wasn't opened recently.
5564          */
5565         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5566                 u32 dio_align = ext4_dio_alignment(inode);
5567
5568                 stat->result_mask |= STATX_DIOALIGN;
5569                 if (dio_align == 1) {
5570                         struct block_device *bdev = inode->i_sb->s_bdev;
5571
5572                         /* iomap defaults */
5573                         stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5574                         stat->dio_offset_align = bdev_logical_block_size(bdev);
5575                 } else {
5576                         stat->dio_mem_align = dio_align;
5577                         stat->dio_offset_align = dio_align;
5578                 }
5579         }
5580
5581         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5582         if (flags & EXT4_APPEND_FL)
5583                 stat->attributes |= STATX_ATTR_APPEND;
5584         if (flags & EXT4_COMPR_FL)
5585                 stat->attributes |= STATX_ATTR_COMPRESSED;
5586         if (flags & EXT4_ENCRYPT_FL)
5587                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5588         if (flags & EXT4_IMMUTABLE_FL)
5589                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5590         if (flags & EXT4_NODUMP_FL)
5591                 stat->attributes |= STATX_ATTR_NODUMP;
5592         if (flags & EXT4_VERITY_FL)
5593                 stat->attributes |= STATX_ATTR_VERITY;
5594
5595         stat->attributes_mask |= (STATX_ATTR_APPEND |
5596                                   STATX_ATTR_COMPRESSED |
5597                                   STATX_ATTR_ENCRYPTED |
5598                                   STATX_ATTR_IMMUTABLE |
5599                                   STATX_ATTR_NODUMP |
5600                                   STATX_ATTR_VERITY);
5601
5602         generic_fillattr(idmap, request_mask, inode, stat);
5603         return 0;
5604 }
5605
5606 int ext4_file_getattr(struct mnt_idmap *idmap,
5607                       const struct path *path, struct kstat *stat,
5608                       u32 request_mask, unsigned int query_flags)
5609 {
5610         struct inode *inode = d_inode(path->dentry);
5611         u64 delalloc_blocks;
5612
5613         ext4_getattr(idmap, path, stat, request_mask, query_flags);
5614
5615         /*
5616          * If there is inline data in the inode, the inode will normally not
5617          * have data blocks allocated (it may have an external xattr block).
5618          * Report at least one sector for such files, so tools like tar, rsync,
5619          * others don't incorrectly think the file is completely sparse.
5620          */
5621         if (unlikely(ext4_has_inline_data(inode)))
5622                 stat->blocks += (stat->size + 511) >> 9;
5623
5624         /*
5625          * We can't update i_blocks if the block allocation is delayed
5626          * otherwise in the case of system crash before the real block
5627          * allocation is done, we will have i_blocks inconsistent with
5628          * on-disk file blocks.
5629          * We always keep i_blocks updated together with real
5630          * allocation. But to not confuse with user, stat
5631          * will return the blocks that include the delayed allocation
5632          * blocks for this file.
5633          */
5634         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5635                                    EXT4_I(inode)->i_reserved_data_blocks);
5636         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5637         return 0;
5638 }
5639
5640 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5641                                    int pextents)
5642 {
5643         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5644                 return ext4_ind_trans_blocks(inode, lblocks);
5645         return ext4_ext_index_trans_blocks(inode, pextents);
5646 }
5647
5648 /*
5649  * Account for index blocks, block groups bitmaps and block group
5650  * descriptor blocks if modify datablocks and index blocks
5651  * worse case, the indexs blocks spread over different block groups
5652  *
5653  * If datablocks are discontiguous, they are possible to spread over
5654  * different block groups too. If they are contiguous, with flexbg,
5655  * they could still across block group boundary.
5656  *
5657  * Also account for superblock, inode, quota and xattr blocks
5658  */
5659 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5660                                   int pextents)
5661 {
5662         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5663         int gdpblocks;
5664         int idxblocks;
5665         int ret;
5666
5667         /*
5668          * How many index blocks need to touch to map @lblocks logical blocks
5669          * to @pextents physical extents?
5670          */
5671         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5672
5673         ret = idxblocks;
5674
5675         /*
5676          * Now let's see how many group bitmaps and group descriptors need
5677          * to account
5678          */
5679         groups = idxblocks + pextents;
5680         gdpblocks = groups;
5681         if (groups > ngroups)
5682                 groups = ngroups;
5683         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5684                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5685
5686         /* bitmaps and block group descriptor blocks */
5687         ret += groups + gdpblocks;
5688
5689         /* Blocks for super block, inode, quota and xattr blocks */
5690         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5691
5692         return ret;
5693 }
5694
5695 /*
5696  * Calculate the total number of credits to reserve to fit
5697  * the modification of a single pages into a single transaction,
5698  * which may include multiple chunks of block allocations.
5699  *
5700  * This could be called via ext4_write_begin()
5701  *
5702  * We need to consider the worse case, when
5703  * one new block per extent.
5704  */
5705 int ext4_writepage_trans_blocks(struct inode *inode)
5706 {
5707         int bpp = ext4_journal_blocks_per_page(inode);
5708         int ret;
5709
5710         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5711
5712         /* Account for data blocks for journalled mode */
5713         if (ext4_should_journal_data(inode))
5714                 ret += bpp;
5715         return ret;
5716 }
5717
5718 /*
5719  * Calculate the journal credits for a chunk of data modification.
5720  *
5721  * This is called from DIO, fallocate or whoever calling
5722  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5723  *
5724  * journal buffers for data blocks are not included here, as DIO
5725  * and fallocate do no need to journal data buffers.
5726  */
5727 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5728 {
5729         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5730 }
5731
5732 /*
5733  * The caller must have previously called ext4_reserve_inode_write().
5734  * Give this, we know that the caller already has write access to iloc->bh.
5735  */
5736 int ext4_mark_iloc_dirty(handle_t *handle,
5737                          struct inode *inode, struct ext4_iloc *iloc)
5738 {
5739         int err = 0;
5740
5741         if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5742                 put_bh(iloc->bh);
5743                 return -EIO;
5744         }
5745         ext4_fc_track_inode(handle, inode);
5746
5747         /* the do_update_inode consumes one bh->b_count */
5748         get_bh(iloc->bh);
5749
5750         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5751         err = ext4_do_update_inode(handle, inode, iloc);
5752         put_bh(iloc->bh);
5753         return err;
5754 }
5755
5756 /*
5757  * On success, We end up with an outstanding reference count against
5758  * iloc->bh.  This _must_ be cleaned up later.
5759  */
5760
5761 int
5762 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5763                          struct ext4_iloc *iloc)
5764 {
5765         int err;
5766
5767         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5768                 return -EIO;
5769
5770         err = ext4_get_inode_loc(inode, iloc);
5771         if (!err) {
5772                 BUFFER_TRACE(iloc->bh, "get_write_access");
5773                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5774                                                     iloc->bh, EXT4_JTR_NONE);
5775                 if (err) {
5776                         brelse(iloc->bh);
5777                         iloc->bh = NULL;
5778                 }
5779         }
5780         ext4_std_error(inode->i_sb, err);
5781         return err;
5782 }
5783
5784 static int __ext4_expand_extra_isize(struct inode *inode,
5785                                      unsigned int new_extra_isize,
5786                                      struct ext4_iloc *iloc,
5787                                      handle_t *handle, int *no_expand)
5788 {
5789         struct ext4_inode *raw_inode;
5790         struct ext4_xattr_ibody_header *header;
5791         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5792         struct ext4_inode_info *ei = EXT4_I(inode);
5793         int error;
5794
5795         /* this was checked at iget time, but double check for good measure */
5796         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5797             (ei->i_extra_isize & 3)) {
5798                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5799                                  ei->i_extra_isize,
5800                                  EXT4_INODE_SIZE(inode->i_sb));
5801                 return -EFSCORRUPTED;
5802         }
5803         if ((new_extra_isize < ei->i_extra_isize) ||
5804             (new_extra_isize < 4) ||
5805             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5806                 return -EINVAL; /* Should never happen */
5807
5808         raw_inode = ext4_raw_inode(iloc);
5809
5810         header = IHDR(inode, raw_inode);
5811
5812         /* No extended attributes present */
5813         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5814             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5815                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5816                        EXT4_I(inode)->i_extra_isize, 0,
5817                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5818                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5819                 return 0;
5820         }
5821
5822         /*
5823          * We may need to allocate external xattr block so we need quotas
5824          * initialized. Here we can be called with various locks held so we
5825          * cannot affort to initialize quotas ourselves. So just bail.
5826          */
5827         if (dquot_initialize_needed(inode))
5828                 return -EAGAIN;
5829
5830         /* try to expand with EAs present */
5831         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5832                                            raw_inode, handle);
5833         if (error) {
5834                 /*
5835                  * Inode size expansion failed; don't try again
5836                  */
5837                 *no_expand = 1;
5838         }
5839
5840         return error;
5841 }
5842
5843 /*
5844  * Expand an inode by new_extra_isize bytes.
5845  * Returns 0 on success or negative error number on failure.
5846  */
5847 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5848                                           unsigned int new_extra_isize,
5849                                           struct ext4_iloc iloc,
5850                                           handle_t *handle)
5851 {
5852         int no_expand;
5853         int error;
5854
5855         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5856                 return -EOVERFLOW;
5857
5858         /*
5859          * In nojournal mode, we can immediately attempt to expand
5860          * the inode.  When journaled, we first need to obtain extra
5861          * buffer credits since we may write into the EA block
5862          * with this same handle. If journal_extend fails, then it will
5863          * only result in a minor loss of functionality for that inode.
5864          * If this is felt to be critical, then e2fsck should be run to
5865          * force a large enough s_min_extra_isize.
5866          */
5867         if (ext4_journal_extend(handle,
5868                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5869                 return -ENOSPC;
5870
5871         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5872                 return -EBUSY;
5873
5874         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5875                                           handle, &no_expand);
5876         ext4_write_unlock_xattr(inode, &no_expand);
5877
5878         return error;
5879 }
5880
5881 int ext4_expand_extra_isize(struct inode *inode,
5882                             unsigned int new_extra_isize,
5883                             struct ext4_iloc *iloc)
5884 {
5885         handle_t *handle;
5886         int no_expand;
5887         int error, rc;
5888
5889         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5890                 brelse(iloc->bh);
5891                 return -EOVERFLOW;
5892         }
5893
5894         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5895                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5896         if (IS_ERR(handle)) {
5897                 error = PTR_ERR(handle);
5898                 brelse(iloc->bh);
5899                 return error;
5900         }
5901
5902         ext4_write_lock_xattr(inode, &no_expand);
5903
5904         BUFFER_TRACE(iloc->bh, "get_write_access");
5905         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5906                                               EXT4_JTR_NONE);
5907         if (error) {
5908                 brelse(iloc->bh);
5909                 goto out_unlock;
5910         }
5911
5912         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5913                                           handle, &no_expand);
5914
5915         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5916         if (!error)
5917                 error = rc;
5918
5919 out_unlock:
5920         ext4_write_unlock_xattr(inode, &no_expand);
5921         ext4_journal_stop(handle);
5922         return error;
5923 }
5924
5925 /*
5926  * What we do here is to mark the in-core inode as clean with respect to inode
5927  * dirtiness (it may still be data-dirty).
5928  * This means that the in-core inode may be reaped by prune_icache
5929  * without having to perform any I/O.  This is a very good thing,
5930  * because *any* task may call prune_icache - even ones which
5931  * have a transaction open against a different journal.
5932  *
5933  * Is this cheating?  Not really.  Sure, we haven't written the
5934  * inode out, but prune_icache isn't a user-visible syncing function.
5935  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5936  * we start and wait on commits.
5937  */
5938 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5939                                 const char *func, unsigned int line)
5940 {
5941         struct ext4_iloc iloc;
5942         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5943         int err;
5944
5945         might_sleep();
5946         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5947         err = ext4_reserve_inode_write(handle, inode, &iloc);
5948         if (err)
5949                 goto out;
5950
5951         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5952                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5953                                                iloc, handle);
5954
5955         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5956 out:
5957         if (unlikely(err))
5958                 ext4_error_inode_err(inode, func, line, 0, err,
5959                                         "mark_inode_dirty error");
5960         return err;
5961 }
5962
5963 /*
5964  * ext4_dirty_inode() is called from __mark_inode_dirty()
5965  *
5966  * We're really interested in the case where a file is being extended.
5967  * i_size has been changed by generic_commit_write() and we thus need
5968  * to include the updated inode in the current transaction.
5969  *
5970  * Also, dquot_alloc_block() will always dirty the inode when blocks
5971  * are allocated to the file.
5972  *
5973  * If the inode is marked synchronous, we don't honour that here - doing
5974  * so would cause a commit on atime updates, which we don't bother doing.
5975  * We handle synchronous inodes at the highest possible level.
5976  */
5977 void ext4_dirty_inode(struct inode *inode, int flags)
5978 {
5979         handle_t *handle;
5980
5981         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5982         if (IS_ERR(handle))
5983                 return;
5984         ext4_mark_inode_dirty(handle, inode);
5985         ext4_journal_stop(handle);
5986 }
5987
5988 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5989 {
5990         journal_t *journal;
5991         handle_t *handle;
5992         int err;
5993         int alloc_ctx;
5994
5995         /*
5996          * We have to be very careful here: changing a data block's
5997          * journaling status dynamically is dangerous.  If we write a
5998          * data block to the journal, change the status and then delete
5999          * that block, we risk forgetting to revoke the old log record
6000          * from the journal and so a subsequent replay can corrupt data.
6001          * So, first we make sure that the journal is empty and that
6002          * nobody is changing anything.
6003          */
6004
6005         journal = EXT4_JOURNAL(inode);
6006         if (!journal)
6007                 return 0;
6008         if (is_journal_aborted(journal))
6009                 return -EROFS;
6010
6011         /* Wait for all existing dio workers */
6012         inode_dio_wait(inode);
6013
6014         /*
6015          * Before flushing the journal and switching inode's aops, we have
6016          * to flush all dirty data the inode has. There can be outstanding
6017          * delayed allocations, there can be unwritten extents created by
6018          * fallocate or buffered writes in dioread_nolock mode covered by
6019          * dirty data which can be converted only after flushing the dirty
6020          * data (and journalled aops don't know how to handle these cases).
6021          */
6022         if (val) {
6023                 filemap_invalidate_lock(inode->i_mapping);
6024                 err = filemap_write_and_wait(inode->i_mapping);
6025                 if (err < 0) {
6026                         filemap_invalidate_unlock(inode->i_mapping);
6027                         return err;
6028                 }
6029         }
6030
6031         alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6032         jbd2_journal_lock_updates(journal);
6033
6034         /*
6035          * OK, there are no updates running now, and all cached data is
6036          * synced to disk.  We are now in a completely consistent state
6037          * which doesn't have anything in the journal, and we know that
6038          * no filesystem updates are running, so it is safe to modify
6039          * the inode's in-core data-journaling state flag now.
6040          */
6041
6042         if (val)
6043                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6044         else {
6045                 err = jbd2_journal_flush(journal, 0);
6046                 if (err < 0) {
6047                         jbd2_journal_unlock_updates(journal);
6048                         ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6049                         return err;
6050                 }
6051                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6052         }
6053         ext4_set_aops(inode);
6054
6055         jbd2_journal_unlock_updates(journal);
6056         ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6057
6058         if (val)
6059                 filemap_invalidate_unlock(inode->i_mapping);
6060
6061         /* Finally we can mark the inode as dirty. */
6062
6063         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6064         if (IS_ERR(handle))
6065                 return PTR_ERR(handle);
6066
6067         ext4_fc_mark_ineligible(inode->i_sb,
6068                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6069         err = ext4_mark_inode_dirty(handle, inode);
6070         ext4_handle_sync(handle);
6071         ext4_journal_stop(handle);
6072         ext4_std_error(inode->i_sb, err);
6073
6074         return err;
6075 }
6076
6077 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6078                             struct buffer_head *bh)
6079 {
6080         return !buffer_mapped(bh);
6081 }
6082
6083 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6084 {
6085         struct vm_area_struct *vma = vmf->vma;
6086         struct folio *folio = page_folio(vmf->page);
6087         loff_t size;
6088         unsigned long len;
6089         int err;
6090         vm_fault_t ret;
6091         struct file *file = vma->vm_file;
6092         struct inode *inode = file_inode(file);
6093         struct address_space *mapping = inode->i_mapping;
6094         handle_t *handle;
6095         get_block_t *get_block;
6096         int retries = 0;
6097
6098         if (unlikely(IS_IMMUTABLE(inode)))
6099                 return VM_FAULT_SIGBUS;
6100
6101         sb_start_pagefault(inode->i_sb);
6102         file_update_time(vma->vm_file);
6103
6104         filemap_invalidate_lock_shared(mapping);
6105
6106         err = ext4_convert_inline_data(inode);
6107         if (err)
6108                 goto out_ret;
6109
6110         /*
6111          * On data journalling we skip straight to the transaction handle:
6112          * there's no delalloc; page truncated will be checked later; the
6113          * early return w/ all buffers mapped (calculates size/len) can't
6114          * be used; and there's no dioread_nolock, so only ext4_get_block.
6115          */
6116         if (ext4_should_journal_data(inode))
6117                 goto retry_alloc;
6118
6119         /* Delalloc case is easy... */
6120         if (test_opt(inode->i_sb, DELALLOC) &&
6121             !ext4_nonda_switch(inode->i_sb)) {
6122                 do {
6123                         err = block_page_mkwrite(vma, vmf,
6124                                                    ext4_da_get_block_prep);
6125                 } while (err == -ENOSPC &&
6126                        ext4_should_retry_alloc(inode->i_sb, &retries));
6127                 goto out_ret;
6128         }
6129
6130         folio_lock(folio);
6131         size = i_size_read(inode);
6132         /* Page got truncated from under us? */
6133         if (folio->mapping != mapping || folio_pos(folio) > size) {
6134                 folio_unlock(folio);
6135                 ret = VM_FAULT_NOPAGE;
6136                 goto out;
6137         }
6138
6139         len = folio_size(folio);
6140         if (folio_pos(folio) + len > size)
6141                 len = size - folio_pos(folio);
6142         /*
6143          * Return if we have all the buffers mapped. This avoids the need to do
6144          * journal_start/journal_stop which can block and take a long time
6145          *
6146          * This cannot be done for data journalling, as we have to add the
6147          * inode to the transaction's list to writeprotect pages on commit.
6148          */
6149         if (folio_buffers(folio)) {
6150                 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6151                                             0, len, NULL,
6152                                             ext4_bh_unmapped)) {
6153                         /* Wait so that we don't change page under IO */
6154                         folio_wait_stable(folio);
6155                         ret = VM_FAULT_LOCKED;
6156                         goto out;
6157                 }
6158         }
6159         folio_unlock(folio);
6160         /* OK, we need to fill the hole... */
6161         if (ext4_should_dioread_nolock(inode))
6162                 get_block = ext4_get_block_unwritten;
6163         else
6164                 get_block = ext4_get_block;
6165 retry_alloc:
6166         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6167                                     ext4_writepage_trans_blocks(inode));
6168         if (IS_ERR(handle)) {
6169                 ret = VM_FAULT_SIGBUS;
6170                 goto out;
6171         }
6172         /*
6173          * Data journalling can't use block_page_mkwrite() because it
6174          * will set_buffer_dirty() before do_journal_get_write_access()
6175          * thus might hit warning messages for dirty metadata buffers.
6176          */
6177         if (!ext4_should_journal_data(inode)) {
6178                 err = block_page_mkwrite(vma, vmf, get_block);
6179         } else {
6180                 folio_lock(folio);
6181                 size = i_size_read(inode);
6182                 /* Page got truncated from under us? */
6183                 if (folio->mapping != mapping || folio_pos(folio) > size) {
6184                         ret = VM_FAULT_NOPAGE;
6185                         goto out_error;
6186                 }
6187
6188                 len = folio_size(folio);
6189                 if (folio_pos(folio) + len > size)
6190                         len = size - folio_pos(folio);
6191
6192                 err = ext4_block_write_begin(handle, folio, 0, len,
6193                                              ext4_get_block);
6194                 if (!err) {
6195                         ret = VM_FAULT_SIGBUS;
6196                         if (ext4_journal_folio_buffers(handle, folio, len))
6197                                 goto out_error;
6198                 } else {
6199                         folio_unlock(folio);
6200                 }
6201         }
6202         ext4_journal_stop(handle);
6203         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6204                 goto retry_alloc;
6205 out_ret:
6206         ret = vmf_fs_error(err);
6207 out:
6208         filemap_invalidate_unlock_shared(mapping);
6209         sb_end_pagefault(inode->i_sb);
6210         return ret;
6211 out_error:
6212         folio_unlock(folio);
6213         ext4_journal_stop(handle);
6214         goto out;
6215 }
This page took 0.389366 seconds and 4 git commands to generate.