2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/nmi.h>
33 #include <linux/gfp.h>
35 #include <asm/processor.h>
36 #include <asm/bios_ebda.h>
37 #include <asm/system.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
42 #include <asm/fixmap.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
52 #include <asm/cacheflush.h>
55 static int __init parse_direct_gbpages_off(char *arg)
60 early_param("nogbpages", parse_direct_gbpages_off);
62 static int __init parse_direct_gbpages_on(char *arg)
67 early_param("gbpages", parse_direct_gbpages_on);
70 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
71 * physical space so we can cache the place of the first one and move
72 * around without checking the pgd every time.
75 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
76 EXPORT_SYMBOL_GPL(__supported_pte_mask);
78 int force_personality32;
82 * Control non executable heap for 32bit processes.
83 * To control the stack too use noexec=off
85 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
86 * off PROT_READ implies PROT_EXEC
88 static int __init nonx32_setup(char *str)
90 if (!strcmp(str, "on"))
91 force_personality32 &= ~READ_IMPLIES_EXEC;
92 else if (!strcmp(str, "off"))
93 force_personality32 |= READ_IMPLIES_EXEC;
96 __setup("noexec32=", nonx32_setup);
99 * When memory was added/removed make sure all the processes MM have
100 * suitable PGD entries in the local PGD level page.
102 void sync_global_pgds(unsigned long start, unsigned long end)
104 unsigned long address;
106 for (address = start; address <= end; address += PGDIR_SIZE) {
107 const pgd_t *pgd_ref = pgd_offset_k(address);
111 if (pgd_none(*pgd_ref))
114 spin_lock_irqsave(&pgd_lock, flags);
115 list_for_each_entry(page, &pgd_list, lru) {
117 spinlock_t *pgt_lock;
119 pgd = (pgd_t *)page_address(page) + pgd_index(address);
120 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
124 set_pgd(pgd, *pgd_ref);
126 BUG_ON(pgd_page_vaddr(*pgd)
127 != pgd_page_vaddr(*pgd_ref));
129 spin_unlock(pgt_lock);
131 spin_unlock_irqrestore(&pgd_lock, flags);
136 * NOTE: This function is marked __ref because it calls __init function
137 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
139 static __ref void *spp_getpage(void)
144 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
146 ptr = alloc_bootmem_pages(PAGE_SIZE);
148 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
149 panic("set_pte_phys: cannot allocate page data %s\n",
150 after_bootmem ? "after bootmem" : "");
153 pr_debug("spp_getpage %p\n", ptr);
158 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
160 if (pgd_none(*pgd)) {
161 pud_t *pud = (pud_t *)spp_getpage();
162 pgd_populate(&init_mm, pgd, pud);
163 if (pud != pud_offset(pgd, 0))
164 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
165 pud, pud_offset(pgd, 0));
167 return pud_offset(pgd, vaddr);
170 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
172 if (pud_none(*pud)) {
173 pmd_t *pmd = (pmd_t *) spp_getpage();
174 pud_populate(&init_mm, pud, pmd);
175 if (pmd != pmd_offset(pud, 0))
176 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
177 pmd, pmd_offset(pud, 0));
179 return pmd_offset(pud, vaddr);
182 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
184 if (pmd_none(*pmd)) {
185 pte_t *pte = (pte_t *) spp_getpage();
186 pmd_populate_kernel(&init_mm, pmd, pte);
187 if (pte != pte_offset_kernel(pmd, 0))
188 printk(KERN_ERR "PAGETABLE BUG #02!\n");
190 return pte_offset_kernel(pmd, vaddr);
193 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
199 pud = pud_page + pud_index(vaddr);
200 pmd = fill_pmd(pud, vaddr);
201 pte = fill_pte(pmd, vaddr);
203 set_pte(pte, new_pte);
206 * It's enough to flush this one mapping.
207 * (PGE mappings get flushed as well)
209 __flush_tlb_one(vaddr);
212 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
217 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
219 pgd = pgd_offset_k(vaddr);
220 if (pgd_none(*pgd)) {
222 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
225 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
226 set_pte_vaddr_pud(pud_page, vaddr, pteval);
229 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
234 pgd = pgd_offset_k(vaddr);
235 pud = fill_pud(pgd, vaddr);
236 return fill_pmd(pud, vaddr);
239 pte_t * __init populate_extra_pte(unsigned long vaddr)
243 pmd = populate_extra_pmd(vaddr);
244 return fill_pte(pmd, vaddr);
248 * Create large page table mappings for a range of physical addresses.
250 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
257 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
258 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
259 pgd = pgd_offset_k((unsigned long)__va(phys));
260 if (pgd_none(*pgd)) {
261 pud = (pud_t *) spp_getpage();
262 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
265 pud = pud_offset(pgd, (unsigned long)__va(phys));
266 if (pud_none(*pud)) {
267 pmd = (pmd_t *) spp_getpage();
268 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
271 pmd = pmd_offset(pud, phys);
272 BUG_ON(!pmd_none(*pmd));
273 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
277 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
279 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
282 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
284 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
288 * The head.S code sets up the kernel high mapping:
290 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
292 * phys_addr holds the negative offset to the kernel, which is added
293 * to the compile time generated pmds. This results in invalid pmds up
294 * to the point where we hit the physaddr 0 mapping.
296 * We limit the mappings to the region from _text to _end. _end is
297 * rounded up to the 2MB boundary. This catches the invalid pmds as
298 * well, as they are located before _text:
300 void __init cleanup_highmap(void)
302 unsigned long vaddr = __START_KERNEL_map;
303 unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
304 pmd_t *pmd = level2_kernel_pgt;
305 pmd_t *last_pmd = pmd + PTRS_PER_PMD;
307 for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
310 if (vaddr < (unsigned long) _text || vaddr > end)
311 set_pmd(pmd, __pmd(0));
315 static __ref void *alloc_low_page(unsigned long *phys)
317 unsigned long pfn = e820_table_end++;
321 adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
327 if (pfn >= e820_table_top)
328 panic("alloc_low_page: ran out of memory");
330 adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
332 *phys = pfn * PAGE_SIZE;
336 static __ref void unmap_low_page(void *adr)
341 early_iounmap(adr, PAGE_SIZE);
344 static unsigned long __meminit
345 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
349 unsigned long last_map_addr = end;
352 pte_t *pte = pte_page + pte_index(addr);
354 for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
357 if (!after_bootmem) {
358 for(; i < PTRS_PER_PTE; i++, pte++)
359 set_pte(pte, __pte(0));
365 * We will re-use the existing mapping.
366 * Xen for example has some special requirements, like mapping
367 * pagetable pages as RO. So assume someone who pre-setup
368 * these mappings are more intelligent.
376 printk(" pte=%p addr=%lx pte=%016lx\n",
377 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
379 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
380 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
383 update_page_count(PG_LEVEL_4K, pages);
385 return last_map_addr;
388 static unsigned long __meminit
389 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
392 pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
394 return phys_pte_init(pte, address, end, prot);
397 static unsigned long __meminit
398 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
399 unsigned long page_size_mask, pgprot_t prot)
401 unsigned long pages = 0;
402 unsigned long last_map_addr = end;
404 int i = pmd_index(address);
406 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
407 unsigned long pte_phys;
408 pmd_t *pmd = pmd_page + pmd_index(address);
410 pgprot_t new_prot = prot;
412 if (address >= end) {
413 if (!after_bootmem) {
414 for (; i < PTRS_PER_PMD; i++, pmd++)
415 set_pmd(pmd, __pmd(0));
421 if (!pmd_large(*pmd)) {
422 spin_lock(&init_mm.page_table_lock);
423 last_map_addr = phys_pte_update(pmd, address,
425 spin_unlock(&init_mm.page_table_lock);
429 * If we are ok with PG_LEVEL_2M mapping, then we will
430 * use the existing mapping,
432 * Otherwise, we will split the large page mapping but
433 * use the same existing protection bits except for
434 * large page, so that we don't violate Intel's TLB
435 * Application note (317080) which says, while changing
436 * the page sizes, new and old translations should
437 * not differ with respect to page frame and
440 if (page_size_mask & (1 << PG_LEVEL_2M)) {
444 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
447 if (page_size_mask & (1<<PG_LEVEL_2M)) {
449 spin_lock(&init_mm.page_table_lock);
450 set_pte((pte_t *)pmd,
451 pfn_pte(address >> PAGE_SHIFT,
452 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
453 spin_unlock(&init_mm.page_table_lock);
454 last_map_addr = (address & PMD_MASK) + PMD_SIZE;
458 pte = alloc_low_page(&pte_phys);
459 last_map_addr = phys_pte_init(pte, address, end, new_prot);
462 spin_lock(&init_mm.page_table_lock);
463 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
464 spin_unlock(&init_mm.page_table_lock);
466 update_page_count(PG_LEVEL_2M, pages);
467 return last_map_addr;
470 static unsigned long __meminit
471 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
472 unsigned long page_size_mask, pgprot_t prot)
474 pmd_t *pmd = pmd_offset(pud, 0);
475 unsigned long last_map_addr;
477 last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
479 return last_map_addr;
482 static unsigned long __meminit
483 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
484 unsigned long page_size_mask)
486 unsigned long pages = 0;
487 unsigned long last_map_addr = end;
488 int i = pud_index(addr);
490 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
491 unsigned long pmd_phys;
492 pud_t *pud = pud_page + pud_index(addr);
494 pgprot_t prot = PAGE_KERNEL;
499 if (!after_bootmem &&
500 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
501 set_pud(pud, __pud(0));
506 if (!pud_large(*pud)) {
507 last_map_addr = phys_pmd_update(pud, addr, end,
508 page_size_mask, prot);
512 * If we are ok with PG_LEVEL_1G mapping, then we will
513 * use the existing mapping.
515 * Otherwise, we will split the gbpage mapping but use
516 * the same existing protection bits except for large
517 * page, so that we don't violate Intel's TLB
518 * Application note (317080) which says, while changing
519 * the page sizes, new and old translations should
520 * not differ with respect to page frame and
523 if (page_size_mask & (1 << PG_LEVEL_1G)) {
527 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
530 if (page_size_mask & (1<<PG_LEVEL_1G)) {
532 spin_lock(&init_mm.page_table_lock);
533 set_pte((pte_t *)pud,
534 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
535 spin_unlock(&init_mm.page_table_lock);
536 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
540 pmd = alloc_low_page(&pmd_phys);
541 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
545 spin_lock(&init_mm.page_table_lock);
546 pud_populate(&init_mm, pud, __va(pmd_phys));
547 spin_unlock(&init_mm.page_table_lock);
551 update_page_count(PG_LEVEL_1G, pages);
553 return last_map_addr;
556 static unsigned long __meminit
557 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
558 unsigned long page_size_mask)
562 pud = (pud_t *)pgd_page_vaddr(*pgd);
564 return phys_pud_init(pud, addr, end, page_size_mask);
567 unsigned long __meminit
568 kernel_physical_mapping_init(unsigned long start,
570 unsigned long page_size_mask)
572 bool pgd_changed = false;
573 unsigned long next, last_map_addr = end;
576 start = (unsigned long)__va(start);
577 end = (unsigned long)__va(end);
580 for (; start < end; start = next) {
581 pgd_t *pgd = pgd_offset_k(start);
582 unsigned long pud_phys;
585 next = (start + PGDIR_SIZE) & PGDIR_MASK;
590 last_map_addr = phys_pud_update(pgd, __pa(start),
591 __pa(end), page_size_mask);
595 pud = alloc_low_page(&pud_phys);
596 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
600 spin_lock(&init_mm.page_table_lock);
601 pgd_populate(&init_mm, pgd, __va(pud_phys));
602 spin_unlock(&init_mm.page_table_lock);
607 sync_global_pgds(addr, end);
611 return last_map_addr;
615 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
618 memblock_x86_register_active_regions(0, start_pfn, end_pfn);
622 void __init paging_init(void)
624 unsigned long max_zone_pfns[MAX_NR_ZONES];
626 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
627 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
628 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
629 max_zone_pfns[ZONE_NORMAL] = max_pfn;
631 sparse_memory_present_with_active_regions(MAX_NUMNODES);
635 * clear the default setting with node 0
636 * note: don't use nodes_clear here, that is really clearing when
637 * numa support is not compiled in, and later node_set_state
638 * will not set it back.
640 node_clear_state(0, N_NORMAL_MEMORY);
642 free_area_init_nodes(max_zone_pfns);
646 * Memory hotplug specific functions
648 #ifdef CONFIG_MEMORY_HOTPLUG
650 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
653 static void update_end_of_memory_vars(u64 start, u64 size)
655 unsigned long end_pfn = PFN_UP(start + size);
657 if (end_pfn > max_pfn) {
659 max_low_pfn = end_pfn;
660 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
665 * Memory is added always to NORMAL zone. This means you will never get
666 * additional DMA/DMA32 memory.
668 int arch_add_memory(int nid, u64 start, u64 size)
670 struct pglist_data *pgdat = NODE_DATA(nid);
671 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
672 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
673 unsigned long nr_pages = size >> PAGE_SHIFT;
676 last_mapped_pfn = init_memory_mapping(start, start + size);
677 if (last_mapped_pfn > max_pfn_mapped)
678 max_pfn_mapped = last_mapped_pfn;
680 ret = __add_pages(nid, zone, start_pfn, nr_pages);
683 /* update max_pfn, max_low_pfn and high_memory */
684 update_end_of_memory_vars(start, size);
688 EXPORT_SYMBOL_GPL(arch_add_memory);
690 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
691 int memory_add_physaddr_to_nid(u64 start)
695 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
698 #endif /* CONFIG_MEMORY_HOTPLUG */
700 static struct kcore_list kcore_vsyscall;
702 void __init mem_init(void)
704 long codesize, reservedpages, datasize, initsize;
705 unsigned long absent_pages;
709 /* clear_bss() already clear the empty_zero_page */
713 /* this will put all low memory onto the freelists */
715 totalram_pages = numa_free_all_bootmem();
717 totalram_pages = free_all_bootmem();
720 absent_pages = absent_pages_in_range(0, max_pfn);
721 reservedpages = max_pfn - totalram_pages - absent_pages;
724 codesize = (unsigned long) &_etext - (unsigned long) &_text;
725 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
726 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
728 /* Register memory areas for /proc/kcore */
729 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
730 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
732 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
733 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
734 nr_free_pages() << (PAGE_SHIFT-10),
735 max_pfn << (PAGE_SHIFT-10),
737 absent_pages << (PAGE_SHIFT-10),
738 reservedpages << (PAGE_SHIFT-10),
743 #ifdef CONFIG_DEBUG_RODATA
744 const int rodata_test_data = 0xC3;
745 EXPORT_SYMBOL_GPL(rodata_test_data);
747 int kernel_set_to_readonly;
749 void set_kernel_text_rw(void)
751 unsigned long start = PFN_ALIGN(_text);
752 unsigned long end = PFN_ALIGN(__stop___ex_table);
754 if (!kernel_set_to_readonly)
757 pr_debug("Set kernel text: %lx - %lx for read write\n",
761 * Make the kernel identity mapping for text RW. Kernel text
762 * mapping will always be RO. Refer to the comment in
763 * static_protections() in pageattr.c
765 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
768 void set_kernel_text_ro(void)
770 unsigned long start = PFN_ALIGN(_text);
771 unsigned long end = PFN_ALIGN(__stop___ex_table);
773 if (!kernel_set_to_readonly)
776 pr_debug("Set kernel text: %lx - %lx for read only\n",
780 * Set the kernel identity mapping for text RO.
782 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
785 void mark_rodata_ro(void)
787 unsigned long start = PFN_ALIGN(_text);
788 unsigned long rodata_start =
789 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
790 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
791 unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
792 unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
793 unsigned long data_start = (unsigned long) &_sdata;
795 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
796 (end - start) >> 10);
797 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
799 kernel_set_to_readonly = 1;
802 * The rodata section (but not the kernel text!) should also be
805 set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
809 #ifdef CONFIG_CPA_DEBUG
810 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
811 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
813 printk(KERN_INFO "Testing CPA: again\n");
814 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
817 free_init_pages("unused kernel memory",
818 (unsigned long) page_address(virt_to_page(text_end)),
820 page_address(virt_to_page(rodata_start)));
821 free_init_pages("unused kernel memory",
822 (unsigned long) page_address(virt_to_page(rodata_end)),
823 (unsigned long) page_address(virt_to_page(data_start)));
828 int kern_addr_valid(unsigned long addr)
830 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
836 if (above != 0 && above != -1UL)
839 pgd = pgd_offset_k(addr);
843 pud = pud_offset(pgd, addr);
847 pmd = pmd_offset(pud, addr);
852 return pfn_valid(pmd_pfn(*pmd));
854 pte = pte_offset_kernel(pmd, addr);
858 return pfn_valid(pte_pfn(*pte));
862 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
863 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
864 * not need special handling anymore:
866 static struct vm_area_struct gate_vma = {
867 .vm_start = VSYSCALL_START,
868 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
869 .vm_page_prot = PAGE_READONLY_EXEC,
870 .vm_flags = VM_READ | VM_EXEC
873 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
875 #ifdef CONFIG_IA32_EMULATION
876 if (test_tsk_thread_flag(tsk, TIF_IA32))
882 int in_gate_area(struct task_struct *task, unsigned long addr)
884 struct vm_area_struct *vma = get_gate_vma(task);
889 return (addr >= vma->vm_start) && (addr < vma->vm_end);
893 * Use this when you have no reliable task/vma, typically from interrupt
894 * context. It is less reliable than using the task's vma and may give
897 int in_gate_area_no_task(unsigned long addr)
899 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
902 const char *arch_vma_name(struct vm_area_struct *vma)
904 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
906 if (vma == &gate_vma)
911 #ifdef CONFIG_SPARSEMEM_VMEMMAP
913 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
915 static long __meminitdata addr_start, addr_end;
916 static void __meminitdata *p_start, *p_end;
917 static int __meminitdata node_start;
920 vmemmap_populate(struct page *start_page, unsigned long size, int node)
922 unsigned long addr = (unsigned long)start_page;
923 unsigned long end = (unsigned long)(start_page + size);
929 for (; addr < end; addr = next) {
932 pgd = vmemmap_pgd_populate(addr, node);
936 pud = vmemmap_pud_populate(pgd, addr, node);
941 next = (addr + PAGE_SIZE) & PAGE_MASK;
942 pmd = vmemmap_pmd_populate(pud, addr, node);
947 p = vmemmap_pte_populate(pmd, addr, node);
952 addr_end = addr + PAGE_SIZE;
953 p_end = p + PAGE_SIZE;
955 next = pmd_addr_end(addr, end);
957 pmd = pmd_offset(pud, addr);
958 if (pmd_none(*pmd)) {
961 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
965 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
967 set_pmd(pmd, __pmd(pte_val(entry)));
969 /* check to see if we have contiguous blocks */
970 if (p_end != p || node_start != node) {
972 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
973 addr_start, addr_end-1, p_start, p_end-1, node_start);
979 addr_end = addr + PMD_SIZE;
980 p_end = p + PMD_SIZE;
982 vmemmap_verify((pte_t *)pmd, node, addr, next);
986 sync_global_pgds((unsigned long)start_page, end);
990 void __meminit vmemmap_populate_print_last(void)
993 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
994 addr_start, addr_end-1, p_start, p_end-1, node_start);