]> Git Repo - linux.git/blob - drivers/mtd/nand/raw/omap2.c
Linux 6.14-rc3
[linux.git] / drivers / mtd / nand / raw / omap2.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2004 Texas Instruments, Jian Zhang <[email protected]>
4  * Copyright © 2004 Micron Technology Inc.
5  * Copyright © 2004 David Brownell
6  */
7
8 #include <linux/platform_device.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/delay.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/jiffies.h>
16 #include <linux/sched.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand-ecc-sw-bch.h>
19 #include <linux/mtd/rawnand.h>
20 #include <linux/mtd/partitions.h>
21 #include <linux/omap-dma.h>
22 #include <linux/iopoll.h>
23 #include <linux/slab.h>
24 #include <linux/of.h>
25 #include <linux/of_platform.h>
26
27 #include <linux/platform_data/elm.h>
28
29 #include <linux/omap-gpmc.h>
30 #include <linux/platform_data/mtd-nand-omap2.h>
31
32 #define DRIVER_NAME     "omap2-nand"
33 #define OMAP_NAND_TIMEOUT_MS    5000
34
35 #define NAND_Ecc_P1e            (1 << 0)
36 #define NAND_Ecc_P2e            (1 << 1)
37 #define NAND_Ecc_P4e            (1 << 2)
38 #define NAND_Ecc_P8e            (1 << 3)
39 #define NAND_Ecc_P16e           (1 << 4)
40 #define NAND_Ecc_P32e           (1 << 5)
41 #define NAND_Ecc_P64e           (1 << 6)
42 #define NAND_Ecc_P128e          (1 << 7)
43 #define NAND_Ecc_P256e          (1 << 8)
44 #define NAND_Ecc_P512e          (1 << 9)
45 #define NAND_Ecc_P1024e         (1 << 10)
46 #define NAND_Ecc_P2048e         (1 << 11)
47
48 #define NAND_Ecc_P1o            (1 << 16)
49 #define NAND_Ecc_P2o            (1 << 17)
50 #define NAND_Ecc_P4o            (1 << 18)
51 #define NAND_Ecc_P8o            (1 << 19)
52 #define NAND_Ecc_P16o           (1 << 20)
53 #define NAND_Ecc_P32o           (1 << 21)
54 #define NAND_Ecc_P64o           (1 << 22)
55 #define NAND_Ecc_P128o          (1 << 23)
56 #define NAND_Ecc_P256o          (1 << 24)
57 #define NAND_Ecc_P512o          (1 << 25)
58 #define NAND_Ecc_P1024o         (1 << 26)
59 #define NAND_Ecc_P2048o         (1 << 27)
60
61 #define TF(value)       (value ? 1 : 0)
62
63 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
64 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
65 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
66 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
67 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
68 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
69 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
70 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
71
72 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
73 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
74 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
75 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
76 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
77 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
78 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
79 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
80
81 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
82 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
83 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
84 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
85 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
86 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
87 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
88 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
89
90 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
91 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
92 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
93 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
94 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
95 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
96 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
97 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
98
99 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
100 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
101
102 #define PREFETCH_CONFIG1_CS_SHIFT       24
103 #define ECC_CONFIG_CS_SHIFT             1
104 #define CS_MASK                         0x7
105 #define ENABLE_PREFETCH                 (0x1 << 7)
106 #define DMA_MPU_MODE_SHIFT              2
107 #define ECCSIZE0_SHIFT                  12
108 #define ECCSIZE1_SHIFT                  22
109 #define ECC1RESULTSIZE                  0x1
110 #define ECCCLEAR                        0x100
111 #define ECC1                            0x1
112 #define PREFETCH_FIFOTHRESHOLD_MAX      0x40
113 #define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
114 #define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
115 #define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
116 #define STATUS_BUFF_EMPTY               0x00000001
117
118 #define SECTOR_BYTES            512
119 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
120 #define BCH4_BIT_PAD            4
121
122 /* GPMC ecc engine settings for read */
123 #define BCH_WRAPMODE_1          1       /* BCH wrap mode 1 */
124 #define BCH8R_ECC_SIZE0         0x1a    /* ecc_size0 = 26 */
125 #define BCH8R_ECC_SIZE1         0x2     /* ecc_size1 = 2 */
126 #define BCH4R_ECC_SIZE0         0xd     /* ecc_size0 = 13 */
127 #define BCH4R_ECC_SIZE1         0x3     /* ecc_size1 = 3 */
128
129 /* GPMC ecc engine settings for write */
130 #define BCH_WRAPMODE_6          6       /* BCH wrap mode 6 */
131 #define BCH_ECC_SIZE0           0x0     /* ecc_size0 = 0, no oob protection */
132 #define BCH_ECC_SIZE1           0x20    /* ecc_size1 = 32 */
133
134 #define BBM_LEN                 2
135
136 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
137                                 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
138                                 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
139                                 0x07, 0x0e};
140 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
141         0xac, 0x6b, 0xff, 0x99, 0x7b};
142 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
143
144 struct omap_nand_info {
145         struct nand_chip                nand;
146         struct platform_device          *pdev;
147
148         int                             gpmc_cs;
149         bool                            dev_ready;
150         enum nand_io                    xfer_type;
151         enum omap_ecc                   ecc_opt;
152         struct device_node              *elm_of_node;
153
154         unsigned long                   phys_base;
155         struct completion               comp;
156         struct dma_chan                 *dma;
157         int                             gpmc_irq_fifo;
158         int                             gpmc_irq_count;
159         enum {
160                 OMAP_NAND_IO_READ = 0,  /* read */
161                 OMAP_NAND_IO_WRITE,     /* write */
162         } iomode;
163         u_char                          *buf;
164         int                                     buf_len;
165         /* Interface to GPMC */
166         void __iomem                    *fifo;
167         struct gpmc_nand_regs           reg;
168         struct gpmc_nand_ops            *ops;
169         bool                            flash_bbt;
170         /* fields specific for BCHx_HW ECC scheme */
171         struct device                   *elm_dev;
172         /* NAND ready gpio */
173         struct gpio_desc                *ready_gpiod;
174         unsigned int                    neccpg;
175         unsigned int                    nsteps_per_eccpg;
176         unsigned int                    eccpg_size;
177         unsigned int                    eccpg_bytes;
178         void (*data_in)(struct nand_chip *chip, void *buf,
179                         unsigned int len, bool force_8bit);
180         void (*data_out)(struct nand_chip *chip,
181                          const void *buf, unsigned int len,
182                          bool force_8bit);
183 };
184
185 static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
186 {
187         return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
188 }
189
190 static void omap_nand_data_in(struct nand_chip *chip, void *buf,
191                               unsigned int len, bool force_8bit);
192
193 static void omap_nand_data_out(struct nand_chip *chip,
194                                const void *buf, unsigned int len,
195                                bool force_8bit);
196
197 /**
198  * omap_prefetch_enable - configures and starts prefetch transfer
199  * @cs: cs (chip select) number
200  * @fifo_th: fifo threshold to be used for read/ write
201  * @dma_mode: dma mode enable (1) or disable (0)
202  * @u32_count: number of bytes to be transferred
203  * @is_write: prefetch read(0) or write post(1) mode
204  * @info: NAND device structure containing platform data
205  */
206 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
207         unsigned int u32_count, int is_write, struct omap_nand_info *info)
208 {
209         u32 val;
210
211         if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
212                 return -1;
213
214         if (readl(info->reg.gpmc_prefetch_control))
215                 return -EBUSY;
216
217         /* Set the amount of bytes to be prefetched */
218         writel(u32_count, info->reg.gpmc_prefetch_config2);
219
220         /* Set dma/mpu mode, the prefetch read / post write and
221          * enable the engine. Set which cs is has requested for.
222          */
223         val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
224                 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
225                 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
226         writel(val, info->reg.gpmc_prefetch_config1);
227
228         /*  Start the prefetch engine */
229         writel(0x1, info->reg.gpmc_prefetch_control);
230
231         return 0;
232 }
233
234 /*
235  * omap_prefetch_reset - disables and stops the prefetch engine
236  */
237 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
238 {
239         u32 config1;
240
241         /* check if the same module/cs is trying to reset */
242         config1 = readl(info->reg.gpmc_prefetch_config1);
243         if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
244                 return -EINVAL;
245
246         /* Stop the PFPW engine */
247         writel(0x0, info->reg.gpmc_prefetch_control);
248
249         /* Reset/disable the PFPW engine */
250         writel(0x0, info->reg.gpmc_prefetch_config1);
251
252         return 0;
253 }
254
255 /**
256  * omap_nand_data_in_pref - NAND data in using prefetch engine
257  * @chip: NAND chip
258  * @buf: output buffer where NAND data is placed into
259  * @len: length of transfer
260  * @force_8bit: force 8-bit transfers
261  */
262 static void omap_nand_data_in_pref(struct nand_chip *chip, void *buf,
263                                    unsigned int len, bool force_8bit)
264 {
265         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
266         uint32_t r_count = 0;
267         int ret = 0;
268         u32 *p = (u32 *)buf;
269         unsigned int pref_len;
270
271         if (force_8bit) {
272                 omap_nand_data_in(chip, buf, len, force_8bit);
273                 return;
274         }
275
276         /* read 32-bit words using prefetch and remaining bytes normally */
277
278         /* configure and start prefetch transfer */
279         pref_len = len - (len & 3);
280         ret = omap_prefetch_enable(info->gpmc_cs,
281                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, pref_len, 0x0, info);
282         if (ret) {
283                 /* prefetch engine is busy, use CPU copy method */
284                 omap_nand_data_in(chip, buf, len, false);
285         } else {
286                 do {
287                         r_count = readl(info->reg.gpmc_prefetch_status);
288                         r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
289                         r_count = r_count >> 2;
290                         ioread32_rep(info->fifo, p, r_count);
291                         p += r_count;
292                         pref_len -= r_count << 2;
293                 } while (pref_len);
294                 /* disable and stop the Prefetch engine */
295                 omap_prefetch_reset(info->gpmc_cs, info);
296                 /* fetch any remaining bytes */
297                 if (len & 3)
298                         omap_nand_data_in(chip, p, len & 3, false);
299         }
300 }
301
302 /**
303  * omap_nand_data_out_pref - NAND data out using Write Posting engine
304  * @chip: NAND chip
305  * @buf: input buffer that is sent to NAND
306  * @len: length of transfer
307  * @force_8bit: force 8-bit transfers
308  */
309 static void omap_nand_data_out_pref(struct nand_chip *chip,
310                                     const void *buf, unsigned int len,
311                                     bool force_8bit)
312 {
313         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
314         uint32_t w_count = 0;
315         int i = 0, ret = 0;
316         u16 *p = (u16 *)buf;
317         unsigned long tim, limit;
318         u32 val;
319
320         if (force_8bit) {
321                 omap_nand_data_out(chip, buf, len, force_8bit);
322                 return;
323         }
324
325         /* take care of subpage writes */
326         if (len % 2 != 0) {
327                 writeb(*(u8 *)buf, info->fifo);
328                 p = (u16 *)(buf + 1);
329                 len--;
330         }
331
332         /*  configure and start prefetch transfer */
333         ret = omap_prefetch_enable(info->gpmc_cs,
334                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
335         if (ret) {
336                 /* write posting engine is busy, use CPU copy method */
337                 omap_nand_data_out(chip, buf, len, false);
338         } else {
339                 while (len) {
340                         w_count = readl(info->reg.gpmc_prefetch_status);
341                         w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
342                         w_count = w_count >> 1;
343                         for (i = 0; (i < w_count) && len; i++, len -= 2)
344                                 iowrite16(*p++, info->fifo);
345                 }
346                 /* wait for data to flushed-out before reset the prefetch */
347                 tim = 0;
348                 limit = (loops_per_jiffy *
349                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
350                 do {
351                         cpu_relax();
352                         val = readl(info->reg.gpmc_prefetch_status);
353                         val = PREFETCH_STATUS_COUNT(val);
354                 } while (val && (tim++ < limit));
355
356                 /* disable and stop the PFPW engine */
357                 omap_prefetch_reset(info->gpmc_cs, info);
358         }
359 }
360
361 /*
362  * omap_nand_dma_callback: callback on the completion of dma transfer
363  * @data: pointer to completion data structure
364  */
365 static void omap_nand_dma_callback(void *data)
366 {
367         complete((struct completion *) data);
368 }
369
370 /*
371  * omap_nand_dma_transfer: configure and start dma transfer
372  * @chip: nand chip structure
373  * @addr: virtual address in RAM of source/destination
374  * @len: number of data bytes to be transferred
375  * @is_write: flag for read/write operation
376  */
377 static inline int omap_nand_dma_transfer(struct nand_chip *chip,
378                                          const void *addr, unsigned int len,
379                                          int is_write)
380 {
381         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
382         struct dma_async_tx_descriptor *tx;
383         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
384                                                         DMA_FROM_DEVICE;
385         struct scatterlist sg;
386         unsigned long tim, limit;
387         unsigned n;
388         int ret;
389         u32 val;
390
391         if (!virt_addr_valid(addr))
392                 goto out_copy;
393
394         sg_init_one(&sg, addr, len);
395         n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
396         if (n == 0) {
397                 dev_err(&info->pdev->dev,
398                         "Couldn't DMA map a %d byte buffer\n", len);
399                 goto out_copy;
400         }
401
402         tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
403                 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
404                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
405         if (!tx)
406                 goto out_copy_unmap;
407
408         tx->callback = omap_nand_dma_callback;
409         tx->callback_param = &info->comp;
410         dmaengine_submit(tx);
411
412         init_completion(&info->comp);
413
414         /* setup and start DMA using dma_addr */
415         dma_async_issue_pending(info->dma);
416
417         /*  configure and start prefetch transfer */
418         ret = omap_prefetch_enable(info->gpmc_cs,
419                 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
420         if (ret)
421                 /* PFPW engine is busy, use cpu copy method */
422                 goto out_copy_unmap;
423
424         wait_for_completion(&info->comp);
425         tim = 0;
426         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
427
428         do {
429                 cpu_relax();
430                 val = readl(info->reg.gpmc_prefetch_status);
431                 val = PREFETCH_STATUS_COUNT(val);
432         } while (val && (tim++ < limit));
433
434         /* disable and stop the PFPW engine */
435         omap_prefetch_reset(info->gpmc_cs, info);
436
437         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
438         return 0;
439
440 out_copy_unmap:
441         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
442 out_copy:
443         is_write == 0 ? omap_nand_data_in(chip, (void *)addr, len, false)
444                       : omap_nand_data_out(chip, addr, len, false);
445
446         return 0;
447 }
448
449 /**
450  * omap_nand_data_in_dma_pref - NAND data in using DMA and Prefetch
451  * @chip: NAND chip
452  * @buf: output buffer where NAND data is placed into
453  * @len: length of transfer
454  * @force_8bit: force 8-bit transfers
455  */
456 static void omap_nand_data_in_dma_pref(struct nand_chip *chip, void *buf,
457                                        unsigned int len, bool force_8bit)
458 {
459         struct mtd_info *mtd = nand_to_mtd(chip);
460
461         if (force_8bit) {
462                 omap_nand_data_in(chip, buf, len, force_8bit);
463                 return;
464         }
465
466         if (len <= mtd->oobsize)
467                 omap_nand_data_in_pref(chip, buf, len, false);
468         else
469                 /* start transfer in DMA mode */
470                 omap_nand_dma_transfer(chip, buf, len, 0x0);
471 }
472
473 /**
474  * omap_nand_data_out_dma_pref - NAND data out using DMA and write posting
475  * @chip: NAND chip
476  * @buf: input buffer that is sent to NAND
477  * @len: length of transfer
478  * @force_8bit: force 8-bit transfers
479  */
480 static void omap_nand_data_out_dma_pref(struct nand_chip *chip,
481                                         const void *buf, unsigned int len,
482                                         bool force_8bit)
483 {
484         struct mtd_info *mtd = nand_to_mtd(chip);
485
486         if (force_8bit) {
487                 omap_nand_data_out(chip, buf, len, force_8bit);
488                 return;
489         }
490
491         if (len <= mtd->oobsize)
492                 omap_nand_data_out_pref(chip, buf, len, false);
493         else
494                 /* start transfer in DMA mode */
495                 omap_nand_dma_transfer(chip, buf, len, 0x1);
496 }
497
498 /*
499  * omap_nand_irq - GPMC irq handler
500  * @this_irq: gpmc irq number
501  * @dev: omap_nand_info structure pointer is passed here
502  */
503 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
504 {
505         struct omap_nand_info *info = (struct omap_nand_info *) dev;
506         u32 bytes;
507
508         bytes = readl(info->reg.gpmc_prefetch_status);
509         bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
510         bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
511         if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
512                 if (this_irq == info->gpmc_irq_count)
513                         goto done;
514
515                 if (info->buf_len && (info->buf_len < bytes))
516                         bytes = info->buf_len;
517                 else if (!info->buf_len)
518                         bytes = 0;
519                 iowrite32_rep(info->fifo, (u32 *)info->buf,
520                               bytes >> 2);
521                 info->buf = info->buf + bytes;
522                 info->buf_len -= bytes;
523
524         } else {
525                 ioread32_rep(info->fifo, (u32 *)info->buf,
526                              bytes >> 2);
527                 info->buf = info->buf + bytes;
528
529                 if (this_irq == info->gpmc_irq_count)
530                         goto done;
531         }
532
533         return IRQ_HANDLED;
534
535 done:
536         complete(&info->comp);
537
538         disable_irq_nosync(info->gpmc_irq_fifo);
539         disable_irq_nosync(info->gpmc_irq_count);
540
541         return IRQ_HANDLED;
542 }
543
544 /*
545  * omap_nand_data_in_irq_pref - NAND data in using Prefetch and IRQ
546  */
547 static void omap_nand_data_in_irq_pref(struct nand_chip *chip, void *buf,
548                                        unsigned int len, bool force_8bit)
549 {
550         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
551         struct mtd_info *mtd = nand_to_mtd(&info->nand);
552         int ret = 0;
553
554         if (len <= mtd->oobsize || force_8bit) {
555                 omap_nand_data_in(chip, buf, len, force_8bit);
556                 return;
557         }
558
559         info->iomode = OMAP_NAND_IO_READ;
560         info->buf = buf;
561         init_completion(&info->comp);
562
563         /*  configure and start prefetch transfer */
564         ret = omap_prefetch_enable(info->gpmc_cs,
565                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
566         if (ret) {
567                 /* PFPW engine is busy, use cpu copy method */
568                 omap_nand_data_in(chip, buf, len, false);
569                 return;
570         }
571
572         info->buf_len = len;
573
574         enable_irq(info->gpmc_irq_count);
575         enable_irq(info->gpmc_irq_fifo);
576
577         /* waiting for read to complete */
578         wait_for_completion(&info->comp);
579
580         /* disable and stop the PFPW engine */
581         omap_prefetch_reset(info->gpmc_cs, info);
582         return;
583 }
584
585 /*
586  * omap_nand_data_out_irq_pref - NAND out using write posting and IRQ
587  */
588 static void omap_nand_data_out_irq_pref(struct nand_chip *chip,
589                                         const void *buf, unsigned int len,
590                                         bool force_8bit)
591 {
592         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
593         struct mtd_info *mtd = nand_to_mtd(&info->nand);
594         int ret = 0;
595         unsigned long tim, limit;
596         u32 val;
597
598         if (len <= mtd->oobsize || force_8bit) {
599                 omap_nand_data_out(chip, buf, len, force_8bit);
600                 return;
601         }
602
603         info->iomode = OMAP_NAND_IO_WRITE;
604         info->buf = (u_char *) buf;
605         init_completion(&info->comp);
606
607         /* configure and start prefetch transfer : size=24 */
608         ret = omap_prefetch_enable(info->gpmc_cs,
609                 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
610         if (ret) {
611                 /* PFPW engine is busy, use cpu copy method */
612                 omap_nand_data_out(chip, buf, len, false);
613                 return;
614         }
615
616         info->buf_len = len;
617
618         enable_irq(info->gpmc_irq_count);
619         enable_irq(info->gpmc_irq_fifo);
620
621         /* waiting for write to complete */
622         wait_for_completion(&info->comp);
623
624         /* wait for data to flushed-out before reset the prefetch */
625         tim = 0;
626         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
627         do {
628                 val = readl(info->reg.gpmc_prefetch_status);
629                 val = PREFETCH_STATUS_COUNT(val);
630                 cpu_relax();
631         } while (val && (tim++ < limit));
632
633         /* disable and stop the PFPW engine */
634         omap_prefetch_reset(info->gpmc_cs, info);
635         return;
636 }
637
638 /**
639  * gen_true_ecc - This function will generate true ECC value
640  * @ecc_buf: buffer to store ecc code
641  *
642  * This generated true ECC value can be used when correcting
643  * data read from NAND flash memory core
644  */
645 static void gen_true_ecc(u8 *ecc_buf)
646 {
647         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
648                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
649
650         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
651                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
652         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
653                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
654         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
655                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
656 }
657
658 /**
659  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
660  * @ecc_data1:  ecc code from nand spare area
661  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
662  * @page_data:  page data
663  *
664  * This function compares two ECC's and indicates if there is an error.
665  * If the error can be corrected it will be corrected to the buffer.
666  * If there is no error, %0 is returned. If there is an error but it
667  * was corrected, %1 is returned. Otherwise, %-1 is returned.
668  */
669 static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
670                             u8 *ecc_data2,      /* read from register */
671                             u8 *page_data)
672 {
673         uint    i;
674         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
675         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
676         u8      ecc_bit[24];
677         u8      ecc_sum = 0;
678         u8      find_bit = 0;
679         uint    find_byte = 0;
680         int     isEccFF;
681
682         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
683
684         gen_true_ecc(ecc_data1);
685         gen_true_ecc(ecc_data2);
686
687         for (i = 0; i <= 2; i++) {
688                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
689                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
690         }
691
692         for (i = 0; i < 8; i++) {
693                 tmp0_bit[i]     = *ecc_data1 % 2;
694                 *ecc_data1      = *ecc_data1 / 2;
695         }
696
697         for (i = 0; i < 8; i++) {
698                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
699                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
700         }
701
702         for (i = 0; i < 8; i++) {
703                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
704                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
705         }
706
707         for (i = 0; i < 8; i++) {
708                 comp0_bit[i]     = *ecc_data2 % 2;
709                 *ecc_data2       = *ecc_data2 / 2;
710         }
711
712         for (i = 0; i < 8; i++) {
713                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
714                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
715         }
716
717         for (i = 0; i < 8; i++) {
718                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
719                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
720         }
721
722         for (i = 0; i < 6; i++)
723                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
724
725         for (i = 0; i < 8; i++)
726                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
727
728         for (i = 0; i < 8; i++)
729                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
730
731         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
732         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
733
734         for (i = 0; i < 24; i++)
735                 ecc_sum += ecc_bit[i];
736
737         switch (ecc_sum) {
738         case 0:
739                 /* Not reached because this function is not called if
740                  *  ECC values are equal
741                  */
742                 return 0;
743
744         case 1:
745                 /* Uncorrectable error */
746                 pr_debug("ECC UNCORRECTED_ERROR 1\n");
747                 return -EBADMSG;
748
749         case 11:
750                 /* UN-Correctable error */
751                 pr_debug("ECC UNCORRECTED_ERROR B\n");
752                 return -EBADMSG;
753
754         case 12:
755                 /* Correctable error */
756                 find_byte = (ecc_bit[23] << 8) +
757                             (ecc_bit[21] << 7) +
758                             (ecc_bit[19] << 6) +
759                             (ecc_bit[17] << 5) +
760                             (ecc_bit[15] << 4) +
761                             (ecc_bit[13] << 3) +
762                             (ecc_bit[11] << 2) +
763                             (ecc_bit[9]  << 1) +
764                             ecc_bit[7];
765
766                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
767
768                 pr_debug("Correcting single bit ECC error at offset: "
769                                 "%d, bit: %d\n", find_byte, find_bit);
770
771                 page_data[find_byte] ^= (1 << find_bit);
772
773                 return 1;
774         default:
775                 if (isEccFF) {
776                         if (ecc_data2[0] == 0 &&
777                             ecc_data2[1] == 0 &&
778                             ecc_data2[2] == 0)
779                                 return 0;
780                 }
781                 pr_debug("UNCORRECTED_ERROR default\n");
782                 return -EBADMSG;
783         }
784 }
785
786 /**
787  * omap_correct_data - Compares the ECC read with HW generated ECC
788  * @chip: NAND chip object
789  * @dat: page data
790  * @read_ecc: ecc read from nand flash
791  * @calc_ecc: ecc read from HW ECC registers
792  *
793  * Compares the ecc read from nand spare area with ECC registers values
794  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
795  * detection and correction. If there are no errors, %0 is returned. If
796  * there were errors and all of the errors were corrected, the number of
797  * corrected errors is returned. If uncorrectable errors exist, %-1 is
798  * returned.
799  */
800 static int omap_correct_data(struct nand_chip *chip, u_char *dat,
801                              u_char *read_ecc, u_char *calc_ecc)
802 {
803         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
804         int blockCnt = 0, i = 0, ret = 0;
805         int stat = 0;
806
807         /* Ex NAND_ECC_HW12_2048 */
808         if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
809             info->nand.ecc.size == 2048)
810                 blockCnt = 4;
811         else
812                 blockCnt = 1;
813
814         for (i = 0; i < blockCnt; i++) {
815                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
816                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
817                         if (ret < 0)
818                                 return ret;
819                         /* keep track of the number of corrected errors */
820                         stat += ret;
821                 }
822                 read_ecc += 3;
823                 calc_ecc += 3;
824                 dat      += 512;
825         }
826         return stat;
827 }
828
829 /**
830  * omap_calculate_ecc - Generate non-inverted ECC bytes.
831  * @chip: NAND chip object
832  * @dat: The pointer to data on which ecc is computed
833  * @ecc_code: The ecc_code buffer
834  *
835  * Using noninverted ECC can be considered ugly since writing a blank
836  * page ie. padding will clear the ECC bytes. This is no problem as long
837  * nobody is trying to write data on the seemingly unused page. Reading
838  * an erased page will produce an ECC mismatch between generated and read
839  * ECC bytes that has to be dealt with separately.
840  */
841 static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
842                               u_char *ecc_code)
843 {
844         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
845         u32 val;
846
847         val = readl(info->reg.gpmc_ecc_config);
848         if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
849                 return -EINVAL;
850
851         /* read ecc result */
852         val = readl(info->reg.gpmc_ecc1_result);
853         *ecc_code++ = val;          /* P128e, ..., P1e */
854         *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
855         /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
856         *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
857
858         return 0;
859 }
860
861 /**
862  * omap_enable_hwecc - This function enables the hardware ecc functionality
863  * @chip: NAND chip object
864  * @mode: Read/Write mode
865  */
866 static void omap_enable_hwecc(struct nand_chip *chip, int mode)
867 {
868         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
869         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
870         u32 val;
871
872         /* clear ecc and enable bits */
873         val = ECCCLEAR | ECC1;
874         writel(val, info->reg.gpmc_ecc_control);
875
876         /* program ecc and result sizes */
877         val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
878                          ECC1RESULTSIZE);
879         writel(val, info->reg.gpmc_ecc_size_config);
880
881         switch (mode) {
882         case NAND_ECC_READ:
883         case NAND_ECC_WRITE:
884                 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
885                 break;
886         case NAND_ECC_READSYN:
887                 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
888                 break;
889         default:
890                 dev_info(&info->pdev->dev,
891                         "error: unrecognized Mode[%d]!\n", mode);
892                 break;
893         }
894
895         /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
896         val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
897         writel(val, info->reg.gpmc_ecc_config);
898 }
899
900 /**
901  * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
902  * @chip: NAND chip object
903  * @mode: Read/Write mode
904  *
905  * When using BCH with SW correction (i.e. no ELM), sector size is set
906  * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
907  * for both reading and writing with:
908  * eccsize0 = 0  (no additional protected byte in spare area)
909  * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
910  */
911 static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
912                                                  int mode)
913 {
914         unsigned int bch_type;
915         unsigned int dev_width, nsectors;
916         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
917         enum omap_ecc ecc_opt = info->ecc_opt;
918         u32 val, wr_mode;
919         unsigned int ecc_size1, ecc_size0;
920
921         /* GPMC configurations for calculating ECC */
922         switch (ecc_opt) {
923         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
924                 bch_type = 0;
925                 nsectors = 1;
926                 wr_mode   = BCH_WRAPMODE_6;
927                 ecc_size0 = BCH_ECC_SIZE0;
928                 ecc_size1 = BCH_ECC_SIZE1;
929                 break;
930         case OMAP_ECC_BCH4_CODE_HW:
931                 bch_type = 0;
932                 nsectors = chip->ecc.steps;
933                 if (mode == NAND_ECC_READ) {
934                         wr_mode   = BCH_WRAPMODE_1;
935                         ecc_size0 = BCH4R_ECC_SIZE0;
936                         ecc_size1 = BCH4R_ECC_SIZE1;
937                 } else {
938                         wr_mode   = BCH_WRAPMODE_6;
939                         ecc_size0 = BCH_ECC_SIZE0;
940                         ecc_size1 = BCH_ECC_SIZE1;
941                 }
942                 break;
943         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
944                 bch_type = 1;
945                 nsectors = 1;
946                 wr_mode   = BCH_WRAPMODE_6;
947                 ecc_size0 = BCH_ECC_SIZE0;
948                 ecc_size1 = BCH_ECC_SIZE1;
949                 break;
950         case OMAP_ECC_BCH8_CODE_HW:
951                 bch_type = 1;
952                 nsectors = chip->ecc.steps;
953                 if (mode == NAND_ECC_READ) {
954                         wr_mode   = BCH_WRAPMODE_1;
955                         ecc_size0 = BCH8R_ECC_SIZE0;
956                         ecc_size1 = BCH8R_ECC_SIZE1;
957                 } else {
958                         wr_mode   = BCH_WRAPMODE_6;
959                         ecc_size0 = BCH_ECC_SIZE0;
960                         ecc_size1 = BCH_ECC_SIZE1;
961                 }
962                 break;
963         case OMAP_ECC_BCH16_CODE_HW:
964                 bch_type = 0x2;
965                 nsectors = chip->ecc.steps;
966                 if (mode == NAND_ECC_READ) {
967                         wr_mode   = 0x01;
968                         ecc_size0 = 52; /* ECC bits in nibbles per sector */
969                         ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
970                 } else {
971                         wr_mode   = 0x01;
972                         ecc_size0 = 0;  /* extra bits in nibbles per sector */
973                         ecc_size1 = 52; /* OOB bits in nibbles per sector */
974                 }
975                 break;
976         default:
977                 return;
978         }
979
980         writel(ECC1, info->reg.gpmc_ecc_control);
981
982         /* Configure ecc size for BCH */
983         val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
984         writel(val, info->reg.gpmc_ecc_size_config);
985
986         dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
987
988         /* BCH configuration */
989         val = ((1                        << 16) | /* enable BCH */
990                (bch_type                 << 12) | /* BCH4/BCH8/BCH16 */
991                (wr_mode                  <<  8) | /* wrap mode */
992                (dev_width                <<  7) | /* bus width */
993                (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
994                (info->gpmc_cs            <<  1) | /* ECC CS */
995                (0x1));                            /* enable ECC */
996
997         writel(val, info->reg.gpmc_ecc_config);
998
999         /* Clear ecc and enable bits */
1000         writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1001 }
1002
1003 static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1004 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1005                                 0x97, 0x79, 0xe5, 0x24, 0xb5};
1006
1007 /**
1008  * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
1009  * @mtd:        MTD device structure
1010  * @dat:        The pointer to data on which ecc is computed
1011  * @ecc_calc:   The ecc_code buffer
1012  * @i:          The sector number (for a multi sector page)
1013  *
1014  * Support calculating of BCH4/8/16 ECC vectors for one sector
1015  * within a page. Sector number is in @i.
1016  */
1017 static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1018                                    const u_char *dat, u_char *ecc_calc, int i)
1019 {
1020         struct omap_nand_info *info = mtd_to_omap(mtd);
1021         int eccbytes    = info->nand.ecc.bytes;
1022         struct gpmc_nand_regs   *gpmc_regs = &info->reg;
1023         u8 *ecc_code;
1024         unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1025         u32 val;
1026         int j;
1027
1028         ecc_code = ecc_calc;
1029         switch (info->ecc_opt) {
1030         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1031         case OMAP_ECC_BCH8_CODE_HW:
1032                 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1033                 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1034                 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1035                 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1036                 *ecc_code++ = (bch_val4 & 0xFF);
1037                 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1038                 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1039                 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1040                 *ecc_code++ = (bch_val3 & 0xFF);
1041                 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1042                 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1043                 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1044                 *ecc_code++ = (bch_val2 & 0xFF);
1045                 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1046                 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1047                 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1048                 *ecc_code++ = (bch_val1 & 0xFF);
1049                 break;
1050         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1051         case OMAP_ECC_BCH4_CODE_HW:
1052                 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1053                 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1054                 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1055                 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1056                 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1057                         ((bch_val1 >> 28) & 0xF);
1058                 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1059                 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1060                 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1061                 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1062                 break;
1063         case OMAP_ECC_BCH16_CODE_HW:
1064                 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1065                 ecc_code[0]  = ((val >>  8) & 0xFF);
1066                 ecc_code[1]  = ((val >>  0) & 0xFF);
1067                 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1068                 ecc_code[2]  = ((val >> 24) & 0xFF);
1069                 ecc_code[3]  = ((val >> 16) & 0xFF);
1070                 ecc_code[4]  = ((val >>  8) & 0xFF);
1071                 ecc_code[5]  = ((val >>  0) & 0xFF);
1072                 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1073                 ecc_code[6]  = ((val >> 24) & 0xFF);
1074                 ecc_code[7]  = ((val >> 16) & 0xFF);
1075                 ecc_code[8]  = ((val >>  8) & 0xFF);
1076                 ecc_code[9]  = ((val >>  0) & 0xFF);
1077                 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1078                 ecc_code[10] = ((val >> 24) & 0xFF);
1079                 ecc_code[11] = ((val >> 16) & 0xFF);
1080                 ecc_code[12] = ((val >>  8) & 0xFF);
1081                 ecc_code[13] = ((val >>  0) & 0xFF);
1082                 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1083                 ecc_code[14] = ((val >> 24) & 0xFF);
1084                 ecc_code[15] = ((val >> 16) & 0xFF);
1085                 ecc_code[16] = ((val >>  8) & 0xFF);
1086                 ecc_code[17] = ((val >>  0) & 0xFF);
1087                 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1088                 ecc_code[18] = ((val >> 24) & 0xFF);
1089                 ecc_code[19] = ((val >> 16) & 0xFF);
1090                 ecc_code[20] = ((val >>  8) & 0xFF);
1091                 ecc_code[21] = ((val >>  0) & 0xFF);
1092                 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1093                 ecc_code[22] = ((val >> 24) & 0xFF);
1094                 ecc_code[23] = ((val >> 16) & 0xFF);
1095                 ecc_code[24] = ((val >>  8) & 0xFF);
1096                 ecc_code[25] = ((val >>  0) & 0xFF);
1097                 break;
1098         default:
1099                 return -EINVAL;
1100         }
1101
1102         /* ECC scheme specific syndrome customizations */
1103         switch (info->ecc_opt) {
1104         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1105                 /* Add constant polynomial to remainder, so that
1106                  * ECC of blank pages results in 0x0 on reading back
1107                  */
1108                 for (j = 0; j < eccbytes; j++)
1109                         ecc_calc[j] ^= bch4_polynomial[j];
1110                 break;
1111         case OMAP_ECC_BCH4_CODE_HW:
1112                 /* Set  8th ECC byte as 0x0 for ROM compatibility */
1113                 ecc_calc[eccbytes - 1] = 0x0;
1114                 break;
1115         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1116                 /* Add constant polynomial to remainder, so that
1117                  * ECC of blank pages results in 0x0 on reading back
1118                  */
1119                 for (j = 0; j < eccbytes; j++)
1120                         ecc_calc[j] ^= bch8_polynomial[j];
1121                 break;
1122         case OMAP_ECC_BCH8_CODE_HW:
1123                 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1124                 ecc_calc[eccbytes - 1] = 0x0;
1125                 break;
1126         case OMAP_ECC_BCH16_CODE_HW:
1127                 break;
1128         default:
1129                 return -EINVAL;
1130         }
1131
1132         return 0;
1133 }
1134
1135 /**
1136  * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1137  * @chip:       NAND chip object
1138  * @dat:        The pointer to data on which ecc is computed
1139  * @ecc_calc:   Buffer storing the calculated ECC bytes
1140  *
1141  * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1142  * when SW based correction is required as ECC is required for one sector
1143  * at a time.
1144  */
1145 static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
1146                                      const u_char *dat, u_char *ecc_calc)
1147 {
1148         return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
1149 }
1150
1151 /**
1152  * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1153  * @mtd:        MTD device structure
1154  * @dat:        The pointer to data on which ecc is computed
1155  * @ecc_calc:   Buffer storing the calculated ECC bytes
1156  *
1157  * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1158  */
1159 static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1160                                         const u_char *dat, u_char *ecc_calc)
1161 {
1162         struct omap_nand_info *info = mtd_to_omap(mtd);
1163         int eccbytes = info->nand.ecc.bytes;
1164         unsigned long nsectors;
1165         int i, ret;
1166
1167         nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1168         for (i = 0; i < nsectors; i++) {
1169                 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1170                 if (ret)
1171                         return ret;
1172
1173                 ecc_calc += eccbytes;
1174         }
1175
1176         return 0;
1177 }
1178
1179 /**
1180  * erased_sector_bitflips - count bit flips
1181  * @data:       data sector buffer
1182  * @oob:        oob buffer
1183  * @info:       omap_nand_info
1184  *
1185  * Check the bit flips in erased page falls below correctable level.
1186  * If falls below, report the page as erased with correctable bit
1187  * flip, else report as uncorrectable page.
1188  */
1189 static int erased_sector_bitflips(u_char *data, u_char *oob,
1190                 struct omap_nand_info *info)
1191 {
1192         int flip_bits = 0, i;
1193
1194         for (i = 0; i < info->nand.ecc.size; i++) {
1195                 flip_bits += hweight8(~data[i]);
1196                 if (flip_bits > info->nand.ecc.strength)
1197                         return 0;
1198         }
1199
1200         for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1201                 flip_bits += hweight8(~oob[i]);
1202                 if (flip_bits > info->nand.ecc.strength)
1203                         return 0;
1204         }
1205
1206         /*
1207          * Bit flips falls in correctable level.
1208          * Fill data area with 0xFF
1209          */
1210         if (flip_bits) {
1211                 memset(data, 0xFF, info->nand.ecc.size);
1212                 memset(oob, 0xFF, info->nand.ecc.bytes);
1213         }
1214
1215         return flip_bits;
1216 }
1217
1218 /**
1219  * omap_elm_correct_data - corrects page data area in case error reported
1220  * @chip:       NAND chip object
1221  * @data:       page data
1222  * @read_ecc:   ecc read from nand flash
1223  * @calc_ecc:   ecc read from HW ECC registers
1224  *
1225  * Calculated ecc vector reported as zero in case of non-error pages.
1226  * In case of non-zero ecc vector, first filter out erased-pages, and
1227  * then process data via ELM to detect bit-flips.
1228  */
1229 static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
1230                                  u_char *read_ecc, u_char *calc_ecc)
1231 {
1232         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1233         struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1234         int eccsteps = info->nsteps_per_eccpg;
1235         int i , j, stat = 0;
1236         int eccflag, actual_eccbytes;
1237         struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1238         u_char *ecc_vec = calc_ecc;
1239         u_char *spare_ecc = read_ecc;
1240         u_char *erased_ecc_vec;
1241         u_char *buf;
1242         int bitflip_count;
1243         bool is_error_reported = false;
1244         u32 bit_pos, byte_pos, error_max, pos;
1245         int err;
1246
1247         switch (info->ecc_opt) {
1248         case OMAP_ECC_BCH4_CODE_HW:
1249                 /* omit  7th ECC byte reserved for ROM code compatibility */
1250                 actual_eccbytes = ecc->bytes - 1;
1251                 erased_ecc_vec = bch4_vector;
1252                 break;
1253         case OMAP_ECC_BCH8_CODE_HW:
1254                 /* omit 14th ECC byte reserved for ROM code compatibility */
1255                 actual_eccbytes = ecc->bytes - 1;
1256                 erased_ecc_vec = bch8_vector;
1257                 break;
1258         case OMAP_ECC_BCH16_CODE_HW:
1259                 actual_eccbytes = ecc->bytes;
1260                 erased_ecc_vec = bch16_vector;
1261                 break;
1262         default:
1263                 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1264                 return -EINVAL;
1265         }
1266
1267         /* Initialize elm error vector to zero */
1268         memset(err_vec, 0, sizeof(err_vec));
1269
1270         for (i = 0; i < eccsteps ; i++) {
1271                 eccflag = 0;    /* initialize eccflag */
1272
1273                 /*
1274                  * Check any error reported,
1275                  * In case of error, non zero ecc reported.
1276                  */
1277                 for (j = 0; j < actual_eccbytes; j++) {
1278                         if (calc_ecc[j] != 0) {
1279                                 eccflag = 1; /* non zero ecc, error present */
1280                                 break;
1281                         }
1282                 }
1283
1284                 if (eccflag == 1) {
1285                         if (memcmp(calc_ecc, erased_ecc_vec,
1286                                                 actual_eccbytes) == 0) {
1287                                 /*
1288                                  * calc_ecc[] matches pattern for ECC(all 0xff)
1289                                  * so this is definitely an erased-page
1290                                  */
1291                         } else {
1292                                 buf = &data[info->nand.ecc.size * i];
1293                                 /*
1294                                  * count number of 0-bits in read_buf.
1295                                  * This check can be removed once a similar
1296                                  * check is introduced in generic NAND driver
1297                                  */
1298                                 bitflip_count = erased_sector_bitflips(
1299                                                 buf, read_ecc, info);
1300                                 if (bitflip_count) {
1301                                         /*
1302                                          * number of 0-bits within ECC limits
1303                                          * So this may be an erased-page
1304                                          */
1305                                         stat += bitflip_count;
1306                                 } else {
1307                                         /*
1308                                          * Too many 0-bits. It may be a
1309                                          * - programmed-page, OR
1310                                          * - erased-page with many bit-flips
1311                                          * So this page requires check by ELM
1312                                          */
1313                                         err_vec[i].error_reported = true;
1314                                         is_error_reported = true;
1315                                 }
1316                         }
1317                 }
1318
1319                 /* Update the ecc vector */
1320                 calc_ecc += ecc->bytes;
1321                 read_ecc += ecc->bytes;
1322         }
1323
1324         /* Check if any error reported */
1325         if (!is_error_reported)
1326                 return stat;
1327
1328         /* Decode BCH error using ELM module */
1329         elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1330
1331         err = 0;
1332         for (i = 0; i < eccsteps; i++) {
1333                 if (err_vec[i].error_uncorrectable) {
1334                         dev_err(&info->pdev->dev,
1335                                 "uncorrectable bit-flips found\n");
1336                         err = -EBADMSG;
1337                 } else if (err_vec[i].error_reported) {
1338                         for (j = 0; j < err_vec[i].error_count; j++) {
1339                                 switch (info->ecc_opt) {
1340                                 case OMAP_ECC_BCH4_CODE_HW:
1341                                         /* Add 4 bits to take care of padding */
1342                                         pos = err_vec[i].error_loc[j] +
1343                                                 BCH4_BIT_PAD;
1344                                         break;
1345                                 case OMAP_ECC_BCH8_CODE_HW:
1346                                 case OMAP_ECC_BCH16_CODE_HW:
1347                                         pos = err_vec[i].error_loc[j];
1348                                         break;
1349                                 default:
1350                                         return -EINVAL;
1351                                 }
1352                                 error_max = (ecc->size + actual_eccbytes) * 8;
1353                                 /* Calculate bit position of error */
1354                                 bit_pos = pos % 8;
1355
1356                                 /* Calculate byte position of error */
1357                                 byte_pos = (error_max - pos - 1) / 8;
1358
1359                                 if (pos < error_max) {
1360                                         if (byte_pos < 512) {
1361                                                 pr_debug("bitflip@dat[%d]=%x\n",
1362                                                      byte_pos, data[byte_pos]);
1363                                                 data[byte_pos] ^= 1 << bit_pos;
1364                                         } else {
1365                                                 pr_debug("bitflip@oob[%d]=%x\n",
1366                                                         (byte_pos - 512),
1367                                                      spare_ecc[byte_pos - 512]);
1368                                                 spare_ecc[byte_pos - 512] ^=
1369                                                         1 << bit_pos;
1370                                         }
1371                                 } else {
1372                                         dev_err(&info->pdev->dev,
1373                                                 "invalid bit-flip @ %d:%d\n",
1374                                                 byte_pos, bit_pos);
1375                                         err = -EBADMSG;
1376                                 }
1377                         }
1378                 }
1379
1380                 /* Update number of correctable errors */
1381                 stat = max_t(unsigned int, stat, err_vec[i].error_count);
1382
1383                 /* Update page data with sector size */
1384                 data += ecc->size;
1385                 spare_ecc += ecc->bytes;
1386         }
1387
1388         return (err) ? err : stat;
1389 }
1390
1391 /**
1392  * omap_write_page_bch - BCH ecc based write page function for entire page
1393  * @chip:               nand chip info structure
1394  * @buf:                data buffer
1395  * @oob_required:       must write chip->oob_poi to OOB
1396  * @page:               page
1397  *
1398  * Custom write page method evolved to support multi sector writing in one shot
1399  */
1400 static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
1401                                int oob_required, int page)
1402 {
1403         struct mtd_info *mtd = nand_to_mtd(chip);
1404         struct omap_nand_info *info = mtd_to_omap(mtd);
1405         uint8_t *ecc_calc = chip->ecc.calc_buf;
1406         unsigned int eccpg;
1407         int ret;
1408
1409         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1410         if (ret)
1411                 return ret;
1412
1413         for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1414                 /* Enable GPMC ecc engine */
1415                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1416
1417                 /* Write data */
1418                 info->data_out(chip, buf + (eccpg * info->eccpg_size),
1419                                info->eccpg_size, false);
1420
1421                 /* Update ecc vector from GPMC result registers */
1422                 ret = omap_calculate_ecc_bch_multi(mtd,
1423                                                    buf + (eccpg * info->eccpg_size),
1424                                                    ecc_calc);
1425                 if (ret)
1426                         return ret;
1427
1428                 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc,
1429                                                  chip->oob_poi,
1430                                                  eccpg * info->eccpg_bytes,
1431                                                  info->eccpg_bytes);
1432                 if (ret)
1433                         return ret;
1434         }
1435
1436         /* Write ecc vector to OOB area */
1437         info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
1438
1439         return nand_prog_page_end_op(chip);
1440 }
1441
1442 /**
1443  * omap_write_subpage_bch - BCH hardware ECC based subpage write
1444  * @chip:       nand chip info structure
1445  * @offset:     column address of subpage within the page
1446  * @data_len:   data length
1447  * @buf:        data buffer
1448  * @oob_required: must write chip->oob_poi to OOB
1449  * @page: page number to write
1450  *
1451  * OMAP optimized subpage write method.
1452  */
1453 static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
1454                                   u32 data_len, const u8 *buf,
1455                                   int oob_required, int page)
1456 {
1457         struct mtd_info *mtd = nand_to_mtd(chip);
1458         struct omap_nand_info *info = mtd_to_omap(mtd);
1459         u8 *ecc_calc = chip->ecc.calc_buf;
1460         int ecc_size      = chip->ecc.size;
1461         int ecc_bytes     = chip->ecc.bytes;
1462         u32 start_step = offset / ecc_size;
1463         u32 end_step   = (offset + data_len - 1) / ecc_size;
1464         unsigned int eccpg;
1465         int step, ret = 0;
1466
1467         /*
1468          * Write entire page at one go as it would be optimal
1469          * as ECC is calculated by hardware.
1470          * ECC is calculated for all subpages but we choose
1471          * only what we want.
1472          */
1473         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1474         if (ret)
1475                 return ret;
1476
1477         for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1478                 /* Enable GPMC ECC engine */
1479                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1480
1481                 /* Write data */
1482                 info->data_out(chip, buf + (eccpg * info->eccpg_size),
1483                                info->eccpg_size, false);
1484
1485                 for (step = 0; step < info->nsteps_per_eccpg; step++) {
1486                         unsigned int base_step = eccpg * info->nsteps_per_eccpg;
1487                         const u8 *bufoffs = buf + (eccpg * info->eccpg_size);
1488
1489                         /* Mask ECC of un-touched subpages with 0xFFs */
1490                         if ((step + base_step) < start_step ||
1491                             (step + base_step) > end_step)
1492                                 memset(ecc_calc + (step * ecc_bytes), 0xff,
1493                                        ecc_bytes);
1494                         else
1495                                 ret = _omap_calculate_ecc_bch(mtd,
1496                                                               bufoffs + (step * ecc_size),
1497                                                               ecc_calc + (step * ecc_bytes),
1498                                                               step);
1499
1500                         if (ret)
1501                                 return ret;
1502                 }
1503
1504                 /*
1505                  * Copy the calculated ECC for the whole page including the
1506                  * masked values (0xFF) corresponding to unwritten subpages.
1507                  */
1508                 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
1509                                                  eccpg * info->eccpg_bytes,
1510                                                  info->eccpg_bytes);
1511                 if (ret)
1512                         return ret;
1513         }
1514
1515         /* write OOB buffer to NAND device */
1516         info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
1517
1518         return nand_prog_page_end_op(chip);
1519 }
1520
1521 /**
1522  * omap_read_page_bch - BCH ecc based page read function for entire page
1523  * @chip:               nand chip info structure
1524  * @buf:                buffer to store read data
1525  * @oob_required:       caller requires OOB data read to chip->oob_poi
1526  * @page:               page number to read
1527  *
1528  * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1529  * used for error correction.
1530  * Custom method evolved to support ELM error correction & multi sector
1531  * reading. On reading page data area is read along with OOB data with
1532  * ecc engine enabled. ecc vector updated after read of OOB data.
1533  * For non error pages ecc vector reported as zero.
1534  */
1535 static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
1536                               int oob_required, int page)
1537 {
1538         struct mtd_info *mtd = nand_to_mtd(chip);
1539         struct omap_nand_info *info = mtd_to_omap(mtd);
1540         uint8_t *ecc_calc = chip->ecc.calc_buf;
1541         uint8_t *ecc_code = chip->ecc.code_buf;
1542         unsigned int max_bitflips = 0, eccpg;
1543         int stat, ret;
1544
1545         ret = nand_read_page_op(chip, page, 0, NULL, 0);
1546         if (ret)
1547                 return ret;
1548
1549         for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1550                 /* Enable GPMC ecc engine */
1551                 chip->ecc.hwctl(chip, NAND_ECC_READ);
1552
1553                 /* Read data */
1554                 ret = nand_change_read_column_op(chip, eccpg * info->eccpg_size,
1555                                                  buf + (eccpg * info->eccpg_size),
1556                                                  info->eccpg_size, false);
1557                 if (ret)
1558                         return ret;
1559
1560                 /* Read oob bytes */
1561                 ret = nand_change_read_column_op(chip,
1562                                                  mtd->writesize + BBM_LEN +
1563                                                  (eccpg * info->eccpg_bytes),
1564                                                  chip->oob_poi + BBM_LEN +
1565                                                  (eccpg * info->eccpg_bytes),
1566                                                  info->eccpg_bytes, false);
1567                 if (ret)
1568                         return ret;
1569
1570                 /* Calculate ecc bytes */
1571                 ret = omap_calculate_ecc_bch_multi(mtd,
1572                                                    buf + (eccpg * info->eccpg_size),
1573                                                    ecc_calc);
1574                 if (ret)
1575                         return ret;
1576
1577                 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code,
1578                                                  chip->oob_poi,
1579                                                  eccpg * info->eccpg_bytes,
1580                                                  info->eccpg_bytes);
1581                 if (ret)
1582                         return ret;
1583
1584                 stat = chip->ecc.correct(chip,
1585                                          buf + (eccpg * info->eccpg_size),
1586                                          ecc_code, ecc_calc);
1587                 if (stat < 0) {
1588                         mtd->ecc_stats.failed++;
1589                 } else {
1590                         mtd->ecc_stats.corrected += stat;
1591                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1592                 }
1593         }
1594
1595         return max_bitflips;
1596 }
1597
1598 /**
1599  * is_elm_present - checks for presence of ELM module by scanning DT nodes
1600  * @info: NAND device structure containing platform data
1601  * @elm_node: ELM's DT node
1602  */
1603 static bool is_elm_present(struct omap_nand_info *info,
1604                            struct device_node *elm_node)
1605 {
1606         struct platform_device *pdev;
1607
1608         /* check whether elm-id is passed via DT */
1609         if (!elm_node) {
1610                 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1611                 return false;
1612         }
1613         pdev = of_find_device_by_node(elm_node);
1614         /* check whether ELM device is registered */
1615         if (!pdev) {
1616                 dev_err(&info->pdev->dev, "ELM device not found\n");
1617                 return false;
1618         }
1619         /* ELM module available, now configure it */
1620         info->elm_dev = &pdev->dev;
1621         return true;
1622 }
1623
1624 static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1625 {
1626         bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1627
1628         switch (info->ecc_opt) {
1629         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1630         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1631                 ecc_needs_omap_bch = false;
1632                 ecc_needs_bch = true;
1633                 ecc_needs_elm = false;
1634                 break;
1635         case OMAP_ECC_BCH4_CODE_HW:
1636         case OMAP_ECC_BCH8_CODE_HW:
1637         case OMAP_ECC_BCH16_CODE_HW:
1638                 ecc_needs_omap_bch = true;
1639                 ecc_needs_bch = false;
1640                 ecc_needs_elm = true;
1641                 break;
1642         default:
1643                 ecc_needs_omap_bch = false;
1644                 ecc_needs_bch = false;
1645                 ecc_needs_elm = false;
1646                 break;
1647         }
1648
1649         if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
1650                 dev_err(&info->pdev->dev,
1651                         "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
1652                 return false;
1653         }
1654         if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1655                 dev_err(&info->pdev->dev,
1656                         "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1657                 return false;
1658         }
1659         if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1660                 dev_err(&info->pdev->dev, "ELM not available\n");
1661                 return false;
1662         }
1663
1664         return true;
1665 }
1666
1667 static const char * const nand_xfer_types[] = {
1668         [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1669         [NAND_OMAP_POLLED] = "polled",
1670         [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1671         [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1672 };
1673
1674 static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1675 {
1676         struct device_node *child = dev->of_node;
1677         int i;
1678         const char *s;
1679         u32 cs;
1680
1681         if (of_property_read_u32(child, "reg", &cs) < 0) {
1682                 dev_err(dev, "reg not found in DT\n");
1683                 return -EINVAL;
1684         }
1685
1686         info->gpmc_cs = cs;
1687
1688         /* detect availability of ELM module. Won't be present pre-OMAP4 */
1689         info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1690         if (!info->elm_of_node) {
1691                 info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1692                 if (!info->elm_of_node)
1693                         dev_dbg(dev, "ti,elm-id not in DT\n");
1694         }
1695
1696         /* select ecc-scheme for NAND */
1697         if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1698                 dev_err(dev, "ti,nand-ecc-opt not found\n");
1699                 return -EINVAL;
1700         }
1701
1702         if (!strcmp(s, "sw")) {
1703                 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1704         } else if (!strcmp(s, "ham1") ||
1705                    !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1706                 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1707         } else if (!strcmp(s, "bch4")) {
1708                 if (info->elm_of_node)
1709                         info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1710                 else
1711                         info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1712         } else if (!strcmp(s, "bch8")) {
1713                 if (info->elm_of_node)
1714                         info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1715                 else
1716                         info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1717         } else if (!strcmp(s, "bch16")) {
1718                 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1719         } else {
1720                 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1721                 return -EINVAL;
1722         }
1723
1724         /* select data transfer mode */
1725         if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1726                 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1727                         if (!strcasecmp(s, nand_xfer_types[i])) {
1728                                 info->xfer_type = i;
1729                                 return 0;
1730                         }
1731                 }
1732
1733                 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1734                 return -EINVAL;
1735         }
1736
1737         return 0;
1738 }
1739
1740 static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1741                               struct mtd_oob_region *oobregion)
1742 {
1743         struct omap_nand_info *info = mtd_to_omap(mtd);
1744         struct nand_chip *chip = &info->nand;
1745         int off = BBM_LEN;
1746
1747         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1748             !(chip->options & NAND_BUSWIDTH_16))
1749                 off = 1;
1750
1751         if (section)
1752                 return -ERANGE;
1753
1754         oobregion->offset = off;
1755         oobregion->length = chip->ecc.total;
1756
1757         return 0;
1758 }
1759
1760 static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1761                                struct mtd_oob_region *oobregion)
1762 {
1763         struct omap_nand_info *info = mtd_to_omap(mtd);
1764         struct nand_chip *chip = &info->nand;
1765         int off = BBM_LEN;
1766
1767         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1768             !(chip->options & NAND_BUSWIDTH_16))
1769                 off = 1;
1770
1771         if (section)
1772                 return -ERANGE;
1773
1774         off += chip->ecc.total;
1775         if (off >= mtd->oobsize)
1776                 return -ERANGE;
1777
1778         oobregion->offset = off;
1779         oobregion->length = mtd->oobsize - off;
1780
1781         return 0;
1782 }
1783
1784 static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1785         .ecc = omap_ooblayout_ecc,
1786         .free = omap_ooblayout_free,
1787 };
1788
1789 static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1790                                  struct mtd_oob_region *oobregion)
1791 {
1792         struct nand_device *nand = mtd_to_nanddev(mtd);
1793         unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1794         unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1795         int off = BBM_LEN;
1796
1797         if (section >= nsteps)
1798                 return -ERANGE;
1799
1800         /*
1801          * When SW correction is employed, one OMAP specific marker byte is
1802          * reserved after each ECC step.
1803          */
1804         oobregion->offset = off + (section * (ecc_bytes + 1));
1805         oobregion->length = ecc_bytes;
1806
1807         return 0;
1808 }
1809
1810 static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1811                                   struct mtd_oob_region *oobregion)
1812 {
1813         struct nand_device *nand = mtd_to_nanddev(mtd);
1814         unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1815         unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1816         int off = BBM_LEN;
1817
1818         if (section)
1819                 return -ERANGE;
1820
1821         /*
1822          * When SW correction is employed, one OMAP specific marker byte is
1823          * reserved after each ECC step.
1824          */
1825         off += ((ecc_bytes + 1) * nsteps);
1826         if (off >= mtd->oobsize)
1827                 return -ERANGE;
1828
1829         oobregion->offset = off;
1830         oobregion->length = mtd->oobsize - off;
1831
1832         return 0;
1833 }
1834
1835 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1836         .ecc = omap_sw_ooblayout_ecc,
1837         .free = omap_sw_ooblayout_free,
1838 };
1839
1840 static int omap_nand_attach_chip(struct nand_chip *chip)
1841 {
1842         struct mtd_info *mtd = nand_to_mtd(chip);
1843         struct omap_nand_info *info = mtd_to_omap(mtd);
1844         struct device *dev = &info->pdev->dev;
1845         int min_oobbytes = BBM_LEN;
1846         int elm_bch_strength = -1;
1847         int oobbytes_per_step;
1848         dma_cap_mask_t mask;
1849         int err;
1850
1851         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1852                 chip->bbt_options |= NAND_BBT_NO_OOB;
1853         else
1854                 chip->options |= NAND_SKIP_BBTSCAN;
1855
1856         /* Re-populate low-level callbacks based on xfer modes */
1857         switch (info->xfer_type) {
1858         case NAND_OMAP_PREFETCH_POLLED:
1859                 info->data_in = omap_nand_data_in_pref;
1860                 info->data_out = omap_nand_data_out_pref;
1861                 break;
1862
1863         case NAND_OMAP_POLLED:
1864                 /* Use nand_base defaults for {read,write}_buf */
1865                 break;
1866
1867         case NAND_OMAP_PREFETCH_DMA:
1868                 dma_cap_zero(mask);
1869                 dma_cap_set(DMA_SLAVE, mask);
1870                 info->dma = dma_request_chan(dev->parent, "rxtx");
1871
1872                 if (IS_ERR(info->dma)) {
1873                         dev_err(dev, "DMA engine request failed\n");
1874                         return PTR_ERR(info->dma);
1875                 } else {
1876                         struct dma_slave_config cfg;
1877
1878                         memset(&cfg, 0, sizeof(cfg));
1879                         cfg.src_addr = info->phys_base;
1880                         cfg.dst_addr = info->phys_base;
1881                         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1882                         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1883                         cfg.src_maxburst = 16;
1884                         cfg.dst_maxburst = 16;
1885                         err = dmaengine_slave_config(info->dma, &cfg);
1886                         if (err) {
1887                                 dev_err(dev,
1888                                         "DMA engine slave config failed: %d\n",
1889                                         err);
1890                                 return err;
1891                         }
1892
1893                         info->data_in = omap_nand_data_in_dma_pref;
1894                         info->data_out = omap_nand_data_out_dma_pref;
1895                 }
1896                 break;
1897
1898         case NAND_OMAP_PREFETCH_IRQ:
1899                 info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
1900                 if (info->gpmc_irq_fifo < 0)
1901                         return info->gpmc_irq_fifo;
1902                 err = devm_request_irq(dev, info->gpmc_irq_fifo,
1903                                        omap_nand_irq, IRQF_SHARED,
1904                                        "gpmc-nand-fifo", info);
1905                 if (err) {
1906                         dev_err(dev, "Requesting IRQ %d, error %d\n",
1907                                 info->gpmc_irq_fifo, err);
1908                         info->gpmc_irq_fifo = 0;
1909                         return err;
1910                 }
1911
1912                 info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
1913                 if (info->gpmc_irq_count < 0)
1914                         return info->gpmc_irq_count;
1915                 err = devm_request_irq(dev, info->gpmc_irq_count,
1916                                        omap_nand_irq, IRQF_SHARED,
1917                                        "gpmc-nand-count", info);
1918                 if (err) {
1919                         dev_err(dev, "Requesting IRQ %d, error %d\n",
1920                                 info->gpmc_irq_count, err);
1921                         info->gpmc_irq_count = 0;
1922                         return err;
1923                 }
1924
1925                 info->data_in = omap_nand_data_in_irq_pref;
1926                 info->data_out = omap_nand_data_out_irq_pref;
1927                 break;
1928
1929         default:
1930                 dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
1931                 return -EINVAL;
1932         }
1933
1934         if (!omap2_nand_ecc_check(info))
1935                 return -EINVAL;
1936
1937         /*
1938          * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own
1939          * ooblayout instead of using ours.
1940          */
1941         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
1942                 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
1943                 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
1944                 return 0;
1945         }
1946
1947         /* Populate MTD interface based on ECC scheme */
1948         switch (info->ecc_opt) {
1949         case OMAP_ECC_HAM1_CODE_HW:
1950                 dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
1951                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
1952                 chip->ecc.bytes         = 3;
1953                 chip->ecc.size          = 512;
1954                 chip->ecc.strength      = 1;
1955                 chip->ecc.calculate     = omap_calculate_ecc;
1956                 chip->ecc.hwctl         = omap_enable_hwecc;
1957                 chip->ecc.correct       = omap_correct_data;
1958                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
1959                 oobbytes_per_step       = chip->ecc.bytes;
1960
1961                 if (!(chip->options & NAND_BUSWIDTH_16))
1962                         min_oobbytes    = 1;
1963
1964                 break;
1965
1966         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1967                 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1968                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
1969                 chip->ecc.size          = 512;
1970                 chip->ecc.bytes         = 7;
1971                 chip->ecc.strength      = 4;
1972                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
1973                 chip->ecc.correct       = rawnand_sw_bch_correct;
1974                 chip->ecc.calculate     = omap_calculate_ecc_bch_sw;
1975                 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
1976                 /* Reserve one byte for the OMAP marker */
1977                 oobbytes_per_step       = chip->ecc.bytes + 1;
1978                 /* Software BCH library is used for locating errors */
1979                 err = rawnand_sw_bch_init(chip);
1980                 if (err) {
1981                         dev_err(dev, "Unable to use BCH library\n");
1982                         return err;
1983                 }
1984                 break;
1985
1986         case OMAP_ECC_BCH4_CODE_HW:
1987                 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1988                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
1989                 chip->ecc.size          = 512;
1990                 /* 14th bit is kept reserved for ROM-code compatibility */
1991                 chip->ecc.bytes         = 7 + 1;
1992                 chip->ecc.strength      = 4;
1993                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
1994                 chip->ecc.correct       = omap_elm_correct_data;
1995                 chip->ecc.read_page     = omap_read_page_bch;
1996                 chip->ecc.write_page    = omap_write_page_bch;
1997                 chip->ecc.write_subpage = omap_write_subpage_bch;
1998                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
1999                 oobbytes_per_step       = chip->ecc.bytes;
2000                 elm_bch_strength = BCH4_ECC;
2001                 break;
2002
2003         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2004                 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2005                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2006                 chip->ecc.size          = 512;
2007                 chip->ecc.bytes         = 13;
2008                 chip->ecc.strength      = 8;
2009                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2010                 chip->ecc.correct       = rawnand_sw_bch_correct;
2011                 chip->ecc.calculate     = omap_calculate_ecc_bch_sw;
2012                 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2013                 /* Reserve one byte for the OMAP marker */
2014                 oobbytes_per_step       = chip->ecc.bytes + 1;
2015                 /* Software BCH library is used for locating errors */
2016                 err = rawnand_sw_bch_init(chip);
2017                 if (err) {
2018                         dev_err(dev, "unable to use BCH library\n");
2019                         return err;
2020                 }
2021                 break;
2022
2023         case OMAP_ECC_BCH8_CODE_HW:
2024                 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2025                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2026                 chip->ecc.size          = 512;
2027                 /* 14th bit is kept reserved for ROM-code compatibility */
2028                 chip->ecc.bytes         = 13 + 1;
2029                 chip->ecc.strength      = 8;
2030                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2031                 chip->ecc.correct       = omap_elm_correct_data;
2032                 chip->ecc.read_page     = omap_read_page_bch;
2033                 chip->ecc.write_page    = omap_write_page_bch;
2034                 chip->ecc.write_subpage = omap_write_subpage_bch;
2035                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2036                 oobbytes_per_step       = chip->ecc.bytes;
2037                 elm_bch_strength = BCH8_ECC;
2038                 break;
2039
2040         case OMAP_ECC_BCH16_CODE_HW:
2041                 pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2042                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2043                 chip->ecc.size          = 512;
2044                 chip->ecc.bytes         = 26;
2045                 chip->ecc.strength      = 16;
2046                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2047                 chip->ecc.correct       = omap_elm_correct_data;
2048                 chip->ecc.read_page     = omap_read_page_bch;
2049                 chip->ecc.write_page    = omap_write_page_bch;
2050                 chip->ecc.write_subpage = omap_write_subpage_bch;
2051                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2052                 oobbytes_per_step       = chip->ecc.bytes;
2053                 elm_bch_strength = BCH16_ECC;
2054                 break;
2055         default:
2056                 dev_err(dev, "Invalid or unsupported ECC scheme\n");
2057                 return -EINVAL;
2058         }
2059
2060         if (elm_bch_strength >= 0) {
2061                 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2062                 info->neccpg = chip->ecc.steps / ERROR_VECTOR_MAX;
2063                 if (info->neccpg) {
2064                         info->nsteps_per_eccpg = ERROR_VECTOR_MAX;
2065                 } else {
2066                         info->neccpg = 1;
2067                         info->nsteps_per_eccpg = chip->ecc.steps;
2068                 }
2069                 info->eccpg_size = info->nsteps_per_eccpg * chip->ecc.size;
2070                 info->eccpg_bytes = info->nsteps_per_eccpg * chip->ecc.bytes;
2071
2072                 err = elm_config(info->elm_dev, elm_bch_strength,
2073                                  info->nsteps_per_eccpg, chip->ecc.size,
2074                                  chip->ecc.bytes);
2075                 if (err < 0)
2076                         return err;
2077         }
2078
2079         /* Check if NAND device's OOB is enough to store ECC signatures */
2080         min_oobbytes += (oobbytes_per_step *
2081                          (mtd->writesize / chip->ecc.size));
2082         if (mtd->oobsize < min_oobbytes) {
2083                 dev_err(dev,
2084                         "Not enough OOB bytes: required = %d, available=%d\n",
2085                         min_oobbytes, mtd->oobsize);
2086                 return -EINVAL;
2087         }
2088
2089         return 0;
2090 }
2091
2092 static void omap_nand_data_in(struct nand_chip *chip, void *buf,
2093                               unsigned int len, bool force_8bit)
2094 {
2095         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2096         u32 alignment = ((uintptr_t)buf | len) & 3;
2097
2098         if (force_8bit || (alignment & 1))
2099                 ioread8_rep(info->fifo, buf, len);
2100         else if (alignment & 3)
2101                 ioread16_rep(info->fifo, buf, len >> 1);
2102         else
2103                 ioread32_rep(info->fifo, buf, len >> 2);
2104 }
2105
2106 static void omap_nand_data_out(struct nand_chip *chip,
2107                                const void *buf, unsigned int len,
2108                                bool force_8bit)
2109 {
2110         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2111         u32 alignment = ((uintptr_t)buf | len) & 3;
2112
2113         if (force_8bit || (alignment & 1))
2114                 iowrite8_rep(info->fifo, buf, len);
2115         else if (alignment & 3)
2116                 iowrite16_rep(info->fifo, buf, len >> 1);
2117         else
2118                 iowrite32_rep(info->fifo, buf, len >> 2);
2119 }
2120
2121 static int omap_nand_exec_instr(struct nand_chip *chip,
2122                                 const struct nand_op_instr *instr)
2123 {
2124         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2125         unsigned int i;
2126         int ret;
2127
2128         switch (instr->type) {
2129         case NAND_OP_CMD_INSTR:
2130                 iowrite8(instr->ctx.cmd.opcode,
2131                          info->reg.gpmc_nand_command);
2132                 break;
2133
2134         case NAND_OP_ADDR_INSTR:
2135                 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
2136                         iowrite8(instr->ctx.addr.addrs[i],
2137                                  info->reg.gpmc_nand_address);
2138                 }
2139                 break;
2140
2141         case NAND_OP_DATA_IN_INSTR:
2142                 info->data_in(chip, instr->ctx.data.buf.in,
2143                               instr->ctx.data.len,
2144                               instr->ctx.data.force_8bit);
2145                 break;
2146
2147         case NAND_OP_DATA_OUT_INSTR:
2148                 info->data_out(chip, instr->ctx.data.buf.out,
2149                                instr->ctx.data.len,
2150                                instr->ctx.data.force_8bit);
2151                 break;
2152
2153         case NAND_OP_WAITRDY_INSTR:
2154                 ret = info->ready_gpiod ?
2155                         nand_gpio_waitrdy(chip, info->ready_gpiod, instr->ctx.waitrdy.timeout_ms) :
2156                         nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
2157                 if (ret)
2158                         return ret;
2159                 break;
2160         }
2161
2162         if (instr->delay_ns)
2163                 ndelay(instr->delay_ns);
2164
2165         return 0;
2166 }
2167
2168 static int omap_nand_exec_op(struct nand_chip *chip,
2169                              const struct nand_operation *op,
2170                              bool check_only)
2171 {
2172         unsigned int i;
2173
2174         if (check_only)
2175                 return 0;
2176
2177         for (i = 0; i < op->ninstrs; i++) {
2178                 int ret;
2179
2180                 ret = omap_nand_exec_instr(chip, &op->instrs[i]);
2181                 if (ret)
2182                         return ret;
2183         }
2184
2185         return 0;
2186 }
2187
2188 static const struct nand_controller_ops omap_nand_controller_ops = {
2189         .attach_chip = omap_nand_attach_chip,
2190         .exec_op = omap_nand_exec_op,
2191 };
2192
2193 /* Shared among all NAND instances to synchronize access to the ECC Engine */
2194 static struct nand_controller omap_gpmc_controller;
2195 static bool omap_gpmc_controller_initialized;
2196
2197 static int omap_nand_probe(struct platform_device *pdev)
2198 {
2199         struct omap_nand_info           *info;
2200         struct mtd_info                 *mtd;
2201         struct nand_chip                *nand_chip;
2202         int                             err;
2203         struct resource                 *res;
2204         struct device                   *dev = &pdev->dev;
2205         void __iomem *vaddr;
2206
2207         info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
2208                                 GFP_KERNEL);
2209         if (!info)
2210                 return -ENOMEM;
2211
2212         info->pdev = pdev;
2213
2214         err = omap_get_dt_info(dev, info);
2215         if (err)
2216                 return err;
2217
2218         info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
2219         if (!info->ops) {
2220                 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
2221                 return -ENODEV;
2222         }
2223
2224         nand_chip               = &info->nand;
2225         mtd                     = nand_to_mtd(nand_chip);
2226         mtd->dev.parent         = &pdev->dev;
2227         nand_set_flash_node(nand_chip, dev->of_node);
2228
2229         if (!mtd->name) {
2230                 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
2231                                            "omap2-nand.%d", info->gpmc_cs);
2232                 if (!mtd->name) {
2233                         dev_err(&pdev->dev, "Failed to set MTD name\n");
2234                         return -ENOMEM;
2235                 }
2236         }
2237
2238         vaddr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2239         if (IS_ERR(vaddr))
2240                 return PTR_ERR(vaddr);
2241
2242         info->fifo = vaddr;
2243         info->phys_base = res->start;
2244
2245         if (!omap_gpmc_controller_initialized) {
2246                 omap_gpmc_controller.ops = &omap_nand_controller_ops;
2247                 nand_controller_init(&omap_gpmc_controller);
2248                 omap_gpmc_controller_initialized = true;
2249         }
2250
2251         nand_chip->controller = &omap_gpmc_controller;
2252
2253         info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
2254                                                     GPIOD_IN);
2255         if (IS_ERR(info->ready_gpiod)) {
2256                 dev_err(dev, "failed to get ready gpio\n");
2257                 return PTR_ERR(info->ready_gpiod);
2258         }
2259
2260         if (info->flash_bbt)
2261                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2262
2263         /* default operations */
2264         info->data_in = omap_nand_data_in;
2265         info->data_out = omap_nand_data_out;
2266
2267         err = nand_scan(nand_chip, 1);
2268         if (err)
2269                 goto return_error;
2270
2271         err = mtd_device_register(mtd, NULL, 0);
2272         if (err)
2273                 goto cleanup_nand;
2274
2275         platform_set_drvdata(pdev, mtd);
2276
2277         return 0;
2278
2279 cleanup_nand:
2280         nand_cleanup(nand_chip);
2281
2282 return_error:
2283         if (!IS_ERR_OR_NULL(info->dma))
2284                 dma_release_channel(info->dma);
2285
2286         rawnand_sw_bch_cleanup(nand_chip);
2287
2288         return err;
2289 }
2290
2291 static void omap_nand_remove(struct platform_device *pdev)
2292 {
2293         struct mtd_info *mtd = platform_get_drvdata(pdev);
2294         struct nand_chip *nand_chip = mtd_to_nand(mtd);
2295         struct omap_nand_info *info = mtd_to_omap(mtd);
2296
2297         rawnand_sw_bch_cleanup(nand_chip);
2298
2299         if (info->dma)
2300                 dma_release_channel(info->dma);
2301         WARN_ON(mtd_device_unregister(mtd));
2302         nand_cleanup(nand_chip);
2303 }
2304
2305 /* omap_nand_ids defined in linux/platform_data/mtd-nand-omap2.h */
2306 MODULE_DEVICE_TABLE(of, omap_nand_ids);
2307
2308 static struct platform_driver omap_nand_driver = {
2309         .probe          = omap_nand_probe,
2310         .remove         = omap_nand_remove,
2311         .driver         = {
2312                 .name   = DRIVER_NAME,
2313                 .of_match_table = omap_nand_ids,
2314         },
2315 };
2316
2317 module_platform_driver(omap_nand_driver);
2318
2319 MODULE_ALIAS("platform:" DRIVER_NAME);
2320 MODULE_LICENSE("GPL");
2321 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
This page took 0.169255 seconds and 4 git commands to generate.