1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
41 #include <asm/pgalloc.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
50 #include "hugetlb_vmemmap.h"
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
61 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
70 static unsigned long hugetlb_cma_size __initdata;
72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
74 /* for command line parsing */
75 static struct hstate * __initdata parsed_hstate;
76 static unsigned long __initdata default_hstate_max_huge_pages;
77 static bool __initdata parsed_valid_hugepagesz = true;
78 static bool __initdata parsed_default_hugepagesz;
79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83 * free_huge_pages, and surplus_huge_pages.
85 DEFINE_SPINLOCK(hugetlb_lock);
88 * Serializes faults on the same logical page. This is used to
89 * prevent spurious OOMs when the hugepage pool is fully utilized.
91 static int num_fault_mutexes;
92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
94 /* Forward declaration */
95 static int hugetlb_acct_memory(struct hstate *h, long delta);
96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100 unsigned long start, unsigned long end);
101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
103 static inline bool subpool_is_free(struct hugepage_subpool *spool)
107 if (spool->max_hpages != -1)
108 return spool->used_hpages == 0;
109 if (spool->min_hpages != -1)
110 return spool->rsv_hpages == spool->min_hpages;
115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116 unsigned long irq_flags)
118 spin_unlock_irqrestore(&spool->lock, irq_flags);
120 /* If no pages are used, and no other handles to the subpool
121 * remain, give up any reservations based on minimum size and
122 * free the subpool */
123 if (subpool_is_free(spool)) {
124 if (spool->min_hpages != -1)
125 hugetlb_acct_memory(spool->hstate,
131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
134 struct hugepage_subpool *spool;
136 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
140 spin_lock_init(&spool->lock);
142 spool->max_hpages = max_hpages;
144 spool->min_hpages = min_hpages;
146 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
150 spool->rsv_hpages = min_hpages;
155 void hugepage_put_subpool(struct hugepage_subpool *spool)
159 spin_lock_irqsave(&spool->lock, flags);
160 BUG_ON(!spool->count);
162 unlock_or_release_subpool(spool, flags);
166 * Subpool accounting for allocating and reserving pages.
167 * Return -ENOMEM if there are not enough resources to satisfy the
168 * request. Otherwise, return the number of pages by which the
169 * global pools must be adjusted (upward). The returned value may
170 * only be different than the passed value (delta) in the case where
171 * a subpool minimum size must be maintained.
173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
181 spin_lock_irq(&spool->lock);
183 if (spool->max_hpages != -1) { /* maximum size accounting */
184 if ((spool->used_hpages + delta) <= spool->max_hpages)
185 spool->used_hpages += delta;
192 /* minimum size accounting */
193 if (spool->min_hpages != -1 && spool->rsv_hpages) {
194 if (delta > spool->rsv_hpages) {
196 * Asking for more reserves than those already taken on
197 * behalf of subpool. Return difference.
199 ret = delta - spool->rsv_hpages;
200 spool->rsv_hpages = 0;
202 ret = 0; /* reserves already accounted for */
203 spool->rsv_hpages -= delta;
208 spin_unlock_irq(&spool->lock);
213 * Subpool accounting for freeing and unreserving pages.
214 * Return the number of global page reservations that must be dropped.
215 * The return value may only be different than the passed value (delta)
216 * in the case where a subpool minimum size must be maintained.
218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
227 spin_lock_irqsave(&spool->lock, flags);
229 if (spool->max_hpages != -1) /* maximum size accounting */
230 spool->used_hpages -= delta;
232 /* minimum size accounting */
233 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234 if (spool->rsv_hpages + delta <= spool->min_hpages)
237 ret = spool->rsv_hpages + delta - spool->min_hpages;
239 spool->rsv_hpages += delta;
240 if (spool->rsv_hpages > spool->min_hpages)
241 spool->rsv_hpages = spool->min_hpages;
245 * If hugetlbfs_put_super couldn't free spool due to an outstanding
246 * quota reference, free it now.
248 unlock_or_release_subpool(spool, flags);
253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
255 return HUGETLBFS_SB(inode->i_sb)->spool;
258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
260 return subpool_inode(file_inode(vma->vm_file));
264 * hugetlb vma_lock helper routines
266 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
268 if (__vma_shareable_lock(vma)) {
269 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
271 down_read(&vma_lock->rw_sema);
272 } else if (__vma_private_lock(vma)) {
273 struct resv_map *resv_map = vma_resv_map(vma);
275 down_read(&resv_map->rw_sema);
279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
281 if (__vma_shareable_lock(vma)) {
282 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
284 up_read(&vma_lock->rw_sema);
285 } else if (__vma_private_lock(vma)) {
286 struct resv_map *resv_map = vma_resv_map(vma);
288 up_read(&resv_map->rw_sema);
292 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
294 if (__vma_shareable_lock(vma)) {
295 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
297 down_write(&vma_lock->rw_sema);
298 } else if (__vma_private_lock(vma)) {
299 struct resv_map *resv_map = vma_resv_map(vma);
301 down_write(&resv_map->rw_sema);
305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
307 if (__vma_shareable_lock(vma)) {
308 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
310 up_write(&vma_lock->rw_sema);
311 } else if (__vma_private_lock(vma)) {
312 struct resv_map *resv_map = vma_resv_map(vma);
314 up_write(&resv_map->rw_sema);
318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
321 if (__vma_shareable_lock(vma)) {
322 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
324 return down_write_trylock(&vma_lock->rw_sema);
325 } else if (__vma_private_lock(vma)) {
326 struct resv_map *resv_map = vma_resv_map(vma);
328 return down_write_trylock(&resv_map->rw_sema);
334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
336 if (__vma_shareable_lock(vma)) {
337 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
339 lockdep_assert_held(&vma_lock->rw_sema);
340 } else if (__vma_private_lock(vma)) {
341 struct resv_map *resv_map = vma_resv_map(vma);
343 lockdep_assert_held(&resv_map->rw_sema);
347 void hugetlb_vma_lock_release(struct kref *kref)
349 struct hugetlb_vma_lock *vma_lock = container_of(kref,
350 struct hugetlb_vma_lock, refs);
355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
357 struct vm_area_struct *vma = vma_lock->vma;
360 * vma_lock structure may or not be released as a result of put,
361 * it certainly will no longer be attached to vma so clear pointer.
362 * Semaphore synchronizes access to vma_lock->vma field.
364 vma_lock->vma = NULL;
365 vma->vm_private_data = NULL;
366 up_write(&vma_lock->rw_sema);
367 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
372 if (__vma_shareable_lock(vma)) {
373 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
375 __hugetlb_vma_unlock_write_put(vma_lock);
376 } else if (__vma_private_lock(vma)) {
377 struct resv_map *resv_map = vma_resv_map(vma);
379 /* no free for anon vmas, but still need to unlock */
380 up_write(&resv_map->rw_sema);
384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
387 * Only present in sharable vmas.
389 if (!vma || !__vma_shareable_lock(vma))
392 if (vma->vm_private_data) {
393 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
395 down_write(&vma_lock->rw_sema);
396 __hugetlb_vma_unlock_write_put(vma_lock);
400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
402 struct hugetlb_vma_lock *vma_lock;
404 /* Only establish in (flags) sharable vmas */
405 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
408 /* Should never get here with non-NULL vm_private_data */
409 if (vma->vm_private_data)
412 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
415 * If we can not allocate structure, then vma can not
416 * participate in pmd sharing. This is only a possible
417 * performance enhancement and memory saving issue.
418 * However, the lock is also used to synchronize page
419 * faults with truncation. If the lock is not present,
420 * unlikely races could leave pages in a file past i_size
421 * until the file is removed. Warn in the unlikely case of
422 * allocation failure.
424 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
428 kref_init(&vma_lock->refs);
429 init_rwsem(&vma_lock->rw_sema);
431 vma->vm_private_data = vma_lock;
434 /* Helper that removes a struct file_region from the resv_map cache and returns
437 static struct file_region *
438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
440 struct file_region *nrg;
442 VM_BUG_ON(resv->region_cache_count <= 0);
444 resv->region_cache_count--;
445 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446 list_del(&nrg->link);
454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455 struct file_region *rg)
457 #ifdef CONFIG_CGROUP_HUGETLB
458 nrg->reservation_counter = rg->reservation_counter;
465 /* Helper that records hugetlb_cgroup uncharge info. */
466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
468 struct resv_map *resv,
469 struct file_region *nrg)
471 #ifdef CONFIG_CGROUP_HUGETLB
473 nrg->reservation_counter =
474 &h_cg->rsvd_hugepage[hstate_index(h)];
475 nrg->css = &h_cg->css;
477 * The caller will hold exactly one h_cg->css reference for the
478 * whole contiguous reservation region. But this area might be
479 * scattered when there are already some file_regions reside in
480 * it. As a result, many file_regions may share only one css
481 * reference. In order to ensure that one file_region must hold
482 * exactly one h_cg->css reference, we should do css_get for
483 * each file_region and leave the reference held by caller
487 if (!resv->pages_per_hpage)
488 resv->pages_per_hpage = pages_per_huge_page(h);
489 /* pages_per_hpage should be the same for all entries in
492 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
494 nrg->reservation_counter = NULL;
500 static void put_uncharge_info(struct file_region *rg)
502 #ifdef CONFIG_CGROUP_HUGETLB
508 static bool has_same_uncharge_info(struct file_region *rg,
509 struct file_region *org)
511 #ifdef CONFIG_CGROUP_HUGETLB
512 return rg->reservation_counter == org->reservation_counter &&
520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
522 struct file_region *nrg, *prg;
524 prg = list_prev_entry(rg, link);
525 if (&prg->link != &resv->regions && prg->to == rg->from &&
526 has_same_uncharge_info(prg, rg)) {
530 put_uncharge_info(rg);
536 nrg = list_next_entry(rg, link);
537 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538 has_same_uncharge_info(nrg, rg)) {
539 nrg->from = rg->from;
542 put_uncharge_info(rg);
548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549 long to, struct hstate *h, struct hugetlb_cgroup *cg,
550 long *regions_needed)
552 struct file_region *nrg;
554 if (!regions_needed) {
555 nrg = get_file_region_entry_from_cache(map, from, to);
556 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557 list_add(&nrg->link, rg);
558 coalesce_file_region(map, nrg);
560 *regions_needed += 1;
566 * Must be called with resv->lock held.
568 * Calling this with regions_needed != NULL will count the number of pages
569 * to be added but will not modify the linked list. And regions_needed will
570 * indicate the number of file_regions needed in the cache to carry out to add
571 * the regions for this range.
573 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574 struct hugetlb_cgroup *h_cg,
575 struct hstate *h, long *regions_needed)
578 struct list_head *head = &resv->regions;
579 long last_accounted_offset = f;
580 struct file_region *iter, *trg = NULL;
581 struct list_head *rg = NULL;
586 /* In this loop, we essentially handle an entry for the range
587 * [last_accounted_offset, iter->from), at every iteration, with some
590 list_for_each_entry_safe(iter, trg, head, link) {
591 /* Skip irrelevant regions that start before our range. */
592 if (iter->from < f) {
593 /* If this region ends after the last accounted offset,
594 * then we need to update last_accounted_offset.
596 if (iter->to > last_accounted_offset)
597 last_accounted_offset = iter->to;
601 /* When we find a region that starts beyond our range, we've
604 if (iter->from >= t) {
605 rg = iter->link.prev;
609 /* Add an entry for last_accounted_offset -> iter->from, and
610 * update last_accounted_offset.
612 if (iter->from > last_accounted_offset)
613 add += hugetlb_resv_map_add(resv, iter->link.prev,
614 last_accounted_offset,
618 last_accounted_offset = iter->to;
621 /* Handle the case where our range extends beyond
622 * last_accounted_offset.
626 if (last_accounted_offset < t)
627 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628 t, h, h_cg, regions_needed);
633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
635 static int allocate_file_region_entries(struct resv_map *resv,
637 __must_hold(&resv->lock)
639 LIST_HEAD(allocated_regions);
640 int to_allocate = 0, i = 0;
641 struct file_region *trg = NULL, *rg = NULL;
643 VM_BUG_ON(regions_needed < 0);
646 * Check for sufficient descriptors in the cache to accommodate
647 * the number of in progress add operations plus regions_needed.
649 * This is a while loop because when we drop the lock, some other call
650 * to region_add or region_del may have consumed some region_entries,
651 * so we keep looping here until we finally have enough entries for
652 * (adds_in_progress + regions_needed).
654 while (resv->region_cache_count <
655 (resv->adds_in_progress + regions_needed)) {
656 to_allocate = resv->adds_in_progress + regions_needed -
657 resv->region_cache_count;
659 /* At this point, we should have enough entries in the cache
660 * for all the existing adds_in_progress. We should only be
661 * needing to allocate for regions_needed.
663 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
665 spin_unlock(&resv->lock);
666 for (i = 0; i < to_allocate; i++) {
667 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
670 list_add(&trg->link, &allocated_regions);
673 spin_lock(&resv->lock);
675 list_splice(&allocated_regions, &resv->region_cache);
676 resv->region_cache_count += to_allocate;
682 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
690 * Add the huge page range represented by [f, t) to the reserve
691 * map. Regions will be taken from the cache to fill in this range.
692 * Sufficient regions should exist in the cache due to the previous
693 * call to region_chg with the same range, but in some cases the cache will not
694 * have sufficient entries due to races with other code doing region_add or
695 * region_del. The extra needed entries will be allocated.
697 * regions_needed is the out value provided by a previous call to region_chg.
699 * Return the number of new huge pages added to the map. This number is greater
700 * than or equal to zero. If file_region entries needed to be allocated for
701 * this operation and we were not able to allocate, it returns -ENOMEM.
702 * region_add of regions of length 1 never allocate file_regions and cannot
703 * fail; region_chg will always allocate at least 1 entry and a region_add for
704 * 1 page will only require at most 1 entry.
706 static long region_add(struct resv_map *resv, long f, long t,
707 long in_regions_needed, struct hstate *h,
708 struct hugetlb_cgroup *h_cg)
710 long add = 0, actual_regions_needed = 0;
712 spin_lock(&resv->lock);
715 /* Count how many regions are actually needed to execute this add. */
716 add_reservation_in_range(resv, f, t, NULL, NULL,
717 &actual_regions_needed);
720 * Check for sufficient descriptors in the cache to accommodate
721 * this add operation. Note that actual_regions_needed may be greater
722 * than in_regions_needed, as the resv_map may have been modified since
723 * the region_chg call. In this case, we need to make sure that we
724 * allocate extra entries, such that we have enough for all the
725 * existing adds_in_progress, plus the excess needed for this
728 if (actual_regions_needed > in_regions_needed &&
729 resv->region_cache_count <
730 resv->adds_in_progress +
731 (actual_regions_needed - in_regions_needed)) {
732 /* region_add operation of range 1 should never need to
733 * allocate file_region entries.
735 VM_BUG_ON(t - f <= 1);
737 if (allocate_file_region_entries(
738 resv, actual_regions_needed - in_regions_needed)) {
745 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
747 resv->adds_in_progress -= in_regions_needed;
749 spin_unlock(&resv->lock);
754 * Examine the existing reserve map and determine how many
755 * huge pages in the specified range [f, t) are NOT currently
756 * represented. This routine is called before a subsequent
757 * call to region_add that will actually modify the reserve
758 * map to add the specified range [f, t). region_chg does
759 * not change the number of huge pages represented by the
760 * map. A number of new file_region structures is added to the cache as a
761 * placeholder, for the subsequent region_add call to use. At least 1
762 * file_region structure is added.
764 * out_regions_needed is the number of regions added to the
765 * resv->adds_in_progress. This value needs to be provided to a follow up call
766 * to region_add or region_abort for proper accounting.
768 * Returns the number of huge pages that need to be added to the existing
769 * reservation map for the range [f, t). This number is greater or equal to
770 * zero. -ENOMEM is returned if a new file_region structure or cache entry
771 * is needed and can not be allocated.
773 static long region_chg(struct resv_map *resv, long f, long t,
774 long *out_regions_needed)
778 spin_lock(&resv->lock);
780 /* Count how many hugepages in this range are NOT represented. */
781 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
784 if (*out_regions_needed == 0)
785 *out_regions_needed = 1;
787 if (allocate_file_region_entries(resv, *out_regions_needed))
790 resv->adds_in_progress += *out_regions_needed;
792 spin_unlock(&resv->lock);
797 * Abort the in progress add operation. The adds_in_progress field
798 * of the resv_map keeps track of the operations in progress between
799 * calls to region_chg and region_add. Operations are sometimes
800 * aborted after the call to region_chg. In such cases, region_abort
801 * is called to decrement the adds_in_progress counter. regions_needed
802 * is the value returned by the region_chg call, it is used to decrement
803 * the adds_in_progress counter.
805 * NOTE: The range arguments [f, t) are not needed or used in this
806 * routine. They are kept to make reading the calling code easier as
807 * arguments will match the associated region_chg call.
809 static void region_abort(struct resv_map *resv, long f, long t,
812 spin_lock(&resv->lock);
813 VM_BUG_ON(!resv->region_cache_count);
814 resv->adds_in_progress -= regions_needed;
815 spin_unlock(&resv->lock);
819 * Delete the specified range [f, t) from the reserve map. If the
820 * t parameter is LONG_MAX, this indicates that ALL regions after f
821 * should be deleted. Locate the regions which intersect [f, t)
822 * and either trim, delete or split the existing regions.
824 * Returns the number of huge pages deleted from the reserve map.
825 * In the normal case, the return value is zero or more. In the
826 * case where a region must be split, a new region descriptor must
827 * be allocated. If the allocation fails, -ENOMEM will be returned.
828 * NOTE: If the parameter t == LONG_MAX, then we will never split
829 * a region and possibly return -ENOMEM. Callers specifying
830 * t == LONG_MAX do not need to check for -ENOMEM error.
832 static long region_del(struct resv_map *resv, long f, long t)
834 struct list_head *head = &resv->regions;
835 struct file_region *rg, *trg;
836 struct file_region *nrg = NULL;
840 spin_lock(&resv->lock);
841 list_for_each_entry_safe(rg, trg, head, link) {
843 * Skip regions before the range to be deleted. file_region
844 * ranges are normally of the form [from, to). However, there
845 * may be a "placeholder" entry in the map which is of the form
846 * (from, to) with from == to. Check for placeholder entries
847 * at the beginning of the range to be deleted.
849 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
855 if (f > rg->from && t < rg->to) { /* Must split region */
857 * Check for an entry in the cache before dropping
858 * lock and attempting allocation.
861 resv->region_cache_count > resv->adds_in_progress) {
862 nrg = list_first_entry(&resv->region_cache,
865 list_del(&nrg->link);
866 resv->region_cache_count--;
870 spin_unlock(&resv->lock);
871 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
878 hugetlb_cgroup_uncharge_file_region(
879 resv, rg, t - f, false);
881 /* New entry for end of split region */
885 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
887 INIT_LIST_HEAD(&nrg->link);
889 /* Original entry is trimmed */
892 list_add(&nrg->link, &rg->link);
897 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898 del += rg->to - rg->from;
899 hugetlb_cgroup_uncharge_file_region(resv, rg,
900 rg->to - rg->from, true);
906 if (f <= rg->from) { /* Trim beginning of region */
907 hugetlb_cgroup_uncharge_file_region(resv, rg,
908 t - rg->from, false);
912 } else { /* Trim end of region */
913 hugetlb_cgroup_uncharge_file_region(resv, rg,
921 spin_unlock(&resv->lock);
927 * A rare out of memory error was encountered which prevented removal of
928 * the reserve map region for a page. The huge page itself was free'ed
929 * and removed from the page cache. This routine will adjust the subpool
930 * usage count, and the global reserve count if needed. By incrementing
931 * these counts, the reserve map entry which could not be deleted will
932 * appear as a "reserved" entry instead of simply dangling with incorrect
935 void hugetlb_fix_reserve_counts(struct inode *inode)
937 struct hugepage_subpool *spool = subpool_inode(inode);
939 bool reserved = false;
941 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942 if (rsv_adjust > 0) {
943 struct hstate *h = hstate_inode(inode);
945 if (!hugetlb_acct_memory(h, 1))
947 } else if (!rsv_adjust) {
952 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
956 * Count and return the number of huge pages in the reserve map
957 * that intersect with the range [f, t).
959 static long region_count(struct resv_map *resv, long f, long t)
961 struct list_head *head = &resv->regions;
962 struct file_region *rg;
965 spin_lock(&resv->lock);
966 /* Locate each segment we overlap with, and count that overlap. */
967 list_for_each_entry(rg, head, link) {
976 seg_from = max(rg->from, f);
977 seg_to = min(rg->to, t);
979 chg += seg_to - seg_from;
981 spin_unlock(&resv->lock);
987 * Convert the address within this vma to the page offset within
988 * the mapping, huge page units here.
990 static pgoff_t vma_hugecache_offset(struct hstate *h,
991 struct vm_area_struct *vma, unsigned long address)
993 return ((address - vma->vm_start) >> huge_page_shift(h)) +
994 (vma->vm_pgoff >> huge_page_order(h));
998 * vma_kernel_pagesize - Page size granularity for this VMA.
999 * @vma: The user mapping.
1001 * Folios in this VMA will be aligned to, and at least the size of the
1002 * number of bytes returned by this function.
1004 * Return: The default size of the folios allocated when backing a VMA.
1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1008 if (vma->vm_ops && vma->vm_ops->pagesize)
1009 return vma->vm_ops->pagesize(vma);
1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1015 * Return the page size being used by the MMU to back a VMA. In the majority
1016 * of cases, the page size used by the kernel matches the MMU size. On
1017 * architectures where it differs, an architecture-specific 'strong'
1018 * version of this symbol is required.
1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1022 return vma_kernel_pagesize(vma);
1026 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1027 * bits of the reservation map pointer, which are always clear due to
1030 #define HPAGE_RESV_OWNER (1UL << 0)
1031 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1035 * These helpers are used to track how many pages are reserved for
1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037 * is guaranteed to have their future faults succeed.
1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040 * the reserve counters are updated with the hugetlb_lock held. It is safe
1041 * to reset the VMA at fork() time as it is not in use yet and there is no
1042 * chance of the global counters getting corrupted as a result of the values.
1044 * The private mapping reservation is represented in a subtly different
1045 * manner to a shared mapping. A shared mapping has a region map associated
1046 * with the underlying file, this region map represents the backing file
1047 * pages which have ever had a reservation assigned which this persists even
1048 * after the page is instantiated. A private mapping has a region map
1049 * associated with the original mmap which is attached to all VMAs which
1050 * reference it, this region map represents those offsets which have consumed
1051 * reservation ie. where pages have been instantiated.
1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1055 return (unsigned long)vma->vm_private_data;
1058 static void set_vma_private_data(struct vm_area_struct *vma,
1059 unsigned long value)
1061 vma->vm_private_data = (void *)value;
1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066 struct hugetlb_cgroup *h_cg,
1069 #ifdef CONFIG_CGROUP_HUGETLB
1071 resv_map->reservation_counter = NULL;
1072 resv_map->pages_per_hpage = 0;
1073 resv_map->css = NULL;
1075 resv_map->reservation_counter =
1076 &h_cg->rsvd_hugepage[hstate_index(h)];
1077 resv_map->pages_per_hpage = pages_per_huge_page(h);
1078 resv_map->css = &h_cg->css;
1083 struct resv_map *resv_map_alloc(void)
1085 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1088 if (!resv_map || !rg) {
1094 kref_init(&resv_map->refs);
1095 spin_lock_init(&resv_map->lock);
1096 INIT_LIST_HEAD(&resv_map->regions);
1097 init_rwsem(&resv_map->rw_sema);
1099 resv_map->adds_in_progress = 0;
1101 * Initialize these to 0. On shared mappings, 0's here indicate these
1102 * fields don't do cgroup accounting. On private mappings, these will be
1103 * re-initialized to the proper values, to indicate that hugetlb cgroup
1104 * reservations are to be un-charged from here.
1106 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1108 INIT_LIST_HEAD(&resv_map->region_cache);
1109 list_add(&rg->link, &resv_map->region_cache);
1110 resv_map->region_cache_count = 1;
1115 void resv_map_release(struct kref *ref)
1117 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118 struct list_head *head = &resv_map->region_cache;
1119 struct file_region *rg, *trg;
1121 /* Clear out any active regions before we release the map. */
1122 region_del(resv_map, 0, LONG_MAX);
1124 /* ... and any entries left in the cache */
1125 list_for_each_entry_safe(rg, trg, head, link) {
1126 list_del(&rg->link);
1130 VM_BUG_ON(resv_map->adds_in_progress);
1135 static inline struct resv_map *inode_resv_map(struct inode *inode)
1138 * At inode evict time, i_mapping may not point to the original
1139 * address space within the inode. This original address space
1140 * contains the pointer to the resv_map. So, always use the
1141 * address space embedded within the inode.
1142 * The VERY common case is inode->mapping == &inode->i_data but,
1143 * this may not be true for device special inodes.
1145 return (struct resv_map *)(&inode->i_data)->i_private_data;
1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 if (vma->vm_flags & VM_MAYSHARE) {
1152 struct address_space *mapping = vma->vm_file->f_mapping;
1153 struct inode *inode = mapping->host;
1155 return inode_resv_map(inode);
1158 return (struct resv_map *)(get_vma_private_data(vma) &
1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1165 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1168 set_vma_private_data(vma, (unsigned long)map);
1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1176 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1181 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1183 return (get_vma_private_data(vma) & flag) != 0;
1186 bool __vma_private_lock(struct vm_area_struct *vma)
1188 return !(vma->vm_flags & VM_MAYSHARE) &&
1189 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1197 * Clear vm_private_data
1198 * - For shared mappings this is a per-vma semaphore that may be
1199 * allocated in a subsequent call to hugetlb_vm_op_open.
1200 * Before clearing, make sure pointer is not associated with vma
1201 * as this will leak the structure. This is the case when called
1202 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203 * been called to allocate a new structure.
1204 * - For MAP_PRIVATE mappings, this is the reserve map which does
1205 * not apply to children. Faults generated by the children are
1206 * not guaranteed to succeed, even if read-only.
1208 if (vma->vm_flags & VM_MAYSHARE) {
1209 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1211 if (vma_lock && vma_lock->vma != vma)
1212 vma->vm_private_data = NULL;
1214 vma->vm_private_data = NULL;
1218 * Reset and decrement one ref on hugepage private reservation.
1219 * Called with mm->mmap_lock writer semaphore held.
1220 * This function should be only used by move_vma() and operate on
1221 * same sized vma. It should never come here with last ref on the
1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1227 * Clear the old hugetlb private page reservation.
1228 * It has already been transferred to new_vma.
1230 * During a mremap() operation of a hugetlb vma we call move_vma()
1231 * which copies vma into new_vma and unmaps vma. After the copy
1232 * operation both new_vma and vma share a reference to the resv_map
1233 * struct, and at that point vma is about to be unmapped. We don't
1234 * want to return the reservation to the pool at unmap of vma because
1235 * the reservation still lives on in new_vma, so simply decrement the
1236 * ref here and remove the resv_map reference from this vma.
1238 struct resv_map *reservations = vma_resv_map(vma);
1240 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242 kref_put(&reservations->refs, resv_map_release);
1245 hugetlb_dup_vma_private(vma);
1248 /* Returns true if the VMA has associated reserve pages */
1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1251 if (vma->vm_flags & VM_NORESERVE) {
1253 * This address is already reserved by other process(chg == 0),
1254 * so, we should decrement reserved count. Without decrementing,
1255 * reserve count remains after releasing inode, because this
1256 * allocated page will go into page cache and is regarded as
1257 * coming from reserved pool in releasing step. Currently, we
1258 * don't have any other solution to deal with this situation
1259 * properly, so add work-around here.
1261 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1267 /* Shared mappings always use reserves */
1268 if (vma->vm_flags & VM_MAYSHARE) {
1270 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1271 * be a region map for all pages. The only situation where
1272 * there is no region map is if a hole was punched via
1273 * fallocate. In this case, there really are no reserves to
1274 * use. This situation is indicated if chg != 0.
1283 * Only the process that called mmap() has reserves for
1286 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1288 * Like the shared case above, a hole punch or truncate
1289 * could have been performed on the private mapping.
1290 * Examine the value of chg to determine if reserves
1291 * actually exist or were previously consumed.
1292 * Very Subtle - The value of chg comes from a previous
1293 * call to vma_needs_reserves(). The reserve map for
1294 * private mappings has different (opposite) semantics
1295 * than that of shared mappings. vma_needs_reserves()
1296 * has already taken this difference in semantics into
1297 * account. Therefore, the meaning of chg is the same
1298 * as in the shared case above. Code could easily be
1299 * combined, but keeping it separate draws attention to
1300 * subtle differences.
1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1313 int nid = folio_nid(folio);
1315 lockdep_assert_held(&hugetlb_lock);
1316 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1318 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319 h->free_huge_pages++;
1320 h->free_huge_pages_node[nid]++;
1321 folio_set_hugetlb_freed(folio);
1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1327 struct folio *folio;
1328 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1330 lockdep_assert_held(&hugetlb_lock);
1331 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332 if (pin && !folio_is_longterm_pinnable(folio))
1335 if (folio_test_hwpoison(folio))
1338 list_move(&folio->lru, &h->hugepage_activelist);
1339 folio_ref_unfreeze(folio, 1);
1340 folio_clear_hugetlb_freed(folio);
1341 h->free_huge_pages--;
1342 h->free_huge_pages_node[nid]--;
1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350 int nid, nodemask_t *nmask)
1352 unsigned int cpuset_mems_cookie;
1353 struct zonelist *zonelist;
1356 int node = NUMA_NO_NODE;
1358 zonelist = node_zonelist(nid, gfp_mask);
1361 cpuset_mems_cookie = read_mems_allowed_begin();
1362 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1363 struct folio *folio;
1365 if (!cpuset_zone_allowed(zone, gfp_mask))
1368 * no need to ask again on the same node. Pool is node rather than
1371 if (zone_to_nid(zone) == node)
1373 node = zone_to_nid(zone);
1375 folio = dequeue_hugetlb_folio_node_exact(h, node);
1379 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1385 static unsigned long available_huge_pages(struct hstate *h)
1387 return h->free_huge_pages - h->resv_huge_pages;
1390 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1391 struct vm_area_struct *vma,
1392 unsigned long address, int avoid_reserve,
1395 struct folio *folio = NULL;
1396 struct mempolicy *mpol;
1398 nodemask_t *nodemask;
1402 * A child process with MAP_PRIVATE mappings created by their parent
1403 * have no page reserves. This check ensures that reservations are
1404 * not "stolen". The child may still get SIGKILLed
1406 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1409 /* If reserves cannot be used, ensure enough pages are in the pool */
1410 if (avoid_reserve && !available_huge_pages(h))
1413 gfp_mask = htlb_alloc_mask(h);
1414 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1416 if (mpol_is_preferred_many(mpol)) {
1417 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1420 /* Fallback to all nodes if page==NULL */
1425 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1428 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1429 folio_set_hugetlb_restore_reserve(folio);
1430 h->resv_huge_pages--;
1433 mpol_cond_put(mpol);
1441 * common helper functions for hstate_next_node_to_{alloc|free}.
1442 * We may have allocated or freed a huge page based on a different
1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444 * be outside of *nodes_allowed. Ensure that we use an allowed
1445 * node for alloc or free.
1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1449 nid = next_node_in(nid, *nodes_allowed);
1450 VM_BUG_ON(nid >= MAX_NUMNODES);
1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1457 if (!node_isset(nid, *nodes_allowed))
1458 nid = next_node_allowed(nid, nodes_allowed);
1463 * returns the previously saved node ["this node"] from which to
1464 * allocate a persistent huge page for the pool and advance the
1465 * next node from which to allocate, handling wrap at end of node
1468 static int hstate_next_node_to_alloc(int *next_node,
1469 nodemask_t *nodes_allowed)
1473 VM_BUG_ON(!nodes_allowed);
1475 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476 *next_node = next_node_allowed(nid, nodes_allowed);
1482 * helper for remove_pool_hugetlb_folio() - return the previously saved
1483 * node ["this node"] from which to free a huge page. Advance the
1484 * next node id whether or not we find a free huge page to free so
1485 * that the next attempt to free addresses the next node.
1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1491 VM_BUG_ON(!nodes_allowed);
1493 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1500 for (nr_nodes = nodes_weight(*mask); \
1502 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1506 for (nr_nodes = nodes_weight(*mask); \
1508 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1511 /* used to demote non-gigantic_huge pages as well */
1512 static void __destroy_compound_gigantic_folio(struct folio *folio,
1513 unsigned int order, bool demote)
1516 int nr_pages = 1 << order;
1519 atomic_set(&folio->_entire_mapcount, 0);
1520 atomic_set(&folio->_large_mapcount, 0);
1521 atomic_set(&folio->_pincount, 0);
1523 for (i = 1; i < nr_pages; i++) {
1524 p = folio_page(folio, i);
1525 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1527 clear_compound_head(p);
1529 set_page_refcounted(p);
1532 __folio_clear_head(folio);
1535 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1538 __destroy_compound_gigantic_folio(folio, order, true);
1541 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1542 static void destroy_compound_gigantic_folio(struct folio *folio,
1545 __destroy_compound_gigantic_folio(folio, order, false);
1548 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1551 * If the page isn't allocated using the cma allocator,
1552 * cma_release() returns false.
1555 int nid = folio_nid(folio);
1557 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1561 free_contig_range(folio_pfn(folio), 1 << order);
1564 #ifdef CONFIG_CONTIG_ALLOC
1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566 int nid, nodemask_t *nodemask)
1569 unsigned long nr_pages = pages_per_huge_page(h);
1570 if (nid == NUMA_NO_NODE)
1571 nid = numa_mem_id();
1577 if (hugetlb_cma[nid]) {
1578 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1579 huge_page_order(h), true);
1581 return page_folio(page);
1584 if (!(gfp_mask & __GFP_THISNODE)) {
1585 for_each_node_mask(node, *nodemask) {
1586 if (node == nid || !hugetlb_cma[node])
1589 page = cma_alloc(hugetlb_cma[node], nr_pages,
1590 huge_page_order(h), true);
1592 return page_folio(page);
1598 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1599 return page ? page_folio(page) : NULL;
1602 #else /* !CONFIG_CONTIG_ALLOC */
1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604 int nid, nodemask_t *nodemask)
1608 #endif /* CONFIG_CONTIG_ALLOC */
1610 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1611 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1612 int nid, nodemask_t *nodemask)
1616 static inline void free_gigantic_folio(struct folio *folio,
1617 unsigned int order) { }
1618 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1619 unsigned int order) { }
1623 * Remove hugetlb folio from lists.
1624 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1625 * folio appears as just a compound page. Otherwise, wait until after
1626 * allocating vmemmap to clear the flag.
1628 * Must be called with hugetlb lock held.
1630 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1631 bool adjust_surplus)
1633 int nid = folio_nid(folio);
1635 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1636 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1638 lockdep_assert_held(&hugetlb_lock);
1639 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1642 list_del(&folio->lru);
1644 if (folio_test_hugetlb_freed(folio)) {
1645 folio_clear_hugetlb_freed(folio);
1646 h->free_huge_pages--;
1647 h->free_huge_pages_node[nid]--;
1649 if (adjust_surplus) {
1650 h->surplus_huge_pages--;
1651 h->surplus_huge_pages_node[nid]--;
1655 * We can only clear the hugetlb flag after allocating vmemmap
1656 * pages. Otherwise, someone (memory error handling) may try to write
1657 * to tail struct pages.
1659 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1660 __folio_clear_hugetlb(folio);
1663 h->nr_huge_pages_node[nid]--;
1666 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1667 bool adjust_surplus)
1669 int nid = folio_nid(folio);
1671 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1673 lockdep_assert_held(&hugetlb_lock);
1675 INIT_LIST_HEAD(&folio->lru);
1677 h->nr_huge_pages_node[nid]++;
1679 if (adjust_surplus) {
1680 h->surplus_huge_pages++;
1681 h->surplus_huge_pages_node[nid]++;
1684 __folio_set_hugetlb(folio);
1685 folio_change_private(folio, NULL);
1687 * We have to set hugetlb_vmemmap_optimized again as above
1688 * folio_change_private(folio, NULL) cleared it.
1690 folio_set_hugetlb_vmemmap_optimized(folio);
1692 arch_clear_hugetlb_flags(folio);
1693 enqueue_hugetlb_folio(h, folio);
1696 static void __update_and_free_hugetlb_folio(struct hstate *h,
1697 struct folio *folio)
1699 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1701 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1705 * If we don't know which subpages are hwpoisoned, we can't free
1706 * the hugepage, so it's leaked intentionally.
1708 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1712 * If folio is not vmemmap optimized (!clear_flag), then the folio
1713 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1714 * can only be passed hugetlb pages and will BUG otherwise.
1716 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1717 spin_lock_irq(&hugetlb_lock);
1719 * If we cannot allocate vmemmap pages, just refuse to free the
1720 * page and put the page back on the hugetlb free list and treat
1721 * as a surplus page.
1723 add_hugetlb_folio(h, folio, true);
1724 spin_unlock_irq(&hugetlb_lock);
1729 * If vmemmap pages were allocated above, then we need to clear the
1730 * hugetlb flag under the hugetlb lock.
1732 if (folio_test_hugetlb(folio)) {
1733 spin_lock_irq(&hugetlb_lock);
1734 __folio_clear_hugetlb(folio);
1735 spin_unlock_irq(&hugetlb_lock);
1739 * Move PageHWPoison flag from head page to the raw error pages,
1740 * which makes any healthy subpages reusable.
1742 if (unlikely(folio_test_hwpoison(folio)))
1743 folio_clear_hugetlb_hwpoison(folio);
1745 folio_ref_unfreeze(folio, 1);
1748 * Non-gigantic pages demoted from CMA allocated gigantic pages
1749 * need to be given back to CMA in free_gigantic_folio.
1751 if (hstate_is_gigantic(h) ||
1752 hugetlb_cma_folio(folio, huge_page_order(h))) {
1753 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754 free_gigantic_folio(folio, huge_page_order(h));
1756 INIT_LIST_HEAD(&folio->_deferred_list);
1762 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1763 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1764 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1765 * the vmemmap pages.
1767 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1768 * freed and frees them one-by-one. As the page->mapping pointer is going
1769 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1770 * structure of a lockless linked list of huge pages to be freed.
1772 static LLIST_HEAD(hpage_freelist);
1774 static void free_hpage_workfn(struct work_struct *work)
1776 struct llist_node *node;
1778 node = llist_del_all(&hpage_freelist);
1781 struct folio *folio;
1784 folio = container_of((struct address_space **)node,
1785 struct folio, mapping);
1787 folio->mapping = NULL;
1789 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1790 * folio_hstate() is going to trigger because a previous call to
1791 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1792 * not use folio_hstate() directly.
1794 h = size_to_hstate(folio_size(folio));
1796 __update_and_free_hugetlb_folio(h, folio);
1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1803 static inline void flush_free_hpage_work(struct hstate *h)
1805 if (hugetlb_vmemmap_optimizable(h))
1806 flush_work(&free_hpage_work);
1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1812 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1813 __update_and_free_hugetlb_folio(h, folio);
1818 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1820 * Only call schedule_work() if hpage_freelist is previously
1821 * empty. Otherwise, schedule_work() had been called but the workfn
1822 * hasn't retrieved the list yet.
1824 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1825 schedule_work(&free_hpage_work);
1828 static void bulk_vmemmap_restore_error(struct hstate *h,
1829 struct list_head *folio_list,
1830 struct list_head *non_hvo_folios)
1832 struct folio *folio, *t_folio;
1834 if (!list_empty(non_hvo_folios)) {
1836 * Free any restored hugetlb pages so that restore of the
1837 * entire list can be retried.
1838 * The idea is that in the common case of ENOMEM errors freeing
1839 * hugetlb pages with vmemmap we will free up memory so that we
1840 * can allocate vmemmap for more hugetlb pages.
1842 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1843 list_del(&folio->lru);
1844 spin_lock_irq(&hugetlb_lock);
1845 __folio_clear_hugetlb(folio);
1846 spin_unlock_irq(&hugetlb_lock);
1847 update_and_free_hugetlb_folio(h, folio, false);
1852 * In the case where there are no folios which can be
1853 * immediately freed, we loop through the list trying to restore
1854 * vmemmap individually in the hope that someone elsewhere may
1855 * have done something to cause success (such as freeing some
1856 * memory). If unable to restore a hugetlb page, the hugetlb
1857 * page is made a surplus page and removed from the list.
1858 * If are able to restore vmemmap and free one hugetlb page, we
1859 * quit processing the list to retry the bulk operation.
1861 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1862 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1863 list_del(&folio->lru);
1864 spin_lock_irq(&hugetlb_lock);
1865 add_hugetlb_folio(h, folio, true);
1866 spin_unlock_irq(&hugetlb_lock);
1868 list_del(&folio->lru);
1869 spin_lock_irq(&hugetlb_lock);
1870 __folio_clear_hugetlb(folio);
1871 spin_unlock_irq(&hugetlb_lock);
1872 update_and_free_hugetlb_folio(h, folio, false);
1879 static void update_and_free_pages_bulk(struct hstate *h,
1880 struct list_head *folio_list)
1883 struct folio *folio, *t_folio;
1884 LIST_HEAD(non_hvo_folios);
1887 * First allocate required vmemmmap (if necessary) for all folios.
1888 * Carefully handle errors and free up any available hugetlb pages
1889 * in an effort to make forward progress.
1892 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1894 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1899 * At this point, list should be empty, ret should be >= 0 and there
1900 * should only be pages on the non_hvo_folios list.
1901 * Do note that the non_hvo_folios list could be empty.
1902 * Without HVO enabled, ret will be 0 and there is no need to call
1903 * __folio_clear_hugetlb as this was done previously.
1905 VM_WARN_ON(!list_empty(folio_list));
1906 VM_WARN_ON(ret < 0);
1907 if (!list_empty(&non_hvo_folios) && ret) {
1908 spin_lock_irq(&hugetlb_lock);
1909 list_for_each_entry(folio, &non_hvo_folios, lru)
1910 __folio_clear_hugetlb(folio);
1911 spin_unlock_irq(&hugetlb_lock);
1914 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1915 update_and_free_hugetlb_folio(h, folio, false);
1920 struct hstate *size_to_hstate(unsigned long size)
1924 for_each_hstate(h) {
1925 if (huge_page_size(h) == size)
1931 void free_huge_folio(struct folio *folio)
1934 * Can't pass hstate in here because it is called from the
1937 struct hstate *h = folio_hstate(folio);
1938 int nid = folio_nid(folio);
1939 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1940 bool restore_reserve;
1941 unsigned long flags;
1943 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1944 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1946 hugetlb_set_folio_subpool(folio, NULL);
1947 if (folio_test_anon(folio))
1948 __ClearPageAnonExclusive(&folio->page);
1949 folio->mapping = NULL;
1950 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1951 folio_clear_hugetlb_restore_reserve(folio);
1954 * If HPageRestoreReserve was set on page, page allocation consumed a
1955 * reservation. If the page was associated with a subpool, there
1956 * would have been a page reserved in the subpool before allocation
1957 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1958 * reservation, do not call hugepage_subpool_put_pages() as this will
1959 * remove the reserved page from the subpool.
1961 if (!restore_reserve) {
1963 * A return code of zero implies that the subpool will be
1964 * under its minimum size if the reservation is not restored
1965 * after page is free. Therefore, force restore_reserve
1968 if (hugepage_subpool_put_pages(spool, 1) == 0)
1969 restore_reserve = true;
1972 spin_lock_irqsave(&hugetlb_lock, flags);
1973 folio_clear_hugetlb_migratable(folio);
1974 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1975 pages_per_huge_page(h), folio);
1976 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1977 pages_per_huge_page(h), folio);
1978 mem_cgroup_uncharge(folio);
1979 if (restore_reserve)
1980 h->resv_huge_pages++;
1982 if (folio_test_hugetlb_temporary(folio)) {
1983 remove_hugetlb_folio(h, folio, false);
1984 spin_unlock_irqrestore(&hugetlb_lock, flags);
1985 update_and_free_hugetlb_folio(h, folio, true);
1986 } else if (h->surplus_huge_pages_node[nid]) {
1987 /* remove the page from active list */
1988 remove_hugetlb_folio(h, folio, true);
1989 spin_unlock_irqrestore(&hugetlb_lock, flags);
1990 update_and_free_hugetlb_folio(h, folio, true);
1992 arch_clear_hugetlb_flags(folio);
1993 enqueue_hugetlb_folio(h, folio);
1994 spin_unlock_irqrestore(&hugetlb_lock, flags);
1999 * Must be called with the hugetlb lock held
2001 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2003 lockdep_assert_held(&hugetlb_lock);
2005 h->nr_huge_pages_node[nid]++;
2008 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2010 __folio_set_hugetlb(folio);
2011 INIT_LIST_HEAD(&folio->lru);
2012 hugetlb_set_folio_subpool(folio, NULL);
2013 set_hugetlb_cgroup(folio, NULL);
2014 set_hugetlb_cgroup_rsvd(folio, NULL);
2017 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2019 init_new_hugetlb_folio(h, folio);
2020 hugetlb_vmemmap_optimize_folio(h, folio);
2023 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2025 __prep_new_hugetlb_folio(h, folio);
2026 spin_lock_irq(&hugetlb_lock);
2027 __prep_account_new_huge_page(h, nid);
2028 spin_unlock_irq(&hugetlb_lock);
2031 static bool __prep_compound_gigantic_folio(struct folio *folio,
2032 unsigned int order, bool demote)
2035 int nr_pages = 1 << order;
2038 __folio_clear_reserved(folio);
2039 for (i = 0; i < nr_pages; i++) {
2040 p = folio_page(folio, i);
2043 * For gigantic hugepages allocated through bootmem at
2044 * boot, it's safer to be consistent with the not-gigantic
2045 * hugepages and clear the PG_reserved bit from all tail pages
2046 * too. Otherwise drivers using get_user_pages() to access tail
2047 * pages may get the reference counting wrong if they see
2048 * PG_reserved set on a tail page (despite the head page not
2049 * having PG_reserved set). Enforcing this consistency between
2050 * head and tail pages allows drivers to optimize away a check
2051 * on the head page when they need know if put_page() is needed
2052 * after get_user_pages().
2054 if (i != 0) /* head page cleared above */
2055 __ClearPageReserved(p);
2057 * Subtle and very unlikely
2059 * Gigantic 'page allocators' such as memblock or cma will
2060 * return a set of pages with each page ref counted. We need
2061 * to turn this set of pages into a compound page with tail
2062 * page ref counts set to zero. Code such as speculative page
2063 * cache adding could take a ref on a 'to be' tail page.
2064 * We need to respect any increased ref count, and only set
2065 * the ref count to zero if count is currently 1. If count
2066 * is not 1, we return an error. An error return indicates
2067 * the set of pages can not be converted to a gigantic page.
2068 * The caller who allocated the pages should then discard the
2069 * pages using the appropriate free interface.
2071 * In the case of demote, the ref count will be zero.
2074 if (!page_ref_freeze(p, 1)) {
2075 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2079 VM_BUG_ON_PAGE(page_count(p), p);
2082 set_compound_head(p, &folio->page);
2084 __folio_set_head(folio);
2085 /* we rely on prep_new_hugetlb_folio to set the hugetlb flag */
2086 folio_set_order(folio, order);
2087 atomic_set(&folio->_entire_mapcount, -1);
2088 atomic_set(&folio->_large_mapcount, -1);
2089 atomic_set(&folio->_pincount, 0);
2093 /* undo page modifications made above */
2094 for (j = 0; j < i; j++) {
2095 p = folio_page(folio, j);
2097 clear_compound_head(p);
2098 set_page_refcounted(p);
2100 /* need to clear PG_reserved on remaining tail pages */
2101 for (; j < nr_pages; j++) {
2102 p = folio_page(folio, j);
2103 __ClearPageReserved(p);
2108 static bool prep_compound_gigantic_folio(struct folio *folio,
2111 return __prep_compound_gigantic_folio(folio, order, false);
2114 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2117 return __prep_compound_gigantic_folio(folio, order, true);
2121 * Find and lock address space (mapping) in write mode.
2123 * Upon entry, the folio is locked which means that folio_mapping() is
2124 * stable. Due to locking order, we can only trylock_write. If we can
2125 * not get the lock, simply return NULL to caller.
2127 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
2129 struct address_space *mapping = folio_mapping(folio);
2134 if (i_mmap_trylock_write(mapping))
2140 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2141 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2142 nodemask_t *node_alloc_noretry)
2144 int order = huge_page_order(h);
2145 struct folio *folio;
2146 bool alloc_try_hard = true;
2150 * By default we always try hard to allocate the folio with
2151 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
2152 * a loop (to adjust global huge page counts) and previous allocation
2153 * failed, do not continue to try hard on the same node. Use the
2154 * node_alloc_noretry bitmap to manage this state information.
2156 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2157 alloc_try_hard = false;
2158 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2160 gfp_mask |= __GFP_RETRY_MAYFAIL;
2161 if (nid == NUMA_NO_NODE)
2162 nid = numa_mem_id();
2164 folio = __folio_alloc(gfp_mask, order, nid, nmask);
2165 /* Ensure hugetlb folio won't have large_rmappable flag set. */
2167 folio_clear_large_rmappable(folio);
2169 if (folio && !folio_ref_freeze(folio, 1)) {
2171 if (retry) { /* retry once */
2175 /* WOW! twice in a row. */
2176 pr_warn("HugeTLB unexpected inflated folio ref count\n");
2181 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2182 * folio this indicates an overall state change. Clear bit so
2183 * that we resume normal 'try hard' allocations.
2185 if (node_alloc_noretry && folio && !alloc_try_hard)
2186 node_clear(nid, *node_alloc_noretry);
2189 * If we tried hard to get a folio but failed, set bit so that
2190 * subsequent attempts will not try as hard until there is an
2191 * overall state change.
2193 if (node_alloc_noretry && !folio && alloc_try_hard)
2194 node_set(nid, *node_alloc_noretry);
2197 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2201 __count_vm_event(HTLB_BUDDY_PGALLOC);
2205 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2206 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2207 nodemask_t *node_alloc_noretry)
2209 struct folio *folio;
2213 if (hstate_is_gigantic(h))
2214 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2216 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2217 nid, nmask, node_alloc_noretry);
2221 if (hstate_is_gigantic(h)) {
2222 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2224 * Rare failure to convert pages to compound page.
2225 * Free pages and try again - ONCE!
2227 free_gigantic_folio(folio, huge_page_order(h));
2239 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2240 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2241 nodemask_t *node_alloc_noretry)
2243 struct folio *folio;
2245 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2246 node_alloc_noretry);
2248 init_new_hugetlb_folio(h, folio);
2253 * Common helper to allocate a fresh hugetlb page. All specific allocators
2254 * should use this function to get new hugetlb pages
2256 * Note that returned page is 'frozen': ref count of head page and all tail
2259 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2260 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2261 nodemask_t *node_alloc_noretry)
2263 struct folio *folio;
2265 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2266 node_alloc_noretry);
2270 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2274 static void prep_and_add_allocated_folios(struct hstate *h,
2275 struct list_head *folio_list)
2277 unsigned long flags;
2278 struct folio *folio, *tmp_f;
2280 /* Send list for bulk vmemmap optimization processing */
2281 hugetlb_vmemmap_optimize_folios(h, folio_list);
2283 /* Add all new pool pages to free lists in one lock cycle */
2284 spin_lock_irqsave(&hugetlb_lock, flags);
2285 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2286 __prep_account_new_huge_page(h, folio_nid(folio));
2287 enqueue_hugetlb_folio(h, folio);
2289 spin_unlock_irqrestore(&hugetlb_lock, flags);
2293 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2294 * will later be added to the appropriate hugetlb pool.
2296 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2297 nodemask_t *nodes_allowed,
2298 nodemask_t *node_alloc_noretry,
2301 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2304 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2305 struct folio *folio;
2307 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2308 nodes_allowed, node_alloc_noretry);
2317 * Remove huge page from pool from next node to free. Attempt to keep
2318 * persistent huge pages more or less balanced over allowed nodes.
2319 * This routine only 'removes' the hugetlb page. The caller must make
2320 * an additional call to free the page to low level allocators.
2321 * Called with hugetlb_lock locked.
2323 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2324 nodemask_t *nodes_allowed, bool acct_surplus)
2327 struct folio *folio = NULL;
2329 lockdep_assert_held(&hugetlb_lock);
2330 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2332 * If we're returning unused surplus pages, only examine
2333 * nodes with surplus pages.
2335 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2336 !list_empty(&h->hugepage_freelists[node])) {
2337 folio = list_entry(h->hugepage_freelists[node].next,
2339 remove_hugetlb_folio(h, folio, acct_surplus);
2348 * Dissolve a given free hugetlb folio into free buddy pages. This function
2349 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2350 * This function returns values like below:
2352 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2353 * when the system is under memory pressure and the feature of
2354 * freeing unused vmemmap pages associated with each hugetlb page
2356 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2357 * (allocated or reserved.)
2358 * 0: successfully dissolved free hugepages or the page is not a
2359 * hugepage (considered as already dissolved)
2361 int dissolve_free_hugetlb_folio(struct folio *folio)
2366 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2367 if (!folio_test_hugetlb(folio))
2370 spin_lock_irq(&hugetlb_lock);
2371 if (!folio_test_hugetlb(folio)) {
2376 if (!folio_ref_count(folio)) {
2377 struct hstate *h = folio_hstate(folio);
2378 if (!available_huge_pages(h))
2382 * We should make sure that the page is already on the free list
2383 * when it is dissolved.
2385 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2386 spin_unlock_irq(&hugetlb_lock);
2390 * Theoretically, we should return -EBUSY when we
2391 * encounter this race. In fact, we have a chance
2392 * to successfully dissolve the page if we do a
2393 * retry. Because the race window is quite small.
2394 * If we seize this opportunity, it is an optimization
2395 * for increasing the success rate of dissolving page.
2400 remove_hugetlb_folio(h, folio, false);
2401 h->max_huge_pages--;
2402 spin_unlock_irq(&hugetlb_lock);
2405 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2406 * before freeing the page. update_and_free_hugtlb_folio will fail to
2407 * free the page if it can not allocate required vmemmap. We
2408 * need to adjust max_huge_pages if the page is not freed.
2409 * Attempt to allocate vmemmmap here so that we can take
2410 * appropriate action on failure.
2412 * The folio_test_hugetlb check here is because
2413 * remove_hugetlb_folio will clear hugetlb folio flag for
2414 * non-vmemmap optimized hugetlb folios.
2416 if (folio_test_hugetlb(folio)) {
2417 rc = hugetlb_vmemmap_restore_folio(h, folio);
2419 spin_lock_irq(&hugetlb_lock);
2420 add_hugetlb_folio(h, folio, false);
2421 h->max_huge_pages++;
2427 update_and_free_hugetlb_folio(h, folio, false);
2431 spin_unlock_irq(&hugetlb_lock);
2436 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2437 * make specified memory blocks removable from the system.
2438 * Note that this will dissolve a free gigantic hugepage completely, if any
2439 * part of it lies within the given range.
2440 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2441 * free hugetlb folios that were dissolved before that error are lost.
2443 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2446 struct folio *folio;
2451 if (!hugepages_supported())
2454 order = huge_page_order(&default_hstate);
2456 order = min(order, huge_page_order(h));
2458 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2459 folio = pfn_folio(pfn);
2460 rc = dissolve_free_hugetlb_folio(folio);
2469 * Allocates a fresh surplus page from the page allocator.
2471 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2472 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2474 struct folio *folio = NULL;
2476 if (hstate_is_gigantic(h))
2479 spin_lock_irq(&hugetlb_lock);
2480 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2482 spin_unlock_irq(&hugetlb_lock);
2484 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2488 spin_lock_irq(&hugetlb_lock);
2490 * We could have raced with the pool size change.
2491 * Double check that and simply deallocate the new page
2492 * if we would end up overcommiting the surpluses. Abuse
2493 * temporary page to workaround the nasty free_huge_folio
2496 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2497 folio_set_hugetlb_temporary(folio);
2498 spin_unlock_irq(&hugetlb_lock);
2499 free_huge_folio(folio);
2503 h->surplus_huge_pages++;
2504 h->surplus_huge_pages_node[folio_nid(folio)]++;
2507 spin_unlock_irq(&hugetlb_lock);
2512 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2513 int nid, nodemask_t *nmask)
2515 struct folio *folio;
2517 if (hstate_is_gigantic(h))
2520 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2524 /* fresh huge pages are frozen */
2525 folio_ref_unfreeze(folio, 1);
2527 * We do not account these pages as surplus because they are only
2528 * temporary and will be released properly on the last reference
2530 folio_set_hugetlb_temporary(folio);
2536 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2539 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2540 struct vm_area_struct *vma, unsigned long addr)
2542 struct folio *folio = NULL;
2543 struct mempolicy *mpol;
2544 gfp_t gfp_mask = htlb_alloc_mask(h);
2546 nodemask_t *nodemask;
2548 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2549 if (mpol_is_preferred_many(mpol)) {
2550 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2552 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2553 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2555 /* Fallback to all nodes if page==NULL */
2560 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2561 mpol_cond_put(mpol);
2565 /* folio migration callback function */
2566 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2567 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2569 spin_lock_irq(&hugetlb_lock);
2570 if (available_huge_pages(h)) {
2571 struct folio *folio;
2573 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2574 preferred_nid, nmask);
2576 spin_unlock_irq(&hugetlb_lock);
2580 spin_unlock_irq(&hugetlb_lock);
2582 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2583 if (!allow_alloc_fallback)
2584 gfp_mask |= __GFP_THISNODE;
2586 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2590 * Increase the hugetlb pool such that it can accommodate a reservation
2593 static int gather_surplus_pages(struct hstate *h, long delta)
2594 __must_hold(&hugetlb_lock)
2596 LIST_HEAD(surplus_list);
2597 struct folio *folio, *tmp;
2600 long needed, allocated;
2601 bool alloc_ok = true;
2603 lockdep_assert_held(&hugetlb_lock);
2604 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2606 h->resv_huge_pages += delta;
2614 spin_unlock_irq(&hugetlb_lock);
2615 for (i = 0; i < needed; i++) {
2616 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2617 NUMA_NO_NODE, NULL);
2622 list_add(&folio->lru, &surplus_list);
2628 * After retaking hugetlb_lock, we need to recalculate 'needed'
2629 * because either resv_huge_pages or free_huge_pages may have changed.
2631 spin_lock_irq(&hugetlb_lock);
2632 needed = (h->resv_huge_pages + delta) -
2633 (h->free_huge_pages + allocated);
2638 * We were not able to allocate enough pages to
2639 * satisfy the entire reservation so we free what
2640 * we've allocated so far.
2645 * The surplus_list now contains _at_least_ the number of extra pages
2646 * needed to accommodate the reservation. Add the appropriate number
2647 * of pages to the hugetlb pool and free the extras back to the buddy
2648 * allocator. Commit the entire reservation here to prevent another
2649 * process from stealing the pages as they are added to the pool but
2650 * before they are reserved.
2652 needed += allocated;
2653 h->resv_huge_pages += delta;
2656 /* Free the needed pages to the hugetlb pool */
2657 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2660 /* Add the page to the hugetlb allocator */
2661 enqueue_hugetlb_folio(h, folio);
2664 spin_unlock_irq(&hugetlb_lock);
2667 * Free unnecessary surplus pages to the buddy allocator.
2668 * Pages have no ref count, call free_huge_folio directly.
2670 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2671 free_huge_folio(folio);
2672 spin_lock_irq(&hugetlb_lock);
2678 * This routine has two main purposes:
2679 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2680 * in unused_resv_pages. This corresponds to the prior adjustments made
2681 * to the associated reservation map.
2682 * 2) Free any unused surplus pages that may have been allocated to satisfy
2683 * the reservation. As many as unused_resv_pages may be freed.
2685 static void return_unused_surplus_pages(struct hstate *h,
2686 unsigned long unused_resv_pages)
2688 unsigned long nr_pages;
2689 LIST_HEAD(page_list);
2691 lockdep_assert_held(&hugetlb_lock);
2692 /* Uncommit the reservation */
2693 h->resv_huge_pages -= unused_resv_pages;
2695 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2699 * Part (or even all) of the reservation could have been backed
2700 * by pre-allocated pages. Only free surplus pages.
2702 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2705 * We want to release as many surplus pages as possible, spread
2706 * evenly across all nodes with memory. Iterate across these nodes
2707 * until we can no longer free unreserved surplus pages. This occurs
2708 * when the nodes with surplus pages have no free pages.
2709 * remove_pool_hugetlb_folio() will balance the freed pages across the
2710 * on-line nodes with memory and will handle the hstate accounting.
2712 while (nr_pages--) {
2713 struct folio *folio;
2715 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2719 list_add(&folio->lru, &page_list);
2723 spin_unlock_irq(&hugetlb_lock);
2724 update_and_free_pages_bulk(h, &page_list);
2725 spin_lock_irq(&hugetlb_lock);
2730 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2731 * are used by the huge page allocation routines to manage reservations.
2733 * vma_needs_reservation is called to determine if the huge page at addr
2734 * within the vma has an associated reservation. If a reservation is
2735 * needed, the value 1 is returned. The caller is then responsible for
2736 * managing the global reservation and subpool usage counts. After
2737 * the huge page has been allocated, vma_commit_reservation is called
2738 * to add the page to the reservation map. If the page allocation fails,
2739 * the reservation must be ended instead of committed. vma_end_reservation
2740 * is called in such cases.
2742 * In the normal case, vma_commit_reservation returns the same value
2743 * as the preceding vma_needs_reservation call. The only time this
2744 * is not the case is if a reserve map was changed between calls. It
2745 * is the responsibility of the caller to notice the difference and
2746 * take appropriate action.
2748 * vma_add_reservation is used in error paths where a reservation must
2749 * be restored when a newly allocated huge page must be freed. It is
2750 * to be called after calling vma_needs_reservation to determine if a
2751 * reservation exists.
2753 * vma_del_reservation is used in error paths where an entry in the reserve
2754 * map was created during huge page allocation and must be removed. It is to
2755 * be called after calling vma_needs_reservation to determine if a reservation
2758 enum vma_resv_mode {
2765 static long __vma_reservation_common(struct hstate *h,
2766 struct vm_area_struct *vma, unsigned long addr,
2767 enum vma_resv_mode mode)
2769 struct resv_map *resv;
2772 long dummy_out_regions_needed;
2774 resv = vma_resv_map(vma);
2778 idx = vma_hugecache_offset(h, vma, addr);
2780 case VMA_NEEDS_RESV:
2781 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2782 /* We assume that vma_reservation_* routines always operate on
2783 * 1 page, and that adding to resv map a 1 page entry can only
2784 * ever require 1 region.
2786 VM_BUG_ON(dummy_out_regions_needed != 1);
2788 case VMA_COMMIT_RESV:
2789 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2790 /* region_add calls of range 1 should never fail. */
2794 region_abort(resv, idx, idx + 1, 1);
2798 if (vma->vm_flags & VM_MAYSHARE) {
2799 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2800 /* region_add calls of range 1 should never fail. */
2803 region_abort(resv, idx, idx + 1, 1);
2804 ret = region_del(resv, idx, idx + 1);
2808 if (vma->vm_flags & VM_MAYSHARE) {
2809 region_abort(resv, idx, idx + 1, 1);
2810 ret = region_del(resv, idx, idx + 1);
2812 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2813 /* region_add calls of range 1 should never fail. */
2821 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2824 * We know private mapping must have HPAGE_RESV_OWNER set.
2826 * In most cases, reserves always exist for private mappings.
2827 * However, a file associated with mapping could have been
2828 * hole punched or truncated after reserves were consumed.
2829 * As subsequent fault on such a range will not use reserves.
2830 * Subtle - The reserve map for private mappings has the
2831 * opposite meaning than that of shared mappings. If NO
2832 * entry is in the reserve map, it means a reservation exists.
2833 * If an entry exists in the reserve map, it means the
2834 * reservation has already been consumed. As a result, the
2835 * return value of this routine is the opposite of the
2836 * value returned from reserve map manipulation routines above.
2845 static long vma_needs_reservation(struct hstate *h,
2846 struct vm_area_struct *vma, unsigned long addr)
2848 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2851 static long vma_commit_reservation(struct hstate *h,
2852 struct vm_area_struct *vma, unsigned long addr)
2854 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2857 static void vma_end_reservation(struct hstate *h,
2858 struct vm_area_struct *vma, unsigned long addr)
2860 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2863 static long vma_add_reservation(struct hstate *h,
2864 struct vm_area_struct *vma, unsigned long addr)
2866 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2869 static long vma_del_reservation(struct hstate *h,
2870 struct vm_area_struct *vma, unsigned long addr)
2872 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2876 * This routine is called to restore reservation information on error paths.
2877 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2878 * and the hugetlb mutex should remain held when calling this routine.
2880 * It handles two specific cases:
2881 * 1) A reservation was in place and the folio consumed the reservation.
2882 * hugetlb_restore_reserve is set in the folio.
2883 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2884 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2886 * In case 1, free_huge_folio later in the error path will increment the
2887 * global reserve count. But, free_huge_folio does not have enough context
2888 * to adjust the reservation map. This case deals primarily with private
2889 * mappings. Adjust the reserve map here to be consistent with global
2890 * reserve count adjustments to be made by free_huge_folio. Make sure the
2891 * reserve map indicates there is a reservation present.
2893 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2895 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2896 unsigned long address, struct folio *folio)
2898 long rc = vma_needs_reservation(h, vma, address);
2900 if (folio_test_hugetlb_restore_reserve(folio)) {
2901 if (unlikely(rc < 0))
2903 * Rare out of memory condition in reserve map
2904 * manipulation. Clear hugetlb_restore_reserve so
2905 * that global reserve count will not be incremented
2906 * by free_huge_folio. This will make it appear
2907 * as though the reservation for this folio was
2908 * consumed. This may prevent the task from
2909 * faulting in the folio at a later time. This
2910 * is better than inconsistent global huge page
2911 * accounting of reserve counts.
2913 folio_clear_hugetlb_restore_reserve(folio);
2915 (void)vma_add_reservation(h, vma, address);
2917 vma_end_reservation(h, vma, address);
2921 * This indicates there is an entry in the reserve map
2922 * not added by alloc_hugetlb_folio. We know it was added
2923 * before the alloc_hugetlb_folio call, otherwise
2924 * hugetlb_restore_reserve would be set on the folio.
2925 * Remove the entry so that a subsequent allocation
2926 * does not consume a reservation.
2928 rc = vma_del_reservation(h, vma, address);
2931 * VERY rare out of memory condition. Since
2932 * we can not delete the entry, set
2933 * hugetlb_restore_reserve so that the reserve
2934 * count will be incremented when the folio
2935 * is freed. This reserve will be consumed
2936 * on a subsequent allocation.
2938 folio_set_hugetlb_restore_reserve(folio);
2939 } else if (rc < 0) {
2941 * Rare out of memory condition from
2942 * vma_needs_reservation call. Memory allocation is
2943 * only attempted if a new entry is needed. Therefore,
2944 * this implies there is not an entry in the
2947 * For shared mappings, no entry in the map indicates
2948 * no reservation. We are done.
2950 if (!(vma->vm_flags & VM_MAYSHARE))
2952 * For private mappings, no entry indicates
2953 * a reservation is present. Since we can
2954 * not add an entry, set hugetlb_restore_reserve
2955 * on the folio so reserve count will be
2956 * incremented when freed. This reserve will
2957 * be consumed on a subsequent allocation.
2959 folio_set_hugetlb_restore_reserve(folio);
2962 * No reservation present, do nothing
2964 vma_end_reservation(h, vma, address);
2969 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2971 * @h: struct hstate old page belongs to
2972 * @old_folio: Old folio to dissolve
2973 * @list: List to isolate the page in case we need to
2974 * Returns 0 on success, otherwise negated error.
2976 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2977 struct folio *old_folio, struct list_head *list)
2979 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2980 int nid = folio_nid(old_folio);
2981 struct folio *new_folio = NULL;
2985 spin_lock_irq(&hugetlb_lock);
2986 if (!folio_test_hugetlb(old_folio)) {
2988 * Freed from under us. Drop new_folio too.
2991 } else if (folio_ref_count(old_folio)) {
2995 * Someone has grabbed the folio, try to isolate it here.
2996 * Fail with -EBUSY if not possible.
2998 spin_unlock_irq(&hugetlb_lock);
2999 isolated = isolate_hugetlb(old_folio, list);
3000 ret = isolated ? 0 : -EBUSY;
3001 spin_lock_irq(&hugetlb_lock);
3003 } else if (!folio_test_hugetlb_freed(old_folio)) {
3005 * Folio's refcount is 0 but it has not been enqueued in the
3006 * freelist yet. Race window is small, so we can succeed here if
3009 spin_unlock_irq(&hugetlb_lock);
3014 spin_unlock_irq(&hugetlb_lock);
3015 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3019 __prep_new_hugetlb_folio(h, new_folio);
3024 * Ok, old_folio is still a genuine free hugepage. Remove it from
3025 * the freelist and decrease the counters. These will be
3026 * incremented again when calling __prep_account_new_huge_page()
3027 * and enqueue_hugetlb_folio() for new_folio. The counters will
3028 * remain stable since this happens under the lock.
3030 remove_hugetlb_folio(h, old_folio, false);
3033 * Ref count on new_folio is already zero as it was dropped
3034 * earlier. It can be directly added to the pool free list.
3036 __prep_account_new_huge_page(h, nid);
3037 enqueue_hugetlb_folio(h, new_folio);
3040 * Folio has been replaced, we can safely free the old one.
3042 spin_unlock_irq(&hugetlb_lock);
3043 update_and_free_hugetlb_folio(h, old_folio, false);
3049 spin_unlock_irq(&hugetlb_lock);
3051 update_and_free_hugetlb_folio(h, new_folio, false);
3056 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3059 struct folio *folio = page_folio(page);
3063 * The page might have been dissolved from under our feet, so make sure
3064 * to carefully check the state under the lock.
3065 * Return success when racing as if we dissolved the page ourselves.
3067 spin_lock_irq(&hugetlb_lock);
3068 if (folio_test_hugetlb(folio)) {
3069 h = folio_hstate(folio);
3071 spin_unlock_irq(&hugetlb_lock);
3074 spin_unlock_irq(&hugetlb_lock);
3077 * Fence off gigantic pages as there is a cyclic dependency between
3078 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3079 * of bailing out right away without further retrying.
3081 if (hstate_is_gigantic(h))
3084 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3086 else if (!folio_ref_count(folio))
3087 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3092 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3093 unsigned long addr, int avoid_reserve)
3095 struct hugepage_subpool *spool = subpool_vma(vma);
3096 struct hstate *h = hstate_vma(vma);
3097 struct folio *folio;
3098 long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3100 int memcg_charge_ret, ret, idx;
3101 struct hugetlb_cgroup *h_cg = NULL;
3102 struct mem_cgroup *memcg;
3103 bool deferred_reserve;
3104 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3106 memcg = get_mem_cgroup_from_current();
3107 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3108 if (memcg_charge_ret == -ENOMEM) {
3109 mem_cgroup_put(memcg);
3110 return ERR_PTR(-ENOMEM);
3113 idx = hstate_index(h);
3115 * Examine the region/reserve map to determine if the process
3116 * has a reservation for the page to be allocated. A return
3117 * code of zero indicates a reservation exists (no change).
3119 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3121 if (!memcg_charge_ret)
3122 mem_cgroup_cancel_charge(memcg, nr_pages);
3123 mem_cgroup_put(memcg);
3124 return ERR_PTR(-ENOMEM);
3128 * Processes that did not create the mapping will have no
3129 * reserves as indicated by the region/reserve map. Check
3130 * that the allocation will not exceed the subpool limit.
3131 * Allocations for MAP_NORESERVE mappings also need to be
3132 * checked against any subpool limit.
3134 if (map_chg || avoid_reserve) {
3135 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3137 goto out_end_reservation;
3140 * Even though there was no reservation in the region/reserve
3141 * map, there could be reservations associated with the
3142 * subpool that can be used. This would be indicated if the
3143 * return value of hugepage_subpool_get_pages() is zero.
3144 * However, if avoid_reserve is specified we still avoid even
3145 * the subpool reservations.
3151 /* If this allocation is not consuming a reservation, charge it now.
3153 deferred_reserve = map_chg || avoid_reserve;
3154 if (deferred_reserve) {
3155 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3156 idx, pages_per_huge_page(h), &h_cg);
3158 goto out_subpool_put;
3161 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3163 goto out_uncharge_cgroup_reservation;
3165 spin_lock_irq(&hugetlb_lock);
3167 * glb_chg is passed to indicate whether or not a page must be taken
3168 * from the global free pool (global change). gbl_chg == 0 indicates
3169 * a reservation exists for the allocation.
3171 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3173 spin_unlock_irq(&hugetlb_lock);
3174 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3176 goto out_uncharge_cgroup;
3177 spin_lock_irq(&hugetlb_lock);
3178 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3179 folio_set_hugetlb_restore_reserve(folio);
3180 h->resv_huge_pages--;
3182 list_add(&folio->lru, &h->hugepage_activelist);
3183 folio_ref_unfreeze(folio, 1);
3187 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3188 /* If allocation is not consuming a reservation, also store the
3189 * hugetlb_cgroup pointer on the page.
3191 if (deferred_reserve) {
3192 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3196 spin_unlock_irq(&hugetlb_lock);
3198 hugetlb_set_folio_subpool(folio, spool);
3200 map_commit = vma_commit_reservation(h, vma, addr);
3201 if (unlikely(map_chg > map_commit)) {
3203 * The page was added to the reservation map between
3204 * vma_needs_reservation and vma_commit_reservation.
3205 * This indicates a race with hugetlb_reserve_pages.
3206 * Adjust for the subpool count incremented above AND
3207 * in hugetlb_reserve_pages for the same page. Also,
3208 * the reservation count added in hugetlb_reserve_pages
3209 * no longer applies.
3213 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3214 hugetlb_acct_memory(h, -rsv_adjust);
3215 if (deferred_reserve) {
3216 spin_lock_irq(&hugetlb_lock);
3217 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3218 pages_per_huge_page(h), folio);
3219 spin_unlock_irq(&hugetlb_lock);
3223 if (!memcg_charge_ret)
3224 mem_cgroup_commit_charge(folio, memcg);
3225 mem_cgroup_put(memcg);
3229 out_uncharge_cgroup:
3230 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3231 out_uncharge_cgroup_reservation:
3232 if (deferred_reserve)
3233 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3236 if (map_chg || avoid_reserve)
3237 hugepage_subpool_put_pages(spool, 1);
3238 out_end_reservation:
3239 vma_end_reservation(h, vma, addr);
3240 if (!memcg_charge_ret)
3241 mem_cgroup_cancel_charge(memcg, nr_pages);
3242 mem_cgroup_put(memcg);
3243 return ERR_PTR(-ENOSPC);
3246 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3247 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3248 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3250 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3251 int nr_nodes, node = nid;
3253 /* do node specific alloc */
3254 if (nid != NUMA_NO_NODE) {
3255 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3256 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3261 /* allocate from next node when distributing huge pages */
3262 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3263 m = memblock_alloc_try_nid_raw(
3264 huge_page_size(h), huge_page_size(h),
3265 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3267 * Use the beginning of the huge page to store the
3268 * huge_bootmem_page struct (until gather_bootmem
3269 * puts them into the mem_map).
3279 * Only initialize the head struct page in memmap_init_reserved_pages,
3280 * rest of the struct pages will be initialized by the HugeTLB
3282 * The head struct page is used to get folio information by the HugeTLB
3283 * subsystem like zone id and node id.
3285 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3286 huge_page_size(h) - PAGE_SIZE);
3287 /* Put them into a private list first because mem_map is not up yet */
3288 INIT_LIST_HEAD(&m->list);
3289 list_add(&m->list, &huge_boot_pages[node]);
3294 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3295 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3296 unsigned long start_page_number,
3297 unsigned long end_page_number)
3299 enum zone_type zone = zone_idx(folio_zone(folio));
3300 int nid = folio_nid(folio);
3301 unsigned long head_pfn = folio_pfn(folio);
3302 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3305 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3306 struct page *page = pfn_to_page(pfn);
3308 __init_single_page(page, pfn, zone, nid);
3309 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3310 ret = page_ref_freeze(page, 1);
3315 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3317 unsigned long nr_pages)
3321 /* Prepare folio head */
3322 __folio_clear_reserved(folio);
3323 __folio_set_head(folio);
3324 ret = folio_ref_freeze(folio, 1);
3326 /* Initialize the necessary tail struct pages */
3327 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3328 prep_compound_head((struct page *)folio, huge_page_order(h));
3331 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3332 struct list_head *folio_list)
3334 unsigned long flags;
3335 struct folio *folio, *tmp_f;
3337 /* Send list for bulk vmemmap optimization processing */
3338 hugetlb_vmemmap_optimize_folios(h, folio_list);
3340 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3341 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3343 * If HVO fails, initialize all tail struct pages
3344 * We do not worry about potential long lock hold
3345 * time as this is early in boot and there should
3348 hugetlb_folio_init_tail_vmemmap(folio,
3349 HUGETLB_VMEMMAP_RESERVE_PAGES,
3350 pages_per_huge_page(h));
3352 /* Subdivide locks to achieve better parallel performance */
3353 spin_lock_irqsave(&hugetlb_lock, flags);
3354 __prep_account_new_huge_page(h, folio_nid(folio));
3355 enqueue_hugetlb_folio(h, folio);
3356 spin_unlock_irqrestore(&hugetlb_lock, flags);
3361 * Put bootmem huge pages into the standard lists after mem_map is up.
3362 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3364 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3366 LIST_HEAD(folio_list);
3367 struct huge_bootmem_page *m;
3368 struct hstate *h = NULL, *prev_h = NULL;
3370 list_for_each_entry(m, &huge_boot_pages[nid], list) {
3371 struct page *page = virt_to_page(m);
3372 struct folio *folio = (void *)page;
3376 * It is possible to have multiple huge page sizes (hstates)
3377 * in this list. If so, process each size separately.
3379 if (h != prev_h && prev_h != NULL)
3380 prep_and_add_bootmem_folios(prev_h, &folio_list);
3383 VM_BUG_ON(!hstate_is_gigantic(h));
3384 WARN_ON(folio_ref_count(folio) != 1);
3386 hugetlb_folio_init_vmemmap(folio, h,
3387 HUGETLB_VMEMMAP_RESERVE_PAGES);
3388 init_new_hugetlb_folio(h, folio);
3389 list_add(&folio->lru, &folio_list);
3392 * We need to restore the 'stolen' pages to totalram_pages
3393 * in order to fix confusing memory reports from free(1) and
3394 * other side-effects, like CommitLimit going negative.
3396 adjust_managed_page_count(page, pages_per_huge_page(h));
3400 prep_and_add_bootmem_folios(h, &folio_list);
3403 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3404 unsigned long end, void *arg)
3408 for (nid = start; nid < end; nid++)
3409 gather_bootmem_prealloc_node(nid);
3412 static void __init gather_bootmem_prealloc(void)
3414 struct padata_mt_job job = {
3415 .thread_fn = gather_bootmem_prealloc_parallel,
3418 .size = num_node_state(N_MEMORY),
3421 .max_threads = num_node_state(N_MEMORY),
3425 padata_do_multithreaded(&job);
3428 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3433 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3434 if (hstate_is_gigantic(h)) {
3435 if (!alloc_bootmem_huge_page(h, nid))
3438 struct folio *folio;
3439 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3441 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3442 &node_states[N_MEMORY], NULL);
3445 free_huge_folio(folio); /* free it into the hugepage allocator */
3449 if (i == h->max_huge_pages_node[nid])
3452 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3453 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3454 h->max_huge_pages_node[nid], buf, nid, i);
3455 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3456 h->max_huge_pages_node[nid] = i;
3459 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3462 bool node_specific_alloc = false;
3464 for_each_online_node(i) {
3465 if (h->max_huge_pages_node[i] > 0) {
3466 hugetlb_hstate_alloc_pages_onenode(h, i);
3467 node_specific_alloc = true;
3471 return node_specific_alloc;
3474 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3476 if (allocated < h->max_huge_pages) {
3479 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3480 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3481 h->max_huge_pages, buf, allocated);
3482 h->max_huge_pages = allocated;
3486 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3488 struct hstate *h = (struct hstate *)arg;
3489 int i, num = end - start;
3490 nodemask_t node_alloc_noretry;
3491 LIST_HEAD(folio_list);
3492 int next_node = first_online_node;
3494 /* Bit mask controlling how hard we retry per-node allocations.*/
3495 nodes_clear(node_alloc_noretry);
3497 for (i = 0; i < num; ++i) {
3498 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3499 &node_alloc_noretry, &next_node);
3503 list_move(&folio->lru, &folio_list);
3507 prep_and_add_allocated_folios(h, &folio_list);
3510 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3514 for (i = 0; i < h->max_huge_pages; ++i) {
3515 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3523 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3525 struct padata_mt_job job = {
3531 job.thread_fn = hugetlb_pages_alloc_boot_node;
3533 job.size = h->max_huge_pages;
3536 * job.max_threads is twice the num_node_state(N_MEMORY),
3538 * Tests below indicate that a multiplier of 2 significantly improves
3539 * performance, and although larger values also provide improvements,
3540 * the gains are marginal.
3542 * Therefore, choosing 2 as the multiplier strikes a good balance between
3543 * enhancing parallel processing capabilities and maintaining efficient
3544 * resource management.
3546 * +------------+-------+-------+-------+-------+-------+
3547 * | multiplier | 1 | 2 | 3 | 4 | 5 |
3548 * +------------+-------+-------+-------+-------+-------+
3549 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3550 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3551 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms |
3552 * +------------+-------+-------+-------+-------+-------+
3554 job.max_threads = num_node_state(N_MEMORY) * 2;
3555 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3556 padata_do_multithreaded(&job);
3558 return h->nr_huge_pages;
3562 * NOTE: this routine is called in different contexts for gigantic and
3563 * non-gigantic pages.
3564 * - For gigantic pages, this is called early in the boot process and
3565 * pages are allocated from memblock allocated or something similar.
3566 * Gigantic pages are actually added to pools later with the routine
3567 * gather_bootmem_prealloc.
3568 * - For non-gigantic pages, this is called later in the boot process after
3569 * all of mm is up and functional. Pages are allocated from buddy and
3570 * then added to hugetlb pools.
3572 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3574 unsigned long allocated;
3575 static bool initialized __initdata;
3577 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3578 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3579 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3583 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3587 for (i = 0; i < MAX_NUMNODES; i++)
3588 INIT_LIST_HEAD(&huge_boot_pages[i]);
3592 /* do node specific alloc */
3593 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3596 /* below will do all node balanced alloc */
3597 if (hstate_is_gigantic(h))
3598 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3600 allocated = hugetlb_pages_alloc_boot(h);
3602 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3605 static void __init hugetlb_init_hstates(void)
3607 struct hstate *h, *h2;
3609 for_each_hstate(h) {
3610 /* oversize hugepages were init'ed in early boot */
3611 if (!hstate_is_gigantic(h))
3612 hugetlb_hstate_alloc_pages(h);
3615 * Set demote order for each hstate. Note that
3616 * h->demote_order is initially 0.
3617 * - We can not demote gigantic pages if runtime freeing
3618 * is not supported, so skip this.
3619 * - If CMA allocation is possible, we can not demote
3620 * HUGETLB_PAGE_ORDER or smaller size pages.
3622 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3624 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3626 for_each_hstate(h2) {
3629 if (h2->order < h->order &&
3630 h2->order > h->demote_order)
3631 h->demote_order = h2->order;
3636 static void __init report_hugepages(void)
3640 for_each_hstate(h) {
3643 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3644 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3645 buf, h->free_huge_pages);
3646 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3647 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3651 #ifdef CONFIG_HIGHMEM
3652 static void try_to_free_low(struct hstate *h, unsigned long count,
3653 nodemask_t *nodes_allowed)
3656 LIST_HEAD(page_list);
3658 lockdep_assert_held(&hugetlb_lock);
3659 if (hstate_is_gigantic(h))
3663 * Collect pages to be freed on a list, and free after dropping lock
3665 for_each_node_mask(i, *nodes_allowed) {
3666 struct folio *folio, *next;
3667 struct list_head *freel = &h->hugepage_freelists[i];
3668 list_for_each_entry_safe(folio, next, freel, lru) {
3669 if (count >= h->nr_huge_pages)
3671 if (folio_test_highmem(folio))
3673 remove_hugetlb_folio(h, folio, false);
3674 list_add(&folio->lru, &page_list);
3679 spin_unlock_irq(&hugetlb_lock);
3680 update_and_free_pages_bulk(h, &page_list);
3681 spin_lock_irq(&hugetlb_lock);
3684 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3685 nodemask_t *nodes_allowed)
3691 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3692 * balanced by operating on them in a round-robin fashion.
3693 * Returns 1 if an adjustment was made.
3695 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3700 lockdep_assert_held(&hugetlb_lock);
3701 VM_BUG_ON(delta != -1 && delta != 1);
3704 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3705 if (h->surplus_huge_pages_node[node])
3709 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3710 if (h->surplus_huge_pages_node[node] <
3711 h->nr_huge_pages_node[node])
3718 h->surplus_huge_pages += delta;
3719 h->surplus_huge_pages_node[node] += delta;
3723 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3724 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3725 nodemask_t *nodes_allowed)
3727 unsigned long min_count;
3728 unsigned long allocated;
3729 struct folio *folio;
3730 LIST_HEAD(page_list);
3731 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3734 * Bit mask controlling how hard we retry per-node allocations.
3735 * If we can not allocate the bit mask, do not attempt to allocate
3736 * the requested huge pages.
3738 if (node_alloc_noretry)
3739 nodes_clear(*node_alloc_noretry);
3744 * resize_lock mutex prevents concurrent adjustments to number of
3745 * pages in hstate via the proc/sysfs interfaces.
3747 mutex_lock(&h->resize_lock);
3748 flush_free_hpage_work(h);
3749 spin_lock_irq(&hugetlb_lock);
3752 * Check for a node specific request.
3753 * Changing node specific huge page count may require a corresponding
3754 * change to the global count. In any case, the passed node mask
3755 * (nodes_allowed) will restrict alloc/free to the specified node.
3757 if (nid != NUMA_NO_NODE) {
3758 unsigned long old_count = count;
3760 count += persistent_huge_pages(h) -
3761 (h->nr_huge_pages_node[nid] -
3762 h->surplus_huge_pages_node[nid]);
3764 * User may have specified a large count value which caused the
3765 * above calculation to overflow. In this case, they wanted
3766 * to allocate as many huge pages as possible. Set count to
3767 * largest possible value to align with their intention.
3769 if (count < old_count)
3774 * Gigantic pages runtime allocation depend on the capability for large
3775 * page range allocation.
3776 * If the system does not provide this feature, return an error when
3777 * the user tries to allocate gigantic pages but let the user free the
3778 * boottime allocated gigantic pages.
3780 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3781 if (count > persistent_huge_pages(h)) {
3782 spin_unlock_irq(&hugetlb_lock);
3783 mutex_unlock(&h->resize_lock);
3784 NODEMASK_FREE(node_alloc_noretry);
3787 /* Fall through to decrease pool */
3791 * Increase the pool size
3792 * First take pages out of surplus state. Then make up the
3793 * remaining difference by allocating fresh huge pages.
3795 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3796 * to convert a surplus huge page to a normal huge page. That is
3797 * not critical, though, it just means the overall size of the
3798 * pool might be one hugepage larger than it needs to be, but
3799 * within all the constraints specified by the sysctls.
3801 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3802 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3807 while (count > (persistent_huge_pages(h) + allocated)) {
3809 * If this allocation races such that we no longer need the
3810 * page, free_huge_folio will handle it by freeing the page
3811 * and reducing the surplus.
3813 spin_unlock_irq(&hugetlb_lock);
3815 /* yield cpu to avoid soft lockup */
3818 folio = alloc_pool_huge_folio(h, nodes_allowed,
3820 &h->next_nid_to_alloc);
3822 prep_and_add_allocated_folios(h, &page_list);
3823 spin_lock_irq(&hugetlb_lock);
3827 list_add(&folio->lru, &page_list);
3830 /* Bail for signals. Probably ctrl-c from user */
3831 if (signal_pending(current)) {
3832 prep_and_add_allocated_folios(h, &page_list);
3833 spin_lock_irq(&hugetlb_lock);
3837 spin_lock_irq(&hugetlb_lock);
3840 /* Add allocated pages to the pool */
3841 if (!list_empty(&page_list)) {
3842 spin_unlock_irq(&hugetlb_lock);
3843 prep_and_add_allocated_folios(h, &page_list);
3844 spin_lock_irq(&hugetlb_lock);
3848 * Decrease the pool size
3849 * First return free pages to the buddy allocator (being careful
3850 * to keep enough around to satisfy reservations). Then place
3851 * pages into surplus state as needed so the pool will shrink
3852 * to the desired size as pages become free.
3854 * By placing pages into the surplus state independent of the
3855 * overcommit value, we are allowing the surplus pool size to
3856 * exceed overcommit. There are few sane options here. Since
3857 * alloc_surplus_hugetlb_folio() is checking the global counter,
3858 * though, we'll note that we're not allowed to exceed surplus
3859 * and won't grow the pool anywhere else. Not until one of the
3860 * sysctls are changed, or the surplus pages go out of use.
3862 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3863 min_count = max(count, min_count);
3864 try_to_free_low(h, min_count, nodes_allowed);
3867 * Collect pages to be removed on list without dropping lock
3869 while (min_count < persistent_huge_pages(h)) {
3870 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3874 list_add(&folio->lru, &page_list);
3876 /* free the pages after dropping lock */
3877 spin_unlock_irq(&hugetlb_lock);
3878 update_and_free_pages_bulk(h, &page_list);
3879 flush_free_hpage_work(h);
3880 spin_lock_irq(&hugetlb_lock);
3882 while (count < persistent_huge_pages(h)) {
3883 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3887 h->max_huge_pages = persistent_huge_pages(h);
3888 spin_unlock_irq(&hugetlb_lock);
3889 mutex_unlock(&h->resize_lock);
3891 NODEMASK_FREE(node_alloc_noretry);
3896 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3898 int i, nid = folio_nid(folio);
3899 struct hstate *target_hstate;
3900 struct page *subpage;
3901 struct folio *inner_folio;
3904 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3906 remove_hugetlb_folio(h, folio, false);
3907 spin_unlock_irq(&hugetlb_lock);
3910 * If vmemmap already existed for folio, the remove routine above would
3911 * have cleared the hugetlb folio flag. Hence the folio is technically
3912 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be
3913 * passed hugetlb folios and will BUG otherwise.
3915 if (folio_test_hugetlb(folio)) {
3916 rc = hugetlb_vmemmap_restore_folio(h, folio);
3918 /* Allocation of vmemmmap failed, we can not demote folio */
3919 spin_lock_irq(&hugetlb_lock);
3920 add_hugetlb_folio(h, folio, false);
3926 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3927 * sizes as it will not ref count folios.
3929 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3932 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3933 * Without the mutex, pages added to target hstate could be marked
3936 * Note that we already hold h->resize_lock. To prevent deadlock,
3937 * use the convention of always taking larger size hstate mutex first.
3939 mutex_lock(&target_hstate->resize_lock);
3940 for (i = 0; i < pages_per_huge_page(h);
3941 i += pages_per_huge_page(target_hstate)) {
3942 subpage = folio_page(folio, i);
3943 inner_folio = page_folio(subpage);
3944 if (hstate_is_gigantic(target_hstate))
3945 prep_compound_gigantic_folio_for_demote(inner_folio,
3946 target_hstate->order);
3948 prep_compound_page(subpage, target_hstate->order);
3949 folio_change_private(inner_folio, NULL);
3950 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3951 free_huge_folio(inner_folio);
3953 mutex_unlock(&target_hstate->resize_lock);
3955 spin_lock_irq(&hugetlb_lock);
3958 * Not absolutely necessary, but for consistency update max_huge_pages
3959 * based on pool changes for the demoted page.
3961 h->max_huge_pages--;
3962 target_hstate->max_huge_pages +=
3963 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3968 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3969 __must_hold(&hugetlb_lock)
3972 struct folio *folio;
3974 lockdep_assert_held(&hugetlb_lock);
3976 /* We should never get here if no demote order */
3977 if (!h->demote_order) {
3978 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3979 return -EINVAL; /* internal error */
3982 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3983 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3984 if (folio_test_hwpoison(folio))
3986 return demote_free_hugetlb_folio(h, folio);
3991 * Only way to get here is if all pages on free lists are poisoned.
3992 * Return -EBUSY so that caller will not retry.
3997 #define HSTATE_ATTR_RO(_name) \
3998 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4000 #define HSTATE_ATTR_WO(_name) \
4001 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4003 #define HSTATE_ATTR(_name) \
4004 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4006 static struct kobject *hugepages_kobj;
4007 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4009 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4011 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4015 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4016 if (hstate_kobjs[i] == kobj) {
4018 *nidp = NUMA_NO_NODE;
4022 return kobj_to_node_hstate(kobj, nidp);
4025 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4026 struct kobj_attribute *attr, char *buf)
4029 unsigned long nr_huge_pages;
4032 h = kobj_to_hstate(kobj, &nid);
4033 if (nid == NUMA_NO_NODE)
4034 nr_huge_pages = h->nr_huge_pages;
4036 nr_huge_pages = h->nr_huge_pages_node[nid];
4038 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4041 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4042 struct hstate *h, int nid,
4043 unsigned long count, size_t len)
4046 nodemask_t nodes_allowed, *n_mask;
4048 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4051 if (nid == NUMA_NO_NODE) {
4053 * global hstate attribute
4055 if (!(obey_mempolicy &&
4056 init_nodemask_of_mempolicy(&nodes_allowed)))
4057 n_mask = &node_states[N_MEMORY];
4059 n_mask = &nodes_allowed;
4062 * Node specific request. count adjustment happens in
4063 * set_max_huge_pages() after acquiring hugetlb_lock.
4065 init_nodemask_of_node(&nodes_allowed, nid);
4066 n_mask = &nodes_allowed;
4069 err = set_max_huge_pages(h, count, nid, n_mask);
4071 return err ? err : len;
4074 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4075 struct kobject *kobj, const char *buf,
4079 unsigned long count;
4083 err = kstrtoul(buf, 10, &count);
4087 h = kobj_to_hstate(kobj, &nid);
4088 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4091 static ssize_t nr_hugepages_show(struct kobject *kobj,
4092 struct kobj_attribute *attr, char *buf)
4094 return nr_hugepages_show_common(kobj, attr, buf);
4097 static ssize_t nr_hugepages_store(struct kobject *kobj,
4098 struct kobj_attribute *attr, const char *buf, size_t len)
4100 return nr_hugepages_store_common(false, kobj, buf, len);
4102 HSTATE_ATTR(nr_hugepages);
4107 * hstate attribute for optionally mempolicy-based constraint on persistent
4108 * huge page alloc/free.
4110 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4111 struct kobj_attribute *attr,
4114 return nr_hugepages_show_common(kobj, attr, buf);
4117 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4118 struct kobj_attribute *attr, const char *buf, size_t len)
4120 return nr_hugepages_store_common(true, kobj, buf, len);
4122 HSTATE_ATTR(nr_hugepages_mempolicy);
4126 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4127 struct kobj_attribute *attr, char *buf)
4129 struct hstate *h = kobj_to_hstate(kobj, NULL);
4130 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4133 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4134 struct kobj_attribute *attr, const char *buf, size_t count)
4137 unsigned long input;
4138 struct hstate *h = kobj_to_hstate(kobj, NULL);
4140 if (hstate_is_gigantic(h))
4143 err = kstrtoul(buf, 10, &input);
4147 spin_lock_irq(&hugetlb_lock);
4148 h->nr_overcommit_huge_pages = input;
4149 spin_unlock_irq(&hugetlb_lock);
4153 HSTATE_ATTR(nr_overcommit_hugepages);
4155 static ssize_t free_hugepages_show(struct kobject *kobj,
4156 struct kobj_attribute *attr, char *buf)
4159 unsigned long free_huge_pages;
4162 h = kobj_to_hstate(kobj, &nid);
4163 if (nid == NUMA_NO_NODE)
4164 free_huge_pages = h->free_huge_pages;
4166 free_huge_pages = h->free_huge_pages_node[nid];
4168 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4170 HSTATE_ATTR_RO(free_hugepages);
4172 static ssize_t resv_hugepages_show(struct kobject *kobj,
4173 struct kobj_attribute *attr, char *buf)
4175 struct hstate *h = kobj_to_hstate(kobj, NULL);
4176 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4178 HSTATE_ATTR_RO(resv_hugepages);
4180 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4181 struct kobj_attribute *attr, char *buf)
4184 unsigned long surplus_huge_pages;
4187 h = kobj_to_hstate(kobj, &nid);
4188 if (nid == NUMA_NO_NODE)
4189 surplus_huge_pages = h->surplus_huge_pages;
4191 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4193 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4195 HSTATE_ATTR_RO(surplus_hugepages);
4197 static ssize_t demote_store(struct kobject *kobj,
4198 struct kobj_attribute *attr, const char *buf, size_t len)
4200 unsigned long nr_demote;
4201 unsigned long nr_available;
4202 nodemask_t nodes_allowed, *n_mask;
4207 err = kstrtoul(buf, 10, &nr_demote);
4210 h = kobj_to_hstate(kobj, &nid);
4212 if (nid != NUMA_NO_NODE) {
4213 init_nodemask_of_node(&nodes_allowed, nid);
4214 n_mask = &nodes_allowed;
4216 n_mask = &node_states[N_MEMORY];
4219 /* Synchronize with other sysfs operations modifying huge pages */
4220 mutex_lock(&h->resize_lock);
4221 spin_lock_irq(&hugetlb_lock);
4225 * Check for available pages to demote each time thorough the
4226 * loop as demote_pool_huge_page will drop hugetlb_lock.
4228 if (nid != NUMA_NO_NODE)
4229 nr_available = h->free_huge_pages_node[nid];
4231 nr_available = h->free_huge_pages;
4232 nr_available -= h->resv_huge_pages;
4236 err = demote_pool_huge_page(h, n_mask);
4243 spin_unlock_irq(&hugetlb_lock);
4244 mutex_unlock(&h->resize_lock);
4250 HSTATE_ATTR_WO(demote);
4252 static ssize_t demote_size_show(struct kobject *kobj,
4253 struct kobj_attribute *attr, char *buf)
4255 struct hstate *h = kobj_to_hstate(kobj, NULL);
4256 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4258 return sysfs_emit(buf, "%lukB\n", demote_size);
4261 static ssize_t demote_size_store(struct kobject *kobj,
4262 struct kobj_attribute *attr,
4263 const char *buf, size_t count)
4265 struct hstate *h, *demote_hstate;
4266 unsigned long demote_size;
4267 unsigned int demote_order;
4269 demote_size = (unsigned long)memparse(buf, NULL);
4271 demote_hstate = size_to_hstate(demote_size);
4274 demote_order = demote_hstate->order;
4275 if (demote_order < HUGETLB_PAGE_ORDER)
4278 /* demote order must be smaller than hstate order */
4279 h = kobj_to_hstate(kobj, NULL);
4280 if (demote_order >= h->order)
4283 /* resize_lock synchronizes access to demote size and writes */
4284 mutex_lock(&h->resize_lock);
4285 h->demote_order = demote_order;
4286 mutex_unlock(&h->resize_lock);
4290 HSTATE_ATTR(demote_size);
4292 static struct attribute *hstate_attrs[] = {
4293 &nr_hugepages_attr.attr,
4294 &nr_overcommit_hugepages_attr.attr,
4295 &free_hugepages_attr.attr,
4296 &resv_hugepages_attr.attr,
4297 &surplus_hugepages_attr.attr,
4299 &nr_hugepages_mempolicy_attr.attr,
4304 static const struct attribute_group hstate_attr_group = {
4305 .attrs = hstate_attrs,
4308 static struct attribute *hstate_demote_attrs[] = {
4309 &demote_size_attr.attr,
4314 static const struct attribute_group hstate_demote_attr_group = {
4315 .attrs = hstate_demote_attrs,
4318 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4319 struct kobject **hstate_kobjs,
4320 const struct attribute_group *hstate_attr_group)
4323 int hi = hstate_index(h);
4325 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4326 if (!hstate_kobjs[hi])
4329 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4331 kobject_put(hstate_kobjs[hi]);
4332 hstate_kobjs[hi] = NULL;
4336 if (h->demote_order) {
4337 retval = sysfs_create_group(hstate_kobjs[hi],
4338 &hstate_demote_attr_group);
4340 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4341 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4342 kobject_put(hstate_kobjs[hi]);
4343 hstate_kobjs[hi] = NULL;
4352 static bool hugetlb_sysfs_initialized __ro_after_init;
4355 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4356 * with node devices in node_devices[] using a parallel array. The array
4357 * index of a node device or _hstate == node id.
4358 * This is here to avoid any static dependency of the node device driver, in
4359 * the base kernel, on the hugetlb module.
4361 struct node_hstate {
4362 struct kobject *hugepages_kobj;
4363 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4365 static struct node_hstate node_hstates[MAX_NUMNODES];
4368 * A subset of global hstate attributes for node devices
4370 static struct attribute *per_node_hstate_attrs[] = {
4371 &nr_hugepages_attr.attr,
4372 &free_hugepages_attr.attr,
4373 &surplus_hugepages_attr.attr,
4377 static const struct attribute_group per_node_hstate_attr_group = {
4378 .attrs = per_node_hstate_attrs,
4382 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4383 * Returns node id via non-NULL nidp.
4385 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4389 for (nid = 0; nid < nr_node_ids; nid++) {
4390 struct node_hstate *nhs = &node_hstates[nid];
4392 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4393 if (nhs->hstate_kobjs[i] == kobj) {
4405 * Unregister hstate attributes from a single node device.
4406 * No-op if no hstate attributes attached.
4408 void hugetlb_unregister_node(struct node *node)
4411 struct node_hstate *nhs = &node_hstates[node->dev.id];
4413 if (!nhs->hugepages_kobj)
4414 return; /* no hstate attributes */
4416 for_each_hstate(h) {
4417 int idx = hstate_index(h);
4418 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4422 if (h->demote_order)
4423 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4424 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4425 kobject_put(hstate_kobj);
4426 nhs->hstate_kobjs[idx] = NULL;
4429 kobject_put(nhs->hugepages_kobj);
4430 nhs->hugepages_kobj = NULL;
4435 * Register hstate attributes for a single node device.
4436 * No-op if attributes already registered.
4438 void hugetlb_register_node(struct node *node)
4441 struct node_hstate *nhs = &node_hstates[node->dev.id];
4444 if (!hugetlb_sysfs_initialized)
4447 if (nhs->hugepages_kobj)
4448 return; /* already allocated */
4450 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4452 if (!nhs->hugepages_kobj)
4455 for_each_hstate(h) {
4456 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4458 &per_node_hstate_attr_group);
4460 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4461 h->name, node->dev.id);
4462 hugetlb_unregister_node(node);
4469 * hugetlb init time: register hstate attributes for all registered node
4470 * devices of nodes that have memory. All on-line nodes should have
4471 * registered their associated device by this time.
4473 static void __init hugetlb_register_all_nodes(void)
4477 for_each_online_node(nid)
4478 hugetlb_register_node(node_devices[nid]);
4480 #else /* !CONFIG_NUMA */
4482 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4490 static void hugetlb_register_all_nodes(void) { }
4495 static void __init hugetlb_cma_check(void);
4497 static inline __init void hugetlb_cma_check(void)
4502 static void __init hugetlb_sysfs_init(void)
4507 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4508 if (!hugepages_kobj)
4511 for_each_hstate(h) {
4512 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4513 hstate_kobjs, &hstate_attr_group);
4515 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4519 hugetlb_sysfs_initialized = true;
4521 hugetlb_register_all_nodes();
4524 #ifdef CONFIG_SYSCTL
4525 static void hugetlb_sysctl_init(void);
4527 static inline void hugetlb_sysctl_init(void) { }
4530 static int __init hugetlb_init(void)
4534 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4537 if (!hugepages_supported()) {
4538 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4539 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4544 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4545 * architectures depend on setup being done here.
4547 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4548 if (!parsed_default_hugepagesz) {
4550 * If we did not parse a default huge page size, set
4551 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4552 * number of huge pages for this default size was implicitly
4553 * specified, set that here as well.
4554 * Note that the implicit setting will overwrite an explicit
4555 * setting. A warning will be printed in this case.
4557 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4558 if (default_hstate_max_huge_pages) {
4559 if (default_hstate.max_huge_pages) {
4562 string_get_size(huge_page_size(&default_hstate),
4563 1, STRING_UNITS_2, buf, 32);
4564 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4565 default_hstate.max_huge_pages, buf);
4566 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4567 default_hstate_max_huge_pages);
4569 default_hstate.max_huge_pages =
4570 default_hstate_max_huge_pages;
4572 for_each_online_node(i)
4573 default_hstate.max_huge_pages_node[i] =
4574 default_hugepages_in_node[i];
4578 hugetlb_cma_check();
4579 hugetlb_init_hstates();
4580 gather_bootmem_prealloc();
4583 hugetlb_sysfs_init();
4584 hugetlb_cgroup_file_init();
4585 hugetlb_sysctl_init();
4588 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4590 num_fault_mutexes = 1;
4592 hugetlb_fault_mutex_table =
4593 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4595 BUG_ON(!hugetlb_fault_mutex_table);
4597 for (i = 0; i < num_fault_mutexes; i++)
4598 mutex_init(&hugetlb_fault_mutex_table[i]);
4601 subsys_initcall(hugetlb_init);
4603 /* Overwritten by architectures with more huge page sizes */
4604 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4606 return size == HPAGE_SIZE;
4609 void __init hugetlb_add_hstate(unsigned int order)
4614 if (size_to_hstate(PAGE_SIZE << order)) {
4617 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4618 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4619 h = &hstates[hugetlb_max_hstate++];
4620 mutex_init(&h->resize_lock);
4622 h->mask = ~(huge_page_size(h) - 1);
4623 for (i = 0; i < MAX_NUMNODES; ++i)
4624 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4625 INIT_LIST_HEAD(&h->hugepage_activelist);
4626 h->next_nid_to_alloc = first_memory_node;
4627 h->next_nid_to_free = first_memory_node;
4628 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4629 huge_page_size(h)/SZ_1K);
4634 bool __init __weak hugetlb_node_alloc_supported(void)
4639 static void __init hugepages_clear_pages_in_node(void)
4641 if (!hugetlb_max_hstate) {
4642 default_hstate_max_huge_pages = 0;
4643 memset(default_hugepages_in_node, 0,
4644 sizeof(default_hugepages_in_node));
4646 parsed_hstate->max_huge_pages = 0;
4647 memset(parsed_hstate->max_huge_pages_node, 0,
4648 sizeof(parsed_hstate->max_huge_pages_node));
4653 * hugepages command line processing
4654 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4655 * specification. If not, ignore the hugepages value. hugepages can also
4656 * be the first huge page command line option in which case it implicitly
4657 * specifies the number of huge pages for the default size.
4659 static int __init hugepages_setup(char *s)
4662 static unsigned long *last_mhp;
4663 int node = NUMA_NO_NODE;
4668 if (!parsed_valid_hugepagesz) {
4669 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4670 parsed_valid_hugepagesz = true;
4675 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4676 * yet, so this hugepages= parameter goes to the "default hstate".
4677 * Otherwise, it goes with the previously parsed hugepagesz or
4678 * default_hugepagesz.
4680 else if (!hugetlb_max_hstate)
4681 mhp = &default_hstate_max_huge_pages;
4683 mhp = &parsed_hstate->max_huge_pages;
4685 if (mhp == last_mhp) {
4686 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4692 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4694 /* Parameter is node format */
4695 if (p[count] == ':') {
4696 if (!hugetlb_node_alloc_supported()) {
4697 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4700 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4702 node = array_index_nospec(tmp, MAX_NUMNODES);
4704 /* Parse hugepages */
4705 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4707 if (!hugetlb_max_hstate)
4708 default_hugepages_in_node[node] = tmp;
4710 parsed_hstate->max_huge_pages_node[node] = tmp;
4712 /* Go to parse next node*/
4713 if (p[count] == ',')
4726 * Global state is always initialized later in hugetlb_init.
4727 * But we need to allocate gigantic hstates here early to still
4728 * use the bootmem allocator.
4730 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4731 hugetlb_hstate_alloc_pages(parsed_hstate);
4738 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4739 hugepages_clear_pages_in_node();
4742 __setup("hugepages=", hugepages_setup);
4745 * hugepagesz command line processing
4746 * A specific huge page size can only be specified once with hugepagesz.
4747 * hugepagesz is followed by hugepages on the command line. The global
4748 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4749 * hugepagesz argument was valid.
4751 static int __init hugepagesz_setup(char *s)
4756 parsed_valid_hugepagesz = false;
4757 size = (unsigned long)memparse(s, NULL);
4759 if (!arch_hugetlb_valid_size(size)) {
4760 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4764 h = size_to_hstate(size);
4767 * hstate for this size already exists. This is normally
4768 * an error, but is allowed if the existing hstate is the
4769 * default hstate. More specifically, it is only allowed if
4770 * the number of huge pages for the default hstate was not
4771 * previously specified.
4773 if (!parsed_default_hugepagesz || h != &default_hstate ||
4774 default_hstate.max_huge_pages) {
4775 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4780 * No need to call hugetlb_add_hstate() as hstate already
4781 * exists. But, do set parsed_hstate so that a following
4782 * hugepages= parameter will be applied to this hstate.
4785 parsed_valid_hugepagesz = true;
4789 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4790 parsed_valid_hugepagesz = true;
4793 __setup("hugepagesz=", hugepagesz_setup);
4796 * default_hugepagesz command line input
4797 * Only one instance of default_hugepagesz allowed on command line.
4799 static int __init default_hugepagesz_setup(char *s)
4804 parsed_valid_hugepagesz = false;
4805 if (parsed_default_hugepagesz) {
4806 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4810 size = (unsigned long)memparse(s, NULL);
4812 if (!arch_hugetlb_valid_size(size)) {
4813 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4817 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4818 parsed_valid_hugepagesz = true;
4819 parsed_default_hugepagesz = true;
4820 default_hstate_idx = hstate_index(size_to_hstate(size));
4823 * The number of default huge pages (for this size) could have been
4824 * specified as the first hugetlb parameter: hugepages=X. If so,
4825 * then default_hstate_max_huge_pages is set. If the default huge
4826 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4827 * allocated here from bootmem allocator.
4829 if (default_hstate_max_huge_pages) {
4830 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4831 for_each_online_node(i)
4832 default_hstate.max_huge_pages_node[i] =
4833 default_hugepages_in_node[i];
4834 if (hstate_is_gigantic(&default_hstate))
4835 hugetlb_hstate_alloc_pages(&default_hstate);
4836 default_hstate_max_huge_pages = 0;
4841 __setup("default_hugepagesz=", default_hugepagesz_setup);
4843 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4846 struct mempolicy *mpol = get_task_policy(current);
4849 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4850 * (from policy_nodemask) specifically for hugetlb case
4852 if (mpol->mode == MPOL_BIND &&
4853 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4854 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4855 return &mpol->nodes;
4860 static unsigned int allowed_mems_nr(struct hstate *h)
4863 unsigned int nr = 0;
4864 nodemask_t *mbind_nodemask;
4865 unsigned int *array = h->free_huge_pages_node;
4866 gfp_t gfp_mask = htlb_alloc_mask(h);
4868 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4869 for_each_node_mask(node, cpuset_current_mems_allowed) {
4870 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4877 #ifdef CONFIG_SYSCTL
4878 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4879 void *buffer, size_t *length,
4880 loff_t *ppos, unsigned long *out)
4882 struct ctl_table dup_table;
4885 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4886 * can duplicate the @table and alter the duplicate of it.
4889 dup_table.data = out;
4891 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4894 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4895 struct ctl_table *table, int write,
4896 void *buffer, size_t *length, loff_t *ppos)
4898 struct hstate *h = &default_hstate;
4899 unsigned long tmp = h->max_huge_pages;
4902 if (!hugepages_supported())
4905 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4911 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4912 NUMA_NO_NODE, tmp, *length);
4917 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4918 void *buffer, size_t *length, loff_t *ppos)
4921 return hugetlb_sysctl_handler_common(false, table, write,
4922 buffer, length, ppos);
4926 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4927 void *buffer, size_t *length, loff_t *ppos)
4929 return hugetlb_sysctl_handler_common(true, table, write,
4930 buffer, length, ppos);
4932 #endif /* CONFIG_NUMA */
4934 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4935 void *buffer, size_t *length, loff_t *ppos)
4937 struct hstate *h = &default_hstate;
4941 if (!hugepages_supported())
4944 tmp = h->nr_overcommit_huge_pages;
4946 if (write && hstate_is_gigantic(h))
4949 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4955 spin_lock_irq(&hugetlb_lock);
4956 h->nr_overcommit_huge_pages = tmp;
4957 spin_unlock_irq(&hugetlb_lock);
4963 static struct ctl_table hugetlb_table[] = {
4965 .procname = "nr_hugepages",
4967 .maxlen = sizeof(unsigned long),
4969 .proc_handler = hugetlb_sysctl_handler,
4973 .procname = "nr_hugepages_mempolicy",
4975 .maxlen = sizeof(unsigned long),
4977 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4981 .procname = "hugetlb_shm_group",
4982 .data = &sysctl_hugetlb_shm_group,
4983 .maxlen = sizeof(gid_t),
4985 .proc_handler = proc_dointvec,
4988 .procname = "nr_overcommit_hugepages",
4990 .maxlen = sizeof(unsigned long),
4992 .proc_handler = hugetlb_overcommit_handler,
4996 static void hugetlb_sysctl_init(void)
4998 register_sysctl_init("vm", hugetlb_table);
5000 #endif /* CONFIG_SYSCTL */
5002 void hugetlb_report_meminfo(struct seq_file *m)
5005 unsigned long total = 0;
5007 if (!hugepages_supported())
5010 for_each_hstate(h) {
5011 unsigned long count = h->nr_huge_pages;
5013 total += huge_page_size(h) * count;
5015 if (h == &default_hstate)
5017 "HugePages_Total: %5lu\n"
5018 "HugePages_Free: %5lu\n"
5019 "HugePages_Rsvd: %5lu\n"
5020 "HugePages_Surp: %5lu\n"
5021 "Hugepagesize: %8lu kB\n",
5025 h->surplus_huge_pages,
5026 huge_page_size(h) / SZ_1K);
5029 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
5032 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5034 struct hstate *h = &default_hstate;
5036 if (!hugepages_supported())
5039 return sysfs_emit_at(buf, len,
5040 "Node %d HugePages_Total: %5u\n"
5041 "Node %d HugePages_Free: %5u\n"
5042 "Node %d HugePages_Surp: %5u\n",
5043 nid, h->nr_huge_pages_node[nid],
5044 nid, h->free_huge_pages_node[nid],
5045 nid, h->surplus_huge_pages_node[nid]);
5048 void hugetlb_show_meminfo_node(int nid)
5052 if (!hugepages_supported())
5056 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5058 h->nr_huge_pages_node[nid],
5059 h->free_huge_pages_node[nid],
5060 h->surplus_huge_pages_node[nid],
5061 huge_page_size(h) / SZ_1K);
5064 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5066 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5067 K(atomic_long_read(&mm->hugetlb_usage)));
5070 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5071 unsigned long hugetlb_total_pages(void)
5074 unsigned long nr_total_pages = 0;
5077 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5078 return nr_total_pages;
5081 static int hugetlb_acct_memory(struct hstate *h, long delta)
5088 spin_lock_irq(&hugetlb_lock);
5090 * When cpuset is configured, it breaks the strict hugetlb page
5091 * reservation as the accounting is done on a global variable. Such
5092 * reservation is completely rubbish in the presence of cpuset because
5093 * the reservation is not checked against page availability for the
5094 * current cpuset. Application can still potentially OOM'ed by kernel
5095 * with lack of free htlb page in cpuset that the task is in.
5096 * Attempt to enforce strict accounting with cpuset is almost
5097 * impossible (or too ugly) because cpuset is too fluid that
5098 * task or memory node can be dynamically moved between cpusets.
5100 * The change of semantics for shared hugetlb mapping with cpuset is
5101 * undesirable. However, in order to preserve some of the semantics,
5102 * we fall back to check against current free page availability as
5103 * a best attempt and hopefully to minimize the impact of changing
5104 * semantics that cpuset has.
5106 * Apart from cpuset, we also have memory policy mechanism that
5107 * also determines from which node the kernel will allocate memory
5108 * in a NUMA system. So similar to cpuset, we also should consider
5109 * the memory policy of the current task. Similar to the description
5113 if (gather_surplus_pages(h, delta) < 0)
5116 if (delta > allowed_mems_nr(h)) {
5117 return_unused_surplus_pages(h, delta);
5124 return_unused_surplus_pages(h, (unsigned long) -delta);
5127 spin_unlock_irq(&hugetlb_lock);
5131 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5133 struct resv_map *resv = vma_resv_map(vma);
5136 * HPAGE_RESV_OWNER indicates a private mapping.
5137 * This new VMA should share its siblings reservation map if present.
5138 * The VMA will only ever have a valid reservation map pointer where
5139 * it is being copied for another still existing VMA. As that VMA
5140 * has a reference to the reservation map it cannot disappear until
5141 * after this open call completes. It is therefore safe to take a
5142 * new reference here without additional locking.
5144 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5145 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5146 kref_get(&resv->refs);
5150 * vma_lock structure for sharable mappings is vma specific.
5151 * Clear old pointer (if copied via vm_area_dup) and allocate
5152 * new structure. Before clearing, make sure vma_lock is not
5155 if (vma->vm_flags & VM_MAYSHARE) {
5156 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5159 if (vma_lock->vma != vma) {
5160 vma->vm_private_data = NULL;
5161 hugetlb_vma_lock_alloc(vma);
5163 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5165 hugetlb_vma_lock_alloc(vma);
5169 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5171 struct hstate *h = hstate_vma(vma);
5172 struct resv_map *resv;
5173 struct hugepage_subpool *spool = subpool_vma(vma);
5174 unsigned long reserve, start, end;
5177 hugetlb_vma_lock_free(vma);
5179 resv = vma_resv_map(vma);
5180 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5183 start = vma_hugecache_offset(h, vma, vma->vm_start);
5184 end = vma_hugecache_offset(h, vma, vma->vm_end);
5186 reserve = (end - start) - region_count(resv, start, end);
5187 hugetlb_cgroup_uncharge_counter(resv, start, end);
5190 * Decrement reserve counts. The global reserve count may be
5191 * adjusted if the subpool has a minimum size.
5193 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5194 hugetlb_acct_memory(h, -gbl_reserve);
5197 kref_put(&resv->refs, resv_map_release);
5200 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5202 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5206 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5207 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5208 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5210 if (addr & ~PUD_MASK) {
5212 * hugetlb_vm_op_split is called right before we attempt to
5213 * split the VMA. We will need to unshare PMDs in the old and
5214 * new VMAs, so let's unshare before we split.
5216 unsigned long floor = addr & PUD_MASK;
5217 unsigned long ceil = floor + PUD_SIZE;
5219 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5220 hugetlb_unshare_pmds(vma, floor, ceil);
5226 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5228 return huge_page_size(hstate_vma(vma));
5232 * We cannot handle pagefaults against hugetlb pages at all. They cause
5233 * handle_mm_fault() to try to instantiate regular-sized pages in the
5234 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5237 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5244 * When a new function is introduced to vm_operations_struct and added
5245 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5246 * This is because under System V memory model, mappings created via
5247 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5248 * their original vm_ops are overwritten with shm_vm_ops.
5250 const struct vm_operations_struct hugetlb_vm_ops = {
5251 .fault = hugetlb_vm_op_fault,
5252 .open = hugetlb_vm_op_open,
5253 .close = hugetlb_vm_op_close,
5254 .may_split = hugetlb_vm_op_split,
5255 .pagesize = hugetlb_vm_op_pagesize,
5258 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5262 unsigned int shift = huge_page_shift(hstate_vma(vma));
5265 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5266 vma->vm_page_prot)));
5268 entry = huge_pte_wrprotect(mk_huge_pte(page,
5269 vma->vm_page_prot));
5271 entry = pte_mkyoung(entry);
5272 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5277 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5278 unsigned long address, pte_t *ptep)
5282 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5283 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5284 update_mmu_cache(vma, address, ptep);
5287 bool is_hugetlb_entry_migration(pte_t pte)
5291 if (huge_pte_none(pte) || pte_present(pte))
5293 swp = pte_to_swp_entry(pte);
5294 if (is_migration_entry(swp))
5300 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5304 if (huge_pte_none(pte) || pte_present(pte))
5306 swp = pte_to_swp_entry(pte);
5307 if (is_hwpoison_entry(swp))
5314 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5315 struct folio *new_folio, pte_t old, unsigned long sz)
5317 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5319 __folio_mark_uptodate(new_folio);
5320 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5321 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5322 newpte = huge_pte_mkuffd_wp(newpte);
5323 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5324 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5325 folio_set_hugetlb_migratable(new_folio);
5328 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5329 struct vm_area_struct *dst_vma,
5330 struct vm_area_struct *src_vma)
5332 pte_t *src_pte, *dst_pte, entry;
5333 struct folio *pte_folio;
5335 bool cow = is_cow_mapping(src_vma->vm_flags);
5336 struct hstate *h = hstate_vma(src_vma);
5337 unsigned long sz = huge_page_size(h);
5338 unsigned long npages = pages_per_huge_page(h);
5339 struct mmu_notifier_range range;
5340 unsigned long last_addr_mask;
5344 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5347 mmu_notifier_invalidate_range_start(&range);
5348 vma_assert_write_locked(src_vma);
5349 raw_write_seqcount_begin(&src->write_protect_seq);
5352 * For shared mappings the vma lock must be held before
5353 * calling hugetlb_walk() in the src vma. Otherwise, the
5354 * returned ptep could go away if part of a shared pmd and
5355 * another thread calls huge_pmd_unshare.
5357 hugetlb_vma_lock_read(src_vma);
5360 last_addr_mask = hugetlb_mask_last_page(h);
5361 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5362 spinlock_t *src_ptl, *dst_ptl;
5363 src_pte = hugetlb_walk(src_vma, addr, sz);
5365 addr |= last_addr_mask;
5368 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5375 * If the pagetables are shared don't copy or take references.
5377 * dst_pte == src_pte is the common case of src/dest sharing.
5378 * However, src could have 'unshared' and dst shares with
5379 * another vma. So page_count of ptep page is checked instead
5380 * to reliably determine whether pte is shared.
5382 if (page_count(virt_to_page(dst_pte)) > 1) {
5383 addr |= last_addr_mask;
5387 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5388 src_ptl = huge_pte_lockptr(h, src, src_pte);
5389 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5390 entry = huge_ptep_get(src_pte);
5392 if (huge_pte_none(entry)) {
5394 * Skip if src entry none.
5397 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5398 if (!userfaultfd_wp(dst_vma))
5399 entry = huge_pte_clear_uffd_wp(entry);
5400 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5401 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5402 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5403 bool uffd_wp = pte_swp_uffd_wp(entry);
5405 if (!is_readable_migration_entry(swp_entry) && cow) {
5407 * COW mappings require pages in both
5408 * parent and child to be set to read.
5410 swp_entry = make_readable_migration_entry(
5411 swp_offset(swp_entry));
5412 entry = swp_entry_to_pte(swp_entry);
5413 if (userfaultfd_wp(src_vma) && uffd_wp)
5414 entry = pte_swp_mkuffd_wp(entry);
5415 set_huge_pte_at(src, addr, src_pte, entry, sz);
5417 if (!userfaultfd_wp(dst_vma))
5418 entry = huge_pte_clear_uffd_wp(entry);
5419 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5420 } else if (unlikely(is_pte_marker(entry))) {
5421 pte_marker marker = copy_pte_marker(
5422 pte_to_swp_entry(entry), dst_vma);
5425 set_huge_pte_at(dst, addr, dst_pte,
5426 make_pte_marker(marker), sz);
5428 entry = huge_ptep_get(src_pte);
5429 pte_folio = page_folio(pte_page(entry));
5430 folio_get(pte_folio);
5433 * Failing to duplicate the anon rmap is a rare case
5434 * where we see pinned hugetlb pages while they're
5435 * prone to COW. We need to do the COW earlier during
5438 * When pre-allocating the page or copying data, we
5439 * need to be without the pgtable locks since we could
5440 * sleep during the process.
5442 if (!folio_test_anon(pte_folio)) {
5443 hugetlb_add_file_rmap(pte_folio);
5444 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5445 pte_t src_pte_old = entry;
5446 struct folio *new_folio;
5448 spin_unlock(src_ptl);
5449 spin_unlock(dst_ptl);
5450 /* Do not use reserve as it's private owned */
5451 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5452 if (IS_ERR(new_folio)) {
5453 folio_put(pte_folio);
5454 ret = PTR_ERR(new_folio);
5457 ret = copy_user_large_folio(new_folio,
5460 folio_put(pte_folio);
5462 folio_put(new_folio);
5466 /* Install the new hugetlb folio if src pte stable */
5467 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5468 src_ptl = huge_pte_lockptr(h, src, src_pte);
5469 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5470 entry = huge_ptep_get(src_pte);
5471 if (!pte_same(src_pte_old, entry)) {
5472 restore_reserve_on_error(h, dst_vma, addr,
5474 folio_put(new_folio);
5475 /* huge_ptep of dst_pte won't change as in child */
5478 hugetlb_install_folio(dst_vma, dst_pte, addr,
5479 new_folio, src_pte_old, sz);
5480 spin_unlock(src_ptl);
5481 spin_unlock(dst_ptl);
5487 * No need to notify as we are downgrading page
5488 * table protection not changing it to point
5491 * See Documentation/mm/mmu_notifier.rst
5493 huge_ptep_set_wrprotect(src, addr, src_pte);
5494 entry = huge_pte_wrprotect(entry);
5497 if (!userfaultfd_wp(dst_vma))
5498 entry = huge_pte_clear_uffd_wp(entry);
5500 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5501 hugetlb_count_add(npages, dst);
5503 spin_unlock(src_ptl);
5504 spin_unlock(dst_ptl);
5508 raw_write_seqcount_end(&src->write_protect_seq);
5509 mmu_notifier_invalidate_range_end(&range);
5511 hugetlb_vma_unlock_read(src_vma);
5517 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5518 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5521 struct hstate *h = hstate_vma(vma);
5522 struct mm_struct *mm = vma->vm_mm;
5523 spinlock_t *src_ptl, *dst_ptl;
5526 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5527 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5530 * We don't have to worry about the ordering of src and dst ptlocks
5531 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5533 if (src_ptl != dst_ptl)
5534 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5536 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5537 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5539 if (src_ptl != dst_ptl)
5540 spin_unlock(src_ptl);
5541 spin_unlock(dst_ptl);
5544 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5545 struct vm_area_struct *new_vma,
5546 unsigned long old_addr, unsigned long new_addr,
5549 struct hstate *h = hstate_vma(vma);
5550 struct address_space *mapping = vma->vm_file->f_mapping;
5551 unsigned long sz = huge_page_size(h);
5552 struct mm_struct *mm = vma->vm_mm;
5553 unsigned long old_end = old_addr + len;
5554 unsigned long last_addr_mask;
5555 pte_t *src_pte, *dst_pte;
5556 struct mmu_notifier_range range;
5557 bool shared_pmd = false;
5559 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5561 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5563 * In case of shared PMDs, we should cover the maximum possible
5566 flush_cache_range(vma, range.start, range.end);
5568 mmu_notifier_invalidate_range_start(&range);
5569 last_addr_mask = hugetlb_mask_last_page(h);
5570 /* Prevent race with file truncation */
5571 hugetlb_vma_lock_write(vma);
5572 i_mmap_lock_write(mapping);
5573 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5574 src_pte = hugetlb_walk(vma, old_addr, sz);
5576 old_addr |= last_addr_mask;
5577 new_addr |= last_addr_mask;
5580 if (huge_pte_none(huge_ptep_get(src_pte)))
5583 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5585 old_addr |= last_addr_mask;
5586 new_addr |= last_addr_mask;
5590 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5594 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5598 flush_hugetlb_tlb_range(vma, range.start, range.end);
5600 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5601 mmu_notifier_invalidate_range_end(&range);
5602 i_mmap_unlock_write(mapping);
5603 hugetlb_vma_unlock_write(vma);
5605 return len + old_addr - old_end;
5608 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5609 unsigned long start, unsigned long end,
5610 struct page *ref_page, zap_flags_t zap_flags)
5612 struct mm_struct *mm = vma->vm_mm;
5613 unsigned long address;
5618 struct hstate *h = hstate_vma(vma);
5619 unsigned long sz = huge_page_size(h);
5620 bool adjust_reservation = false;
5621 unsigned long last_addr_mask;
5622 bool force_flush = false;
5624 WARN_ON(!is_vm_hugetlb_page(vma));
5625 BUG_ON(start & ~huge_page_mask(h));
5626 BUG_ON(end & ~huge_page_mask(h));
5629 * This is a hugetlb vma, all the pte entries should point
5632 tlb_change_page_size(tlb, sz);
5633 tlb_start_vma(tlb, vma);
5635 last_addr_mask = hugetlb_mask_last_page(h);
5637 for (; address < end; address += sz) {
5638 ptep = hugetlb_walk(vma, address, sz);
5640 address |= last_addr_mask;
5644 ptl = huge_pte_lock(h, mm, ptep);
5645 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5647 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5649 address |= last_addr_mask;
5653 pte = huge_ptep_get(ptep);
5654 if (huge_pte_none(pte)) {
5660 * Migrating hugepage or HWPoisoned hugepage is already
5661 * unmapped and its refcount is dropped, so just clear pte here.
5663 if (unlikely(!pte_present(pte))) {
5665 * If the pte was wr-protected by uffd-wp in any of the
5666 * swap forms, meanwhile the caller does not want to
5667 * drop the uffd-wp bit in this zap, then replace the
5668 * pte with a marker.
5670 if (pte_swp_uffd_wp_any(pte) &&
5671 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5672 set_huge_pte_at(mm, address, ptep,
5673 make_pte_marker(PTE_MARKER_UFFD_WP),
5676 huge_pte_clear(mm, address, ptep, sz);
5681 page = pte_page(pte);
5683 * If a reference page is supplied, it is because a specific
5684 * page is being unmapped, not a range. Ensure the page we
5685 * are about to unmap is the actual page of interest.
5688 if (page != ref_page) {
5693 * Mark the VMA as having unmapped its page so that
5694 * future faults in this VMA will fail rather than
5695 * looking like data was lost
5697 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5700 pte = huge_ptep_get_and_clear(mm, address, ptep);
5701 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5702 if (huge_pte_dirty(pte))
5703 set_page_dirty(page);
5704 /* Leave a uffd-wp pte marker if needed */
5705 if (huge_pte_uffd_wp(pte) &&
5706 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5707 set_huge_pte_at(mm, address, ptep,
5708 make_pte_marker(PTE_MARKER_UFFD_WP),
5710 hugetlb_count_sub(pages_per_huge_page(h), mm);
5711 hugetlb_remove_rmap(page_folio(page));
5714 * Restore the reservation for anonymous page, otherwise the
5715 * backing page could be stolen by someone.
5716 * If there we are freeing a surplus, do not set the restore
5719 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5720 folio_test_anon(page_folio(page))) {
5721 folio_set_hugetlb_restore_reserve(page_folio(page));
5722 /* Reservation to be adjusted after the spin lock */
5723 adjust_reservation = true;
5729 * Adjust the reservation for the region that will have the
5730 * reserve restored. Keep in mind that vma_needs_reservation() changes
5731 * resv->adds_in_progress if it succeeds. If this is not done,
5732 * do_exit() will not see it, and will keep the reservation
5735 if (adjust_reservation) {
5736 int rc = vma_needs_reservation(h, vma, address);
5739 /* Pressumably allocate_file_region_entries failed
5740 * to allocate a file_region struct. Clear
5741 * hugetlb_restore_reserve so that global reserve
5742 * count will not be incremented by free_huge_folio.
5743 * Act as if we consumed the reservation.
5745 folio_clear_hugetlb_restore_reserve(page_folio(page));
5747 vma_add_reservation(h, vma, address);
5750 tlb_remove_page_size(tlb, page, huge_page_size(h));
5752 * Bail out after unmapping reference page if supplied
5757 tlb_end_vma(tlb, vma);
5760 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5761 * could defer the flush until now, since by holding i_mmap_rwsem we
5762 * guaranteed that the last refernece would not be dropped. But we must
5763 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5764 * dropped and the last reference to the shared PMDs page might be
5767 * In theory we could defer the freeing of the PMD pages as well, but
5768 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5769 * detect sharing, so we cannot defer the release of the page either.
5770 * Instead, do flush now.
5773 tlb_flush_mmu_tlbonly(tlb);
5776 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5777 unsigned long *start, unsigned long *end)
5779 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5782 adjust_range_if_pmd_sharing_possible(vma, start, end);
5783 hugetlb_vma_lock_write(vma);
5785 i_mmap_lock_write(vma->vm_file->f_mapping);
5788 void __hugetlb_zap_end(struct vm_area_struct *vma,
5789 struct zap_details *details)
5791 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5793 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5796 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5798 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5799 * When the vma_lock is freed, this makes the vma ineligible
5800 * for pmd sharing. And, i_mmap_rwsem is required to set up
5801 * pmd sharing. This is important as page tables for this
5802 * unmapped range will be asynchrously deleted. If the page
5803 * tables are shared, there will be issues when accessed by
5806 __hugetlb_vma_unlock_write_free(vma);
5808 hugetlb_vma_unlock_write(vma);
5812 i_mmap_unlock_write(vma->vm_file->f_mapping);
5815 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5816 unsigned long end, struct page *ref_page,
5817 zap_flags_t zap_flags)
5819 struct mmu_notifier_range range;
5820 struct mmu_gather tlb;
5822 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5824 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5825 mmu_notifier_invalidate_range_start(&range);
5826 tlb_gather_mmu(&tlb, vma->vm_mm);
5828 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5830 mmu_notifier_invalidate_range_end(&range);
5831 tlb_finish_mmu(&tlb);
5835 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5836 * mapping it owns the reserve page for. The intention is to unmap the page
5837 * from other VMAs and let the children be SIGKILLed if they are faulting the
5840 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5841 struct page *page, unsigned long address)
5843 struct hstate *h = hstate_vma(vma);
5844 struct vm_area_struct *iter_vma;
5845 struct address_space *mapping;
5849 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5850 * from page cache lookup which is in HPAGE_SIZE units.
5852 address = address & huge_page_mask(h);
5853 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5855 mapping = vma->vm_file->f_mapping;
5858 * Take the mapping lock for the duration of the table walk. As
5859 * this mapping should be shared between all the VMAs,
5860 * __unmap_hugepage_range() is called as the lock is already held
5862 i_mmap_lock_write(mapping);
5863 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5864 /* Do not unmap the current VMA */
5865 if (iter_vma == vma)
5869 * Shared VMAs have their own reserves and do not affect
5870 * MAP_PRIVATE accounting but it is possible that a shared
5871 * VMA is using the same page so check and skip such VMAs.
5873 if (iter_vma->vm_flags & VM_MAYSHARE)
5877 * Unmap the page from other VMAs without their own reserves.
5878 * They get marked to be SIGKILLed if they fault in these
5879 * areas. This is because a future no-page fault on this VMA
5880 * could insert a zeroed page instead of the data existing
5881 * from the time of fork. This would look like data corruption
5883 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5884 unmap_hugepage_range(iter_vma, address,
5885 address + huge_page_size(h), page, 0);
5887 i_mmap_unlock_write(mapping);
5891 * hugetlb_wp() should be called with page lock of the original hugepage held.
5892 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5893 * cannot race with other handlers or page migration.
5894 * Keep the pte_same checks anyway to make transition from the mutex easier.
5896 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5897 struct vm_fault *vmf)
5899 struct vm_area_struct *vma = vmf->vma;
5900 struct mm_struct *mm = vma->vm_mm;
5901 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5902 pte_t pte = huge_ptep_get(vmf->pte);
5903 struct hstate *h = hstate_vma(vma);
5904 struct folio *old_folio;
5905 struct folio *new_folio;
5906 int outside_reserve = 0;
5908 struct mmu_notifier_range range;
5911 * Never handle CoW for uffd-wp protected pages. It should be only
5912 * handled when the uffd-wp protection is removed.
5914 * Note that only the CoW optimization path (in hugetlb_no_page())
5915 * can trigger this, because hugetlb_fault() will always resolve
5916 * uffd-wp bit first.
5918 if (!unshare && huge_pte_uffd_wp(pte))
5922 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5923 * PTE mapped R/O such as maybe_mkwrite() would do.
5925 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5926 return VM_FAULT_SIGSEGV;
5928 /* Let's take out MAP_SHARED mappings first. */
5929 if (vma->vm_flags & VM_MAYSHARE) {
5930 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5934 old_folio = page_folio(pte_page(pte));
5936 delayacct_wpcopy_start();
5940 * If no-one else is actually using this page, we're the exclusive
5941 * owner and can reuse this page.
5943 * Note that we don't rely on the (safer) folio refcount here, because
5944 * copying the hugetlb folio when there are unexpected (temporary)
5945 * folio references could harm simple fork()+exit() users when
5946 * we run out of free hugetlb folios: we would have to kill processes
5947 * in scenarios that used to work. As a side effect, there can still
5948 * be leaks between processes, for example, with FOLL_GET users.
5950 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5951 if (!PageAnonExclusive(&old_folio->page)) {
5952 folio_move_anon_rmap(old_folio, vma);
5953 SetPageAnonExclusive(&old_folio->page);
5955 if (likely(!unshare))
5956 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5958 delayacct_wpcopy_end();
5961 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5962 PageAnonExclusive(&old_folio->page), &old_folio->page);
5965 * If the process that created a MAP_PRIVATE mapping is about to
5966 * perform a COW due to a shared page count, attempt to satisfy
5967 * the allocation without using the existing reserves. The pagecache
5968 * page is used to determine if the reserve at this address was
5969 * consumed or not. If reserves were used, a partial faulted mapping
5970 * at the time of fork() could consume its reserves on COW instead
5971 * of the full address range.
5973 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5974 old_folio != pagecache_folio)
5975 outside_reserve = 1;
5977 folio_get(old_folio);
5980 * Drop page table lock as buddy allocator may be called. It will
5981 * be acquired again before returning to the caller, as expected.
5983 spin_unlock(vmf->ptl);
5984 new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
5986 if (IS_ERR(new_folio)) {
5988 * If a process owning a MAP_PRIVATE mapping fails to COW,
5989 * it is due to references held by a child and an insufficient
5990 * huge page pool. To guarantee the original mappers
5991 * reliability, unmap the page from child processes. The child
5992 * may get SIGKILLed if it later faults.
5994 if (outside_reserve) {
5995 struct address_space *mapping = vma->vm_file->f_mapping;
5999 folio_put(old_folio);
6001 * Drop hugetlb_fault_mutex and vma_lock before
6002 * unmapping. unmapping needs to hold vma_lock
6003 * in write mode. Dropping vma_lock in read mode
6004 * here is OK as COW mappings do not interact with
6007 * Reacquire both after unmap operation.
6009 idx = vma_hugecache_offset(h, vma, vmf->address);
6010 hash = hugetlb_fault_mutex_hash(mapping, idx);
6011 hugetlb_vma_unlock_read(vma);
6012 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6014 unmap_ref_private(mm, vma, &old_folio->page,
6017 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6018 hugetlb_vma_lock_read(vma);
6019 spin_lock(vmf->ptl);
6020 vmf->pte = hugetlb_walk(vma, vmf->address,
6022 if (likely(vmf->pte &&
6023 pte_same(huge_ptep_get(vmf->pte), pte)))
6024 goto retry_avoidcopy;
6026 * race occurs while re-acquiring page table
6027 * lock, and our job is done.
6029 delayacct_wpcopy_end();
6033 ret = vmf_error(PTR_ERR(new_folio));
6034 goto out_release_old;
6038 * When the original hugepage is shared one, it does not have
6039 * anon_vma prepared.
6041 ret = vmf_anon_prepare(vmf);
6043 goto out_release_all;
6045 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6046 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6047 goto out_release_all;
6049 __folio_mark_uptodate(new_folio);
6051 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6052 vmf->address + huge_page_size(h));
6053 mmu_notifier_invalidate_range_start(&range);
6056 * Retake the page table lock to check for racing updates
6057 * before the page tables are altered
6059 spin_lock(vmf->ptl);
6060 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6061 if (likely(vmf->pte && pte_same(huge_ptep_get(vmf->pte), pte))) {
6062 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6064 /* Break COW or unshare */
6065 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6066 hugetlb_remove_rmap(old_folio);
6067 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6068 if (huge_pte_uffd_wp(pte))
6069 newpte = huge_pte_mkuffd_wp(newpte);
6070 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6072 folio_set_hugetlb_migratable(new_folio);
6073 /* Make the old page be freed below */
6074 new_folio = old_folio;
6076 spin_unlock(vmf->ptl);
6077 mmu_notifier_invalidate_range_end(&range);
6080 * No restore in case of successful pagetable update (Break COW or
6083 if (new_folio != old_folio)
6084 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6085 folio_put(new_folio);
6087 folio_put(old_folio);
6089 spin_lock(vmf->ptl); /* Caller expects lock to be held */
6091 delayacct_wpcopy_end();
6096 * Return whether there is a pagecache page to back given address within VMA.
6098 bool hugetlbfs_pagecache_present(struct hstate *h,
6099 struct vm_area_struct *vma, unsigned long address)
6101 struct address_space *mapping = vma->vm_file->f_mapping;
6102 pgoff_t idx = linear_page_index(vma, address);
6103 struct folio *folio;
6105 folio = filemap_get_folio(mapping, idx);
6112 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6115 struct inode *inode = mapping->host;
6116 struct hstate *h = hstate_inode(inode);
6119 idx <<= huge_page_order(h);
6120 __folio_set_locked(folio);
6121 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6123 if (unlikely(err)) {
6124 __folio_clear_locked(folio);
6127 folio_clear_hugetlb_restore_reserve(folio);
6130 * mark folio dirty so that it will not be removed from cache/file
6131 * by non-hugetlbfs specific code paths.
6133 folio_mark_dirty(folio);
6135 spin_lock(&inode->i_lock);
6136 inode->i_blocks += blocks_per_huge_page(h);
6137 spin_unlock(&inode->i_lock);
6141 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6142 struct address_space *mapping,
6143 unsigned long reason)
6148 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6149 * userfault. Also mmap_lock could be dropped due to handling
6150 * userfault, any vma operation should be careful from here.
6152 hugetlb_vma_unlock_read(vmf->vma);
6153 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6154 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6155 return handle_userfault(vmf, reason);
6159 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6160 * false if pte changed or is changing.
6162 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6163 pte_t *ptep, pte_t old_pte)
6168 ptl = huge_pte_lock(h, mm, ptep);
6169 same = pte_same(huge_ptep_get(ptep), old_pte);
6175 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6176 struct vm_fault *vmf)
6178 struct vm_area_struct *vma = vmf->vma;
6179 struct mm_struct *mm = vma->vm_mm;
6180 struct hstate *h = hstate_vma(vma);
6181 vm_fault_t ret = VM_FAULT_SIGBUS;
6184 struct folio *folio;
6186 bool new_folio, new_pagecache_folio = false;
6187 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6190 * Currently, we are forced to kill the process in the event the
6191 * original mapper has unmapped pages from the child due to a failed
6192 * COW/unsharing. Warn that such a situation has occurred as it may not
6195 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6196 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6202 * Use page lock to guard against racing truncation
6203 * before we get page_table_lock.
6206 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6207 if (IS_ERR(folio)) {
6208 size = i_size_read(mapping->host) >> huge_page_shift(h);
6209 if (vmf->pgoff >= size)
6211 /* Check for page in userfault range */
6212 if (userfaultfd_missing(vma)) {
6214 * Since hugetlb_no_page() was examining pte
6215 * without pgtable lock, we need to re-test under
6216 * lock because the pte may not be stable and could
6217 * have changed from under us. Try to detect
6218 * either changed or during-changing ptes and retry
6219 * properly when needed.
6221 * Note that userfaultfd is actually fine with
6222 * false positives (e.g. caused by pte changed),
6223 * but not wrong logical events (e.g. caused by
6224 * reading a pte during changing). The latter can
6225 * confuse the userspace, so the strictness is very
6226 * much preferred. E.g., MISSING event should
6227 * never happen on the page after UFFDIO_COPY has
6228 * correctly installed the page and returned.
6230 if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) {
6235 return hugetlb_handle_userfault(vmf, mapping,
6239 if (!(vma->vm_flags & VM_MAYSHARE)) {
6240 ret = vmf_anon_prepare(vmf);
6245 folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6246 if (IS_ERR(folio)) {
6248 * Returning error will result in faulting task being
6249 * sent SIGBUS. The hugetlb fault mutex prevents two
6250 * tasks from racing to fault in the same page which
6251 * could result in false unable to allocate errors.
6252 * Page migration does not take the fault mutex, but
6253 * does a clear then write of pte's under page table
6254 * lock. Page fault code could race with migration,
6255 * notice the clear pte and try to allocate a page
6256 * here. Before returning error, get ptl and make
6257 * sure there really is no pte entry.
6259 if (hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte))
6260 ret = vmf_error(PTR_ERR(folio));
6265 clear_huge_page(&folio->page, vmf->real_address,
6266 pages_per_huge_page(h));
6267 __folio_mark_uptodate(folio);
6270 if (vma->vm_flags & VM_MAYSHARE) {
6271 int err = hugetlb_add_to_page_cache(folio, mapping,
6275 * err can't be -EEXIST which implies someone
6276 * else consumed the reservation since hugetlb
6277 * fault mutex is held when add a hugetlb page
6278 * to the page cache. So it's safe to call
6279 * restore_reserve_on_error() here.
6281 restore_reserve_on_error(h, vma, vmf->address,
6284 ret = VM_FAULT_SIGBUS;
6287 new_pagecache_folio = true;
6294 * If memory error occurs between mmap() and fault, some process
6295 * don't have hwpoisoned swap entry for errored virtual address.
6296 * So we need to block hugepage fault by PG_hwpoison bit check.
6298 if (unlikely(folio_test_hwpoison(folio))) {
6299 ret = VM_FAULT_HWPOISON_LARGE |
6300 VM_FAULT_SET_HINDEX(hstate_index(h));
6301 goto backout_unlocked;
6304 /* Check for page in userfault range. */
6305 if (userfaultfd_minor(vma)) {
6306 folio_unlock(folio);
6308 /* See comment in userfaultfd_missing() block above */
6309 if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) {
6313 return hugetlb_handle_userfault(vmf, mapping,
6319 * If we are going to COW a private mapping later, we examine the
6320 * pending reservations for this page now. This will ensure that
6321 * any allocations necessary to record that reservation occur outside
6324 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6325 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6327 goto backout_unlocked;
6329 /* Just decrements count, does not deallocate */
6330 vma_end_reservation(h, vma, vmf->address);
6333 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6335 /* If pte changed from under us, retry */
6336 if (!pte_same(huge_ptep_get(vmf->pte), vmf->orig_pte))
6340 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6342 hugetlb_add_file_rmap(folio);
6343 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6344 && (vma->vm_flags & VM_SHARED)));
6346 * If this pte was previously wr-protected, keep it wr-protected even
6349 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6350 new_pte = huge_pte_mkuffd_wp(new_pte);
6351 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6353 hugetlb_count_add(pages_per_huge_page(h), mm);
6354 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6355 /* Optimization, do the COW without a second fault */
6356 ret = hugetlb_wp(folio, vmf);
6359 spin_unlock(vmf->ptl);
6362 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6363 * found in the pagecache may not have hugetlb_migratable if they have
6364 * been isolated for migration.
6367 folio_set_hugetlb_migratable(folio);
6369 folio_unlock(folio);
6371 hugetlb_vma_unlock_read(vma);
6372 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6376 spin_unlock(vmf->ptl);
6378 if (new_folio && !new_pagecache_folio)
6379 restore_reserve_on_error(h, vma, vmf->address, folio);
6381 folio_unlock(folio);
6387 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6389 unsigned long key[2];
6392 key[0] = (unsigned long) mapping;
6395 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6397 return hash & (num_fault_mutexes - 1);
6401 * For uniprocessor systems we always use a single mutex, so just
6402 * return 0 and avoid the hashing overhead.
6404 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6410 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6411 unsigned long address, unsigned int flags)
6415 struct folio *folio = NULL;
6416 struct folio *pagecache_folio = NULL;
6417 struct hstate *h = hstate_vma(vma);
6418 struct address_space *mapping;
6419 int need_wait_lock = 0;
6420 struct vm_fault vmf = {
6422 .address = address & huge_page_mask(h),
6423 .real_address = address,
6425 .pgoff = vma_hugecache_offset(h, vma,
6426 address & huge_page_mask(h)),
6427 /* TODO: Track hugetlb faults using vm_fault */
6430 * Some fields may not be initialized, be careful as it may
6431 * be hard to debug if called functions make assumptions
6436 * Serialize hugepage allocation and instantiation, so that we don't
6437 * get spurious allocation failures if two CPUs race to instantiate
6438 * the same page in the page cache.
6440 mapping = vma->vm_file->f_mapping;
6441 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6442 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6445 * Acquire vma lock before calling huge_pte_alloc and hold
6446 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6447 * being called elsewhere and making the vmf.pte no longer valid.
6449 hugetlb_vma_lock_read(vma);
6450 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6452 hugetlb_vma_unlock_read(vma);
6453 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6454 return VM_FAULT_OOM;
6457 vmf.orig_pte = huge_ptep_get(vmf.pte);
6458 if (huge_pte_none_mostly(vmf.orig_pte)) {
6459 if (is_pte_marker(vmf.orig_pte)) {
6461 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6463 if (marker & PTE_MARKER_POISONED) {
6464 ret = VM_FAULT_HWPOISON_LARGE |
6465 VM_FAULT_SET_HINDEX(hstate_index(h));
6471 * Other PTE markers should be handled the same way as none PTE.
6473 * hugetlb_no_page will drop vma lock and hugetlb fault
6474 * mutex internally, which make us return immediately.
6476 return hugetlb_no_page(mapping, &vmf);
6482 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6483 * point, so this check prevents the kernel from going below assuming
6484 * that we have an active hugepage in pagecache. This goto expects
6485 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6486 * check will properly handle it.
6488 if (!pte_present(vmf.orig_pte)) {
6489 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6491 * Release the hugetlb fault lock now, but retain
6492 * the vma lock, because it is needed to guard the
6493 * huge_pte_lockptr() later in
6494 * migration_entry_wait_huge(). The vma lock will
6495 * be released there.
6497 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6498 migration_entry_wait_huge(vma, vmf.pte);
6500 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6501 ret = VM_FAULT_HWPOISON_LARGE |
6502 VM_FAULT_SET_HINDEX(hstate_index(h));
6507 * If we are going to COW/unshare the mapping later, we examine the
6508 * pending reservations for this page now. This will ensure that any
6509 * allocations necessary to record that reservation occur outside the
6510 * spinlock. Also lookup the pagecache page now as it is used to
6511 * determine if a reservation has been consumed.
6513 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6514 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6515 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6519 /* Just decrements count, does not deallocate */
6520 vma_end_reservation(h, vma, vmf.address);
6522 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6524 if (IS_ERR(pagecache_folio))
6525 pagecache_folio = NULL;
6528 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6530 /* Check for a racing update before calling hugetlb_wp() */
6531 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(vmf.pte))))
6534 /* Handle userfault-wp first, before trying to lock more pages */
6535 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(vmf.pte)) &&
6536 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6537 if (!userfaultfd_wp_async(vma)) {
6538 spin_unlock(vmf.ptl);
6539 if (pagecache_folio) {
6540 folio_unlock(pagecache_folio);
6541 folio_put(pagecache_folio);
6543 hugetlb_vma_unlock_read(vma);
6544 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6545 return handle_userfault(&vmf, VM_UFFD_WP);
6548 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6549 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6550 huge_page_size(hstate_vma(vma)));
6551 /* Fallthrough to CoW */
6555 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6556 * pagecache_folio, so here we need take the former one
6557 * when folio != pagecache_folio or !pagecache_folio.
6559 folio = page_folio(pte_page(vmf.orig_pte));
6560 if (folio != pagecache_folio)
6561 if (!folio_trylock(folio)) {
6568 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6569 if (!huge_pte_write(vmf.orig_pte)) {
6570 ret = hugetlb_wp(pagecache_folio, &vmf);
6572 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6573 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6576 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6577 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6578 flags & FAULT_FLAG_WRITE))
6579 update_mmu_cache(vma, vmf.address, vmf.pte);
6581 if (folio != pagecache_folio)
6582 folio_unlock(folio);
6585 spin_unlock(vmf.ptl);
6587 if (pagecache_folio) {
6588 folio_unlock(pagecache_folio);
6589 folio_put(pagecache_folio);
6592 hugetlb_vma_unlock_read(vma);
6593 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6595 * Generally it's safe to hold refcount during waiting page lock. But
6596 * here we just wait to defer the next page fault to avoid busy loop and
6597 * the page is not used after unlocked before returning from the current
6598 * page fault. So we are safe from accessing freed page, even if we wait
6599 * here without taking refcount.
6602 folio_wait_locked(folio);
6606 #ifdef CONFIG_USERFAULTFD
6608 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6610 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6611 struct vm_area_struct *vma, unsigned long address)
6613 struct mempolicy *mpol;
6614 nodemask_t *nodemask;
6615 struct folio *folio;
6619 gfp_mask = htlb_alloc_mask(h);
6620 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6622 * This is used to allocate a temporary hugetlb to hold the copied
6623 * content, which will then be copied again to the final hugetlb
6624 * consuming a reservation. Set the alloc_fallback to false to indicate
6625 * that breaking the per-node hugetlb pool is not allowed in this case.
6627 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6628 mpol_cond_put(mpol);
6634 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6635 * with modifications for hugetlb pages.
6637 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6638 struct vm_area_struct *dst_vma,
6639 unsigned long dst_addr,
6640 unsigned long src_addr,
6642 struct folio **foliop)
6644 struct mm_struct *dst_mm = dst_vma->vm_mm;
6645 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6646 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6647 struct hstate *h = hstate_vma(dst_vma);
6648 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6649 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6651 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6655 struct folio *folio;
6657 bool folio_in_pagecache = false;
6659 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6660 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6662 /* Don't overwrite any existing PTEs (even markers) */
6663 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6668 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6669 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6672 /* No need to invalidate - it was non-present before */
6673 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6681 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6684 folio_in_pagecache = true;
6685 } else if (!*foliop) {
6686 /* If a folio already exists, then it's UFFDIO_COPY for
6687 * a non-missing case. Return -EEXIST.
6690 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6695 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6696 if (IS_ERR(folio)) {
6701 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6704 /* fallback to copy_from_user outside mmap_lock */
6705 if (unlikely(ret)) {
6707 /* Free the allocated folio which may have
6708 * consumed a reservation.
6710 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6713 /* Allocate a temporary folio to hold the copied
6716 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6722 /* Set the outparam foliop and return to the caller to
6723 * copy the contents outside the lock. Don't free the
6730 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6737 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6738 if (IS_ERR(folio)) {
6744 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6754 * If we just allocated a new page, we need a memory barrier to ensure
6755 * that preceding stores to the page become visible before the
6756 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6759 * In the case where we have not allocated a new page (is_continue),
6760 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6761 * an earlier smp_wmb() to ensure that prior stores will be visible
6762 * before the set_pte_at() write.
6765 __folio_mark_uptodate(folio);
6767 WARN_ON_ONCE(!folio_test_uptodate(folio));
6769 /* Add shared, newly allocated pages to the page cache. */
6770 if (vm_shared && !is_continue) {
6771 size = i_size_read(mapping->host) >> huge_page_shift(h);
6774 goto out_release_nounlock;
6777 * Serialization between remove_inode_hugepages() and
6778 * hugetlb_add_to_page_cache() below happens through the
6779 * hugetlb_fault_mutex_table that here must be hold by
6782 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6784 goto out_release_nounlock;
6785 folio_in_pagecache = true;
6788 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6791 if (folio_test_hwpoison(folio))
6792 goto out_release_unlock;
6795 * We allow to overwrite a pte marker: consider when both MISSING|WP
6796 * registered, we firstly wr-protect a none pte which has no page cache
6797 * page backing it, then access the page.
6800 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6801 goto out_release_unlock;
6803 if (folio_in_pagecache)
6804 hugetlb_add_file_rmap(folio);
6806 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6809 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6810 * with wp flag set, don't set pte write bit.
6812 if (wp_enabled || (is_continue && !vm_shared))
6815 writable = dst_vma->vm_flags & VM_WRITE;
6817 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6819 * Always mark UFFDIO_COPY page dirty; note that this may not be
6820 * extremely important for hugetlbfs for now since swapping is not
6821 * supported, but we should still be clear in that this page cannot be
6822 * thrown away at will, even if write bit not set.
6824 _dst_pte = huge_pte_mkdirty(_dst_pte);
6825 _dst_pte = pte_mkyoung(_dst_pte);
6828 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6830 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6832 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6834 /* No need to invalidate - it was non-present before */
6835 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6839 folio_set_hugetlb_migratable(folio);
6840 if (vm_shared || is_continue)
6841 folio_unlock(folio);
6847 if (vm_shared || is_continue)
6848 folio_unlock(folio);
6849 out_release_nounlock:
6850 if (!folio_in_pagecache)
6851 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6855 #endif /* CONFIG_USERFAULTFD */
6857 long hugetlb_change_protection(struct vm_area_struct *vma,
6858 unsigned long address, unsigned long end,
6859 pgprot_t newprot, unsigned long cp_flags)
6861 struct mm_struct *mm = vma->vm_mm;
6862 unsigned long start = address;
6865 struct hstate *h = hstate_vma(vma);
6866 long pages = 0, psize = huge_page_size(h);
6867 bool shared_pmd = false;
6868 struct mmu_notifier_range range;
6869 unsigned long last_addr_mask;
6870 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6871 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6874 * In the case of shared PMDs, the area to flush could be beyond
6875 * start/end. Set range.start/range.end to cover the maximum possible
6876 * range if PMD sharing is possible.
6878 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6880 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6882 BUG_ON(address >= end);
6883 flush_cache_range(vma, range.start, range.end);
6885 mmu_notifier_invalidate_range_start(&range);
6886 hugetlb_vma_lock_write(vma);
6887 i_mmap_lock_write(vma->vm_file->f_mapping);
6888 last_addr_mask = hugetlb_mask_last_page(h);
6889 for (; address < end; address += psize) {
6891 ptep = hugetlb_walk(vma, address, psize);
6894 address |= last_addr_mask;
6898 * Userfaultfd wr-protect requires pgtable
6899 * pre-allocations to install pte markers.
6901 ptep = huge_pte_alloc(mm, vma, address, psize);
6907 ptl = huge_pte_lock(h, mm, ptep);
6908 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6910 * When uffd-wp is enabled on the vma, unshare
6911 * shouldn't happen at all. Warn about it if it
6912 * happened due to some reason.
6914 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6918 address |= last_addr_mask;
6921 pte = huge_ptep_get(ptep);
6922 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6923 /* Nothing to do. */
6924 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6925 swp_entry_t entry = pte_to_swp_entry(pte);
6926 struct page *page = pfn_swap_entry_to_page(entry);
6929 if (is_writable_migration_entry(entry)) {
6931 entry = make_readable_exclusive_migration_entry(
6934 entry = make_readable_migration_entry(
6936 newpte = swp_entry_to_pte(entry);
6941 newpte = pte_swp_mkuffd_wp(newpte);
6942 else if (uffd_wp_resolve)
6943 newpte = pte_swp_clear_uffd_wp(newpte);
6944 if (!pte_same(pte, newpte))
6945 set_huge_pte_at(mm, address, ptep, newpte, psize);
6946 } else if (unlikely(is_pte_marker(pte))) {
6948 * Do nothing on a poison marker; page is
6949 * corrupted, permissons do not apply. Here
6950 * pte_marker_uffd_wp()==true implies !poison
6951 * because they're mutual exclusive.
6953 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6954 /* Safe to modify directly (non-present->none). */
6955 huge_pte_clear(mm, address, ptep, psize);
6956 } else if (!huge_pte_none(pte)) {
6958 unsigned int shift = huge_page_shift(hstate_vma(vma));
6960 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6961 pte = huge_pte_modify(old_pte, newprot);
6962 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6964 pte = huge_pte_mkuffd_wp(pte);
6965 else if (uffd_wp_resolve)
6966 pte = huge_pte_clear_uffd_wp(pte);
6967 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6971 if (unlikely(uffd_wp))
6972 /* Safe to modify directly (none->non-present). */
6973 set_huge_pte_at(mm, address, ptep,
6974 make_pte_marker(PTE_MARKER_UFFD_WP),
6980 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6981 * may have cleared our pud entry and done put_page on the page table:
6982 * once we release i_mmap_rwsem, another task can do the final put_page
6983 * and that page table be reused and filled with junk. If we actually
6984 * did unshare a page of pmds, flush the range corresponding to the pud.
6987 flush_hugetlb_tlb_range(vma, range.start, range.end);
6989 flush_hugetlb_tlb_range(vma, start, end);
6991 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6992 * downgrading page table protection not changing it to point to a new
6995 * See Documentation/mm/mmu_notifier.rst
6997 i_mmap_unlock_write(vma->vm_file->f_mapping);
6998 hugetlb_vma_unlock_write(vma);
6999 mmu_notifier_invalidate_range_end(&range);
7001 return pages > 0 ? (pages << h->order) : pages;
7004 /* Return true if reservation was successful, false otherwise. */
7005 bool hugetlb_reserve_pages(struct inode *inode,
7007 struct vm_area_struct *vma,
7008 vm_flags_t vm_flags)
7010 long chg = -1, add = -1;
7011 struct hstate *h = hstate_inode(inode);
7012 struct hugepage_subpool *spool = subpool_inode(inode);
7013 struct resv_map *resv_map;
7014 struct hugetlb_cgroup *h_cg = NULL;
7015 long gbl_reserve, regions_needed = 0;
7017 /* This should never happen */
7019 VM_WARN(1, "%s called with a negative range\n", __func__);
7024 * vma specific semaphore used for pmd sharing and fault/truncation
7027 hugetlb_vma_lock_alloc(vma);
7030 * Only apply hugepage reservation if asked. At fault time, an
7031 * attempt will be made for VM_NORESERVE to allocate a page
7032 * without using reserves
7034 if (vm_flags & VM_NORESERVE)
7038 * Shared mappings base their reservation on the number of pages that
7039 * are already allocated on behalf of the file. Private mappings need
7040 * to reserve the full area even if read-only as mprotect() may be
7041 * called to make the mapping read-write. Assume !vma is a shm mapping
7043 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7045 * resv_map can not be NULL as hugetlb_reserve_pages is only
7046 * called for inodes for which resv_maps were created (see
7047 * hugetlbfs_get_inode).
7049 resv_map = inode_resv_map(inode);
7051 chg = region_chg(resv_map, from, to, ®ions_needed);
7053 /* Private mapping. */
7054 resv_map = resv_map_alloc();
7060 set_vma_resv_map(vma, resv_map);
7061 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7067 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7068 chg * pages_per_huge_page(h), &h_cg) < 0)
7071 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7072 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7075 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7079 * There must be enough pages in the subpool for the mapping. If
7080 * the subpool has a minimum size, there may be some global
7081 * reservations already in place (gbl_reserve).
7083 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7084 if (gbl_reserve < 0)
7085 goto out_uncharge_cgroup;
7088 * Check enough hugepages are available for the reservation.
7089 * Hand the pages back to the subpool if there are not
7091 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7095 * Account for the reservations made. Shared mappings record regions
7096 * that have reservations as they are shared by multiple VMAs.
7097 * When the last VMA disappears, the region map says how much
7098 * the reservation was and the page cache tells how much of
7099 * the reservation was consumed. Private mappings are per-VMA and
7100 * only the consumed reservations are tracked. When the VMA
7101 * disappears, the original reservation is the VMA size and the
7102 * consumed reservations are stored in the map. Hence, nothing
7103 * else has to be done for private mappings here
7105 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7106 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7108 if (unlikely(add < 0)) {
7109 hugetlb_acct_memory(h, -gbl_reserve);
7111 } else if (unlikely(chg > add)) {
7113 * pages in this range were added to the reserve
7114 * map between region_chg and region_add. This
7115 * indicates a race with alloc_hugetlb_folio. Adjust
7116 * the subpool and reserve counts modified above
7117 * based on the difference.
7122 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7123 * reference to h_cg->css. See comment below for detail.
7125 hugetlb_cgroup_uncharge_cgroup_rsvd(
7127 (chg - add) * pages_per_huge_page(h), h_cg);
7129 rsv_adjust = hugepage_subpool_put_pages(spool,
7131 hugetlb_acct_memory(h, -rsv_adjust);
7134 * The file_regions will hold their own reference to
7135 * h_cg->css. So we should release the reference held
7136 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7139 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7145 /* put back original number of pages, chg */
7146 (void)hugepage_subpool_put_pages(spool, chg);
7147 out_uncharge_cgroup:
7148 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7149 chg * pages_per_huge_page(h), h_cg);
7151 hugetlb_vma_lock_free(vma);
7152 if (!vma || vma->vm_flags & VM_MAYSHARE)
7153 /* Only call region_abort if the region_chg succeeded but the
7154 * region_add failed or didn't run.
7156 if (chg >= 0 && add < 0)
7157 region_abort(resv_map, from, to, regions_needed);
7158 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7159 kref_put(&resv_map->refs, resv_map_release);
7160 set_vma_resv_map(vma, NULL);
7165 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7168 struct hstate *h = hstate_inode(inode);
7169 struct resv_map *resv_map = inode_resv_map(inode);
7171 struct hugepage_subpool *spool = subpool_inode(inode);
7175 * Since this routine can be called in the evict inode path for all
7176 * hugetlbfs inodes, resv_map could be NULL.
7179 chg = region_del(resv_map, start, end);
7181 * region_del() can fail in the rare case where a region
7182 * must be split and another region descriptor can not be
7183 * allocated. If end == LONG_MAX, it will not fail.
7189 spin_lock(&inode->i_lock);
7190 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7191 spin_unlock(&inode->i_lock);
7194 * If the subpool has a minimum size, the number of global
7195 * reservations to be released may be adjusted.
7197 * Note that !resv_map implies freed == 0. So (chg - freed)
7198 * won't go negative.
7200 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7201 hugetlb_acct_memory(h, -gbl_reserve);
7206 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7207 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7208 struct vm_area_struct *vma,
7209 unsigned long addr, pgoff_t idx)
7211 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7213 unsigned long sbase = saddr & PUD_MASK;
7214 unsigned long s_end = sbase + PUD_SIZE;
7216 /* Allow segments to share if only one is marked locked */
7217 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7218 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7221 * match the virtual addresses, permission and the alignment of the
7224 * Also, vma_lock (vm_private_data) is required for sharing.
7226 if (pmd_index(addr) != pmd_index(saddr) ||
7227 vm_flags != svm_flags ||
7228 !range_in_vma(svma, sbase, s_end) ||
7229 !svma->vm_private_data)
7235 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7237 unsigned long start = addr & PUD_MASK;
7238 unsigned long end = start + PUD_SIZE;
7240 #ifdef CONFIG_USERFAULTFD
7241 if (uffd_disable_huge_pmd_share(vma))
7245 * check on proper vm_flags and page table alignment
7247 if (!(vma->vm_flags & VM_MAYSHARE))
7249 if (!vma->vm_private_data) /* vma lock required for sharing */
7251 if (!range_in_vma(vma, start, end))
7257 * Determine if start,end range within vma could be mapped by shared pmd.
7258 * If yes, adjust start and end to cover range associated with possible
7259 * shared pmd mappings.
7261 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7262 unsigned long *start, unsigned long *end)
7264 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7265 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7268 * vma needs to span at least one aligned PUD size, and the range
7269 * must be at least partially within in.
7271 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7272 (*end <= v_start) || (*start >= v_end))
7275 /* Extend the range to be PUD aligned for a worst case scenario */
7276 if (*start > v_start)
7277 *start = ALIGN_DOWN(*start, PUD_SIZE);
7280 *end = ALIGN(*end, PUD_SIZE);
7284 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7285 * and returns the corresponding pte. While this is not necessary for the
7286 * !shared pmd case because we can allocate the pmd later as well, it makes the
7287 * code much cleaner. pmd allocation is essential for the shared case because
7288 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7289 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7290 * bad pmd for sharing.
7292 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7293 unsigned long addr, pud_t *pud)
7295 struct address_space *mapping = vma->vm_file->f_mapping;
7296 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7298 struct vm_area_struct *svma;
7299 unsigned long saddr;
7303 i_mmap_lock_read(mapping);
7304 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7308 saddr = page_table_shareable(svma, vma, addr, idx);
7310 spte = hugetlb_walk(svma, saddr,
7311 vma_mmu_pagesize(svma));
7313 get_page(virt_to_page(spte));
7322 spin_lock(&mm->page_table_lock);
7323 if (pud_none(*pud)) {
7324 pud_populate(mm, pud,
7325 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7328 put_page(virt_to_page(spte));
7330 spin_unlock(&mm->page_table_lock);
7332 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7333 i_mmap_unlock_read(mapping);
7338 * unmap huge page backed by shared pte.
7340 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7341 * indicated by page_count > 1, unmap is achieved by clearing pud and
7342 * decrementing the ref count. If count == 1, the pte page is not shared.
7344 * Called with page table lock held.
7346 * returns: 1 successfully unmapped a shared pte page
7347 * 0 the underlying pte page is not shared, or it is the last user
7349 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7350 unsigned long addr, pte_t *ptep)
7352 pgd_t *pgd = pgd_offset(mm, addr);
7353 p4d_t *p4d = p4d_offset(pgd, addr);
7354 pud_t *pud = pud_offset(p4d, addr);
7356 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7357 hugetlb_vma_assert_locked(vma);
7358 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7359 if (page_count(virt_to_page(ptep)) == 1)
7363 put_page(virt_to_page(ptep));
7368 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7370 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7371 unsigned long addr, pud_t *pud)
7376 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7377 unsigned long addr, pte_t *ptep)
7382 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7383 unsigned long *start, unsigned long *end)
7387 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7391 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7393 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7394 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7395 unsigned long addr, unsigned long sz)
7402 pgd = pgd_offset(mm, addr);
7403 p4d = p4d_alloc(mm, pgd, addr);
7406 pud = pud_alloc(mm, p4d, addr);
7408 if (sz == PUD_SIZE) {
7411 BUG_ON(sz != PMD_SIZE);
7412 if (want_pmd_share(vma, addr) && pud_none(*pud))
7413 pte = huge_pmd_share(mm, vma, addr, pud);
7415 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7420 pte_t pteval = ptep_get_lockless(pte);
7422 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7429 * huge_pte_offset() - Walk the page table to resolve the hugepage
7430 * entry at address @addr
7432 * Return: Pointer to page table entry (PUD or PMD) for
7433 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7434 * size @sz doesn't match the hugepage size at this level of the page
7437 pte_t *huge_pte_offset(struct mm_struct *mm,
7438 unsigned long addr, unsigned long sz)
7445 pgd = pgd_offset(mm, addr);
7446 if (!pgd_present(*pgd))
7448 p4d = p4d_offset(pgd, addr);
7449 if (!p4d_present(*p4d))
7452 pud = pud_offset(p4d, addr);
7454 /* must be pud huge, non-present or none */
7455 return (pte_t *)pud;
7456 if (!pud_present(*pud))
7458 /* must have a valid entry and size to go further */
7460 pmd = pmd_offset(pud, addr);
7461 /* must be pmd huge, non-present or none */
7462 return (pte_t *)pmd;
7466 * Return a mask that can be used to update an address to the last huge
7467 * page in a page table page mapping size. Used to skip non-present
7468 * page table entries when linearly scanning address ranges. Architectures
7469 * with unique huge page to page table relationships can define their own
7470 * version of this routine.
7472 unsigned long hugetlb_mask_last_page(struct hstate *h)
7474 unsigned long hp_size = huge_page_size(h);
7476 if (hp_size == PUD_SIZE)
7477 return P4D_SIZE - PUD_SIZE;
7478 else if (hp_size == PMD_SIZE)
7479 return PUD_SIZE - PMD_SIZE;
7486 /* See description above. Architectures can provide their own version. */
7487 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7489 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7490 if (huge_page_size(h) == PMD_SIZE)
7491 return PUD_SIZE - PMD_SIZE;
7496 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7499 * These functions are overwritable if your architecture needs its own
7502 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7506 spin_lock_irq(&hugetlb_lock);
7507 if (!folio_test_hugetlb(folio) ||
7508 !folio_test_hugetlb_migratable(folio) ||
7509 !folio_try_get(folio)) {
7513 folio_clear_hugetlb_migratable(folio);
7514 list_move_tail(&folio->lru, list);
7516 spin_unlock_irq(&hugetlb_lock);
7520 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7525 spin_lock_irq(&hugetlb_lock);
7526 if (folio_test_hugetlb(folio)) {
7528 if (folio_test_hugetlb_freed(folio))
7530 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7531 ret = folio_try_get(folio);
7535 spin_unlock_irq(&hugetlb_lock);
7539 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7540 bool *migratable_cleared)
7544 spin_lock_irq(&hugetlb_lock);
7545 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7546 spin_unlock_irq(&hugetlb_lock);
7550 void folio_putback_active_hugetlb(struct folio *folio)
7552 spin_lock_irq(&hugetlb_lock);
7553 folio_set_hugetlb_migratable(folio);
7554 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7555 spin_unlock_irq(&hugetlb_lock);
7559 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7561 struct hstate *h = folio_hstate(old_folio);
7563 hugetlb_cgroup_migrate(old_folio, new_folio);
7564 set_page_owner_migrate_reason(&new_folio->page, reason);
7567 * transfer temporary state of the new hugetlb folio. This is
7568 * reverse to other transitions because the newpage is going to
7569 * be final while the old one will be freed so it takes over
7570 * the temporary status.
7572 * Also note that we have to transfer the per-node surplus state
7573 * here as well otherwise the global surplus count will not match
7576 if (folio_test_hugetlb_temporary(new_folio)) {
7577 int old_nid = folio_nid(old_folio);
7578 int new_nid = folio_nid(new_folio);
7580 folio_set_hugetlb_temporary(old_folio);
7581 folio_clear_hugetlb_temporary(new_folio);
7585 * There is no need to transfer the per-node surplus state
7586 * when we do not cross the node.
7588 if (new_nid == old_nid)
7590 spin_lock_irq(&hugetlb_lock);
7591 if (h->surplus_huge_pages_node[old_nid]) {
7592 h->surplus_huge_pages_node[old_nid]--;
7593 h->surplus_huge_pages_node[new_nid]++;
7595 spin_unlock_irq(&hugetlb_lock);
7599 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7600 unsigned long start,
7603 struct hstate *h = hstate_vma(vma);
7604 unsigned long sz = huge_page_size(h);
7605 struct mm_struct *mm = vma->vm_mm;
7606 struct mmu_notifier_range range;
7607 unsigned long address;
7611 if (!(vma->vm_flags & VM_MAYSHARE))
7617 flush_cache_range(vma, start, end);
7619 * No need to call adjust_range_if_pmd_sharing_possible(), because
7620 * we have already done the PUD_SIZE alignment.
7622 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7624 mmu_notifier_invalidate_range_start(&range);
7625 hugetlb_vma_lock_write(vma);
7626 i_mmap_lock_write(vma->vm_file->f_mapping);
7627 for (address = start; address < end; address += PUD_SIZE) {
7628 ptep = hugetlb_walk(vma, address, sz);
7631 ptl = huge_pte_lock(h, mm, ptep);
7632 huge_pmd_unshare(mm, vma, address, ptep);
7635 flush_hugetlb_tlb_range(vma, start, end);
7636 i_mmap_unlock_write(vma->vm_file->f_mapping);
7637 hugetlb_vma_unlock_write(vma);
7639 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7640 * Documentation/mm/mmu_notifier.rst.
7642 mmu_notifier_invalidate_range_end(&range);
7646 * This function will unconditionally remove all the shared pmd pgtable entries
7647 * within the specific vma for a hugetlbfs memory range.
7649 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7651 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7652 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7656 static bool cma_reserve_called __initdata;
7658 static int __init cmdline_parse_hugetlb_cma(char *p)
7665 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7668 if (s[count] == ':') {
7669 if (tmp >= MAX_NUMNODES)
7671 nid = array_index_nospec(tmp, MAX_NUMNODES);
7674 tmp = memparse(s, &s);
7675 hugetlb_cma_size_in_node[nid] = tmp;
7676 hugetlb_cma_size += tmp;
7679 * Skip the separator if have one, otherwise
7680 * break the parsing.
7687 hugetlb_cma_size = memparse(p, &p);
7695 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7697 void __init hugetlb_cma_reserve(int order)
7699 unsigned long size, reserved, per_node;
7700 bool node_specific_cma_alloc = false;
7704 * HugeTLB CMA reservation is required for gigantic
7705 * huge pages which could not be allocated via the
7706 * page allocator. Just warn if there is any change
7707 * breaking this assumption.
7709 VM_WARN_ON(order <= MAX_PAGE_ORDER);
7710 cma_reserve_called = true;
7712 if (!hugetlb_cma_size)
7715 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7716 if (hugetlb_cma_size_in_node[nid] == 0)
7719 if (!node_online(nid)) {
7720 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7721 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7722 hugetlb_cma_size_in_node[nid] = 0;
7726 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7727 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7728 nid, (PAGE_SIZE << order) / SZ_1M);
7729 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7730 hugetlb_cma_size_in_node[nid] = 0;
7732 node_specific_cma_alloc = true;
7736 /* Validate the CMA size again in case some invalid nodes specified. */
7737 if (!hugetlb_cma_size)
7740 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7741 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7742 (PAGE_SIZE << order) / SZ_1M);
7743 hugetlb_cma_size = 0;
7747 if (!node_specific_cma_alloc) {
7749 * If 3 GB area is requested on a machine with 4 numa nodes,
7750 * let's allocate 1 GB on first three nodes and ignore the last one.
7752 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7753 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7754 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7758 for_each_online_node(nid) {
7760 char name[CMA_MAX_NAME];
7762 if (node_specific_cma_alloc) {
7763 if (hugetlb_cma_size_in_node[nid] == 0)
7766 size = hugetlb_cma_size_in_node[nid];
7768 size = min(per_node, hugetlb_cma_size - reserved);
7771 size = round_up(size, PAGE_SIZE << order);
7773 snprintf(name, sizeof(name), "hugetlb%d", nid);
7775 * Note that 'order per bit' is based on smallest size that
7776 * may be returned to CMA allocator in the case of
7777 * huge page demotion.
7779 res = cma_declare_contiguous_nid(0, size, 0,
7781 HUGETLB_PAGE_ORDER, false, name,
7782 &hugetlb_cma[nid], nid);
7784 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7790 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7793 if (reserved >= hugetlb_cma_size)
7799 * hugetlb_cma_size is used to determine if allocations from
7800 * cma are possible. Set to zero if no cma regions are set up.
7802 hugetlb_cma_size = 0;
7805 static void __init hugetlb_cma_check(void)
7807 if (!hugetlb_cma_size || cma_reserve_called)
7810 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7813 #endif /* CONFIG_CMA */