]> Git Repo - linux.git/blob - mm/hugetlb.c
net: airoha: Introduce ethernet support for EN7581 SoC
[linux.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
55
56 #ifdef CONFIG_CMA
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60 {
61         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
62                                 1 << order);
63 }
64 #else
65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
66 {
67         return false;
68 }
69 #endif
70 static unsigned long hugetlb_cma_size __initdata;
71
72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
73
74 /* for command line parsing */
75 static struct hstate * __initdata parsed_hstate;
76 static unsigned long __initdata default_hstate_max_huge_pages;
77 static bool __initdata parsed_valid_hugepagesz = true;
78 static bool __initdata parsed_default_hugepagesz;
79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80
81 /*
82  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83  * free_huge_pages, and surplus_huge_pages.
84  */
85 DEFINE_SPINLOCK(hugetlb_lock);
86
87 /*
88  * Serializes faults on the same logical page.  This is used to
89  * prevent spurious OOMs when the hugepage pool is fully utilized.
90  */
91 static int num_fault_mutexes;
92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93
94 /* Forward declaration */
95 static int hugetlb_acct_memory(struct hstate *h, long delta);
96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100                 unsigned long start, unsigned long end);
101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102
103 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 {
105         if (spool->count)
106                 return false;
107         if (spool->max_hpages != -1)
108                 return spool->used_hpages == 0;
109         if (spool->min_hpages != -1)
110                 return spool->rsv_hpages == spool->min_hpages;
111
112         return true;
113 }
114
115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116                                                 unsigned long irq_flags)
117 {
118         spin_unlock_irqrestore(&spool->lock, irq_flags);
119
120         /* If no pages are used, and no other handles to the subpool
121          * remain, give up any reservations based on minimum size and
122          * free the subpool */
123         if (subpool_is_free(spool)) {
124                 if (spool->min_hpages != -1)
125                         hugetlb_acct_memory(spool->hstate,
126                                                 -spool->min_hpages);
127                 kfree(spool);
128         }
129 }
130
131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132                                                 long min_hpages)
133 {
134         struct hugepage_subpool *spool;
135
136         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137         if (!spool)
138                 return NULL;
139
140         spin_lock_init(&spool->lock);
141         spool->count = 1;
142         spool->max_hpages = max_hpages;
143         spool->hstate = h;
144         spool->min_hpages = min_hpages;
145
146         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147                 kfree(spool);
148                 return NULL;
149         }
150         spool->rsv_hpages = min_hpages;
151
152         return spool;
153 }
154
155 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 {
157         unsigned long flags;
158
159         spin_lock_irqsave(&spool->lock, flags);
160         BUG_ON(!spool->count);
161         spool->count--;
162         unlock_or_release_subpool(spool, flags);
163 }
164
165 /*
166  * Subpool accounting for allocating and reserving pages.
167  * Return -ENOMEM if there are not enough resources to satisfy the
168  * request.  Otherwise, return the number of pages by which the
169  * global pools must be adjusted (upward).  The returned value may
170  * only be different than the passed value (delta) in the case where
171  * a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
174                                       long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return ret;
180
181         spin_lock_irq(&spool->lock);
182
183         if (spool->max_hpages != -1) {          /* maximum size accounting */
184                 if ((spool->used_hpages + delta) <= spool->max_hpages)
185                         spool->used_hpages += delta;
186                 else {
187                         ret = -ENOMEM;
188                         goto unlock_ret;
189                 }
190         }
191
192         /* minimum size accounting */
193         if (spool->min_hpages != -1 && spool->rsv_hpages) {
194                 if (delta > spool->rsv_hpages) {
195                         /*
196                          * Asking for more reserves than those already taken on
197                          * behalf of subpool.  Return difference.
198                          */
199                         ret = delta - spool->rsv_hpages;
200                         spool->rsv_hpages = 0;
201                 } else {
202                         ret = 0;        /* reserves already accounted for */
203                         spool->rsv_hpages -= delta;
204                 }
205         }
206
207 unlock_ret:
208         spin_unlock_irq(&spool->lock);
209         return ret;
210 }
211
212 /*
213  * Subpool accounting for freeing and unreserving pages.
214  * Return the number of global page reservations that must be dropped.
215  * The return value may only be different than the passed value (delta)
216  * in the case where a subpool minimum size must be maintained.
217  */
218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
219                                        long delta)
220 {
221         long ret = delta;
222         unsigned long flags;
223
224         if (!spool)
225                 return delta;
226
227         spin_lock_irqsave(&spool->lock, flags);
228
229         if (spool->max_hpages != -1)            /* maximum size accounting */
230                 spool->used_hpages -= delta;
231
232          /* minimum size accounting */
233         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234                 if (spool->rsv_hpages + delta <= spool->min_hpages)
235                         ret = 0;
236                 else
237                         ret = spool->rsv_hpages + delta - spool->min_hpages;
238
239                 spool->rsv_hpages += delta;
240                 if (spool->rsv_hpages > spool->min_hpages)
241                         spool->rsv_hpages = spool->min_hpages;
242         }
243
244         /*
245          * If hugetlbfs_put_super couldn't free spool due to an outstanding
246          * quota reference, free it now.
247          */
248         unlock_or_release_subpool(spool, flags);
249
250         return ret;
251 }
252
253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254 {
255         return HUGETLBFS_SB(inode->i_sb)->spool;
256 }
257
258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259 {
260         return subpool_inode(file_inode(vma->vm_file));
261 }
262
263 /*
264  * hugetlb vma_lock helper routines
265  */
266 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267 {
268         if (__vma_shareable_lock(vma)) {
269                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270
271                 down_read(&vma_lock->rw_sema);
272         } else if (__vma_private_lock(vma)) {
273                 struct resv_map *resv_map = vma_resv_map(vma);
274
275                 down_read(&resv_map->rw_sema);
276         }
277 }
278
279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280 {
281         if (__vma_shareable_lock(vma)) {
282                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283
284                 up_read(&vma_lock->rw_sema);
285         } else if (__vma_private_lock(vma)) {
286                 struct resv_map *resv_map = vma_resv_map(vma);
287
288                 up_read(&resv_map->rw_sema);
289         }
290 }
291
292 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293 {
294         if (__vma_shareable_lock(vma)) {
295                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296
297                 down_write(&vma_lock->rw_sema);
298         } else if (__vma_private_lock(vma)) {
299                 struct resv_map *resv_map = vma_resv_map(vma);
300
301                 down_write(&resv_map->rw_sema);
302         }
303 }
304
305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306 {
307         if (__vma_shareable_lock(vma)) {
308                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309
310                 up_write(&vma_lock->rw_sema);
311         } else if (__vma_private_lock(vma)) {
312                 struct resv_map *resv_map = vma_resv_map(vma);
313
314                 up_write(&resv_map->rw_sema);
315         }
316 }
317
318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
319 {
320
321         if (__vma_shareable_lock(vma)) {
322                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323
324                 return down_write_trylock(&vma_lock->rw_sema);
325         } else if (__vma_private_lock(vma)) {
326                 struct resv_map *resv_map = vma_resv_map(vma);
327
328                 return down_write_trylock(&resv_map->rw_sema);
329         }
330
331         return 1;
332 }
333
334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335 {
336         if (__vma_shareable_lock(vma)) {
337                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338
339                 lockdep_assert_held(&vma_lock->rw_sema);
340         } else if (__vma_private_lock(vma)) {
341                 struct resv_map *resv_map = vma_resv_map(vma);
342
343                 lockdep_assert_held(&resv_map->rw_sema);
344         }
345 }
346
347 void hugetlb_vma_lock_release(struct kref *kref)
348 {
349         struct hugetlb_vma_lock *vma_lock = container_of(kref,
350                         struct hugetlb_vma_lock, refs);
351
352         kfree(vma_lock);
353 }
354
355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356 {
357         struct vm_area_struct *vma = vma_lock->vma;
358
359         /*
360          * vma_lock structure may or not be released as a result of put,
361          * it certainly will no longer be attached to vma so clear pointer.
362          * Semaphore synchronizes access to vma_lock->vma field.
363          */
364         vma_lock->vma = NULL;
365         vma->vm_private_data = NULL;
366         up_write(&vma_lock->rw_sema);
367         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
368 }
369
370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371 {
372         if (__vma_shareable_lock(vma)) {
373                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374
375                 __hugetlb_vma_unlock_write_put(vma_lock);
376         } else if (__vma_private_lock(vma)) {
377                 struct resv_map *resv_map = vma_resv_map(vma);
378
379                 /* no free for anon vmas, but still need to unlock */
380                 up_write(&resv_map->rw_sema);
381         }
382 }
383
384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
385 {
386         /*
387          * Only present in sharable vmas.
388          */
389         if (!vma || !__vma_shareable_lock(vma))
390                 return;
391
392         if (vma->vm_private_data) {
393                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394
395                 down_write(&vma_lock->rw_sema);
396                 __hugetlb_vma_unlock_write_put(vma_lock);
397         }
398 }
399
400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401 {
402         struct hugetlb_vma_lock *vma_lock;
403
404         /* Only establish in (flags) sharable vmas */
405         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
406                 return;
407
408         /* Should never get here with non-NULL vm_private_data */
409         if (vma->vm_private_data)
410                 return;
411
412         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
413         if (!vma_lock) {
414                 /*
415                  * If we can not allocate structure, then vma can not
416                  * participate in pmd sharing.  This is only a possible
417                  * performance enhancement and memory saving issue.
418                  * However, the lock is also used to synchronize page
419                  * faults with truncation.  If the lock is not present,
420                  * unlikely races could leave pages in a file past i_size
421                  * until the file is removed.  Warn in the unlikely case of
422                  * allocation failure.
423                  */
424                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
425                 return;
426         }
427
428         kref_init(&vma_lock->refs);
429         init_rwsem(&vma_lock->rw_sema);
430         vma_lock->vma = vma;
431         vma->vm_private_data = vma_lock;
432 }
433
434 /* Helper that removes a struct file_region from the resv_map cache and returns
435  * it for use.
436  */
437 static struct file_region *
438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439 {
440         struct file_region *nrg;
441
442         VM_BUG_ON(resv->region_cache_count <= 0);
443
444         resv->region_cache_count--;
445         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446         list_del(&nrg->link);
447
448         nrg->from = from;
449         nrg->to = to;
450
451         return nrg;
452 }
453
454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455                                               struct file_region *rg)
456 {
457 #ifdef CONFIG_CGROUP_HUGETLB
458         nrg->reservation_counter = rg->reservation_counter;
459         nrg->css = rg->css;
460         if (rg->css)
461                 css_get(rg->css);
462 #endif
463 }
464
465 /* Helper that records hugetlb_cgroup uncharge info. */
466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467                                                 struct hstate *h,
468                                                 struct resv_map *resv,
469                                                 struct file_region *nrg)
470 {
471 #ifdef CONFIG_CGROUP_HUGETLB
472         if (h_cg) {
473                 nrg->reservation_counter =
474                         &h_cg->rsvd_hugepage[hstate_index(h)];
475                 nrg->css = &h_cg->css;
476                 /*
477                  * The caller will hold exactly one h_cg->css reference for the
478                  * whole contiguous reservation region. But this area might be
479                  * scattered when there are already some file_regions reside in
480                  * it. As a result, many file_regions may share only one css
481                  * reference. In order to ensure that one file_region must hold
482                  * exactly one h_cg->css reference, we should do css_get for
483                  * each file_region and leave the reference held by caller
484                  * untouched.
485                  */
486                 css_get(&h_cg->css);
487                 if (!resv->pages_per_hpage)
488                         resv->pages_per_hpage = pages_per_huge_page(h);
489                 /* pages_per_hpage should be the same for all entries in
490                  * a resv_map.
491                  */
492                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493         } else {
494                 nrg->reservation_counter = NULL;
495                 nrg->css = NULL;
496         }
497 #endif
498 }
499
500 static void put_uncharge_info(struct file_region *rg)
501 {
502 #ifdef CONFIG_CGROUP_HUGETLB
503         if (rg->css)
504                 css_put(rg->css);
505 #endif
506 }
507
508 static bool has_same_uncharge_info(struct file_region *rg,
509                                    struct file_region *org)
510 {
511 #ifdef CONFIG_CGROUP_HUGETLB
512         return rg->reservation_counter == org->reservation_counter &&
513                rg->css == org->css;
514
515 #else
516         return true;
517 #endif
518 }
519
520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521 {
522         struct file_region *nrg, *prg;
523
524         prg = list_prev_entry(rg, link);
525         if (&prg->link != &resv->regions && prg->to == rg->from &&
526             has_same_uncharge_info(prg, rg)) {
527                 prg->to = rg->to;
528
529                 list_del(&rg->link);
530                 put_uncharge_info(rg);
531                 kfree(rg);
532
533                 rg = prg;
534         }
535
536         nrg = list_next_entry(rg, link);
537         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538             has_same_uncharge_info(nrg, rg)) {
539                 nrg->from = rg->from;
540
541                 list_del(&rg->link);
542                 put_uncharge_info(rg);
543                 kfree(rg);
544         }
545 }
546
547 static inline long
548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
550                      long *regions_needed)
551 {
552         struct file_region *nrg;
553
554         if (!regions_needed) {
555                 nrg = get_file_region_entry_from_cache(map, from, to);
556                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557                 list_add(&nrg->link, rg);
558                 coalesce_file_region(map, nrg);
559         } else
560                 *regions_needed += 1;
561
562         return to - from;
563 }
564
565 /*
566  * Must be called with resv->lock held.
567  *
568  * Calling this with regions_needed != NULL will count the number of pages
569  * to be added but will not modify the linked list. And regions_needed will
570  * indicate the number of file_regions needed in the cache to carry out to add
571  * the regions for this range.
572  */
573 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574                                      struct hugetlb_cgroup *h_cg,
575                                      struct hstate *h, long *regions_needed)
576 {
577         long add = 0;
578         struct list_head *head = &resv->regions;
579         long last_accounted_offset = f;
580         struct file_region *iter, *trg = NULL;
581         struct list_head *rg = NULL;
582
583         if (regions_needed)
584                 *regions_needed = 0;
585
586         /* In this loop, we essentially handle an entry for the range
587          * [last_accounted_offset, iter->from), at every iteration, with some
588          * bounds checking.
589          */
590         list_for_each_entry_safe(iter, trg, head, link) {
591                 /* Skip irrelevant regions that start before our range. */
592                 if (iter->from < f) {
593                         /* If this region ends after the last accounted offset,
594                          * then we need to update last_accounted_offset.
595                          */
596                         if (iter->to > last_accounted_offset)
597                                 last_accounted_offset = iter->to;
598                         continue;
599                 }
600
601                 /* When we find a region that starts beyond our range, we've
602                  * finished.
603                  */
604                 if (iter->from >= t) {
605                         rg = iter->link.prev;
606                         break;
607                 }
608
609                 /* Add an entry for last_accounted_offset -> iter->from, and
610                  * update last_accounted_offset.
611                  */
612                 if (iter->from > last_accounted_offset)
613                         add += hugetlb_resv_map_add(resv, iter->link.prev,
614                                                     last_accounted_offset,
615                                                     iter->from, h, h_cg,
616                                                     regions_needed);
617
618                 last_accounted_offset = iter->to;
619         }
620
621         /* Handle the case where our range extends beyond
622          * last_accounted_offset.
623          */
624         if (!rg)
625                 rg = head->prev;
626         if (last_accounted_offset < t)
627                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628                                             t, h, h_cg, regions_needed);
629
630         return add;
631 }
632
633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634  */
635 static int allocate_file_region_entries(struct resv_map *resv,
636                                         int regions_needed)
637         __must_hold(&resv->lock)
638 {
639         LIST_HEAD(allocated_regions);
640         int to_allocate = 0, i = 0;
641         struct file_region *trg = NULL, *rg = NULL;
642
643         VM_BUG_ON(regions_needed < 0);
644
645         /*
646          * Check for sufficient descriptors in the cache to accommodate
647          * the number of in progress add operations plus regions_needed.
648          *
649          * This is a while loop because when we drop the lock, some other call
650          * to region_add or region_del may have consumed some region_entries,
651          * so we keep looping here until we finally have enough entries for
652          * (adds_in_progress + regions_needed).
653          */
654         while (resv->region_cache_count <
655                (resv->adds_in_progress + regions_needed)) {
656                 to_allocate = resv->adds_in_progress + regions_needed -
657                               resv->region_cache_count;
658
659                 /* At this point, we should have enough entries in the cache
660                  * for all the existing adds_in_progress. We should only be
661                  * needing to allocate for regions_needed.
662                  */
663                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664
665                 spin_unlock(&resv->lock);
666                 for (i = 0; i < to_allocate; i++) {
667                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
668                         if (!trg)
669                                 goto out_of_memory;
670                         list_add(&trg->link, &allocated_regions);
671                 }
672
673                 spin_lock(&resv->lock);
674
675                 list_splice(&allocated_regions, &resv->region_cache);
676                 resv->region_cache_count += to_allocate;
677         }
678
679         return 0;
680
681 out_of_memory:
682         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
683                 list_del(&rg->link);
684                 kfree(rg);
685         }
686         return -ENOMEM;
687 }
688
689 /*
690  * Add the huge page range represented by [f, t) to the reserve
691  * map.  Regions will be taken from the cache to fill in this range.
692  * Sufficient regions should exist in the cache due to the previous
693  * call to region_chg with the same range, but in some cases the cache will not
694  * have sufficient entries due to races with other code doing region_add or
695  * region_del.  The extra needed entries will be allocated.
696  *
697  * regions_needed is the out value provided by a previous call to region_chg.
698  *
699  * Return the number of new huge pages added to the map.  This number is greater
700  * than or equal to zero.  If file_region entries needed to be allocated for
701  * this operation and we were not able to allocate, it returns -ENOMEM.
702  * region_add of regions of length 1 never allocate file_regions and cannot
703  * fail; region_chg will always allocate at least 1 entry and a region_add for
704  * 1 page will only require at most 1 entry.
705  */
706 static long region_add(struct resv_map *resv, long f, long t,
707                        long in_regions_needed, struct hstate *h,
708                        struct hugetlb_cgroup *h_cg)
709 {
710         long add = 0, actual_regions_needed = 0;
711
712         spin_lock(&resv->lock);
713 retry:
714
715         /* Count how many regions are actually needed to execute this add. */
716         add_reservation_in_range(resv, f, t, NULL, NULL,
717                                  &actual_regions_needed);
718
719         /*
720          * Check for sufficient descriptors in the cache to accommodate
721          * this add operation. Note that actual_regions_needed may be greater
722          * than in_regions_needed, as the resv_map may have been modified since
723          * the region_chg call. In this case, we need to make sure that we
724          * allocate extra entries, such that we have enough for all the
725          * existing adds_in_progress, plus the excess needed for this
726          * operation.
727          */
728         if (actual_regions_needed > in_regions_needed &&
729             resv->region_cache_count <
730                     resv->adds_in_progress +
731                             (actual_regions_needed - in_regions_needed)) {
732                 /* region_add operation of range 1 should never need to
733                  * allocate file_region entries.
734                  */
735                 VM_BUG_ON(t - f <= 1);
736
737                 if (allocate_file_region_entries(
738                             resv, actual_regions_needed - in_regions_needed)) {
739                         return -ENOMEM;
740                 }
741
742                 goto retry;
743         }
744
745         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746
747         resv->adds_in_progress -= in_regions_needed;
748
749         spin_unlock(&resv->lock);
750         return add;
751 }
752
753 /*
754  * Examine the existing reserve map and determine how many
755  * huge pages in the specified range [f, t) are NOT currently
756  * represented.  This routine is called before a subsequent
757  * call to region_add that will actually modify the reserve
758  * map to add the specified range [f, t).  region_chg does
759  * not change the number of huge pages represented by the
760  * map.  A number of new file_region structures is added to the cache as a
761  * placeholder, for the subsequent region_add call to use. At least 1
762  * file_region structure is added.
763  *
764  * out_regions_needed is the number of regions added to the
765  * resv->adds_in_progress.  This value needs to be provided to a follow up call
766  * to region_add or region_abort for proper accounting.
767  *
768  * Returns the number of huge pages that need to be added to the existing
769  * reservation map for the range [f, t).  This number is greater or equal to
770  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
771  * is needed and can not be allocated.
772  */
773 static long region_chg(struct resv_map *resv, long f, long t,
774                        long *out_regions_needed)
775 {
776         long chg = 0;
777
778         spin_lock(&resv->lock);
779
780         /* Count how many hugepages in this range are NOT represented. */
781         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
782                                        out_regions_needed);
783
784         if (*out_regions_needed == 0)
785                 *out_regions_needed = 1;
786
787         if (allocate_file_region_entries(resv, *out_regions_needed))
788                 return -ENOMEM;
789
790         resv->adds_in_progress += *out_regions_needed;
791
792         spin_unlock(&resv->lock);
793         return chg;
794 }
795
796 /*
797  * Abort the in progress add operation.  The adds_in_progress field
798  * of the resv_map keeps track of the operations in progress between
799  * calls to region_chg and region_add.  Operations are sometimes
800  * aborted after the call to region_chg.  In such cases, region_abort
801  * is called to decrement the adds_in_progress counter. regions_needed
802  * is the value returned by the region_chg call, it is used to decrement
803  * the adds_in_progress counter.
804  *
805  * NOTE: The range arguments [f, t) are not needed or used in this
806  * routine.  They are kept to make reading the calling code easier as
807  * arguments will match the associated region_chg call.
808  */
809 static void region_abort(struct resv_map *resv, long f, long t,
810                          long regions_needed)
811 {
812         spin_lock(&resv->lock);
813         VM_BUG_ON(!resv->region_cache_count);
814         resv->adds_in_progress -= regions_needed;
815         spin_unlock(&resv->lock);
816 }
817
818 /*
819  * Delete the specified range [f, t) from the reserve map.  If the
820  * t parameter is LONG_MAX, this indicates that ALL regions after f
821  * should be deleted.  Locate the regions which intersect [f, t)
822  * and either trim, delete or split the existing regions.
823  *
824  * Returns the number of huge pages deleted from the reserve map.
825  * In the normal case, the return value is zero or more.  In the
826  * case where a region must be split, a new region descriptor must
827  * be allocated.  If the allocation fails, -ENOMEM will be returned.
828  * NOTE: If the parameter t == LONG_MAX, then we will never split
829  * a region and possibly return -ENOMEM.  Callers specifying
830  * t == LONG_MAX do not need to check for -ENOMEM error.
831  */
832 static long region_del(struct resv_map *resv, long f, long t)
833 {
834         struct list_head *head = &resv->regions;
835         struct file_region *rg, *trg;
836         struct file_region *nrg = NULL;
837         long del = 0;
838
839 retry:
840         spin_lock(&resv->lock);
841         list_for_each_entry_safe(rg, trg, head, link) {
842                 /*
843                  * Skip regions before the range to be deleted.  file_region
844                  * ranges are normally of the form [from, to).  However, there
845                  * may be a "placeholder" entry in the map which is of the form
846                  * (from, to) with from == to.  Check for placeholder entries
847                  * at the beginning of the range to be deleted.
848                  */
849                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
850                         continue;
851
852                 if (rg->from >= t)
853                         break;
854
855                 if (f > rg->from && t < rg->to) { /* Must split region */
856                         /*
857                          * Check for an entry in the cache before dropping
858                          * lock and attempting allocation.
859                          */
860                         if (!nrg &&
861                             resv->region_cache_count > resv->adds_in_progress) {
862                                 nrg = list_first_entry(&resv->region_cache,
863                                                         struct file_region,
864                                                         link);
865                                 list_del(&nrg->link);
866                                 resv->region_cache_count--;
867                         }
868
869                         if (!nrg) {
870                                 spin_unlock(&resv->lock);
871                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
872                                 if (!nrg)
873                                         return -ENOMEM;
874                                 goto retry;
875                         }
876
877                         del += t - f;
878                         hugetlb_cgroup_uncharge_file_region(
879                                 resv, rg, t - f, false);
880
881                         /* New entry for end of split region */
882                         nrg->from = t;
883                         nrg->to = rg->to;
884
885                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886
887                         INIT_LIST_HEAD(&nrg->link);
888
889                         /* Original entry is trimmed */
890                         rg->to = f;
891
892                         list_add(&nrg->link, &rg->link);
893                         nrg = NULL;
894                         break;
895                 }
896
897                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898                         del += rg->to - rg->from;
899                         hugetlb_cgroup_uncharge_file_region(resv, rg,
900                                                             rg->to - rg->from, true);
901                         list_del(&rg->link);
902                         kfree(rg);
903                         continue;
904                 }
905
906                 if (f <= rg->from) {    /* Trim beginning of region */
907                         hugetlb_cgroup_uncharge_file_region(resv, rg,
908                                                             t - rg->from, false);
909
910                         del += t - rg->from;
911                         rg->from = t;
912                 } else {                /* Trim end of region */
913                         hugetlb_cgroup_uncharge_file_region(resv, rg,
914                                                             rg->to - f, false);
915
916                         del += rg->to - f;
917                         rg->to = f;
918                 }
919         }
920
921         spin_unlock(&resv->lock);
922         kfree(nrg);
923         return del;
924 }
925
926 /*
927  * A rare out of memory error was encountered which prevented removal of
928  * the reserve map region for a page.  The huge page itself was free'ed
929  * and removed from the page cache.  This routine will adjust the subpool
930  * usage count, and the global reserve count if needed.  By incrementing
931  * these counts, the reserve map entry which could not be deleted will
932  * appear as a "reserved" entry instead of simply dangling with incorrect
933  * counts.
934  */
935 void hugetlb_fix_reserve_counts(struct inode *inode)
936 {
937         struct hugepage_subpool *spool = subpool_inode(inode);
938         long rsv_adjust;
939         bool reserved = false;
940
941         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942         if (rsv_adjust > 0) {
943                 struct hstate *h = hstate_inode(inode);
944
945                 if (!hugetlb_acct_memory(h, 1))
946                         reserved = true;
947         } else if (!rsv_adjust) {
948                 reserved = true;
949         }
950
951         if (!reserved)
952                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
953 }
954
955 /*
956  * Count and return the number of huge pages in the reserve map
957  * that intersect with the range [f, t).
958  */
959 static long region_count(struct resv_map *resv, long f, long t)
960 {
961         struct list_head *head = &resv->regions;
962         struct file_region *rg;
963         long chg = 0;
964
965         spin_lock(&resv->lock);
966         /* Locate each segment we overlap with, and count that overlap. */
967         list_for_each_entry(rg, head, link) {
968                 long seg_from;
969                 long seg_to;
970
971                 if (rg->to <= f)
972                         continue;
973                 if (rg->from >= t)
974                         break;
975
976                 seg_from = max(rg->from, f);
977                 seg_to = min(rg->to, t);
978
979                 chg += seg_to - seg_from;
980         }
981         spin_unlock(&resv->lock);
982
983         return chg;
984 }
985
986 /*
987  * Convert the address within this vma to the page offset within
988  * the mapping, huge page units here.
989  */
990 static pgoff_t vma_hugecache_offset(struct hstate *h,
991                         struct vm_area_struct *vma, unsigned long address)
992 {
993         return ((address - vma->vm_start) >> huge_page_shift(h)) +
994                         (vma->vm_pgoff >> huge_page_order(h));
995 }
996
997 /**
998  * vma_kernel_pagesize - Page size granularity for this VMA.
999  * @vma: The user mapping.
1000  *
1001  * Folios in this VMA will be aligned to, and at least the size of the
1002  * number of bytes returned by this function.
1003  *
1004  * Return: The default size of the folios allocated when backing a VMA.
1005  */
1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007 {
1008         if (vma->vm_ops && vma->vm_ops->pagesize)
1009                 return vma->vm_ops->pagesize(vma);
1010         return PAGE_SIZE;
1011 }
1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1013
1014 /*
1015  * Return the page size being used by the MMU to back a VMA. In the majority
1016  * of cases, the page size used by the kernel matches the MMU size. On
1017  * architectures where it differs, an architecture-specific 'strong'
1018  * version of this symbol is required.
1019  */
1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1021 {
1022         return vma_kernel_pagesize(vma);
1023 }
1024
1025 /*
1026  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1027  * bits of the reservation map pointer, which are always clear due to
1028  * alignment.
1029  */
1030 #define HPAGE_RESV_OWNER    (1UL << 0)
1031 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1033
1034 /*
1035  * These helpers are used to track how many pages are reserved for
1036  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037  * is guaranteed to have their future faults succeed.
1038  *
1039  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040  * the reserve counters are updated with the hugetlb_lock held. It is safe
1041  * to reset the VMA at fork() time as it is not in use yet and there is no
1042  * chance of the global counters getting corrupted as a result of the values.
1043  *
1044  * The private mapping reservation is represented in a subtly different
1045  * manner to a shared mapping.  A shared mapping has a region map associated
1046  * with the underlying file, this region map represents the backing file
1047  * pages which have ever had a reservation assigned which this persists even
1048  * after the page is instantiated.  A private mapping has a region map
1049  * associated with the original mmap which is attached to all VMAs which
1050  * reference it, this region map represents those offsets which have consumed
1051  * reservation ie. where pages have been instantiated.
1052  */
1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054 {
1055         return (unsigned long)vma->vm_private_data;
1056 }
1057
1058 static void set_vma_private_data(struct vm_area_struct *vma,
1059                                                         unsigned long value)
1060 {
1061         vma->vm_private_data = (void *)value;
1062 }
1063
1064 static void
1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066                                           struct hugetlb_cgroup *h_cg,
1067                                           struct hstate *h)
1068 {
1069 #ifdef CONFIG_CGROUP_HUGETLB
1070         if (!h_cg || !h) {
1071                 resv_map->reservation_counter = NULL;
1072                 resv_map->pages_per_hpage = 0;
1073                 resv_map->css = NULL;
1074         } else {
1075                 resv_map->reservation_counter =
1076                         &h_cg->rsvd_hugepage[hstate_index(h)];
1077                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1078                 resv_map->css = &h_cg->css;
1079         }
1080 #endif
1081 }
1082
1083 struct resv_map *resv_map_alloc(void)
1084 {
1085         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087
1088         if (!resv_map || !rg) {
1089                 kfree(resv_map);
1090                 kfree(rg);
1091                 return NULL;
1092         }
1093
1094         kref_init(&resv_map->refs);
1095         spin_lock_init(&resv_map->lock);
1096         INIT_LIST_HEAD(&resv_map->regions);
1097         init_rwsem(&resv_map->rw_sema);
1098
1099         resv_map->adds_in_progress = 0;
1100         /*
1101          * Initialize these to 0. On shared mappings, 0's here indicate these
1102          * fields don't do cgroup accounting. On private mappings, these will be
1103          * re-initialized to the proper values, to indicate that hugetlb cgroup
1104          * reservations are to be un-charged from here.
1105          */
1106         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1107
1108         INIT_LIST_HEAD(&resv_map->region_cache);
1109         list_add(&rg->link, &resv_map->region_cache);
1110         resv_map->region_cache_count = 1;
1111
1112         return resv_map;
1113 }
1114
1115 void resv_map_release(struct kref *ref)
1116 {
1117         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118         struct list_head *head = &resv_map->region_cache;
1119         struct file_region *rg, *trg;
1120
1121         /* Clear out any active regions before we release the map. */
1122         region_del(resv_map, 0, LONG_MAX);
1123
1124         /* ... and any entries left in the cache */
1125         list_for_each_entry_safe(rg, trg, head, link) {
1126                 list_del(&rg->link);
1127                 kfree(rg);
1128         }
1129
1130         VM_BUG_ON(resv_map->adds_in_progress);
1131
1132         kfree(resv_map);
1133 }
1134
1135 static inline struct resv_map *inode_resv_map(struct inode *inode)
1136 {
1137         /*
1138          * At inode evict time, i_mapping may not point to the original
1139          * address space within the inode.  This original address space
1140          * contains the pointer to the resv_map.  So, always use the
1141          * address space embedded within the inode.
1142          * The VERY common case is inode->mapping == &inode->i_data but,
1143          * this may not be true for device special inodes.
1144          */
1145         return (struct resv_map *)(&inode->i_data)->i_private_data;
1146 }
1147
1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1149 {
1150         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151         if (vma->vm_flags & VM_MAYSHARE) {
1152                 struct address_space *mapping = vma->vm_file->f_mapping;
1153                 struct inode *inode = mapping->host;
1154
1155                 return inode_resv_map(inode);
1156
1157         } else {
1158                 return (struct resv_map *)(get_vma_private_data(vma) &
1159                                                         ~HPAGE_RESV_MASK);
1160         }
1161 }
1162
1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1164 {
1165         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1167
1168         set_vma_private_data(vma, (unsigned long)map);
1169 }
1170
1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172 {
1173         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1175
1176         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1177 }
1178
1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180 {
1181         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1182
1183         return (get_vma_private_data(vma) & flag) != 0;
1184 }
1185
1186 bool __vma_private_lock(struct vm_area_struct *vma)
1187 {
1188         return !(vma->vm_flags & VM_MAYSHARE) &&
1189                 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190                 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191 }
1192
1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194 {
1195         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196         /*
1197          * Clear vm_private_data
1198          * - For shared mappings this is a per-vma semaphore that may be
1199          *   allocated in a subsequent call to hugetlb_vm_op_open.
1200          *   Before clearing, make sure pointer is not associated with vma
1201          *   as this will leak the structure.  This is the case when called
1202          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203          *   been called to allocate a new structure.
1204          * - For MAP_PRIVATE mappings, this is the reserve map which does
1205          *   not apply to children.  Faults generated by the children are
1206          *   not guaranteed to succeed, even if read-only.
1207          */
1208         if (vma->vm_flags & VM_MAYSHARE) {
1209                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210
1211                 if (vma_lock && vma_lock->vma != vma)
1212                         vma->vm_private_data = NULL;
1213         } else
1214                 vma->vm_private_data = NULL;
1215 }
1216
1217 /*
1218  * Reset and decrement one ref on hugepage private reservation.
1219  * Called with mm->mmap_lock writer semaphore held.
1220  * This function should be only used by move_vma() and operate on
1221  * same sized vma. It should never come here with last ref on the
1222  * reservation.
1223  */
1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225 {
1226         /*
1227          * Clear the old hugetlb private page reservation.
1228          * It has already been transferred to new_vma.
1229          *
1230          * During a mremap() operation of a hugetlb vma we call move_vma()
1231          * which copies vma into new_vma and unmaps vma. After the copy
1232          * operation both new_vma and vma share a reference to the resv_map
1233          * struct, and at that point vma is about to be unmapped. We don't
1234          * want to return the reservation to the pool at unmap of vma because
1235          * the reservation still lives on in new_vma, so simply decrement the
1236          * ref here and remove the resv_map reference from this vma.
1237          */
1238         struct resv_map *reservations = vma_resv_map(vma);
1239
1240         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242                 kref_put(&reservations->refs, resv_map_release);
1243         }
1244
1245         hugetlb_dup_vma_private(vma);
1246 }
1247
1248 /* Returns true if the VMA has associated reserve pages */
1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250 {
1251         if (vma->vm_flags & VM_NORESERVE) {
1252                 /*
1253                  * This address is already reserved by other process(chg == 0),
1254                  * so, we should decrement reserved count. Without decrementing,
1255                  * reserve count remains after releasing inode, because this
1256                  * allocated page will go into page cache and is regarded as
1257                  * coming from reserved pool in releasing step.  Currently, we
1258                  * don't have any other solution to deal with this situation
1259                  * properly, so add work-around here.
1260                  */
1261                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1262                         return true;
1263                 else
1264                         return false;
1265         }
1266
1267         /* Shared mappings always use reserves */
1268         if (vma->vm_flags & VM_MAYSHARE) {
1269                 /*
1270                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1271                  * be a region map for all pages.  The only situation where
1272                  * there is no region map is if a hole was punched via
1273                  * fallocate.  In this case, there really are no reserves to
1274                  * use.  This situation is indicated if chg != 0.
1275                  */
1276                 if (chg)
1277                         return false;
1278                 else
1279                         return true;
1280         }
1281
1282         /*
1283          * Only the process that called mmap() has reserves for
1284          * private mappings.
1285          */
1286         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287                 /*
1288                  * Like the shared case above, a hole punch or truncate
1289                  * could have been performed on the private mapping.
1290                  * Examine the value of chg to determine if reserves
1291                  * actually exist or were previously consumed.
1292                  * Very Subtle - The value of chg comes from a previous
1293                  * call to vma_needs_reserves().  The reserve map for
1294                  * private mappings has different (opposite) semantics
1295                  * than that of shared mappings.  vma_needs_reserves()
1296                  * has already taken this difference in semantics into
1297                  * account.  Therefore, the meaning of chg is the same
1298                  * as in the shared case above.  Code could easily be
1299                  * combined, but keeping it separate draws attention to
1300                  * subtle differences.
1301                  */
1302                 if (chg)
1303                         return false;
1304                 else
1305                         return true;
1306         }
1307
1308         return false;
1309 }
1310
1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312 {
1313         int nid = folio_nid(folio);
1314
1315         lockdep_assert_held(&hugetlb_lock);
1316         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317
1318         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319         h->free_huge_pages++;
1320         h->free_huge_pages_node[nid]++;
1321         folio_set_hugetlb_freed(folio);
1322 }
1323
1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325                                                                 int nid)
1326 {
1327         struct folio *folio;
1328         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329
1330         lockdep_assert_held(&hugetlb_lock);
1331         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332                 if (pin && !folio_is_longterm_pinnable(folio))
1333                         continue;
1334
1335                 if (folio_test_hwpoison(folio))
1336                         continue;
1337
1338                 list_move(&folio->lru, &h->hugepage_activelist);
1339                 folio_ref_unfreeze(folio, 1);
1340                 folio_clear_hugetlb_freed(folio);
1341                 h->free_huge_pages--;
1342                 h->free_huge_pages_node[nid]--;
1343                 return folio;
1344         }
1345
1346         return NULL;
1347 }
1348
1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350                                                         int nid, nodemask_t *nmask)
1351 {
1352         unsigned int cpuset_mems_cookie;
1353         struct zonelist *zonelist;
1354         struct zone *zone;
1355         struct zoneref *z;
1356         int node = NUMA_NO_NODE;
1357
1358         zonelist = node_zonelist(nid, gfp_mask);
1359
1360 retry_cpuset:
1361         cpuset_mems_cookie = read_mems_allowed_begin();
1362         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1363                 struct folio *folio;
1364
1365                 if (!cpuset_zone_allowed(zone, gfp_mask))
1366                         continue;
1367                 /*
1368                  * no need to ask again on the same node. Pool is node rather than
1369                  * zone aware
1370                  */
1371                 if (zone_to_nid(zone) == node)
1372                         continue;
1373                 node = zone_to_nid(zone);
1374
1375                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1376                 if (folio)
1377                         return folio;
1378         }
1379         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1380                 goto retry_cpuset;
1381
1382         return NULL;
1383 }
1384
1385 static unsigned long available_huge_pages(struct hstate *h)
1386 {
1387         return h->free_huge_pages - h->resv_huge_pages;
1388 }
1389
1390 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1391                                 struct vm_area_struct *vma,
1392                                 unsigned long address, int avoid_reserve,
1393                                 long chg)
1394 {
1395         struct folio *folio = NULL;
1396         struct mempolicy *mpol;
1397         gfp_t gfp_mask;
1398         nodemask_t *nodemask;
1399         int nid;
1400
1401         /*
1402          * A child process with MAP_PRIVATE mappings created by their parent
1403          * have no page reserves. This check ensures that reservations are
1404          * not "stolen". The child may still get SIGKILLed
1405          */
1406         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1407                 goto err;
1408
1409         /* If reserves cannot be used, ensure enough pages are in the pool */
1410         if (avoid_reserve && !available_huge_pages(h))
1411                 goto err;
1412
1413         gfp_mask = htlb_alloc_mask(h);
1414         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415
1416         if (mpol_is_preferred_many(mpol)) {
1417                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418                                                         nid, nodemask);
1419
1420                 /* Fallback to all nodes if page==NULL */
1421                 nodemask = NULL;
1422         }
1423
1424         if (!folio)
1425                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426                                                         nid, nodemask);
1427
1428         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1429                 folio_set_hugetlb_restore_reserve(folio);
1430                 h->resv_huge_pages--;
1431         }
1432
1433         mpol_cond_put(mpol);
1434         return folio;
1435
1436 err:
1437         return NULL;
1438 }
1439
1440 /*
1441  * common helper functions for hstate_next_node_to_{alloc|free}.
1442  * We may have allocated or freed a huge page based on a different
1443  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444  * be outside of *nodes_allowed.  Ensure that we use an allowed
1445  * node for alloc or free.
1446  */
1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448 {
1449         nid = next_node_in(nid, *nodes_allowed);
1450         VM_BUG_ON(nid >= MAX_NUMNODES);
1451
1452         return nid;
1453 }
1454
1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456 {
1457         if (!node_isset(nid, *nodes_allowed))
1458                 nid = next_node_allowed(nid, nodes_allowed);
1459         return nid;
1460 }
1461
1462 /*
1463  * returns the previously saved node ["this node"] from which to
1464  * allocate a persistent huge page for the pool and advance the
1465  * next node from which to allocate, handling wrap at end of node
1466  * mask.
1467  */
1468 static int hstate_next_node_to_alloc(int *next_node,
1469                                         nodemask_t *nodes_allowed)
1470 {
1471         int nid;
1472
1473         VM_BUG_ON(!nodes_allowed);
1474
1475         nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476         *next_node = next_node_allowed(nid, nodes_allowed);
1477
1478         return nid;
1479 }
1480
1481 /*
1482  * helper for remove_pool_hugetlb_folio() - return the previously saved
1483  * node ["this node"] from which to free a huge page.  Advance the
1484  * next node id whether or not we find a free huge page to free so
1485  * that the next attempt to free addresses the next node.
1486  */
1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488 {
1489         int nid;
1490
1491         VM_BUG_ON(!nodes_allowed);
1492
1493         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495
1496         return nid;
1497 }
1498
1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)            \
1500         for (nr_nodes = nodes_weight(*mask);                            \
1501                 nr_nodes > 0 &&                                         \
1502                 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1);     \
1503                 nr_nodes--)
1504
1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1506         for (nr_nodes = nodes_weight(*mask);                            \
1507                 nr_nodes > 0 &&                                         \
1508                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1509                 nr_nodes--)
1510
1511 /* used to demote non-gigantic_huge pages as well */
1512 static void __destroy_compound_gigantic_folio(struct folio *folio,
1513                                         unsigned int order, bool demote)
1514 {
1515         int i;
1516         int nr_pages = 1 << order;
1517         struct page *p;
1518
1519         atomic_set(&folio->_entire_mapcount, 0);
1520         atomic_set(&folio->_large_mapcount, 0);
1521         atomic_set(&folio->_pincount, 0);
1522
1523         for (i = 1; i < nr_pages; i++) {
1524                 p = folio_page(folio, i);
1525                 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1526                 p->mapping = NULL;
1527                 clear_compound_head(p);
1528                 if (!demote)
1529                         set_page_refcounted(p);
1530         }
1531
1532         __folio_clear_head(folio);
1533 }
1534
1535 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1536                                         unsigned int order)
1537 {
1538         __destroy_compound_gigantic_folio(folio, order, true);
1539 }
1540
1541 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1542 static void destroy_compound_gigantic_folio(struct folio *folio,
1543                                         unsigned int order)
1544 {
1545         __destroy_compound_gigantic_folio(folio, order, false);
1546 }
1547
1548 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1549 {
1550         /*
1551          * If the page isn't allocated using the cma allocator,
1552          * cma_release() returns false.
1553          */
1554 #ifdef CONFIG_CMA
1555         int nid = folio_nid(folio);
1556
1557         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1558                 return;
1559 #endif
1560
1561         free_contig_range(folio_pfn(folio), 1 << order);
1562 }
1563
1564 #ifdef CONFIG_CONTIG_ALLOC
1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566                 int nid, nodemask_t *nodemask)
1567 {
1568         struct page *page;
1569         unsigned long nr_pages = pages_per_huge_page(h);
1570         if (nid == NUMA_NO_NODE)
1571                 nid = numa_mem_id();
1572
1573 #ifdef CONFIG_CMA
1574         {
1575                 int node;
1576
1577                 if (hugetlb_cma[nid]) {
1578                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1579                                         huge_page_order(h), true);
1580                         if (page)
1581                                 return page_folio(page);
1582                 }
1583
1584                 if (!(gfp_mask & __GFP_THISNODE)) {
1585                         for_each_node_mask(node, *nodemask) {
1586                                 if (node == nid || !hugetlb_cma[node])
1587                                         continue;
1588
1589                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1590                                                 huge_page_order(h), true);
1591                                 if (page)
1592                                         return page_folio(page);
1593                         }
1594                 }
1595         }
1596 #endif
1597
1598         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1599         return page ? page_folio(page) : NULL;
1600 }
1601
1602 #else /* !CONFIG_CONTIG_ALLOC */
1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604                                         int nid, nodemask_t *nodemask)
1605 {
1606         return NULL;
1607 }
1608 #endif /* CONFIG_CONTIG_ALLOC */
1609
1610 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1611 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1612                                         int nid, nodemask_t *nodemask)
1613 {
1614         return NULL;
1615 }
1616 static inline void free_gigantic_folio(struct folio *folio,
1617                                                 unsigned int order) { }
1618 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1619                                                 unsigned int order) { }
1620 #endif
1621
1622 /*
1623  * Remove hugetlb folio from lists.
1624  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1625  * folio appears as just a compound page.  Otherwise, wait until after
1626  * allocating vmemmap to clear the flag.
1627  *
1628  * Must be called with hugetlb lock held.
1629  */
1630 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1631                                                         bool adjust_surplus)
1632 {
1633         int nid = folio_nid(folio);
1634
1635         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1636         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1637
1638         lockdep_assert_held(&hugetlb_lock);
1639         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1640                 return;
1641
1642         list_del(&folio->lru);
1643
1644         if (folio_test_hugetlb_freed(folio)) {
1645                 folio_clear_hugetlb_freed(folio);
1646                 h->free_huge_pages--;
1647                 h->free_huge_pages_node[nid]--;
1648         }
1649         if (adjust_surplus) {
1650                 h->surplus_huge_pages--;
1651                 h->surplus_huge_pages_node[nid]--;
1652         }
1653
1654         /*
1655          * We can only clear the hugetlb flag after allocating vmemmap
1656          * pages.  Otherwise, someone (memory error handling) may try to write
1657          * to tail struct pages.
1658          */
1659         if (!folio_test_hugetlb_vmemmap_optimized(folio))
1660                 __folio_clear_hugetlb(folio);
1661
1662         h->nr_huge_pages--;
1663         h->nr_huge_pages_node[nid]--;
1664 }
1665
1666 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1667                              bool adjust_surplus)
1668 {
1669         int nid = folio_nid(folio);
1670
1671         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1672
1673         lockdep_assert_held(&hugetlb_lock);
1674
1675         INIT_LIST_HEAD(&folio->lru);
1676         h->nr_huge_pages++;
1677         h->nr_huge_pages_node[nid]++;
1678
1679         if (adjust_surplus) {
1680                 h->surplus_huge_pages++;
1681                 h->surplus_huge_pages_node[nid]++;
1682         }
1683
1684         __folio_set_hugetlb(folio);
1685         folio_change_private(folio, NULL);
1686         /*
1687          * We have to set hugetlb_vmemmap_optimized again as above
1688          * folio_change_private(folio, NULL) cleared it.
1689          */
1690         folio_set_hugetlb_vmemmap_optimized(folio);
1691
1692         arch_clear_hugetlb_flags(folio);
1693         enqueue_hugetlb_folio(h, folio);
1694 }
1695
1696 static void __update_and_free_hugetlb_folio(struct hstate *h,
1697                                                 struct folio *folio)
1698 {
1699         bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1700
1701         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1702                 return;
1703
1704         /*
1705          * If we don't know which subpages are hwpoisoned, we can't free
1706          * the hugepage, so it's leaked intentionally.
1707          */
1708         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1709                 return;
1710
1711         /*
1712          * If folio is not vmemmap optimized (!clear_flag), then the folio
1713          * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1714          * can only be passed hugetlb pages and will BUG otherwise.
1715          */
1716         if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1717                 spin_lock_irq(&hugetlb_lock);
1718                 /*
1719                  * If we cannot allocate vmemmap pages, just refuse to free the
1720                  * page and put the page back on the hugetlb free list and treat
1721                  * as a surplus page.
1722                  */
1723                 add_hugetlb_folio(h, folio, true);
1724                 spin_unlock_irq(&hugetlb_lock);
1725                 return;
1726         }
1727
1728         /*
1729          * If vmemmap pages were allocated above, then we need to clear the
1730          * hugetlb flag under the hugetlb lock.
1731          */
1732         if (folio_test_hugetlb(folio)) {
1733                 spin_lock_irq(&hugetlb_lock);
1734                 __folio_clear_hugetlb(folio);
1735                 spin_unlock_irq(&hugetlb_lock);
1736         }
1737
1738         /*
1739          * Move PageHWPoison flag from head page to the raw error pages,
1740          * which makes any healthy subpages reusable.
1741          */
1742         if (unlikely(folio_test_hwpoison(folio)))
1743                 folio_clear_hugetlb_hwpoison(folio);
1744
1745         folio_ref_unfreeze(folio, 1);
1746
1747         /*
1748          * Non-gigantic pages demoted from CMA allocated gigantic pages
1749          * need to be given back to CMA in free_gigantic_folio.
1750          */
1751         if (hstate_is_gigantic(h) ||
1752             hugetlb_cma_folio(folio, huge_page_order(h))) {
1753                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754                 free_gigantic_folio(folio, huge_page_order(h));
1755         } else {
1756                 INIT_LIST_HEAD(&folio->_deferred_list);
1757                 folio_put(folio);
1758         }
1759 }
1760
1761 /*
1762  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1763  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1764  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1765  * the vmemmap pages.
1766  *
1767  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1768  * freed and frees them one-by-one. As the page->mapping pointer is going
1769  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1770  * structure of a lockless linked list of huge pages to be freed.
1771  */
1772 static LLIST_HEAD(hpage_freelist);
1773
1774 static void free_hpage_workfn(struct work_struct *work)
1775 {
1776         struct llist_node *node;
1777
1778         node = llist_del_all(&hpage_freelist);
1779
1780         while (node) {
1781                 struct folio *folio;
1782                 struct hstate *h;
1783
1784                 folio = container_of((struct address_space **)node,
1785                                      struct folio, mapping);
1786                 node = node->next;
1787                 folio->mapping = NULL;
1788                 /*
1789                  * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1790                  * folio_hstate() is going to trigger because a previous call to
1791                  * remove_hugetlb_folio() will clear the hugetlb bit, so do
1792                  * not use folio_hstate() directly.
1793                  */
1794                 h = size_to_hstate(folio_size(folio));
1795
1796                 __update_and_free_hugetlb_folio(h, folio);
1797
1798                 cond_resched();
1799         }
1800 }
1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1802
1803 static inline void flush_free_hpage_work(struct hstate *h)
1804 {
1805         if (hugetlb_vmemmap_optimizable(h))
1806                 flush_work(&free_hpage_work);
1807 }
1808
1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1810                                  bool atomic)
1811 {
1812         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1813                 __update_and_free_hugetlb_folio(h, folio);
1814                 return;
1815         }
1816
1817         /*
1818          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1819          *
1820          * Only call schedule_work() if hpage_freelist is previously
1821          * empty. Otherwise, schedule_work() had been called but the workfn
1822          * hasn't retrieved the list yet.
1823          */
1824         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1825                 schedule_work(&free_hpage_work);
1826 }
1827
1828 static void bulk_vmemmap_restore_error(struct hstate *h,
1829                                         struct list_head *folio_list,
1830                                         struct list_head *non_hvo_folios)
1831 {
1832         struct folio *folio, *t_folio;
1833
1834         if (!list_empty(non_hvo_folios)) {
1835                 /*
1836                  * Free any restored hugetlb pages so that restore of the
1837                  * entire list can be retried.
1838                  * The idea is that in the common case of ENOMEM errors freeing
1839                  * hugetlb pages with vmemmap we will free up memory so that we
1840                  * can allocate vmemmap for more hugetlb pages.
1841                  */
1842                 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1843                         list_del(&folio->lru);
1844                         spin_lock_irq(&hugetlb_lock);
1845                         __folio_clear_hugetlb(folio);
1846                         spin_unlock_irq(&hugetlb_lock);
1847                         update_and_free_hugetlb_folio(h, folio, false);
1848                         cond_resched();
1849                 }
1850         } else {
1851                 /*
1852                  * In the case where there are no folios which can be
1853                  * immediately freed, we loop through the list trying to restore
1854                  * vmemmap individually in the hope that someone elsewhere may
1855                  * have done something to cause success (such as freeing some
1856                  * memory).  If unable to restore a hugetlb page, the hugetlb
1857                  * page is made a surplus page and removed from the list.
1858                  * If are able to restore vmemmap and free one hugetlb page, we
1859                  * quit processing the list to retry the bulk operation.
1860                  */
1861                 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1862                         if (hugetlb_vmemmap_restore_folio(h, folio)) {
1863                                 list_del(&folio->lru);
1864                                 spin_lock_irq(&hugetlb_lock);
1865                                 add_hugetlb_folio(h, folio, true);
1866                                 spin_unlock_irq(&hugetlb_lock);
1867                         } else {
1868                                 list_del(&folio->lru);
1869                                 spin_lock_irq(&hugetlb_lock);
1870                                 __folio_clear_hugetlb(folio);
1871                                 spin_unlock_irq(&hugetlb_lock);
1872                                 update_and_free_hugetlb_folio(h, folio, false);
1873                                 cond_resched();
1874                                 break;
1875                         }
1876         }
1877 }
1878
1879 static void update_and_free_pages_bulk(struct hstate *h,
1880                                                 struct list_head *folio_list)
1881 {
1882         long ret;
1883         struct folio *folio, *t_folio;
1884         LIST_HEAD(non_hvo_folios);
1885
1886         /*
1887          * First allocate required vmemmmap (if necessary) for all folios.
1888          * Carefully handle errors and free up any available hugetlb pages
1889          * in an effort to make forward progress.
1890          */
1891 retry:
1892         ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1893         if (ret < 0) {
1894                 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1895                 goto retry;
1896         }
1897
1898         /*
1899          * At this point, list should be empty, ret should be >= 0 and there
1900          * should only be pages on the non_hvo_folios list.
1901          * Do note that the non_hvo_folios list could be empty.
1902          * Without HVO enabled, ret will be 0 and there is no need to call
1903          * __folio_clear_hugetlb as this was done previously.
1904          */
1905         VM_WARN_ON(!list_empty(folio_list));
1906         VM_WARN_ON(ret < 0);
1907         if (!list_empty(&non_hvo_folios) && ret) {
1908                 spin_lock_irq(&hugetlb_lock);
1909                 list_for_each_entry(folio, &non_hvo_folios, lru)
1910                         __folio_clear_hugetlb(folio);
1911                 spin_unlock_irq(&hugetlb_lock);
1912         }
1913
1914         list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1915                 update_and_free_hugetlb_folio(h, folio, false);
1916                 cond_resched();
1917         }
1918 }
1919
1920 struct hstate *size_to_hstate(unsigned long size)
1921 {
1922         struct hstate *h;
1923
1924         for_each_hstate(h) {
1925                 if (huge_page_size(h) == size)
1926                         return h;
1927         }
1928         return NULL;
1929 }
1930
1931 void free_huge_folio(struct folio *folio)
1932 {
1933         /*
1934          * Can't pass hstate in here because it is called from the
1935          * generic mm code.
1936          */
1937         struct hstate *h = folio_hstate(folio);
1938         int nid = folio_nid(folio);
1939         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1940         bool restore_reserve;
1941         unsigned long flags;
1942
1943         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1944         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1945
1946         hugetlb_set_folio_subpool(folio, NULL);
1947         if (folio_test_anon(folio))
1948                 __ClearPageAnonExclusive(&folio->page);
1949         folio->mapping = NULL;
1950         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1951         folio_clear_hugetlb_restore_reserve(folio);
1952
1953         /*
1954          * If HPageRestoreReserve was set on page, page allocation consumed a
1955          * reservation.  If the page was associated with a subpool, there
1956          * would have been a page reserved in the subpool before allocation
1957          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1958          * reservation, do not call hugepage_subpool_put_pages() as this will
1959          * remove the reserved page from the subpool.
1960          */
1961         if (!restore_reserve) {
1962                 /*
1963                  * A return code of zero implies that the subpool will be
1964                  * under its minimum size if the reservation is not restored
1965                  * after page is free.  Therefore, force restore_reserve
1966                  * operation.
1967                  */
1968                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1969                         restore_reserve = true;
1970         }
1971
1972         spin_lock_irqsave(&hugetlb_lock, flags);
1973         folio_clear_hugetlb_migratable(folio);
1974         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1975                                      pages_per_huge_page(h), folio);
1976         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1977                                           pages_per_huge_page(h), folio);
1978         mem_cgroup_uncharge(folio);
1979         if (restore_reserve)
1980                 h->resv_huge_pages++;
1981
1982         if (folio_test_hugetlb_temporary(folio)) {
1983                 remove_hugetlb_folio(h, folio, false);
1984                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1985                 update_and_free_hugetlb_folio(h, folio, true);
1986         } else if (h->surplus_huge_pages_node[nid]) {
1987                 /* remove the page from active list */
1988                 remove_hugetlb_folio(h, folio, true);
1989                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1990                 update_and_free_hugetlb_folio(h, folio, true);
1991         } else {
1992                 arch_clear_hugetlb_flags(folio);
1993                 enqueue_hugetlb_folio(h, folio);
1994                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1995         }
1996 }
1997
1998 /*
1999  * Must be called with the hugetlb lock held
2000  */
2001 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2002 {
2003         lockdep_assert_held(&hugetlb_lock);
2004         h->nr_huge_pages++;
2005         h->nr_huge_pages_node[nid]++;
2006 }
2007
2008 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2009 {
2010         __folio_set_hugetlb(folio);
2011         INIT_LIST_HEAD(&folio->lru);
2012         hugetlb_set_folio_subpool(folio, NULL);
2013         set_hugetlb_cgroup(folio, NULL);
2014         set_hugetlb_cgroup_rsvd(folio, NULL);
2015 }
2016
2017 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2018 {
2019         init_new_hugetlb_folio(h, folio);
2020         hugetlb_vmemmap_optimize_folio(h, folio);
2021 }
2022
2023 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2024 {
2025         __prep_new_hugetlb_folio(h, folio);
2026         spin_lock_irq(&hugetlb_lock);
2027         __prep_account_new_huge_page(h, nid);
2028         spin_unlock_irq(&hugetlb_lock);
2029 }
2030
2031 static bool __prep_compound_gigantic_folio(struct folio *folio,
2032                                         unsigned int order, bool demote)
2033 {
2034         int i, j;
2035         int nr_pages = 1 << order;
2036         struct page *p;
2037
2038         __folio_clear_reserved(folio);
2039         for (i = 0; i < nr_pages; i++) {
2040                 p = folio_page(folio, i);
2041
2042                 /*
2043                  * For gigantic hugepages allocated through bootmem at
2044                  * boot, it's safer to be consistent with the not-gigantic
2045                  * hugepages and clear the PG_reserved bit from all tail pages
2046                  * too.  Otherwise drivers using get_user_pages() to access tail
2047                  * pages may get the reference counting wrong if they see
2048                  * PG_reserved set on a tail page (despite the head page not
2049                  * having PG_reserved set).  Enforcing this consistency between
2050                  * head and tail pages allows drivers to optimize away a check
2051                  * on the head page when they need know if put_page() is needed
2052                  * after get_user_pages().
2053                  */
2054                 if (i != 0)     /* head page cleared above */
2055                         __ClearPageReserved(p);
2056                 /*
2057                  * Subtle and very unlikely
2058                  *
2059                  * Gigantic 'page allocators' such as memblock or cma will
2060                  * return a set of pages with each page ref counted.  We need
2061                  * to turn this set of pages into a compound page with tail
2062                  * page ref counts set to zero.  Code such as speculative page
2063                  * cache adding could take a ref on a 'to be' tail page.
2064                  * We need to respect any increased ref count, and only set
2065                  * the ref count to zero if count is currently 1.  If count
2066                  * is not 1, we return an error.  An error return indicates
2067                  * the set of pages can not be converted to a gigantic page.
2068                  * The caller who allocated the pages should then discard the
2069                  * pages using the appropriate free interface.
2070                  *
2071                  * In the case of demote, the ref count will be zero.
2072                  */
2073                 if (!demote) {
2074                         if (!page_ref_freeze(p, 1)) {
2075                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2076                                 goto out_error;
2077                         }
2078                 } else {
2079                         VM_BUG_ON_PAGE(page_count(p), p);
2080                 }
2081                 if (i != 0)
2082                         set_compound_head(p, &folio->page);
2083         }
2084         __folio_set_head(folio);
2085         /* we rely on prep_new_hugetlb_folio to set the hugetlb flag */
2086         folio_set_order(folio, order);
2087         atomic_set(&folio->_entire_mapcount, -1);
2088         atomic_set(&folio->_large_mapcount, -1);
2089         atomic_set(&folio->_pincount, 0);
2090         return true;
2091
2092 out_error:
2093         /* undo page modifications made above */
2094         for (j = 0; j < i; j++) {
2095                 p = folio_page(folio, j);
2096                 if (j != 0)
2097                         clear_compound_head(p);
2098                 set_page_refcounted(p);
2099         }
2100         /* need to clear PG_reserved on remaining tail pages  */
2101         for (; j < nr_pages; j++) {
2102                 p = folio_page(folio, j);
2103                 __ClearPageReserved(p);
2104         }
2105         return false;
2106 }
2107
2108 static bool prep_compound_gigantic_folio(struct folio *folio,
2109                                                         unsigned int order)
2110 {
2111         return __prep_compound_gigantic_folio(folio, order, false);
2112 }
2113
2114 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2115                                                         unsigned int order)
2116 {
2117         return __prep_compound_gigantic_folio(folio, order, true);
2118 }
2119
2120 /*
2121  * Find and lock address space (mapping) in write mode.
2122  *
2123  * Upon entry, the folio is locked which means that folio_mapping() is
2124  * stable.  Due to locking order, we can only trylock_write.  If we can
2125  * not get the lock, simply return NULL to caller.
2126  */
2127 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
2128 {
2129         struct address_space *mapping = folio_mapping(folio);
2130
2131         if (!mapping)
2132                 return mapping;
2133
2134         if (i_mmap_trylock_write(mapping))
2135                 return mapping;
2136
2137         return NULL;
2138 }
2139
2140 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2141                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2142                 nodemask_t *node_alloc_noretry)
2143 {
2144         int order = huge_page_order(h);
2145         struct folio *folio;
2146         bool alloc_try_hard = true;
2147         bool retry = true;
2148
2149         /*
2150          * By default we always try hard to allocate the folio with
2151          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
2152          * a loop (to adjust global huge page counts) and previous allocation
2153          * failed, do not continue to try hard on the same node.  Use the
2154          * node_alloc_noretry bitmap to manage this state information.
2155          */
2156         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2157                 alloc_try_hard = false;
2158         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2159         if (alloc_try_hard)
2160                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2161         if (nid == NUMA_NO_NODE)
2162                 nid = numa_mem_id();
2163 retry:
2164         folio = __folio_alloc(gfp_mask, order, nid, nmask);
2165         /* Ensure hugetlb folio won't have large_rmappable flag set. */
2166         if (folio)
2167                 folio_clear_large_rmappable(folio);
2168
2169         if (folio && !folio_ref_freeze(folio, 1)) {
2170                 folio_put(folio);
2171                 if (retry) {    /* retry once */
2172                         retry = false;
2173                         goto retry;
2174                 }
2175                 /* WOW!  twice in a row. */
2176                 pr_warn("HugeTLB unexpected inflated folio ref count\n");
2177                 folio = NULL;
2178         }
2179
2180         /*
2181          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2182          * folio this indicates an overall state change.  Clear bit so
2183          * that we resume normal 'try hard' allocations.
2184          */
2185         if (node_alloc_noretry && folio && !alloc_try_hard)
2186                 node_clear(nid, *node_alloc_noretry);
2187
2188         /*
2189          * If we tried hard to get a folio but failed, set bit so that
2190          * subsequent attempts will not try as hard until there is an
2191          * overall state change.
2192          */
2193         if (node_alloc_noretry && !folio && alloc_try_hard)
2194                 node_set(nid, *node_alloc_noretry);
2195
2196         if (!folio) {
2197                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2198                 return NULL;
2199         }
2200
2201         __count_vm_event(HTLB_BUDDY_PGALLOC);
2202         return folio;
2203 }
2204
2205 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2206                                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2207                                 nodemask_t *node_alloc_noretry)
2208 {
2209         struct folio *folio;
2210         bool retry = false;
2211
2212 retry:
2213         if (hstate_is_gigantic(h))
2214                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2215         else
2216                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2217                                 nid, nmask, node_alloc_noretry);
2218         if (!folio)
2219                 return NULL;
2220
2221         if (hstate_is_gigantic(h)) {
2222                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2223                         /*
2224                          * Rare failure to convert pages to compound page.
2225                          * Free pages and try again - ONCE!
2226                          */
2227                         free_gigantic_folio(folio, huge_page_order(h));
2228                         if (!retry) {
2229                                 retry = true;
2230                                 goto retry;
2231                         }
2232                         return NULL;
2233                 }
2234         }
2235
2236         return folio;
2237 }
2238
2239 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2240                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2241                 nodemask_t *node_alloc_noretry)
2242 {
2243         struct folio *folio;
2244
2245         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2246                                                 node_alloc_noretry);
2247         if (folio)
2248                 init_new_hugetlb_folio(h, folio);
2249         return folio;
2250 }
2251
2252 /*
2253  * Common helper to allocate a fresh hugetlb page. All specific allocators
2254  * should use this function to get new hugetlb pages
2255  *
2256  * Note that returned page is 'frozen':  ref count of head page and all tail
2257  * pages is zero.
2258  */
2259 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2260                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2261                 nodemask_t *node_alloc_noretry)
2262 {
2263         struct folio *folio;
2264
2265         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2266                                                 node_alloc_noretry);
2267         if (!folio)
2268                 return NULL;
2269
2270         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2271         return folio;
2272 }
2273
2274 static void prep_and_add_allocated_folios(struct hstate *h,
2275                                         struct list_head *folio_list)
2276 {
2277         unsigned long flags;
2278         struct folio *folio, *tmp_f;
2279
2280         /* Send list for bulk vmemmap optimization processing */
2281         hugetlb_vmemmap_optimize_folios(h, folio_list);
2282
2283         /* Add all new pool pages to free lists in one lock cycle */
2284         spin_lock_irqsave(&hugetlb_lock, flags);
2285         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2286                 __prep_account_new_huge_page(h, folio_nid(folio));
2287                 enqueue_hugetlb_folio(h, folio);
2288         }
2289         spin_unlock_irqrestore(&hugetlb_lock, flags);
2290 }
2291
2292 /*
2293  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2294  * will later be added to the appropriate hugetlb pool.
2295  */
2296 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2297                                         nodemask_t *nodes_allowed,
2298                                         nodemask_t *node_alloc_noretry,
2299                                         int *next_node)
2300 {
2301         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2302         int nr_nodes, node;
2303
2304         for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2305                 struct folio *folio;
2306
2307                 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2308                                         nodes_allowed, node_alloc_noretry);
2309                 if (folio)
2310                         return folio;
2311         }
2312
2313         return NULL;
2314 }
2315
2316 /*
2317  * Remove huge page from pool from next node to free.  Attempt to keep
2318  * persistent huge pages more or less balanced over allowed nodes.
2319  * This routine only 'removes' the hugetlb page.  The caller must make
2320  * an additional call to free the page to low level allocators.
2321  * Called with hugetlb_lock locked.
2322  */
2323 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2324                 nodemask_t *nodes_allowed, bool acct_surplus)
2325 {
2326         int nr_nodes, node;
2327         struct folio *folio = NULL;
2328
2329         lockdep_assert_held(&hugetlb_lock);
2330         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2331                 /*
2332                  * If we're returning unused surplus pages, only examine
2333                  * nodes with surplus pages.
2334                  */
2335                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2336                     !list_empty(&h->hugepage_freelists[node])) {
2337                         folio = list_entry(h->hugepage_freelists[node].next,
2338                                           struct folio, lru);
2339                         remove_hugetlb_folio(h, folio, acct_surplus);
2340                         break;
2341                 }
2342         }
2343
2344         return folio;
2345 }
2346
2347 /*
2348  * Dissolve a given free hugetlb folio into free buddy pages. This function
2349  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2350  * This function returns values like below:
2351  *
2352  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2353  *           when the system is under memory pressure and the feature of
2354  *           freeing unused vmemmap pages associated with each hugetlb page
2355  *           is enabled.
2356  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2357  *           (allocated or reserved.)
2358  *       0:  successfully dissolved free hugepages or the page is not a
2359  *           hugepage (considered as already dissolved)
2360  */
2361 int dissolve_free_hugetlb_folio(struct folio *folio)
2362 {
2363         int rc = -EBUSY;
2364
2365 retry:
2366         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2367         if (!folio_test_hugetlb(folio))
2368                 return 0;
2369
2370         spin_lock_irq(&hugetlb_lock);
2371         if (!folio_test_hugetlb(folio)) {
2372                 rc = 0;
2373                 goto out;
2374         }
2375
2376         if (!folio_ref_count(folio)) {
2377                 struct hstate *h = folio_hstate(folio);
2378                 if (!available_huge_pages(h))
2379                         goto out;
2380
2381                 /*
2382                  * We should make sure that the page is already on the free list
2383                  * when it is dissolved.
2384                  */
2385                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2386                         spin_unlock_irq(&hugetlb_lock);
2387                         cond_resched();
2388
2389                         /*
2390                          * Theoretically, we should return -EBUSY when we
2391                          * encounter this race. In fact, we have a chance
2392                          * to successfully dissolve the page if we do a
2393                          * retry. Because the race window is quite small.
2394                          * If we seize this opportunity, it is an optimization
2395                          * for increasing the success rate of dissolving page.
2396                          */
2397                         goto retry;
2398                 }
2399
2400                 remove_hugetlb_folio(h, folio, false);
2401                 h->max_huge_pages--;
2402                 spin_unlock_irq(&hugetlb_lock);
2403
2404                 /*
2405                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2406                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2407                  * free the page if it can not allocate required vmemmap.  We
2408                  * need to adjust max_huge_pages if the page is not freed.
2409                  * Attempt to allocate vmemmmap here so that we can take
2410                  * appropriate action on failure.
2411                  *
2412                  * The folio_test_hugetlb check here is because
2413                  * remove_hugetlb_folio will clear hugetlb folio flag for
2414                  * non-vmemmap optimized hugetlb folios.
2415                  */
2416                 if (folio_test_hugetlb(folio)) {
2417                         rc = hugetlb_vmemmap_restore_folio(h, folio);
2418                         if (rc) {
2419                                 spin_lock_irq(&hugetlb_lock);
2420                                 add_hugetlb_folio(h, folio, false);
2421                                 h->max_huge_pages++;
2422                                 goto out;
2423                         }
2424                 } else
2425                         rc = 0;
2426
2427                 update_and_free_hugetlb_folio(h, folio, false);
2428                 return rc;
2429         }
2430 out:
2431         spin_unlock_irq(&hugetlb_lock);
2432         return rc;
2433 }
2434
2435 /*
2436  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2437  * make specified memory blocks removable from the system.
2438  * Note that this will dissolve a free gigantic hugepage completely, if any
2439  * part of it lies within the given range.
2440  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2441  * free hugetlb folios that were dissolved before that error are lost.
2442  */
2443 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2444 {
2445         unsigned long pfn;
2446         struct folio *folio;
2447         int rc = 0;
2448         unsigned int order;
2449         struct hstate *h;
2450
2451         if (!hugepages_supported())
2452                 return rc;
2453
2454         order = huge_page_order(&default_hstate);
2455         for_each_hstate(h)
2456                 order = min(order, huge_page_order(h));
2457
2458         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2459                 folio = pfn_folio(pfn);
2460                 rc = dissolve_free_hugetlb_folio(folio);
2461                 if (rc)
2462                         break;
2463         }
2464
2465         return rc;
2466 }
2467
2468 /*
2469  * Allocates a fresh surplus page from the page allocator.
2470  */
2471 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2472                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2473 {
2474         struct folio *folio = NULL;
2475
2476         if (hstate_is_gigantic(h))
2477                 return NULL;
2478
2479         spin_lock_irq(&hugetlb_lock);
2480         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2481                 goto out_unlock;
2482         spin_unlock_irq(&hugetlb_lock);
2483
2484         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2485         if (!folio)
2486                 return NULL;
2487
2488         spin_lock_irq(&hugetlb_lock);
2489         /*
2490          * We could have raced with the pool size change.
2491          * Double check that and simply deallocate the new page
2492          * if we would end up overcommiting the surpluses. Abuse
2493          * temporary page to workaround the nasty free_huge_folio
2494          * codeflow
2495          */
2496         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2497                 folio_set_hugetlb_temporary(folio);
2498                 spin_unlock_irq(&hugetlb_lock);
2499                 free_huge_folio(folio);
2500                 return NULL;
2501         }
2502
2503         h->surplus_huge_pages++;
2504         h->surplus_huge_pages_node[folio_nid(folio)]++;
2505
2506 out_unlock:
2507         spin_unlock_irq(&hugetlb_lock);
2508
2509         return folio;
2510 }
2511
2512 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2513                                      int nid, nodemask_t *nmask)
2514 {
2515         struct folio *folio;
2516
2517         if (hstate_is_gigantic(h))
2518                 return NULL;
2519
2520         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2521         if (!folio)
2522                 return NULL;
2523
2524         /* fresh huge pages are frozen */
2525         folio_ref_unfreeze(folio, 1);
2526         /*
2527          * We do not account these pages as surplus because they are only
2528          * temporary and will be released properly on the last reference
2529          */
2530         folio_set_hugetlb_temporary(folio);
2531
2532         return folio;
2533 }
2534
2535 /*
2536  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2537  */
2538 static
2539 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2540                 struct vm_area_struct *vma, unsigned long addr)
2541 {
2542         struct folio *folio = NULL;
2543         struct mempolicy *mpol;
2544         gfp_t gfp_mask = htlb_alloc_mask(h);
2545         int nid;
2546         nodemask_t *nodemask;
2547
2548         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2549         if (mpol_is_preferred_many(mpol)) {
2550                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2551
2552                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2553                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2554
2555                 /* Fallback to all nodes if page==NULL */
2556                 nodemask = NULL;
2557         }
2558
2559         if (!folio)
2560                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2561         mpol_cond_put(mpol);
2562         return folio;
2563 }
2564
2565 /* folio migration callback function */
2566 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2567                 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2568 {
2569         spin_lock_irq(&hugetlb_lock);
2570         if (available_huge_pages(h)) {
2571                 struct folio *folio;
2572
2573                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2574                                                 preferred_nid, nmask);
2575                 if (folio) {
2576                         spin_unlock_irq(&hugetlb_lock);
2577                         return folio;
2578                 }
2579         }
2580         spin_unlock_irq(&hugetlb_lock);
2581
2582         /* We cannot fallback to other nodes, as we could break the per-node pool. */
2583         if (!allow_alloc_fallback)
2584                 gfp_mask |= __GFP_THISNODE;
2585
2586         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2587 }
2588
2589 /*
2590  * Increase the hugetlb pool such that it can accommodate a reservation
2591  * of size 'delta'.
2592  */
2593 static int gather_surplus_pages(struct hstate *h, long delta)
2594         __must_hold(&hugetlb_lock)
2595 {
2596         LIST_HEAD(surplus_list);
2597         struct folio *folio, *tmp;
2598         int ret;
2599         long i;
2600         long needed, allocated;
2601         bool alloc_ok = true;
2602
2603         lockdep_assert_held(&hugetlb_lock);
2604         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2605         if (needed <= 0) {
2606                 h->resv_huge_pages += delta;
2607                 return 0;
2608         }
2609
2610         allocated = 0;
2611
2612         ret = -ENOMEM;
2613 retry:
2614         spin_unlock_irq(&hugetlb_lock);
2615         for (i = 0; i < needed; i++) {
2616                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2617                                 NUMA_NO_NODE, NULL);
2618                 if (!folio) {
2619                         alloc_ok = false;
2620                         break;
2621                 }
2622                 list_add(&folio->lru, &surplus_list);
2623                 cond_resched();
2624         }
2625         allocated += i;
2626
2627         /*
2628          * After retaking hugetlb_lock, we need to recalculate 'needed'
2629          * because either resv_huge_pages or free_huge_pages may have changed.
2630          */
2631         spin_lock_irq(&hugetlb_lock);
2632         needed = (h->resv_huge_pages + delta) -
2633                         (h->free_huge_pages + allocated);
2634         if (needed > 0) {
2635                 if (alloc_ok)
2636                         goto retry;
2637                 /*
2638                  * We were not able to allocate enough pages to
2639                  * satisfy the entire reservation so we free what
2640                  * we've allocated so far.
2641                  */
2642                 goto free;
2643         }
2644         /*
2645          * The surplus_list now contains _at_least_ the number of extra pages
2646          * needed to accommodate the reservation.  Add the appropriate number
2647          * of pages to the hugetlb pool and free the extras back to the buddy
2648          * allocator.  Commit the entire reservation here to prevent another
2649          * process from stealing the pages as they are added to the pool but
2650          * before they are reserved.
2651          */
2652         needed += allocated;
2653         h->resv_huge_pages += delta;
2654         ret = 0;
2655
2656         /* Free the needed pages to the hugetlb pool */
2657         list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2658                 if ((--needed) < 0)
2659                         break;
2660                 /* Add the page to the hugetlb allocator */
2661                 enqueue_hugetlb_folio(h, folio);
2662         }
2663 free:
2664         spin_unlock_irq(&hugetlb_lock);
2665
2666         /*
2667          * Free unnecessary surplus pages to the buddy allocator.
2668          * Pages have no ref count, call free_huge_folio directly.
2669          */
2670         list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2671                 free_huge_folio(folio);
2672         spin_lock_irq(&hugetlb_lock);
2673
2674         return ret;
2675 }
2676
2677 /*
2678  * This routine has two main purposes:
2679  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2680  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2681  *    to the associated reservation map.
2682  * 2) Free any unused surplus pages that may have been allocated to satisfy
2683  *    the reservation.  As many as unused_resv_pages may be freed.
2684  */
2685 static void return_unused_surplus_pages(struct hstate *h,
2686                                         unsigned long unused_resv_pages)
2687 {
2688         unsigned long nr_pages;
2689         LIST_HEAD(page_list);
2690
2691         lockdep_assert_held(&hugetlb_lock);
2692         /* Uncommit the reservation */
2693         h->resv_huge_pages -= unused_resv_pages;
2694
2695         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2696                 goto out;
2697
2698         /*
2699          * Part (or even all) of the reservation could have been backed
2700          * by pre-allocated pages. Only free surplus pages.
2701          */
2702         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2703
2704         /*
2705          * We want to release as many surplus pages as possible, spread
2706          * evenly across all nodes with memory. Iterate across these nodes
2707          * until we can no longer free unreserved surplus pages. This occurs
2708          * when the nodes with surplus pages have no free pages.
2709          * remove_pool_hugetlb_folio() will balance the freed pages across the
2710          * on-line nodes with memory and will handle the hstate accounting.
2711          */
2712         while (nr_pages--) {
2713                 struct folio *folio;
2714
2715                 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2716                 if (!folio)
2717                         goto out;
2718
2719                 list_add(&folio->lru, &page_list);
2720         }
2721
2722 out:
2723         spin_unlock_irq(&hugetlb_lock);
2724         update_and_free_pages_bulk(h, &page_list);
2725         spin_lock_irq(&hugetlb_lock);
2726 }
2727
2728
2729 /*
2730  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2731  * are used by the huge page allocation routines to manage reservations.
2732  *
2733  * vma_needs_reservation is called to determine if the huge page at addr
2734  * within the vma has an associated reservation.  If a reservation is
2735  * needed, the value 1 is returned.  The caller is then responsible for
2736  * managing the global reservation and subpool usage counts.  After
2737  * the huge page has been allocated, vma_commit_reservation is called
2738  * to add the page to the reservation map.  If the page allocation fails,
2739  * the reservation must be ended instead of committed.  vma_end_reservation
2740  * is called in such cases.
2741  *
2742  * In the normal case, vma_commit_reservation returns the same value
2743  * as the preceding vma_needs_reservation call.  The only time this
2744  * is not the case is if a reserve map was changed between calls.  It
2745  * is the responsibility of the caller to notice the difference and
2746  * take appropriate action.
2747  *
2748  * vma_add_reservation is used in error paths where a reservation must
2749  * be restored when a newly allocated huge page must be freed.  It is
2750  * to be called after calling vma_needs_reservation to determine if a
2751  * reservation exists.
2752  *
2753  * vma_del_reservation is used in error paths where an entry in the reserve
2754  * map was created during huge page allocation and must be removed.  It is to
2755  * be called after calling vma_needs_reservation to determine if a reservation
2756  * exists.
2757  */
2758 enum vma_resv_mode {
2759         VMA_NEEDS_RESV,
2760         VMA_COMMIT_RESV,
2761         VMA_END_RESV,
2762         VMA_ADD_RESV,
2763         VMA_DEL_RESV,
2764 };
2765 static long __vma_reservation_common(struct hstate *h,
2766                                 struct vm_area_struct *vma, unsigned long addr,
2767                                 enum vma_resv_mode mode)
2768 {
2769         struct resv_map *resv;
2770         pgoff_t idx;
2771         long ret;
2772         long dummy_out_regions_needed;
2773
2774         resv = vma_resv_map(vma);
2775         if (!resv)
2776                 return 1;
2777
2778         idx = vma_hugecache_offset(h, vma, addr);
2779         switch (mode) {
2780         case VMA_NEEDS_RESV:
2781                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2782                 /* We assume that vma_reservation_* routines always operate on
2783                  * 1 page, and that adding to resv map a 1 page entry can only
2784                  * ever require 1 region.
2785                  */
2786                 VM_BUG_ON(dummy_out_regions_needed != 1);
2787                 break;
2788         case VMA_COMMIT_RESV:
2789                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2790                 /* region_add calls of range 1 should never fail. */
2791                 VM_BUG_ON(ret < 0);
2792                 break;
2793         case VMA_END_RESV:
2794                 region_abort(resv, idx, idx + 1, 1);
2795                 ret = 0;
2796                 break;
2797         case VMA_ADD_RESV:
2798                 if (vma->vm_flags & VM_MAYSHARE) {
2799                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2800                         /* region_add calls of range 1 should never fail. */
2801                         VM_BUG_ON(ret < 0);
2802                 } else {
2803                         region_abort(resv, idx, idx + 1, 1);
2804                         ret = region_del(resv, idx, idx + 1);
2805                 }
2806                 break;
2807         case VMA_DEL_RESV:
2808                 if (vma->vm_flags & VM_MAYSHARE) {
2809                         region_abort(resv, idx, idx + 1, 1);
2810                         ret = region_del(resv, idx, idx + 1);
2811                 } else {
2812                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2813                         /* region_add calls of range 1 should never fail. */
2814                         VM_BUG_ON(ret < 0);
2815                 }
2816                 break;
2817         default:
2818                 BUG();
2819         }
2820
2821         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2822                 return ret;
2823         /*
2824          * We know private mapping must have HPAGE_RESV_OWNER set.
2825          *
2826          * In most cases, reserves always exist for private mappings.
2827          * However, a file associated with mapping could have been
2828          * hole punched or truncated after reserves were consumed.
2829          * As subsequent fault on such a range will not use reserves.
2830          * Subtle - The reserve map for private mappings has the
2831          * opposite meaning than that of shared mappings.  If NO
2832          * entry is in the reserve map, it means a reservation exists.
2833          * If an entry exists in the reserve map, it means the
2834          * reservation has already been consumed.  As a result, the
2835          * return value of this routine is the opposite of the
2836          * value returned from reserve map manipulation routines above.
2837          */
2838         if (ret > 0)
2839                 return 0;
2840         if (ret == 0)
2841                 return 1;
2842         return ret;
2843 }
2844
2845 static long vma_needs_reservation(struct hstate *h,
2846                         struct vm_area_struct *vma, unsigned long addr)
2847 {
2848         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2849 }
2850
2851 static long vma_commit_reservation(struct hstate *h,
2852                         struct vm_area_struct *vma, unsigned long addr)
2853 {
2854         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2855 }
2856
2857 static void vma_end_reservation(struct hstate *h,
2858                         struct vm_area_struct *vma, unsigned long addr)
2859 {
2860         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2861 }
2862
2863 static long vma_add_reservation(struct hstate *h,
2864                         struct vm_area_struct *vma, unsigned long addr)
2865 {
2866         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2867 }
2868
2869 static long vma_del_reservation(struct hstate *h,
2870                         struct vm_area_struct *vma, unsigned long addr)
2871 {
2872         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2873 }
2874
2875 /*
2876  * This routine is called to restore reservation information on error paths.
2877  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2878  * and the hugetlb mutex should remain held when calling this routine.
2879  *
2880  * It handles two specific cases:
2881  * 1) A reservation was in place and the folio consumed the reservation.
2882  *    hugetlb_restore_reserve is set in the folio.
2883  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2884  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2885  *
2886  * In case 1, free_huge_folio later in the error path will increment the
2887  * global reserve count.  But, free_huge_folio does not have enough context
2888  * to adjust the reservation map.  This case deals primarily with private
2889  * mappings.  Adjust the reserve map here to be consistent with global
2890  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2891  * reserve map indicates there is a reservation present.
2892  *
2893  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2894  */
2895 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2896                         unsigned long address, struct folio *folio)
2897 {
2898         long rc = vma_needs_reservation(h, vma, address);
2899
2900         if (folio_test_hugetlb_restore_reserve(folio)) {
2901                 if (unlikely(rc < 0))
2902                         /*
2903                          * Rare out of memory condition in reserve map
2904                          * manipulation.  Clear hugetlb_restore_reserve so
2905                          * that global reserve count will not be incremented
2906                          * by free_huge_folio.  This will make it appear
2907                          * as though the reservation for this folio was
2908                          * consumed.  This may prevent the task from
2909                          * faulting in the folio at a later time.  This
2910                          * is better than inconsistent global huge page
2911                          * accounting of reserve counts.
2912                          */
2913                         folio_clear_hugetlb_restore_reserve(folio);
2914                 else if (rc)
2915                         (void)vma_add_reservation(h, vma, address);
2916                 else
2917                         vma_end_reservation(h, vma, address);
2918         } else {
2919                 if (!rc) {
2920                         /*
2921                          * This indicates there is an entry in the reserve map
2922                          * not added by alloc_hugetlb_folio.  We know it was added
2923                          * before the alloc_hugetlb_folio call, otherwise
2924                          * hugetlb_restore_reserve would be set on the folio.
2925                          * Remove the entry so that a subsequent allocation
2926                          * does not consume a reservation.
2927                          */
2928                         rc = vma_del_reservation(h, vma, address);
2929                         if (rc < 0)
2930                                 /*
2931                                  * VERY rare out of memory condition.  Since
2932                                  * we can not delete the entry, set
2933                                  * hugetlb_restore_reserve so that the reserve
2934                                  * count will be incremented when the folio
2935                                  * is freed.  This reserve will be consumed
2936                                  * on a subsequent allocation.
2937                                  */
2938                                 folio_set_hugetlb_restore_reserve(folio);
2939                 } else if (rc < 0) {
2940                         /*
2941                          * Rare out of memory condition from
2942                          * vma_needs_reservation call.  Memory allocation is
2943                          * only attempted if a new entry is needed.  Therefore,
2944                          * this implies there is not an entry in the
2945                          * reserve map.
2946                          *
2947                          * For shared mappings, no entry in the map indicates
2948                          * no reservation.  We are done.
2949                          */
2950                         if (!(vma->vm_flags & VM_MAYSHARE))
2951                                 /*
2952                                  * For private mappings, no entry indicates
2953                                  * a reservation is present.  Since we can
2954                                  * not add an entry, set hugetlb_restore_reserve
2955                                  * on the folio so reserve count will be
2956                                  * incremented when freed.  This reserve will
2957                                  * be consumed on a subsequent allocation.
2958                                  */
2959                                 folio_set_hugetlb_restore_reserve(folio);
2960                 } else
2961                         /*
2962                          * No reservation present, do nothing
2963                          */
2964                          vma_end_reservation(h, vma, address);
2965         }
2966 }
2967
2968 /*
2969  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2970  * the old one
2971  * @h: struct hstate old page belongs to
2972  * @old_folio: Old folio to dissolve
2973  * @list: List to isolate the page in case we need to
2974  * Returns 0 on success, otherwise negated error.
2975  */
2976 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2977                         struct folio *old_folio, struct list_head *list)
2978 {
2979         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2980         int nid = folio_nid(old_folio);
2981         struct folio *new_folio = NULL;
2982         int ret = 0;
2983
2984 retry:
2985         spin_lock_irq(&hugetlb_lock);
2986         if (!folio_test_hugetlb(old_folio)) {
2987                 /*
2988                  * Freed from under us. Drop new_folio too.
2989                  */
2990                 goto free_new;
2991         } else if (folio_ref_count(old_folio)) {
2992                 bool isolated;
2993
2994                 /*
2995                  * Someone has grabbed the folio, try to isolate it here.
2996                  * Fail with -EBUSY if not possible.
2997                  */
2998                 spin_unlock_irq(&hugetlb_lock);
2999                 isolated = isolate_hugetlb(old_folio, list);
3000                 ret = isolated ? 0 : -EBUSY;
3001                 spin_lock_irq(&hugetlb_lock);
3002                 goto free_new;
3003         } else if (!folio_test_hugetlb_freed(old_folio)) {
3004                 /*
3005                  * Folio's refcount is 0 but it has not been enqueued in the
3006                  * freelist yet. Race window is small, so we can succeed here if
3007                  * we retry.
3008                  */
3009                 spin_unlock_irq(&hugetlb_lock);
3010                 cond_resched();
3011                 goto retry;
3012         } else {
3013                 if (!new_folio) {
3014                         spin_unlock_irq(&hugetlb_lock);
3015                         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3016                                                               NULL, NULL);
3017                         if (!new_folio)
3018                                 return -ENOMEM;
3019                         __prep_new_hugetlb_folio(h, new_folio);
3020                         goto retry;
3021                 }
3022
3023                 /*
3024                  * Ok, old_folio is still a genuine free hugepage. Remove it from
3025                  * the freelist and decrease the counters. These will be
3026                  * incremented again when calling __prep_account_new_huge_page()
3027                  * and enqueue_hugetlb_folio() for new_folio. The counters will
3028                  * remain stable since this happens under the lock.
3029                  */
3030                 remove_hugetlb_folio(h, old_folio, false);
3031
3032                 /*
3033                  * Ref count on new_folio is already zero as it was dropped
3034                  * earlier.  It can be directly added to the pool free list.
3035                  */
3036                 __prep_account_new_huge_page(h, nid);
3037                 enqueue_hugetlb_folio(h, new_folio);
3038
3039                 /*
3040                  * Folio has been replaced, we can safely free the old one.
3041                  */
3042                 spin_unlock_irq(&hugetlb_lock);
3043                 update_and_free_hugetlb_folio(h, old_folio, false);
3044         }
3045
3046         return ret;
3047
3048 free_new:
3049         spin_unlock_irq(&hugetlb_lock);
3050         if (new_folio)
3051                 update_and_free_hugetlb_folio(h, new_folio, false);
3052
3053         return ret;
3054 }
3055
3056 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3057 {
3058         struct hstate *h;
3059         struct folio *folio = page_folio(page);
3060         int ret = -EBUSY;
3061
3062         /*
3063          * The page might have been dissolved from under our feet, so make sure
3064          * to carefully check the state under the lock.
3065          * Return success when racing as if we dissolved the page ourselves.
3066          */
3067         spin_lock_irq(&hugetlb_lock);
3068         if (folio_test_hugetlb(folio)) {
3069                 h = folio_hstate(folio);
3070         } else {
3071                 spin_unlock_irq(&hugetlb_lock);
3072                 return 0;
3073         }
3074         spin_unlock_irq(&hugetlb_lock);
3075
3076         /*
3077          * Fence off gigantic pages as there is a cyclic dependency between
3078          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3079          * of bailing out right away without further retrying.
3080          */
3081         if (hstate_is_gigantic(h))
3082                 return -ENOMEM;
3083
3084         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3085                 ret = 0;
3086         else if (!folio_ref_count(folio))
3087                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3088
3089         return ret;
3090 }
3091
3092 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3093                                     unsigned long addr, int avoid_reserve)
3094 {
3095         struct hugepage_subpool *spool = subpool_vma(vma);
3096         struct hstate *h = hstate_vma(vma);
3097         struct folio *folio;
3098         long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3099         long gbl_chg;
3100         int memcg_charge_ret, ret, idx;
3101         struct hugetlb_cgroup *h_cg = NULL;
3102         struct mem_cgroup *memcg;
3103         bool deferred_reserve;
3104         gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3105
3106         memcg = get_mem_cgroup_from_current();
3107         memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3108         if (memcg_charge_ret == -ENOMEM) {
3109                 mem_cgroup_put(memcg);
3110                 return ERR_PTR(-ENOMEM);
3111         }
3112
3113         idx = hstate_index(h);
3114         /*
3115          * Examine the region/reserve map to determine if the process
3116          * has a reservation for the page to be allocated.  A return
3117          * code of zero indicates a reservation exists (no change).
3118          */
3119         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3120         if (map_chg < 0) {
3121                 if (!memcg_charge_ret)
3122                         mem_cgroup_cancel_charge(memcg, nr_pages);
3123                 mem_cgroup_put(memcg);
3124                 return ERR_PTR(-ENOMEM);
3125         }
3126
3127         /*
3128          * Processes that did not create the mapping will have no
3129          * reserves as indicated by the region/reserve map. Check
3130          * that the allocation will not exceed the subpool limit.
3131          * Allocations for MAP_NORESERVE mappings also need to be
3132          * checked against any subpool limit.
3133          */
3134         if (map_chg || avoid_reserve) {
3135                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3136                 if (gbl_chg < 0)
3137                         goto out_end_reservation;
3138
3139                 /*
3140                  * Even though there was no reservation in the region/reserve
3141                  * map, there could be reservations associated with the
3142                  * subpool that can be used.  This would be indicated if the
3143                  * return value of hugepage_subpool_get_pages() is zero.
3144                  * However, if avoid_reserve is specified we still avoid even
3145                  * the subpool reservations.
3146                  */
3147                 if (avoid_reserve)
3148                         gbl_chg = 1;
3149         }
3150
3151         /* If this allocation is not consuming a reservation, charge it now.
3152          */
3153         deferred_reserve = map_chg || avoid_reserve;
3154         if (deferred_reserve) {
3155                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3156                         idx, pages_per_huge_page(h), &h_cg);
3157                 if (ret)
3158                         goto out_subpool_put;
3159         }
3160
3161         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3162         if (ret)
3163                 goto out_uncharge_cgroup_reservation;
3164
3165         spin_lock_irq(&hugetlb_lock);
3166         /*
3167          * glb_chg is passed to indicate whether or not a page must be taken
3168          * from the global free pool (global change).  gbl_chg == 0 indicates
3169          * a reservation exists for the allocation.
3170          */
3171         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3172         if (!folio) {
3173                 spin_unlock_irq(&hugetlb_lock);
3174                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3175                 if (!folio)
3176                         goto out_uncharge_cgroup;
3177                 spin_lock_irq(&hugetlb_lock);
3178                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3179                         folio_set_hugetlb_restore_reserve(folio);
3180                         h->resv_huge_pages--;
3181                 }
3182                 list_add(&folio->lru, &h->hugepage_activelist);
3183                 folio_ref_unfreeze(folio, 1);
3184                 /* Fall through */
3185         }
3186
3187         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3188         /* If allocation is not consuming a reservation, also store the
3189          * hugetlb_cgroup pointer on the page.
3190          */
3191         if (deferred_reserve) {
3192                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3193                                                   h_cg, folio);
3194         }
3195
3196         spin_unlock_irq(&hugetlb_lock);
3197
3198         hugetlb_set_folio_subpool(folio, spool);
3199
3200         map_commit = vma_commit_reservation(h, vma, addr);
3201         if (unlikely(map_chg > map_commit)) {
3202                 /*
3203                  * The page was added to the reservation map between
3204                  * vma_needs_reservation and vma_commit_reservation.
3205                  * This indicates a race with hugetlb_reserve_pages.
3206                  * Adjust for the subpool count incremented above AND
3207                  * in hugetlb_reserve_pages for the same page.  Also,
3208                  * the reservation count added in hugetlb_reserve_pages
3209                  * no longer applies.
3210                  */
3211                 long rsv_adjust;
3212
3213                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3214                 hugetlb_acct_memory(h, -rsv_adjust);
3215                 if (deferred_reserve) {
3216                         spin_lock_irq(&hugetlb_lock);
3217                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3218                                         pages_per_huge_page(h), folio);
3219                         spin_unlock_irq(&hugetlb_lock);
3220                 }
3221         }
3222
3223         if (!memcg_charge_ret)
3224                 mem_cgroup_commit_charge(folio, memcg);
3225         mem_cgroup_put(memcg);
3226
3227         return folio;
3228
3229 out_uncharge_cgroup:
3230         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3231 out_uncharge_cgroup_reservation:
3232         if (deferred_reserve)
3233                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3234                                                     h_cg);
3235 out_subpool_put:
3236         if (map_chg || avoid_reserve)
3237                 hugepage_subpool_put_pages(spool, 1);
3238 out_end_reservation:
3239         vma_end_reservation(h, vma, addr);
3240         if (!memcg_charge_ret)
3241                 mem_cgroup_cancel_charge(memcg, nr_pages);
3242         mem_cgroup_put(memcg);
3243         return ERR_PTR(-ENOSPC);
3244 }
3245
3246 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3247         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3248 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3249 {
3250         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3251         int nr_nodes, node = nid;
3252
3253         /* do node specific alloc */
3254         if (nid != NUMA_NO_NODE) {
3255                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3256                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3257                 if (!m)
3258                         return 0;
3259                 goto found;
3260         }
3261         /* allocate from next node when distributing huge pages */
3262         for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3263                 m = memblock_alloc_try_nid_raw(
3264                                 huge_page_size(h), huge_page_size(h),
3265                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3266                 /*
3267                  * Use the beginning of the huge page to store the
3268                  * huge_bootmem_page struct (until gather_bootmem
3269                  * puts them into the mem_map).
3270                  */
3271                 if (!m)
3272                         return 0;
3273                 goto found;
3274         }
3275
3276 found:
3277
3278         /*
3279          * Only initialize the head struct page in memmap_init_reserved_pages,
3280          * rest of the struct pages will be initialized by the HugeTLB
3281          * subsystem itself.
3282          * The head struct page is used to get folio information by the HugeTLB
3283          * subsystem like zone id and node id.
3284          */
3285         memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3286                 huge_page_size(h) - PAGE_SIZE);
3287         /* Put them into a private list first because mem_map is not up yet */
3288         INIT_LIST_HEAD(&m->list);
3289         list_add(&m->list, &huge_boot_pages[node]);
3290         m->hstate = h;
3291         return 1;
3292 }
3293
3294 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3295 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3296                                         unsigned long start_page_number,
3297                                         unsigned long end_page_number)
3298 {
3299         enum zone_type zone = zone_idx(folio_zone(folio));
3300         int nid = folio_nid(folio);
3301         unsigned long head_pfn = folio_pfn(folio);
3302         unsigned long pfn, end_pfn = head_pfn + end_page_number;
3303         int ret;
3304
3305         for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3306                 struct page *page = pfn_to_page(pfn);
3307
3308                 __init_single_page(page, pfn, zone, nid);
3309                 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3310                 ret = page_ref_freeze(page, 1);
3311                 VM_BUG_ON(!ret);
3312         }
3313 }
3314
3315 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3316                                               struct hstate *h,
3317                                               unsigned long nr_pages)
3318 {
3319         int ret;
3320
3321         /* Prepare folio head */
3322         __folio_clear_reserved(folio);
3323         __folio_set_head(folio);
3324         ret = folio_ref_freeze(folio, 1);
3325         VM_BUG_ON(!ret);
3326         /* Initialize the necessary tail struct pages */
3327         hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3328         prep_compound_head((struct page *)folio, huge_page_order(h));
3329 }
3330
3331 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3332                                         struct list_head *folio_list)
3333 {
3334         unsigned long flags;
3335         struct folio *folio, *tmp_f;
3336
3337         /* Send list for bulk vmemmap optimization processing */
3338         hugetlb_vmemmap_optimize_folios(h, folio_list);
3339
3340         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3341                 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3342                         /*
3343                          * If HVO fails, initialize all tail struct pages
3344                          * We do not worry about potential long lock hold
3345                          * time as this is early in boot and there should
3346                          * be no contention.
3347                          */
3348                         hugetlb_folio_init_tail_vmemmap(folio,
3349                                         HUGETLB_VMEMMAP_RESERVE_PAGES,
3350                                         pages_per_huge_page(h));
3351                 }
3352                 /* Subdivide locks to achieve better parallel performance */
3353                 spin_lock_irqsave(&hugetlb_lock, flags);
3354                 __prep_account_new_huge_page(h, folio_nid(folio));
3355                 enqueue_hugetlb_folio(h, folio);
3356                 spin_unlock_irqrestore(&hugetlb_lock, flags);
3357         }
3358 }
3359
3360 /*
3361  * Put bootmem huge pages into the standard lists after mem_map is up.
3362  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3363  */
3364 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3365 {
3366         LIST_HEAD(folio_list);
3367         struct huge_bootmem_page *m;
3368         struct hstate *h = NULL, *prev_h = NULL;
3369
3370         list_for_each_entry(m, &huge_boot_pages[nid], list) {
3371                 struct page *page = virt_to_page(m);
3372                 struct folio *folio = (void *)page;
3373
3374                 h = m->hstate;
3375                 /*
3376                  * It is possible to have multiple huge page sizes (hstates)
3377                  * in this list.  If so, process each size separately.
3378                  */
3379                 if (h != prev_h && prev_h != NULL)
3380                         prep_and_add_bootmem_folios(prev_h, &folio_list);
3381                 prev_h = h;
3382
3383                 VM_BUG_ON(!hstate_is_gigantic(h));
3384                 WARN_ON(folio_ref_count(folio) != 1);
3385
3386                 hugetlb_folio_init_vmemmap(folio, h,
3387                                            HUGETLB_VMEMMAP_RESERVE_PAGES);
3388                 init_new_hugetlb_folio(h, folio);
3389                 list_add(&folio->lru, &folio_list);
3390
3391                 /*
3392                  * We need to restore the 'stolen' pages to totalram_pages
3393                  * in order to fix confusing memory reports from free(1) and
3394                  * other side-effects, like CommitLimit going negative.
3395                  */
3396                 adjust_managed_page_count(page, pages_per_huge_page(h));
3397                 cond_resched();
3398         }
3399
3400         prep_and_add_bootmem_folios(h, &folio_list);
3401 }
3402
3403 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3404                                                     unsigned long end, void *arg)
3405 {
3406         int nid;
3407
3408         for (nid = start; nid < end; nid++)
3409                 gather_bootmem_prealloc_node(nid);
3410 }
3411
3412 static void __init gather_bootmem_prealloc(void)
3413 {
3414         struct padata_mt_job job = {
3415                 .thread_fn      = gather_bootmem_prealloc_parallel,
3416                 .fn_arg         = NULL,
3417                 .start          = 0,
3418                 .size           = num_node_state(N_MEMORY),
3419                 .align          = 1,
3420                 .min_chunk      = 1,
3421                 .max_threads    = num_node_state(N_MEMORY),
3422                 .numa_aware     = true,
3423         };
3424
3425         padata_do_multithreaded(&job);
3426 }
3427
3428 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3429 {
3430         unsigned long i;
3431         char buf[32];
3432
3433         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3434                 if (hstate_is_gigantic(h)) {
3435                         if (!alloc_bootmem_huge_page(h, nid))
3436                                 break;
3437                 } else {
3438                         struct folio *folio;
3439                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3440
3441                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3442                                         &node_states[N_MEMORY], NULL);
3443                         if (!folio)
3444                                 break;
3445                         free_huge_folio(folio); /* free it into the hugepage allocator */
3446                 }
3447                 cond_resched();
3448         }
3449         if (i == h->max_huge_pages_node[nid])
3450                 return;
3451
3452         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3453         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3454                 h->max_huge_pages_node[nid], buf, nid, i);
3455         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3456         h->max_huge_pages_node[nid] = i;
3457 }
3458
3459 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3460 {
3461         int i;
3462         bool node_specific_alloc = false;
3463
3464         for_each_online_node(i) {
3465                 if (h->max_huge_pages_node[i] > 0) {
3466                         hugetlb_hstate_alloc_pages_onenode(h, i);
3467                         node_specific_alloc = true;
3468                 }
3469         }
3470
3471         return node_specific_alloc;
3472 }
3473
3474 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3475 {
3476         if (allocated < h->max_huge_pages) {
3477                 char buf[32];
3478
3479                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3480                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3481                         h->max_huge_pages, buf, allocated);
3482                 h->max_huge_pages = allocated;
3483         }
3484 }
3485
3486 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3487 {
3488         struct hstate *h = (struct hstate *)arg;
3489         int i, num = end - start;
3490         nodemask_t node_alloc_noretry;
3491         LIST_HEAD(folio_list);
3492         int next_node = first_online_node;
3493
3494         /* Bit mask controlling how hard we retry per-node allocations.*/
3495         nodes_clear(node_alloc_noretry);
3496
3497         for (i = 0; i < num; ++i) {
3498                 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3499                                                 &node_alloc_noretry, &next_node);
3500                 if (!folio)
3501                         break;
3502
3503                 list_move(&folio->lru, &folio_list);
3504                 cond_resched();
3505         }
3506
3507         prep_and_add_allocated_folios(h, &folio_list);
3508 }
3509
3510 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3511 {
3512         unsigned long i;
3513
3514         for (i = 0; i < h->max_huge_pages; ++i) {
3515                 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3516                         break;
3517                 cond_resched();
3518         }
3519
3520         return i;
3521 }
3522
3523 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3524 {
3525         struct padata_mt_job job = {
3526                 .fn_arg         = h,
3527                 .align          = 1,
3528                 .numa_aware     = true
3529         };
3530
3531         job.thread_fn   = hugetlb_pages_alloc_boot_node;
3532         job.start       = 0;
3533         job.size        = h->max_huge_pages;
3534
3535         /*
3536          * job.max_threads is twice the num_node_state(N_MEMORY),
3537          *
3538          * Tests below indicate that a multiplier of 2 significantly improves
3539          * performance, and although larger values also provide improvements,
3540          * the gains are marginal.
3541          *
3542          * Therefore, choosing 2 as the multiplier strikes a good balance between
3543          * enhancing parallel processing capabilities and maintaining efficient
3544          * resource management.
3545          *
3546          * +------------+-------+-------+-------+-------+-------+
3547          * | multiplier |   1   |   2   |   3   |   4   |   5   |
3548          * +------------+-------+-------+-------+-------+-------+
3549          * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3550          * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3551          * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3552          * +------------+-------+-------+-------+-------+-------+
3553          */
3554         job.max_threads = num_node_state(N_MEMORY) * 2;
3555         job.min_chunk   = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3556         padata_do_multithreaded(&job);
3557
3558         return h->nr_huge_pages;
3559 }
3560
3561 /*
3562  * NOTE: this routine is called in different contexts for gigantic and
3563  * non-gigantic pages.
3564  * - For gigantic pages, this is called early in the boot process and
3565  *   pages are allocated from memblock allocated or something similar.
3566  *   Gigantic pages are actually added to pools later with the routine
3567  *   gather_bootmem_prealloc.
3568  * - For non-gigantic pages, this is called later in the boot process after
3569  *   all of mm is up and functional.  Pages are allocated from buddy and
3570  *   then added to hugetlb pools.
3571  */
3572 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3573 {
3574         unsigned long allocated;
3575         static bool initialized __initdata;
3576
3577         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3578         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3579                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3580                 return;
3581         }
3582
3583         /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3584         if (!initialized) {
3585                 int i = 0;
3586
3587                 for (i = 0; i < MAX_NUMNODES; i++)
3588                         INIT_LIST_HEAD(&huge_boot_pages[i]);
3589                 initialized = true;
3590         }
3591
3592         /* do node specific alloc */
3593         if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3594                 return;
3595
3596         /* below will do all node balanced alloc */
3597         if (hstate_is_gigantic(h))
3598                 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3599         else
3600                 allocated = hugetlb_pages_alloc_boot(h);
3601
3602         hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3603 }
3604
3605 static void __init hugetlb_init_hstates(void)
3606 {
3607         struct hstate *h, *h2;
3608
3609         for_each_hstate(h) {
3610                 /* oversize hugepages were init'ed in early boot */
3611                 if (!hstate_is_gigantic(h))
3612                         hugetlb_hstate_alloc_pages(h);
3613
3614                 /*
3615                  * Set demote order for each hstate.  Note that
3616                  * h->demote_order is initially 0.
3617                  * - We can not demote gigantic pages if runtime freeing
3618                  *   is not supported, so skip this.
3619                  * - If CMA allocation is possible, we can not demote
3620                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3621                  */
3622                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3623                         continue;
3624                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3625                         continue;
3626                 for_each_hstate(h2) {
3627                         if (h2 == h)
3628                                 continue;
3629                         if (h2->order < h->order &&
3630                             h2->order > h->demote_order)
3631                                 h->demote_order = h2->order;
3632                 }
3633         }
3634 }
3635
3636 static void __init report_hugepages(void)
3637 {
3638         struct hstate *h;
3639
3640         for_each_hstate(h) {
3641                 char buf[32];
3642
3643                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3644                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3645                         buf, h->free_huge_pages);
3646                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3647                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3648         }
3649 }
3650
3651 #ifdef CONFIG_HIGHMEM
3652 static void try_to_free_low(struct hstate *h, unsigned long count,
3653                                                 nodemask_t *nodes_allowed)
3654 {
3655         int i;
3656         LIST_HEAD(page_list);
3657
3658         lockdep_assert_held(&hugetlb_lock);
3659         if (hstate_is_gigantic(h))
3660                 return;
3661
3662         /*
3663          * Collect pages to be freed on a list, and free after dropping lock
3664          */
3665         for_each_node_mask(i, *nodes_allowed) {
3666                 struct folio *folio, *next;
3667                 struct list_head *freel = &h->hugepage_freelists[i];
3668                 list_for_each_entry_safe(folio, next, freel, lru) {
3669                         if (count >= h->nr_huge_pages)
3670                                 goto out;
3671                         if (folio_test_highmem(folio))
3672                                 continue;
3673                         remove_hugetlb_folio(h, folio, false);
3674                         list_add(&folio->lru, &page_list);
3675                 }
3676         }
3677
3678 out:
3679         spin_unlock_irq(&hugetlb_lock);
3680         update_and_free_pages_bulk(h, &page_list);
3681         spin_lock_irq(&hugetlb_lock);
3682 }
3683 #else
3684 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3685                                                 nodemask_t *nodes_allowed)
3686 {
3687 }
3688 #endif
3689
3690 /*
3691  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3692  * balanced by operating on them in a round-robin fashion.
3693  * Returns 1 if an adjustment was made.
3694  */
3695 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3696                                 int delta)
3697 {
3698         int nr_nodes, node;
3699
3700         lockdep_assert_held(&hugetlb_lock);
3701         VM_BUG_ON(delta != -1 && delta != 1);
3702
3703         if (delta < 0) {
3704                 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3705                         if (h->surplus_huge_pages_node[node])
3706                                 goto found;
3707                 }
3708         } else {
3709                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3710                         if (h->surplus_huge_pages_node[node] <
3711                                         h->nr_huge_pages_node[node])
3712                                 goto found;
3713                 }
3714         }
3715         return 0;
3716
3717 found:
3718         h->surplus_huge_pages += delta;
3719         h->surplus_huge_pages_node[node] += delta;
3720         return 1;
3721 }
3722
3723 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3724 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3725                               nodemask_t *nodes_allowed)
3726 {
3727         unsigned long min_count;
3728         unsigned long allocated;
3729         struct folio *folio;
3730         LIST_HEAD(page_list);
3731         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3732
3733         /*
3734          * Bit mask controlling how hard we retry per-node allocations.
3735          * If we can not allocate the bit mask, do not attempt to allocate
3736          * the requested huge pages.
3737          */
3738         if (node_alloc_noretry)
3739                 nodes_clear(*node_alloc_noretry);
3740         else
3741                 return -ENOMEM;
3742
3743         /*
3744          * resize_lock mutex prevents concurrent adjustments to number of
3745          * pages in hstate via the proc/sysfs interfaces.
3746          */
3747         mutex_lock(&h->resize_lock);
3748         flush_free_hpage_work(h);
3749         spin_lock_irq(&hugetlb_lock);
3750
3751         /*
3752          * Check for a node specific request.
3753          * Changing node specific huge page count may require a corresponding
3754          * change to the global count.  In any case, the passed node mask
3755          * (nodes_allowed) will restrict alloc/free to the specified node.
3756          */
3757         if (nid != NUMA_NO_NODE) {
3758                 unsigned long old_count = count;
3759
3760                 count += persistent_huge_pages(h) -
3761                          (h->nr_huge_pages_node[nid] -
3762                           h->surplus_huge_pages_node[nid]);
3763                 /*
3764                  * User may have specified a large count value which caused the
3765                  * above calculation to overflow.  In this case, they wanted
3766                  * to allocate as many huge pages as possible.  Set count to
3767                  * largest possible value to align with their intention.
3768                  */
3769                 if (count < old_count)
3770                         count = ULONG_MAX;
3771         }
3772
3773         /*
3774          * Gigantic pages runtime allocation depend on the capability for large
3775          * page range allocation.
3776          * If the system does not provide this feature, return an error when
3777          * the user tries to allocate gigantic pages but let the user free the
3778          * boottime allocated gigantic pages.
3779          */
3780         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3781                 if (count > persistent_huge_pages(h)) {
3782                         spin_unlock_irq(&hugetlb_lock);
3783                         mutex_unlock(&h->resize_lock);
3784                         NODEMASK_FREE(node_alloc_noretry);
3785                         return -EINVAL;
3786                 }
3787                 /* Fall through to decrease pool */
3788         }
3789
3790         /*
3791          * Increase the pool size
3792          * First take pages out of surplus state.  Then make up the
3793          * remaining difference by allocating fresh huge pages.
3794          *
3795          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3796          * to convert a surplus huge page to a normal huge page. That is
3797          * not critical, though, it just means the overall size of the
3798          * pool might be one hugepage larger than it needs to be, but
3799          * within all the constraints specified by the sysctls.
3800          */
3801         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3802                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3803                         break;
3804         }
3805
3806         allocated = 0;
3807         while (count > (persistent_huge_pages(h) + allocated)) {
3808                 /*
3809                  * If this allocation races such that we no longer need the
3810                  * page, free_huge_folio will handle it by freeing the page
3811                  * and reducing the surplus.
3812                  */
3813                 spin_unlock_irq(&hugetlb_lock);
3814
3815                 /* yield cpu to avoid soft lockup */
3816                 cond_resched();
3817
3818                 folio = alloc_pool_huge_folio(h, nodes_allowed,
3819                                                 node_alloc_noretry,
3820                                                 &h->next_nid_to_alloc);
3821                 if (!folio) {
3822                         prep_and_add_allocated_folios(h, &page_list);
3823                         spin_lock_irq(&hugetlb_lock);
3824                         goto out;
3825                 }
3826
3827                 list_add(&folio->lru, &page_list);
3828                 allocated++;
3829
3830                 /* Bail for signals. Probably ctrl-c from user */
3831                 if (signal_pending(current)) {
3832                         prep_and_add_allocated_folios(h, &page_list);
3833                         spin_lock_irq(&hugetlb_lock);
3834                         goto out;
3835                 }
3836
3837                 spin_lock_irq(&hugetlb_lock);
3838         }
3839
3840         /* Add allocated pages to the pool */
3841         if (!list_empty(&page_list)) {
3842                 spin_unlock_irq(&hugetlb_lock);
3843                 prep_and_add_allocated_folios(h, &page_list);
3844                 spin_lock_irq(&hugetlb_lock);
3845         }
3846
3847         /*
3848          * Decrease the pool size
3849          * First return free pages to the buddy allocator (being careful
3850          * to keep enough around to satisfy reservations).  Then place
3851          * pages into surplus state as needed so the pool will shrink
3852          * to the desired size as pages become free.
3853          *
3854          * By placing pages into the surplus state independent of the
3855          * overcommit value, we are allowing the surplus pool size to
3856          * exceed overcommit. There are few sane options here. Since
3857          * alloc_surplus_hugetlb_folio() is checking the global counter,
3858          * though, we'll note that we're not allowed to exceed surplus
3859          * and won't grow the pool anywhere else. Not until one of the
3860          * sysctls are changed, or the surplus pages go out of use.
3861          */
3862         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3863         min_count = max(count, min_count);
3864         try_to_free_low(h, min_count, nodes_allowed);
3865
3866         /*
3867          * Collect pages to be removed on list without dropping lock
3868          */
3869         while (min_count < persistent_huge_pages(h)) {
3870                 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3871                 if (!folio)
3872                         break;
3873
3874                 list_add(&folio->lru, &page_list);
3875         }
3876         /* free the pages after dropping lock */
3877         spin_unlock_irq(&hugetlb_lock);
3878         update_and_free_pages_bulk(h, &page_list);
3879         flush_free_hpage_work(h);
3880         spin_lock_irq(&hugetlb_lock);
3881
3882         while (count < persistent_huge_pages(h)) {
3883                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3884                         break;
3885         }
3886 out:
3887         h->max_huge_pages = persistent_huge_pages(h);
3888         spin_unlock_irq(&hugetlb_lock);
3889         mutex_unlock(&h->resize_lock);
3890
3891         NODEMASK_FREE(node_alloc_noretry);
3892
3893         return 0;
3894 }
3895
3896 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3897 {
3898         int i, nid = folio_nid(folio);
3899         struct hstate *target_hstate;
3900         struct page *subpage;
3901         struct folio *inner_folio;
3902         int rc = 0;
3903
3904         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3905
3906         remove_hugetlb_folio(h, folio, false);
3907         spin_unlock_irq(&hugetlb_lock);
3908
3909         /*
3910          * If vmemmap already existed for folio, the remove routine above would
3911          * have cleared the hugetlb folio flag.  Hence the folio is technically
3912          * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3913          * passed hugetlb folios and will BUG otherwise.
3914          */
3915         if (folio_test_hugetlb(folio)) {
3916                 rc = hugetlb_vmemmap_restore_folio(h, folio);
3917                 if (rc) {
3918                         /* Allocation of vmemmmap failed, we can not demote folio */
3919                         spin_lock_irq(&hugetlb_lock);
3920                         add_hugetlb_folio(h, folio, false);
3921                         return rc;
3922                 }
3923         }
3924
3925         /*
3926          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3927          * sizes as it will not ref count folios.
3928          */
3929         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3930
3931         /*
3932          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3933          * Without the mutex, pages added to target hstate could be marked
3934          * as surplus.
3935          *
3936          * Note that we already hold h->resize_lock.  To prevent deadlock,
3937          * use the convention of always taking larger size hstate mutex first.
3938          */
3939         mutex_lock(&target_hstate->resize_lock);
3940         for (i = 0; i < pages_per_huge_page(h);
3941                                 i += pages_per_huge_page(target_hstate)) {
3942                 subpage = folio_page(folio, i);
3943                 inner_folio = page_folio(subpage);
3944                 if (hstate_is_gigantic(target_hstate))
3945                         prep_compound_gigantic_folio_for_demote(inner_folio,
3946                                                         target_hstate->order);
3947                 else
3948                         prep_compound_page(subpage, target_hstate->order);
3949                 folio_change_private(inner_folio, NULL);
3950                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3951                 free_huge_folio(inner_folio);
3952         }
3953         mutex_unlock(&target_hstate->resize_lock);
3954
3955         spin_lock_irq(&hugetlb_lock);
3956
3957         /*
3958          * Not absolutely necessary, but for consistency update max_huge_pages
3959          * based on pool changes for the demoted page.
3960          */
3961         h->max_huge_pages--;
3962         target_hstate->max_huge_pages +=
3963                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3964
3965         return rc;
3966 }
3967
3968 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3969         __must_hold(&hugetlb_lock)
3970 {
3971         int nr_nodes, node;
3972         struct folio *folio;
3973
3974         lockdep_assert_held(&hugetlb_lock);
3975
3976         /* We should never get here if no demote order */
3977         if (!h->demote_order) {
3978                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3979                 return -EINVAL;         /* internal error */
3980         }
3981
3982         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3983                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3984                         if (folio_test_hwpoison(folio))
3985                                 continue;
3986                         return demote_free_hugetlb_folio(h, folio);
3987                 }
3988         }
3989
3990         /*
3991          * Only way to get here is if all pages on free lists are poisoned.
3992          * Return -EBUSY so that caller will not retry.
3993          */
3994         return -EBUSY;
3995 }
3996
3997 #define HSTATE_ATTR_RO(_name) \
3998         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3999
4000 #define HSTATE_ATTR_WO(_name) \
4001         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4002
4003 #define HSTATE_ATTR(_name) \
4004         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4005
4006 static struct kobject *hugepages_kobj;
4007 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4008
4009 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4010
4011 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4012 {
4013         int i;
4014
4015         for (i = 0; i < HUGE_MAX_HSTATE; i++)
4016                 if (hstate_kobjs[i] == kobj) {
4017                         if (nidp)
4018                                 *nidp = NUMA_NO_NODE;
4019                         return &hstates[i];
4020                 }
4021
4022         return kobj_to_node_hstate(kobj, nidp);
4023 }
4024
4025 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4026                                         struct kobj_attribute *attr, char *buf)
4027 {
4028         struct hstate *h;
4029         unsigned long nr_huge_pages;
4030         int nid;
4031
4032         h = kobj_to_hstate(kobj, &nid);
4033         if (nid == NUMA_NO_NODE)
4034                 nr_huge_pages = h->nr_huge_pages;
4035         else
4036                 nr_huge_pages = h->nr_huge_pages_node[nid];
4037
4038         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4039 }
4040
4041 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4042                                            struct hstate *h, int nid,
4043                                            unsigned long count, size_t len)
4044 {
4045         int err;
4046         nodemask_t nodes_allowed, *n_mask;
4047
4048         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4049                 return -EINVAL;
4050
4051         if (nid == NUMA_NO_NODE) {
4052                 /*
4053                  * global hstate attribute
4054                  */
4055                 if (!(obey_mempolicy &&
4056                                 init_nodemask_of_mempolicy(&nodes_allowed)))
4057                         n_mask = &node_states[N_MEMORY];
4058                 else
4059                         n_mask = &nodes_allowed;
4060         } else {
4061                 /*
4062                  * Node specific request.  count adjustment happens in
4063                  * set_max_huge_pages() after acquiring hugetlb_lock.
4064                  */
4065                 init_nodemask_of_node(&nodes_allowed, nid);
4066                 n_mask = &nodes_allowed;
4067         }
4068
4069         err = set_max_huge_pages(h, count, nid, n_mask);
4070
4071         return err ? err : len;
4072 }
4073
4074 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4075                                          struct kobject *kobj, const char *buf,
4076                                          size_t len)
4077 {
4078         struct hstate *h;
4079         unsigned long count;
4080         int nid;
4081         int err;
4082
4083         err = kstrtoul(buf, 10, &count);
4084         if (err)
4085                 return err;
4086
4087         h = kobj_to_hstate(kobj, &nid);
4088         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4089 }
4090
4091 static ssize_t nr_hugepages_show(struct kobject *kobj,
4092                                        struct kobj_attribute *attr, char *buf)
4093 {
4094         return nr_hugepages_show_common(kobj, attr, buf);
4095 }
4096
4097 static ssize_t nr_hugepages_store(struct kobject *kobj,
4098                struct kobj_attribute *attr, const char *buf, size_t len)
4099 {
4100         return nr_hugepages_store_common(false, kobj, buf, len);
4101 }
4102 HSTATE_ATTR(nr_hugepages);
4103
4104 #ifdef CONFIG_NUMA
4105
4106 /*
4107  * hstate attribute for optionally mempolicy-based constraint on persistent
4108  * huge page alloc/free.
4109  */
4110 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4111                                            struct kobj_attribute *attr,
4112                                            char *buf)
4113 {
4114         return nr_hugepages_show_common(kobj, attr, buf);
4115 }
4116
4117 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4118                struct kobj_attribute *attr, const char *buf, size_t len)
4119 {
4120         return nr_hugepages_store_common(true, kobj, buf, len);
4121 }
4122 HSTATE_ATTR(nr_hugepages_mempolicy);
4123 #endif
4124
4125
4126 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4127                                         struct kobj_attribute *attr, char *buf)
4128 {
4129         struct hstate *h = kobj_to_hstate(kobj, NULL);
4130         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4131 }
4132
4133 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4134                 struct kobj_attribute *attr, const char *buf, size_t count)
4135 {
4136         int err;
4137         unsigned long input;
4138         struct hstate *h = kobj_to_hstate(kobj, NULL);
4139
4140         if (hstate_is_gigantic(h))
4141                 return -EINVAL;
4142
4143         err = kstrtoul(buf, 10, &input);
4144         if (err)
4145                 return err;
4146
4147         spin_lock_irq(&hugetlb_lock);
4148         h->nr_overcommit_huge_pages = input;
4149         spin_unlock_irq(&hugetlb_lock);
4150
4151         return count;
4152 }
4153 HSTATE_ATTR(nr_overcommit_hugepages);
4154
4155 static ssize_t free_hugepages_show(struct kobject *kobj,
4156                                         struct kobj_attribute *attr, char *buf)
4157 {
4158         struct hstate *h;
4159         unsigned long free_huge_pages;
4160         int nid;
4161
4162         h = kobj_to_hstate(kobj, &nid);
4163         if (nid == NUMA_NO_NODE)
4164                 free_huge_pages = h->free_huge_pages;
4165         else
4166                 free_huge_pages = h->free_huge_pages_node[nid];
4167
4168         return sysfs_emit(buf, "%lu\n", free_huge_pages);
4169 }
4170 HSTATE_ATTR_RO(free_hugepages);
4171
4172 static ssize_t resv_hugepages_show(struct kobject *kobj,
4173                                         struct kobj_attribute *attr, char *buf)
4174 {
4175         struct hstate *h = kobj_to_hstate(kobj, NULL);
4176         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4177 }
4178 HSTATE_ATTR_RO(resv_hugepages);
4179
4180 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4181                                         struct kobj_attribute *attr, char *buf)
4182 {
4183         struct hstate *h;
4184         unsigned long surplus_huge_pages;
4185         int nid;
4186
4187         h = kobj_to_hstate(kobj, &nid);
4188         if (nid == NUMA_NO_NODE)
4189                 surplus_huge_pages = h->surplus_huge_pages;
4190         else
4191                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4192
4193         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4194 }
4195 HSTATE_ATTR_RO(surplus_hugepages);
4196
4197 static ssize_t demote_store(struct kobject *kobj,
4198                struct kobj_attribute *attr, const char *buf, size_t len)
4199 {
4200         unsigned long nr_demote;
4201         unsigned long nr_available;
4202         nodemask_t nodes_allowed, *n_mask;
4203         struct hstate *h;
4204         int err;
4205         int nid;
4206
4207         err = kstrtoul(buf, 10, &nr_demote);
4208         if (err)
4209                 return err;
4210         h = kobj_to_hstate(kobj, &nid);
4211
4212         if (nid != NUMA_NO_NODE) {
4213                 init_nodemask_of_node(&nodes_allowed, nid);
4214                 n_mask = &nodes_allowed;
4215         } else {
4216                 n_mask = &node_states[N_MEMORY];
4217         }
4218
4219         /* Synchronize with other sysfs operations modifying huge pages */
4220         mutex_lock(&h->resize_lock);
4221         spin_lock_irq(&hugetlb_lock);
4222
4223         while (nr_demote) {
4224                 /*
4225                  * Check for available pages to demote each time thorough the
4226                  * loop as demote_pool_huge_page will drop hugetlb_lock.
4227                  */
4228                 if (nid != NUMA_NO_NODE)
4229                         nr_available = h->free_huge_pages_node[nid];
4230                 else
4231                         nr_available = h->free_huge_pages;
4232                 nr_available -= h->resv_huge_pages;
4233                 if (!nr_available)
4234                         break;
4235
4236                 err = demote_pool_huge_page(h, n_mask);
4237                 if (err)
4238                         break;
4239
4240                 nr_demote--;
4241         }
4242
4243         spin_unlock_irq(&hugetlb_lock);
4244         mutex_unlock(&h->resize_lock);
4245
4246         if (err)
4247                 return err;
4248         return len;
4249 }
4250 HSTATE_ATTR_WO(demote);
4251
4252 static ssize_t demote_size_show(struct kobject *kobj,
4253                                         struct kobj_attribute *attr, char *buf)
4254 {
4255         struct hstate *h = kobj_to_hstate(kobj, NULL);
4256         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4257
4258         return sysfs_emit(buf, "%lukB\n", demote_size);
4259 }
4260
4261 static ssize_t demote_size_store(struct kobject *kobj,
4262                                         struct kobj_attribute *attr,
4263                                         const char *buf, size_t count)
4264 {
4265         struct hstate *h, *demote_hstate;
4266         unsigned long demote_size;
4267         unsigned int demote_order;
4268
4269         demote_size = (unsigned long)memparse(buf, NULL);
4270
4271         demote_hstate = size_to_hstate(demote_size);
4272         if (!demote_hstate)
4273                 return -EINVAL;
4274         demote_order = demote_hstate->order;
4275         if (demote_order < HUGETLB_PAGE_ORDER)
4276                 return -EINVAL;
4277
4278         /* demote order must be smaller than hstate order */
4279         h = kobj_to_hstate(kobj, NULL);
4280         if (demote_order >= h->order)
4281                 return -EINVAL;
4282
4283         /* resize_lock synchronizes access to demote size and writes */
4284         mutex_lock(&h->resize_lock);
4285         h->demote_order = demote_order;
4286         mutex_unlock(&h->resize_lock);
4287
4288         return count;
4289 }
4290 HSTATE_ATTR(demote_size);
4291
4292 static struct attribute *hstate_attrs[] = {
4293         &nr_hugepages_attr.attr,
4294         &nr_overcommit_hugepages_attr.attr,
4295         &free_hugepages_attr.attr,
4296         &resv_hugepages_attr.attr,
4297         &surplus_hugepages_attr.attr,
4298 #ifdef CONFIG_NUMA
4299         &nr_hugepages_mempolicy_attr.attr,
4300 #endif
4301         NULL,
4302 };
4303
4304 static const struct attribute_group hstate_attr_group = {
4305         .attrs = hstate_attrs,
4306 };
4307
4308 static struct attribute *hstate_demote_attrs[] = {
4309         &demote_size_attr.attr,
4310         &demote_attr.attr,
4311         NULL,
4312 };
4313
4314 static const struct attribute_group hstate_demote_attr_group = {
4315         .attrs = hstate_demote_attrs,
4316 };
4317
4318 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4319                                     struct kobject **hstate_kobjs,
4320                                     const struct attribute_group *hstate_attr_group)
4321 {
4322         int retval;
4323         int hi = hstate_index(h);
4324
4325         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4326         if (!hstate_kobjs[hi])
4327                 return -ENOMEM;
4328
4329         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4330         if (retval) {
4331                 kobject_put(hstate_kobjs[hi]);
4332                 hstate_kobjs[hi] = NULL;
4333                 return retval;
4334         }
4335
4336         if (h->demote_order) {
4337                 retval = sysfs_create_group(hstate_kobjs[hi],
4338                                             &hstate_demote_attr_group);
4339                 if (retval) {
4340                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4341                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4342                         kobject_put(hstate_kobjs[hi]);
4343                         hstate_kobjs[hi] = NULL;
4344                         return retval;
4345                 }
4346         }
4347
4348         return 0;
4349 }
4350
4351 #ifdef CONFIG_NUMA
4352 static bool hugetlb_sysfs_initialized __ro_after_init;
4353
4354 /*
4355  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4356  * with node devices in node_devices[] using a parallel array.  The array
4357  * index of a node device or _hstate == node id.
4358  * This is here to avoid any static dependency of the node device driver, in
4359  * the base kernel, on the hugetlb module.
4360  */
4361 struct node_hstate {
4362         struct kobject          *hugepages_kobj;
4363         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4364 };
4365 static struct node_hstate node_hstates[MAX_NUMNODES];
4366
4367 /*
4368  * A subset of global hstate attributes for node devices
4369  */
4370 static struct attribute *per_node_hstate_attrs[] = {
4371         &nr_hugepages_attr.attr,
4372         &free_hugepages_attr.attr,
4373         &surplus_hugepages_attr.attr,
4374         NULL,
4375 };
4376
4377 static const struct attribute_group per_node_hstate_attr_group = {
4378         .attrs = per_node_hstate_attrs,
4379 };
4380
4381 /*
4382  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4383  * Returns node id via non-NULL nidp.
4384  */
4385 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4386 {
4387         int nid;
4388
4389         for (nid = 0; nid < nr_node_ids; nid++) {
4390                 struct node_hstate *nhs = &node_hstates[nid];
4391                 int i;
4392                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4393                         if (nhs->hstate_kobjs[i] == kobj) {
4394                                 if (nidp)
4395                                         *nidp = nid;
4396                                 return &hstates[i];
4397                         }
4398         }
4399
4400         BUG();
4401         return NULL;
4402 }
4403
4404 /*
4405  * Unregister hstate attributes from a single node device.
4406  * No-op if no hstate attributes attached.
4407  */
4408 void hugetlb_unregister_node(struct node *node)
4409 {
4410         struct hstate *h;
4411         struct node_hstate *nhs = &node_hstates[node->dev.id];
4412
4413         if (!nhs->hugepages_kobj)
4414                 return;         /* no hstate attributes */
4415
4416         for_each_hstate(h) {
4417                 int idx = hstate_index(h);
4418                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4419
4420                 if (!hstate_kobj)
4421                         continue;
4422                 if (h->demote_order)
4423                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4424                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4425                 kobject_put(hstate_kobj);
4426                 nhs->hstate_kobjs[idx] = NULL;
4427         }
4428
4429         kobject_put(nhs->hugepages_kobj);
4430         nhs->hugepages_kobj = NULL;
4431 }
4432
4433
4434 /*
4435  * Register hstate attributes for a single node device.
4436  * No-op if attributes already registered.
4437  */
4438 void hugetlb_register_node(struct node *node)
4439 {
4440         struct hstate *h;
4441         struct node_hstate *nhs = &node_hstates[node->dev.id];
4442         int err;
4443
4444         if (!hugetlb_sysfs_initialized)
4445                 return;
4446
4447         if (nhs->hugepages_kobj)
4448                 return;         /* already allocated */
4449
4450         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4451                                                         &node->dev.kobj);
4452         if (!nhs->hugepages_kobj)
4453                 return;
4454
4455         for_each_hstate(h) {
4456                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4457                                                 nhs->hstate_kobjs,
4458                                                 &per_node_hstate_attr_group);
4459                 if (err) {
4460                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4461                                 h->name, node->dev.id);
4462                         hugetlb_unregister_node(node);
4463                         break;
4464                 }
4465         }
4466 }
4467
4468 /*
4469  * hugetlb init time:  register hstate attributes for all registered node
4470  * devices of nodes that have memory.  All on-line nodes should have
4471  * registered their associated device by this time.
4472  */
4473 static void __init hugetlb_register_all_nodes(void)
4474 {
4475         int nid;
4476
4477         for_each_online_node(nid)
4478                 hugetlb_register_node(node_devices[nid]);
4479 }
4480 #else   /* !CONFIG_NUMA */
4481
4482 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4483 {
4484         BUG();
4485         if (nidp)
4486                 *nidp = -1;
4487         return NULL;
4488 }
4489
4490 static void hugetlb_register_all_nodes(void) { }
4491
4492 #endif
4493
4494 #ifdef CONFIG_CMA
4495 static void __init hugetlb_cma_check(void);
4496 #else
4497 static inline __init void hugetlb_cma_check(void)
4498 {
4499 }
4500 #endif
4501
4502 static void __init hugetlb_sysfs_init(void)
4503 {
4504         struct hstate *h;
4505         int err;
4506
4507         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4508         if (!hugepages_kobj)
4509                 return;
4510
4511         for_each_hstate(h) {
4512                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4513                                          hstate_kobjs, &hstate_attr_group);
4514                 if (err)
4515                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4516         }
4517
4518 #ifdef CONFIG_NUMA
4519         hugetlb_sysfs_initialized = true;
4520 #endif
4521         hugetlb_register_all_nodes();
4522 }
4523
4524 #ifdef CONFIG_SYSCTL
4525 static void hugetlb_sysctl_init(void);
4526 #else
4527 static inline void hugetlb_sysctl_init(void) { }
4528 #endif
4529
4530 static int __init hugetlb_init(void)
4531 {
4532         int i;
4533
4534         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4535                         __NR_HPAGEFLAGS);
4536
4537         if (!hugepages_supported()) {
4538                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4539                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4540                 return 0;
4541         }
4542
4543         /*
4544          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4545          * architectures depend on setup being done here.
4546          */
4547         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4548         if (!parsed_default_hugepagesz) {
4549                 /*
4550                  * If we did not parse a default huge page size, set
4551                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4552                  * number of huge pages for this default size was implicitly
4553                  * specified, set that here as well.
4554                  * Note that the implicit setting will overwrite an explicit
4555                  * setting.  A warning will be printed in this case.
4556                  */
4557                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4558                 if (default_hstate_max_huge_pages) {
4559                         if (default_hstate.max_huge_pages) {
4560                                 char buf[32];
4561
4562                                 string_get_size(huge_page_size(&default_hstate),
4563                                         1, STRING_UNITS_2, buf, 32);
4564                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4565                                         default_hstate.max_huge_pages, buf);
4566                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4567                                         default_hstate_max_huge_pages);
4568                         }
4569                         default_hstate.max_huge_pages =
4570                                 default_hstate_max_huge_pages;
4571
4572                         for_each_online_node(i)
4573                                 default_hstate.max_huge_pages_node[i] =
4574                                         default_hugepages_in_node[i];
4575                 }
4576         }
4577
4578         hugetlb_cma_check();
4579         hugetlb_init_hstates();
4580         gather_bootmem_prealloc();
4581         report_hugepages();
4582
4583         hugetlb_sysfs_init();
4584         hugetlb_cgroup_file_init();
4585         hugetlb_sysctl_init();
4586
4587 #ifdef CONFIG_SMP
4588         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4589 #else
4590         num_fault_mutexes = 1;
4591 #endif
4592         hugetlb_fault_mutex_table =
4593                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4594                               GFP_KERNEL);
4595         BUG_ON(!hugetlb_fault_mutex_table);
4596
4597         for (i = 0; i < num_fault_mutexes; i++)
4598                 mutex_init(&hugetlb_fault_mutex_table[i]);
4599         return 0;
4600 }
4601 subsys_initcall(hugetlb_init);
4602
4603 /* Overwritten by architectures with more huge page sizes */
4604 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4605 {
4606         return size == HPAGE_SIZE;
4607 }
4608
4609 void __init hugetlb_add_hstate(unsigned int order)
4610 {
4611         struct hstate *h;
4612         unsigned long i;
4613
4614         if (size_to_hstate(PAGE_SIZE << order)) {
4615                 return;
4616         }
4617         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4618         BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4619         h = &hstates[hugetlb_max_hstate++];
4620         mutex_init(&h->resize_lock);
4621         h->order = order;
4622         h->mask = ~(huge_page_size(h) - 1);
4623         for (i = 0; i < MAX_NUMNODES; ++i)
4624                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4625         INIT_LIST_HEAD(&h->hugepage_activelist);
4626         h->next_nid_to_alloc = first_memory_node;
4627         h->next_nid_to_free = first_memory_node;
4628         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4629                                         huge_page_size(h)/SZ_1K);
4630
4631         parsed_hstate = h;
4632 }
4633
4634 bool __init __weak hugetlb_node_alloc_supported(void)
4635 {
4636         return true;
4637 }
4638
4639 static void __init hugepages_clear_pages_in_node(void)
4640 {
4641         if (!hugetlb_max_hstate) {
4642                 default_hstate_max_huge_pages = 0;
4643                 memset(default_hugepages_in_node, 0,
4644                         sizeof(default_hugepages_in_node));
4645         } else {
4646                 parsed_hstate->max_huge_pages = 0;
4647                 memset(parsed_hstate->max_huge_pages_node, 0,
4648                         sizeof(parsed_hstate->max_huge_pages_node));
4649         }
4650 }
4651
4652 /*
4653  * hugepages command line processing
4654  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4655  * specification.  If not, ignore the hugepages value.  hugepages can also
4656  * be the first huge page command line  option in which case it implicitly
4657  * specifies the number of huge pages for the default size.
4658  */
4659 static int __init hugepages_setup(char *s)
4660 {
4661         unsigned long *mhp;
4662         static unsigned long *last_mhp;
4663         int node = NUMA_NO_NODE;
4664         int count;
4665         unsigned long tmp;
4666         char *p = s;
4667
4668         if (!parsed_valid_hugepagesz) {
4669                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4670                 parsed_valid_hugepagesz = true;
4671                 return 1;
4672         }
4673
4674         /*
4675          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4676          * yet, so this hugepages= parameter goes to the "default hstate".
4677          * Otherwise, it goes with the previously parsed hugepagesz or
4678          * default_hugepagesz.
4679          */
4680         else if (!hugetlb_max_hstate)
4681                 mhp = &default_hstate_max_huge_pages;
4682         else
4683                 mhp = &parsed_hstate->max_huge_pages;
4684
4685         if (mhp == last_mhp) {
4686                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4687                 return 1;
4688         }
4689
4690         while (*p) {
4691                 count = 0;
4692                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4693                         goto invalid;
4694                 /* Parameter is node format */
4695                 if (p[count] == ':') {
4696                         if (!hugetlb_node_alloc_supported()) {
4697                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4698                                 return 1;
4699                         }
4700                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4701                                 goto invalid;
4702                         node = array_index_nospec(tmp, MAX_NUMNODES);
4703                         p += count + 1;
4704                         /* Parse hugepages */
4705                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4706                                 goto invalid;
4707                         if (!hugetlb_max_hstate)
4708                                 default_hugepages_in_node[node] = tmp;
4709                         else
4710                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4711                         *mhp += tmp;
4712                         /* Go to parse next node*/
4713                         if (p[count] == ',')
4714                                 p += count + 1;
4715                         else
4716                                 break;
4717                 } else {
4718                         if (p != s)
4719                                 goto invalid;
4720                         *mhp = tmp;
4721                         break;
4722                 }
4723         }
4724
4725         /*
4726          * Global state is always initialized later in hugetlb_init.
4727          * But we need to allocate gigantic hstates here early to still
4728          * use the bootmem allocator.
4729          */
4730         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4731                 hugetlb_hstate_alloc_pages(parsed_hstate);
4732
4733         last_mhp = mhp;
4734
4735         return 1;
4736
4737 invalid:
4738         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4739         hugepages_clear_pages_in_node();
4740         return 1;
4741 }
4742 __setup("hugepages=", hugepages_setup);
4743
4744 /*
4745  * hugepagesz command line processing
4746  * A specific huge page size can only be specified once with hugepagesz.
4747  * hugepagesz is followed by hugepages on the command line.  The global
4748  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4749  * hugepagesz argument was valid.
4750  */
4751 static int __init hugepagesz_setup(char *s)
4752 {
4753         unsigned long size;
4754         struct hstate *h;
4755
4756         parsed_valid_hugepagesz = false;
4757         size = (unsigned long)memparse(s, NULL);
4758
4759         if (!arch_hugetlb_valid_size(size)) {
4760                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4761                 return 1;
4762         }
4763
4764         h = size_to_hstate(size);
4765         if (h) {
4766                 /*
4767                  * hstate for this size already exists.  This is normally
4768                  * an error, but is allowed if the existing hstate is the
4769                  * default hstate.  More specifically, it is only allowed if
4770                  * the number of huge pages for the default hstate was not
4771                  * previously specified.
4772                  */
4773                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4774                     default_hstate.max_huge_pages) {
4775                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4776                         return 1;
4777                 }
4778
4779                 /*
4780                  * No need to call hugetlb_add_hstate() as hstate already
4781                  * exists.  But, do set parsed_hstate so that a following
4782                  * hugepages= parameter will be applied to this hstate.
4783                  */
4784                 parsed_hstate = h;
4785                 parsed_valid_hugepagesz = true;
4786                 return 1;
4787         }
4788
4789         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4790         parsed_valid_hugepagesz = true;
4791         return 1;
4792 }
4793 __setup("hugepagesz=", hugepagesz_setup);
4794
4795 /*
4796  * default_hugepagesz command line input
4797  * Only one instance of default_hugepagesz allowed on command line.
4798  */
4799 static int __init default_hugepagesz_setup(char *s)
4800 {
4801         unsigned long size;
4802         int i;
4803
4804         parsed_valid_hugepagesz = false;
4805         if (parsed_default_hugepagesz) {
4806                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4807                 return 1;
4808         }
4809
4810         size = (unsigned long)memparse(s, NULL);
4811
4812         if (!arch_hugetlb_valid_size(size)) {
4813                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4814                 return 1;
4815         }
4816
4817         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4818         parsed_valid_hugepagesz = true;
4819         parsed_default_hugepagesz = true;
4820         default_hstate_idx = hstate_index(size_to_hstate(size));
4821
4822         /*
4823          * The number of default huge pages (for this size) could have been
4824          * specified as the first hugetlb parameter: hugepages=X.  If so,
4825          * then default_hstate_max_huge_pages is set.  If the default huge
4826          * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4827          * allocated here from bootmem allocator.
4828          */
4829         if (default_hstate_max_huge_pages) {
4830                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4831                 for_each_online_node(i)
4832                         default_hstate.max_huge_pages_node[i] =
4833                                 default_hugepages_in_node[i];
4834                 if (hstate_is_gigantic(&default_hstate))
4835                         hugetlb_hstate_alloc_pages(&default_hstate);
4836                 default_hstate_max_huge_pages = 0;
4837         }
4838
4839         return 1;
4840 }
4841 __setup("default_hugepagesz=", default_hugepagesz_setup);
4842
4843 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4844 {
4845 #ifdef CONFIG_NUMA
4846         struct mempolicy *mpol = get_task_policy(current);
4847
4848         /*
4849          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4850          * (from policy_nodemask) specifically for hugetlb case
4851          */
4852         if (mpol->mode == MPOL_BIND &&
4853                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4854                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4855                 return &mpol->nodes;
4856 #endif
4857         return NULL;
4858 }
4859
4860 static unsigned int allowed_mems_nr(struct hstate *h)
4861 {
4862         int node;
4863         unsigned int nr = 0;
4864         nodemask_t *mbind_nodemask;
4865         unsigned int *array = h->free_huge_pages_node;
4866         gfp_t gfp_mask = htlb_alloc_mask(h);
4867
4868         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4869         for_each_node_mask(node, cpuset_current_mems_allowed) {
4870                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4871                         nr += array[node];
4872         }
4873
4874         return nr;
4875 }
4876
4877 #ifdef CONFIG_SYSCTL
4878 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4879                                           void *buffer, size_t *length,
4880                                           loff_t *ppos, unsigned long *out)
4881 {
4882         struct ctl_table dup_table;
4883
4884         /*
4885          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4886          * can duplicate the @table and alter the duplicate of it.
4887          */
4888         dup_table = *table;
4889         dup_table.data = out;
4890
4891         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4892 }
4893
4894 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4895                          struct ctl_table *table, int write,
4896                          void *buffer, size_t *length, loff_t *ppos)
4897 {
4898         struct hstate *h = &default_hstate;
4899         unsigned long tmp = h->max_huge_pages;
4900         int ret;
4901
4902         if (!hugepages_supported())
4903                 return -EOPNOTSUPP;
4904
4905         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4906                                              &tmp);
4907         if (ret)
4908                 goto out;
4909
4910         if (write)
4911                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4912                                                   NUMA_NO_NODE, tmp, *length);
4913 out:
4914         return ret;
4915 }
4916
4917 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4918                           void *buffer, size_t *length, loff_t *ppos)
4919 {
4920
4921         return hugetlb_sysctl_handler_common(false, table, write,
4922                                                         buffer, length, ppos);
4923 }
4924
4925 #ifdef CONFIG_NUMA
4926 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4927                           void *buffer, size_t *length, loff_t *ppos)
4928 {
4929         return hugetlb_sysctl_handler_common(true, table, write,
4930                                                         buffer, length, ppos);
4931 }
4932 #endif /* CONFIG_NUMA */
4933
4934 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4935                 void *buffer, size_t *length, loff_t *ppos)
4936 {
4937         struct hstate *h = &default_hstate;
4938         unsigned long tmp;
4939         int ret;
4940
4941         if (!hugepages_supported())
4942                 return -EOPNOTSUPP;
4943
4944         tmp = h->nr_overcommit_huge_pages;
4945
4946         if (write && hstate_is_gigantic(h))
4947                 return -EINVAL;
4948
4949         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4950                                              &tmp);
4951         if (ret)
4952                 goto out;
4953
4954         if (write) {
4955                 spin_lock_irq(&hugetlb_lock);
4956                 h->nr_overcommit_huge_pages = tmp;
4957                 spin_unlock_irq(&hugetlb_lock);
4958         }
4959 out:
4960         return ret;
4961 }
4962
4963 static struct ctl_table hugetlb_table[] = {
4964         {
4965                 .procname       = "nr_hugepages",
4966                 .data           = NULL,
4967                 .maxlen         = sizeof(unsigned long),
4968                 .mode           = 0644,
4969                 .proc_handler   = hugetlb_sysctl_handler,
4970         },
4971 #ifdef CONFIG_NUMA
4972         {
4973                 .procname       = "nr_hugepages_mempolicy",
4974                 .data           = NULL,
4975                 .maxlen         = sizeof(unsigned long),
4976                 .mode           = 0644,
4977                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4978         },
4979 #endif
4980         {
4981                 .procname       = "hugetlb_shm_group",
4982                 .data           = &sysctl_hugetlb_shm_group,
4983                 .maxlen         = sizeof(gid_t),
4984                 .mode           = 0644,
4985                 .proc_handler   = proc_dointvec,
4986         },
4987         {
4988                 .procname       = "nr_overcommit_hugepages",
4989                 .data           = NULL,
4990                 .maxlen         = sizeof(unsigned long),
4991                 .mode           = 0644,
4992                 .proc_handler   = hugetlb_overcommit_handler,
4993         },
4994 };
4995
4996 static void hugetlb_sysctl_init(void)
4997 {
4998         register_sysctl_init("vm", hugetlb_table);
4999 }
5000 #endif /* CONFIG_SYSCTL */
5001
5002 void hugetlb_report_meminfo(struct seq_file *m)
5003 {
5004         struct hstate *h;
5005         unsigned long total = 0;
5006
5007         if (!hugepages_supported())
5008                 return;
5009
5010         for_each_hstate(h) {
5011                 unsigned long count = h->nr_huge_pages;
5012
5013                 total += huge_page_size(h) * count;
5014
5015                 if (h == &default_hstate)
5016                         seq_printf(m,
5017                                    "HugePages_Total:   %5lu\n"
5018                                    "HugePages_Free:    %5lu\n"
5019                                    "HugePages_Rsvd:    %5lu\n"
5020                                    "HugePages_Surp:    %5lu\n"
5021                                    "Hugepagesize:   %8lu kB\n",
5022                                    count,
5023                                    h->free_huge_pages,
5024                                    h->resv_huge_pages,
5025                                    h->surplus_huge_pages,
5026                                    huge_page_size(h) / SZ_1K);
5027         }
5028
5029         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5030 }
5031
5032 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5033 {
5034         struct hstate *h = &default_hstate;
5035
5036         if (!hugepages_supported())
5037                 return 0;
5038
5039         return sysfs_emit_at(buf, len,
5040                              "Node %d HugePages_Total: %5u\n"
5041                              "Node %d HugePages_Free:  %5u\n"
5042                              "Node %d HugePages_Surp:  %5u\n",
5043                              nid, h->nr_huge_pages_node[nid],
5044                              nid, h->free_huge_pages_node[nid],
5045                              nid, h->surplus_huge_pages_node[nid]);
5046 }
5047
5048 void hugetlb_show_meminfo_node(int nid)
5049 {
5050         struct hstate *h;
5051
5052         if (!hugepages_supported())
5053                 return;
5054
5055         for_each_hstate(h)
5056                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5057                         nid,
5058                         h->nr_huge_pages_node[nid],
5059                         h->free_huge_pages_node[nid],
5060                         h->surplus_huge_pages_node[nid],
5061                         huge_page_size(h) / SZ_1K);
5062 }
5063
5064 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5065 {
5066         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5067                    K(atomic_long_read(&mm->hugetlb_usage)));
5068 }
5069
5070 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5071 unsigned long hugetlb_total_pages(void)
5072 {
5073         struct hstate *h;
5074         unsigned long nr_total_pages = 0;
5075
5076         for_each_hstate(h)
5077                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5078         return nr_total_pages;
5079 }
5080
5081 static int hugetlb_acct_memory(struct hstate *h, long delta)
5082 {
5083         int ret = -ENOMEM;
5084
5085         if (!delta)
5086                 return 0;
5087
5088         spin_lock_irq(&hugetlb_lock);
5089         /*
5090          * When cpuset is configured, it breaks the strict hugetlb page
5091          * reservation as the accounting is done on a global variable. Such
5092          * reservation is completely rubbish in the presence of cpuset because
5093          * the reservation is not checked against page availability for the
5094          * current cpuset. Application can still potentially OOM'ed by kernel
5095          * with lack of free htlb page in cpuset that the task is in.
5096          * Attempt to enforce strict accounting with cpuset is almost
5097          * impossible (or too ugly) because cpuset is too fluid that
5098          * task or memory node can be dynamically moved between cpusets.
5099          *
5100          * The change of semantics for shared hugetlb mapping with cpuset is
5101          * undesirable. However, in order to preserve some of the semantics,
5102          * we fall back to check against current free page availability as
5103          * a best attempt and hopefully to minimize the impact of changing
5104          * semantics that cpuset has.
5105          *
5106          * Apart from cpuset, we also have memory policy mechanism that
5107          * also determines from which node the kernel will allocate memory
5108          * in a NUMA system. So similar to cpuset, we also should consider
5109          * the memory policy of the current task. Similar to the description
5110          * above.
5111          */
5112         if (delta > 0) {
5113                 if (gather_surplus_pages(h, delta) < 0)
5114                         goto out;
5115
5116                 if (delta > allowed_mems_nr(h)) {
5117                         return_unused_surplus_pages(h, delta);
5118                         goto out;
5119                 }
5120         }
5121
5122         ret = 0;
5123         if (delta < 0)
5124                 return_unused_surplus_pages(h, (unsigned long) -delta);
5125
5126 out:
5127         spin_unlock_irq(&hugetlb_lock);
5128         return ret;
5129 }
5130
5131 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5132 {
5133         struct resv_map *resv = vma_resv_map(vma);
5134
5135         /*
5136          * HPAGE_RESV_OWNER indicates a private mapping.
5137          * This new VMA should share its siblings reservation map if present.
5138          * The VMA will only ever have a valid reservation map pointer where
5139          * it is being copied for another still existing VMA.  As that VMA
5140          * has a reference to the reservation map it cannot disappear until
5141          * after this open call completes.  It is therefore safe to take a
5142          * new reference here without additional locking.
5143          */
5144         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5145                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5146                 kref_get(&resv->refs);
5147         }
5148
5149         /*
5150          * vma_lock structure for sharable mappings is vma specific.
5151          * Clear old pointer (if copied via vm_area_dup) and allocate
5152          * new structure.  Before clearing, make sure vma_lock is not
5153          * for this vma.
5154          */
5155         if (vma->vm_flags & VM_MAYSHARE) {
5156                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5157
5158                 if (vma_lock) {
5159                         if (vma_lock->vma != vma) {
5160                                 vma->vm_private_data = NULL;
5161                                 hugetlb_vma_lock_alloc(vma);
5162                         } else
5163                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5164                 } else
5165                         hugetlb_vma_lock_alloc(vma);
5166         }
5167 }
5168
5169 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5170 {
5171         struct hstate *h = hstate_vma(vma);
5172         struct resv_map *resv;
5173         struct hugepage_subpool *spool = subpool_vma(vma);
5174         unsigned long reserve, start, end;
5175         long gbl_reserve;
5176
5177         hugetlb_vma_lock_free(vma);
5178
5179         resv = vma_resv_map(vma);
5180         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5181                 return;
5182
5183         start = vma_hugecache_offset(h, vma, vma->vm_start);
5184         end = vma_hugecache_offset(h, vma, vma->vm_end);
5185
5186         reserve = (end - start) - region_count(resv, start, end);
5187         hugetlb_cgroup_uncharge_counter(resv, start, end);
5188         if (reserve) {
5189                 /*
5190                  * Decrement reserve counts.  The global reserve count may be
5191                  * adjusted if the subpool has a minimum size.
5192                  */
5193                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5194                 hugetlb_acct_memory(h, -gbl_reserve);
5195         }
5196
5197         kref_put(&resv->refs, resv_map_release);
5198 }
5199
5200 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5201 {
5202         if (addr & ~(huge_page_mask(hstate_vma(vma))))
5203                 return -EINVAL;
5204
5205         /*
5206          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5207          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5208          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5209          */
5210         if (addr & ~PUD_MASK) {
5211                 /*
5212                  * hugetlb_vm_op_split is called right before we attempt to
5213                  * split the VMA. We will need to unshare PMDs in the old and
5214                  * new VMAs, so let's unshare before we split.
5215                  */
5216                 unsigned long floor = addr & PUD_MASK;
5217                 unsigned long ceil = floor + PUD_SIZE;
5218
5219                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5220                         hugetlb_unshare_pmds(vma, floor, ceil);
5221         }
5222
5223         return 0;
5224 }
5225
5226 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5227 {
5228         return huge_page_size(hstate_vma(vma));
5229 }
5230
5231 /*
5232  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5233  * handle_mm_fault() to try to instantiate regular-sized pages in the
5234  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5235  * this far.
5236  */
5237 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5238 {
5239         BUG();
5240         return 0;
5241 }
5242
5243 /*
5244  * When a new function is introduced to vm_operations_struct and added
5245  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5246  * This is because under System V memory model, mappings created via
5247  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5248  * their original vm_ops are overwritten with shm_vm_ops.
5249  */
5250 const struct vm_operations_struct hugetlb_vm_ops = {
5251         .fault = hugetlb_vm_op_fault,
5252         .open = hugetlb_vm_op_open,
5253         .close = hugetlb_vm_op_close,
5254         .may_split = hugetlb_vm_op_split,
5255         .pagesize = hugetlb_vm_op_pagesize,
5256 };
5257
5258 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5259                                 int writable)
5260 {
5261         pte_t entry;
5262         unsigned int shift = huge_page_shift(hstate_vma(vma));
5263
5264         if (writable) {
5265                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5266                                          vma->vm_page_prot)));
5267         } else {
5268                 entry = huge_pte_wrprotect(mk_huge_pte(page,
5269                                            vma->vm_page_prot));
5270         }
5271         entry = pte_mkyoung(entry);
5272         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5273
5274         return entry;
5275 }
5276
5277 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5278                                    unsigned long address, pte_t *ptep)
5279 {
5280         pte_t entry;
5281
5282         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5283         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5284                 update_mmu_cache(vma, address, ptep);
5285 }
5286
5287 bool is_hugetlb_entry_migration(pte_t pte)
5288 {
5289         swp_entry_t swp;
5290
5291         if (huge_pte_none(pte) || pte_present(pte))
5292                 return false;
5293         swp = pte_to_swp_entry(pte);
5294         if (is_migration_entry(swp))
5295                 return true;
5296         else
5297                 return false;
5298 }
5299
5300 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5301 {
5302         swp_entry_t swp;
5303
5304         if (huge_pte_none(pte) || pte_present(pte))
5305                 return false;
5306         swp = pte_to_swp_entry(pte);
5307         if (is_hwpoison_entry(swp))
5308                 return true;
5309         else
5310                 return false;
5311 }
5312
5313 static void
5314 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5315                       struct folio *new_folio, pte_t old, unsigned long sz)
5316 {
5317         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5318
5319         __folio_mark_uptodate(new_folio);
5320         hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5321         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5322                 newpte = huge_pte_mkuffd_wp(newpte);
5323         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5324         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5325         folio_set_hugetlb_migratable(new_folio);
5326 }
5327
5328 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5329                             struct vm_area_struct *dst_vma,
5330                             struct vm_area_struct *src_vma)
5331 {
5332         pte_t *src_pte, *dst_pte, entry;
5333         struct folio *pte_folio;
5334         unsigned long addr;
5335         bool cow = is_cow_mapping(src_vma->vm_flags);
5336         struct hstate *h = hstate_vma(src_vma);
5337         unsigned long sz = huge_page_size(h);
5338         unsigned long npages = pages_per_huge_page(h);
5339         struct mmu_notifier_range range;
5340         unsigned long last_addr_mask;
5341         int ret = 0;
5342
5343         if (cow) {
5344                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5345                                         src_vma->vm_start,
5346                                         src_vma->vm_end);
5347                 mmu_notifier_invalidate_range_start(&range);
5348                 vma_assert_write_locked(src_vma);
5349                 raw_write_seqcount_begin(&src->write_protect_seq);
5350         } else {
5351                 /*
5352                  * For shared mappings the vma lock must be held before
5353                  * calling hugetlb_walk() in the src vma. Otherwise, the
5354                  * returned ptep could go away if part of a shared pmd and
5355                  * another thread calls huge_pmd_unshare.
5356                  */
5357                 hugetlb_vma_lock_read(src_vma);
5358         }
5359
5360         last_addr_mask = hugetlb_mask_last_page(h);
5361         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5362                 spinlock_t *src_ptl, *dst_ptl;
5363                 src_pte = hugetlb_walk(src_vma, addr, sz);
5364                 if (!src_pte) {
5365                         addr |= last_addr_mask;
5366                         continue;
5367                 }
5368                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5369                 if (!dst_pte) {
5370                         ret = -ENOMEM;
5371                         break;
5372                 }
5373
5374                 /*
5375                  * If the pagetables are shared don't copy or take references.
5376                  *
5377                  * dst_pte == src_pte is the common case of src/dest sharing.
5378                  * However, src could have 'unshared' and dst shares with
5379                  * another vma. So page_count of ptep page is checked instead
5380                  * to reliably determine whether pte is shared.
5381                  */
5382                 if (page_count(virt_to_page(dst_pte)) > 1) {
5383                         addr |= last_addr_mask;
5384                         continue;
5385                 }
5386
5387                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5388                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5389                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5390                 entry = huge_ptep_get(src_pte);
5391 again:
5392                 if (huge_pte_none(entry)) {
5393                         /*
5394                          * Skip if src entry none.
5395                          */
5396                         ;
5397                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5398                         if (!userfaultfd_wp(dst_vma))
5399                                 entry = huge_pte_clear_uffd_wp(entry);
5400                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5401                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5402                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5403                         bool uffd_wp = pte_swp_uffd_wp(entry);
5404
5405                         if (!is_readable_migration_entry(swp_entry) && cow) {
5406                                 /*
5407                                  * COW mappings require pages in both
5408                                  * parent and child to be set to read.
5409                                  */
5410                                 swp_entry = make_readable_migration_entry(
5411                                                         swp_offset(swp_entry));
5412                                 entry = swp_entry_to_pte(swp_entry);
5413                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5414                                         entry = pte_swp_mkuffd_wp(entry);
5415                                 set_huge_pte_at(src, addr, src_pte, entry, sz);
5416                         }
5417                         if (!userfaultfd_wp(dst_vma))
5418                                 entry = huge_pte_clear_uffd_wp(entry);
5419                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5420                 } else if (unlikely(is_pte_marker(entry))) {
5421                         pte_marker marker = copy_pte_marker(
5422                                 pte_to_swp_entry(entry), dst_vma);
5423
5424                         if (marker)
5425                                 set_huge_pte_at(dst, addr, dst_pte,
5426                                                 make_pte_marker(marker), sz);
5427                 } else {
5428                         entry = huge_ptep_get(src_pte);
5429                         pte_folio = page_folio(pte_page(entry));
5430                         folio_get(pte_folio);
5431
5432                         /*
5433                          * Failing to duplicate the anon rmap is a rare case
5434                          * where we see pinned hugetlb pages while they're
5435                          * prone to COW. We need to do the COW earlier during
5436                          * fork.
5437                          *
5438                          * When pre-allocating the page or copying data, we
5439                          * need to be without the pgtable locks since we could
5440                          * sleep during the process.
5441                          */
5442                         if (!folio_test_anon(pte_folio)) {
5443                                 hugetlb_add_file_rmap(pte_folio);
5444                         } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5445                                 pte_t src_pte_old = entry;
5446                                 struct folio *new_folio;
5447
5448                                 spin_unlock(src_ptl);
5449                                 spin_unlock(dst_ptl);
5450                                 /* Do not use reserve as it's private owned */
5451                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5452                                 if (IS_ERR(new_folio)) {
5453                                         folio_put(pte_folio);
5454                                         ret = PTR_ERR(new_folio);
5455                                         break;
5456                                 }
5457                                 ret = copy_user_large_folio(new_folio,
5458                                                             pte_folio,
5459                                                             addr, dst_vma);
5460                                 folio_put(pte_folio);
5461                                 if (ret) {
5462                                         folio_put(new_folio);
5463                                         break;
5464                                 }
5465
5466                                 /* Install the new hugetlb folio if src pte stable */
5467                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5468                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5469                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5470                                 entry = huge_ptep_get(src_pte);
5471                                 if (!pte_same(src_pte_old, entry)) {
5472                                         restore_reserve_on_error(h, dst_vma, addr,
5473                                                                 new_folio);
5474                                         folio_put(new_folio);
5475                                         /* huge_ptep of dst_pte won't change as in child */
5476                                         goto again;
5477                                 }
5478                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5479                                                       new_folio, src_pte_old, sz);
5480                                 spin_unlock(src_ptl);
5481                                 spin_unlock(dst_ptl);
5482                                 continue;
5483                         }
5484
5485                         if (cow) {
5486                                 /*
5487                                  * No need to notify as we are downgrading page
5488                                  * table protection not changing it to point
5489                                  * to a new page.
5490                                  *
5491                                  * See Documentation/mm/mmu_notifier.rst
5492                                  */
5493                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5494                                 entry = huge_pte_wrprotect(entry);
5495                         }
5496
5497                         if (!userfaultfd_wp(dst_vma))
5498                                 entry = huge_pte_clear_uffd_wp(entry);
5499
5500                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5501                         hugetlb_count_add(npages, dst);
5502                 }
5503                 spin_unlock(src_ptl);
5504                 spin_unlock(dst_ptl);
5505         }
5506
5507         if (cow) {
5508                 raw_write_seqcount_end(&src->write_protect_seq);
5509                 mmu_notifier_invalidate_range_end(&range);
5510         } else {
5511                 hugetlb_vma_unlock_read(src_vma);
5512         }
5513
5514         return ret;
5515 }
5516
5517 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5518                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5519                           unsigned long sz)
5520 {
5521         struct hstate *h = hstate_vma(vma);
5522         struct mm_struct *mm = vma->vm_mm;
5523         spinlock_t *src_ptl, *dst_ptl;
5524         pte_t pte;
5525
5526         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5527         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5528
5529         /*
5530          * We don't have to worry about the ordering of src and dst ptlocks
5531          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5532          */
5533         if (src_ptl != dst_ptl)
5534                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5535
5536         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5537         set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5538
5539         if (src_ptl != dst_ptl)
5540                 spin_unlock(src_ptl);
5541         spin_unlock(dst_ptl);
5542 }
5543
5544 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5545                              struct vm_area_struct *new_vma,
5546                              unsigned long old_addr, unsigned long new_addr,
5547                              unsigned long len)
5548 {
5549         struct hstate *h = hstate_vma(vma);
5550         struct address_space *mapping = vma->vm_file->f_mapping;
5551         unsigned long sz = huge_page_size(h);
5552         struct mm_struct *mm = vma->vm_mm;
5553         unsigned long old_end = old_addr + len;
5554         unsigned long last_addr_mask;
5555         pte_t *src_pte, *dst_pte;
5556         struct mmu_notifier_range range;
5557         bool shared_pmd = false;
5558
5559         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5560                                 old_end);
5561         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5562         /*
5563          * In case of shared PMDs, we should cover the maximum possible
5564          * range.
5565          */
5566         flush_cache_range(vma, range.start, range.end);
5567
5568         mmu_notifier_invalidate_range_start(&range);
5569         last_addr_mask = hugetlb_mask_last_page(h);
5570         /* Prevent race with file truncation */
5571         hugetlb_vma_lock_write(vma);
5572         i_mmap_lock_write(mapping);
5573         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5574                 src_pte = hugetlb_walk(vma, old_addr, sz);
5575                 if (!src_pte) {
5576                         old_addr |= last_addr_mask;
5577                         new_addr |= last_addr_mask;
5578                         continue;
5579                 }
5580                 if (huge_pte_none(huge_ptep_get(src_pte)))
5581                         continue;
5582
5583                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5584                         shared_pmd = true;
5585                         old_addr |= last_addr_mask;
5586                         new_addr |= last_addr_mask;
5587                         continue;
5588                 }
5589
5590                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5591                 if (!dst_pte)
5592                         break;
5593
5594                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5595         }
5596
5597         if (shared_pmd)
5598                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5599         else
5600                 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5601         mmu_notifier_invalidate_range_end(&range);
5602         i_mmap_unlock_write(mapping);
5603         hugetlb_vma_unlock_write(vma);
5604
5605         return len + old_addr - old_end;
5606 }
5607
5608 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5609                             unsigned long start, unsigned long end,
5610                             struct page *ref_page, zap_flags_t zap_flags)
5611 {
5612         struct mm_struct *mm = vma->vm_mm;
5613         unsigned long address;
5614         pte_t *ptep;
5615         pte_t pte;
5616         spinlock_t *ptl;
5617         struct page *page;
5618         struct hstate *h = hstate_vma(vma);
5619         unsigned long sz = huge_page_size(h);
5620         bool adjust_reservation = false;
5621         unsigned long last_addr_mask;
5622         bool force_flush = false;
5623
5624         WARN_ON(!is_vm_hugetlb_page(vma));
5625         BUG_ON(start & ~huge_page_mask(h));
5626         BUG_ON(end & ~huge_page_mask(h));
5627
5628         /*
5629          * This is a hugetlb vma, all the pte entries should point
5630          * to huge page.
5631          */
5632         tlb_change_page_size(tlb, sz);
5633         tlb_start_vma(tlb, vma);
5634
5635         last_addr_mask = hugetlb_mask_last_page(h);
5636         address = start;
5637         for (; address < end; address += sz) {
5638                 ptep = hugetlb_walk(vma, address, sz);
5639                 if (!ptep) {
5640                         address |= last_addr_mask;
5641                         continue;
5642                 }
5643
5644                 ptl = huge_pte_lock(h, mm, ptep);
5645                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5646                         spin_unlock(ptl);
5647                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5648                         force_flush = true;
5649                         address |= last_addr_mask;
5650                         continue;
5651                 }
5652
5653                 pte = huge_ptep_get(ptep);
5654                 if (huge_pte_none(pte)) {
5655                         spin_unlock(ptl);
5656                         continue;
5657                 }
5658
5659                 /*
5660                  * Migrating hugepage or HWPoisoned hugepage is already
5661                  * unmapped and its refcount is dropped, so just clear pte here.
5662                  */
5663                 if (unlikely(!pte_present(pte))) {
5664                         /*
5665                          * If the pte was wr-protected by uffd-wp in any of the
5666                          * swap forms, meanwhile the caller does not want to
5667                          * drop the uffd-wp bit in this zap, then replace the
5668                          * pte with a marker.
5669                          */
5670                         if (pte_swp_uffd_wp_any(pte) &&
5671                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5672                                 set_huge_pte_at(mm, address, ptep,
5673                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
5674                                                 sz);
5675                         else
5676                                 huge_pte_clear(mm, address, ptep, sz);
5677                         spin_unlock(ptl);
5678                         continue;
5679                 }
5680
5681                 page = pte_page(pte);
5682                 /*
5683                  * If a reference page is supplied, it is because a specific
5684                  * page is being unmapped, not a range. Ensure the page we
5685                  * are about to unmap is the actual page of interest.
5686                  */
5687                 if (ref_page) {
5688                         if (page != ref_page) {
5689                                 spin_unlock(ptl);
5690                                 continue;
5691                         }
5692                         /*
5693                          * Mark the VMA as having unmapped its page so that
5694                          * future faults in this VMA will fail rather than
5695                          * looking like data was lost
5696                          */
5697                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5698                 }
5699
5700                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5701                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5702                 if (huge_pte_dirty(pte))
5703                         set_page_dirty(page);
5704                 /* Leave a uffd-wp pte marker if needed */
5705                 if (huge_pte_uffd_wp(pte) &&
5706                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5707                         set_huge_pte_at(mm, address, ptep,
5708                                         make_pte_marker(PTE_MARKER_UFFD_WP),
5709                                         sz);
5710                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5711                 hugetlb_remove_rmap(page_folio(page));
5712
5713                 /*
5714                  * Restore the reservation for anonymous page, otherwise the
5715                  * backing page could be stolen by someone.
5716                  * If there we are freeing a surplus, do not set the restore
5717                  * reservation bit.
5718                  */
5719                 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5720                     folio_test_anon(page_folio(page))) {
5721                         folio_set_hugetlb_restore_reserve(page_folio(page));
5722                         /* Reservation to be adjusted after the spin lock */
5723                         adjust_reservation = true;
5724                 }
5725
5726                 spin_unlock(ptl);
5727
5728                 /*
5729                  * Adjust the reservation for the region that will have the
5730                  * reserve restored. Keep in mind that vma_needs_reservation() changes
5731                  * resv->adds_in_progress if it succeeds. If this is not done,
5732                  * do_exit() will not see it, and will keep the reservation
5733                  * forever.
5734                  */
5735                 if (adjust_reservation) {
5736                         int rc = vma_needs_reservation(h, vma, address);
5737
5738                         if (rc < 0)
5739                                 /* Pressumably allocate_file_region_entries failed
5740                                  * to allocate a file_region struct. Clear
5741                                  * hugetlb_restore_reserve so that global reserve
5742                                  * count will not be incremented by free_huge_folio.
5743                                  * Act as if we consumed the reservation.
5744                                  */
5745                                 folio_clear_hugetlb_restore_reserve(page_folio(page));
5746                         else if (rc)
5747                                 vma_add_reservation(h, vma, address);
5748                 }
5749
5750                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5751                 /*
5752                  * Bail out after unmapping reference page if supplied
5753                  */
5754                 if (ref_page)
5755                         break;
5756         }
5757         tlb_end_vma(tlb, vma);
5758
5759         /*
5760          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5761          * could defer the flush until now, since by holding i_mmap_rwsem we
5762          * guaranteed that the last refernece would not be dropped. But we must
5763          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5764          * dropped and the last reference to the shared PMDs page might be
5765          * dropped as well.
5766          *
5767          * In theory we could defer the freeing of the PMD pages as well, but
5768          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5769          * detect sharing, so we cannot defer the release of the page either.
5770          * Instead, do flush now.
5771          */
5772         if (force_flush)
5773                 tlb_flush_mmu_tlbonly(tlb);
5774 }
5775
5776 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5777                          unsigned long *start, unsigned long *end)
5778 {
5779         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5780                 return;
5781
5782         adjust_range_if_pmd_sharing_possible(vma, start, end);
5783         hugetlb_vma_lock_write(vma);
5784         if (vma->vm_file)
5785                 i_mmap_lock_write(vma->vm_file->f_mapping);
5786 }
5787
5788 void __hugetlb_zap_end(struct vm_area_struct *vma,
5789                        struct zap_details *details)
5790 {
5791         zap_flags_t zap_flags = details ? details->zap_flags : 0;
5792
5793         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5794                 return;
5795
5796         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5797                 /*
5798                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5799                  * When the vma_lock is freed, this makes the vma ineligible
5800                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5801                  * pmd sharing.  This is important as page tables for this
5802                  * unmapped range will be asynchrously deleted.  If the page
5803                  * tables are shared, there will be issues when accessed by
5804                  * someone else.
5805                  */
5806                 __hugetlb_vma_unlock_write_free(vma);
5807         } else {
5808                 hugetlb_vma_unlock_write(vma);
5809         }
5810
5811         if (vma->vm_file)
5812                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5813 }
5814
5815 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5816                           unsigned long end, struct page *ref_page,
5817                           zap_flags_t zap_flags)
5818 {
5819         struct mmu_notifier_range range;
5820         struct mmu_gather tlb;
5821
5822         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5823                                 start, end);
5824         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5825         mmu_notifier_invalidate_range_start(&range);
5826         tlb_gather_mmu(&tlb, vma->vm_mm);
5827
5828         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5829
5830         mmu_notifier_invalidate_range_end(&range);
5831         tlb_finish_mmu(&tlb);
5832 }
5833
5834 /*
5835  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5836  * mapping it owns the reserve page for. The intention is to unmap the page
5837  * from other VMAs and let the children be SIGKILLed if they are faulting the
5838  * same region.
5839  */
5840 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5841                               struct page *page, unsigned long address)
5842 {
5843         struct hstate *h = hstate_vma(vma);
5844         struct vm_area_struct *iter_vma;
5845         struct address_space *mapping;
5846         pgoff_t pgoff;
5847
5848         /*
5849          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5850          * from page cache lookup which is in HPAGE_SIZE units.
5851          */
5852         address = address & huge_page_mask(h);
5853         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5854                         vma->vm_pgoff;
5855         mapping = vma->vm_file->f_mapping;
5856
5857         /*
5858          * Take the mapping lock for the duration of the table walk. As
5859          * this mapping should be shared between all the VMAs,
5860          * __unmap_hugepage_range() is called as the lock is already held
5861          */
5862         i_mmap_lock_write(mapping);
5863         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5864                 /* Do not unmap the current VMA */
5865                 if (iter_vma == vma)
5866                         continue;
5867
5868                 /*
5869                  * Shared VMAs have their own reserves and do not affect
5870                  * MAP_PRIVATE accounting but it is possible that a shared
5871                  * VMA is using the same page so check and skip such VMAs.
5872                  */
5873                 if (iter_vma->vm_flags & VM_MAYSHARE)
5874                         continue;
5875
5876                 /*
5877                  * Unmap the page from other VMAs without their own reserves.
5878                  * They get marked to be SIGKILLed if they fault in these
5879                  * areas. This is because a future no-page fault on this VMA
5880                  * could insert a zeroed page instead of the data existing
5881                  * from the time of fork. This would look like data corruption
5882                  */
5883                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5884                         unmap_hugepage_range(iter_vma, address,
5885                                              address + huge_page_size(h), page, 0);
5886         }
5887         i_mmap_unlock_write(mapping);
5888 }
5889
5890 /*
5891  * hugetlb_wp() should be called with page lock of the original hugepage held.
5892  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5893  * cannot race with other handlers or page migration.
5894  * Keep the pte_same checks anyway to make transition from the mutex easier.
5895  */
5896 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5897                        struct vm_fault *vmf)
5898 {
5899         struct vm_area_struct *vma = vmf->vma;
5900         struct mm_struct *mm = vma->vm_mm;
5901         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5902         pte_t pte = huge_ptep_get(vmf->pte);
5903         struct hstate *h = hstate_vma(vma);
5904         struct folio *old_folio;
5905         struct folio *new_folio;
5906         int outside_reserve = 0;
5907         vm_fault_t ret = 0;
5908         struct mmu_notifier_range range;
5909
5910         /*
5911          * Never handle CoW for uffd-wp protected pages.  It should be only
5912          * handled when the uffd-wp protection is removed.
5913          *
5914          * Note that only the CoW optimization path (in hugetlb_no_page())
5915          * can trigger this, because hugetlb_fault() will always resolve
5916          * uffd-wp bit first.
5917          */
5918         if (!unshare && huge_pte_uffd_wp(pte))
5919                 return 0;
5920
5921         /*
5922          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5923          * PTE mapped R/O such as maybe_mkwrite() would do.
5924          */
5925         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5926                 return VM_FAULT_SIGSEGV;
5927
5928         /* Let's take out MAP_SHARED mappings first. */
5929         if (vma->vm_flags & VM_MAYSHARE) {
5930                 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5931                 return 0;
5932         }
5933
5934         old_folio = page_folio(pte_page(pte));
5935
5936         delayacct_wpcopy_start();
5937
5938 retry_avoidcopy:
5939         /*
5940          * If no-one else is actually using this page, we're the exclusive
5941          * owner and can reuse this page.
5942          *
5943          * Note that we don't rely on the (safer) folio refcount here, because
5944          * copying the hugetlb folio when there are unexpected (temporary)
5945          * folio references could harm simple fork()+exit() users when
5946          * we run out of free hugetlb folios: we would have to kill processes
5947          * in scenarios that used to work. As a side effect, there can still
5948          * be leaks between processes, for example, with FOLL_GET users.
5949          */
5950         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5951                 if (!PageAnonExclusive(&old_folio->page)) {
5952                         folio_move_anon_rmap(old_folio, vma);
5953                         SetPageAnonExclusive(&old_folio->page);
5954                 }
5955                 if (likely(!unshare))
5956                         set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5957
5958                 delayacct_wpcopy_end();
5959                 return 0;
5960         }
5961         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5962                        PageAnonExclusive(&old_folio->page), &old_folio->page);
5963
5964         /*
5965          * If the process that created a MAP_PRIVATE mapping is about to
5966          * perform a COW due to a shared page count, attempt to satisfy
5967          * the allocation without using the existing reserves. The pagecache
5968          * page is used to determine if the reserve at this address was
5969          * consumed or not. If reserves were used, a partial faulted mapping
5970          * at the time of fork() could consume its reserves on COW instead
5971          * of the full address range.
5972          */
5973         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5974                         old_folio != pagecache_folio)
5975                 outside_reserve = 1;
5976
5977         folio_get(old_folio);
5978
5979         /*
5980          * Drop page table lock as buddy allocator may be called. It will
5981          * be acquired again before returning to the caller, as expected.
5982          */
5983         spin_unlock(vmf->ptl);
5984         new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
5985
5986         if (IS_ERR(new_folio)) {
5987                 /*
5988                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5989                  * it is due to references held by a child and an insufficient
5990                  * huge page pool. To guarantee the original mappers
5991                  * reliability, unmap the page from child processes. The child
5992                  * may get SIGKILLed if it later faults.
5993                  */
5994                 if (outside_reserve) {
5995                         struct address_space *mapping = vma->vm_file->f_mapping;
5996                         pgoff_t idx;
5997                         u32 hash;
5998
5999                         folio_put(old_folio);
6000                         /*
6001                          * Drop hugetlb_fault_mutex and vma_lock before
6002                          * unmapping.  unmapping needs to hold vma_lock
6003                          * in write mode.  Dropping vma_lock in read mode
6004                          * here is OK as COW mappings do not interact with
6005                          * PMD sharing.
6006                          *
6007                          * Reacquire both after unmap operation.
6008                          */
6009                         idx = vma_hugecache_offset(h, vma, vmf->address);
6010                         hash = hugetlb_fault_mutex_hash(mapping, idx);
6011                         hugetlb_vma_unlock_read(vma);
6012                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6013
6014                         unmap_ref_private(mm, vma, &old_folio->page,
6015                                         vmf->address);
6016
6017                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6018                         hugetlb_vma_lock_read(vma);
6019                         spin_lock(vmf->ptl);
6020                         vmf->pte = hugetlb_walk(vma, vmf->address,
6021                                         huge_page_size(h));
6022                         if (likely(vmf->pte &&
6023                                    pte_same(huge_ptep_get(vmf->pte), pte)))
6024                                 goto retry_avoidcopy;
6025                         /*
6026                          * race occurs while re-acquiring page table
6027                          * lock, and our job is done.
6028                          */
6029                         delayacct_wpcopy_end();
6030                         return 0;
6031                 }
6032
6033                 ret = vmf_error(PTR_ERR(new_folio));
6034                 goto out_release_old;
6035         }
6036
6037         /*
6038          * When the original hugepage is shared one, it does not have
6039          * anon_vma prepared.
6040          */
6041         ret = vmf_anon_prepare(vmf);
6042         if (unlikely(ret))
6043                 goto out_release_all;
6044
6045         if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6046                 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6047                 goto out_release_all;
6048         }
6049         __folio_mark_uptodate(new_folio);
6050
6051         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6052                                 vmf->address + huge_page_size(h));
6053         mmu_notifier_invalidate_range_start(&range);
6054
6055         /*
6056          * Retake the page table lock to check for racing updates
6057          * before the page tables are altered
6058          */
6059         spin_lock(vmf->ptl);
6060         vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6061         if (likely(vmf->pte && pte_same(huge_ptep_get(vmf->pte), pte))) {
6062                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6063
6064                 /* Break COW or unshare */
6065                 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6066                 hugetlb_remove_rmap(old_folio);
6067                 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6068                 if (huge_pte_uffd_wp(pte))
6069                         newpte = huge_pte_mkuffd_wp(newpte);
6070                 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6071                                 huge_page_size(h));
6072                 folio_set_hugetlb_migratable(new_folio);
6073                 /* Make the old page be freed below */
6074                 new_folio = old_folio;
6075         }
6076         spin_unlock(vmf->ptl);
6077         mmu_notifier_invalidate_range_end(&range);
6078 out_release_all:
6079         /*
6080          * No restore in case of successful pagetable update (Break COW or
6081          * unshare)
6082          */
6083         if (new_folio != old_folio)
6084                 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6085         folio_put(new_folio);
6086 out_release_old:
6087         folio_put(old_folio);
6088
6089         spin_lock(vmf->ptl); /* Caller expects lock to be held */
6090
6091         delayacct_wpcopy_end();
6092         return ret;
6093 }
6094
6095 /*
6096  * Return whether there is a pagecache page to back given address within VMA.
6097  */
6098 bool hugetlbfs_pagecache_present(struct hstate *h,
6099                                  struct vm_area_struct *vma, unsigned long address)
6100 {
6101         struct address_space *mapping = vma->vm_file->f_mapping;
6102         pgoff_t idx = linear_page_index(vma, address);
6103         struct folio *folio;
6104
6105         folio = filemap_get_folio(mapping, idx);
6106         if (IS_ERR(folio))
6107                 return false;
6108         folio_put(folio);
6109         return true;
6110 }
6111
6112 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6113                            pgoff_t idx)
6114 {
6115         struct inode *inode = mapping->host;
6116         struct hstate *h = hstate_inode(inode);
6117         int err;
6118
6119         idx <<= huge_page_order(h);
6120         __folio_set_locked(folio);
6121         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6122
6123         if (unlikely(err)) {
6124                 __folio_clear_locked(folio);
6125                 return err;
6126         }
6127         folio_clear_hugetlb_restore_reserve(folio);
6128
6129         /*
6130          * mark folio dirty so that it will not be removed from cache/file
6131          * by non-hugetlbfs specific code paths.
6132          */
6133         folio_mark_dirty(folio);
6134
6135         spin_lock(&inode->i_lock);
6136         inode->i_blocks += blocks_per_huge_page(h);
6137         spin_unlock(&inode->i_lock);
6138         return 0;
6139 }
6140
6141 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6142                                                   struct address_space *mapping,
6143                                                   unsigned long reason)
6144 {
6145         u32 hash;
6146
6147         /*
6148          * vma_lock and hugetlb_fault_mutex must be dropped before handling
6149          * userfault. Also mmap_lock could be dropped due to handling
6150          * userfault, any vma operation should be careful from here.
6151          */
6152         hugetlb_vma_unlock_read(vmf->vma);
6153         hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6154         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6155         return handle_userfault(vmf, reason);
6156 }
6157
6158 /*
6159  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6160  * false if pte changed or is changing.
6161  */
6162 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6163                                pte_t *ptep, pte_t old_pte)
6164 {
6165         spinlock_t *ptl;
6166         bool same;
6167
6168         ptl = huge_pte_lock(h, mm, ptep);
6169         same = pte_same(huge_ptep_get(ptep), old_pte);
6170         spin_unlock(ptl);
6171
6172         return same;
6173 }
6174
6175 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6176                         struct vm_fault *vmf)
6177 {
6178         struct vm_area_struct *vma = vmf->vma;
6179         struct mm_struct *mm = vma->vm_mm;
6180         struct hstate *h = hstate_vma(vma);
6181         vm_fault_t ret = VM_FAULT_SIGBUS;
6182         int anon_rmap = 0;
6183         unsigned long size;
6184         struct folio *folio;
6185         pte_t new_pte;
6186         bool new_folio, new_pagecache_folio = false;
6187         u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6188
6189         /*
6190          * Currently, we are forced to kill the process in the event the
6191          * original mapper has unmapped pages from the child due to a failed
6192          * COW/unsharing. Warn that such a situation has occurred as it may not
6193          * be obvious.
6194          */
6195         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6196                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6197                            current->pid);
6198                 goto out;
6199         }
6200
6201         /*
6202          * Use page lock to guard against racing truncation
6203          * before we get page_table_lock.
6204          */
6205         new_folio = false;
6206         folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6207         if (IS_ERR(folio)) {
6208                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6209                 if (vmf->pgoff >= size)
6210                         goto out;
6211                 /* Check for page in userfault range */
6212                 if (userfaultfd_missing(vma)) {
6213                         /*
6214                          * Since hugetlb_no_page() was examining pte
6215                          * without pgtable lock, we need to re-test under
6216                          * lock because the pte may not be stable and could
6217                          * have changed from under us.  Try to detect
6218                          * either changed or during-changing ptes and retry
6219                          * properly when needed.
6220                          *
6221                          * Note that userfaultfd is actually fine with
6222                          * false positives (e.g. caused by pte changed),
6223                          * but not wrong logical events (e.g. caused by
6224                          * reading a pte during changing).  The latter can
6225                          * confuse the userspace, so the strictness is very
6226                          * much preferred.  E.g., MISSING event should
6227                          * never happen on the page after UFFDIO_COPY has
6228                          * correctly installed the page and returned.
6229                          */
6230                         if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) {
6231                                 ret = 0;
6232                                 goto out;
6233                         }
6234
6235                         return hugetlb_handle_userfault(vmf, mapping,
6236                                                         VM_UFFD_MISSING);
6237                 }
6238
6239                 if (!(vma->vm_flags & VM_MAYSHARE)) {
6240                         ret = vmf_anon_prepare(vmf);
6241                         if (unlikely(ret))
6242                                 goto out;
6243                 }
6244
6245                 folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6246                 if (IS_ERR(folio)) {
6247                         /*
6248                          * Returning error will result in faulting task being
6249                          * sent SIGBUS.  The hugetlb fault mutex prevents two
6250                          * tasks from racing to fault in the same page which
6251                          * could result in false unable to allocate errors.
6252                          * Page migration does not take the fault mutex, but
6253                          * does a clear then write of pte's under page table
6254                          * lock.  Page fault code could race with migration,
6255                          * notice the clear pte and try to allocate a page
6256                          * here.  Before returning error, get ptl and make
6257                          * sure there really is no pte entry.
6258                          */
6259                         if (hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte))
6260                                 ret = vmf_error(PTR_ERR(folio));
6261                         else
6262                                 ret = 0;
6263                         goto out;
6264                 }
6265                 clear_huge_page(&folio->page, vmf->real_address,
6266                                 pages_per_huge_page(h));
6267                 __folio_mark_uptodate(folio);
6268                 new_folio = true;
6269
6270                 if (vma->vm_flags & VM_MAYSHARE) {
6271                         int err = hugetlb_add_to_page_cache(folio, mapping,
6272                                                         vmf->pgoff);
6273                         if (err) {
6274                                 /*
6275                                  * err can't be -EEXIST which implies someone
6276                                  * else consumed the reservation since hugetlb
6277                                  * fault mutex is held when add a hugetlb page
6278                                  * to the page cache. So it's safe to call
6279                                  * restore_reserve_on_error() here.
6280                                  */
6281                                 restore_reserve_on_error(h, vma, vmf->address,
6282                                                         folio);
6283                                 folio_put(folio);
6284                                 ret = VM_FAULT_SIGBUS;
6285                                 goto out;
6286                         }
6287                         new_pagecache_folio = true;
6288                 } else {
6289                         folio_lock(folio);
6290                         anon_rmap = 1;
6291                 }
6292         } else {
6293                 /*
6294                  * If memory error occurs between mmap() and fault, some process
6295                  * don't have hwpoisoned swap entry for errored virtual address.
6296                  * So we need to block hugepage fault by PG_hwpoison bit check.
6297                  */
6298                 if (unlikely(folio_test_hwpoison(folio))) {
6299                         ret = VM_FAULT_HWPOISON_LARGE |
6300                                 VM_FAULT_SET_HINDEX(hstate_index(h));
6301                         goto backout_unlocked;
6302                 }
6303
6304                 /* Check for page in userfault range. */
6305                 if (userfaultfd_minor(vma)) {
6306                         folio_unlock(folio);
6307                         folio_put(folio);
6308                         /* See comment in userfaultfd_missing() block above */
6309                         if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) {
6310                                 ret = 0;
6311                                 goto out;
6312                         }
6313                         return hugetlb_handle_userfault(vmf, mapping,
6314                                                         VM_UFFD_MINOR);
6315                 }
6316         }
6317
6318         /*
6319          * If we are going to COW a private mapping later, we examine the
6320          * pending reservations for this page now. This will ensure that
6321          * any allocations necessary to record that reservation occur outside
6322          * the spinlock.
6323          */
6324         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6325                 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6326                         ret = VM_FAULT_OOM;
6327                         goto backout_unlocked;
6328                 }
6329                 /* Just decrements count, does not deallocate */
6330                 vma_end_reservation(h, vma, vmf->address);
6331         }
6332
6333         vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6334         ret = 0;
6335         /* If pte changed from under us, retry */
6336         if (!pte_same(huge_ptep_get(vmf->pte), vmf->orig_pte))
6337                 goto backout;
6338
6339         if (anon_rmap)
6340                 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6341         else
6342                 hugetlb_add_file_rmap(folio);
6343         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6344                                 && (vma->vm_flags & VM_SHARED)));
6345         /*
6346          * If this pte was previously wr-protected, keep it wr-protected even
6347          * if populated.
6348          */
6349         if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6350                 new_pte = huge_pte_mkuffd_wp(new_pte);
6351         set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6352
6353         hugetlb_count_add(pages_per_huge_page(h), mm);
6354         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6355                 /* Optimization, do the COW without a second fault */
6356                 ret = hugetlb_wp(folio, vmf);
6357         }
6358
6359         spin_unlock(vmf->ptl);
6360
6361         /*
6362          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6363          * found in the pagecache may not have hugetlb_migratable if they have
6364          * been isolated for migration.
6365          */
6366         if (new_folio)
6367                 folio_set_hugetlb_migratable(folio);
6368
6369         folio_unlock(folio);
6370 out:
6371         hugetlb_vma_unlock_read(vma);
6372         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6373         return ret;
6374
6375 backout:
6376         spin_unlock(vmf->ptl);
6377 backout_unlocked:
6378         if (new_folio && !new_pagecache_folio)
6379                 restore_reserve_on_error(h, vma, vmf->address, folio);
6380
6381         folio_unlock(folio);
6382         folio_put(folio);
6383         goto out;
6384 }
6385
6386 #ifdef CONFIG_SMP
6387 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6388 {
6389         unsigned long key[2];
6390         u32 hash;
6391
6392         key[0] = (unsigned long) mapping;
6393         key[1] = idx;
6394
6395         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6396
6397         return hash & (num_fault_mutexes - 1);
6398 }
6399 #else
6400 /*
6401  * For uniprocessor systems we always use a single mutex, so just
6402  * return 0 and avoid the hashing overhead.
6403  */
6404 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6405 {
6406         return 0;
6407 }
6408 #endif
6409
6410 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6411                         unsigned long address, unsigned int flags)
6412 {
6413         vm_fault_t ret;
6414         u32 hash;
6415         struct folio *folio = NULL;
6416         struct folio *pagecache_folio = NULL;
6417         struct hstate *h = hstate_vma(vma);
6418         struct address_space *mapping;
6419         int need_wait_lock = 0;
6420         struct vm_fault vmf = {
6421                 .vma = vma,
6422                 .address = address & huge_page_mask(h),
6423                 .real_address = address,
6424                 .flags = flags,
6425                 .pgoff = vma_hugecache_offset(h, vma,
6426                                 address & huge_page_mask(h)),
6427                 /* TODO: Track hugetlb faults using vm_fault */
6428
6429                 /*
6430                  * Some fields may not be initialized, be careful as it may
6431                  * be hard to debug if called functions make assumptions
6432                  */
6433         };
6434
6435         /*
6436          * Serialize hugepage allocation and instantiation, so that we don't
6437          * get spurious allocation failures if two CPUs race to instantiate
6438          * the same page in the page cache.
6439          */
6440         mapping = vma->vm_file->f_mapping;
6441         hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6442         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6443
6444         /*
6445          * Acquire vma lock before calling huge_pte_alloc and hold
6446          * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6447          * being called elsewhere and making the vmf.pte no longer valid.
6448          */
6449         hugetlb_vma_lock_read(vma);
6450         vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6451         if (!vmf.pte) {
6452                 hugetlb_vma_unlock_read(vma);
6453                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6454                 return VM_FAULT_OOM;
6455         }
6456
6457         vmf.orig_pte = huge_ptep_get(vmf.pte);
6458         if (huge_pte_none_mostly(vmf.orig_pte)) {
6459                 if (is_pte_marker(vmf.orig_pte)) {
6460                         pte_marker marker =
6461                                 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6462
6463                         if (marker & PTE_MARKER_POISONED) {
6464                                 ret = VM_FAULT_HWPOISON_LARGE |
6465                                       VM_FAULT_SET_HINDEX(hstate_index(h));
6466                                 goto out_mutex;
6467                         }
6468                 }
6469
6470                 /*
6471                  * Other PTE markers should be handled the same way as none PTE.
6472                  *
6473                  * hugetlb_no_page will drop vma lock and hugetlb fault
6474                  * mutex internally, which make us return immediately.
6475                  */
6476                 return hugetlb_no_page(mapping, &vmf);
6477         }
6478
6479         ret = 0;
6480
6481         /*
6482          * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6483          * point, so this check prevents the kernel from going below assuming
6484          * that we have an active hugepage in pagecache. This goto expects
6485          * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6486          * check will properly handle it.
6487          */
6488         if (!pte_present(vmf.orig_pte)) {
6489                 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6490                         /*
6491                          * Release the hugetlb fault lock now, but retain
6492                          * the vma lock, because it is needed to guard the
6493                          * huge_pte_lockptr() later in
6494                          * migration_entry_wait_huge(). The vma lock will
6495                          * be released there.
6496                          */
6497                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6498                         migration_entry_wait_huge(vma, vmf.pte);
6499                         return 0;
6500                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6501                         ret = VM_FAULT_HWPOISON_LARGE |
6502                             VM_FAULT_SET_HINDEX(hstate_index(h));
6503                 goto out_mutex;
6504         }
6505
6506         /*
6507          * If we are going to COW/unshare the mapping later, we examine the
6508          * pending reservations for this page now. This will ensure that any
6509          * allocations necessary to record that reservation occur outside the
6510          * spinlock. Also lookup the pagecache page now as it is used to
6511          * determine if a reservation has been consumed.
6512          */
6513         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6514             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6515                 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6516                         ret = VM_FAULT_OOM;
6517                         goto out_mutex;
6518                 }
6519                 /* Just decrements count, does not deallocate */
6520                 vma_end_reservation(h, vma, vmf.address);
6521
6522                 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6523                                                              vmf.pgoff);
6524                 if (IS_ERR(pagecache_folio))
6525                         pagecache_folio = NULL;
6526         }
6527
6528         vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6529
6530         /* Check for a racing update before calling hugetlb_wp() */
6531         if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(vmf.pte))))
6532                 goto out_ptl;
6533
6534         /* Handle userfault-wp first, before trying to lock more pages */
6535         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(vmf.pte)) &&
6536             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6537                 if (!userfaultfd_wp_async(vma)) {
6538                         spin_unlock(vmf.ptl);
6539                         if (pagecache_folio) {
6540                                 folio_unlock(pagecache_folio);
6541                                 folio_put(pagecache_folio);
6542                         }
6543                         hugetlb_vma_unlock_read(vma);
6544                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6545                         return handle_userfault(&vmf, VM_UFFD_WP);
6546                 }
6547
6548                 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6549                 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6550                                 huge_page_size(hstate_vma(vma)));
6551                 /* Fallthrough to CoW */
6552         }
6553
6554         /*
6555          * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6556          * pagecache_folio, so here we need take the former one
6557          * when folio != pagecache_folio or !pagecache_folio.
6558          */
6559         folio = page_folio(pte_page(vmf.orig_pte));
6560         if (folio != pagecache_folio)
6561                 if (!folio_trylock(folio)) {
6562                         need_wait_lock = 1;
6563                         goto out_ptl;
6564                 }
6565
6566         folio_get(folio);
6567
6568         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6569                 if (!huge_pte_write(vmf.orig_pte)) {
6570                         ret = hugetlb_wp(pagecache_folio, &vmf);
6571                         goto out_put_page;
6572                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6573                         vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6574                 }
6575         }
6576         vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6577         if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6578                                                 flags & FAULT_FLAG_WRITE))
6579                 update_mmu_cache(vma, vmf.address, vmf.pte);
6580 out_put_page:
6581         if (folio != pagecache_folio)
6582                 folio_unlock(folio);
6583         folio_put(folio);
6584 out_ptl:
6585         spin_unlock(vmf.ptl);
6586
6587         if (pagecache_folio) {
6588                 folio_unlock(pagecache_folio);
6589                 folio_put(pagecache_folio);
6590         }
6591 out_mutex:
6592         hugetlb_vma_unlock_read(vma);
6593         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6594         /*
6595          * Generally it's safe to hold refcount during waiting page lock. But
6596          * here we just wait to defer the next page fault to avoid busy loop and
6597          * the page is not used after unlocked before returning from the current
6598          * page fault. So we are safe from accessing freed page, even if we wait
6599          * here without taking refcount.
6600          */
6601         if (need_wait_lock)
6602                 folio_wait_locked(folio);
6603         return ret;
6604 }
6605
6606 #ifdef CONFIG_USERFAULTFD
6607 /*
6608  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6609  */
6610 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6611                 struct vm_area_struct *vma, unsigned long address)
6612 {
6613         struct mempolicy *mpol;
6614         nodemask_t *nodemask;
6615         struct folio *folio;
6616         gfp_t gfp_mask;
6617         int node;
6618
6619         gfp_mask = htlb_alloc_mask(h);
6620         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6621         /*
6622          * This is used to allocate a temporary hugetlb to hold the copied
6623          * content, which will then be copied again to the final hugetlb
6624          * consuming a reservation. Set the alloc_fallback to false to indicate
6625          * that breaking the per-node hugetlb pool is not allowed in this case.
6626          */
6627         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6628         mpol_cond_put(mpol);
6629
6630         return folio;
6631 }
6632
6633 /*
6634  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6635  * with modifications for hugetlb pages.
6636  */
6637 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6638                              struct vm_area_struct *dst_vma,
6639                              unsigned long dst_addr,
6640                              unsigned long src_addr,
6641                              uffd_flags_t flags,
6642                              struct folio **foliop)
6643 {
6644         struct mm_struct *dst_mm = dst_vma->vm_mm;
6645         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6646         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6647         struct hstate *h = hstate_vma(dst_vma);
6648         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6649         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6650         unsigned long size;
6651         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6652         pte_t _dst_pte;
6653         spinlock_t *ptl;
6654         int ret = -ENOMEM;
6655         struct folio *folio;
6656         int writable;
6657         bool folio_in_pagecache = false;
6658
6659         if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6660                 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6661
6662                 /* Don't overwrite any existing PTEs (even markers) */
6663                 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6664                         spin_unlock(ptl);
6665                         return -EEXIST;
6666                 }
6667
6668                 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6669                 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6670                                 huge_page_size(h));
6671
6672                 /* No need to invalidate - it was non-present before */
6673                 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6674
6675                 spin_unlock(ptl);
6676                 return 0;
6677         }
6678
6679         if (is_continue) {
6680                 ret = -EFAULT;
6681                 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6682                 if (IS_ERR(folio))
6683                         goto out;
6684                 folio_in_pagecache = true;
6685         } else if (!*foliop) {
6686                 /* If a folio already exists, then it's UFFDIO_COPY for
6687                  * a non-missing case. Return -EEXIST.
6688                  */
6689                 if (vm_shared &&
6690                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6691                         ret = -EEXIST;
6692                         goto out;
6693                 }
6694
6695                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6696                 if (IS_ERR(folio)) {
6697                         ret = -ENOMEM;
6698                         goto out;
6699                 }
6700
6701                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6702                                            false);
6703
6704                 /* fallback to copy_from_user outside mmap_lock */
6705                 if (unlikely(ret)) {
6706                         ret = -ENOENT;
6707                         /* Free the allocated folio which may have
6708                          * consumed a reservation.
6709                          */
6710                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6711                         folio_put(folio);
6712
6713                         /* Allocate a temporary folio to hold the copied
6714                          * contents.
6715                          */
6716                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6717                         if (!folio) {
6718                                 ret = -ENOMEM;
6719                                 goto out;
6720                         }
6721                         *foliop = folio;
6722                         /* Set the outparam foliop and return to the caller to
6723                          * copy the contents outside the lock. Don't free the
6724                          * folio.
6725                          */
6726                         goto out;
6727                 }
6728         } else {
6729                 if (vm_shared &&
6730                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6731                         folio_put(*foliop);
6732                         ret = -EEXIST;
6733                         *foliop = NULL;
6734                         goto out;
6735                 }
6736
6737                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6738                 if (IS_ERR(folio)) {
6739                         folio_put(*foliop);
6740                         ret = -ENOMEM;
6741                         *foliop = NULL;
6742                         goto out;
6743                 }
6744                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6745                 folio_put(*foliop);
6746                 *foliop = NULL;
6747                 if (ret) {
6748                         folio_put(folio);
6749                         goto out;
6750                 }
6751         }
6752
6753         /*
6754          * If we just allocated a new page, we need a memory barrier to ensure
6755          * that preceding stores to the page become visible before the
6756          * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6757          * is what we need.
6758          *
6759          * In the case where we have not allocated a new page (is_continue),
6760          * the page must already be uptodate. UFFDIO_CONTINUE already includes
6761          * an earlier smp_wmb() to ensure that prior stores will be visible
6762          * before the set_pte_at() write.
6763          */
6764         if (!is_continue)
6765                 __folio_mark_uptodate(folio);
6766         else
6767                 WARN_ON_ONCE(!folio_test_uptodate(folio));
6768
6769         /* Add shared, newly allocated pages to the page cache. */
6770         if (vm_shared && !is_continue) {
6771                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6772                 ret = -EFAULT;
6773                 if (idx >= size)
6774                         goto out_release_nounlock;
6775
6776                 /*
6777                  * Serialization between remove_inode_hugepages() and
6778                  * hugetlb_add_to_page_cache() below happens through the
6779                  * hugetlb_fault_mutex_table that here must be hold by
6780                  * the caller.
6781                  */
6782                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6783                 if (ret)
6784                         goto out_release_nounlock;
6785                 folio_in_pagecache = true;
6786         }
6787
6788         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6789
6790         ret = -EIO;
6791         if (folio_test_hwpoison(folio))
6792                 goto out_release_unlock;
6793
6794         /*
6795          * We allow to overwrite a pte marker: consider when both MISSING|WP
6796          * registered, we firstly wr-protect a none pte which has no page cache
6797          * page backing it, then access the page.
6798          */
6799         ret = -EEXIST;
6800         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6801                 goto out_release_unlock;
6802
6803         if (folio_in_pagecache)
6804                 hugetlb_add_file_rmap(folio);
6805         else
6806                 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6807
6808         /*
6809          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6810          * with wp flag set, don't set pte write bit.
6811          */
6812         if (wp_enabled || (is_continue && !vm_shared))
6813                 writable = 0;
6814         else
6815                 writable = dst_vma->vm_flags & VM_WRITE;
6816
6817         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6818         /*
6819          * Always mark UFFDIO_COPY page dirty; note that this may not be
6820          * extremely important for hugetlbfs for now since swapping is not
6821          * supported, but we should still be clear in that this page cannot be
6822          * thrown away at will, even if write bit not set.
6823          */
6824         _dst_pte = huge_pte_mkdirty(_dst_pte);
6825         _dst_pte = pte_mkyoung(_dst_pte);
6826
6827         if (wp_enabled)
6828                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6829
6830         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6831
6832         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6833
6834         /* No need to invalidate - it was non-present before */
6835         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6836
6837         spin_unlock(ptl);
6838         if (!is_continue)
6839                 folio_set_hugetlb_migratable(folio);
6840         if (vm_shared || is_continue)
6841                 folio_unlock(folio);
6842         ret = 0;
6843 out:
6844         return ret;
6845 out_release_unlock:
6846         spin_unlock(ptl);
6847         if (vm_shared || is_continue)
6848                 folio_unlock(folio);
6849 out_release_nounlock:
6850         if (!folio_in_pagecache)
6851                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6852         folio_put(folio);
6853         goto out;
6854 }
6855 #endif /* CONFIG_USERFAULTFD */
6856
6857 long hugetlb_change_protection(struct vm_area_struct *vma,
6858                 unsigned long address, unsigned long end,
6859                 pgprot_t newprot, unsigned long cp_flags)
6860 {
6861         struct mm_struct *mm = vma->vm_mm;
6862         unsigned long start = address;
6863         pte_t *ptep;
6864         pte_t pte;
6865         struct hstate *h = hstate_vma(vma);
6866         long pages = 0, psize = huge_page_size(h);
6867         bool shared_pmd = false;
6868         struct mmu_notifier_range range;
6869         unsigned long last_addr_mask;
6870         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6871         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6872
6873         /*
6874          * In the case of shared PMDs, the area to flush could be beyond
6875          * start/end.  Set range.start/range.end to cover the maximum possible
6876          * range if PMD sharing is possible.
6877          */
6878         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6879                                 0, mm, start, end);
6880         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6881
6882         BUG_ON(address >= end);
6883         flush_cache_range(vma, range.start, range.end);
6884
6885         mmu_notifier_invalidate_range_start(&range);
6886         hugetlb_vma_lock_write(vma);
6887         i_mmap_lock_write(vma->vm_file->f_mapping);
6888         last_addr_mask = hugetlb_mask_last_page(h);
6889         for (; address < end; address += psize) {
6890                 spinlock_t *ptl;
6891                 ptep = hugetlb_walk(vma, address, psize);
6892                 if (!ptep) {
6893                         if (!uffd_wp) {
6894                                 address |= last_addr_mask;
6895                                 continue;
6896                         }
6897                         /*
6898                          * Userfaultfd wr-protect requires pgtable
6899                          * pre-allocations to install pte markers.
6900                          */
6901                         ptep = huge_pte_alloc(mm, vma, address, psize);
6902                         if (!ptep) {
6903                                 pages = -ENOMEM;
6904                                 break;
6905                         }
6906                 }
6907                 ptl = huge_pte_lock(h, mm, ptep);
6908                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6909                         /*
6910                          * When uffd-wp is enabled on the vma, unshare
6911                          * shouldn't happen at all.  Warn about it if it
6912                          * happened due to some reason.
6913                          */
6914                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6915                         pages++;
6916                         spin_unlock(ptl);
6917                         shared_pmd = true;
6918                         address |= last_addr_mask;
6919                         continue;
6920                 }
6921                 pte = huge_ptep_get(ptep);
6922                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6923                         /* Nothing to do. */
6924                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6925                         swp_entry_t entry = pte_to_swp_entry(pte);
6926                         struct page *page = pfn_swap_entry_to_page(entry);
6927                         pte_t newpte = pte;
6928
6929                         if (is_writable_migration_entry(entry)) {
6930                                 if (PageAnon(page))
6931                                         entry = make_readable_exclusive_migration_entry(
6932                                                                 swp_offset(entry));
6933                                 else
6934                                         entry = make_readable_migration_entry(
6935                                                                 swp_offset(entry));
6936                                 newpte = swp_entry_to_pte(entry);
6937                                 pages++;
6938                         }
6939
6940                         if (uffd_wp)
6941                                 newpte = pte_swp_mkuffd_wp(newpte);
6942                         else if (uffd_wp_resolve)
6943                                 newpte = pte_swp_clear_uffd_wp(newpte);
6944                         if (!pte_same(pte, newpte))
6945                                 set_huge_pte_at(mm, address, ptep, newpte, psize);
6946                 } else if (unlikely(is_pte_marker(pte))) {
6947                         /*
6948                          * Do nothing on a poison marker; page is
6949                          * corrupted, permissons do not apply.  Here
6950                          * pte_marker_uffd_wp()==true implies !poison
6951                          * because they're mutual exclusive.
6952                          */
6953                         if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6954                                 /* Safe to modify directly (non-present->none). */
6955                                 huge_pte_clear(mm, address, ptep, psize);
6956                 } else if (!huge_pte_none(pte)) {
6957                         pte_t old_pte;
6958                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6959
6960                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6961                         pte = huge_pte_modify(old_pte, newprot);
6962                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6963                         if (uffd_wp)
6964                                 pte = huge_pte_mkuffd_wp(pte);
6965                         else if (uffd_wp_resolve)
6966                                 pte = huge_pte_clear_uffd_wp(pte);
6967                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6968                         pages++;
6969                 } else {
6970                         /* None pte */
6971                         if (unlikely(uffd_wp))
6972                                 /* Safe to modify directly (none->non-present). */
6973                                 set_huge_pte_at(mm, address, ptep,
6974                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
6975                                                 psize);
6976                 }
6977                 spin_unlock(ptl);
6978         }
6979         /*
6980          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6981          * may have cleared our pud entry and done put_page on the page table:
6982          * once we release i_mmap_rwsem, another task can do the final put_page
6983          * and that page table be reused and filled with junk.  If we actually
6984          * did unshare a page of pmds, flush the range corresponding to the pud.
6985          */
6986         if (shared_pmd)
6987                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6988         else
6989                 flush_hugetlb_tlb_range(vma, start, end);
6990         /*
6991          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6992          * downgrading page table protection not changing it to point to a new
6993          * page.
6994          *
6995          * See Documentation/mm/mmu_notifier.rst
6996          */
6997         i_mmap_unlock_write(vma->vm_file->f_mapping);
6998         hugetlb_vma_unlock_write(vma);
6999         mmu_notifier_invalidate_range_end(&range);
7000
7001         return pages > 0 ? (pages << h->order) : pages;
7002 }
7003
7004 /* Return true if reservation was successful, false otherwise.  */
7005 bool hugetlb_reserve_pages(struct inode *inode,
7006                                         long from, long to,
7007                                         struct vm_area_struct *vma,
7008                                         vm_flags_t vm_flags)
7009 {
7010         long chg = -1, add = -1;
7011         struct hstate *h = hstate_inode(inode);
7012         struct hugepage_subpool *spool = subpool_inode(inode);
7013         struct resv_map *resv_map;
7014         struct hugetlb_cgroup *h_cg = NULL;
7015         long gbl_reserve, regions_needed = 0;
7016
7017         /* This should never happen */
7018         if (from > to) {
7019                 VM_WARN(1, "%s called with a negative range\n", __func__);
7020                 return false;
7021         }
7022
7023         /*
7024          * vma specific semaphore used for pmd sharing and fault/truncation
7025          * synchronization
7026          */
7027         hugetlb_vma_lock_alloc(vma);
7028
7029         /*
7030          * Only apply hugepage reservation if asked. At fault time, an
7031          * attempt will be made for VM_NORESERVE to allocate a page
7032          * without using reserves
7033          */
7034         if (vm_flags & VM_NORESERVE)
7035                 return true;
7036
7037         /*
7038          * Shared mappings base their reservation on the number of pages that
7039          * are already allocated on behalf of the file. Private mappings need
7040          * to reserve the full area even if read-only as mprotect() may be
7041          * called to make the mapping read-write. Assume !vma is a shm mapping
7042          */
7043         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7044                 /*
7045                  * resv_map can not be NULL as hugetlb_reserve_pages is only
7046                  * called for inodes for which resv_maps were created (see
7047                  * hugetlbfs_get_inode).
7048                  */
7049                 resv_map = inode_resv_map(inode);
7050
7051                 chg = region_chg(resv_map, from, to, &regions_needed);
7052         } else {
7053                 /* Private mapping. */
7054                 resv_map = resv_map_alloc();
7055                 if (!resv_map)
7056                         goto out_err;
7057
7058                 chg = to - from;
7059
7060                 set_vma_resv_map(vma, resv_map);
7061                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7062         }
7063
7064         if (chg < 0)
7065                 goto out_err;
7066
7067         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7068                                 chg * pages_per_huge_page(h), &h_cg) < 0)
7069                 goto out_err;
7070
7071         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7072                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7073                  * of the resv_map.
7074                  */
7075                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7076         }
7077
7078         /*
7079          * There must be enough pages in the subpool for the mapping. If
7080          * the subpool has a minimum size, there may be some global
7081          * reservations already in place (gbl_reserve).
7082          */
7083         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7084         if (gbl_reserve < 0)
7085                 goto out_uncharge_cgroup;
7086
7087         /*
7088          * Check enough hugepages are available for the reservation.
7089          * Hand the pages back to the subpool if there are not
7090          */
7091         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7092                 goto out_put_pages;
7093
7094         /*
7095          * Account for the reservations made. Shared mappings record regions
7096          * that have reservations as they are shared by multiple VMAs.
7097          * When the last VMA disappears, the region map says how much
7098          * the reservation was and the page cache tells how much of
7099          * the reservation was consumed. Private mappings are per-VMA and
7100          * only the consumed reservations are tracked. When the VMA
7101          * disappears, the original reservation is the VMA size and the
7102          * consumed reservations are stored in the map. Hence, nothing
7103          * else has to be done for private mappings here
7104          */
7105         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7106                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7107
7108                 if (unlikely(add < 0)) {
7109                         hugetlb_acct_memory(h, -gbl_reserve);
7110                         goto out_put_pages;
7111                 } else if (unlikely(chg > add)) {
7112                         /*
7113                          * pages in this range were added to the reserve
7114                          * map between region_chg and region_add.  This
7115                          * indicates a race with alloc_hugetlb_folio.  Adjust
7116                          * the subpool and reserve counts modified above
7117                          * based on the difference.
7118                          */
7119                         long rsv_adjust;
7120
7121                         /*
7122                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7123                          * reference to h_cg->css. See comment below for detail.
7124                          */
7125                         hugetlb_cgroup_uncharge_cgroup_rsvd(
7126                                 hstate_index(h),
7127                                 (chg - add) * pages_per_huge_page(h), h_cg);
7128
7129                         rsv_adjust = hugepage_subpool_put_pages(spool,
7130                                                                 chg - add);
7131                         hugetlb_acct_memory(h, -rsv_adjust);
7132                 } else if (h_cg) {
7133                         /*
7134                          * The file_regions will hold their own reference to
7135                          * h_cg->css. So we should release the reference held
7136                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7137                          * done.
7138                          */
7139                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7140                 }
7141         }
7142         return true;
7143
7144 out_put_pages:
7145         /* put back original number of pages, chg */
7146         (void)hugepage_subpool_put_pages(spool, chg);
7147 out_uncharge_cgroup:
7148         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7149                                             chg * pages_per_huge_page(h), h_cg);
7150 out_err:
7151         hugetlb_vma_lock_free(vma);
7152         if (!vma || vma->vm_flags & VM_MAYSHARE)
7153                 /* Only call region_abort if the region_chg succeeded but the
7154                  * region_add failed or didn't run.
7155                  */
7156                 if (chg >= 0 && add < 0)
7157                         region_abort(resv_map, from, to, regions_needed);
7158         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7159                 kref_put(&resv_map->refs, resv_map_release);
7160                 set_vma_resv_map(vma, NULL);
7161         }
7162         return false;
7163 }
7164
7165 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7166                                                                 long freed)
7167 {
7168         struct hstate *h = hstate_inode(inode);
7169         struct resv_map *resv_map = inode_resv_map(inode);
7170         long chg = 0;
7171         struct hugepage_subpool *spool = subpool_inode(inode);
7172         long gbl_reserve;
7173
7174         /*
7175          * Since this routine can be called in the evict inode path for all
7176          * hugetlbfs inodes, resv_map could be NULL.
7177          */
7178         if (resv_map) {
7179                 chg = region_del(resv_map, start, end);
7180                 /*
7181                  * region_del() can fail in the rare case where a region
7182                  * must be split and another region descriptor can not be
7183                  * allocated.  If end == LONG_MAX, it will not fail.
7184                  */
7185                 if (chg < 0)
7186                         return chg;
7187         }
7188
7189         spin_lock(&inode->i_lock);
7190         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7191         spin_unlock(&inode->i_lock);
7192
7193         /*
7194          * If the subpool has a minimum size, the number of global
7195          * reservations to be released may be adjusted.
7196          *
7197          * Note that !resv_map implies freed == 0. So (chg - freed)
7198          * won't go negative.
7199          */
7200         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7201         hugetlb_acct_memory(h, -gbl_reserve);
7202
7203         return 0;
7204 }
7205
7206 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7207 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7208                                 struct vm_area_struct *vma,
7209                                 unsigned long addr, pgoff_t idx)
7210 {
7211         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7212                                 svma->vm_start;
7213         unsigned long sbase = saddr & PUD_MASK;
7214         unsigned long s_end = sbase + PUD_SIZE;
7215
7216         /* Allow segments to share if only one is marked locked */
7217         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7218         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7219
7220         /*
7221          * match the virtual addresses, permission and the alignment of the
7222          * page table page.
7223          *
7224          * Also, vma_lock (vm_private_data) is required for sharing.
7225          */
7226         if (pmd_index(addr) != pmd_index(saddr) ||
7227             vm_flags != svm_flags ||
7228             !range_in_vma(svma, sbase, s_end) ||
7229             !svma->vm_private_data)
7230                 return 0;
7231
7232         return saddr;
7233 }
7234
7235 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7236 {
7237         unsigned long start = addr & PUD_MASK;
7238         unsigned long end = start + PUD_SIZE;
7239
7240 #ifdef CONFIG_USERFAULTFD
7241         if (uffd_disable_huge_pmd_share(vma))
7242                 return false;
7243 #endif
7244         /*
7245          * check on proper vm_flags and page table alignment
7246          */
7247         if (!(vma->vm_flags & VM_MAYSHARE))
7248                 return false;
7249         if (!vma->vm_private_data)      /* vma lock required for sharing */
7250                 return false;
7251         if (!range_in_vma(vma, start, end))
7252                 return false;
7253         return true;
7254 }
7255
7256 /*
7257  * Determine if start,end range within vma could be mapped by shared pmd.
7258  * If yes, adjust start and end to cover range associated with possible
7259  * shared pmd mappings.
7260  */
7261 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7262                                 unsigned long *start, unsigned long *end)
7263 {
7264         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7265                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7266
7267         /*
7268          * vma needs to span at least one aligned PUD size, and the range
7269          * must be at least partially within in.
7270          */
7271         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7272                 (*end <= v_start) || (*start >= v_end))
7273                 return;
7274
7275         /* Extend the range to be PUD aligned for a worst case scenario */
7276         if (*start > v_start)
7277                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7278
7279         if (*end < v_end)
7280                 *end = ALIGN(*end, PUD_SIZE);
7281 }
7282
7283 /*
7284  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7285  * and returns the corresponding pte. While this is not necessary for the
7286  * !shared pmd case because we can allocate the pmd later as well, it makes the
7287  * code much cleaner. pmd allocation is essential for the shared case because
7288  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7289  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7290  * bad pmd for sharing.
7291  */
7292 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7293                       unsigned long addr, pud_t *pud)
7294 {
7295         struct address_space *mapping = vma->vm_file->f_mapping;
7296         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7297                         vma->vm_pgoff;
7298         struct vm_area_struct *svma;
7299         unsigned long saddr;
7300         pte_t *spte = NULL;
7301         pte_t *pte;
7302
7303         i_mmap_lock_read(mapping);
7304         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7305                 if (svma == vma)
7306                         continue;
7307
7308                 saddr = page_table_shareable(svma, vma, addr, idx);
7309                 if (saddr) {
7310                         spte = hugetlb_walk(svma, saddr,
7311                                             vma_mmu_pagesize(svma));
7312                         if (spte) {
7313                                 get_page(virt_to_page(spte));
7314                                 break;
7315                         }
7316                 }
7317         }
7318
7319         if (!spte)
7320                 goto out;
7321
7322         spin_lock(&mm->page_table_lock);
7323         if (pud_none(*pud)) {
7324                 pud_populate(mm, pud,
7325                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7326                 mm_inc_nr_pmds(mm);
7327         } else {
7328                 put_page(virt_to_page(spte));
7329         }
7330         spin_unlock(&mm->page_table_lock);
7331 out:
7332         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7333         i_mmap_unlock_read(mapping);
7334         return pte;
7335 }
7336
7337 /*
7338  * unmap huge page backed by shared pte.
7339  *
7340  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7341  * indicated by page_count > 1, unmap is achieved by clearing pud and
7342  * decrementing the ref count. If count == 1, the pte page is not shared.
7343  *
7344  * Called with page table lock held.
7345  *
7346  * returns: 1 successfully unmapped a shared pte page
7347  *          0 the underlying pte page is not shared, or it is the last user
7348  */
7349 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7350                                         unsigned long addr, pte_t *ptep)
7351 {
7352         pgd_t *pgd = pgd_offset(mm, addr);
7353         p4d_t *p4d = p4d_offset(pgd, addr);
7354         pud_t *pud = pud_offset(p4d, addr);
7355
7356         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7357         hugetlb_vma_assert_locked(vma);
7358         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7359         if (page_count(virt_to_page(ptep)) == 1)
7360                 return 0;
7361
7362         pud_clear(pud);
7363         put_page(virt_to_page(ptep));
7364         mm_dec_nr_pmds(mm);
7365         return 1;
7366 }
7367
7368 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7369
7370 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7371                       unsigned long addr, pud_t *pud)
7372 {
7373         return NULL;
7374 }
7375
7376 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7377                                 unsigned long addr, pte_t *ptep)
7378 {
7379         return 0;
7380 }
7381
7382 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7383                                 unsigned long *start, unsigned long *end)
7384 {
7385 }
7386
7387 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7388 {
7389         return false;
7390 }
7391 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7392
7393 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7394 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7395                         unsigned long addr, unsigned long sz)
7396 {
7397         pgd_t *pgd;
7398         p4d_t *p4d;
7399         pud_t *pud;
7400         pte_t *pte = NULL;
7401
7402         pgd = pgd_offset(mm, addr);
7403         p4d = p4d_alloc(mm, pgd, addr);
7404         if (!p4d)
7405                 return NULL;
7406         pud = pud_alloc(mm, p4d, addr);
7407         if (pud) {
7408                 if (sz == PUD_SIZE) {
7409                         pte = (pte_t *)pud;
7410                 } else {
7411                         BUG_ON(sz != PMD_SIZE);
7412                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7413                                 pte = huge_pmd_share(mm, vma, addr, pud);
7414                         else
7415                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7416                 }
7417         }
7418
7419         if (pte) {
7420                 pte_t pteval = ptep_get_lockless(pte);
7421
7422                 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7423         }
7424
7425         return pte;
7426 }
7427
7428 /*
7429  * huge_pte_offset() - Walk the page table to resolve the hugepage
7430  * entry at address @addr
7431  *
7432  * Return: Pointer to page table entry (PUD or PMD) for
7433  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7434  * size @sz doesn't match the hugepage size at this level of the page
7435  * table.
7436  */
7437 pte_t *huge_pte_offset(struct mm_struct *mm,
7438                        unsigned long addr, unsigned long sz)
7439 {
7440         pgd_t *pgd;
7441         p4d_t *p4d;
7442         pud_t *pud;
7443         pmd_t *pmd;
7444
7445         pgd = pgd_offset(mm, addr);
7446         if (!pgd_present(*pgd))
7447                 return NULL;
7448         p4d = p4d_offset(pgd, addr);
7449         if (!p4d_present(*p4d))
7450                 return NULL;
7451
7452         pud = pud_offset(p4d, addr);
7453         if (sz == PUD_SIZE)
7454                 /* must be pud huge, non-present or none */
7455                 return (pte_t *)pud;
7456         if (!pud_present(*pud))
7457                 return NULL;
7458         /* must have a valid entry and size to go further */
7459
7460         pmd = pmd_offset(pud, addr);
7461         /* must be pmd huge, non-present or none */
7462         return (pte_t *)pmd;
7463 }
7464
7465 /*
7466  * Return a mask that can be used to update an address to the last huge
7467  * page in a page table page mapping size.  Used to skip non-present
7468  * page table entries when linearly scanning address ranges.  Architectures
7469  * with unique huge page to page table relationships can define their own
7470  * version of this routine.
7471  */
7472 unsigned long hugetlb_mask_last_page(struct hstate *h)
7473 {
7474         unsigned long hp_size = huge_page_size(h);
7475
7476         if (hp_size == PUD_SIZE)
7477                 return P4D_SIZE - PUD_SIZE;
7478         else if (hp_size == PMD_SIZE)
7479                 return PUD_SIZE - PMD_SIZE;
7480         else
7481                 return 0UL;
7482 }
7483
7484 #else
7485
7486 /* See description above.  Architectures can provide their own version. */
7487 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7488 {
7489 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7490         if (huge_page_size(h) == PMD_SIZE)
7491                 return PUD_SIZE - PMD_SIZE;
7492 #endif
7493         return 0UL;
7494 }
7495
7496 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7497
7498 /*
7499  * These functions are overwritable if your architecture needs its own
7500  * behavior.
7501  */
7502 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7503 {
7504         bool ret = true;
7505
7506         spin_lock_irq(&hugetlb_lock);
7507         if (!folio_test_hugetlb(folio) ||
7508             !folio_test_hugetlb_migratable(folio) ||
7509             !folio_try_get(folio)) {
7510                 ret = false;
7511                 goto unlock;
7512         }
7513         folio_clear_hugetlb_migratable(folio);
7514         list_move_tail(&folio->lru, list);
7515 unlock:
7516         spin_unlock_irq(&hugetlb_lock);
7517         return ret;
7518 }
7519
7520 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7521 {
7522         int ret = 0;
7523
7524         *hugetlb = false;
7525         spin_lock_irq(&hugetlb_lock);
7526         if (folio_test_hugetlb(folio)) {
7527                 *hugetlb = true;
7528                 if (folio_test_hugetlb_freed(folio))
7529                         ret = 0;
7530                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7531                         ret = folio_try_get(folio);
7532                 else
7533                         ret = -EBUSY;
7534         }
7535         spin_unlock_irq(&hugetlb_lock);
7536         return ret;
7537 }
7538
7539 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7540                                 bool *migratable_cleared)
7541 {
7542         int ret;
7543
7544         spin_lock_irq(&hugetlb_lock);
7545         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7546         spin_unlock_irq(&hugetlb_lock);
7547         return ret;
7548 }
7549
7550 void folio_putback_active_hugetlb(struct folio *folio)
7551 {
7552         spin_lock_irq(&hugetlb_lock);
7553         folio_set_hugetlb_migratable(folio);
7554         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7555         spin_unlock_irq(&hugetlb_lock);
7556         folio_put(folio);
7557 }
7558
7559 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7560 {
7561         struct hstate *h = folio_hstate(old_folio);
7562
7563         hugetlb_cgroup_migrate(old_folio, new_folio);
7564         set_page_owner_migrate_reason(&new_folio->page, reason);
7565
7566         /*
7567          * transfer temporary state of the new hugetlb folio. This is
7568          * reverse to other transitions because the newpage is going to
7569          * be final while the old one will be freed so it takes over
7570          * the temporary status.
7571          *
7572          * Also note that we have to transfer the per-node surplus state
7573          * here as well otherwise the global surplus count will not match
7574          * the per-node's.
7575          */
7576         if (folio_test_hugetlb_temporary(new_folio)) {
7577                 int old_nid = folio_nid(old_folio);
7578                 int new_nid = folio_nid(new_folio);
7579
7580                 folio_set_hugetlb_temporary(old_folio);
7581                 folio_clear_hugetlb_temporary(new_folio);
7582
7583
7584                 /*
7585                  * There is no need to transfer the per-node surplus state
7586                  * when we do not cross the node.
7587                  */
7588                 if (new_nid == old_nid)
7589                         return;
7590                 spin_lock_irq(&hugetlb_lock);
7591                 if (h->surplus_huge_pages_node[old_nid]) {
7592                         h->surplus_huge_pages_node[old_nid]--;
7593                         h->surplus_huge_pages_node[new_nid]++;
7594                 }
7595                 spin_unlock_irq(&hugetlb_lock);
7596         }
7597 }
7598
7599 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7600                                    unsigned long start,
7601                                    unsigned long end)
7602 {
7603         struct hstate *h = hstate_vma(vma);
7604         unsigned long sz = huge_page_size(h);
7605         struct mm_struct *mm = vma->vm_mm;
7606         struct mmu_notifier_range range;
7607         unsigned long address;
7608         spinlock_t *ptl;
7609         pte_t *ptep;
7610
7611         if (!(vma->vm_flags & VM_MAYSHARE))
7612                 return;
7613
7614         if (start >= end)
7615                 return;
7616
7617         flush_cache_range(vma, start, end);
7618         /*
7619          * No need to call adjust_range_if_pmd_sharing_possible(), because
7620          * we have already done the PUD_SIZE alignment.
7621          */
7622         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7623                                 start, end);
7624         mmu_notifier_invalidate_range_start(&range);
7625         hugetlb_vma_lock_write(vma);
7626         i_mmap_lock_write(vma->vm_file->f_mapping);
7627         for (address = start; address < end; address += PUD_SIZE) {
7628                 ptep = hugetlb_walk(vma, address, sz);
7629                 if (!ptep)
7630                         continue;
7631                 ptl = huge_pte_lock(h, mm, ptep);
7632                 huge_pmd_unshare(mm, vma, address, ptep);
7633                 spin_unlock(ptl);
7634         }
7635         flush_hugetlb_tlb_range(vma, start, end);
7636         i_mmap_unlock_write(vma->vm_file->f_mapping);
7637         hugetlb_vma_unlock_write(vma);
7638         /*
7639          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7640          * Documentation/mm/mmu_notifier.rst.
7641          */
7642         mmu_notifier_invalidate_range_end(&range);
7643 }
7644
7645 /*
7646  * This function will unconditionally remove all the shared pmd pgtable entries
7647  * within the specific vma for a hugetlbfs memory range.
7648  */
7649 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7650 {
7651         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7652                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7653 }
7654
7655 #ifdef CONFIG_CMA
7656 static bool cma_reserve_called __initdata;
7657
7658 static int __init cmdline_parse_hugetlb_cma(char *p)
7659 {
7660         int nid, count = 0;
7661         unsigned long tmp;
7662         char *s = p;
7663
7664         while (*s) {
7665                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7666                         break;
7667
7668                 if (s[count] == ':') {
7669                         if (tmp >= MAX_NUMNODES)
7670                                 break;
7671                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7672
7673                         s += count + 1;
7674                         tmp = memparse(s, &s);
7675                         hugetlb_cma_size_in_node[nid] = tmp;
7676                         hugetlb_cma_size += tmp;
7677
7678                         /*
7679                          * Skip the separator if have one, otherwise
7680                          * break the parsing.
7681                          */
7682                         if (*s == ',')
7683                                 s++;
7684                         else
7685                                 break;
7686                 } else {
7687                         hugetlb_cma_size = memparse(p, &p);
7688                         break;
7689                 }
7690         }
7691
7692         return 0;
7693 }
7694
7695 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7696
7697 void __init hugetlb_cma_reserve(int order)
7698 {
7699         unsigned long size, reserved, per_node;
7700         bool node_specific_cma_alloc = false;
7701         int nid;
7702
7703         /*
7704          * HugeTLB CMA reservation is required for gigantic
7705          * huge pages which could not be allocated via the
7706          * page allocator. Just warn if there is any change
7707          * breaking this assumption.
7708          */
7709         VM_WARN_ON(order <= MAX_PAGE_ORDER);
7710         cma_reserve_called = true;
7711
7712         if (!hugetlb_cma_size)
7713                 return;
7714
7715         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7716                 if (hugetlb_cma_size_in_node[nid] == 0)
7717                         continue;
7718
7719                 if (!node_online(nid)) {
7720                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7721                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7722                         hugetlb_cma_size_in_node[nid] = 0;
7723                         continue;
7724                 }
7725
7726                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7727                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7728                                 nid, (PAGE_SIZE << order) / SZ_1M);
7729                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7730                         hugetlb_cma_size_in_node[nid] = 0;
7731                 } else {
7732                         node_specific_cma_alloc = true;
7733                 }
7734         }
7735
7736         /* Validate the CMA size again in case some invalid nodes specified. */
7737         if (!hugetlb_cma_size)
7738                 return;
7739
7740         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7741                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7742                         (PAGE_SIZE << order) / SZ_1M);
7743                 hugetlb_cma_size = 0;
7744                 return;
7745         }
7746
7747         if (!node_specific_cma_alloc) {
7748                 /*
7749                  * If 3 GB area is requested on a machine with 4 numa nodes,
7750                  * let's allocate 1 GB on first three nodes and ignore the last one.
7751                  */
7752                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7753                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7754                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7755         }
7756
7757         reserved = 0;
7758         for_each_online_node(nid) {
7759                 int res;
7760                 char name[CMA_MAX_NAME];
7761
7762                 if (node_specific_cma_alloc) {
7763                         if (hugetlb_cma_size_in_node[nid] == 0)
7764                                 continue;
7765
7766                         size = hugetlb_cma_size_in_node[nid];
7767                 } else {
7768                         size = min(per_node, hugetlb_cma_size - reserved);
7769                 }
7770
7771                 size = round_up(size, PAGE_SIZE << order);
7772
7773                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7774                 /*
7775                  * Note that 'order per bit' is based on smallest size that
7776                  * may be returned to CMA allocator in the case of
7777                  * huge page demotion.
7778                  */
7779                 res = cma_declare_contiguous_nid(0, size, 0,
7780                                         PAGE_SIZE << order,
7781                                         HUGETLB_PAGE_ORDER, false, name,
7782                                         &hugetlb_cma[nid], nid);
7783                 if (res) {
7784                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7785                                 res, nid);
7786                         continue;
7787                 }
7788
7789                 reserved += size;
7790                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7791                         size / SZ_1M, nid);
7792
7793                 if (reserved >= hugetlb_cma_size)
7794                         break;
7795         }
7796
7797         if (!reserved)
7798                 /*
7799                  * hugetlb_cma_size is used to determine if allocations from
7800                  * cma are possible.  Set to zero if no cma regions are set up.
7801                  */
7802                 hugetlb_cma_size = 0;
7803 }
7804
7805 static void __init hugetlb_cma_check(void)
7806 {
7807         if (!hugetlb_cma_size || cma_reserve_called)
7808                 return;
7809
7810         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7811 }
7812
7813 #endif /* CONFIG_CMA */
This page took 0.473296 seconds and 4 git commands to generate.