3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/jiffies.h>
19 #include <linux/sched.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/mtd/rawnand.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/omap-dma.h>
25 #include <linux/slab.h>
27 #include <linux/of_device.h>
29 #include <linux/mtd/nand_bch.h>
30 #include <linux/platform_data/elm.h>
32 #include <linux/omap-gpmc.h>
33 #include <linux/platform_data/mtd-nand-omap2.h>
35 #define DRIVER_NAME "omap2-nand"
36 #define OMAP_NAND_TIMEOUT_MS 5000
38 #define NAND_Ecc_P1e (1 << 0)
39 #define NAND_Ecc_P2e (1 << 1)
40 #define NAND_Ecc_P4e (1 << 2)
41 #define NAND_Ecc_P8e (1 << 3)
42 #define NAND_Ecc_P16e (1 << 4)
43 #define NAND_Ecc_P32e (1 << 5)
44 #define NAND_Ecc_P64e (1 << 6)
45 #define NAND_Ecc_P128e (1 << 7)
46 #define NAND_Ecc_P256e (1 << 8)
47 #define NAND_Ecc_P512e (1 << 9)
48 #define NAND_Ecc_P1024e (1 << 10)
49 #define NAND_Ecc_P2048e (1 << 11)
51 #define NAND_Ecc_P1o (1 << 16)
52 #define NAND_Ecc_P2o (1 << 17)
53 #define NAND_Ecc_P4o (1 << 18)
54 #define NAND_Ecc_P8o (1 << 19)
55 #define NAND_Ecc_P16o (1 << 20)
56 #define NAND_Ecc_P32o (1 << 21)
57 #define NAND_Ecc_P64o (1 << 22)
58 #define NAND_Ecc_P128o (1 << 23)
59 #define NAND_Ecc_P256o (1 << 24)
60 #define NAND_Ecc_P512o (1 << 25)
61 #define NAND_Ecc_P1024o (1 << 26)
62 #define NAND_Ecc_P2048o (1 << 27)
64 #define TF(value) (value ? 1 : 0)
66 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
67 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
68 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
69 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
70 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
71 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
72 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
73 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
75 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
76 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
77 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
78 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
79 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
80 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
81 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
82 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
84 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
85 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
86 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
87 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
88 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
89 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
90 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
91 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
93 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
94 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
95 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
96 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
97 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
98 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
99 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
100 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
102 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
103 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
105 #define PREFETCH_CONFIG1_CS_SHIFT 24
106 #define ECC_CONFIG_CS_SHIFT 1
108 #define ENABLE_PREFETCH (0x1 << 7)
109 #define DMA_MPU_MODE_SHIFT 2
110 #define ECCSIZE0_SHIFT 12
111 #define ECCSIZE1_SHIFT 22
112 #define ECC1RESULTSIZE 0x1
113 #define ECCCLEAR 0x100
115 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
116 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
117 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
118 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
119 #define STATUS_BUFF_EMPTY 0x00000001
121 #define SECTOR_BYTES 512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD 4
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
137 #define BADBLOCK_MARKER_LENGTH 2
139 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
140 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
141 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
143 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
144 0xac, 0x6b, 0xff, 0x99, 0x7b};
145 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
147 struct omap_nand_info {
148 struct nand_chip nand;
149 struct platform_device *pdev;
153 enum nand_io xfer_type;
155 enum omap_ecc ecc_opt;
156 struct device_node *elm_of_node;
158 unsigned long phys_base;
159 struct completion comp;
160 struct dma_chan *dma;
164 OMAP_NAND_IO_READ = 0, /* read */
165 OMAP_NAND_IO_WRITE, /* write */
169 /* Interface to GPMC */
170 struct gpmc_nand_regs reg;
171 struct gpmc_nand_ops *ops;
173 /* fields specific for BCHx_HW ECC scheme */
174 struct device *elm_dev;
175 /* NAND ready gpio */
176 struct gpio_desc *ready_gpiod;
179 static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
181 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
185 * omap_prefetch_enable - configures and starts prefetch transfer
186 * @cs: cs (chip select) number
187 * @fifo_th: fifo threshold to be used for read/ write
188 * @dma_mode: dma mode enable (1) or disable (0)
189 * @u32_count: number of bytes to be transferred
190 * @is_write: prefetch read(0) or write post(1) mode
192 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
193 unsigned int u32_count, int is_write, struct omap_nand_info *info)
197 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
200 if (readl(info->reg.gpmc_prefetch_control))
203 /* Set the amount of bytes to be prefetched */
204 writel(u32_count, info->reg.gpmc_prefetch_config2);
206 /* Set dma/mpu mode, the prefetch read / post write and
207 * enable the engine. Set which cs is has requested for.
209 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
210 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
211 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
212 writel(val, info->reg.gpmc_prefetch_config1);
214 /* Start the prefetch engine */
215 writel(0x1, info->reg.gpmc_prefetch_control);
221 * omap_prefetch_reset - disables and stops the prefetch engine
223 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
227 /* check if the same module/cs is trying to reset */
228 config1 = readl(info->reg.gpmc_prefetch_config1);
229 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
232 /* Stop the PFPW engine */
233 writel(0x0, info->reg.gpmc_prefetch_control);
235 /* Reset/disable the PFPW engine */
236 writel(0x0, info->reg.gpmc_prefetch_config1);
242 * omap_hwcontrol - hardware specific access to control-lines
243 * @chip: NAND chip object
244 * @cmd: command to device
246 * NAND_NCE: bit 0 -> don't care
247 * NAND_CLE: bit 1 -> Command Latch
248 * NAND_ALE: bit 2 -> Address Latch
250 * NOTE: boards may use different bits for these!!
252 static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl)
254 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
256 if (cmd != NAND_CMD_NONE) {
258 writeb(cmd, info->reg.gpmc_nand_command);
260 else if (ctrl & NAND_ALE)
261 writeb(cmd, info->reg.gpmc_nand_address);
264 writeb(cmd, info->reg.gpmc_nand_data);
269 * omap_read_buf8 - read data from NAND controller into buffer
270 * @mtd: MTD device structure
271 * @buf: buffer to store date
272 * @len: number of bytes to read
274 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
276 struct nand_chip *nand = mtd_to_nand(mtd);
278 ioread8_rep(nand->legacy.IO_ADDR_R, buf, len);
282 * omap_write_buf8 - write buffer to NAND controller
283 * @mtd: MTD device structure
285 * @len: number of bytes to write
287 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
289 struct omap_nand_info *info = mtd_to_omap(mtd);
290 u_char *p = (u_char *)buf;
294 iowrite8(*p++, info->nand.legacy.IO_ADDR_W);
295 /* wait until buffer is available for write */
297 status = info->ops->nand_writebuffer_empty();
303 * omap_read_buf16 - read data from NAND controller into buffer
304 * @mtd: MTD device structure
305 * @buf: buffer to store date
306 * @len: number of bytes to read
308 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
310 struct nand_chip *nand = mtd_to_nand(mtd);
312 ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2);
316 * omap_write_buf16 - write buffer to NAND controller
317 * @mtd: MTD device structure
319 * @len: number of bytes to write
321 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
323 struct omap_nand_info *info = mtd_to_omap(mtd);
324 u16 *p = (u16 *) buf;
326 /* FIXME try bursts of writesw() or DMA ... */
330 iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
331 /* wait until buffer is available for write */
333 status = info->ops->nand_writebuffer_empty();
339 * omap_read_buf_pref - read data from NAND controller into buffer
340 * @chip: NAND chip object
341 * @buf: buffer to store date
342 * @len: number of bytes to read
344 static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len)
346 struct mtd_info *mtd = nand_to_mtd(chip);
347 struct omap_nand_info *info = mtd_to_omap(mtd);
348 uint32_t r_count = 0;
352 /* take care of subpage reads */
354 if (info->nand.options & NAND_BUSWIDTH_16)
355 omap_read_buf16(mtd, buf, len % 4);
357 omap_read_buf8(mtd, buf, len % 4);
358 p = (u32 *) (buf + len % 4);
362 /* configure and start prefetch transfer */
363 ret = omap_prefetch_enable(info->gpmc_cs,
364 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
366 /* PFPW engine is busy, use cpu copy method */
367 if (info->nand.options & NAND_BUSWIDTH_16)
368 omap_read_buf16(mtd, (u_char *)p, len);
370 omap_read_buf8(mtd, (u_char *)p, len);
373 r_count = readl(info->reg.gpmc_prefetch_status);
374 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
375 r_count = r_count >> 2;
376 ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count);
380 /* disable and stop the PFPW engine */
381 omap_prefetch_reset(info->gpmc_cs, info);
386 * omap_write_buf_pref - write buffer to NAND controller
387 * @chip: NAND chip object
389 * @len: number of bytes to write
391 static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf,
394 struct mtd_info *mtd = nand_to_mtd(chip);
395 struct omap_nand_info *info = mtd_to_omap(mtd);
396 uint32_t w_count = 0;
399 unsigned long tim, limit;
402 /* take care of subpage writes */
404 writeb(*buf, info->nand.legacy.IO_ADDR_W);
405 p = (u16 *)(buf + 1);
409 /* configure and start prefetch transfer */
410 ret = omap_prefetch_enable(info->gpmc_cs,
411 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
413 /* PFPW engine is busy, use cpu copy method */
414 if (info->nand.options & NAND_BUSWIDTH_16)
415 omap_write_buf16(mtd, (u_char *)p, len);
417 omap_write_buf8(mtd, (u_char *)p, len);
420 w_count = readl(info->reg.gpmc_prefetch_status);
421 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
422 w_count = w_count >> 1;
423 for (i = 0; (i < w_count) && len; i++, len -= 2)
424 iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
426 /* wait for data to flushed-out before reset the prefetch */
428 limit = (loops_per_jiffy *
429 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
432 val = readl(info->reg.gpmc_prefetch_status);
433 val = PREFETCH_STATUS_COUNT(val);
434 } while (val && (tim++ < limit));
436 /* disable and stop the PFPW engine */
437 omap_prefetch_reset(info->gpmc_cs, info);
442 * omap_nand_dma_callback: callback on the completion of dma transfer
443 * @data: pointer to completion data structure
445 static void omap_nand_dma_callback(void *data)
447 complete((struct completion *) data);
451 * omap_nand_dma_transfer: configure and start dma transfer
452 * @mtd: MTD device structure
453 * @addr: virtual address in RAM of source/destination
454 * @len: number of data bytes to be transferred
455 * @is_write: flag for read/write operation
457 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
458 unsigned int len, int is_write)
460 struct omap_nand_info *info = mtd_to_omap(mtd);
461 struct dma_async_tx_descriptor *tx;
462 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
464 struct scatterlist sg;
465 unsigned long tim, limit;
470 if (!virt_addr_valid(addr))
473 sg_init_one(&sg, addr, len);
474 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
476 dev_err(&info->pdev->dev,
477 "Couldn't DMA map a %d byte buffer\n", len);
481 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
482 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
483 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
487 tx->callback = omap_nand_dma_callback;
488 tx->callback_param = &info->comp;
489 dmaengine_submit(tx);
491 init_completion(&info->comp);
493 /* setup and start DMA using dma_addr */
494 dma_async_issue_pending(info->dma);
496 /* configure and start prefetch transfer */
497 ret = omap_prefetch_enable(info->gpmc_cs,
498 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
500 /* PFPW engine is busy, use cpu copy method */
503 wait_for_completion(&info->comp);
505 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
509 val = readl(info->reg.gpmc_prefetch_status);
510 val = PREFETCH_STATUS_COUNT(val);
511 } while (val && (tim++ < limit));
513 /* disable and stop the PFPW engine */
514 omap_prefetch_reset(info->gpmc_cs, info);
516 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
520 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
522 if (info->nand.options & NAND_BUSWIDTH_16)
523 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
524 : omap_write_buf16(mtd, (u_char *) addr, len);
526 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
527 : omap_write_buf8(mtd, (u_char *) addr, len);
532 * omap_read_buf_dma_pref - read data from NAND controller into buffer
533 * @chip: NAND chip object
534 * @buf: buffer to store date
535 * @len: number of bytes to read
537 static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf,
540 struct mtd_info *mtd = nand_to_mtd(chip);
542 if (len <= mtd->oobsize)
543 omap_read_buf_pref(chip, buf, len);
545 /* start transfer in DMA mode */
546 omap_nand_dma_transfer(mtd, buf, len, 0x0);
550 * omap_write_buf_dma_pref - write buffer to NAND controller
551 * @chip: NAND chip object
553 * @len: number of bytes to write
555 static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf,
558 struct mtd_info *mtd = nand_to_mtd(chip);
560 if (len <= mtd->oobsize)
561 omap_write_buf_pref(chip, buf, len);
563 /* start transfer in DMA mode */
564 omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1);
568 * omap_nand_irq - GPMC irq handler
569 * @this_irq: gpmc irq number
570 * @dev: omap_nand_info structure pointer is passed here
572 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
574 struct omap_nand_info *info = (struct omap_nand_info *) dev;
577 bytes = readl(info->reg.gpmc_prefetch_status);
578 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
579 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
580 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
581 if (this_irq == info->gpmc_irq_count)
584 if (info->buf_len && (info->buf_len < bytes))
585 bytes = info->buf_len;
586 else if (!info->buf_len)
588 iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf,
590 info->buf = info->buf + bytes;
591 info->buf_len -= bytes;
594 ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf,
596 info->buf = info->buf + bytes;
598 if (this_irq == info->gpmc_irq_count)
605 complete(&info->comp);
607 disable_irq_nosync(info->gpmc_irq_fifo);
608 disable_irq_nosync(info->gpmc_irq_count);
614 * omap_read_buf_irq_pref - read data from NAND controller into buffer
615 * @chip: NAND chip object
616 * @buf: buffer to store date
617 * @len: number of bytes to read
619 static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
622 struct mtd_info *mtd = nand_to_mtd(chip);
623 struct omap_nand_info *info = mtd_to_omap(mtd);
626 if (len <= mtd->oobsize) {
627 omap_read_buf_pref(chip, buf, len);
631 info->iomode = OMAP_NAND_IO_READ;
633 init_completion(&info->comp);
635 /* configure and start prefetch transfer */
636 ret = omap_prefetch_enable(info->gpmc_cs,
637 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
639 /* PFPW engine is busy, use cpu copy method */
644 enable_irq(info->gpmc_irq_count);
645 enable_irq(info->gpmc_irq_fifo);
647 /* waiting for read to complete */
648 wait_for_completion(&info->comp);
650 /* disable and stop the PFPW engine */
651 omap_prefetch_reset(info->gpmc_cs, info);
655 if (info->nand.options & NAND_BUSWIDTH_16)
656 omap_read_buf16(mtd, buf, len);
658 omap_read_buf8(mtd, buf, len);
662 * omap_write_buf_irq_pref - write buffer to NAND controller
663 * @chip: NAND chip object
665 * @len: number of bytes to write
667 static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
670 struct mtd_info *mtd = nand_to_mtd(chip);
671 struct omap_nand_info *info = mtd_to_omap(mtd);
673 unsigned long tim, limit;
676 if (len <= mtd->oobsize) {
677 omap_write_buf_pref(chip, buf, len);
681 info->iomode = OMAP_NAND_IO_WRITE;
682 info->buf = (u_char *) buf;
683 init_completion(&info->comp);
685 /* configure and start prefetch transfer : size=24 */
686 ret = omap_prefetch_enable(info->gpmc_cs,
687 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
689 /* PFPW engine is busy, use cpu copy method */
694 enable_irq(info->gpmc_irq_count);
695 enable_irq(info->gpmc_irq_fifo);
697 /* waiting for write to complete */
698 wait_for_completion(&info->comp);
700 /* wait for data to flushed-out before reset the prefetch */
702 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
704 val = readl(info->reg.gpmc_prefetch_status);
705 val = PREFETCH_STATUS_COUNT(val);
707 } while (val && (tim++ < limit));
709 /* disable and stop the PFPW engine */
710 omap_prefetch_reset(info->gpmc_cs, info);
714 if (info->nand.options & NAND_BUSWIDTH_16)
715 omap_write_buf16(mtd, buf, len);
717 omap_write_buf8(mtd, buf, len);
721 * gen_true_ecc - This function will generate true ECC value
722 * @ecc_buf: buffer to store ecc code
724 * This generated true ECC value can be used when correcting
725 * data read from NAND flash memory core
727 static void gen_true_ecc(u8 *ecc_buf)
729 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
730 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
732 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
733 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
734 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
735 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
736 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
737 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
741 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
742 * @ecc_data1: ecc code from nand spare area
743 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
744 * @page_data: page data
746 * This function compares two ECC's and indicates if there is an error.
747 * If the error can be corrected it will be corrected to the buffer.
748 * If there is no error, %0 is returned. If there is an error but it
749 * was corrected, %1 is returned. Otherwise, %-1 is returned.
751 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
752 u8 *ecc_data2, /* read from register */
756 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
757 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
764 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
766 gen_true_ecc(ecc_data1);
767 gen_true_ecc(ecc_data2);
769 for (i = 0; i <= 2; i++) {
770 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
771 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
774 for (i = 0; i < 8; i++) {
775 tmp0_bit[i] = *ecc_data1 % 2;
776 *ecc_data1 = *ecc_data1 / 2;
779 for (i = 0; i < 8; i++) {
780 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
781 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
784 for (i = 0; i < 8; i++) {
785 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
786 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
789 for (i = 0; i < 8; i++) {
790 comp0_bit[i] = *ecc_data2 % 2;
791 *ecc_data2 = *ecc_data2 / 2;
794 for (i = 0; i < 8; i++) {
795 comp1_bit[i] = *(ecc_data2 + 1) % 2;
796 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
799 for (i = 0; i < 8; i++) {
800 comp2_bit[i] = *(ecc_data2 + 2) % 2;
801 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
804 for (i = 0; i < 6; i++)
805 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
807 for (i = 0; i < 8; i++)
808 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
810 for (i = 0; i < 8; i++)
811 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
813 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
814 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
816 for (i = 0; i < 24; i++)
817 ecc_sum += ecc_bit[i];
821 /* Not reached because this function is not called if
822 * ECC values are equal
827 /* Uncorrectable error */
828 pr_debug("ECC UNCORRECTED_ERROR 1\n");
832 /* UN-Correctable error */
833 pr_debug("ECC UNCORRECTED_ERROR B\n");
837 /* Correctable error */
838 find_byte = (ecc_bit[23] << 8) +
848 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
850 pr_debug("Correcting single bit ECC error at offset: "
851 "%d, bit: %d\n", find_byte, find_bit);
853 page_data[find_byte] ^= (1 << find_bit);
858 if (ecc_data2[0] == 0 &&
863 pr_debug("UNCORRECTED_ERROR default\n");
869 * omap_correct_data - Compares the ECC read with HW generated ECC
870 * @chip: NAND chip object
872 * @read_ecc: ecc read from nand flash
873 * @calc_ecc: ecc read from HW ECC registers
875 * Compares the ecc read from nand spare area with ECC registers values
876 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
877 * detection and correction. If there are no errors, %0 is returned. If
878 * there were errors and all of the errors were corrected, the number of
879 * corrected errors is returned. If uncorrectable errors exist, %-1 is
882 static int omap_correct_data(struct nand_chip *chip, u_char *dat,
883 u_char *read_ecc, u_char *calc_ecc)
885 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
886 int blockCnt = 0, i = 0, ret = 0;
889 /* Ex NAND_ECC_HW12_2048 */
890 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
891 (info->nand.ecc.size == 2048))
896 for (i = 0; i < blockCnt; i++) {
897 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
898 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
901 /* keep track of the number of corrected errors */
912 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
913 * @chip: NAND chip object
914 * @dat: The pointer to data on which ecc is computed
915 * @ecc_code: The ecc_code buffer
917 * Using noninverted ECC can be considered ugly since writing a blank
918 * page ie. padding will clear the ECC bytes. This is no problem as long
919 * nobody is trying to write data on the seemingly unused page. Reading
920 * an erased page will produce an ECC mismatch between generated and read
921 * ECC bytes that has to be dealt with separately.
923 static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
926 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
929 val = readl(info->reg.gpmc_ecc_config);
930 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
933 /* read ecc result */
934 val = readl(info->reg.gpmc_ecc1_result);
935 *ecc_code++ = val; /* P128e, ..., P1e */
936 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
937 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
938 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
944 * omap_enable_hwecc - This function enables the hardware ecc functionality
945 * @mtd: MTD device structure
946 * @mode: Read/Write mode
948 static void omap_enable_hwecc(struct nand_chip *chip, int mode)
950 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
951 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
954 /* clear ecc and enable bits */
955 val = ECCCLEAR | ECC1;
956 writel(val, info->reg.gpmc_ecc_control);
958 /* program ecc and result sizes */
959 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
961 writel(val, info->reg.gpmc_ecc_size_config);
966 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
968 case NAND_ECC_READSYN:
969 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
972 dev_info(&info->pdev->dev,
973 "error: unrecognized Mode[%d]!\n", mode);
977 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
978 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
979 writel(val, info->reg.gpmc_ecc_config);
983 * omap_wait - wait until the command is done
984 * @this: NAND Chip structure
986 * Wait function is called during Program and erase operations and
987 * the way it is called from MTD layer, we should wait till the NAND
988 * chip is ready after the programming/erase operation has completed.
990 * Erase can take up to 400ms and program up to 20ms according to
991 * general NAND and SmartMedia specs
993 static int omap_wait(struct nand_chip *this)
995 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this));
996 unsigned long timeo = jiffies;
997 int status, state = this->state;
999 if (state == FL_ERASING)
1000 timeo += msecs_to_jiffies(400);
1002 timeo += msecs_to_jiffies(20);
1004 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1005 while (time_before(jiffies, timeo)) {
1006 status = readb(info->reg.gpmc_nand_data);
1007 if (status & NAND_STATUS_READY)
1012 status = readb(info->reg.gpmc_nand_data);
1017 * omap_dev_ready - checks the NAND Ready GPIO line
1018 * @mtd: MTD device structure
1020 * Returns true if ready and false if busy.
1022 static int omap_dev_ready(struct nand_chip *chip)
1024 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1026 return gpiod_get_value(info->ready_gpiod);
1030 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1031 * @mtd: MTD device structure
1032 * @mode: Read/Write mode
1034 * When using BCH with SW correction (i.e. no ELM), sector size is set
1035 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1036 * for both reading and writing with:
1037 * eccsize0 = 0 (no additional protected byte in spare area)
1038 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1040 static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
1043 unsigned int bch_type;
1044 unsigned int dev_width, nsectors;
1045 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1046 enum omap_ecc ecc_opt = info->ecc_opt;
1048 unsigned int ecc_size1, ecc_size0;
1050 /* GPMC configurations for calculating ECC */
1052 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1055 wr_mode = BCH_WRAPMODE_6;
1056 ecc_size0 = BCH_ECC_SIZE0;
1057 ecc_size1 = BCH_ECC_SIZE1;
1059 case OMAP_ECC_BCH4_CODE_HW:
1061 nsectors = chip->ecc.steps;
1062 if (mode == NAND_ECC_READ) {
1063 wr_mode = BCH_WRAPMODE_1;
1064 ecc_size0 = BCH4R_ECC_SIZE0;
1065 ecc_size1 = BCH4R_ECC_SIZE1;
1067 wr_mode = BCH_WRAPMODE_6;
1068 ecc_size0 = BCH_ECC_SIZE0;
1069 ecc_size1 = BCH_ECC_SIZE1;
1072 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1075 wr_mode = BCH_WRAPMODE_6;
1076 ecc_size0 = BCH_ECC_SIZE0;
1077 ecc_size1 = BCH_ECC_SIZE1;
1079 case OMAP_ECC_BCH8_CODE_HW:
1081 nsectors = chip->ecc.steps;
1082 if (mode == NAND_ECC_READ) {
1083 wr_mode = BCH_WRAPMODE_1;
1084 ecc_size0 = BCH8R_ECC_SIZE0;
1085 ecc_size1 = BCH8R_ECC_SIZE1;
1087 wr_mode = BCH_WRAPMODE_6;
1088 ecc_size0 = BCH_ECC_SIZE0;
1089 ecc_size1 = BCH_ECC_SIZE1;
1092 case OMAP_ECC_BCH16_CODE_HW:
1094 nsectors = chip->ecc.steps;
1095 if (mode == NAND_ECC_READ) {
1097 ecc_size0 = 52; /* ECC bits in nibbles per sector */
1098 ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
1101 ecc_size0 = 0; /* extra bits in nibbles per sector */
1102 ecc_size1 = 52; /* OOB bits in nibbles per sector */
1109 writel(ECC1, info->reg.gpmc_ecc_control);
1111 /* Configure ecc size for BCH */
1112 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1113 writel(val, info->reg.gpmc_ecc_size_config);
1115 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1117 /* BCH configuration */
1118 val = ((1 << 16) | /* enable BCH */
1119 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
1120 (wr_mode << 8) | /* wrap mode */
1121 (dev_width << 7) | /* bus width */
1122 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1123 (info->gpmc_cs << 1) | /* ECC CS */
1124 (0x1)); /* enable ECC */
1126 writel(val, info->reg.gpmc_ecc_config);
1128 /* Clear ecc and enable bits */
1129 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1132 static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1133 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1134 0x97, 0x79, 0xe5, 0x24, 0xb5};
1137 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
1138 * @mtd: MTD device structure
1139 * @dat: The pointer to data on which ecc is computed
1140 * @ecc_code: The ecc_code buffer
1141 * @i: The sector number (for a multi sector page)
1143 * Support calculating of BCH4/8/16 ECC vectors for one sector
1144 * within a page. Sector number is in @i.
1146 static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1147 const u_char *dat, u_char *ecc_calc, int i)
1149 struct omap_nand_info *info = mtd_to_omap(mtd);
1150 int eccbytes = info->nand.ecc.bytes;
1151 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1153 unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1157 ecc_code = ecc_calc;
1158 switch (info->ecc_opt) {
1159 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1160 case OMAP_ECC_BCH8_CODE_HW:
1161 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1162 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1163 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1164 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1165 *ecc_code++ = (bch_val4 & 0xFF);
1166 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1167 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1168 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1169 *ecc_code++ = (bch_val3 & 0xFF);
1170 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1171 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1172 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1173 *ecc_code++ = (bch_val2 & 0xFF);
1174 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1175 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1176 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1177 *ecc_code++ = (bch_val1 & 0xFF);
1179 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1180 case OMAP_ECC_BCH4_CODE_HW:
1181 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1182 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1183 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1184 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1185 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1186 ((bch_val1 >> 28) & 0xF);
1187 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1188 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1189 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1190 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1192 case OMAP_ECC_BCH16_CODE_HW:
1193 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1194 ecc_code[0] = ((val >> 8) & 0xFF);
1195 ecc_code[1] = ((val >> 0) & 0xFF);
1196 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1197 ecc_code[2] = ((val >> 24) & 0xFF);
1198 ecc_code[3] = ((val >> 16) & 0xFF);
1199 ecc_code[4] = ((val >> 8) & 0xFF);
1200 ecc_code[5] = ((val >> 0) & 0xFF);
1201 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1202 ecc_code[6] = ((val >> 24) & 0xFF);
1203 ecc_code[7] = ((val >> 16) & 0xFF);
1204 ecc_code[8] = ((val >> 8) & 0xFF);
1205 ecc_code[9] = ((val >> 0) & 0xFF);
1206 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1207 ecc_code[10] = ((val >> 24) & 0xFF);
1208 ecc_code[11] = ((val >> 16) & 0xFF);
1209 ecc_code[12] = ((val >> 8) & 0xFF);
1210 ecc_code[13] = ((val >> 0) & 0xFF);
1211 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1212 ecc_code[14] = ((val >> 24) & 0xFF);
1213 ecc_code[15] = ((val >> 16) & 0xFF);
1214 ecc_code[16] = ((val >> 8) & 0xFF);
1215 ecc_code[17] = ((val >> 0) & 0xFF);
1216 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1217 ecc_code[18] = ((val >> 24) & 0xFF);
1218 ecc_code[19] = ((val >> 16) & 0xFF);
1219 ecc_code[20] = ((val >> 8) & 0xFF);
1220 ecc_code[21] = ((val >> 0) & 0xFF);
1221 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1222 ecc_code[22] = ((val >> 24) & 0xFF);
1223 ecc_code[23] = ((val >> 16) & 0xFF);
1224 ecc_code[24] = ((val >> 8) & 0xFF);
1225 ecc_code[25] = ((val >> 0) & 0xFF);
1231 /* ECC scheme specific syndrome customizations */
1232 switch (info->ecc_opt) {
1233 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1234 /* Add constant polynomial to remainder, so that
1235 * ECC of blank pages results in 0x0 on reading back
1237 for (j = 0; j < eccbytes; j++)
1238 ecc_calc[j] ^= bch4_polynomial[j];
1240 case OMAP_ECC_BCH4_CODE_HW:
1241 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1242 ecc_calc[eccbytes - 1] = 0x0;
1244 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1245 /* Add constant polynomial to remainder, so that
1246 * ECC of blank pages results in 0x0 on reading back
1248 for (j = 0; j < eccbytes; j++)
1249 ecc_calc[j] ^= bch8_polynomial[j];
1251 case OMAP_ECC_BCH8_CODE_HW:
1252 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1253 ecc_calc[eccbytes - 1] = 0x0;
1255 case OMAP_ECC_BCH16_CODE_HW:
1265 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1266 * @chip: NAND chip object
1267 * @dat: The pointer to data on which ecc is computed
1268 * @ecc_code: The ecc_code buffer
1270 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1271 * when SW based correction is required as ECC is required for one sector
1274 static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
1275 const u_char *dat, u_char *ecc_calc)
1277 return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
1281 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1282 * @mtd: MTD device structure
1283 * @dat: The pointer to data on which ecc is computed
1284 * @ecc_code: The ecc_code buffer
1286 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1288 static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1289 const u_char *dat, u_char *ecc_calc)
1291 struct omap_nand_info *info = mtd_to_omap(mtd);
1292 int eccbytes = info->nand.ecc.bytes;
1293 unsigned long nsectors;
1296 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1297 for (i = 0; i < nsectors; i++) {
1298 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1302 ecc_calc += eccbytes;
1309 * erased_sector_bitflips - count bit flips
1310 * @data: data sector buffer
1312 * @info: omap_nand_info
1314 * Check the bit flips in erased page falls below correctable level.
1315 * If falls below, report the page as erased with correctable bit
1316 * flip, else report as uncorrectable page.
1318 static int erased_sector_bitflips(u_char *data, u_char *oob,
1319 struct omap_nand_info *info)
1321 int flip_bits = 0, i;
1323 for (i = 0; i < info->nand.ecc.size; i++) {
1324 flip_bits += hweight8(~data[i]);
1325 if (flip_bits > info->nand.ecc.strength)
1329 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1330 flip_bits += hweight8(~oob[i]);
1331 if (flip_bits > info->nand.ecc.strength)
1336 * Bit flips falls in correctable level.
1337 * Fill data area with 0xFF
1340 memset(data, 0xFF, info->nand.ecc.size);
1341 memset(oob, 0xFF, info->nand.ecc.bytes);
1348 * omap_elm_correct_data - corrects page data area in case error reported
1349 * @chip: NAND chip object
1351 * @read_ecc: ecc read from nand flash
1352 * @calc_ecc: ecc read from HW ECC registers
1354 * Calculated ecc vector reported as zero in case of non-error pages.
1355 * In case of non-zero ecc vector, first filter out erased-pages, and
1356 * then process data via ELM to detect bit-flips.
1358 static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
1359 u_char *read_ecc, u_char *calc_ecc)
1361 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1362 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1363 int eccsteps = info->nand.ecc.steps;
1364 int i , j, stat = 0;
1365 int eccflag, actual_eccbytes;
1366 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1367 u_char *ecc_vec = calc_ecc;
1368 u_char *spare_ecc = read_ecc;
1369 u_char *erased_ecc_vec;
1372 bool is_error_reported = false;
1373 u32 bit_pos, byte_pos, error_max, pos;
1376 switch (info->ecc_opt) {
1377 case OMAP_ECC_BCH4_CODE_HW:
1378 /* omit 7th ECC byte reserved for ROM code compatibility */
1379 actual_eccbytes = ecc->bytes - 1;
1380 erased_ecc_vec = bch4_vector;
1382 case OMAP_ECC_BCH8_CODE_HW:
1383 /* omit 14th ECC byte reserved for ROM code compatibility */
1384 actual_eccbytes = ecc->bytes - 1;
1385 erased_ecc_vec = bch8_vector;
1387 case OMAP_ECC_BCH16_CODE_HW:
1388 actual_eccbytes = ecc->bytes;
1389 erased_ecc_vec = bch16_vector;
1392 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1396 /* Initialize elm error vector to zero */
1397 memset(err_vec, 0, sizeof(err_vec));
1399 for (i = 0; i < eccsteps ; i++) {
1400 eccflag = 0; /* initialize eccflag */
1403 * Check any error reported,
1404 * In case of error, non zero ecc reported.
1406 for (j = 0; j < actual_eccbytes; j++) {
1407 if (calc_ecc[j] != 0) {
1408 eccflag = 1; /* non zero ecc, error present */
1414 if (memcmp(calc_ecc, erased_ecc_vec,
1415 actual_eccbytes) == 0) {
1417 * calc_ecc[] matches pattern for ECC(all 0xff)
1418 * so this is definitely an erased-page
1421 buf = &data[info->nand.ecc.size * i];
1423 * count number of 0-bits in read_buf.
1424 * This check can be removed once a similar
1425 * check is introduced in generic NAND driver
1427 bitflip_count = erased_sector_bitflips(
1428 buf, read_ecc, info);
1429 if (bitflip_count) {
1431 * number of 0-bits within ECC limits
1432 * So this may be an erased-page
1434 stat += bitflip_count;
1437 * Too many 0-bits. It may be a
1438 * - programmed-page, OR
1439 * - erased-page with many bit-flips
1440 * So this page requires check by ELM
1442 err_vec[i].error_reported = true;
1443 is_error_reported = true;
1448 /* Update the ecc vector */
1449 calc_ecc += ecc->bytes;
1450 read_ecc += ecc->bytes;
1453 /* Check if any error reported */
1454 if (!is_error_reported)
1457 /* Decode BCH error using ELM module */
1458 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1461 for (i = 0; i < eccsteps; i++) {
1462 if (err_vec[i].error_uncorrectable) {
1463 dev_err(&info->pdev->dev,
1464 "uncorrectable bit-flips found\n");
1466 } else if (err_vec[i].error_reported) {
1467 for (j = 0; j < err_vec[i].error_count; j++) {
1468 switch (info->ecc_opt) {
1469 case OMAP_ECC_BCH4_CODE_HW:
1470 /* Add 4 bits to take care of padding */
1471 pos = err_vec[i].error_loc[j] +
1474 case OMAP_ECC_BCH8_CODE_HW:
1475 case OMAP_ECC_BCH16_CODE_HW:
1476 pos = err_vec[i].error_loc[j];
1481 error_max = (ecc->size + actual_eccbytes) * 8;
1482 /* Calculate bit position of error */
1485 /* Calculate byte position of error */
1486 byte_pos = (error_max - pos - 1) / 8;
1488 if (pos < error_max) {
1489 if (byte_pos < 512) {
1490 pr_debug("bitflip@dat[%d]=%x\n",
1491 byte_pos, data[byte_pos]);
1492 data[byte_pos] ^= 1 << bit_pos;
1494 pr_debug("bitflip@oob[%d]=%x\n",
1496 spare_ecc[byte_pos - 512]);
1497 spare_ecc[byte_pos - 512] ^=
1501 dev_err(&info->pdev->dev,
1502 "invalid bit-flip @ %d:%d\n",
1509 /* Update number of correctable errors */
1510 stat += err_vec[i].error_count;
1512 /* Update page data with sector size */
1514 spare_ecc += ecc->bytes;
1517 return (err) ? err : stat;
1521 * omap_write_page_bch - BCH ecc based write page function for entire page
1522 * @chip: nand chip info structure
1524 * @oob_required: must write chip->oob_poi to OOB
1527 * Custom write page method evolved to support multi sector writing in one shot
1529 static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
1530 int oob_required, int page)
1532 struct mtd_info *mtd = nand_to_mtd(chip);
1534 uint8_t *ecc_calc = chip->ecc.calc_buf;
1536 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1538 /* Enable GPMC ecc engine */
1539 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1542 chip->legacy.write_buf(chip, buf, mtd->writesize);
1544 /* Update ecc vector from GPMC result registers */
1545 omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
1547 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1552 /* Write ecc vector to OOB area */
1553 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1555 return nand_prog_page_end_op(chip);
1559 * omap_write_subpage_bch - BCH hardware ECC based subpage write
1560 * @chip: nand chip info structure
1561 * @offset: column address of subpage within the page
1562 * @data_len: data length
1564 * @oob_required: must write chip->oob_poi to OOB
1565 * @page: page number to write
1567 * OMAP optimized subpage write method.
1569 static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
1570 u32 data_len, const u8 *buf,
1571 int oob_required, int page)
1573 struct mtd_info *mtd = nand_to_mtd(chip);
1574 u8 *ecc_calc = chip->ecc.calc_buf;
1575 int ecc_size = chip->ecc.size;
1576 int ecc_bytes = chip->ecc.bytes;
1577 int ecc_steps = chip->ecc.steps;
1578 u32 start_step = offset / ecc_size;
1579 u32 end_step = (offset + data_len - 1) / ecc_size;
1583 * Write entire page at one go as it would be optimal
1584 * as ECC is calculated by hardware.
1585 * ECC is calculated for all subpages but we choose
1586 * only what we want.
1588 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1590 /* Enable GPMC ECC engine */
1591 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1594 chip->legacy.write_buf(chip, buf, mtd->writesize);
1596 for (step = 0; step < ecc_steps; step++) {
1597 /* mask ECC of un-touched subpages by padding 0xFF */
1598 if (step < start_step || step > end_step)
1599 memset(ecc_calc, 0xff, ecc_bytes);
1601 ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
1607 ecc_calc += ecc_bytes;
1610 /* copy calculated ECC for whole page to chip->buffer->oob */
1611 /* this include masked-value(0xFF) for unwritten subpages */
1612 ecc_calc = chip->ecc.calc_buf;
1613 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1618 /* write OOB buffer to NAND device */
1619 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1621 return nand_prog_page_end_op(chip);
1625 * omap_read_page_bch - BCH ecc based page read function for entire page
1626 * @chip: nand chip info structure
1627 * @buf: buffer to store read data
1628 * @oob_required: caller requires OOB data read to chip->oob_poi
1629 * @page: page number to read
1631 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1632 * used for error correction.
1633 * Custom method evolved to support ELM error correction & multi sector
1634 * reading. On reading page data area is read along with OOB data with
1635 * ecc engine enabled. ecc vector updated after read of OOB data.
1636 * For non error pages ecc vector reported as zero.
1638 static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
1639 int oob_required, int page)
1641 struct mtd_info *mtd = nand_to_mtd(chip);
1642 uint8_t *ecc_calc = chip->ecc.calc_buf;
1643 uint8_t *ecc_code = chip->ecc.code_buf;
1645 unsigned int max_bitflips = 0;
1647 nand_read_page_op(chip, page, 0, NULL, 0);
1649 /* Enable GPMC ecc engine */
1650 chip->ecc.hwctl(chip, NAND_ECC_READ);
1653 chip->legacy.read_buf(chip, buf, mtd->writesize);
1655 /* Read oob bytes */
1656 nand_change_read_column_op(chip,
1657 mtd->writesize + BADBLOCK_MARKER_LENGTH,
1658 chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1659 chip->ecc.total, false);
1661 /* Calculate ecc bytes */
1662 omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
1664 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1669 stat = chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1672 mtd->ecc_stats.failed++;
1674 mtd->ecc_stats.corrected += stat;
1675 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1678 return max_bitflips;
1682 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1683 * @omap_nand_info: NAND device structure containing platform data
1685 static bool is_elm_present(struct omap_nand_info *info,
1686 struct device_node *elm_node)
1688 struct platform_device *pdev;
1690 /* check whether elm-id is passed via DT */
1692 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1695 pdev = of_find_device_by_node(elm_node);
1696 /* check whether ELM device is registered */
1698 dev_err(&info->pdev->dev, "ELM device not found\n");
1701 /* ELM module available, now configure it */
1702 info->elm_dev = &pdev->dev;
1706 static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1708 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1710 switch (info->ecc_opt) {
1711 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1712 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1713 ecc_needs_omap_bch = false;
1714 ecc_needs_bch = true;
1715 ecc_needs_elm = false;
1717 case OMAP_ECC_BCH4_CODE_HW:
1718 case OMAP_ECC_BCH8_CODE_HW:
1719 case OMAP_ECC_BCH16_CODE_HW:
1720 ecc_needs_omap_bch = true;
1721 ecc_needs_bch = false;
1722 ecc_needs_elm = true;
1725 ecc_needs_omap_bch = false;
1726 ecc_needs_bch = false;
1727 ecc_needs_elm = false;
1731 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1732 dev_err(&info->pdev->dev,
1733 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1736 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1737 dev_err(&info->pdev->dev,
1738 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1741 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1742 dev_err(&info->pdev->dev, "ELM not available\n");
1749 static const char * const nand_xfer_types[] = {
1750 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1751 [NAND_OMAP_POLLED] = "polled",
1752 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1753 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1756 static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1758 struct device_node *child = dev->of_node;
1763 if (of_property_read_u32(child, "reg", &cs) < 0) {
1764 dev_err(dev, "reg not found in DT\n");
1770 /* detect availability of ELM module. Won't be present pre-OMAP4 */
1771 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1772 if (!info->elm_of_node) {
1773 info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1774 if (!info->elm_of_node)
1775 dev_dbg(dev, "ti,elm-id not in DT\n");
1778 /* select ecc-scheme for NAND */
1779 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1780 dev_err(dev, "ti,nand-ecc-opt not found\n");
1784 if (!strcmp(s, "sw")) {
1785 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1786 } else if (!strcmp(s, "ham1") ||
1787 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1788 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1789 } else if (!strcmp(s, "bch4")) {
1790 if (info->elm_of_node)
1791 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1793 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1794 } else if (!strcmp(s, "bch8")) {
1795 if (info->elm_of_node)
1796 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1798 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1799 } else if (!strcmp(s, "bch16")) {
1800 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1802 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1806 /* select data transfer mode */
1807 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1808 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1809 if (!strcasecmp(s, nand_xfer_types[i])) {
1810 info->xfer_type = i;
1815 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1822 static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1823 struct mtd_oob_region *oobregion)
1825 struct omap_nand_info *info = mtd_to_omap(mtd);
1826 struct nand_chip *chip = &info->nand;
1827 int off = BADBLOCK_MARKER_LENGTH;
1829 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1830 !(chip->options & NAND_BUSWIDTH_16))
1836 oobregion->offset = off;
1837 oobregion->length = chip->ecc.total;
1842 static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1843 struct mtd_oob_region *oobregion)
1845 struct omap_nand_info *info = mtd_to_omap(mtd);
1846 struct nand_chip *chip = &info->nand;
1847 int off = BADBLOCK_MARKER_LENGTH;
1849 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1850 !(chip->options & NAND_BUSWIDTH_16))
1856 off += chip->ecc.total;
1857 if (off >= mtd->oobsize)
1860 oobregion->offset = off;
1861 oobregion->length = mtd->oobsize - off;
1866 static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1867 .ecc = omap_ooblayout_ecc,
1868 .free = omap_ooblayout_free,
1871 static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1872 struct mtd_oob_region *oobregion)
1874 struct nand_chip *chip = mtd_to_nand(mtd);
1875 int off = BADBLOCK_MARKER_LENGTH;
1877 if (section >= chip->ecc.steps)
1881 * When SW correction is employed, one OMAP specific marker byte is
1882 * reserved after each ECC step.
1884 oobregion->offset = off + (section * (chip->ecc.bytes + 1));
1885 oobregion->length = chip->ecc.bytes;
1890 static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1891 struct mtd_oob_region *oobregion)
1893 struct nand_chip *chip = mtd_to_nand(mtd);
1894 int off = BADBLOCK_MARKER_LENGTH;
1900 * When SW correction is employed, one OMAP specific marker byte is
1901 * reserved after each ECC step.
1903 off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
1904 if (off >= mtd->oobsize)
1907 oobregion->offset = off;
1908 oobregion->length = mtd->oobsize - off;
1913 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1914 .ecc = omap_sw_ooblayout_ecc,
1915 .free = omap_sw_ooblayout_free,
1918 static int omap_nand_attach_chip(struct nand_chip *chip)
1920 struct mtd_info *mtd = nand_to_mtd(chip);
1921 struct omap_nand_info *info = mtd_to_omap(mtd);
1922 struct device *dev = &info->pdev->dev;
1923 int min_oobbytes = BADBLOCK_MARKER_LENGTH;
1924 int oobbytes_per_step;
1925 dma_cap_mask_t mask;
1928 if (chip->bbt_options & NAND_BBT_USE_FLASH)
1929 chip->bbt_options |= NAND_BBT_NO_OOB;
1931 chip->options |= NAND_SKIP_BBTSCAN;
1933 /* Re-populate low-level callbacks based on xfer modes */
1934 switch (info->xfer_type) {
1935 case NAND_OMAP_PREFETCH_POLLED:
1936 chip->legacy.read_buf = omap_read_buf_pref;
1937 chip->legacy.write_buf = omap_write_buf_pref;
1940 case NAND_OMAP_POLLED:
1941 /* Use nand_base defaults for {read,write}_buf */
1944 case NAND_OMAP_PREFETCH_DMA:
1946 dma_cap_set(DMA_SLAVE, mask);
1947 info->dma = dma_request_chan(dev->parent, "rxtx");
1949 if (IS_ERR(info->dma)) {
1950 dev_err(dev, "DMA engine request failed\n");
1951 return PTR_ERR(info->dma);
1953 struct dma_slave_config cfg;
1955 memset(&cfg, 0, sizeof(cfg));
1956 cfg.src_addr = info->phys_base;
1957 cfg.dst_addr = info->phys_base;
1958 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1959 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1960 cfg.src_maxburst = 16;
1961 cfg.dst_maxburst = 16;
1962 err = dmaengine_slave_config(info->dma, &cfg);
1965 "DMA engine slave config failed: %d\n",
1969 chip->legacy.read_buf = omap_read_buf_dma_pref;
1970 chip->legacy.write_buf = omap_write_buf_dma_pref;
1974 case NAND_OMAP_PREFETCH_IRQ:
1975 info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
1976 if (info->gpmc_irq_fifo <= 0) {
1977 dev_err(dev, "Error getting fifo IRQ\n");
1980 err = devm_request_irq(dev, info->gpmc_irq_fifo,
1981 omap_nand_irq, IRQF_SHARED,
1982 "gpmc-nand-fifo", info);
1984 dev_err(dev, "Requesting IRQ %d, error %d\n",
1985 info->gpmc_irq_fifo, err);
1986 info->gpmc_irq_fifo = 0;
1990 info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
1991 if (info->gpmc_irq_count <= 0) {
1992 dev_err(dev, "Error getting IRQ count\n");
1995 err = devm_request_irq(dev, info->gpmc_irq_count,
1996 omap_nand_irq, IRQF_SHARED,
1997 "gpmc-nand-count", info);
1999 dev_err(dev, "Requesting IRQ %d, error %d\n",
2000 info->gpmc_irq_count, err);
2001 info->gpmc_irq_count = 0;
2005 chip->legacy.read_buf = omap_read_buf_irq_pref;
2006 chip->legacy.write_buf = omap_write_buf_irq_pref;
2011 dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
2015 if (!omap2_nand_ecc_check(info))
2019 * Bail out earlier to let NAND_ECC_SOFT code create its own
2020 * ooblayout instead of using ours.
2022 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2023 chip->ecc.mode = NAND_ECC_SOFT;
2024 chip->ecc.algo = NAND_ECC_HAMMING;
2028 /* Populate MTD interface based on ECC scheme */
2029 switch (info->ecc_opt) {
2030 case OMAP_ECC_HAM1_CODE_HW:
2031 dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
2032 chip->ecc.mode = NAND_ECC_HW;
2033 chip->ecc.bytes = 3;
2034 chip->ecc.size = 512;
2035 chip->ecc.strength = 1;
2036 chip->ecc.calculate = omap_calculate_ecc;
2037 chip->ecc.hwctl = omap_enable_hwecc;
2038 chip->ecc.correct = omap_correct_data;
2039 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2040 oobbytes_per_step = chip->ecc.bytes;
2042 if (!(chip->options & NAND_BUSWIDTH_16))
2047 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
2048 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2049 chip->ecc.mode = NAND_ECC_HW;
2050 chip->ecc.size = 512;
2051 chip->ecc.bytes = 7;
2052 chip->ecc.strength = 4;
2053 chip->ecc.hwctl = omap_enable_hwecc_bch;
2054 chip->ecc.correct = nand_bch_correct_data;
2055 chip->ecc.calculate = omap_calculate_ecc_bch_sw;
2056 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2057 /* Reserve one byte for the OMAP marker */
2058 oobbytes_per_step = chip->ecc.bytes + 1;
2059 /* Software BCH library is used for locating errors */
2060 chip->ecc.priv = nand_bch_init(mtd);
2061 if (!chip->ecc.priv) {
2062 dev_err(dev, "Unable to use BCH library\n");
2067 case OMAP_ECC_BCH4_CODE_HW:
2068 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2069 chip->ecc.mode = NAND_ECC_HW;
2070 chip->ecc.size = 512;
2071 /* 14th bit is kept reserved for ROM-code compatibility */
2072 chip->ecc.bytes = 7 + 1;
2073 chip->ecc.strength = 4;
2074 chip->ecc.hwctl = omap_enable_hwecc_bch;
2075 chip->ecc.correct = omap_elm_correct_data;
2076 chip->ecc.read_page = omap_read_page_bch;
2077 chip->ecc.write_page = omap_write_page_bch;
2078 chip->ecc.write_subpage = omap_write_subpage_bch;
2079 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2080 oobbytes_per_step = chip->ecc.bytes;
2082 err = elm_config(info->elm_dev, BCH4_ECC,
2083 mtd->writesize / chip->ecc.size,
2084 chip->ecc.size, chip->ecc.bytes);
2089 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2090 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2091 chip->ecc.mode = NAND_ECC_HW;
2092 chip->ecc.size = 512;
2093 chip->ecc.bytes = 13;
2094 chip->ecc.strength = 8;
2095 chip->ecc.hwctl = omap_enable_hwecc_bch;
2096 chip->ecc.correct = nand_bch_correct_data;
2097 chip->ecc.calculate = omap_calculate_ecc_bch_sw;
2098 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2099 /* Reserve one byte for the OMAP marker */
2100 oobbytes_per_step = chip->ecc.bytes + 1;
2101 /* Software BCH library is used for locating errors */
2102 chip->ecc.priv = nand_bch_init(mtd);
2103 if (!chip->ecc.priv) {
2104 dev_err(dev, "unable to use BCH library\n");
2109 case OMAP_ECC_BCH8_CODE_HW:
2110 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2111 chip->ecc.mode = NAND_ECC_HW;
2112 chip->ecc.size = 512;
2113 /* 14th bit is kept reserved for ROM-code compatibility */
2114 chip->ecc.bytes = 13 + 1;
2115 chip->ecc.strength = 8;
2116 chip->ecc.hwctl = omap_enable_hwecc_bch;
2117 chip->ecc.correct = omap_elm_correct_data;
2118 chip->ecc.read_page = omap_read_page_bch;
2119 chip->ecc.write_page = omap_write_page_bch;
2120 chip->ecc.write_subpage = omap_write_subpage_bch;
2121 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2122 oobbytes_per_step = chip->ecc.bytes;
2124 err = elm_config(info->elm_dev, BCH8_ECC,
2125 mtd->writesize / chip->ecc.size,
2126 chip->ecc.size, chip->ecc.bytes);
2132 case OMAP_ECC_BCH16_CODE_HW:
2133 pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2134 chip->ecc.mode = NAND_ECC_HW;
2135 chip->ecc.size = 512;
2136 chip->ecc.bytes = 26;
2137 chip->ecc.strength = 16;
2138 chip->ecc.hwctl = omap_enable_hwecc_bch;
2139 chip->ecc.correct = omap_elm_correct_data;
2140 chip->ecc.read_page = omap_read_page_bch;
2141 chip->ecc.write_page = omap_write_page_bch;
2142 chip->ecc.write_subpage = omap_write_subpage_bch;
2143 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2144 oobbytes_per_step = chip->ecc.bytes;
2146 err = elm_config(info->elm_dev, BCH16_ECC,
2147 mtd->writesize / chip->ecc.size,
2148 chip->ecc.size, chip->ecc.bytes);
2154 dev_err(dev, "Invalid or unsupported ECC scheme\n");
2158 /* Check if NAND device's OOB is enough to store ECC signatures */
2159 min_oobbytes += (oobbytes_per_step *
2160 (mtd->writesize / chip->ecc.size));
2161 if (mtd->oobsize < min_oobbytes) {
2163 "Not enough OOB bytes: required = %d, available=%d\n",
2164 min_oobbytes, mtd->oobsize);
2171 static const struct nand_controller_ops omap_nand_controller_ops = {
2172 .attach_chip = omap_nand_attach_chip,
2175 /* Shared among all NAND instances to synchronize access to the ECC Engine */
2176 static struct nand_controller omap_gpmc_controller = {
2177 .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
2178 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
2179 .ops = &omap_nand_controller_ops,
2182 static int omap_nand_probe(struct platform_device *pdev)
2184 struct omap_nand_info *info;
2185 struct mtd_info *mtd;
2186 struct nand_chip *nand_chip;
2188 struct resource *res;
2189 struct device *dev = &pdev->dev;
2191 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
2198 err = omap_get_dt_info(dev, info);
2202 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
2204 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
2208 nand_chip = &info->nand;
2209 mtd = nand_to_mtd(nand_chip);
2210 mtd->dev.parent = &pdev->dev;
2211 nand_chip->ecc.priv = NULL;
2212 nand_set_flash_node(nand_chip, dev->of_node);
2215 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
2216 "omap2-nand.%d", info->gpmc_cs);
2218 dev_err(&pdev->dev, "Failed to set MTD name\n");
2223 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2224 nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
2225 if (IS_ERR(nand_chip->legacy.IO_ADDR_R))
2226 return PTR_ERR(nand_chip->legacy.IO_ADDR_R);
2228 info->phys_base = res->start;
2230 nand_chip->controller = &omap_gpmc_controller;
2232 nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R;
2233 nand_chip->legacy.cmd_ctrl = omap_hwcontrol;
2235 info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
2237 if (IS_ERR(info->ready_gpiod)) {
2238 dev_err(dev, "failed to get ready gpio\n");
2239 return PTR_ERR(info->ready_gpiod);
2243 * If RDY/BSY line is connected to OMAP then use the omap ready
2244 * function and the generic nand_wait function which reads the status
2245 * register after monitoring the RDY/BSY line. Otherwise use a standard
2246 * chip delay which is slightly more than tR (AC Timing) of the NAND
2247 * device and read status register until you get a failure or success
2249 if (info->ready_gpiod) {
2250 nand_chip->legacy.dev_ready = omap_dev_ready;
2251 nand_chip->legacy.chip_delay = 0;
2253 nand_chip->legacy.waitfunc = omap_wait;
2254 nand_chip->legacy.chip_delay = 50;
2257 if (info->flash_bbt)
2258 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2260 /* scan NAND device connected to chip controller */
2261 nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
2263 err = nand_scan(nand_chip, 1);
2267 err = mtd_device_register(mtd, NULL, 0);
2271 platform_set_drvdata(pdev, mtd);
2276 nand_cleanup(nand_chip);
2279 if (!IS_ERR_OR_NULL(info->dma))
2280 dma_release_channel(info->dma);
2281 if (nand_chip->ecc.priv) {
2282 nand_bch_free(nand_chip->ecc.priv);
2283 nand_chip->ecc.priv = NULL;
2288 static int omap_nand_remove(struct platform_device *pdev)
2290 struct mtd_info *mtd = platform_get_drvdata(pdev);
2291 struct nand_chip *nand_chip = mtd_to_nand(mtd);
2292 struct omap_nand_info *info = mtd_to_omap(mtd);
2293 if (nand_chip->ecc.priv) {
2294 nand_bch_free(nand_chip->ecc.priv);
2295 nand_chip->ecc.priv = NULL;
2298 dma_release_channel(info->dma);
2299 nand_release(nand_chip);
2303 static const struct of_device_id omap_nand_ids[] = {
2304 { .compatible = "ti,omap2-nand", },
2307 MODULE_DEVICE_TABLE(of, omap_nand_ids);
2309 static struct platform_driver omap_nand_driver = {
2310 .probe = omap_nand_probe,
2311 .remove = omap_nand_remove,
2313 .name = DRIVER_NAME,
2314 .of_match_table = of_match_ptr(omap_nand_ids),
2318 module_platform_driver(omap_nand_driver);
2320 MODULE_ALIAS("platform:" DRIVER_NAME);
2321 MODULE_LICENSE("GPL");
2322 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");