1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
36 #include <linux/dca.h>
38 #include <linux/i2c.h>
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
48 QUEUE_MODE_STRICT_PRIORITY,
49 QUEUE_MODE_STREAM_RESERVATION,
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60 "Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62 "Copyright (c) 2007-2014 Intel Corporation.";
64 static const struct e1000_info *igb_info_tbl[] = {
65 [board_82575] = &e1000_82575_info,
68 static const struct pci_device_id igb_pci_tbl[] = {
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104 /* required last entry */
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133 struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152 netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 .notifier_call = igb_notify_dca,
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215 pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
219 static const struct pci_error_handlers igb_err_handler = {
220 .error_detected = igb_io_error_detected,
221 .slot_reset = igb_io_slot_reset,
222 .resume = igb_io_resume,
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
227 static struct pci_driver igb_driver = {
228 .name = igb_driver_name,
229 .id_table = igb_pci_tbl,
231 .remove = igb_remove,
233 .driver.pm = &igb_pm_ops,
235 .shutdown = igb_shutdown,
236 .sriov_configure = igb_pci_sriov_configure,
237 .err_handler = &igb_err_handler
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL v2");
243 MODULE_VERSION(DRV_VERSION);
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
250 struct igb_reg_info {
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
257 /* General Registers */
258 {E1000_CTRL, "CTRL"},
259 {E1000_STATUS, "STATUS"},
260 {E1000_CTRL_EXT, "CTRL_EXT"},
262 /* Interrupt Registers */
266 {E1000_RCTL, "RCTL"},
267 {E1000_RDLEN(0), "RDLEN"},
268 {E1000_RDH(0), "RDH"},
269 {E1000_RDT(0), "RDT"},
270 {E1000_RXDCTL(0), "RXDCTL"},
271 {E1000_RDBAL(0), "RDBAL"},
272 {E1000_RDBAH(0), "RDBAH"},
275 {E1000_TCTL, "TCTL"},
276 {E1000_TDBAL(0), "TDBAL"},
277 {E1000_TDBAH(0), "TDBAH"},
278 {E1000_TDLEN(0), "TDLEN"},
279 {E1000_TDH(0), "TDH"},
280 {E1000_TDT(0), "TDT"},
281 {E1000_TXDCTL(0), "TXDCTL"},
282 {E1000_TDFH, "TDFH"},
283 {E1000_TDFT, "TDFT"},
284 {E1000_TDFHS, "TDFHS"},
285 {E1000_TDFPC, "TDFPC"},
287 /* List Terminator */
291 /* igb_regdump - register printout routine */
292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
298 switch (reginfo->ofs) {
300 for (n = 0; n < 4; n++)
301 regs[n] = rd32(E1000_RDLEN(n));
304 for (n = 0; n < 4; n++)
305 regs[n] = rd32(E1000_RDH(n));
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_RDT(n));
311 case E1000_RXDCTL(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_RXDCTL(n));
316 for (n = 0; n < 4; n++)
317 regs[n] = rd32(E1000_RDBAL(n));
320 for (n = 0; n < 4; n++)
321 regs[n] = rd32(E1000_RDBAH(n));
324 for (n = 0; n < 4; n++)
325 regs[n] = rd32(E1000_RDBAL(n));
328 for (n = 0; n < 4; n++)
329 regs[n] = rd32(E1000_TDBAH(n));
332 for (n = 0; n < 4; n++)
333 regs[n] = rd32(E1000_TDLEN(n));
336 for (n = 0; n < 4; n++)
337 regs[n] = rd32(E1000_TDH(n));
340 for (n = 0; n < 4; n++)
341 regs[n] = rd32(E1000_TDT(n));
343 case E1000_TXDCTL(0):
344 for (n = 0; n < 4; n++)
345 regs[n] = rd32(E1000_TXDCTL(n));
348 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
352 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
358 static void igb_dump(struct igb_adapter *adapter)
360 struct net_device *netdev = adapter->netdev;
361 struct e1000_hw *hw = &adapter->hw;
362 struct igb_reg_info *reginfo;
363 struct igb_ring *tx_ring;
364 union e1000_adv_tx_desc *tx_desc;
365 struct my_u0 { u64 a; u64 b; } *u0;
366 struct igb_ring *rx_ring;
367 union e1000_adv_rx_desc *rx_desc;
371 if (!netif_msg_hw(adapter))
374 /* Print netdevice Info */
376 dev_info(&adapter->pdev->dev, "Net device Info\n");
377 pr_info("Device Name state trans_start\n");
378 pr_info("%-15s %016lX %016lX\n", netdev->name,
379 netdev->state, dev_trans_start(netdev));
382 /* Print Registers */
383 dev_info(&adapter->pdev->dev, "Register Dump\n");
384 pr_info(" Register Name Value\n");
385 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386 reginfo->name; reginfo++) {
387 igb_regdump(hw, reginfo);
390 /* Print TX Ring Summary */
391 if (!netdev || !netif_running(netdev))
394 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
396 for (n = 0; n < adapter->num_tx_queues; n++) {
397 struct igb_tx_buffer *buffer_info;
398 tx_ring = adapter->tx_ring[n];
399 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401 n, tx_ring->next_to_use, tx_ring->next_to_clean,
402 (u64)dma_unmap_addr(buffer_info, dma),
403 dma_unmap_len(buffer_info, len),
404 buffer_info->next_to_watch,
405 (u64)buffer_info->time_stamp);
409 if (!netif_msg_tx_done(adapter))
410 goto rx_ring_summary;
412 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
414 /* Transmit Descriptor Formats
416 * Advanced Transmit Descriptor
417 * +--------------------------------------------------------------+
418 * 0 | Buffer Address [63:0] |
419 * +--------------------------------------------------------------+
420 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
421 * +--------------------------------------------------------------+
422 * 63 46 45 40 39 38 36 35 32 31 24 15 0
425 for (n = 0; n < adapter->num_tx_queues; n++) {
426 tx_ring = adapter->tx_ring[n];
427 pr_info("------------------------------------\n");
428 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429 pr_info("------------------------------------\n");
430 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
432 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433 const char *next_desc;
434 struct igb_tx_buffer *buffer_info;
435 tx_desc = IGB_TX_DESC(tx_ring, i);
436 buffer_info = &tx_ring->tx_buffer_info[i];
437 u0 = (struct my_u0 *)tx_desc;
438 if (i == tx_ring->next_to_use &&
439 i == tx_ring->next_to_clean)
440 next_desc = " NTC/U";
441 else if (i == tx_ring->next_to_use)
443 else if (i == tx_ring->next_to_clean)
448 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
449 i, le64_to_cpu(u0->a),
451 (u64)dma_unmap_addr(buffer_info, dma),
452 dma_unmap_len(buffer_info, len),
453 buffer_info->next_to_watch,
454 (u64)buffer_info->time_stamp,
455 buffer_info->skb, next_desc);
457 if (netif_msg_pktdata(adapter) && buffer_info->skb)
458 print_hex_dump(KERN_INFO, "",
460 16, 1, buffer_info->skb->data,
461 dma_unmap_len(buffer_info, len),
466 /* Print RX Rings Summary */
468 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469 pr_info("Queue [NTU] [NTC]\n");
470 for (n = 0; n < adapter->num_rx_queues; n++) {
471 rx_ring = adapter->rx_ring[n];
472 pr_info(" %5d %5X %5X\n",
473 n, rx_ring->next_to_use, rx_ring->next_to_clean);
477 if (!netif_msg_rx_status(adapter))
480 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
482 /* Advanced Receive Descriptor (Read) Format
484 * +-----------------------------------------------------+
485 * 0 | Packet Buffer Address [63:1] |A0/NSE|
486 * +----------------------------------------------+------+
487 * 8 | Header Buffer Address [63:1] | DD |
488 * +-----------------------------------------------------+
491 * Advanced Receive Descriptor (Write-Back) Format
493 * 63 48 47 32 31 30 21 20 17 16 4 3 0
494 * +------------------------------------------------------+
495 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
496 * | Checksum Ident | | | | Type | Type |
497 * +------------------------------------------------------+
498 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499 * +------------------------------------------------------+
500 * 63 48 47 32 31 20 19 0
503 for (n = 0; n < adapter->num_rx_queues; n++) {
504 rx_ring = adapter->rx_ring[n];
505 pr_info("------------------------------------\n");
506 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507 pr_info("------------------------------------\n");
508 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
509 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
511 for (i = 0; i < rx_ring->count; i++) {
512 const char *next_desc;
513 struct igb_rx_buffer *buffer_info;
514 buffer_info = &rx_ring->rx_buffer_info[i];
515 rx_desc = IGB_RX_DESC(rx_ring, i);
516 u0 = (struct my_u0 *)rx_desc;
517 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
519 if (i == rx_ring->next_to_use)
521 else if (i == rx_ring->next_to_clean)
526 if (staterr & E1000_RXD_STAT_DD) {
527 /* Descriptor Done */
528 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
534 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
538 (u64)buffer_info->dma,
541 if (netif_msg_pktdata(adapter) &&
542 buffer_info->dma && buffer_info->page) {
543 print_hex_dump(KERN_INFO, "",
546 page_address(buffer_info->page) +
547 buffer_info->page_offset,
548 igb_rx_bufsz(rx_ring), true);
559 * igb_get_i2c_data - Reads the I2C SDA data bit
560 * @hw: pointer to hardware structure
561 * @i2cctl: Current value of I2CCTL register
563 * Returns the I2C data bit value
565 static int igb_get_i2c_data(void *data)
567 struct igb_adapter *adapter = (struct igb_adapter *)data;
568 struct e1000_hw *hw = &adapter->hw;
569 s32 i2cctl = rd32(E1000_I2CPARAMS);
571 return !!(i2cctl & E1000_I2C_DATA_IN);
575 * igb_set_i2c_data - Sets the I2C data bit
576 * @data: pointer to hardware structure
577 * @state: I2C data value (0 or 1) to set
579 * Sets the I2C data bit
581 static void igb_set_i2c_data(void *data, int state)
583 struct igb_adapter *adapter = (struct igb_adapter *)data;
584 struct e1000_hw *hw = &adapter->hw;
585 s32 i2cctl = rd32(E1000_I2CPARAMS);
588 i2cctl |= E1000_I2C_DATA_OUT;
590 i2cctl &= ~E1000_I2C_DATA_OUT;
592 i2cctl &= ~E1000_I2C_DATA_OE_N;
593 i2cctl |= E1000_I2C_CLK_OE_N;
594 wr32(E1000_I2CPARAMS, i2cctl);
600 * igb_set_i2c_clk - Sets the I2C SCL clock
601 * @data: pointer to hardware structure
602 * @state: state to set clock
604 * Sets the I2C clock line to state
606 static void igb_set_i2c_clk(void *data, int state)
608 struct igb_adapter *adapter = (struct igb_adapter *)data;
609 struct e1000_hw *hw = &adapter->hw;
610 s32 i2cctl = rd32(E1000_I2CPARAMS);
613 i2cctl |= E1000_I2C_CLK_OUT;
614 i2cctl &= ~E1000_I2C_CLK_OE_N;
616 i2cctl &= ~E1000_I2C_CLK_OUT;
617 i2cctl &= ~E1000_I2C_CLK_OE_N;
619 wr32(E1000_I2CPARAMS, i2cctl);
624 * igb_get_i2c_clk - Gets the I2C SCL clock state
625 * @data: pointer to hardware structure
627 * Gets the I2C clock state
629 static int igb_get_i2c_clk(void *data)
631 struct igb_adapter *adapter = (struct igb_adapter *)data;
632 struct e1000_hw *hw = &adapter->hw;
633 s32 i2cctl = rd32(E1000_I2CPARAMS);
635 return !!(i2cctl & E1000_I2C_CLK_IN);
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639 .setsda = igb_set_i2c_data,
640 .setscl = igb_set_i2c_clk,
641 .getsda = igb_get_i2c_data,
642 .getscl = igb_get_i2c_clk,
648 * igb_get_hw_dev - return device
649 * @hw: pointer to hardware structure
651 * used by hardware layer to print debugging information
653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
655 struct igb_adapter *adapter = hw->back;
656 return adapter->netdev;
660 * igb_init_module - Driver Registration Routine
662 * igb_init_module is the first routine called when the driver is
663 * loaded. All it does is register with the PCI subsystem.
665 static int __init igb_init_module(void)
669 pr_info("%s - version %s\n",
670 igb_driver_string, igb_driver_version);
671 pr_info("%s\n", igb_copyright);
673 #ifdef CONFIG_IGB_DCA
674 dca_register_notify(&dca_notifier);
676 ret = pci_register_driver(&igb_driver);
680 module_init(igb_init_module);
683 * igb_exit_module - Driver Exit Cleanup Routine
685 * igb_exit_module is called just before the driver is removed
688 static void __exit igb_exit_module(void)
690 #ifdef CONFIG_IGB_DCA
691 dca_unregister_notify(&dca_notifier);
693 pci_unregister_driver(&igb_driver);
696 module_exit(igb_exit_module);
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
700 * igb_cache_ring_register - Descriptor ring to register mapping
701 * @adapter: board private structure to initialize
703 * Once we know the feature-set enabled for the device, we'll cache
704 * the register offset the descriptor ring is assigned to.
706 static void igb_cache_ring_register(struct igb_adapter *adapter)
709 u32 rbase_offset = adapter->vfs_allocated_count;
711 switch (adapter->hw.mac.type) {
713 /* The queues are allocated for virtualization such that VF 0
714 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715 * In order to avoid collision we start at the first free queue
716 * and continue consuming queues in the same sequence
718 if (adapter->vfs_allocated_count) {
719 for (; i < adapter->rss_queues; i++)
720 adapter->rx_ring[i]->reg_idx = rbase_offset +
732 for (; i < adapter->num_rx_queues; i++)
733 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734 for (; j < adapter->num_tx_queues; j++)
735 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
742 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
746 if (E1000_REMOVED(hw_addr))
749 value = readl(&hw_addr[reg]);
751 /* reads should not return all F's */
752 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753 struct net_device *netdev = igb->netdev;
755 netdev_err(netdev, "PCIe link lost\n");
756 WARN(pci_device_is_present(igb->pdev),
757 "igb: Failed to read reg 0x%x!\n", reg);
764 * igb_write_ivar - configure ivar for given MSI-X vector
765 * @hw: pointer to the HW structure
766 * @msix_vector: vector number we are allocating to a given ring
767 * @index: row index of IVAR register to write within IVAR table
768 * @offset: column offset of in IVAR, should be multiple of 8
770 * This function is intended to handle the writing of the IVAR register
771 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
772 * each containing an cause allocation for an Rx and Tx ring, and a
773 * variable number of rows depending on the number of queues supported.
775 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
776 int index, int offset)
778 u32 ivar = array_rd32(E1000_IVAR0, index);
780 /* clear any bits that are currently set */
781 ivar &= ~((u32)0xFF << offset);
783 /* write vector and valid bit */
784 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
786 array_wr32(E1000_IVAR0, index, ivar);
789 #define IGB_N0_QUEUE -1
790 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
792 struct igb_adapter *adapter = q_vector->adapter;
793 struct e1000_hw *hw = &adapter->hw;
794 int rx_queue = IGB_N0_QUEUE;
795 int tx_queue = IGB_N0_QUEUE;
798 if (q_vector->rx.ring)
799 rx_queue = q_vector->rx.ring->reg_idx;
800 if (q_vector->tx.ring)
801 tx_queue = q_vector->tx.ring->reg_idx;
803 switch (hw->mac.type) {
805 /* The 82575 assigns vectors using a bitmask, which matches the
806 * bitmask for the EICR/EIMS/EIMC registers. To assign one
807 * or more queues to a vector, we write the appropriate bits
808 * into the MSIXBM register for that vector.
810 if (rx_queue > IGB_N0_QUEUE)
811 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
812 if (tx_queue > IGB_N0_QUEUE)
813 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
814 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
815 msixbm |= E1000_EIMS_OTHER;
816 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
817 q_vector->eims_value = msixbm;
820 /* 82576 uses a table that essentially consists of 2 columns
821 * with 8 rows. The ordering is column-major so we use the
822 * lower 3 bits as the row index, and the 4th bit as the
825 if (rx_queue > IGB_N0_QUEUE)
826 igb_write_ivar(hw, msix_vector,
828 (rx_queue & 0x8) << 1);
829 if (tx_queue > IGB_N0_QUEUE)
830 igb_write_ivar(hw, msix_vector,
832 ((tx_queue & 0x8) << 1) + 8);
833 q_vector->eims_value = BIT(msix_vector);
840 /* On 82580 and newer adapters the scheme is similar to 82576
841 * however instead of ordering column-major we have things
842 * ordered row-major. So we traverse the table by using
843 * bit 0 as the column offset, and the remaining bits as the
846 if (rx_queue > IGB_N0_QUEUE)
847 igb_write_ivar(hw, msix_vector,
849 (rx_queue & 0x1) << 4);
850 if (tx_queue > IGB_N0_QUEUE)
851 igb_write_ivar(hw, msix_vector,
853 ((tx_queue & 0x1) << 4) + 8);
854 q_vector->eims_value = BIT(msix_vector);
861 /* add q_vector eims value to global eims_enable_mask */
862 adapter->eims_enable_mask |= q_vector->eims_value;
864 /* configure q_vector to set itr on first interrupt */
865 q_vector->set_itr = 1;
869 * igb_configure_msix - Configure MSI-X hardware
870 * @adapter: board private structure to initialize
872 * igb_configure_msix sets up the hardware to properly
873 * generate MSI-X interrupts.
875 static void igb_configure_msix(struct igb_adapter *adapter)
879 struct e1000_hw *hw = &adapter->hw;
881 adapter->eims_enable_mask = 0;
883 /* set vector for other causes, i.e. link changes */
884 switch (hw->mac.type) {
886 tmp = rd32(E1000_CTRL_EXT);
887 /* enable MSI-X PBA support*/
888 tmp |= E1000_CTRL_EXT_PBA_CLR;
890 /* Auto-Mask interrupts upon ICR read. */
891 tmp |= E1000_CTRL_EXT_EIAME;
892 tmp |= E1000_CTRL_EXT_IRCA;
894 wr32(E1000_CTRL_EXT, tmp);
896 /* enable msix_other interrupt */
897 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
898 adapter->eims_other = E1000_EIMS_OTHER;
908 /* Turn on MSI-X capability first, or our settings
909 * won't stick. And it will take days to debug.
911 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
912 E1000_GPIE_PBA | E1000_GPIE_EIAME |
915 /* enable msix_other interrupt */
916 adapter->eims_other = BIT(vector);
917 tmp = (vector++ | E1000_IVAR_VALID) << 8;
919 wr32(E1000_IVAR_MISC, tmp);
922 /* do nothing, since nothing else supports MSI-X */
924 } /* switch (hw->mac.type) */
926 adapter->eims_enable_mask |= adapter->eims_other;
928 for (i = 0; i < adapter->num_q_vectors; i++)
929 igb_assign_vector(adapter->q_vector[i], vector++);
935 * igb_request_msix - Initialize MSI-X interrupts
936 * @adapter: board private structure to initialize
938 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
941 static int igb_request_msix(struct igb_adapter *adapter)
943 struct net_device *netdev = adapter->netdev;
944 int i, err = 0, vector = 0, free_vector = 0;
946 err = request_irq(adapter->msix_entries[vector].vector,
947 igb_msix_other, 0, netdev->name, adapter);
951 for (i = 0; i < adapter->num_q_vectors; i++) {
952 struct igb_q_vector *q_vector = adapter->q_vector[i];
956 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
958 if (q_vector->rx.ring && q_vector->tx.ring)
959 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
960 q_vector->rx.ring->queue_index);
961 else if (q_vector->tx.ring)
962 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
963 q_vector->tx.ring->queue_index);
964 else if (q_vector->rx.ring)
965 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
966 q_vector->rx.ring->queue_index);
968 sprintf(q_vector->name, "%s-unused", netdev->name);
970 err = request_irq(adapter->msix_entries[vector].vector,
971 igb_msix_ring, 0, q_vector->name,
977 igb_configure_msix(adapter);
981 /* free already assigned IRQs */
982 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
985 for (i = 0; i < vector; i++) {
986 free_irq(adapter->msix_entries[free_vector++].vector,
987 adapter->q_vector[i]);
994 * igb_free_q_vector - Free memory allocated for specific interrupt vector
995 * @adapter: board private structure to initialize
996 * @v_idx: Index of vector to be freed
998 * This function frees the memory allocated to the q_vector.
1000 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1002 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1004 adapter->q_vector[v_idx] = NULL;
1006 /* igb_get_stats64() might access the rings on this vector,
1007 * we must wait a grace period before freeing it.
1010 kfree_rcu(q_vector, rcu);
1014 * igb_reset_q_vector - Reset config for interrupt vector
1015 * @adapter: board private structure to initialize
1016 * @v_idx: Index of vector to be reset
1018 * If NAPI is enabled it will delete any references to the
1019 * NAPI struct. This is preparation for igb_free_q_vector.
1021 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1023 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1025 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1026 * allocated. So, q_vector is NULL so we should stop here.
1031 if (q_vector->tx.ring)
1032 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1034 if (q_vector->rx.ring)
1035 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1037 netif_napi_del(&q_vector->napi);
1041 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1043 int v_idx = adapter->num_q_vectors;
1045 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1046 pci_disable_msix(adapter->pdev);
1047 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1048 pci_disable_msi(adapter->pdev);
1051 igb_reset_q_vector(adapter, v_idx);
1055 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1056 * @adapter: board private structure to initialize
1058 * This function frees the memory allocated to the q_vectors. In addition if
1059 * NAPI is enabled it will delete any references to the NAPI struct prior
1060 * to freeing the q_vector.
1062 static void igb_free_q_vectors(struct igb_adapter *adapter)
1064 int v_idx = adapter->num_q_vectors;
1066 adapter->num_tx_queues = 0;
1067 adapter->num_rx_queues = 0;
1068 adapter->num_q_vectors = 0;
1071 igb_reset_q_vector(adapter, v_idx);
1072 igb_free_q_vector(adapter, v_idx);
1077 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1078 * @adapter: board private structure to initialize
1080 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1081 * MSI-X interrupts allocated.
1083 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1085 igb_free_q_vectors(adapter);
1086 igb_reset_interrupt_capability(adapter);
1090 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1091 * @adapter: board private structure to initialize
1092 * @msix: boolean value of MSIX capability
1094 * Attempt to configure interrupts using the best available
1095 * capabilities of the hardware and kernel.
1097 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 adapter->flags |= IGB_FLAG_HAS_MSIX;
1106 /* Number of supported queues. */
1107 adapter->num_rx_queues = adapter->rss_queues;
1108 if (adapter->vfs_allocated_count)
1109 adapter->num_tx_queues = 1;
1111 adapter->num_tx_queues = adapter->rss_queues;
1113 /* start with one vector for every Rx queue */
1114 numvecs = adapter->num_rx_queues;
1116 /* if Tx handler is separate add 1 for every Tx queue */
1117 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1118 numvecs += adapter->num_tx_queues;
1120 /* store the number of vectors reserved for queues */
1121 adapter->num_q_vectors = numvecs;
1123 /* add 1 vector for link status interrupts */
1125 for (i = 0; i < numvecs; i++)
1126 adapter->msix_entries[i].entry = i;
1128 err = pci_enable_msix_range(adapter->pdev,
1129 adapter->msix_entries,
1135 igb_reset_interrupt_capability(adapter);
1137 /* If we can't do MSI-X, try MSI */
1139 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1140 #ifdef CONFIG_PCI_IOV
1141 /* disable SR-IOV for non MSI-X configurations */
1142 if (adapter->vf_data) {
1143 struct e1000_hw *hw = &adapter->hw;
1144 /* disable iov and allow time for transactions to clear */
1145 pci_disable_sriov(adapter->pdev);
1148 kfree(adapter->vf_mac_list);
1149 adapter->vf_mac_list = NULL;
1150 kfree(adapter->vf_data);
1151 adapter->vf_data = NULL;
1152 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1155 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1158 adapter->vfs_allocated_count = 0;
1159 adapter->rss_queues = 1;
1160 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1161 adapter->num_rx_queues = 1;
1162 adapter->num_tx_queues = 1;
1163 adapter->num_q_vectors = 1;
1164 if (!pci_enable_msi(adapter->pdev))
1165 adapter->flags |= IGB_FLAG_HAS_MSI;
1168 static void igb_add_ring(struct igb_ring *ring,
1169 struct igb_ring_container *head)
1176 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1177 * @adapter: board private structure to initialize
1178 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1179 * @v_idx: index of vector in adapter struct
1180 * @txr_count: total number of Tx rings to allocate
1181 * @txr_idx: index of first Tx ring to allocate
1182 * @rxr_count: total number of Rx rings to allocate
1183 * @rxr_idx: index of first Rx ring to allocate
1185 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1187 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1188 int v_count, int v_idx,
1189 int txr_count, int txr_idx,
1190 int rxr_count, int rxr_idx)
1192 struct igb_q_vector *q_vector;
1193 struct igb_ring *ring;
1197 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1198 if (txr_count > 1 || rxr_count > 1)
1201 ring_count = txr_count + rxr_count;
1202 size = struct_size(q_vector, ring, ring_count);
1204 /* allocate q_vector and rings */
1205 q_vector = adapter->q_vector[v_idx];
1207 q_vector = kzalloc(size, GFP_KERNEL);
1208 } else if (size > ksize(q_vector)) {
1209 kfree_rcu(q_vector, rcu);
1210 q_vector = kzalloc(size, GFP_KERNEL);
1212 memset(q_vector, 0, size);
1217 /* initialize NAPI */
1218 netif_napi_add(adapter->netdev, &q_vector->napi,
1221 /* tie q_vector and adapter together */
1222 adapter->q_vector[v_idx] = q_vector;
1223 q_vector->adapter = adapter;
1225 /* initialize work limits */
1226 q_vector->tx.work_limit = adapter->tx_work_limit;
1228 /* initialize ITR configuration */
1229 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1230 q_vector->itr_val = IGB_START_ITR;
1232 /* initialize pointer to rings */
1233 ring = q_vector->ring;
1237 /* rx or rx/tx vector */
1238 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1239 q_vector->itr_val = adapter->rx_itr_setting;
1241 /* tx only vector */
1242 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1243 q_vector->itr_val = adapter->tx_itr_setting;
1247 /* assign generic ring traits */
1248 ring->dev = &adapter->pdev->dev;
1249 ring->netdev = adapter->netdev;
1251 /* configure backlink on ring */
1252 ring->q_vector = q_vector;
1254 /* update q_vector Tx values */
1255 igb_add_ring(ring, &q_vector->tx);
1257 /* For 82575, context index must be unique per ring. */
1258 if (adapter->hw.mac.type == e1000_82575)
1259 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1261 /* apply Tx specific ring traits */
1262 ring->count = adapter->tx_ring_count;
1263 ring->queue_index = txr_idx;
1265 ring->cbs_enable = false;
1266 ring->idleslope = 0;
1267 ring->sendslope = 0;
1271 u64_stats_init(&ring->tx_syncp);
1272 u64_stats_init(&ring->tx_syncp2);
1274 /* assign ring to adapter */
1275 adapter->tx_ring[txr_idx] = ring;
1277 /* push pointer to next ring */
1282 /* assign generic ring traits */
1283 ring->dev = &adapter->pdev->dev;
1284 ring->netdev = adapter->netdev;
1286 /* configure backlink on ring */
1287 ring->q_vector = q_vector;
1289 /* update q_vector Rx values */
1290 igb_add_ring(ring, &q_vector->rx);
1292 /* set flag indicating ring supports SCTP checksum offload */
1293 if (adapter->hw.mac.type >= e1000_82576)
1294 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1296 /* On i350, i354, i210, and i211, loopback VLAN packets
1297 * have the tag byte-swapped.
1299 if (adapter->hw.mac.type >= e1000_i350)
1300 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1302 /* apply Rx specific ring traits */
1303 ring->count = adapter->rx_ring_count;
1304 ring->queue_index = rxr_idx;
1306 u64_stats_init(&ring->rx_syncp);
1308 /* assign ring to adapter */
1309 adapter->rx_ring[rxr_idx] = ring;
1317 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318 * @adapter: board private structure to initialize
1320 * We allocate one q_vector per queue interrupt. If allocation fails we
1323 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1325 int q_vectors = adapter->num_q_vectors;
1326 int rxr_remaining = adapter->num_rx_queues;
1327 int txr_remaining = adapter->num_tx_queues;
1328 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1331 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332 for (; rxr_remaining; v_idx++) {
1333 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1339 /* update counts and index */
1345 for (; v_idx < q_vectors; v_idx++) {
1346 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1349 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1350 tqpv, txr_idx, rqpv, rxr_idx);
1355 /* update counts and index */
1356 rxr_remaining -= rqpv;
1357 txr_remaining -= tqpv;
1365 adapter->num_tx_queues = 0;
1366 adapter->num_rx_queues = 0;
1367 adapter->num_q_vectors = 0;
1370 igb_free_q_vector(adapter, v_idx);
1376 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1377 * @adapter: board private structure to initialize
1378 * @msix: boolean value of MSIX capability
1380 * This function initializes the interrupts and allocates all of the queues.
1382 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1384 struct pci_dev *pdev = adapter->pdev;
1387 igb_set_interrupt_capability(adapter, msix);
1389 err = igb_alloc_q_vectors(adapter);
1391 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1392 goto err_alloc_q_vectors;
1395 igb_cache_ring_register(adapter);
1399 err_alloc_q_vectors:
1400 igb_reset_interrupt_capability(adapter);
1405 * igb_request_irq - initialize interrupts
1406 * @adapter: board private structure to initialize
1408 * Attempts to configure interrupts using the best available
1409 * capabilities of the hardware and kernel.
1411 static int igb_request_irq(struct igb_adapter *adapter)
1413 struct net_device *netdev = adapter->netdev;
1414 struct pci_dev *pdev = adapter->pdev;
1417 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1418 err = igb_request_msix(adapter);
1421 /* fall back to MSI */
1422 igb_free_all_tx_resources(adapter);
1423 igb_free_all_rx_resources(adapter);
1425 igb_clear_interrupt_scheme(adapter);
1426 err = igb_init_interrupt_scheme(adapter, false);
1430 igb_setup_all_tx_resources(adapter);
1431 igb_setup_all_rx_resources(adapter);
1432 igb_configure(adapter);
1435 igb_assign_vector(adapter->q_vector[0], 0);
1437 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1438 err = request_irq(pdev->irq, igb_intr_msi, 0,
1439 netdev->name, adapter);
1443 /* fall back to legacy interrupts */
1444 igb_reset_interrupt_capability(adapter);
1445 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1448 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1449 netdev->name, adapter);
1452 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1459 static void igb_free_irq(struct igb_adapter *adapter)
1461 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1464 free_irq(adapter->msix_entries[vector++].vector, adapter);
1466 for (i = 0; i < adapter->num_q_vectors; i++)
1467 free_irq(adapter->msix_entries[vector++].vector,
1468 adapter->q_vector[i]);
1470 free_irq(adapter->pdev->irq, adapter);
1475 * igb_irq_disable - Mask off interrupt generation on the NIC
1476 * @adapter: board private structure
1478 static void igb_irq_disable(struct igb_adapter *adapter)
1480 struct e1000_hw *hw = &adapter->hw;
1482 /* we need to be careful when disabling interrupts. The VFs are also
1483 * mapped into these registers and so clearing the bits can cause
1484 * issues on the VF drivers so we only need to clear what we set
1486 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1487 u32 regval = rd32(E1000_EIAM);
1489 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1490 wr32(E1000_EIMC, adapter->eims_enable_mask);
1491 regval = rd32(E1000_EIAC);
1492 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1496 wr32(E1000_IMC, ~0);
1498 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1501 for (i = 0; i < adapter->num_q_vectors; i++)
1502 synchronize_irq(adapter->msix_entries[i].vector);
1504 synchronize_irq(adapter->pdev->irq);
1509 * igb_irq_enable - Enable default interrupt generation settings
1510 * @adapter: board private structure
1512 static void igb_irq_enable(struct igb_adapter *adapter)
1514 struct e1000_hw *hw = &adapter->hw;
1516 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1517 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1518 u32 regval = rd32(E1000_EIAC);
1520 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1521 regval = rd32(E1000_EIAM);
1522 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1523 wr32(E1000_EIMS, adapter->eims_enable_mask);
1524 if (adapter->vfs_allocated_count) {
1525 wr32(E1000_MBVFIMR, 0xFF);
1526 ims |= E1000_IMS_VMMB;
1528 wr32(E1000_IMS, ims);
1530 wr32(E1000_IMS, IMS_ENABLE_MASK |
1532 wr32(E1000_IAM, IMS_ENABLE_MASK |
1537 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1539 struct e1000_hw *hw = &adapter->hw;
1540 u16 pf_id = adapter->vfs_allocated_count;
1541 u16 vid = adapter->hw.mng_cookie.vlan_id;
1542 u16 old_vid = adapter->mng_vlan_id;
1544 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1545 /* add VID to filter table */
1546 igb_vfta_set(hw, vid, pf_id, true, true);
1547 adapter->mng_vlan_id = vid;
1549 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1552 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1554 !test_bit(old_vid, adapter->active_vlans)) {
1555 /* remove VID from filter table */
1556 igb_vfta_set(hw, vid, pf_id, false, true);
1561 * igb_release_hw_control - release control of the h/w to f/w
1562 * @adapter: address of board private structure
1564 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1565 * For ASF and Pass Through versions of f/w this means that the
1566 * driver is no longer loaded.
1568 static void igb_release_hw_control(struct igb_adapter *adapter)
1570 struct e1000_hw *hw = &adapter->hw;
1573 /* Let firmware take over control of h/w */
1574 ctrl_ext = rd32(E1000_CTRL_EXT);
1575 wr32(E1000_CTRL_EXT,
1576 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1580 * igb_get_hw_control - get control of the h/w from f/w
1581 * @adapter: address of board private structure
1583 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1584 * For ASF and Pass Through versions of f/w this means that
1585 * the driver is loaded.
1587 static void igb_get_hw_control(struct igb_adapter *adapter)
1589 struct e1000_hw *hw = &adapter->hw;
1592 /* Let firmware know the driver has taken over */
1593 ctrl_ext = rd32(E1000_CTRL_EXT);
1594 wr32(E1000_CTRL_EXT,
1595 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1598 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1600 struct net_device *netdev = adapter->netdev;
1601 struct e1000_hw *hw = &adapter->hw;
1603 WARN_ON(hw->mac.type != e1000_i210);
1606 adapter->flags |= IGB_FLAG_FQTSS;
1608 adapter->flags &= ~IGB_FLAG_FQTSS;
1610 if (netif_running(netdev))
1611 schedule_work(&adapter->reset_task);
1614 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1616 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1619 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1620 enum tx_queue_prio prio)
1624 WARN_ON(hw->mac.type != e1000_i210);
1625 WARN_ON(queue < 0 || queue > 4);
1627 val = rd32(E1000_I210_TXDCTL(queue));
1629 if (prio == TX_QUEUE_PRIO_HIGH)
1630 val |= E1000_TXDCTL_PRIORITY;
1632 val &= ~E1000_TXDCTL_PRIORITY;
1634 wr32(E1000_I210_TXDCTL(queue), val);
1637 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1641 WARN_ON(hw->mac.type != e1000_i210);
1642 WARN_ON(queue < 0 || queue > 1);
1644 val = rd32(E1000_I210_TQAVCC(queue));
1646 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1647 val |= E1000_TQAVCC_QUEUEMODE;
1649 val &= ~E1000_TQAVCC_QUEUEMODE;
1651 wr32(E1000_I210_TQAVCC(queue), val);
1654 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1658 for (i = 0; i < adapter->num_tx_queues; i++) {
1659 if (adapter->tx_ring[i]->cbs_enable)
1666 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1670 for (i = 0; i < adapter->num_tx_queues; i++) {
1671 if (adapter->tx_ring[i]->launchtime_enable)
1679 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1680 * @adapter: pointer to adapter struct
1681 * @queue: queue number
1683 * Configure CBS and Launchtime for a given hardware queue.
1684 * Parameters are retrieved from the correct Tx ring, so
1685 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1686 * for setting those correctly prior to this function being called.
1688 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1690 struct igb_ring *ring = adapter->tx_ring[queue];
1691 struct net_device *netdev = adapter->netdev;
1692 struct e1000_hw *hw = &adapter->hw;
1693 u32 tqavcc, tqavctrl;
1696 WARN_ON(hw->mac.type != e1000_i210);
1697 WARN_ON(queue < 0 || queue > 1);
1699 /* If any of the Qav features is enabled, configure queues as SR and
1700 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1703 if (ring->cbs_enable || ring->launchtime_enable) {
1704 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1705 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1707 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1708 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1711 /* If CBS is enabled, set DataTranARB and config its parameters. */
1712 if (ring->cbs_enable || queue == 0) {
1713 /* i210 does not allow the queue 0 to be in the Strict
1714 * Priority mode while the Qav mode is enabled, so,
1715 * instead of disabling strict priority mode, we give
1716 * queue 0 the maximum of credits possible.
1718 * See section 8.12.19 of the i210 datasheet, "Note:
1719 * Queue0 QueueMode must be set to 1b when
1720 * TransmitMode is set to Qav."
1722 if (queue == 0 && !ring->cbs_enable) {
1723 /* max "linkspeed" idleslope in kbps */
1724 ring->idleslope = 1000000;
1725 ring->hicredit = ETH_FRAME_LEN;
1728 /* Always set data transfer arbitration to credit-based
1729 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1732 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1736 /* According to i210 datasheet section 7.2.7.7, we should set
1737 * the 'idleSlope' field from TQAVCC register following the
1740 * For 100 Mbps link speed:
1742 * value = BW * 0x7735 * 0.2 (E1)
1744 * For 1000Mbps link speed:
1746 * value = BW * 0x7735 * 2 (E2)
1748 * E1 and E2 can be merged into one equation as shown below.
1749 * Note that 'link-speed' is in Mbps.
1751 * value = BW * 0x7735 * 2 * link-speed
1752 * -------------- (E3)
1755 * 'BW' is the percentage bandwidth out of full link speed
1756 * which can be found with the following equation. Note that
1757 * idleSlope here is the parameter from this function which
1761 * ----------------- (E4)
1764 * That said, we can come up with a generic equation to
1765 * calculate the value we should set it TQAVCC register by
1766 * replacing 'BW' in E3 by E4. The resulting equation is:
1768 * value = idleSlope * 0x7735 * 2 * link-speed
1769 * ----------------- -------------- (E5)
1770 * link-speed * 1000 1000
1772 * 'link-speed' is present in both sides of the fraction so
1773 * it is canceled out. The final equation is the following:
1775 * value = idleSlope * 61034
1776 * ----------------- (E6)
1779 * NOTE: For i210, given the above, we can see that idleslope
1780 * is represented in 16.38431 kbps units by the value at
1781 * the TQAVCC register (1Gbps / 61034), which reduces
1782 * the granularity for idleslope increments.
1783 * For instance, if you want to configure a 2576kbps
1784 * idleslope, the value to be written on the register
1785 * would have to be 157.23. If rounded down, you end
1786 * up with less bandwidth available than originally
1787 * required (~2572 kbps). If rounded up, you end up
1788 * with a higher bandwidth (~2589 kbps). Below the
1789 * approach we take is to always round up the
1790 * calculated value, so the resulting bandwidth might
1791 * be slightly higher for some configurations.
1793 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1795 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1798 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1800 wr32(E1000_I210_TQAVHC(queue),
1801 0x80000000 + ring->hicredit * 0x7735);
1804 /* Set idleSlope to zero. */
1805 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1809 /* Set hiCredit to zero. */
1810 wr32(E1000_I210_TQAVHC(queue), 0);
1812 /* If CBS is not enabled for any queues anymore, then return to
1813 * the default state of Data Transmission Arbitration on
1816 if (!is_any_cbs_enabled(adapter)) {
1817 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1823 /* If LaunchTime is enabled, set DataTranTIM. */
1824 if (ring->launchtime_enable) {
1825 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826 * for any of the SR queues, and configure fetchtime delta.
1828 * - LaunchTime will be enabled for all SR queues.
1829 * - A fixed offset can be added relative to the launch
1830 * time of all packets if configured at reg LAUNCH_OS0.
1831 * We are keeping it as 0 for now (default value).
1833 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835 E1000_TQAVCTRL_FETCHTIME_DELTA;
1836 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1838 /* If Launchtime is not enabled for any SR queues anymore,
1839 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840 * effectively disabling Launchtime.
1842 if (!is_any_txtime_enabled(adapter)) {
1843 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1850 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1851 * CBS are not configurable by software so we don't do any 'controller
1852 * configuration' in respect to these parameters.
1855 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856 ring->cbs_enable ? "enabled" : "disabled",
1857 ring->launchtime_enable ? "enabled" : "disabled",
1859 ring->idleslope, ring->sendslope,
1860 ring->hicredit, ring->locredit);
1863 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1866 struct igb_ring *ring;
1868 if (queue < 0 || queue > adapter->num_tx_queues)
1871 ring = adapter->tx_ring[queue];
1872 ring->launchtime_enable = enable;
1877 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878 bool enable, int idleslope, int sendslope,
1879 int hicredit, int locredit)
1881 struct igb_ring *ring;
1883 if (queue < 0 || queue > adapter->num_tx_queues)
1886 ring = adapter->tx_ring[queue];
1888 ring->cbs_enable = enable;
1889 ring->idleslope = idleslope;
1890 ring->sendslope = sendslope;
1891 ring->hicredit = hicredit;
1892 ring->locredit = locredit;
1898 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899 * @adapter: pointer to adapter struct
1901 * Configure TQAVCTRL register switching the controller's Tx mode
1902 * if FQTSS mode is enabled or disabled. Additionally, will issue
1903 * a call to igb_config_tx_modes() per queue so any previously saved
1904 * Tx parameters are applied.
1906 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1908 struct net_device *netdev = adapter->netdev;
1909 struct e1000_hw *hw = &adapter->hw;
1912 /* Only i210 controller supports changing the transmission mode. */
1913 if (hw->mac.type != e1000_i210)
1916 if (is_fqtss_enabled(adapter)) {
1919 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921 * so SP queues wait for SR ones.
1923 val = rd32(E1000_I210_TQAVCTRL);
1924 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926 wr32(E1000_I210_TQAVCTRL, val);
1928 /* Configure Tx and Rx packet buffers sizes as described in
1929 * i210 datasheet section 7.2.7.7.
1931 val = rd32(E1000_TXPBS);
1932 val &= ~I210_TXPBSIZE_MASK;
1933 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1934 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1935 wr32(E1000_TXPBS, val);
1937 val = rd32(E1000_RXPBS);
1938 val &= ~I210_RXPBSIZE_MASK;
1939 val |= I210_RXPBSIZE_PB_30KB;
1940 wr32(E1000_RXPBS, val);
1942 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943 * register should not exceed the buffer size programmed in
1944 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945 * so according to the datasheet we should set MAX_TPKT_SIZE to
1948 * However, when we do so, no frame from queue 2 and 3 are
1949 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1950 * or _equal_ to the buffer size programmed in TXPBS. For this
1951 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1953 val = (4096 - 1) / 64;
1954 wr32(E1000_I210_DTXMXPKTSZ, val);
1956 /* Since FQTSS mode is enabled, apply any CBS configuration
1957 * previously set. If no previous CBS configuration has been
1958 * done, then the initial configuration is applied, which means
1961 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1964 for (i = 0; i < max_queue; i++) {
1965 igb_config_tx_modes(adapter, i);
1968 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1972 val = rd32(E1000_I210_TQAVCTRL);
1973 /* According to Section 8.12.21, the other flags we've set when
1974 * enabling FQTSS are not relevant when disabling FQTSS so we
1975 * don't set they here.
1977 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978 wr32(E1000_I210_TQAVCTRL, val);
1981 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982 "enabled" : "disabled");
1986 * igb_configure - configure the hardware for RX and TX
1987 * @adapter: private board structure
1989 static void igb_configure(struct igb_adapter *adapter)
1991 struct net_device *netdev = adapter->netdev;
1994 igb_get_hw_control(adapter);
1995 igb_set_rx_mode(netdev);
1996 igb_setup_tx_mode(adapter);
1998 igb_restore_vlan(adapter);
2000 igb_setup_tctl(adapter);
2001 igb_setup_mrqc(adapter);
2002 igb_setup_rctl(adapter);
2004 igb_nfc_filter_restore(adapter);
2005 igb_configure_tx(adapter);
2006 igb_configure_rx(adapter);
2008 igb_rx_fifo_flush_82575(&adapter->hw);
2010 /* call igb_desc_unused which always leaves
2011 * at least 1 descriptor unused to make sure
2012 * next_to_use != next_to_clean
2014 for (i = 0; i < adapter->num_rx_queues; i++) {
2015 struct igb_ring *ring = adapter->rx_ring[i];
2016 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2021 * igb_power_up_link - Power up the phy/serdes link
2022 * @adapter: address of board private structure
2024 void igb_power_up_link(struct igb_adapter *adapter)
2026 igb_reset_phy(&adapter->hw);
2028 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029 igb_power_up_phy_copper(&adapter->hw);
2031 igb_power_up_serdes_link_82575(&adapter->hw);
2033 igb_setup_link(&adapter->hw);
2037 * igb_power_down_link - Power down the phy/serdes link
2038 * @adapter: address of board private structure
2040 static void igb_power_down_link(struct igb_adapter *adapter)
2042 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043 igb_power_down_phy_copper_82575(&adapter->hw);
2045 igb_shutdown_serdes_link_82575(&adapter->hw);
2049 * Detect and switch function for Media Auto Sense
2050 * @adapter: address of the board private structure
2052 static void igb_check_swap_media(struct igb_adapter *adapter)
2054 struct e1000_hw *hw = &adapter->hw;
2055 u32 ctrl_ext, connsw;
2056 bool swap_now = false;
2058 ctrl_ext = rd32(E1000_CTRL_EXT);
2059 connsw = rd32(E1000_CONNSW);
2061 /* need to live swap if current media is copper and we have fiber/serdes
2065 if ((hw->phy.media_type == e1000_media_type_copper) &&
2066 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2068 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2069 !(connsw & E1000_CONNSW_SERDESD)) {
2070 /* copper signal takes time to appear */
2071 if (adapter->copper_tries < 4) {
2072 adapter->copper_tries++;
2073 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2074 wr32(E1000_CONNSW, connsw);
2077 adapter->copper_tries = 0;
2078 if ((connsw & E1000_CONNSW_PHYSD) &&
2079 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2081 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2082 wr32(E1000_CONNSW, connsw);
2090 switch (hw->phy.media_type) {
2091 case e1000_media_type_copper:
2092 netdev_info(adapter->netdev,
2093 "MAS: changing media to fiber/serdes\n");
2095 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 adapter->copper_tries = 0;
2099 case e1000_media_type_internal_serdes:
2100 case e1000_media_type_fiber:
2101 netdev_info(adapter->netdev,
2102 "MAS: changing media to copper\n");
2104 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2105 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2108 /* shouldn't get here during regular operation */
2109 netdev_err(adapter->netdev,
2110 "AMS: Invalid media type found, returning\n");
2113 wr32(E1000_CTRL_EXT, ctrl_ext);
2117 * igb_up - Open the interface and prepare it to handle traffic
2118 * @adapter: board private structure
2120 int igb_up(struct igb_adapter *adapter)
2122 struct e1000_hw *hw = &adapter->hw;
2125 /* hardware has been reset, we need to reload some things */
2126 igb_configure(adapter);
2128 clear_bit(__IGB_DOWN, &adapter->state);
2130 for (i = 0; i < adapter->num_q_vectors; i++)
2131 napi_enable(&(adapter->q_vector[i]->napi));
2133 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2134 igb_configure_msix(adapter);
2136 igb_assign_vector(adapter->q_vector[0], 0);
2138 /* Clear any pending interrupts. */
2141 igb_irq_enable(adapter);
2143 /* notify VFs that reset has been completed */
2144 if (adapter->vfs_allocated_count) {
2145 u32 reg_data = rd32(E1000_CTRL_EXT);
2147 reg_data |= E1000_CTRL_EXT_PFRSTD;
2148 wr32(E1000_CTRL_EXT, reg_data);
2151 netif_tx_start_all_queues(adapter->netdev);
2153 /* start the watchdog. */
2154 hw->mac.get_link_status = 1;
2155 schedule_work(&adapter->watchdog_task);
2157 if ((adapter->flags & IGB_FLAG_EEE) &&
2158 (!hw->dev_spec._82575.eee_disable))
2159 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2164 void igb_down(struct igb_adapter *adapter)
2166 struct net_device *netdev = adapter->netdev;
2167 struct e1000_hw *hw = &adapter->hw;
2171 /* signal that we're down so the interrupt handler does not
2172 * reschedule our watchdog timer
2174 set_bit(__IGB_DOWN, &adapter->state);
2176 /* disable receives in the hardware */
2177 rctl = rd32(E1000_RCTL);
2178 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2179 /* flush and sleep below */
2181 igb_nfc_filter_exit(adapter);
2183 netif_carrier_off(netdev);
2184 netif_tx_stop_all_queues(netdev);
2186 /* disable transmits in the hardware */
2187 tctl = rd32(E1000_TCTL);
2188 tctl &= ~E1000_TCTL_EN;
2189 wr32(E1000_TCTL, tctl);
2190 /* flush both disables and wait for them to finish */
2192 usleep_range(10000, 11000);
2194 igb_irq_disable(adapter);
2196 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2198 for (i = 0; i < adapter->num_q_vectors; i++) {
2199 if (adapter->q_vector[i]) {
2200 napi_synchronize(&adapter->q_vector[i]->napi);
2201 napi_disable(&adapter->q_vector[i]->napi);
2205 del_timer_sync(&adapter->watchdog_timer);
2206 del_timer_sync(&adapter->phy_info_timer);
2208 /* record the stats before reset*/
2209 spin_lock(&adapter->stats64_lock);
2210 igb_update_stats(adapter);
2211 spin_unlock(&adapter->stats64_lock);
2213 adapter->link_speed = 0;
2214 adapter->link_duplex = 0;
2216 if (!pci_channel_offline(adapter->pdev))
2219 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2220 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2222 igb_clean_all_tx_rings(adapter);
2223 igb_clean_all_rx_rings(adapter);
2224 #ifdef CONFIG_IGB_DCA
2226 /* since we reset the hardware DCA settings were cleared */
2227 igb_setup_dca(adapter);
2231 void igb_reinit_locked(struct igb_adapter *adapter)
2233 WARN_ON(in_interrupt());
2234 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2235 usleep_range(1000, 2000);
2238 clear_bit(__IGB_RESETTING, &adapter->state);
2241 /** igb_enable_mas - Media Autosense re-enable after swap
2243 * @adapter: adapter struct
2245 static void igb_enable_mas(struct igb_adapter *adapter)
2247 struct e1000_hw *hw = &adapter->hw;
2248 u32 connsw = rd32(E1000_CONNSW);
2250 /* configure for SerDes media detect */
2251 if ((hw->phy.media_type == e1000_media_type_copper) &&
2252 (!(connsw & E1000_CONNSW_SERDESD))) {
2253 connsw |= E1000_CONNSW_ENRGSRC;
2254 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2255 wr32(E1000_CONNSW, connsw);
2260 void igb_reset(struct igb_adapter *adapter)
2262 struct pci_dev *pdev = adapter->pdev;
2263 struct e1000_hw *hw = &adapter->hw;
2264 struct e1000_mac_info *mac = &hw->mac;
2265 struct e1000_fc_info *fc = &hw->fc;
2268 /* Repartition Pba for greater than 9k mtu
2269 * To take effect CTRL.RST is required.
2271 switch (mac->type) {
2275 pba = rd32(E1000_RXPBS);
2276 pba = igb_rxpbs_adjust_82580(pba);
2279 pba = rd32(E1000_RXPBS);
2280 pba &= E1000_RXPBS_SIZE_MASK_82576;
2286 pba = E1000_PBA_34K;
2290 if (mac->type == e1000_82575) {
2291 u32 min_rx_space, min_tx_space, needed_tx_space;
2293 /* write Rx PBA so that hardware can report correct Tx PBA */
2294 wr32(E1000_PBA, pba);
2296 /* To maintain wire speed transmits, the Tx FIFO should be
2297 * large enough to accommodate two full transmit packets,
2298 * rounded up to the next 1KB and expressed in KB. Likewise,
2299 * the Rx FIFO should be large enough to accommodate at least
2300 * one full receive packet and is similarly rounded up and
2303 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2305 /* The Tx FIFO also stores 16 bytes of information about the Tx
2306 * but don't include Ethernet FCS because hardware appends it.
2307 * We only need to round down to the nearest 512 byte block
2308 * count since the value we care about is 2 frames, not 1.
2310 min_tx_space = adapter->max_frame_size;
2311 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2312 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2314 /* upper 16 bits has Tx packet buffer allocation size in KB */
2315 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2317 /* If current Tx allocation is less than the min Tx FIFO size,
2318 * and the min Tx FIFO size is less than the current Rx FIFO
2319 * allocation, take space away from current Rx allocation.
2321 if (needed_tx_space < pba) {
2322 pba -= needed_tx_space;
2324 /* if short on Rx space, Rx wins and must trump Tx
2327 if (pba < min_rx_space)
2331 /* adjust PBA for jumbo frames */
2332 wr32(E1000_PBA, pba);
2335 /* flow control settings
2336 * The high water mark must be low enough to fit one full frame
2337 * after transmitting the pause frame. As such we must have enough
2338 * space to allow for us to complete our current transmit and then
2339 * receive the frame that is in progress from the link partner.
2341 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2343 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2345 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2346 fc->low_water = fc->high_water - 16;
2347 fc->pause_time = 0xFFFF;
2349 fc->current_mode = fc->requested_mode;
2351 /* disable receive for all VFs and wait one second */
2352 if (adapter->vfs_allocated_count) {
2355 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2356 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2358 /* ping all the active vfs to let them know we are going down */
2359 igb_ping_all_vfs(adapter);
2361 /* disable transmits and receives */
2362 wr32(E1000_VFRE, 0);
2363 wr32(E1000_VFTE, 0);
2366 /* Allow time for pending master requests to run */
2367 hw->mac.ops.reset_hw(hw);
2370 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2371 /* need to resetup here after media swap */
2372 adapter->ei.get_invariants(hw);
2373 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2375 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2376 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2377 igb_enable_mas(adapter);
2379 if (hw->mac.ops.init_hw(hw))
2380 dev_err(&pdev->dev, "Hardware Error\n");
2382 /* RAR registers were cleared during init_hw, clear mac table */
2383 igb_flush_mac_table(adapter);
2384 __dev_uc_unsync(adapter->netdev, NULL);
2386 /* Recover default RAR entry */
2387 igb_set_default_mac_filter(adapter);
2389 /* Flow control settings reset on hardware reset, so guarantee flow
2390 * control is off when forcing speed.
2392 if (!hw->mac.autoneg)
2393 igb_force_mac_fc(hw);
2395 igb_init_dmac(adapter, pba);
2396 #ifdef CONFIG_IGB_HWMON
2397 /* Re-initialize the thermal sensor on i350 devices. */
2398 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2399 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2400 /* If present, re-initialize the external thermal sensor
2404 mac->ops.init_thermal_sensor_thresh(hw);
2408 /* Re-establish EEE setting */
2409 if (hw->phy.media_type == e1000_media_type_copper) {
2410 switch (mac->type) {
2414 igb_set_eee_i350(hw, true, true);
2417 igb_set_eee_i354(hw, true, true);
2423 if (!netif_running(adapter->netdev))
2424 igb_power_down_link(adapter);
2426 igb_update_mng_vlan(adapter);
2428 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2429 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2431 /* Re-enable PTP, where applicable. */
2432 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2433 igb_ptp_reset(adapter);
2435 igb_get_phy_info(hw);
2438 static netdev_features_t igb_fix_features(struct net_device *netdev,
2439 netdev_features_t features)
2441 /* Since there is no support for separate Rx/Tx vlan accel
2442 * enable/disable make sure Tx flag is always in same state as Rx.
2444 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2445 features |= NETIF_F_HW_VLAN_CTAG_TX;
2447 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2452 static int igb_set_features(struct net_device *netdev,
2453 netdev_features_t features)
2455 netdev_features_t changed = netdev->features ^ features;
2456 struct igb_adapter *adapter = netdev_priv(netdev);
2458 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2459 igb_vlan_mode(netdev, features);
2461 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2464 if (!(features & NETIF_F_NTUPLE)) {
2465 struct hlist_node *node2;
2466 struct igb_nfc_filter *rule;
2468 spin_lock(&adapter->nfc_lock);
2469 hlist_for_each_entry_safe(rule, node2,
2470 &adapter->nfc_filter_list, nfc_node) {
2471 igb_erase_filter(adapter, rule);
2472 hlist_del(&rule->nfc_node);
2475 spin_unlock(&adapter->nfc_lock);
2476 adapter->nfc_filter_count = 0;
2479 netdev->features = features;
2481 if (netif_running(netdev))
2482 igb_reinit_locked(adapter);
2489 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2490 struct net_device *dev,
2491 const unsigned char *addr, u16 vid,
2493 struct netlink_ext_ack *extack)
2495 /* guarantee we can provide a unique filter for the unicast address */
2496 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2497 struct igb_adapter *adapter = netdev_priv(dev);
2498 int vfn = adapter->vfs_allocated_count;
2500 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2504 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2507 #define IGB_MAX_MAC_HDR_LEN 127
2508 #define IGB_MAX_NETWORK_HDR_LEN 511
2510 static netdev_features_t
2511 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2512 netdev_features_t features)
2514 unsigned int network_hdr_len, mac_hdr_len;
2516 /* Make certain the headers can be described by a context descriptor */
2517 mac_hdr_len = skb_network_header(skb) - skb->data;
2518 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2519 return features & ~(NETIF_F_HW_CSUM |
2521 NETIF_F_GSO_UDP_L4 |
2522 NETIF_F_HW_VLAN_CTAG_TX |
2526 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2527 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2528 return features & ~(NETIF_F_HW_CSUM |
2530 NETIF_F_GSO_UDP_L4 |
2534 /* We can only support IPV4 TSO in tunnels if we can mangle the
2535 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2537 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2538 features &= ~NETIF_F_TSO;
2543 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2545 if (!is_fqtss_enabled(adapter)) {
2546 enable_fqtss(adapter, true);
2550 igb_config_tx_modes(adapter, queue);
2552 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2553 enable_fqtss(adapter, false);
2556 static int igb_offload_cbs(struct igb_adapter *adapter,
2557 struct tc_cbs_qopt_offload *qopt)
2559 struct e1000_hw *hw = &adapter->hw;
2562 /* CBS offloading is only supported by i210 controller. */
2563 if (hw->mac.type != e1000_i210)
2566 /* CBS offloading is only supported by queue 0 and queue 1. */
2567 if (qopt->queue < 0 || qopt->queue > 1)
2570 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2571 qopt->idleslope, qopt->sendslope,
2572 qopt->hicredit, qopt->locredit);
2576 igb_offload_apply(adapter, qopt->queue);
2581 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2582 #define VLAN_PRIO_FULL_MASK (0x07)
2584 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2585 struct flow_cls_offload *f,
2587 struct igb_nfc_filter *input)
2589 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2590 struct flow_dissector *dissector = rule->match.dissector;
2591 struct netlink_ext_ack *extack = f->common.extack;
2593 if (dissector->used_keys &
2594 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2595 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2596 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2597 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2598 NL_SET_ERR_MSG_MOD(extack,
2599 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2603 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2604 struct flow_match_eth_addrs match;
2606 flow_rule_match_eth_addrs(rule, &match);
2607 if (!is_zero_ether_addr(match.mask->dst)) {
2608 if (!is_broadcast_ether_addr(match.mask->dst)) {
2609 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2613 input->filter.match_flags |=
2614 IGB_FILTER_FLAG_DST_MAC_ADDR;
2615 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2618 if (!is_zero_ether_addr(match.mask->src)) {
2619 if (!is_broadcast_ether_addr(match.mask->src)) {
2620 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2624 input->filter.match_flags |=
2625 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2626 ether_addr_copy(input->filter.src_addr, match.key->src);
2630 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2631 struct flow_match_basic match;
2633 flow_rule_match_basic(rule, &match);
2634 if (match.mask->n_proto) {
2635 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2636 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2640 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2641 input->filter.etype = match.key->n_proto;
2645 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2646 struct flow_match_vlan match;
2648 flow_rule_match_vlan(rule, &match);
2649 if (match.mask->vlan_priority) {
2650 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2651 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2655 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2656 input->filter.vlan_tci = match.key->vlan_priority;
2660 input->action = traffic_class;
2661 input->cookie = f->cookie;
2666 static int igb_configure_clsflower(struct igb_adapter *adapter,
2667 struct flow_cls_offload *cls_flower)
2669 struct netlink_ext_ack *extack = cls_flower->common.extack;
2670 struct igb_nfc_filter *filter, *f;
2673 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2675 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2679 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2683 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2687 spin_lock(&adapter->nfc_lock);
2689 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2690 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2692 NL_SET_ERR_MSG_MOD(extack,
2693 "This filter is already set in ethtool");
2698 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2699 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2701 NL_SET_ERR_MSG_MOD(extack,
2702 "This filter is already set in cls_flower");
2707 err = igb_add_filter(adapter, filter);
2709 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2713 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2715 spin_unlock(&adapter->nfc_lock);
2720 spin_unlock(&adapter->nfc_lock);
2728 static int igb_delete_clsflower(struct igb_adapter *adapter,
2729 struct flow_cls_offload *cls_flower)
2731 struct igb_nfc_filter *filter;
2734 spin_lock(&adapter->nfc_lock);
2736 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2737 if (filter->cookie == cls_flower->cookie)
2745 err = igb_erase_filter(adapter, filter);
2749 hlist_del(&filter->nfc_node);
2753 spin_unlock(&adapter->nfc_lock);
2758 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2759 struct flow_cls_offload *cls_flower)
2761 switch (cls_flower->command) {
2762 case FLOW_CLS_REPLACE:
2763 return igb_configure_clsflower(adapter, cls_flower);
2764 case FLOW_CLS_DESTROY:
2765 return igb_delete_clsflower(adapter, cls_flower);
2766 case FLOW_CLS_STATS:
2773 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2776 struct igb_adapter *adapter = cb_priv;
2778 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2782 case TC_SETUP_CLSFLOWER:
2783 return igb_setup_tc_cls_flower(adapter, type_data);
2790 static int igb_offload_txtime(struct igb_adapter *adapter,
2791 struct tc_etf_qopt_offload *qopt)
2793 struct e1000_hw *hw = &adapter->hw;
2796 /* Launchtime offloading is only supported by i210 controller. */
2797 if (hw->mac.type != e1000_i210)
2800 /* Launchtime offloading is only supported by queues 0 and 1. */
2801 if (qopt->queue < 0 || qopt->queue > 1)
2804 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2808 igb_offload_apply(adapter, qopt->queue);
2813 static LIST_HEAD(igb_block_cb_list);
2815 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2818 struct igb_adapter *adapter = netdev_priv(dev);
2821 case TC_SETUP_QDISC_CBS:
2822 return igb_offload_cbs(adapter, type_data);
2823 case TC_SETUP_BLOCK:
2824 return flow_block_cb_setup_simple(type_data,
2826 igb_setup_tc_block_cb,
2827 adapter, adapter, true);
2829 case TC_SETUP_QDISC_ETF:
2830 return igb_offload_txtime(adapter, type_data);
2837 static const struct net_device_ops igb_netdev_ops = {
2838 .ndo_open = igb_open,
2839 .ndo_stop = igb_close,
2840 .ndo_start_xmit = igb_xmit_frame,
2841 .ndo_get_stats64 = igb_get_stats64,
2842 .ndo_set_rx_mode = igb_set_rx_mode,
2843 .ndo_set_mac_address = igb_set_mac,
2844 .ndo_change_mtu = igb_change_mtu,
2845 .ndo_do_ioctl = igb_ioctl,
2846 .ndo_tx_timeout = igb_tx_timeout,
2847 .ndo_validate_addr = eth_validate_addr,
2848 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2849 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2850 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2851 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2852 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2853 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2854 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
2855 .ndo_get_vf_config = igb_ndo_get_vf_config,
2856 .ndo_fix_features = igb_fix_features,
2857 .ndo_set_features = igb_set_features,
2858 .ndo_fdb_add = igb_ndo_fdb_add,
2859 .ndo_features_check = igb_features_check,
2860 .ndo_setup_tc = igb_setup_tc,
2864 * igb_set_fw_version - Configure version string for ethtool
2865 * @adapter: adapter struct
2867 void igb_set_fw_version(struct igb_adapter *adapter)
2869 struct e1000_hw *hw = &adapter->hw;
2870 struct e1000_fw_version fw;
2872 igb_get_fw_version(hw, &fw);
2874 switch (hw->mac.type) {
2877 if (!(igb_get_flash_presence_i210(hw))) {
2878 snprintf(adapter->fw_version,
2879 sizeof(adapter->fw_version),
2881 fw.invm_major, fw.invm_minor,
2887 /* if option is rom valid, display its version too */
2889 snprintf(adapter->fw_version,
2890 sizeof(adapter->fw_version),
2891 "%d.%d, 0x%08x, %d.%d.%d",
2892 fw.eep_major, fw.eep_minor, fw.etrack_id,
2893 fw.or_major, fw.or_build, fw.or_patch);
2895 } else if (fw.etrack_id != 0X0000) {
2896 snprintf(adapter->fw_version,
2897 sizeof(adapter->fw_version),
2899 fw.eep_major, fw.eep_minor, fw.etrack_id);
2901 snprintf(adapter->fw_version,
2902 sizeof(adapter->fw_version),
2904 fw.eep_major, fw.eep_minor, fw.eep_build);
2911 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2913 * @adapter: adapter struct
2915 static void igb_init_mas(struct igb_adapter *adapter)
2917 struct e1000_hw *hw = &adapter->hw;
2920 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2921 switch (hw->bus.func) {
2923 if (eeprom_data & IGB_MAS_ENABLE_0) {
2924 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2925 netdev_info(adapter->netdev,
2926 "MAS: Enabling Media Autosense for port %d\n",
2931 if (eeprom_data & IGB_MAS_ENABLE_1) {
2932 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2933 netdev_info(adapter->netdev,
2934 "MAS: Enabling Media Autosense for port %d\n",
2939 if (eeprom_data & IGB_MAS_ENABLE_2) {
2940 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2941 netdev_info(adapter->netdev,
2942 "MAS: Enabling Media Autosense for port %d\n",
2947 if (eeprom_data & IGB_MAS_ENABLE_3) {
2948 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2949 netdev_info(adapter->netdev,
2950 "MAS: Enabling Media Autosense for port %d\n",
2955 /* Shouldn't get here */
2956 netdev_err(adapter->netdev,
2957 "MAS: Invalid port configuration, returning\n");
2963 * igb_init_i2c - Init I2C interface
2964 * @adapter: pointer to adapter structure
2966 static s32 igb_init_i2c(struct igb_adapter *adapter)
2970 /* I2C interface supported on i350 devices */
2971 if (adapter->hw.mac.type != e1000_i350)
2974 /* Initialize the i2c bus which is controlled by the registers.
2975 * This bus will use the i2c_algo_bit structue that implements
2976 * the protocol through toggling of the 4 bits in the register.
2978 adapter->i2c_adap.owner = THIS_MODULE;
2979 adapter->i2c_algo = igb_i2c_algo;
2980 adapter->i2c_algo.data = adapter;
2981 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2982 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2983 strlcpy(adapter->i2c_adap.name, "igb BB",
2984 sizeof(adapter->i2c_adap.name));
2985 status = i2c_bit_add_bus(&adapter->i2c_adap);
2990 * igb_probe - Device Initialization Routine
2991 * @pdev: PCI device information struct
2992 * @ent: entry in igb_pci_tbl
2994 * Returns 0 on success, negative on failure
2996 * igb_probe initializes an adapter identified by a pci_dev structure.
2997 * The OS initialization, configuring of the adapter private structure,
2998 * and a hardware reset occur.
3000 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3002 struct net_device *netdev;
3003 struct igb_adapter *adapter;
3004 struct e1000_hw *hw;
3005 u16 eeprom_data = 0;
3007 static int global_quad_port_a; /* global quad port a indication */
3008 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3009 int err, pci_using_dac;
3010 u8 part_str[E1000_PBANUM_LENGTH];
3012 /* Catch broken hardware that put the wrong VF device ID in
3013 * the PCIe SR-IOV capability.
3015 if (pdev->is_virtfn) {
3016 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3017 pci_name(pdev), pdev->vendor, pdev->device);
3021 err = pci_enable_device_mem(pdev);
3026 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3030 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3033 "No usable DMA configuration, aborting\n");
3038 err = pci_request_mem_regions(pdev, igb_driver_name);
3042 pci_enable_pcie_error_reporting(pdev);
3044 pci_set_master(pdev);
3045 pci_save_state(pdev);
3048 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3051 goto err_alloc_etherdev;
3053 SET_NETDEV_DEV(netdev, &pdev->dev);
3055 pci_set_drvdata(pdev, netdev);
3056 adapter = netdev_priv(netdev);
3057 adapter->netdev = netdev;
3058 adapter->pdev = pdev;
3061 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3064 adapter->io_addr = pci_iomap(pdev, 0, 0);
3065 if (!adapter->io_addr)
3067 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3068 hw->hw_addr = adapter->io_addr;
3070 netdev->netdev_ops = &igb_netdev_ops;
3071 igb_set_ethtool_ops(netdev);
3072 netdev->watchdog_timeo = 5 * HZ;
3074 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3076 netdev->mem_start = pci_resource_start(pdev, 0);
3077 netdev->mem_end = pci_resource_end(pdev, 0);
3079 /* PCI config space info */
3080 hw->vendor_id = pdev->vendor;
3081 hw->device_id = pdev->device;
3082 hw->revision_id = pdev->revision;
3083 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3084 hw->subsystem_device_id = pdev->subsystem_device;
3086 /* Copy the default MAC, PHY and NVM function pointers */
3087 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3088 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3089 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3090 /* Initialize skew-specific constants */
3091 err = ei->get_invariants(hw);
3095 /* setup the private structure */
3096 err = igb_sw_init(adapter);
3100 igb_get_bus_info_pcie(hw);
3102 hw->phy.autoneg_wait_to_complete = false;
3104 /* Copper options */
3105 if (hw->phy.media_type == e1000_media_type_copper) {
3106 hw->phy.mdix = AUTO_ALL_MODES;
3107 hw->phy.disable_polarity_correction = false;
3108 hw->phy.ms_type = e1000_ms_hw_default;
3111 if (igb_check_reset_block(hw))
3112 dev_info(&pdev->dev,
3113 "PHY reset is blocked due to SOL/IDER session.\n");
3115 /* features is initialized to 0 in allocation, it might have bits
3116 * set by igb_sw_init so we should use an or instead of an
3119 netdev->features |= NETIF_F_SG |
3126 if (hw->mac.type >= e1000_82576)
3127 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3129 if (hw->mac.type >= e1000_i350)
3130 netdev->features |= NETIF_F_HW_TC;
3132 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3133 NETIF_F_GSO_GRE_CSUM | \
3134 NETIF_F_GSO_IPXIP4 | \
3135 NETIF_F_GSO_IPXIP6 | \
3136 NETIF_F_GSO_UDP_TUNNEL | \
3137 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3139 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3140 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3142 /* copy netdev features into list of user selectable features */
3143 netdev->hw_features |= netdev->features |
3144 NETIF_F_HW_VLAN_CTAG_RX |
3145 NETIF_F_HW_VLAN_CTAG_TX |
3148 if (hw->mac.type >= e1000_i350)
3149 netdev->hw_features |= NETIF_F_NTUPLE;
3152 netdev->features |= NETIF_F_HIGHDMA;
3154 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3155 netdev->mpls_features |= NETIF_F_HW_CSUM;
3156 netdev->hw_enc_features |= netdev->vlan_features;
3158 /* set this bit last since it cannot be part of vlan_features */
3159 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3160 NETIF_F_HW_VLAN_CTAG_RX |
3161 NETIF_F_HW_VLAN_CTAG_TX;
3163 netdev->priv_flags |= IFF_SUPP_NOFCS;
3165 netdev->priv_flags |= IFF_UNICAST_FLT;
3167 /* MTU range: 68 - 9216 */
3168 netdev->min_mtu = ETH_MIN_MTU;
3169 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3171 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3173 /* before reading the NVM, reset the controller to put the device in a
3174 * known good starting state
3176 hw->mac.ops.reset_hw(hw);
3178 /* make sure the NVM is good , i211/i210 parts can have special NVM
3179 * that doesn't contain a checksum
3181 switch (hw->mac.type) {
3184 if (igb_get_flash_presence_i210(hw)) {
3185 if (hw->nvm.ops.validate(hw) < 0) {
3187 "The NVM Checksum Is Not Valid\n");
3194 if (hw->nvm.ops.validate(hw) < 0) {
3195 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3202 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3203 /* copy the MAC address out of the NVM */
3204 if (hw->mac.ops.read_mac_addr(hw))
3205 dev_err(&pdev->dev, "NVM Read Error\n");
3208 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3210 if (!is_valid_ether_addr(netdev->dev_addr)) {
3211 dev_err(&pdev->dev, "Invalid MAC Address\n");
3216 igb_set_default_mac_filter(adapter);
3218 /* get firmware version for ethtool -i */
3219 igb_set_fw_version(adapter);
3221 /* configure RXPBSIZE and TXPBSIZE */
3222 if (hw->mac.type == e1000_i210) {
3223 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3224 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3227 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3228 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3230 INIT_WORK(&adapter->reset_task, igb_reset_task);
3231 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3233 /* Initialize link properties that are user-changeable */
3234 adapter->fc_autoneg = true;
3235 hw->mac.autoneg = true;
3236 hw->phy.autoneg_advertised = 0x2f;
3238 hw->fc.requested_mode = e1000_fc_default;
3239 hw->fc.current_mode = e1000_fc_default;
3241 igb_validate_mdi_setting(hw);
3243 /* By default, support wake on port A */
3244 if (hw->bus.func == 0)
3245 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3247 /* Check the NVM for wake support on non-port A ports */
3248 if (hw->mac.type >= e1000_82580)
3249 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3250 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3252 else if (hw->bus.func == 1)
3253 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3255 if (eeprom_data & IGB_EEPROM_APME)
3256 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3258 /* now that we have the eeprom settings, apply the special cases where
3259 * the eeprom may be wrong or the board simply won't support wake on
3260 * lan on a particular port
3262 switch (pdev->device) {
3263 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3264 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3266 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3267 case E1000_DEV_ID_82576_FIBER:
3268 case E1000_DEV_ID_82576_SERDES:
3269 /* Wake events only supported on port A for dual fiber
3270 * regardless of eeprom setting
3272 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3273 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3275 case E1000_DEV_ID_82576_QUAD_COPPER:
3276 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3277 /* if quad port adapter, disable WoL on all but port A */
3278 if (global_quad_port_a != 0)
3279 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3281 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3282 /* Reset for multiple quad port adapters */
3283 if (++global_quad_port_a == 4)
3284 global_quad_port_a = 0;
3287 /* If the device can't wake, don't set software support */
3288 if (!device_can_wakeup(&adapter->pdev->dev))
3289 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3292 /* initialize the wol settings based on the eeprom settings */
3293 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3294 adapter->wol |= E1000_WUFC_MAG;
3296 /* Some vendors want WoL disabled by default, but still supported */
3297 if ((hw->mac.type == e1000_i350) &&
3298 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3299 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3303 /* Some vendors want the ability to Use the EEPROM setting as
3304 * enable/disable only, and not for capability
3306 if (((hw->mac.type == e1000_i350) ||
3307 (hw->mac.type == e1000_i354)) &&
3308 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3309 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3312 if (hw->mac.type == e1000_i350) {
3313 if (((pdev->subsystem_device == 0x5001) ||
3314 (pdev->subsystem_device == 0x5002)) &&
3315 (hw->bus.func == 0)) {
3316 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3319 if (pdev->subsystem_device == 0x1F52)
3320 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3323 device_set_wakeup_enable(&adapter->pdev->dev,
3324 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3326 /* reset the hardware with the new settings */
3329 /* Init the I2C interface */
3330 err = igb_init_i2c(adapter);
3332 dev_err(&pdev->dev, "failed to init i2c interface\n");
3336 /* let the f/w know that the h/w is now under the control of the
3339 igb_get_hw_control(adapter);
3341 strcpy(netdev->name, "eth%d");
3342 err = register_netdev(netdev);
3346 /* carrier off reporting is important to ethtool even BEFORE open */
3347 netif_carrier_off(netdev);
3349 #ifdef CONFIG_IGB_DCA
3350 if (dca_add_requester(&pdev->dev) == 0) {
3351 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3352 dev_info(&pdev->dev, "DCA enabled\n");
3353 igb_setup_dca(adapter);
3357 #ifdef CONFIG_IGB_HWMON
3358 /* Initialize the thermal sensor on i350 devices. */
3359 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3362 /* Read the NVM to determine if this i350 device supports an
3363 * external thermal sensor.
3365 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3366 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3367 adapter->ets = true;
3369 adapter->ets = false;
3370 if (igb_sysfs_init(adapter))
3372 "failed to allocate sysfs resources\n");
3374 adapter->ets = false;
3377 /* Check if Media Autosense is enabled */
3379 if (hw->dev_spec._82575.mas_capable)
3380 igb_init_mas(adapter);
3382 /* do hw tstamp init after resetting */
3383 igb_ptp_init(adapter);
3385 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3386 /* print bus type/speed/width info, not applicable to i354 */
3387 if (hw->mac.type != e1000_i354) {
3388 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3390 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3391 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3393 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3395 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3397 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3398 "Width x1" : "unknown"), netdev->dev_addr);
3401 if ((hw->mac.type >= e1000_i210 ||
3402 igb_get_flash_presence_i210(hw))) {
3403 ret_val = igb_read_part_string(hw, part_str,
3404 E1000_PBANUM_LENGTH);
3406 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3410 strcpy(part_str, "Unknown");
3411 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3412 dev_info(&pdev->dev,
3413 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3414 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3415 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3416 adapter->num_rx_queues, adapter->num_tx_queues);
3417 if (hw->phy.media_type == e1000_media_type_copper) {
3418 switch (hw->mac.type) {
3422 /* Enable EEE for internal copper PHY devices */
3423 err = igb_set_eee_i350(hw, true, true);
3425 (!hw->dev_spec._82575.eee_disable)) {
3426 adapter->eee_advert =
3427 MDIO_EEE_100TX | MDIO_EEE_1000T;
3428 adapter->flags |= IGB_FLAG_EEE;
3432 if ((rd32(E1000_CTRL_EXT) &
3433 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3434 err = igb_set_eee_i354(hw, true, true);
3436 (!hw->dev_spec._82575.eee_disable)) {
3437 adapter->eee_advert =
3438 MDIO_EEE_100TX | MDIO_EEE_1000T;
3439 adapter->flags |= IGB_FLAG_EEE;
3448 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
3450 pm_runtime_put_noidle(&pdev->dev);
3454 igb_release_hw_control(adapter);
3455 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3457 if (!igb_check_reset_block(hw))
3460 if (hw->flash_address)
3461 iounmap(hw->flash_address);
3463 kfree(adapter->mac_table);
3464 kfree(adapter->shadow_vfta);
3465 igb_clear_interrupt_scheme(adapter);
3466 #ifdef CONFIG_PCI_IOV
3467 igb_disable_sriov(pdev);
3469 pci_iounmap(pdev, adapter->io_addr);
3471 free_netdev(netdev);
3473 pci_release_mem_regions(pdev);
3476 pci_disable_device(pdev);
3480 #ifdef CONFIG_PCI_IOV
3481 static int igb_disable_sriov(struct pci_dev *pdev)
3483 struct net_device *netdev = pci_get_drvdata(pdev);
3484 struct igb_adapter *adapter = netdev_priv(netdev);
3485 struct e1000_hw *hw = &adapter->hw;
3487 /* reclaim resources allocated to VFs */
3488 if (adapter->vf_data) {
3489 /* disable iov and allow time for transactions to clear */
3490 if (pci_vfs_assigned(pdev)) {
3491 dev_warn(&pdev->dev,
3492 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3495 pci_disable_sriov(pdev);
3499 kfree(adapter->vf_mac_list);
3500 adapter->vf_mac_list = NULL;
3501 kfree(adapter->vf_data);
3502 adapter->vf_data = NULL;
3503 adapter->vfs_allocated_count = 0;
3504 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3507 dev_info(&pdev->dev, "IOV Disabled\n");
3509 /* Re-enable DMA Coalescing flag since IOV is turned off */
3510 adapter->flags |= IGB_FLAG_DMAC;
3516 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3518 struct net_device *netdev = pci_get_drvdata(pdev);
3519 struct igb_adapter *adapter = netdev_priv(netdev);
3520 int old_vfs = pci_num_vf(pdev);
3521 struct vf_mac_filter *mac_list;
3523 int num_vf_mac_filters, i;
3525 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3533 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3535 adapter->vfs_allocated_count = old_vfs;
3537 adapter->vfs_allocated_count = num_vfs;
3539 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3540 sizeof(struct vf_data_storage), GFP_KERNEL);
3542 /* if allocation failed then we do not support SR-IOV */
3543 if (!adapter->vf_data) {
3544 adapter->vfs_allocated_count = 0;
3549 /* Due to the limited number of RAR entries calculate potential
3550 * number of MAC filters available for the VFs. Reserve entries
3551 * for PF default MAC, PF MAC filters and at least one RAR entry
3552 * for each VF for VF MAC.
3554 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3555 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3556 adapter->vfs_allocated_count);
3558 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3559 sizeof(struct vf_mac_filter),
3562 mac_list = adapter->vf_mac_list;
3563 INIT_LIST_HEAD(&adapter->vf_macs.l);
3565 if (adapter->vf_mac_list) {
3566 /* Initialize list of VF MAC filters */
3567 for (i = 0; i < num_vf_mac_filters; i++) {
3569 mac_list->free = true;
3570 list_add(&mac_list->l, &adapter->vf_macs.l);
3574 /* If we could not allocate memory for the VF MAC filters
3575 * we can continue without this feature but warn user.
3578 "Unable to allocate memory for VF MAC filter list\n");
3581 /* only call pci_enable_sriov() if no VFs are allocated already */
3583 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3587 dev_info(&pdev->dev, "%d VFs allocated\n",
3588 adapter->vfs_allocated_count);
3589 for (i = 0; i < adapter->vfs_allocated_count; i++)
3590 igb_vf_configure(adapter, i);
3592 /* DMA Coalescing is not supported in IOV mode. */
3593 adapter->flags &= ~IGB_FLAG_DMAC;
3597 kfree(adapter->vf_mac_list);
3598 adapter->vf_mac_list = NULL;
3599 kfree(adapter->vf_data);
3600 adapter->vf_data = NULL;
3601 adapter->vfs_allocated_count = 0;
3608 * igb_remove_i2c - Cleanup I2C interface
3609 * @adapter: pointer to adapter structure
3611 static void igb_remove_i2c(struct igb_adapter *adapter)
3613 /* free the adapter bus structure */
3614 i2c_del_adapter(&adapter->i2c_adap);
3618 * igb_remove - Device Removal Routine
3619 * @pdev: PCI device information struct
3621 * igb_remove is called by the PCI subsystem to alert the driver
3622 * that it should release a PCI device. The could be caused by a
3623 * Hot-Plug event, or because the driver is going to be removed from
3626 static void igb_remove(struct pci_dev *pdev)
3628 struct net_device *netdev = pci_get_drvdata(pdev);
3629 struct igb_adapter *adapter = netdev_priv(netdev);
3630 struct e1000_hw *hw = &adapter->hw;
3632 pm_runtime_get_noresume(&pdev->dev);
3633 #ifdef CONFIG_IGB_HWMON
3634 igb_sysfs_exit(adapter);
3636 igb_remove_i2c(adapter);
3637 igb_ptp_stop(adapter);
3638 /* The watchdog timer may be rescheduled, so explicitly
3639 * disable watchdog from being rescheduled.
3641 set_bit(__IGB_DOWN, &adapter->state);
3642 del_timer_sync(&adapter->watchdog_timer);
3643 del_timer_sync(&adapter->phy_info_timer);
3645 cancel_work_sync(&adapter->reset_task);
3646 cancel_work_sync(&adapter->watchdog_task);
3648 #ifdef CONFIG_IGB_DCA
3649 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3650 dev_info(&pdev->dev, "DCA disabled\n");
3651 dca_remove_requester(&pdev->dev);
3652 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3653 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3657 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3658 * would have already happened in close and is redundant.
3660 igb_release_hw_control(adapter);
3662 #ifdef CONFIG_PCI_IOV
3663 igb_disable_sriov(pdev);
3666 unregister_netdev(netdev);
3668 igb_clear_interrupt_scheme(adapter);
3670 pci_iounmap(pdev, adapter->io_addr);
3671 if (hw->flash_address)
3672 iounmap(hw->flash_address);
3673 pci_release_mem_regions(pdev);
3675 kfree(adapter->mac_table);
3676 kfree(adapter->shadow_vfta);
3677 free_netdev(netdev);
3679 pci_disable_pcie_error_reporting(pdev);
3681 pci_disable_device(pdev);
3685 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3686 * @adapter: board private structure to initialize
3688 * This function initializes the vf specific data storage and then attempts to
3689 * allocate the VFs. The reason for ordering it this way is because it is much
3690 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3691 * the memory for the VFs.
3693 static void igb_probe_vfs(struct igb_adapter *adapter)
3695 #ifdef CONFIG_PCI_IOV
3696 struct pci_dev *pdev = adapter->pdev;
3697 struct e1000_hw *hw = &adapter->hw;
3699 /* Virtualization features not supported on i210 family. */
3700 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3703 /* Of the below we really only want the effect of getting
3704 * IGB_FLAG_HAS_MSIX set (if available), without which
3705 * igb_enable_sriov() has no effect.
3707 igb_set_interrupt_capability(adapter, true);
3708 igb_reset_interrupt_capability(adapter);
3710 pci_sriov_set_totalvfs(pdev, 7);
3711 igb_enable_sriov(pdev, max_vfs);
3713 #endif /* CONFIG_PCI_IOV */
3716 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3718 struct e1000_hw *hw = &adapter->hw;
3719 unsigned int max_rss_queues;
3721 /* Determine the maximum number of RSS queues supported. */
3722 switch (hw->mac.type) {
3724 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3728 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3731 /* I350 cannot do RSS and SR-IOV at the same time */
3732 if (!!adapter->vfs_allocated_count) {
3738 if (!!adapter->vfs_allocated_count) {
3746 max_rss_queues = IGB_MAX_RX_QUEUES;
3750 return max_rss_queues;
3753 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3757 max_rss_queues = igb_get_max_rss_queues(adapter);
3758 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3760 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3763 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3764 const u32 max_rss_queues)
3766 struct e1000_hw *hw = &adapter->hw;
3768 /* Determine if we need to pair queues. */
3769 switch (hw->mac.type) {
3772 /* Device supports enough interrupts without queue pairing. */
3780 /* If rss_queues > half of max_rss_queues, pair the queues in
3781 * order to conserve interrupts due to limited supply.
3783 if (adapter->rss_queues > (max_rss_queues / 2))
3784 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3786 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3792 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3793 * @adapter: board private structure to initialize
3795 * igb_sw_init initializes the Adapter private data structure.
3796 * Fields are initialized based on PCI device information and
3797 * OS network device settings (MTU size).
3799 static int igb_sw_init(struct igb_adapter *adapter)
3801 struct e1000_hw *hw = &adapter->hw;
3802 struct net_device *netdev = adapter->netdev;
3803 struct pci_dev *pdev = adapter->pdev;
3805 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3807 /* set default ring sizes */
3808 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3809 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3811 /* set default ITR values */
3812 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3813 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3815 /* set default work limits */
3816 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3818 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3820 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3822 spin_lock_init(&adapter->nfc_lock);
3823 spin_lock_init(&adapter->stats64_lock);
3824 #ifdef CONFIG_PCI_IOV
3825 switch (hw->mac.type) {
3829 dev_warn(&pdev->dev,
3830 "Maximum of 7 VFs per PF, using max\n");
3831 max_vfs = adapter->vfs_allocated_count = 7;
3833 adapter->vfs_allocated_count = max_vfs;
3834 if (adapter->vfs_allocated_count)
3835 dev_warn(&pdev->dev,
3836 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3841 #endif /* CONFIG_PCI_IOV */
3843 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3844 adapter->flags |= IGB_FLAG_HAS_MSIX;
3846 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3847 sizeof(struct igb_mac_addr),
3849 if (!adapter->mac_table)
3852 igb_probe_vfs(adapter);
3854 igb_init_queue_configuration(adapter);
3856 /* Setup and initialize a copy of the hw vlan table array */
3857 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3859 if (!adapter->shadow_vfta)
3862 /* This call may decrease the number of queues */
3863 if (igb_init_interrupt_scheme(adapter, true)) {
3864 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3868 /* Explicitly disable IRQ since the NIC can be in any state. */
3869 igb_irq_disable(adapter);
3871 if (hw->mac.type >= e1000_i350)
3872 adapter->flags &= ~IGB_FLAG_DMAC;
3874 set_bit(__IGB_DOWN, &adapter->state);
3879 * igb_open - Called when a network interface is made active
3880 * @netdev: network interface device structure
3882 * Returns 0 on success, negative value on failure
3884 * The open entry point is called when a network interface is made
3885 * active by the system (IFF_UP). At this point all resources needed
3886 * for transmit and receive operations are allocated, the interrupt
3887 * handler is registered with the OS, the watchdog timer is started,
3888 * and the stack is notified that the interface is ready.
3890 static int __igb_open(struct net_device *netdev, bool resuming)
3892 struct igb_adapter *adapter = netdev_priv(netdev);
3893 struct e1000_hw *hw = &adapter->hw;
3894 struct pci_dev *pdev = adapter->pdev;
3898 /* disallow open during test */
3899 if (test_bit(__IGB_TESTING, &adapter->state)) {
3905 pm_runtime_get_sync(&pdev->dev);
3907 netif_carrier_off(netdev);
3909 /* allocate transmit descriptors */
3910 err = igb_setup_all_tx_resources(adapter);
3914 /* allocate receive descriptors */
3915 err = igb_setup_all_rx_resources(adapter);
3919 igb_power_up_link(adapter);
3921 /* before we allocate an interrupt, we must be ready to handle it.
3922 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3923 * as soon as we call pci_request_irq, so we have to setup our
3924 * clean_rx handler before we do so.
3926 igb_configure(adapter);
3928 err = igb_request_irq(adapter);
3932 /* Notify the stack of the actual queue counts. */
3933 err = netif_set_real_num_tx_queues(adapter->netdev,
3934 adapter->num_tx_queues);
3936 goto err_set_queues;
3938 err = netif_set_real_num_rx_queues(adapter->netdev,
3939 adapter->num_rx_queues);
3941 goto err_set_queues;
3943 /* From here on the code is the same as igb_up() */
3944 clear_bit(__IGB_DOWN, &adapter->state);
3946 for (i = 0; i < adapter->num_q_vectors; i++)
3947 napi_enable(&(adapter->q_vector[i]->napi));
3949 /* Clear any pending interrupts. */
3953 igb_irq_enable(adapter);
3955 /* notify VFs that reset has been completed */
3956 if (adapter->vfs_allocated_count) {
3957 u32 reg_data = rd32(E1000_CTRL_EXT);
3959 reg_data |= E1000_CTRL_EXT_PFRSTD;
3960 wr32(E1000_CTRL_EXT, reg_data);
3963 netif_tx_start_all_queues(netdev);
3966 pm_runtime_put(&pdev->dev);
3968 /* start the watchdog. */
3969 hw->mac.get_link_status = 1;
3970 schedule_work(&adapter->watchdog_task);
3975 igb_free_irq(adapter);
3977 igb_release_hw_control(adapter);
3978 igb_power_down_link(adapter);
3979 igb_free_all_rx_resources(adapter);
3981 igb_free_all_tx_resources(adapter);
3985 pm_runtime_put(&pdev->dev);
3990 int igb_open(struct net_device *netdev)
3992 return __igb_open(netdev, false);
3996 * igb_close - Disables a network interface
3997 * @netdev: network interface device structure
3999 * Returns 0, this is not allowed to fail
4001 * The close entry point is called when an interface is de-activated
4002 * by the OS. The hardware is still under the driver's control, but
4003 * needs to be disabled. A global MAC reset is issued to stop the
4004 * hardware, and all transmit and receive resources are freed.
4006 static int __igb_close(struct net_device *netdev, bool suspending)
4008 struct igb_adapter *adapter = netdev_priv(netdev);
4009 struct pci_dev *pdev = adapter->pdev;
4011 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4014 pm_runtime_get_sync(&pdev->dev);
4017 igb_free_irq(adapter);
4019 igb_free_all_tx_resources(adapter);
4020 igb_free_all_rx_resources(adapter);
4023 pm_runtime_put_sync(&pdev->dev);
4027 int igb_close(struct net_device *netdev)
4029 if (netif_device_present(netdev) || netdev->dismantle)
4030 return __igb_close(netdev, false);
4035 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4036 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4038 * Return 0 on success, negative on failure
4040 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4042 struct device *dev = tx_ring->dev;
4045 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4047 tx_ring->tx_buffer_info = vmalloc(size);
4048 if (!tx_ring->tx_buffer_info)
4051 /* round up to nearest 4K */
4052 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4053 tx_ring->size = ALIGN(tx_ring->size, 4096);
4055 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4056 &tx_ring->dma, GFP_KERNEL);
4060 tx_ring->next_to_use = 0;
4061 tx_ring->next_to_clean = 0;
4066 vfree(tx_ring->tx_buffer_info);
4067 tx_ring->tx_buffer_info = NULL;
4068 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4073 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4074 * (Descriptors) for all queues
4075 * @adapter: board private structure
4077 * Return 0 on success, negative on failure
4079 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4081 struct pci_dev *pdev = adapter->pdev;
4084 for (i = 0; i < adapter->num_tx_queues; i++) {
4085 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4088 "Allocation for Tx Queue %u failed\n", i);
4089 for (i--; i >= 0; i--)
4090 igb_free_tx_resources(adapter->tx_ring[i]);
4099 * igb_setup_tctl - configure the transmit control registers
4100 * @adapter: Board private structure
4102 void igb_setup_tctl(struct igb_adapter *adapter)
4104 struct e1000_hw *hw = &adapter->hw;
4107 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4108 wr32(E1000_TXDCTL(0), 0);
4110 /* Program the Transmit Control Register */
4111 tctl = rd32(E1000_TCTL);
4112 tctl &= ~E1000_TCTL_CT;
4113 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4114 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4116 igb_config_collision_dist(hw);
4118 /* Enable transmits */
4119 tctl |= E1000_TCTL_EN;
4121 wr32(E1000_TCTL, tctl);
4125 * igb_configure_tx_ring - Configure transmit ring after Reset
4126 * @adapter: board private structure
4127 * @ring: tx ring to configure
4129 * Configure a transmit ring after a reset.
4131 void igb_configure_tx_ring(struct igb_adapter *adapter,
4132 struct igb_ring *ring)
4134 struct e1000_hw *hw = &adapter->hw;
4136 u64 tdba = ring->dma;
4137 int reg_idx = ring->reg_idx;
4139 wr32(E1000_TDLEN(reg_idx),
4140 ring->count * sizeof(union e1000_adv_tx_desc));
4141 wr32(E1000_TDBAL(reg_idx),
4142 tdba & 0x00000000ffffffffULL);
4143 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4145 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4146 wr32(E1000_TDH(reg_idx), 0);
4147 writel(0, ring->tail);
4149 txdctl |= IGB_TX_PTHRESH;
4150 txdctl |= IGB_TX_HTHRESH << 8;
4151 txdctl |= IGB_TX_WTHRESH << 16;
4153 /* reinitialize tx_buffer_info */
4154 memset(ring->tx_buffer_info, 0,
4155 sizeof(struct igb_tx_buffer) * ring->count);
4157 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4158 wr32(E1000_TXDCTL(reg_idx), txdctl);
4162 * igb_configure_tx - Configure transmit Unit after Reset
4163 * @adapter: board private structure
4165 * Configure the Tx unit of the MAC after a reset.
4167 static void igb_configure_tx(struct igb_adapter *adapter)
4169 struct e1000_hw *hw = &adapter->hw;
4172 /* disable the queues */
4173 for (i = 0; i < adapter->num_tx_queues; i++)
4174 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4177 usleep_range(10000, 20000);
4179 for (i = 0; i < adapter->num_tx_queues; i++)
4180 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4184 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4185 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4187 * Returns 0 on success, negative on failure
4189 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4191 struct device *dev = rx_ring->dev;
4194 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4196 rx_ring->rx_buffer_info = vmalloc(size);
4197 if (!rx_ring->rx_buffer_info)
4200 /* Round up to nearest 4K */
4201 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4202 rx_ring->size = ALIGN(rx_ring->size, 4096);
4204 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4205 &rx_ring->dma, GFP_KERNEL);
4209 rx_ring->next_to_alloc = 0;
4210 rx_ring->next_to_clean = 0;
4211 rx_ring->next_to_use = 0;
4216 vfree(rx_ring->rx_buffer_info);
4217 rx_ring->rx_buffer_info = NULL;
4218 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4223 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4224 * (Descriptors) for all queues
4225 * @adapter: board private structure
4227 * Return 0 on success, negative on failure
4229 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4231 struct pci_dev *pdev = adapter->pdev;
4234 for (i = 0; i < adapter->num_rx_queues; i++) {
4235 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4238 "Allocation for Rx Queue %u failed\n", i);
4239 for (i--; i >= 0; i--)
4240 igb_free_rx_resources(adapter->rx_ring[i]);
4249 * igb_setup_mrqc - configure the multiple receive queue control registers
4250 * @adapter: Board private structure
4252 static void igb_setup_mrqc(struct igb_adapter *adapter)
4254 struct e1000_hw *hw = &adapter->hw;
4256 u32 j, num_rx_queues;
4259 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4260 for (j = 0; j < 10; j++)
4261 wr32(E1000_RSSRK(j), rss_key[j]);
4263 num_rx_queues = adapter->rss_queues;
4265 switch (hw->mac.type) {
4267 /* 82576 supports 2 RSS queues for SR-IOV */
4268 if (adapter->vfs_allocated_count)
4275 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4276 for (j = 0; j < IGB_RETA_SIZE; j++)
4277 adapter->rss_indir_tbl[j] =
4278 (j * num_rx_queues) / IGB_RETA_SIZE;
4279 adapter->rss_indir_tbl_init = num_rx_queues;
4281 igb_write_rss_indir_tbl(adapter);
4283 /* Disable raw packet checksumming so that RSS hash is placed in
4284 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4285 * offloads as they are enabled by default
4287 rxcsum = rd32(E1000_RXCSUM);
4288 rxcsum |= E1000_RXCSUM_PCSD;
4290 if (adapter->hw.mac.type >= e1000_82576)
4291 /* Enable Receive Checksum Offload for SCTP */
4292 rxcsum |= E1000_RXCSUM_CRCOFL;
4294 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4295 wr32(E1000_RXCSUM, rxcsum);
4297 /* Generate RSS hash based on packet types, TCP/UDP
4298 * port numbers and/or IPv4/v6 src and dst addresses
4300 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4301 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4302 E1000_MRQC_RSS_FIELD_IPV6 |
4303 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4304 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4306 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4307 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4308 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4309 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4311 /* If VMDq is enabled then we set the appropriate mode for that, else
4312 * we default to RSS so that an RSS hash is calculated per packet even
4313 * if we are only using one queue
4315 if (adapter->vfs_allocated_count) {
4316 if (hw->mac.type > e1000_82575) {
4317 /* Set the default pool for the PF's first queue */
4318 u32 vtctl = rd32(E1000_VT_CTL);
4320 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4321 E1000_VT_CTL_DISABLE_DEF_POOL);
4322 vtctl |= adapter->vfs_allocated_count <<
4323 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4324 wr32(E1000_VT_CTL, vtctl);
4326 if (adapter->rss_queues > 1)
4327 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4329 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4331 if (hw->mac.type != e1000_i211)
4332 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4334 igb_vmm_control(adapter);
4336 wr32(E1000_MRQC, mrqc);
4340 * igb_setup_rctl - configure the receive control registers
4341 * @adapter: Board private structure
4343 void igb_setup_rctl(struct igb_adapter *adapter)
4345 struct e1000_hw *hw = &adapter->hw;
4348 rctl = rd32(E1000_RCTL);
4350 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4351 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4353 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4354 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4356 /* enable stripping of CRC. It's unlikely this will break BMC
4357 * redirection as it did with e1000. Newer features require
4358 * that the HW strips the CRC.
4360 rctl |= E1000_RCTL_SECRC;
4362 /* disable store bad packets and clear size bits. */
4363 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4365 /* enable LPE to allow for reception of jumbo frames */
4366 rctl |= E1000_RCTL_LPE;
4368 /* disable queue 0 to prevent tail write w/o re-config */
4369 wr32(E1000_RXDCTL(0), 0);
4371 /* Attention!!! For SR-IOV PF driver operations you must enable
4372 * queue drop for all VF and PF queues to prevent head of line blocking
4373 * if an un-trusted VF does not provide descriptors to hardware.
4375 if (adapter->vfs_allocated_count) {
4376 /* set all queue drop enable bits */
4377 wr32(E1000_QDE, ALL_QUEUES);
4380 /* This is useful for sniffing bad packets. */
4381 if (adapter->netdev->features & NETIF_F_RXALL) {
4382 /* UPE and MPE will be handled by normal PROMISC logic
4383 * in e1000e_set_rx_mode
4385 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4386 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4387 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4389 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4390 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4391 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4392 * and that breaks VLANs.
4396 wr32(E1000_RCTL, rctl);
4399 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4402 struct e1000_hw *hw = &adapter->hw;
4405 if (size > MAX_JUMBO_FRAME_SIZE)
4406 size = MAX_JUMBO_FRAME_SIZE;
4408 vmolr = rd32(E1000_VMOLR(vfn));
4409 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4410 vmolr |= size | E1000_VMOLR_LPE;
4411 wr32(E1000_VMOLR(vfn), vmolr);
4416 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4417 int vfn, bool enable)
4419 struct e1000_hw *hw = &adapter->hw;
4422 if (hw->mac.type < e1000_82576)
4425 if (hw->mac.type == e1000_i350)
4426 reg = E1000_DVMOLR(vfn);
4428 reg = E1000_VMOLR(vfn);
4432 val |= E1000_VMOLR_STRVLAN;
4434 val &= ~(E1000_VMOLR_STRVLAN);
4438 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4441 struct e1000_hw *hw = &adapter->hw;
4444 /* This register exists only on 82576 and newer so if we are older then
4445 * we should exit and do nothing
4447 if (hw->mac.type < e1000_82576)
4450 vmolr = rd32(E1000_VMOLR(vfn));
4452 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4454 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4456 /* clear all bits that might not be set */
4457 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4459 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4460 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4461 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4464 if (vfn <= adapter->vfs_allocated_count)
4465 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4467 wr32(E1000_VMOLR(vfn), vmolr);
4471 * igb_setup_srrctl - configure the split and replication receive control
4473 * @adapter: Board private structure
4474 * @ring: receive ring to be configured
4476 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4478 struct e1000_hw *hw = &adapter->hw;
4479 int reg_idx = ring->reg_idx;
4482 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4483 if (ring_uses_large_buffer(ring))
4484 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4486 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4487 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4488 if (hw->mac.type >= e1000_82580)
4489 srrctl |= E1000_SRRCTL_TIMESTAMP;
4490 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4491 * queues and rx flow control is disabled
4493 if (adapter->vfs_allocated_count ||
4494 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4495 adapter->num_rx_queues > 1))
4496 srrctl |= E1000_SRRCTL_DROP_EN;
4498 wr32(E1000_SRRCTL(reg_idx), srrctl);
4502 * igb_configure_rx_ring - Configure a receive ring after Reset
4503 * @adapter: board private structure
4504 * @ring: receive ring to be configured
4506 * Configure the Rx unit of the MAC after a reset.
4508 void igb_configure_rx_ring(struct igb_adapter *adapter,
4509 struct igb_ring *ring)
4511 struct e1000_hw *hw = &adapter->hw;
4512 union e1000_adv_rx_desc *rx_desc;
4513 u64 rdba = ring->dma;
4514 int reg_idx = ring->reg_idx;
4517 /* disable the queue */
4518 wr32(E1000_RXDCTL(reg_idx), 0);
4520 /* Set DMA base address registers */
4521 wr32(E1000_RDBAL(reg_idx),
4522 rdba & 0x00000000ffffffffULL);
4523 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4524 wr32(E1000_RDLEN(reg_idx),
4525 ring->count * sizeof(union e1000_adv_rx_desc));
4527 /* initialize head and tail */
4528 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4529 wr32(E1000_RDH(reg_idx), 0);
4530 writel(0, ring->tail);
4532 /* set descriptor configuration */
4533 igb_setup_srrctl(adapter, ring);
4535 /* set filtering for VMDQ pools */
4536 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4538 rxdctl |= IGB_RX_PTHRESH;
4539 rxdctl |= IGB_RX_HTHRESH << 8;
4540 rxdctl |= IGB_RX_WTHRESH << 16;
4542 /* initialize rx_buffer_info */
4543 memset(ring->rx_buffer_info, 0,
4544 sizeof(struct igb_rx_buffer) * ring->count);
4546 /* initialize Rx descriptor 0 */
4547 rx_desc = IGB_RX_DESC(ring, 0);
4548 rx_desc->wb.upper.length = 0;
4550 /* enable receive descriptor fetching */
4551 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4552 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4555 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4556 struct igb_ring *rx_ring)
4558 /* set build_skb and buffer size flags */
4559 clear_ring_build_skb_enabled(rx_ring);
4560 clear_ring_uses_large_buffer(rx_ring);
4562 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4565 set_ring_build_skb_enabled(rx_ring);
4567 #if (PAGE_SIZE < 8192)
4568 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4571 set_ring_uses_large_buffer(rx_ring);
4576 * igb_configure_rx - Configure receive Unit after Reset
4577 * @adapter: board private structure
4579 * Configure the Rx unit of the MAC after a reset.
4581 static void igb_configure_rx(struct igb_adapter *adapter)
4585 /* set the correct pool for the PF default MAC address in entry 0 */
4586 igb_set_default_mac_filter(adapter);
4588 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4589 * the Base and Length of the Rx Descriptor Ring
4591 for (i = 0; i < adapter->num_rx_queues; i++) {
4592 struct igb_ring *rx_ring = adapter->rx_ring[i];
4594 igb_set_rx_buffer_len(adapter, rx_ring);
4595 igb_configure_rx_ring(adapter, rx_ring);
4600 * igb_free_tx_resources - Free Tx Resources per Queue
4601 * @tx_ring: Tx descriptor ring for a specific queue
4603 * Free all transmit software resources
4605 void igb_free_tx_resources(struct igb_ring *tx_ring)
4607 igb_clean_tx_ring(tx_ring);
4609 vfree(tx_ring->tx_buffer_info);
4610 tx_ring->tx_buffer_info = NULL;
4612 /* if not set, then don't free */
4616 dma_free_coherent(tx_ring->dev, tx_ring->size,
4617 tx_ring->desc, tx_ring->dma);
4619 tx_ring->desc = NULL;
4623 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4624 * @adapter: board private structure
4626 * Free all transmit software resources
4628 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4632 for (i = 0; i < adapter->num_tx_queues; i++)
4633 if (adapter->tx_ring[i])
4634 igb_free_tx_resources(adapter->tx_ring[i]);
4638 * igb_clean_tx_ring - Free Tx Buffers
4639 * @tx_ring: ring to be cleaned
4641 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4643 u16 i = tx_ring->next_to_clean;
4644 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4646 while (i != tx_ring->next_to_use) {
4647 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4649 /* Free all the Tx ring sk_buffs */
4650 dev_kfree_skb_any(tx_buffer->skb);
4652 /* unmap skb header data */
4653 dma_unmap_single(tx_ring->dev,
4654 dma_unmap_addr(tx_buffer, dma),
4655 dma_unmap_len(tx_buffer, len),
4658 /* check for eop_desc to determine the end of the packet */
4659 eop_desc = tx_buffer->next_to_watch;
4660 tx_desc = IGB_TX_DESC(tx_ring, i);
4662 /* unmap remaining buffers */
4663 while (tx_desc != eop_desc) {
4667 if (unlikely(i == tx_ring->count)) {
4669 tx_buffer = tx_ring->tx_buffer_info;
4670 tx_desc = IGB_TX_DESC(tx_ring, 0);
4673 /* unmap any remaining paged data */
4674 if (dma_unmap_len(tx_buffer, len))
4675 dma_unmap_page(tx_ring->dev,
4676 dma_unmap_addr(tx_buffer, dma),
4677 dma_unmap_len(tx_buffer, len),
4681 /* move us one more past the eop_desc for start of next pkt */
4684 if (unlikely(i == tx_ring->count)) {
4686 tx_buffer = tx_ring->tx_buffer_info;
4690 /* reset BQL for queue */
4691 netdev_tx_reset_queue(txring_txq(tx_ring));
4693 /* reset next_to_use and next_to_clean */
4694 tx_ring->next_to_use = 0;
4695 tx_ring->next_to_clean = 0;
4699 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4700 * @adapter: board private structure
4702 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4706 for (i = 0; i < adapter->num_tx_queues; i++)
4707 if (adapter->tx_ring[i])
4708 igb_clean_tx_ring(adapter->tx_ring[i]);
4712 * igb_free_rx_resources - Free Rx Resources
4713 * @rx_ring: ring to clean the resources from
4715 * Free all receive software resources
4717 void igb_free_rx_resources(struct igb_ring *rx_ring)
4719 igb_clean_rx_ring(rx_ring);
4721 vfree(rx_ring->rx_buffer_info);
4722 rx_ring->rx_buffer_info = NULL;
4724 /* if not set, then don't free */
4728 dma_free_coherent(rx_ring->dev, rx_ring->size,
4729 rx_ring->desc, rx_ring->dma);
4731 rx_ring->desc = NULL;
4735 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4736 * @adapter: board private structure
4738 * Free all receive software resources
4740 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4744 for (i = 0; i < adapter->num_rx_queues; i++)
4745 if (adapter->rx_ring[i])
4746 igb_free_rx_resources(adapter->rx_ring[i]);
4750 * igb_clean_rx_ring - Free Rx Buffers per Queue
4751 * @rx_ring: ring to free buffers from
4753 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4755 u16 i = rx_ring->next_to_clean;
4757 dev_kfree_skb(rx_ring->skb);
4758 rx_ring->skb = NULL;
4760 /* Free all the Rx ring sk_buffs */
4761 while (i != rx_ring->next_to_alloc) {
4762 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4764 /* Invalidate cache lines that may have been written to by
4765 * device so that we avoid corrupting memory.
4767 dma_sync_single_range_for_cpu(rx_ring->dev,
4769 buffer_info->page_offset,
4770 igb_rx_bufsz(rx_ring),
4773 /* free resources associated with mapping */
4774 dma_unmap_page_attrs(rx_ring->dev,
4776 igb_rx_pg_size(rx_ring),
4779 __page_frag_cache_drain(buffer_info->page,
4780 buffer_info->pagecnt_bias);
4783 if (i == rx_ring->count)
4787 rx_ring->next_to_alloc = 0;
4788 rx_ring->next_to_clean = 0;
4789 rx_ring->next_to_use = 0;
4793 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4794 * @adapter: board private structure
4796 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4800 for (i = 0; i < adapter->num_rx_queues; i++)
4801 if (adapter->rx_ring[i])
4802 igb_clean_rx_ring(adapter->rx_ring[i]);
4806 * igb_set_mac - Change the Ethernet Address of the NIC
4807 * @netdev: network interface device structure
4808 * @p: pointer to an address structure
4810 * Returns 0 on success, negative on failure
4812 static int igb_set_mac(struct net_device *netdev, void *p)
4814 struct igb_adapter *adapter = netdev_priv(netdev);
4815 struct e1000_hw *hw = &adapter->hw;
4816 struct sockaddr *addr = p;
4818 if (!is_valid_ether_addr(addr->sa_data))
4819 return -EADDRNOTAVAIL;
4821 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4822 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4824 /* set the correct pool for the new PF MAC address in entry 0 */
4825 igb_set_default_mac_filter(adapter);
4831 * igb_write_mc_addr_list - write multicast addresses to MTA
4832 * @netdev: network interface device structure
4834 * Writes multicast address list to the MTA hash table.
4835 * Returns: -ENOMEM on failure
4836 * 0 on no addresses written
4837 * X on writing X addresses to MTA
4839 static int igb_write_mc_addr_list(struct net_device *netdev)
4841 struct igb_adapter *adapter = netdev_priv(netdev);
4842 struct e1000_hw *hw = &adapter->hw;
4843 struct netdev_hw_addr *ha;
4847 if (netdev_mc_empty(netdev)) {
4848 /* nothing to program, so clear mc list */
4849 igb_update_mc_addr_list(hw, NULL, 0);
4850 igb_restore_vf_multicasts(adapter);
4854 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4858 /* The shared function expects a packed array of only addresses. */
4860 netdev_for_each_mc_addr(ha, netdev)
4861 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4863 igb_update_mc_addr_list(hw, mta_list, i);
4866 return netdev_mc_count(netdev);
4869 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4871 struct e1000_hw *hw = &adapter->hw;
4874 switch (hw->mac.type) {
4878 /* VLAN filtering needed for VLAN prio filter */
4879 if (adapter->netdev->features & NETIF_F_NTUPLE)
4885 /* VLAN filtering needed for pool filtering */
4886 if (adapter->vfs_allocated_count)
4893 /* We are already in VLAN promisc, nothing to do */
4894 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4897 if (!adapter->vfs_allocated_count)
4900 /* Add PF to all active pools */
4901 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4903 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4904 u32 vlvf = rd32(E1000_VLVF(i));
4907 wr32(E1000_VLVF(i), vlvf);
4911 /* Set all bits in the VLAN filter table array */
4912 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4913 hw->mac.ops.write_vfta(hw, i, ~0U);
4915 /* Set flag so we don't redo unnecessary work */
4916 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4921 #define VFTA_BLOCK_SIZE 8
4922 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4924 struct e1000_hw *hw = &adapter->hw;
4925 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4926 u32 vid_start = vfta_offset * 32;
4927 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4928 u32 i, vid, word, bits, pf_id;
4930 /* guarantee that we don't scrub out management VLAN */
4931 vid = adapter->mng_vlan_id;
4932 if (vid >= vid_start && vid < vid_end)
4933 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4935 if (!adapter->vfs_allocated_count)
4938 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4940 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4941 u32 vlvf = rd32(E1000_VLVF(i));
4943 /* pull VLAN ID from VLVF */
4944 vid = vlvf & VLAN_VID_MASK;
4946 /* only concern ourselves with a certain range */
4947 if (vid < vid_start || vid >= vid_end)
4950 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4951 /* record VLAN ID in VFTA */
4952 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4954 /* if PF is part of this then continue */
4955 if (test_bit(vid, adapter->active_vlans))
4959 /* remove PF from the pool */
4961 bits &= rd32(E1000_VLVF(i));
4962 wr32(E1000_VLVF(i), bits);
4966 /* extract values from active_vlans and write back to VFTA */
4967 for (i = VFTA_BLOCK_SIZE; i--;) {
4968 vid = (vfta_offset + i) * 32;
4969 word = vid / BITS_PER_LONG;
4970 bits = vid % BITS_PER_LONG;
4972 vfta[i] |= adapter->active_vlans[word] >> bits;
4974 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4978 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4982 /* We are not in VLAN promisc, nothing to do */
4983 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4986 /* Set flag so we don't redo unnecessary work */
4987 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4989 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4990 igb_scrub_vfta(adapter, i);
4994 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4995 * @netdev: network interface device structure
4997 * The set_rx_mode entry point is called whenever the unicast or multicast
4998 * address lists or the network interface flags are updated. This routine is
4999 * responsible for configuring the hardware for proper unicast, multicast,
5000 * promiscuous mode, and all-multi behavior.
5002 static void igb_set_rx_mode(struct net_device *netdev)
5004 struct igb_adapter *adapter = netdev_priv(netdev);
5005 struct e1000_hw *hw = &adapter->hw;
5006 unsigned int vfn = adapter->vfs_allocated_count;
5007 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5010 /* Check for Promiscuous and All Multicast modes */
5011 if (netdev->flags & IFF_PROMISC) {
5012 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5013 vmolr |= E1000_VMOLR_MPME;
5015 /* enable use of UTA filter to force packets to default pool */
5016 if (hw->mac.type == e1000_82576)
5017 vmolr |= E1000_VMOLR_ROPE;
5019 if (netdev->flags & IFF_ALLMULTI) {
5020 rctl |= E1000_RCTL_MPE;
5021 vmolr |= E1000_VMOLR_MPME;
5023 /* Write addresses to the MTA, if the attempt fails
5024 * then we should just turn on promiscuous mode so
5025 * that we can at least receive multicast traffic
5027 count = igb_write_mc_addr_list(netdev);
5029 rctl |= E1000_RCTL_MPE;
5030 vmolr |= E1000_VMOLR_MPME;
5032 vmolr |= E1000_VMOLR_ROMPE;
5037 /* Write addresses to available RAR registers, if there is not
5038 * sufficient space to store all the addresses then enable
5039 * unicast promiscuous mode
5041 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5042 rctl |= E1000_RCTL_UPE;
5043 vmolr |= E1000_VMOLR_ROPE;
5046 /* enable VLAN filtering by default */
5047 rctl |= E1000_RCTL_VFE;
5049 /* disable VLAN filtering for modes that require it */
5050 if ((netdev->flags & IFF_PROMISC) ||
5051 (netdev->features & NETIF_F_RXALL)) {
5052 /* if we fail to set all rules then just clear VFE */
5053 if (igb_vlan_promisc_enable(adapter))
5054 rctl &= ~E1000_RCTL_VFE;
5056 igb_vlan_promisc_disable(adapter);
5059 /* update state of unicast, multicast, and VLAN filtering modes */
5060 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5062 wr32(E1000_RCTL, rctl);
5064 #if (PAGE_SIZE < 8192)
5065 if (!adapter->vfs_allocated_count) {
5066 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5067 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5070 wr32(E1000_RLPML, rlpml);
5072 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5073 * the VMOLR to enable the appropriate modes. Without this workaround
5074 * we will have issues with VLAN tag stripping not being done for frames
5075 * that are only arriving because we are the default pool
5077 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5080 /* set UTA to appropriate mode */
5081 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5083 vmolr |= rd32(E1000_VMOLR(vfn)) &
5084 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5086 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5087 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5088 #if (PAGE_SIZE < 8192)
5089 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5090 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5093 vmolr |= MAX_JUMBO_FRAME_SIZE;
5094 vmolr |= E1000_VMOLR_LPE;
5096 wr32(E1000_VMOLR(vfn), vmolr);
5098 igb_restore_vf_multicasts(adapter);
5101 static void igb_check_wvbr(struct igb_adapter *adapter)
5103 struct e1000_hw *hw = &adapter->hw;
5106 switch (hw->mac.type) {
5109 wvbr = rd32(E1000_WVBR);
5117 adapter->wvbr |= wvbr;
5120 #define IGB_STAGGERED_QUEUE_OFFSET 8
5122 static void igb_spoof_check(struct igb_adapter *adapter)
5129 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5130 if (adapter->wvbr & BIT(j) ||
5131 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5132 dev_warn(&adapter->pdev->dev,
5133 "Spoof event(s) detected on VF %d\n", j);
5136 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5141 /* Need to wait a few seconds after link up to get diagnostic information from
5144 static void igb_update_phy_info(struct timer_list *t)
5146 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5147 igb_get_phy_info(&adapter->hw);
5151 * igb_has_link - check shared code for link and determine up/down
5152 * @adapter: pointer to driver private info
5154 bool igb_has_link(struct igb_adapter *adapter)
5156 struct e1000_hw *hw = &adapter->hw;
5157 bool link_active = false;
5159 /* get_link_status is set on LSC (link status) interrupt or
5160 * rx sequence error interrupt. get_link_status will stay
5161 * false until the e1000_check_for_link establishes link
5162 * for copper adapters ONLY
5164 switch (hw->phy.media_type) {
5165 case e1000_media_type_copper:
5166 if (!hw->mac.get_link_status)
5169 case e1000_media_type_internal_serdes:
5170 hw->mac.ops.check_for_link(hw);
5171 link_active = !hw->mac.get_link_status;
5174 case e1000_media_type_unknown:
5178 if (((hw->mac.type == e1000_i210) ||
5179 (hw->mac.type == e1000_i211)) &&
5180 (hw->phy.id == I210_I_PHY_ID)) {
5181 if (!netif_carrier_ok(adapter->netdev)) {
5182 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5183 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5184 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5185 adapter->link_check_timeout = jiffies;
5192 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5195 u32 ctrl_ext, thstat;
5197 /* check for thermal sensor event on i350 copper only */
5198 if (hw->mac.type == e1000_i350) {
5199 thstat = rd32(E1000_THSTAT);
5200 ctrl_ext = rd32(E1000_CTRL_EXT);
5202 if ((hw->phy.media_type == e1000_media_type_copper) &&
5203 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5204 ret = !!(thstat & event);
5211 * igb_check_lvmmc - check for malformed packets received
5212 * and indicated in LVMMC register
5213 * @adapter: pointer to adapter
5215 static void igb_check_lvmmc(struct igb_adapter *adapter)
5217 struct e1000_hw *hw = &adapter->hw;
5220 lvmmc = rd32(E1000_LVMMC);
5222 if (unlikely(net_ratelimit())) {
5223 netdev_warn(adapter->netdev,
5224 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5231 * igb_watchdog - Timer Call-back
5232 * @data: pointer to adapter cast into an unsigned long
5234 static void igb_watchdog(struct timer_list *t)
5236 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5237 /* Do the rest outside of interrupt context */
5238 schedule_work(&adapter->watchdog_task);
5241 static void igb_watchdog_task(struct work_struct *work)
5243 struct igb_adapter *adapter = container_of(work,
5246 struct e1000_hw *hw = &adapter->hw;
5247 struct e1000_phy_info *phy = &hw->phy;
5248 struct net_device *netdev = adapter->netdev;
5252 u16 phy_data, retry_count = 20;
5254 link = igb_has_link(adapter);
5256 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5257 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5258 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5263 /* Force link down if we have fiber to swap to */
5264 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5265 if (hw->phy.media_type == e1000_media_type_copper) {
5266 connsw = rd32(E1000_CONNSW);
5267 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5272 /* Perform a reset if the media type changed. */
5273 if (hw->dev_spec._82575.media_changed) {
5274 hw->dev_spec._82575.media_changed = false;
5275 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5278 /* Cancel scheduled suspend requests. */
5279 pm_runtime_resume(netdev->dev.parent);
5281 if (!netif_carrier_ok(netdev)) {
5284 hw->mac.ops.get_speed_and_duplex(hw,
5285 &adapter->link_speed,
5286 &adapter->link_duplex);
5288 ctrl = rd32(E1000_CTRL);
5289 /* Links status message must follow this format */
5291 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5293 adapter->link_speed,
5294 adapter->link_duplex == FULL_DUPLEX ?
5296 (ctrl & E1000_CTRL_TFCE) &&
5297 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5298 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5299 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5301 /* disable EEE if enabled */
5302 if ((adapter->flags & IGB_FLAG_EEE) &&
5303 (adapter->link_duplex == HALF_DUPLEX)) {
5304 dev_info(&adapter->pdev->dev,
5305 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5306 adapter->hw.dev_spec._82575.eee_disable = true;
5307 adapter->flags &= ~IGB_FLAG_EEE;
5310 /* check if SmartSpeed worked */
5311 igb_check_downshift(hw);
5312 if (phy->speed_downgraded)
5313 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5315 /* check for thermal sensor event */
5316 if (igb_thermal_sensor_event(hw,
5317 E1000_THSTAT_LINK_THROTTLE))
5318 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5320 /* adjust timeout factor according to speed/duplex */
5321 adapter->tx_timeout_factor = 1;
5322 switch (adapter->link_speed) {
5324 adapter->tx_timeout_factor = 14;
5327 /* maybe add some timeout factor ? */
5331 if (adapter->link_speed != SPEED_1000)
5334 /* wait for Remote receiver status OK */
5336 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5338 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5342 goto retry_read_status;
5343 } else if (!retry_count) {
5344 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5347 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5350 netif_carrier_on(netdev);
5352 igb_ping_all_vfs(adapter);
5353 igb_check_vf_rate_limit(adapter);
5355 /* link state has changed, schedule phy info update */
5356 if (!test_bit(__IGB_DOWN, &adapter->state))
5357 mod_timer(&adapter->phy_info_timer,
5358 round_jiffies(jiffies + 2 * HZ));
5361 if (netif_carrier_ok(netdev)) {
5362 adapter->link_speed = 0;
5363 adapter->link_duplex = 0;
5365 /* check for thermal sensor event */
5366 if (igb_thermal_sensor_event(hw,
5367 E1000_THSTAT_PWR_DOWN)) {
5368 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5371 /* Links status message must follow this format */
5372 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5374 netif_carrier_off(netdev);
5376 igb_ping_all_vfs(adapter);
5378 /* link state has changed, schedule phy info update */
5379 if (!test_bit(__IGB_DOWN, &adapter->state))
5380 mod_timer(&adapter->phy_info_timer,
5381 round_jiffies(jiffies + 2 * HZ));
5383 /* link is down, time to check for alternate media */
5384 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5385 igb_check_swap_media(adapter);
5386 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5387 schedule_work(&adapter->reset_task);
5388 /* return immediately */
5392 pm_schedule_suspend(netdev->dev.parent,
5395 /* also check for alternate media here */
5396 } else if (!netif_carrier_ok(netdev) &&
5397 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5398 igb_check_swap_media(adapter);
5399 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5400 schedule_work(&adapter->reset_task);
5401 /* return immediately */
5407 spin_lock(&adapter->stats64_lock);
5408 igb_update_stats(adapter);
5409 spin_unlock(&adapter->stats64_lock);
5411 for (i = 0; i < adapter->num_tx_queues; i++) {
5412 struct igb_ring *tx_ring = adapter->tx_ring[i];
5413 if (!netif_carrier_ok(netdev)) {
5414 /* We've lost link, so the controller stops DMA,
5415 * but we've got queued Tx work that's never going
5416 * to get done, so reset controller to flush Tx.
5417 * (Do the reset outside of interrupt context).
5419 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5420 adapter->tx_timeout_count++;
5421 schedule_work(&adapter->reset_task);
5422 /* return immediately since reset is imminent */
5427 /* Force detection of hung controller every watchdog period */
5428 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5431 /* Cause software interrupt to ensure Rx ring is cleaned */
5432 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5435 for (i = 0; i < adapter->num_q_vectors; i++)
5436 eics |= adapter->q_vector[i]->eims_value;
5437 wr32(E1000_EICS, eics);
5439 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5442 igb_spoof_check(adapter);
5443 igb_ptp_rx_hang(adapter);
5444 igb_ptp_tx_hang(adapter);
5446 /* Check LVMMC register on i350/i354 only */
5447 if ((adapter->hw.mac.type == e1000_i350) ||
5448 (adapter->hw.mac.type == e1000_i354))
5449 igb_check_lvmmc(adapter);
5451 /* Reset the timer */
5452 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5453 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5454 mod_timer(&adapter->watchdog_timer,
5455 round_jiffies(jiffies + HZ));
5457 mod_timer(&adapter->watchdog_timer,
5458 round_jiffies(jiffies + 2 * HZ));
5462 enum latency_range {
5466 latency_invalid = 255
5470 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5471 * @q_vector: pointer to q_vector
5473 * Stores a new ITR value based on strictly on packet size. This
5474 * algorithm is less sophisticated than that used in igb_update_itr,
5475 * due to the difficulty of synchronizing statistics across multiple
5476 * receive rings. The divisors and thresholds used by this function
5477 * were determined based on theoretical maximum wire speed and testing
5478 * data, in order to minimize response time while increasing bulk
5480 * This functionality is controlled by ethtool's coalescing settings.
5481 * NOTE: This function is called only when operating in a multiqueue
5482 * receive environment.
5484 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5486 int new_val = q_vector->itr_val;
5487 int avg_wire_size = 0;
5488 struct igb_adapter *adapter = q_vector->adapter;
5489 unsigned int packets;
5491 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5492 * ints/sec - ITR timer value of 120 ticks.
5494 if (adapter->link_speed != SPEED_1000) {
5495 new_val = IGB_4K_ITR;
5499 packets = q_vector->rx.total_packets;
5501 avg_wire_size = q_vector->rx.total_bytes / packets;
5503 packets = q_vector->tx.total_packets;
5505 avg_wire_size = max_t(u32, avg_wire_size,
5506 q_vector->tx.total_bytes / packets);
5508 /* if avg_wire_size isn't set no work was done */
5512 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5513 avg_wire_size += 24;
5515 /* Don't starve jumbo frames */
5516 avg_wire_size = min(avg_wire_size, 3000);
5518 /* Give a little boost to mid-size frames */
5519 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5520 new_val = avg_wire_size / 3;
5522 new_val = avg_wire_size / 2;
5524 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5525 if (new_val < IGB_20K_ITR &&
5526 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5527 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5528 new_val = IGB_20K_ITR;
5531 if (new_val != q_vector->itr_val) {
5532 q_vector->itr_val = new_val;
5533 q_vector->set_itr = 1;
5536 q_vector->rx.total_bytes = 0;
5537 q_vector->rx.total_packets = 0;
5538 q_vector->tx.total_bytes = 0;
5539 q_vector->tx.total_packets = 0;
5543 * igb_update_itr - update the dynamic ITR value based on statistics
5544 * @q_vector: pointer to q_vector
5545 * @ring_container: ring info to update the itr for
5547 * Stores a new ITR value based on packets and byte
5548 * counts during the last interrupt. The advantage of per interrupt
5549 * computation is faster updates and more accurate ITR for the current
5550 * traffic pattern. Constants in this function were computed
5551 * based on theoretical maximum wire speed and thresholds were set based
5552 * on testing data as well as attempting to minimize response time
5553 * while increasing bulk throughput.
5554 * This functionality is controlled by ethtool's coalescing settings.
5555 * NOTE: These calculations are only valid when operating in a single-
5556 * queue environment.
5558 static void igb_update_itr(struct igb_q_vector *q_vector,
5559 struct igb_ring_container *ring_container)
5561 unsigned int packets = ring_container->total_packets;
5562 unsigned int bytes = ring_container->total_bytes;
5563 u8 itrval = ring_container->itr;
5565 /* no packets, exit with status unchanged */
5570 case lowest_latency:
5571 /* handle TSO and jumbo frames */
5572 if (bytes/packets > 8000)
5573 itrval = bulk_latency;
5574 else if ((packets < 5) && (bytes > 512))
5575 itrval = low_latency;
5577 case low_latency: /* 50 usec aka 20000 ints/s */
5578 if (bytes > 10000) {
5579 /* this if handles the TSO accounting */
5580 if (bytes/packets > 8000)
5581 itrval = bulk_latency;
5582 else if ((packets < 10) || ((bytes/packets) > 1200))
5583 itrval = bulk_latency;
5584 else if ((packets > 35))
5585 itrval = lowest_latency;
5586 } else if (bytes/packets > 2000) {
5587 itrval = bulk_latency;
5588 } else if (packets <= 2 && bytes < 512) {
5589 itrval = lowest_latency;
5592 case bulk_latency: /* 250 usec aka 4000 ints/s */
5593 if (bytes > 25000) {
5595 itrval = low_latency;
5596 } else if (bytes < 1500) {
5597 itrval = low_latency;
5602 /* clear work counters since we have the values we need */
5603 ring_container->total_bytes = 0;
5604 ring_container->total_packets = 0;
5606 /* write updated itr to ring container */
5607 ring_container->itr = itrval;
5610 static void igb_set_itr(struct igb_q_vector *q_vector)
5612 struct igb_adapter *adapter = q_vector->adapter;
5613 u32 new_itr = q_vector->itr_val;
5616 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5617 if (adapter->link_speed != SPEED_1000) {
5619 new_itr = IGB_4K_ITR;
5623 igb_update_itr(q_vector, &q_vector->tx);
5624 igb_update_itr(q_vector, &q_vector->rx);
5626 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5628 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5629 if (current_itr == lowest_latency &&
5630 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5631 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5632 current_itr = low_latency;
5634 switch (current_itr) {
5635 /* counts and packets in update_itr are dependent on these numbers */
5636 case lowest_latency:
5637 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5640 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5643 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5650 if (new_itr != q_vector->itr_val) {
5651 /* this attempts to bias the interrupt rate towards Bulk
5652 * by adding intermediate steps when interrupt rate is
5655 new_itr = new_itr > q_vector->itr_val ?
5656 max((new_itr * q_vector->itr_val) /
5657 (new_itr + (q_vector->itr_val >> 2)),
5659 /* Don't write the value here; it resets the adapter's
5660 * internal timer, and causes us to delay far longer than
5661 * we should between interrupts. Instead, we write the ITR
5662 * value at the beginning of the next interrupt so the timing
5663 * ends up being correct.
5665 q_vector->itr_val = new_itr;
5666 q_vector->set_itr = 1;
5670 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5671 struct igb_tx_buffer *first,
5672 u32 vlan_macip_lens, u32 type_tucmd,
5675 struct e1000_adv_tx_context_desc *context_desc;
5676 u16 i = tx_ring->next_to_use;
5677 struct timespec64 ts;
5679 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5682 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5684 /* set bits to identify this as an advanced context descriptor */
5685 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5687 /* For 82575, context index must be unique per ring. */
5688 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5689 mss_l4len_idx |= tx_ring->reg_idx << 4;
5691 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5692 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5693 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5695 /* We assume there is always a valid tx time available. Invalid times
5696 * should have been handled by the upper layers.
5698 if (tx_ring->launchtime_enable) {
5699 ts = ktime_to_timespec64(first->skb->tstamp);
5700 first->skb->tstamp = ktime_set(0, 0);
5701 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5703 context_desc->seqnum_seed = 0;
5707 static int igb_tso(struct igb_ring *tx_ring,
5708 struct igb_tx_buffer *first,
5711 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5712 struct sk_buff *skb = first->skb;
5723 u32 paylen, l4_offset;
5726 if (skb->ip_summed != CHECKSUM_PARTIAL)
5729 if (!skb_is_gso(skb))
5732 err = skb_cow_head(skb, 0);
5736 ip.hdr = skb_network_header(skb);
5737 l4.hdr = skb_checksum_start(skb);
5739 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5740 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5741 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5743 /* initialize outer IP header fields */
5744 if (ip.v4->version == 4) {
5745 unsigned char *csum_start = skb_checksum_start(skb);
5746 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5748 /* IP header will have to cancel out any data that
5749 * is not a part of the outer IP header
5751 ip.v4->check = csum_fold(csum_partial(trans_start,
5752 csum_start - trans_start,
5754 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5757 first->tx_flags |= IGB_TX_FLAGS_TSO |
5761 ip.v6->payload_len = 0;
5762 first->tx_flags |= IGB_TX_FLAGS_TSO |
5766 /* determine offset of inner transport header */
5767 l4_offset = l4.hdr - skb->data;
5769 /* remove payload length from inner checksum */
5770 paylen = skb->len - l4_offset;
5771 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5772 /* compute length of segmentation header */
5773 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5774 csum_replace_by_diff(&l4.tcp->check,
5775 (__force __wsum)htonl(paylen));
5777 /* compute length of segmentation header */
5778 *hdr_len = sizeof(*l4.udp) + l4_offset;
5779 csum_replace_by_diff(&l4.udp->check,
5780 (__force __wsum)htonl(paylen));
5783 /* update gso size and bytecount with header size */
5784 first->gso_segs = skb_shinfo(skb)->gso_segs;
5785 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5788 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5789 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5791 /* VLAN MACLEN IPLEN */
5792 vlan_macip_lens = l4.hdr - ip.hdr;
5793 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5794 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5796 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5797 type_tucmd, mss_l4len_idx);
5802 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5804 unsigned int offset = 0;
5806 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5808 return offset == skb_checksum_start_offset(skb);
5811 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5813 struct sk_buff *skb = first->skb;
5814 u32 vlan_macip_lens = 0;
5817 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5819 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5820 !tx_ring->launchtime_enable)
5825 switch (skb->csum_offset) {
5826 case offsetof(struct tcphdr, check):
5827 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5829 case offsetof(struct udphdr, check):
5831 case offsetof(struct sctphdr, checksum):
5832 /* validate that this is actually an SCTP request */
5833 if (((first->protocol == htons(ETH_P_IP)) &&
5834 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5835 ((first->protocol == htons(ETH_P_IPV6)) &&
5836 igb_ipv6_csum_is_sctp(skb))) {
5837 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5842 skb_checksum_help(skb);
5846 /* update TX checksum flag */
5847 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5848 vlan_macip_lens = skb_checksum_start_offset(skb) -
5849 skb_network_offset(skb);
5851 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5852 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5854 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5857 #define IGB_SET_FLAG(_input, _flag, _result) \
5858 ((_flag <= _result) ? \
5859 ((u32)(_input & _flag) * (_result / _flag)) : \
5860 ((u32)(_input & _flag) / (_flag / _result)))
5862 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5864 /* set type for advanced descriptor with frame checksum insertion */
5865 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5866 E1000_ADVTXD_DCMD_DEXT |
5867 E1000_ADVTXD_DCMD_IFCS;
5869 /* set HW vlan bit if vlan is present */
5870 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5871 (E1000_ADVTXD_DCMD_VLE));
5873 /* set segmentation bits for TSO */
5874 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5875 (E1000_ADVTXD_DCMD_TSE));
5877 /* set timestamp bit if present */
5878 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5879 (E1000_ADVTXD_MAC_TSTAMP));
5881 /* insert frame checksum */
5882 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5887 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5888 union e1000_adv_tx_desc *tx_desc,
5889 u32 tx_flags, unsigned int paylen)
5891 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5893 /* 82575 requires a unique index per ring */
5894 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5895 olinfo_status |= tx_ring->reg_idx << 4;
5897 /* insert L4 checksum */
5898 olinfo_status |= IGB_SET_FLAG(tx_flags,
5900 (E1000_TXD_POPTS_TXSM << 8));
5902 /* insert IPv4 checksum */
5903 olinfo_status |= IGB_SET_FLAG(tx_flags,
5905 (E1000_TXD_POPTS_IXSM << 8));
5907 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5910 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5912 struct net_device *netdev = tx_ring->netdev;
5914 netif_stop_subqueue(netdev, tx_ring->queue_index);
5916 /* Herbert's original patch had:
5917 * smp_mb__after_netif_stop_queue();
5918 * but since that doesn't exist yet, just open code it.
5922 /* We need to check again in a case another CPU has just
5923 * made room available.
5925 if (igb_desc_unused(tx_ring) < size)
5929 netif_wake_subqueue(netdev, tx_ring->queue_index);
5931 u64_stats_update_begin(&tx_ring->tx_syncp2);
5932 tx_ring->tx_stats.restart_queue2++;
5933 u64_stats_update_end(&tx_ring->tx_syncp2);
5938 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5940 if (igb_desc_unused(tx_ring) >= size)
5942 return __igb_maybe_stop_tx(tx_ring, size);
5945 static int igb_tx_map(struct igb_ring *tx_ring,
5946 struct igb_tx_buffer *first,
5949 struct sk_buff *skb = first->skb;
5950 struct igb_tx_buffer *tx_buffer;
5951 union e1000_adv_tx_desc *tx_desc;
5954 unsigned int data_len, size;
5955 u32 tx_flags = first->tx_flags;
5956 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5957 u16 i = tx_ring->next_to_use;
5959 tx_desc = IGB_TX_DESC(tx_ring, i);
5961 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5963 size = skb_headlen(skb);
5964 data_len = skb->data_len;
5966 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5970 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5971 if (dma_mapping_error(tx_ring->dev, dma))
5974 /* record length, and DMA address */
5975 dma_unmap_len_set(tx_buffer, len, size);
5976 dma_unmap_addr_set(tx_buffer, dma, dma);
5978 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5980 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5981 tx_desc->read.cmd_type_len =
5982 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5986 if (i == tx_ring->count) {
5987 tx_desc = IGB_TX_DESC(tx_ring, 0);
5990 tx_desc->read.olinfo_status = 0;
5992 dma += IGB_MAX_DATA_PER_TXD;
5993 size -= IGB_MAX_DATA_PER_TXD;
5995 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5998 if (likely(!data_len))
6001 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6005 if (i == tx_ring->count) {
6006 tx_desc = IGB_TX_DESC(tx_ring, 0);
6009 tx_desc->read.olinfo_status = 0;
6011 size = skb_frag_size(frag);
6014 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6015 size, DMA_TO_DEVICE);
6017 tx_buffer = &tx_ring->tx_buffer_info[i];
6020 /* write last descriptor with RS and EOP bits */
6021 cmd_type |= size | IGB_TXD_DCMD;
6022 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6024 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6026 /* set the timestamp */
6027 first->time_stamp = jiffies;
6029 skb_tx_timestamp(skb);
6031 /* Force memory writes to complete before letting h/w know there
6032 * are new descriptors to fetch. (Only applicable for weak-ordered
6033 * memory model archs, such as IA-64).
6035 * We also need this memory barrier to make certain all of the
6036 * status bits have been updated before next_to_watch is written.
6040 /* set next_to_watch value indicating a packet is present */
6041 first->next_to_watch = tx_desc;
6044 if (i == tx_ring->count)
6047 tx_ring->next_to_use = i;
6049 /* Make sure there is space in the ring for the next send. */
6050 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6052 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6053 writel(i, tx_ring->tail);
6058 dev_err(tx_ring->dev, "TX DMA map failed\n");
6059 tx_buffer = &tx_ring->tx_buffer_info[i];
6061 /* clear dma mappings for failed tx_buffer_info map */
6062 while (tx_buffer != first) {
6063 if (dma_unmap_len(tx_buffer, len))
6064 dma_unmap_page(tx_ring->dev,
6065 dma_unmap_addr(tx_buffer, dma),
6066 dma_unmap_len(tx_buffer, len),
6068 dma_unmap_len_set(tx_buffer, len, 0);
6071 i += tx_ring->count;
6072 tx_buffer = &tx_ring->tx_buffer_info[i];
6075 if (dma_unmap_len(tx_buffer, len))
6076 dma_unmap_single(tx_ring->dev,
6077 dma_unmap_addr(tx_buffer, dma),
6078 dma_unmap_len(tx_buffer, len),
6080 dma_unmap_len_set(tx_buffer, len, 0);
6082 dev_kfree_skb_any(tx_buffer->skb);
6083 tx_buffer->skb = NULL;
6085 tx_ring->next_to_use = i;
6090 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6091 struct igb_ring *tx_ring)
6093 struct igb_tx_buffer *first;
6097 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6098 __be16 protocol = vlan_get_protocol(skb);
6101 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6102 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6103 * + 2 desc gap to keep tail from touching head,
6104 * + 1 desc for context descriptor,
6105 * otherwise try next time
6107 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6108 count += TXD_USE_COUNT(skb_frag_size(
6109 &skb_shinfo(skb)->frags[f]));
6111 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6112 /* this is a hard error */
6113 return NETDEV_TX_BUSY;
6116 /* record the location of the first descriptor for this packet */
6117 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6119 first->bytecount = skb->len;
6120 first->gso_segs = 1;
6122 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6123 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6125 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6126 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6128 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6129 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6131 adapter->ptp_tx_skb = skb_get(skb);
6132 adapter->ptp_tx_start = jiffies;
6133 if (adapter->hw.mac.type == e1000_82576)
6134 schedule_work(&adapter->ptp_tx_work);
6136 adapter->tx_hwtstamp_skipped++;
6140 if (skb_vlan_tag_present(skb)) {
6141 tx_flags |= IGB_TX_FLAGS_VLAN;
6142 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6145 /* record initial flags and protocol */
6146 first->tx_flags = tx_flags;
6147 first->protocol = protocol;
6149 tso = igb_tso(tx_ring, first, &hdr_len);
6153 igb_tx_csum(tx_ring, first);
6155 if (igb_tx_map(tx_ring, first, hdr_len))
6156 goto cleanup_tx_tstamp;
6158 return NETDEV_TX_OK;
6161 dev_kfree_skb_any(first->skb);
6164 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6165 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6167 dev_kfree_skb_any(adapter->ptp_tx_skb);
6168 adapter->ptp_tx_skb = NULL;
6169 if (adapter->hw.mac.type == e1000_82576)
6170 cancel_work_sync(&adapter->ptp_tx_work);
6171 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6174 return NETDEV_TX_OK;
6177 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6178 struct sk_buff *skb)
6180 unsigned int r_idx = skb->queue_mapping;
6182 if (r_idx >= adapter->num_tx_queues)
6183 r_idx = r_idx % adapter->num_tx_queues;
6185 return adapter->tx_ring[r_idx];
6188 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6189 struct net_device *netdev)
6191 struct igb_adapter *adapter = netdev_priv(netdev);
6193 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6194 * in order to meet this minimum size requirement.
6196 if (skb_put_padto(skb, 17))
6197 return NETDEV_TX_OK;
6199 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6203 * igb_tx_timeout - Respond to a Tx Hang
6204 * @netdev: network interface device structure
6206 static void igb_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6208 struct igb_adapter *adapter = netdev_priv(netdev);
6209 struct e1000_hw *hw = &adapter->hw;
6211 /* Do the reset outside of interrupt context */
6212 adapter->tx_timeout_count++;
6214 if (hw->mac.type >= e1000_82580)
6215 hw->dev_spec._82575.global_device_reset = true;
6217 schedule_work(&adapter->reset_task);
6219 (adapter->eims_enable_mask & ~adapter->eims_other));
6222 static void igb_reset_task(struct work_struct *work)
6224 struct igb_adapter *adapter;
6225 adapter = container_of(work, struct igb_adapter, reset_task);
6228 netdev_err(adapter->netdev, "Reset adapter\n");
6229 igb_reinit_locked(adapter);
6233 * igb_get_stats64 - Get System Network Statistics
6234 * @netdev: network interface device structure
6235 * @stats: rtnl_link_stats64 pointer
6237 static void igb_get_stats64(struct net_device *netdev,
6238 struct rtnl_link_stats64 *stats)
6240 struct igb_adapter *adapter = netdev_priv(netdev);
6242 spin_lock(&adapter->stats64_lock);
6243 igb_update_stats(adapter);
6244 memcpy(stats, &adapter->stats64, sizeof(*stats));
6245 spin_unlock(&adapter->stats64_lock);
6249 * igb_change_mtu - Change the Maximum Transfer Unit
6250 * @netdev: network interface device structure
6251 * @new_mtu: new value for maximum frame size
6253 * Returns 0 on success, negative on failure
6255 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6257 struct igb_adapter *adapter = netdev_priv(netdev);
6258 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6260 /* adjust max frame to be at least the size of a standard frame */
6261 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6262 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6264 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6265 usleep_range(1000, 2000);
6267 /* igb_down has a dependency on max_frame_size */
6268 adapter->max_frame_size = max_frame;
6270 if (netif_running(netdev))
6273 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6274 netdev->mtu, new_mtu);
6275 netdev->mtu = new_mtu;
6277 if (netif_running(netdev))
6282 clear_bit(__IGB_RESETTING, &adapter->state);
6288 * igb_update_stats - Update the board statistics counters
6289 * @adapter: board private structure
6291 void igb_update_stats(struct igb_adapter *adapter)
6293 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6294 struct e1000_hw *hw = &adapter->hw;
6295 struct pci_dev *pdev = adapter->pdev;
6300 u64 _bytes, _packets;
6302 /* Prevent stats update while adapter is being reset, or if the pci
6303 * connection is down.
6305 if (adapter->link_speed == 0)
6307 if (pci_channel_offline(pdev))
6314 for (i = 0; i < adapter->num_rx_queues; i++) {
6315 struct igb_ring *ring = adapter->rx_ring[i];
6316 u32 rqdpc = rd32(E1000_RQDPC(i));
6317 if (hw->mac.type >= e1000_i210)
6318 wr32(E1000_RQDPC(i), 0);
6321 ring->rx_stats.drops += rqdpc;
6322 net_stats->rx_fifo_errors += rqdpc;
6326 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6327 _bytes = ring->rx_stats.bytes;
6328 _packets = ring->rx_stats.packets;
6329 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6331 packets += _packets;
6334 net_stats->rx_bytes = bytes;
6335 net_stats->rx_packets = packets;
6339 for (i = 0; i < adapter->num_tx_queues; i++) {
6340 struct igb_ring *ring = adapter->tx_ring[i];
6342 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6343 _bytes = ring->tx_stats.bytes;
6344 _packets = ring->tx_stats.packets;
6345 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6347 packets += _packets;
6349 net_stats->tx_bytes = bytes;
6350 net_stats->tx_packets = packets;
6353 /* read stats registers */
6354 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6355 adapter->stats.gprc += rd32(E1000_GPRC);
6356 adapter->stats.gorc += rd32(E1000_GORCL);
6357 rd32(E1000_GORCH); /* clear GORCL */
6358 adapter->stats.bprc += rd32(E1000_BPRC);
6359 adapter->stats.mprc += rd32(E1000_MPRC);
6360 adapter->stats.roc += rd32(E1000_ROC);
6362 adapter->stats.prc64 += rd32(E1000_PRC64);
6363 adapter->stats.prc127 += rd32(E1000_PRC127);
6364 adapter->stats.prc255 += rd32(E1000_PRC255);
6365 adapter->stats.prc511 += rd32(E1000_PRC511);
6366 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6367 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6368 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6369 adapter->stats.sec += rd32(E1000_SEC);
6371 mpc = rd32(E1000_MPC);
6372 adapter->stats.mpc += mpc;
6373 net_stats->rx_fifo_errors += mpc;
6374 adapter->stats.scc += rd32(E1000_SCC);
6375 adapter->stats.ecol += rd32(E1000_ECOL);
6376 adapter->stats.mcc += rd32(E1000_MCC);
6377 adapter->stats.latecol += rd32(E1000_LATECOL);
6378 adapter->stats.dc += rd32(E1000_DC);
6379 adapter->stats.rlec += rd32(E1000_RLEC);
6380 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6381 adapter->stats.xontxc += rd32(E1000_XONTXC);
6382 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6383 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6384 adapter->stats.fcruc += rd32(E1000_FCRUC);
6385 adapter->stats.gptc += rd32(E1000_GPTC);
6386 adapter->stats.gotc += rd32(E1000_GOTCL);
6387 rd32(E1000_GOTCH); /* clear GOTCL */
6388 adapter->stats.rnbc += rd32(E1000_RNBC);
6389 adapter->stats.ruc += rd32(E1000_RUC);
6390 adapter->stats.rfc += rd32(E1000_RFC);
6391 adapter->stats.rjc += rd32(E1000_RJC);
6392 adapter->stats.tor += rd32(E1000_TORH);
6393 adapter->stats.tot += rd32(E1000_TOTH);
6394 adapter->stats.tpr += rd32(E1000_TPR);
6396 adapter->stats.ptc64 += rd32(E1000_PTC64);
6397 adapter->stats.ptc127 += rd32(E1000_PTC127);
6398 adapter->stats.ptc255 += rd32(E1000_PTC255);
6399 adapter->stats.ptc511 += rd32(E1000_PTC511);
6400 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6401 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6403 adapter->stats.mptc += rd32(E1000_MPTC);
6404 adapter->stats.bptc += rd32(E1000_BPTC);
6406 adapter->stats.tpt += rd32(E1000_TPT);
6407 adapter->stats.colc += rd32(E1000_COLC);
6409 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6410 /* read internal phy specific stats */
6411 reg = rd32(E1000_CTRL_EXT);
6412 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6413 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6415 /* this stat has invalid values on i210/i211 */
6416 if ((hw->mac.type != e1000_i210) &&
6417 (hw->mac.type != e1000_i211))
6418 adapter->stats.tncrs += rd32(E1000_TNCRS);
6421 adapter->stats.tsctc += rd32(E1000_TSCTC);
6422 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6424 adapter->stats.iac += rd32(E1000_IAC);
6425 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6426 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6427 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6428 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6429 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6430 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6431 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6432 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6434 /* Fill out the OS statistics structure */
6435 net_stats->multicast = adapter->stats.mprc;
6436 net_stats->collisions = adapter->stats.colc;
6440 /* RLEC on some newer hardware can be incorrect so build
6441 * our own version based on RUC and ROC
6443 net_stats->rx_errors = adapter->stats.rxerrc +
6444 adapter->stats.crcerrs + adapter->stats.algnerrc +
6445 adapter->stats.ruc + adapter->stats.roc +
6446 adapter->stats.cexterr;
6447 net_stats->rx_length_errors = adapter->stats.ruc +
6449 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6450 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6451 net_stats->rx_missed_errors = adapter->stats.mpc;
6454 net_stats->tx_errors = adapter->stats.ecol +
6455 adapter->stats.latecol;
6456 net_stats->tx_aborted_errors = adapter->stats.ecol;
6457 net_stats->tx_window_errors = adapter->stats.latecol;
6458 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6460 /* Tx Dropped needs to be maintained elsewhere */
6462 /* Management Stats */
6463 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6464 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6465 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6468 reg = rd32(E1000_MANC);
6469 if (reg & E1000_MANC_EN_BMC2OS) {
6470 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6471 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6472 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6473 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6477 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6479 struct e1000_hw *hw = &adapter->hw;
6480 struct ptp_clock_event event;
6481 struct timespec64 ts;
6482 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6484 if (tsicr & TSINTR_SYS_WRAP) {
6485 event.type = PTP_CLOCK_PPS;
6486 if (adapter->ptp_caps.pps)
6487 ptp_clock_event(adapter->ptp_clock, &event);
6488 ack |= TSINTR_SYS_WRAP;
6491 if (tsicr & E1000_TSICR_TXTS) {
6492 /* retrieve hardware timestamp */
6493 schedule_work(&adapter->ptp_tx_work);
6494 ack |= E1000_TSICR_TXTS;
6497 if (tsicr & TSINTR_TT0) {
6498 spin_lock(&adapter->tmreg_lock);
6499 ts = timespec64_add(adapter->perout[0].start,
6500 adapter->perout[0].period);
6501 /* u32 conversion of tv_sec is safe until y2106 */
6502 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6503 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6504 tsauxc = rd32(E1000_TSAUXC);
6505 tsauxc |= TSAUXC_EN_TT0;
6506 wr32(E1000_TSAUXC, tsauxc);
6507 adapter->perout[0].start = ts;
6508 spin_unlock(&adapter->tmreg_lock);
6512 if (tsicr & TSINTR_TT1) {
6513 spin_lock(&adapter->tmreg_lock);
6514 ts = timespec64_add(adapter->perout[1].start,
6515 adapter->perout[1].period);
6516 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6517 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6518 tsauxc = rd32(E1000_TSAUXC);
6519 tsauxc |= TSAUXC_EN_TT1;
6520 wr32(E1000_TSAUXC, tsauxc);
6521 adapter->perout[1].start = ts;
6522 spin_unlock(&adapter->tmreg_lock);
6526 if (tsicr & TSINTR_AUTT0) {
6527 nsec = rd32(E1000_AUXSTMPL0);
6528 sec = rd32(E1000_AUXSTMPH0);
6529 event.type = PTP_CLOCK_EXTTS;
6531 event.timestamp = sec * 1000000000ULL + nsec;
6532 ptp_clock_event(adapter->ptp_clock, &event);
6533 ack |= TSINTR_AUTT0;
6536 if (tsicr & TSINTR_AUTT1) {
6537 nsec = rd32(E1000_AUXSTMPL1);
6538 sec = rd32(E1000_AUXSTMPH1);
6539 event.type = PTP_CLOCK_EXTTS;
6541 event.timestamp = sec * 1000000000ULL + nsec;
6542 ptp_clock_event(adapter->ptp_clock, &event);
6543 ack |= TSINTR_AUTT1;
6546 /* acknowledge the interrupts */
6547 wr32(E1000_TSICR, ack);
6550 static irqreturn_t igb_msix_other(int irq, void *data)
6552 struct igb_adapter *adapter = data;
6553 struct e1000_hw *hw = &adapter->hw;
6554 u32 icr = rd32(E1000_ICR);
6555 /* reading ICR causes bit 31 of EICR to be cleared */
6557 if (icr & E1000_ICR_DRSTA)
6558 schedule_work(&adapter->reset_task);
6560 if (icr & E1000_ICR_DOUTSYNC) {
6561 /* HW is reporting DMA is out of sync */
6562 adapter->stats.doosync++;
6563 /* The DMA Out of Sync is also indication of a spoof event
6564 * in IOV mode. Check the Wrong VM Behavior register to
6565 * see if it is really a spoof event.
6567 igb_check_wvbr(adapter);
6570 /* Check for a mailbox event */
6571 if (icr & E1000_ICR_VMMB)
6572 igb_msg_task(adapter);
6574 if (icr & E1000_ICR_LSC) {
6575 hw->mac.get_link_status = 1;
6576 /* guard against interrupt when we're going down */
6577 if (!test_bit(__IGB_DOWN, &adapter->state))
6578 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6581 if (icr & E1000_ICR_TS)
6582 igb_tsync_interrupt(adapter);
6584 wr32(E1000_EIMS, adapter->eims_other);
6589 static void igb_write_itr(struct igb_q_vector *q_vector)
6591 struct igb_adapter *adapter = q_vector->adapter;
6592 u32 itr_val = q_vector->itr_val & 0x7FFC;
6594 if (!q_vector->set_itr)
6600 if (adapter->hw.mac.type == e1000_82575)
6601 itr_val |= itr_val << 16;
6603 itr_val |= E1000_EITR_CNT_IGNR;
6605 writel(itr_val, q_vector->itr_register);
6606 q_vector->set_itr = 0;
6609 static irqreturn_t igb_msix_ring(int irq, void *data)
6611 struct igb_q_vector *q_vector = data;
6613 /* Write the ITR value calculated from the previous interrupt. */
6614 igb_write_itr(q_vector);
6616 napi_schedule(&q_vector->napi);
6621 #ifdef CONFIG_IGB_DCA
6622 static void igb_update_tx_dca(struct igb_adapter *adapter,
6623 struct igb_ring *tx_ring,
6626 struct e1000_hw *hw = &adapter->hw;
6627 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6629 if (hw->mac.type != e1000_82575)
6630 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6632 /* We can enable relaxed ordering for reads, but not writes when
6633 * DCA is enabled. This is due to a known issue in some chipsets
6634 * which will cause the DCA tag to be cleared.
6636 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6637 E1000_DCA_TXCTRL_DATA_RRO_EN |
6638 E1000_DCA_TXCTRL_DESC_DCA_EN;
6640 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6643 static void igb_update_rx_dca(struct igb_adapter *adapter,
6644 struct igb_ring *rx_ring,
6647 struct e1000_hw *hw = &adapter->hw;
6648 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6650 if (hw->mac.type != e1000_82575)
6651 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6653 /* We can enable relaxed ordering for reads, but not writes when
6654 * DCA is enabled. This is due to a known issue in some chipsets
6655 * which will cause the DCA tag to be cleared.
6657 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6658 E1000_DCA_RXCTRL_DESC_DCA_EN;
6660 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6663 static void igb_update_dca(struct igb_q_vector *q_vector)
6665 struct igb_adapter *adapter = q_vector->adapter;
6666 int cpu = get_cpu();
6668 if (q_vector->cpu == cpu)
6671 if (q_vector->tx.ring)
6672 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6674 if (q_vector->rx.ring)
6675 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6677 q_vector->cpu = cpu;
6682 static void igb_setup_dca(struct igb_adapter *adapter)
6684 struct e1000_hw *hw = &adapter->hw;
6687 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6690 /* Always use CB2 mode, difference is masked in the CB driver. */
6691 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6693 for (i = 0; i < adapter->num_q_vectors; i++) {
6694 adapter->q_vector[i]->cpu = -1;
6695 igb_update_dca(adapter->q_vector[i]);
6699 static int __igb_notify_dca(struct device *dev, void *data)
6701 struct net_device *netdev = dev_get_drvdata(dev);
6702 struct igb_adapter *adapter = netdev_priv(netdev);
6703 struct pci_dev *pdev = adapter->pdev;
6704 struct e1000_hw *hw = &adapter->hw;
6705 unsigned long event = *(unsigned long *)data;
6708 case DCA_PROVIDER_ADD:
6709 /* if already enabled, don't do it again */
6710 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6712 if (dca_add_requester(dev) == 0) {
6713 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6714 dev_info(&pdev->dev, "DCA enabled\n");
6715 igb_setup_dca(adapter);
6718 /* Fall Through - since DCA is disabled. */
6719 case DCA_PROVIDER_REMOVE:
6720 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6721 /* without this a class_device is left
6722 * hanging around in the sysfs model
6724 dca_remove_requester(dev);
6725 dev_info(&pdev->dev, "DCA disabled\n");
6726 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6727 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6735 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6740 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6743 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6745 #endif /* CONFIG_IGB_DCA */
6747 #ifdef CONFIG_PCI_IOV
6748 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6750 unsigned char mac_addr[ETH_ALEN];
6752 eth_zero_addr(mac_addr);
6753 igb_set_vf_mac(adapter, vf, mac_addr);
6755 /* By default spoof check is enabled for all VFs */
6756 adapter->vf_data[vf].spoofchk_enabled = true;
6758 /* By default VFs are not trusted */
6759 adapter->vf_data[vf].trusted = false;
6765 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6767 struct e1000_hw *hw = &adapter->hw;
6771 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6772 ping = E1000_PF_CONTROL_MSG;
6773 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6774 ping |= E1000_VT_MSGTYPE_CTS;
6775 igb_write_mbx(hw, &ping, 1, i);
6779 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6781 struct e1000_hw *hw = &adapter->hw;
6782 u32 vmolr = rd32(E1000_VMOLR(vf));
6783 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6785 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6786 IGB_VF_FLAG_MULTI_PROMISC);
6787 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6789 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6790 vmolr |= E1000_VMOLR_MPME;
6791 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6792 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6794 /* if we have hashes and we are clearing a multicast promisc
6795 * flag we need to write the hashes to the MTA as this step
6796 * was previously skipped
6798 if (vf_data->num_vf_mc_hashes > 30) {
6799 vmolr |= E1000_VMOLR_MPME;
6800 } else if (vf_data->num_vf_mc_hashes) {
6803 vmolr |= E1000_VMOLR_ROMPE;
6804 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6805 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6809 wr32(E1000_VMOLR(vf), vmolr);
6811 /* there are flags left unprocessed, likely not supported */
6812 if (*msgbuf & E1000_VT_MSGINFO_MASK)
6818 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6819 u32 *msgbuf, u32 vf)
6821 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6822 u16 *hash_list = (u16 *)&msgbuf[1];
6823 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6826 /* salt away the number of multicast addresses assigned
6827 * to this VF for later use to restore when the PF multi cast
6830 vf_data->num_vf_mc_hashes = n;
6832 /* only up to 30 hash values supported */
6836 /* store the hashes for later use */
6837 for (i = 0; i < n; i++)
6838 vf_data->vf_mc_hashes[i] = hash_list[i];
6840 /* Flush and reset the mta with the new values */
6841 igb_set_rx_mode(adapter->netdev);
6846 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6848 struct e1000_hw *hw = &adapter->hw;
6849 struct vf_data_storage *vf_data;
6852 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6853 u32 vmolr = rd32(E1000_VMOLR(i));
6855 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6857 vf_data = &adapter->vf_data[i];
6859 if ((vf_data->num_vf_mc_hashes > 30) ||
6860 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6861 vmolr |= E1000_VMOLR_MPME;
6862 } else if (vf_data->num_vf_mc_hashes) {
6863 vmolr |= E1000_VMOLR_ROMPE;
6864 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6865 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6867 wr32(E1000_VMOLR(i), vmolr);
6871 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6873 struct e1000_hw *hw = &adapter->hw;
6874 u32 pool_mask, vlvf_mask, i;
6876 /* create mask for VF and other pools */
6877 pool_mask = E1000_VLVF_POOLSEL_MASK;
6878 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6880 /* drop PF from pool bits */
6881 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6882 adapter->vfs_allocated_count);
6884 /* Find the vlan filter for this id */
6885 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6886 u32 vlvf = rd32(E1000_VLVF(i));
6887 u32 vfta_mask, vid, vfta;
6889 /* remove the vf from the pool */
6890 if (!(vlvf & vlvf_mask))
6893 /* clear out bit from VLVF */
6896 /* if other pools are present, just remove ourselves */
6897 if (vlvf & pool_mask)
6900 /* if PF is present, leave VFTA */
6901 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6904 vid = vlvf & E1000_VLVF_VLANID_MASK;
6905 vfta_mask = BIT(vid % 32);
6907 /* clear bit from VFTA */
6908 vfta = adapter->shadow_vfta[vid / 32];
6909 if (vfta & vfta_mask)
6910 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6912 /* clear pool selection enable */
6913 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6914 vlvf &= E1000_VLVF_POOLSEL_MASK;
6918 /* clear pool bits */
6919 wr32(E1000_VLVF(i), vlvf);
6923 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6928 /* short cut the special case */
6932 /* Search for the VLAN id in the VLVF entries */
6933 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6934 vlvf = rd32(E1000_VLVF(idx));
6935 if ((vlvf & VLAN_VID_MASK) == vlan)
6942 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6944 struct e1000_hw *hw = &adapter->hw;
6948 idx = igb_find_vlvf_entry(hw, vid);
6952 /* See if any other pools are set for this VLAN filter
6953 * entry other than the PF.
6955 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6956 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6957 bits &= rd32(E1000_VLVF(idx));
6959 /* Disable the filter so this falls into the default pool. */
6961 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6962 wr32(E1000_VLVF(idx), BIT(pf_id));
6964 wr32(E1000_VLVF(idx), 0);
6968 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6971 int pf_id = adapter->vfs_allocated_count;
6972 struct e1000_hw *hw = &adapter->hw;
6975 /* If VLAN overlaps with one the PF is currently monitoring make
6976 * sure that we are able to allocate a VLVF entry. This may be
6977 * redundant but it guarantees PF will maintain visibility to
6980 if (add && test_bit(vid, adapter->active_vlans)) {
6981 err = igb_vfta_set(hw, vid, pf_id, true, false);
6986 err = igb_vfta_set(hw, vid, vf, add, false);
6991 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6992 * we may need to drop the PF pool bit in order to allow us to free
6993 * up the VLVF resources.
6995 if (test_bit(vid, adapter->active_vlans) ||
6996 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6997 igb_update_pf_vlvf(adapter, vid);
7002 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7004 struct e1000_hw *hw = &adapter->hw;
7007 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7009 wr32(E1000_VMVIR(vf), 0);
7012 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7017 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7021 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7022 igb_set_vmolr(adapter, vf, !vlan);
7024 /* revoke access to previous VLAN */
7025 if (vlan != adapter->vf_data[vf].pf_vlan)
7026 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7029 adapter->vf_data[vf].pf_vlan = vlan;
7030 adapter->vf_data[vf].pf_qos = qos;
7031 igb_set_vf_vlan_strip(adapter, vf, true);
7032 dev_info(&adapter->pdev->dev,
7033 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7034 if (test_bit(__IGB_DOWN, &adapter->state)) {
7035 dev_warn(&adapter->pdev->dev,
7036 "The VF VLAN has been set, but the PF device is not up.\n");
7037 dev_warn(&adapter->pdev->dev,
7038 "Bring the PF device up before attempting to use the VF device.\n");
7044 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7046 /* Restore tagless access via VLAN 0 */
7047 igb_set_vf_vlan(adapter, 0, true, vf);
7049 igb_set_vmvir(adapter, 0, vf);
7050 igb_set_vmolr(adapter, vf, true);
7052 /* Remove any PF assigned VLAN */
7053 if (adapter->vf_data[vf].pf_vlan)
7054 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7057 adapter->vf_data[vf].pf_vlan = 0;
7058 adapter->vf_data[vf].pf_qos = 0;
7059 igb_set_vf_vlan_strip(adapter, vf, false);
7064 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7065 u16 vlan, u8 qos, __be16 vlan_proto)
7067 struct igb_adapter *adapter = netdev_priv(netdev);
7069 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7072 if (vlan_proto != htons(ETH_P_8021Q))
7073 return -EPROTONOSUPPORT;
7075 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7076 igb_disable_port_vlan(adapter, vf);
7079 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7081 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7082 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7085 if (adapter->vf_data[vf].pf_vlan)
7088 /* VLAN 0 is a special case, don't allow it to be removed */
7092 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7094 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7098 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7100 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7102 /* clear flags - except flag that indicates PF has set the MAC */
7103 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7104 vf_data->last_nack = jiffies;
7106 /* reset vlans for device */
7107 igb_clear_vf_vfta(adapter, vf);
7108 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7109 igb_set_vmvir(adapter, vf_data->pf_vlan |
7110 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7111 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7112 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7114 /* reset multicast table array for vf */
7115 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7117 /* Flush and reset the mta with the new values */
7118 igb_set_rx_mode(adapter->netdev);
7121 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7123 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7125 /* clear mac address as we were hotplug removed/added */
7126 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7127 eth_zero_addr(vf_mac);
7129 /* process remaining reset events */
7130 igb_vf_reset(adapter, vf);
7133 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7135 struct e1000_hw *hw = &adapter->hw;
7136 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7138 u8 *addr = (u8 *)(&msgbuf[1]);
7140 /* process all the same items cleared in a function level reset */
7141 igb_vf_reset(adapter, vf);
7143 /* set vf mac address */
7144 igb_set_vf_mac(adapter, vf, vf_mac);
7146 /* enable transmit and receive for vf */
7147 reg = rd32(E1000_VFTE);
7148 wr32(E1000_VFTE, reg | BIT(vf));
7149 reg = rd32(E1000_VFRE);
7150 wr32(E1000_VFRE, reg | BIT(vf));
7152 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7154 /* reply to reset with ack and vf mac address */
7155 if (!is_zero_ether_addr(vf_mac)) {
7156 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7157 memcpy(addr, vf_mac, ETH_ALEN);
7159 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7161 igb_write_mbx(hw, msgbuf, 3, vf);
7164 static void igb_flush_mac_table(struct igb_adapter *adapter)
7166 struct e1000_hw *hw = &adapter->hw;
7169 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7170 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7171 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7172 adapter->mac_table[i].queue = 0;
7173 igb_rar_set_index(adapter, i);
7177 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7179 struct e1000_hw *hw = &adapter->hw;
7180 /* do not count rar entries reserved for VFs MAC addresses */
7181 int rar_entries = hw->mac.rar_entry_count -
7182 adapter->vfs_allocated_count;
7185 for (i = 0; i < rar_entries; i++) {
7186 /* do not count default entries */
7187 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7190 /* do not count "in use" entries for different queues */
7191 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7192 (adapter->mac_table[i].queue != queue))
7201 /* Set default MAC address for the PF in the first RAR entry */
7202 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7204 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7206 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7207 mac_table->queue = adapter->vfs_allocated_count;
7208 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7210 igb_rar_set_index(adapter, 0);
7213 /* If the filter to be added and an already existing filter express
7214 * the same address and address type, it should be possible to only
7215 * override the other configurations, for example the queue to steer
7218 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7219 const u8 *addr, const u8 flags)
7221 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7224 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7225 (flags & IGB_MAC_STATE_SRC_ADDR))
7228 if (!ether_addr_equal(addr, entry->addr))
7234 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7235 * 'flags' is used to indicate what kind of match is made, match is by
7236 * default for the destination address, if matching by source address
7237 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7239 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7240 const u8 *addr, const u8 queue,
7243 struct e1000_hw *hw = &adapter->hw;
7244 int rar_entries = hw->mac.rar_entry_count -
7245 adapter->vfs_allocated_count;
7248 if (is_zero_ether_addr(addr))
7251 /* Search for the first empty entry in the MAC table.
7252 * Do not touch entries at the end of the table reserved for the VF MAC
7255 for (i = 0; i < rar_entries; i++) {
7256 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7260 ether_addr_copy(adapter->mac_table[i].addr, addr);
7261 adapter->mac_table[i].queue = queue;
7262 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7264 igb_rar_set_index(adapter, i);
7271 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7274 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7277 /* Remove a MAC filter for 'addr' directing matching traffic to
7278 * 'queue', 'flags' is used to indicate what kind of match need to be
7279 * removed, match is by default for the destination address, if
7280 * matching by source address is to be removed the flag
7281 * IGB_MAC_STATE_SRC_ADDR can be used.
7283 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7284 const u8 *addr, const u8 queue,
7287 struct e1000_hw *hw = &adapter->hw;
7288 int rar_entries = hw->mac.rar_entry_count -
7289 adapter->vfs_allocated_count;
7292 if (is_zero_ether_addr(addr))
7295 /* Search for matching entry in the MAC table based on given address
7296 * and queue. Do not touch entries at the end of the table reserved
7297 * for the VF MAC addresses.
7299 for (i = 0; i < rar_entries; i++) {
7300 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7302 if ((adapter->mac_table[i].state & flags) != flags)
7304 if (adapter->mac_table[i].queue != queue)
7306 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7309 /* When a filter for the default address is "deleted",
7310 * we return it to its initial configuration
7312 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7313 adapter->mac_table[i].state =
7314 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7315 adapter->mac_table[i].queue =
7316 adapter->vfs_allocated_count;
7318 adapter->mac_table[i].state = 0;
7319 adapter->mac_table[i].queue = 0;
7320 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7323 igb_rar_set_index(adapter, i);
7330 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7333 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7336 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7337 const u8 *addr, u8 queue, u8 flags)
7339 struct e1000_hw *hw = &adapter->hw;
7341 /* In theory, this should be supported on 82575 as well, but
7342 * that part wasn't easily accessible during development.
7344 if (hw->mac.type != e1000_i210)
7347 return igb_add_mac_filter_flags(adapter, addr, queue,
7348 IGB_MAC_STATE_QUEUE_STEERING | flags);
7351 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7352 const u8 *addr, u8 queue, u8 flags)
7354 return igb_del_mac_filter_flags(adapter, addr, queue,
7355 IGB_MAC_STATE_QUEUE_STEERING | flags);
7358 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7360 struct igb_adapter *adapter = netdev_priv(netdev);
7363 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7365 return min_t(int, ret, 0);
7368 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7370 struct igb_adapter *adapter = netdev_priv(netdev);
7372 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7377 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7378 const u32 info, const u8 *addr)
7380 struct pci_dev *pdev = adapter->pdev;
7381 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7382 struct list_head *pos;
7383 struct vf_mac_filter *entry = NULL;
7387 case E1000_VF_MAC_FILTER_CLR:
7388 /* remove all unicast MAC filters related to the current VF */
7389 list_for_each(pos, &adapter->vf_macs.l) {
7390 entry = list_entry(pos, struct vf_mac_filter, l);
7391 if (entry->vf == vf) {
7394 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7398 case E1000_VF_MAC_FILTER_ADD:
7399 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7400 !vf_data->trusted) {
7401 dev_warn(&pdev->dev,
7402 "VF %d requested MAC filter but is administratively denied\n",
7406 if (!is_valid_ether_addr(addr)) {
7407 dev_warn(&pdev->dev,
7408 "VF %d attempted to set invalid MAC filter\n",
7413 /* try to find empty slot in the list */
7414 list_for_each(pos, &adapter->vf_macs.l) {
7415 entry = list_entry(pos, struct vf_mac_filter, l);
7420 if (entry && entry->free) {
7421 entry->free = false;
7423 ether_addr_copy(entry->vf_mac, addr);
7425 ret = igb_add_mac_filter(adapter, addr, vf);
7426 ret = min_t(int, ret, 0);
7432 dev_warn(&pdev->dev,
7433 "VF %d has requested MAC filter but there is no space for it\n",
7444 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7446 struct pci_dev *pdev = adapter->pdev;
7447 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7448 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7450 /* The VF MAC Address is stored in a packed array of bytes
7451 * starting at the second 32 bit word of the msg array
7453 unsigned char *addr = (unsigned char *)&msg[1];
7457 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7458 !vf_data->trusted) {
7459 dev_warn(&pdev->dev,
7460 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7465 if (!is_valid_ether_addr(addr)) {
7466 dev_warn(&pdev->dev,
7467 "VF %d attempted to set invalid MAC\n",
7472 ret = igb_set_vf_mac(adapter, vf, addr);
7474 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7480 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7482 struct e1000_hw *hw = &adapter->hw;
7483 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7484 u32 msg = E1000_VT_MSGTYPE_NACK;
7486 /* if device isn't clear to send it shouldn't be reading either */
7487 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7488 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7489 igb_write_mbx(hw, &msg, 1, vf);
7490 vf_data->last_nack = jiffies;
7494 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7496 struct pci_dev *pdev = adapter->pdev;
7497 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7498 struct e1000_hw *hw = &adapter->hw;
7499 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7502 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7505 /* if receive failed revoke VF CTS stats and restart init */
7506 dev_err(&pdev->dev, "Error receiving message from VF\n");
7507 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7508 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7513 /* this is a message we already processed, do nothing */
7514 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7517 /* until the vf completes a reset it should not be
7518 * allowed to start any configuration.
7520 if (msgbuf[0] == E1000_VF_RESET) {
7521 /* unlocks mailbox */
7522 igb_vf_reset_msg(adapter, vf);
7526 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7527 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7533 switch ((msgbuf[0] & 0xFFFF)) {
7534 case E1000_VF_SET_MAC_ADDR:
7535 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7537 case E1000_VF_SET_PROMISC:
7538 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7540 case E1000_VF_SET_MULTICAST:
7541 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7543 case E1000_VF_SET_LPE:
7544 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7546 case E1000_VF_SET_VLAN:
7548 if (vf_data->pf_vlan)
7549 dev_warn(&pdev->dev,
7550 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7553 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7556 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7561 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7563 /* notify the VF of the results of what it sent us */
7565 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7567 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7569 /* unlocks mailbox */
7570 igb_write_mbx(hw, msgbuf, 1, vf);
7574 igb_unlock_mbx(hw, vf);
7577 static void igb_msg_task(struct igb_adapter *adapter)
7579 struct e1000_hw *hw = &adapter->hw;
7582 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7583 /* process any reset requests */
7584 if (!igb_check_for_rst(hw, vf))
7585 igb_vf_reset_event(adapter, vf);
7587 /* process any messages pending */
7588 if (!igb_check_for_msg(hw, vf))
7589 igb_rcv_msg_from_vf(adapter, vf);
7591 /* process any acks */
7592 if (!igb_check_for_ack(hw, vf))
7593 igb_rcv_ack_from_vf(adapter, vf);
7598 * igb_set_uta - Set unicast filter table address
7599 * @adapter: board private structure
7600 * @set: boolean indicating if we are setting or clearing bits
7602 * The unicast table address is a register array of 32-bit registers.
7603 * The table is meant to be used in a way similar to how the MTA is used
7604 * however due to certain limitations in the hardware it is necessary to
7605 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7606 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7608 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7610 struct e1000_hw *hw = &adapter->hw;
7611 u32 uta = set ? ~0 : 0;
7614 /* we only need to do this if VMDq is enabled */
7615 if (!adapter->vfs_allocated_count)
7618 for (i = hw->mac.uta_reg_count; i--;)
7619 array_wr32(E1000_UTA, i, uta);
7623 * igb_intr_msi - Interrupt Handler
7624 * @irq: interrupt number
7625 * @data: pointer to a network interface device structure
7627 static irqreturn_t igb_intr_msi(int irq, void *data)
7629 struct igb_adapter *adapter = data;
7630 struct igb_q_vector *q_vector = adapter->q_vector[0];
7631 struct e1000_hw *hw = &adapter->hw;
7632 /* read ICR disables interrupts using IAM */
7633 u32 icr = rd32(E1000_ICR);
7635 igb_write_itr(q_vector);
7637 if (icr & E1000_ICR_DRSTA)
7638 schedule_work(&adapter->reset_task);
7640 if (icr & E1000_ICR_DOUTSYNC) {
7641 /* HW is reporting DMA is out of sync */
7642 adapter->stats.doosync++;
7645 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7646 hw->mac.get_link_status = 1;
7647 if (!test_bit(__IGB_DOWN, &adapter->state))
7648 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7651 if (icr & E1000_ICR_TS)
7652 igb_tsync_interrupt(adapter);
7654 napi_schedule(&q_vector->napi);
7660 * igb_intr - Legacy Interrupt Handler
7661 * @irq: interrupt number
7662 * @data: pointer to a network interface device structure
7664 static irqreturn_t igb_intr(int irq, void *data)
7666 struct igb_adapter *adapter = data;
7667 struct igb_q_vector *q_vector = adapter->q_vector[0];
7668 struct e1000_hw *hw = &adapter->hw;
7669 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7670 * need for the IMC write
7672 u32 icr = rd32(E1000_ICR);
7674 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7675 * not set, then the adapter didn't send an interrupt
7677 if (!(icr & E1000_ICR_INT_ASSERTED))
7680 igb_write_itr(q_vector);
7682 if (icr & E1000_ICR_DRSTA)
7683 schedule_work(&adapter->reset_task);
7685 if (icr & E1000_ICR_DOUTSYNC) {
7686 /* HW is reporting DMA is out of sync */
7687 adapter->stats.doosync++;
7690 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7691 hw->mac.get_link_status = 1;
7692 /* guard against interrupt when we're going down */
7693 if (!test_bit(__IGB_DOWN, &adapter->state))
7694 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7697 if (icr & E1000_ICR_TS)
7698 igb_tsync_interrupt(adapter);
7700 napi_schedule(&q_vector->napi);
7705 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7707 struct igb_adapter *adapter = q_vector->adapter;
7708 struct e1000_hw *hw = &adapter->hw;
7710 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7711 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7712 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7713 igb_set_itr(q_vector);
7715 igb_update_ring_itr(q_vector);
7718 if (!test_bit(__IGB_DOWN, &adapter->state)) {
7719 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7720 wr32(E1000_EIMS, q_vector->eims_value);
7722 igb_irq_enable(adapter);
7727 * igb_poll - NAPI Rx polling callback
7728 * @napi: napi polling structure
7729 * @budget: count of how many packets we should handle
7731 static int igb_poll(struct napi_struct *napi, int budget)
7733 struct igb_q_vector *q_vector = container_of(napi,
7734 struct igb_q_vector,
7736 bool clean_complete = true;
7739 #ifdef CONFIG_IGB_DCA
7740 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7741 igb_update_dca(q_vector);
7743 if (q_vector->tx.ring)
7744 clean_complete = igb_clean_tx_irq(q_vector, budget);
7746 if (q_vector->rx.ring) {
7747 int cleaned = igb_clean_rx_irq(q_vector, budget);
7749 work_done += cleaned;
7750 if (cleaned >= budget)
7751 clean_complete = false;
7754 /* If all work not completed, return budget and keep polling */
7755 if (!clean_complete)
7758 /* Exit the polling mode, but don't re-enable interrupts if stack might
7759 * poll us due to busy-polling
7761 if (likely(napi_complete_done(napi, work_done)))
7762 igb_ring_irq_enable(q_vector);
7764 return min(work_done, budget - 1);
7768 * igb_clean_tx_irq - Reclaim resources after transmit completes
7769 * @q_vector: pointer to q_vector containing needed info
7770 * @napi_budget: Used to determine if we are in netpoll
7772 * returns true if ring is completely cleaned
7774 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7776 struct igb_adapter *adapter = q_vector->adapter;
7777 struct igb_ring *tx_ring = q_vector->tx.ring;
7778 struct igb_tx_buffer *tx_buffer;
7779 union e1000_adv_tx_desc *tx_desc;
7780 unsigned int total_bytes = 0, total_packets = 0;
7781 unsigned int budget = q_vector->tx.work_limit;
7782 unsigned int i = tx_ring->next_to_clean;
7784 if (test_bit(__IGB_DOWN, &adapter->state))
7787 tx_buffer = &tx_ring->tx_buffer_info[i];
7788 tx_desc = IGB_TX_DESC(tx_ring, i);
7789 i -= tx_ring->count;
7792 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7794 /* if next_to_watch is not set then there is no work pending */
7798 /* prevent any other reads prior to eop_desc */
7801 /* if DD is not set pending work has not been completed */
7802 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7805 /* clear next_to_watch to prevent false hangs */
7806 tx_buffer->next_to_watch = NULL;
7808 /* update the statistics for this packet */
7809 total_bytes += tx_buffer->bytecount;
7810 total_packets += tx_buffer->gso_segs;
7813 napi_consume_skb(tx_buffer->skb, napi_budget);
7815 /* unmap skb header data */
7816 dma_unmap_single(tx_ring->dev,
7817 dma_unmap_addr(tx_buffer, dma),
7818 dma_unmap_len(tx_buffer, len),
7821 /* clear tx_buffer data */
7822 dma_unmap_len_set(tx_buffer, len, 0);
7824 /* clear last DMA location and unmap remaining buffers */
7825 while (tx_desc != eop_desc) {
7830 i -= tx_ring->count;
7831 tx_buffer = tx_ring->tx_buffer_info;
7832 tx_desc = IGB_TX_DESC(tx_ring, 0);
7835 /* unmap any remaining paged data */
7836 if (dma_unmap_len(tx_buffer, len)) {
7837 dma_unmap_page(tx_ring->dev,
7838 dma_unmap_addr(tx_buffer, dma),
7839 dma_unmap_len(tx_buffer, len),
7841 dma_unmap_len_set(tx_buffer, len, 0);
7845 /* move us one more past the eop_desc for start of next pkt */
7850 i -= tx_ring->count;
7851 tx_buffer = tx_ring->tx_buffer_info;
7852 tx_desc = IGB_TX_DESC(tx_ring, 0);
7855 /* issue prefetch for next Tx descriptor */
7858 /* update budget accounting */
7860 } while (likely(budget));
7862 netdev_tx_completed_queue(txring_txq(tx_ring),
7863 total_packets, total_bytes);
7864 i += tx_ring->count;
7865 tx_ring->next_to_clean = i;
7866 u64_stats_update_begin(&tx_ring->tx_syncp);
7867 tx_ring->tx_stats.bytes += total_bytes;
7868 tx_ring->tx_stats.packets += total_packets;
7869 u64_stats_update_end(&tx_ring->tx_syncp);
7870 q_vector->tx.total_bytes += total_bytes;
7871 q_vector->tx.total_packets += total_packets;
7873 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7874 struct e1000_hw *hw = &adapter->hw;
7876 /* Detect a transmit hang in hardware, this serializes the
7877 * check with the clearing of time_stamp and movement of i
7879 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7880 if (tx_buffer->next_to_watch &&
7881 time_after(jiffies, tx_buffer->time_stamp +
7882 (adapter->tx_timeout_factor * HZ)) &&
7883 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7885 /* detected Tx unit hang */
7886 dev_err(tx_ring->dev,
7887 "Detected Tx Unit Hang\n"
7891 " next_to_use <%x>\n"
7892 " next_to_clean <%x>\n"
7893 "buffer_info[next_to_clean]\n"
7894 " time_stamp <%lx>\n"
7895 " next_to_watch <%p>\n"
7897 " desc.status <%x>\n",
7898 tx_ring->queue_index,
7899 rd32(E1000_TDH(tx_ring->reg_idx)),
7900 readl(tx_ring->tail),
7901 tx_ring->next_to_use,
7902 tx_ring->next_to_clean,
7903 tx_buffer->time_stamp,
7904 tx_buffer->next_to_watch,
7906 tx_buffer->next_to_watch->wb.status);
7907 netif_stop_subqueue(tx_ring->netdev,
7908 tx_ring->queue_index);
7910 /* we are about to reset, no point in enabling stuff */
7915 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7916 if (unlikely(total_packets &&
7917 netif_carrier_ok(tx_ring->netdev) &&
7918 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7919 /* Make sure that anybody stopping the queue after this
7920 * sees the new next_to_clean.
7923 if (__netif_subqueue_stopped(tx_ring->netdev,
7924 tx_ring->queue_index) &&
7925 !(test_bit(__IGB_DOWN, &adapter->state))) {
7926 netif_wake_subqueue(tx_ring->netdev,
7927 tx_ring->queue_index);
7929 u64_stats_update_begin(&tx_ring->tx_syncp);
7930 tx_ring->tx_stats.restart_queue++;
7931 u64_stats_update_end(&tx_ring->tx_syncp);
7939 * igb_reuse_rx_page - page flip buffer and store it back on the ring
7940 * @rx_ring: rx descriptor ring to store buffers on
7941 * @old_buff: donor buffer to have page reused
7943 * Synchronizes page for reuse by the adapter
7945 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7946 struct igb_rx_buffer *old_buff)
7948 struct igb_rx_buffer *new_buff;
7949 u16 nta = rx_ring->next_to_alloc;
7951 new_buff = &rx_ring->rx_buffer_info[nta];
7953 /* update, and store next to alloc */
7955 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7957 /* Transfer page from old buffer to new buffer.
7958 * Move each member individually to avoid possible store
7959 * forwarding stalls.
7961 new_buff->dma = old_buff->dma;
7962 new_buff->page = old_buff->page;
7963 new_buff->page_offset = old_buff->page_offset;
7964 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
7967 static inline bool igb_page_is_reserved(struct page *page)
7969 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7972 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7974 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7975 struct page *page = rx_buffer->page;
7977 /* avoid re-using remote pages */
7978 if (unlikely(igb_page_is_reserved(page)))
7981 #if (PAGE_SIZE < 8192)
7982 /* if we are only owner of page we can reuse it */
7983 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7986 #define IGB_LAST_OFFSET \
7987 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7989 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7993 /* If we have drained the page fragment pool we need to update
7994 * the pagecnt_bias and page count so that we fully restock the
7995 * number of references the driver holds.
7997 if (unlikely(!pagecnt_bias)) {
7998 page_ref_add(page, USHRT_MAX);
7999 rx_buffer->pagecnt_bias = USHRT_MAX;
8006 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8007 * @rx_ring: rx descriptor ring to transact packets on
8008 * @rx_buffer: buffer containing page to add
8009 * @skb: sk_buff to place the data into
8010 * @size: size of buffer to be added
8012 * This function will add the data contained in rx_buffer->page to the skb.
8014 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8015 struct igb_rx_buffer *rx_buffer,
8016 struct sk_buff *skb,
8019 #if (PAGE_SIZE < 8192)
8020 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8022 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8023 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8024 SKB_DATA_ALIGN(size);
8026 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8027 rx_buffer->page_offset, size, truesize);
8028 #if (PAGE_SIZE < 8192)
8029 rx_buffer->page_offset ^= truesize;
8031 rx_buffer->page_offset += truesize;
8035 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8036 struct igb_rx_buffer *rx_buffer,
8037 union e1000_adv_rx_desc *rx_desc,
8040 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8041 #if (PAGE_SIZE < 8192)
8042 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8044 unsigned int truesize = SKB_DATA_ALIGN(size);
8046 unsigned int headlen;
8047 struct sk_buff *skb;
8049 /* prefetch first cache line of first page */
8051 #if L1_CACHE_BYTES < 128
8052 prefetch(va + L1_CACHE_BYTES);
8055 /* allocate a skb to store the frags */
8056 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8060 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8061 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8062 va += IGB_TS_HDR_LEN;
8063 size -= IGB_TS_HDR_LEN;
8066 /* Determine available headroom for copy */
8068 if (headlen > IGB_RX_HDR_LEN)
8069 headlen = eth_get_headlen(skb->dev, va, IGB_RX_HDR_LEN);
8071 /* align pull length to size of long to optimize memcpy performance */
8072 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8074 /* update all of the pointers */
8077 skb_add_rx_frag(skb, 0, rx_buffer->page,
8078 (va + headlen) - page_address(rx_buffer->page),
8080 #if (PAGE_SIZE < 8192)
8081 rx_buffer->page_offset ^= truesize;
8083 rx_buffer->page_offset += truesize;
8086 rx_buffer->pagecnt_bias++;
8092 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8093 struct igb_rx_buffer *rx_buffer,
8094 union e1000_adv_rx_desc *rx_desc,
8097 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8098 #if (PAGE_SIZE < 8192)
8099 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8101 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8102 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8104 struct sk_buff *skb;
8106 /* prefetch first cache line of first page */
8108 #if L1_CACHE_BYTES < 128
8109 prefetch(va + L1_CACHE_BYTES);
8112 /* build an skb around the page buffer */
8113 skb = build_skb(va - IGB_SKB_PAD, truesize);
8117 /* update pointers within the skb to store the data */
8118 skb_reserve(skb, IGB_SKB_PAD);
8119 __skb_put(skb, size);
8121 /* pull timestamp out of packet data */
8122 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8123 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8124 __skb_pull(skb, IGB_TS_HDR_LEN);
8127 /* update buffer offset */
8128 #if (PAGE_SIZE < 8192)
8129 rx_buffer->page_offset ^= truesize;
8131 rx_buffer->page_offset += truesize;
8137 static inline void igb_rx_checksum(struct igb_ring *ring,
8138 union e1000_adv_rx_desc *rx_desc,
8139 struct sk_buff *skb)
8141 skb_checksum_none_assert(skb);
8143 /* Ignore Checksum bit is set */
8144 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8147 /* Rx checksum disabled via ethtool */
8148 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8151 /* TCP/UDP checksum error bit is set */
8152 if (igb_test_staterr(rx_desc,
8153 E1000_RXDEXT_STATERR_TCPE |
8154 E1000_RXDEXT_STATERR_IPE)) {
8155 /* work around errata with sctp packets where the TCPE aka
8156 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8157 * packets, (aka let the stack check the crc32c)
8159 if (!((skb->len == 60) &&
8160 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8161 u64_stats_update_begin(&ring->rx_syncp);
8162 ring->rx_stats.csum_err++;
8163 u64_stats_update_end(&ring->rx_syncp);
8165 /* let the stack verify checksum errors */
8168 /* It must be a TCP or UDP packet with a valid checksum */
8169 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8170 E1000_RXD_STAT_UDPCS))
8171 skb->ip_summed = CHECKSUM_UNNECESSARY;
8173 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8174 le32_to_cpu(rx_desc->wb.upper.status_error));
8177 static inline void igb_rx_hash(struct igb_ring *ring,
8178 union e1000_adv_rx_desc *rx_desc,
8179 struct sk_buff *skb)
8181 if (ring->netdev->features & NETIF_F_RXHASH)
8183 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8188 * igb_is_non_eop - process handling of non-EOP buffers
8189 * @rx_ring: Rx ring being processed
8190 * @rx_desc: Rx descriptor for current buffer
8191 * @skb: current socket buffer containing buffer in progress
8193 * This function updates next to clean. If the buffer is an EOP buffer
8194 * this function exits returning false, otherwise it will place the
8195 * sk_buff in the next buffer to be chained and return true indicating
8196 * that this is in fact a non-EOP buffer.
8198 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8199 union e1000_adv_rx_desc *rx_desc)
8201 u32 ntc = rx_ring->next_to_clean + 1;
8203 /* fetch, update, and store next to clean */
8204 ntc = (ntc < rx_ring->count) ? ntc : 0;
8205 rx_ring->next_to_clean = ntc;
8207 prefetch(IGB_RX_DESC(rx_ring, ntc));
8209 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8216 * igb_cleanup_headers - Correct corrupted or empty headers
8217 * @rx_ring: rx descriptor ring packet is being transacted on
8218 * @rx_desc: pointer to the EOP Rx descriptor
8219 * @skb: pointer to current skb being fixed
8221 * Address the case where we are pulling data in on pages only
8222 * and as such no data is present in the skb header.
8224 * In addition if skb is not at least 60 bytes we need to pad it so that
8225 * it is large enough to qualify as a valid Ethernet frame.
8227 * Returns true if an error was encountered and skb was freed.
8229 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8230 union e1000_adv_rx_desc *rx_desc,
8231 struct sk_buff *skb)
8233 if (unlikely((igb_test_staterr(rx_desc,
8234 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8235 struct net_device *netdev = rx_ring->netdev;
8236 if (!(netdev->features & NETIF_F_RXALL)) {
8237 dev_kfree_skb_any(skb);
8242 /* if eth_skb_pad returns an error the skb was freed */
8243 if (eth_skb_pad(skb))
8250 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8251 * @rx_ring: rx descriptor ring packet is being transacted on
8252 * @rx_desc: pointer to the EOP Rx descriptor
8253 * @skb: pointer to current skb being populated
8255 * This function checks the ring, descriptor, and packet information in
8256 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8257 * other fields within the skb.
8259 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8260 union e1000_adv_rx_desc *rx_desc,
8261 struct sk_buff *skb)
8263 struct net_device *dev = rx_ring->netdev;
8265 igb_rx_hash(rx_ring, rx_desc, skb);
8267 igb_rx_checksum(rx_ring, rx_desc, skb);
8269 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8270 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8271 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8273 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8274 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8277 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8278 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8279 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8281 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8283 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8286 skb_record_rx_queue(skb, rx_ring->queue_index);
8288 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8291 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8292 const unsigned int size)
8294 struct igb_rx_buffer *rx_buffer;
8296 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8297 prefetchw(rx_buffer->page);
8299 /* we are reusing so sync this buffer for CPU use */
8300 dma_sync_single_range_for_cpu(rx_ring->dev,
8302 rx_buffer->page_offset,
8306 rx_buffer->pagecnt_bias--;
8311 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8312 struct igb_rx_buffer *rx_buffer)
8314 if (igb_can_reuse_rx_page(rx_buffer)) {
8315 /* hand second half of page back to the ring */
8316 igb_reuse_rx_page(rx_ring, rx_buffer);
8318 /* We are not reusing the buffer so unmap it and free
8319 * any references we are holding to it
8321 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8322 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8324 __page_frag_cache_drain(rx_buffer->page,
8325 rx_buffer->pagecnt_bias);
8328 /* clear contents of rx_buffer */
8329 rx_buffer->page = NULL;
8332 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8334 struct igb_ring *rx_ring = q_vector->rx.ring;
8335 struct sk_buff *skb = rx_ring->skb;
8336 unsigned int total_bytes = 0, total_packets = 0;
8337 u16 cleaned_count = igb_desc_unused(rx_ring);
8339 while (likely(total_packets < budget)) {
8340 union e1000_adv_rx_desc *rx_desc;
8341 struct igb_rx_buffer *rx_buffer;
8344 /* return some buffers to hardware, one at a time is too slow */
8345 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8346 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8350 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8351 size = le16_to_cpu(rx_desc->wb.upper.length);
8355 /* This memory barrier is needed to keep us from reading
8356 * any other fields out of the rx_desc until we know the
8357 * descriptor has been written back
8361 rx_buffer = igb_get_rx_buffer(rx_ring, size);
8363 /* retrieve a buffer from the ring */
8365 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8366 else if (ring_uses_build_skb(rx_ring))
8367 skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8369 skb = igb_construct_skb(rx_ring, rx_buffer,
8372 /* exit if we failed to retrieve a buffer */
8374 rx_ring->rx_stats.alloc_failed++;
8375 rx_buffer->pagecnt_bias++;
8379 igb_put_rx_buffer(rx_ring, rx_buffer);
8382 /* fetch next buffer in frame if non-eop */
8383 if (igb_is_non_eop(rx_ring, rx_desc))
8386 /* verify the packet layout is correct */
8387 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8392 /* probably a little skewed due to removing CRC */
8393 total_bytes += skb->len;
8395 /* populate checksum, timestamp, VLAN, and protocol */
8396 igb_process_skb_fields(rx_ring, rx_desc, skb);
8398 napi_gro_receive(&q_vector->napi, skb);
8400 /* reset skb pointer */
8403 /* update budget accounting */
8407 /* place incomplete frames back on ring for completion */
8410 u64_stats_update_begin(&rx_ring->rx_syncp);
8411 rx_ring->rx_stats.packets += total_packets;
8412 rx_ring->rx_stats.bytes += total_bytes;
8413 u64_stats_update_end(&rx_ring->rx_syncp);
8414 q_vector->rx.total_packets += total_packets;
8415 q_vector->rx.total_bytes += total_bytes;
8418 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8420 return total_packets;
8423 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8425 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8428 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8429 struct igb_rx_buffer *bi)
8431 struct page *page = bi->page;
8434 /* since we are recycling buffers we should seldom need to alloc */
8438 /* alloc new page for storage */
8439 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8440 if (unlikely(!page)) {
8441 rx_ring->rx_stats.alloc_failed++;
8445 /* map page for use */
8446 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8447 igb_rx_pg_size(rx_ring),
8451 /* if mapping failed free memory back to system since
8452 * there isn't much point in holding memory we can't use
8454 if (dma_mapping_error(rx_ring->dev, dma)) {
8455 __free_pages(page, igb_rx_pg_order(rx_ring));
8457 rx_ring->rx_stats.alloc_failed++;
8463 bi->page_offset = igb_rx_offset(rx_ring);
8464 bi->pagecnt_bias = 1;
8470 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
8471 * @adapter: address of board private structure
8473 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8475 union e1000_adv_rx_desc *rx_desc;
8476 struct igb_rx_buffer *bi;
8477 u16 i = rx_ring->next_to_use;
8484 rx_desc = IGB_RX_DESC(rx_ring, i);
8485 bi = &rx_ring->rx_buffer_info[i];
8486 i -= rx_ring->count;
8488 bufsz = igb_rx_bufsz(rx_ring);
8491 if (!igb_alloc_mapped_page(rx_ring, bi))
8494 /* sync the buffer for use by the device */
8495 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8496 bi->page_offset, bufsz,
8499 /* Refresh the desc even if buffer_addrs didn't change
8500 * because each write-back erases this info.
8502 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8508 rx_desc = IGB_RX_DESC(rx_ring, 0);
8509 bi = rx_ring->rx_buffer_info;
8510 i -= rx_ring->count;
8513 /* clear the length for the next_to_use descriptor */
8514 rx_desc->wb.upper.length = 0;
8517 } while (cleaned_count);
8519 i += rx_ring->count;
8521 if (rx_ring->next_to_use != i) {
8522 /* record the next descriptor to use */
8523 rx_ring->next_to_use = i;
8525 /* update next to alloc since we have filled the ring */
8526 rx_ring->next_to_alloc = i;
8528 /* Force memory writes to complete before letting h/w
8529 * know there are new descriptors to fetch. (Only
8530 * applicable for weak-ordered memory model archs,
8534 writel(i, rx_ring->tail);
8544 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8546 struct igb_adapter *adapter = netdev_priv(netdev);
8547 struct mii_ioctl_data *data = if_mii(ifr);
8549 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8554 data->phy_id = adapter->hw.phy.addr;
8557 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8574 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8580 return igb_mii_ioctl(netdev, ifr, cmd);
8582 return igb_ptp_get_ts_config(netdev, ifr);
8584 return igb_ptp_set_ts_config(netdev, ifr);
8590 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8592 struct igb_adapter *adapter = hw->back;
8594 pci_read_config_word(adapter->pdev, reg, value);
8597 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8599 struct igb_adapter *adapter = hw->back;
8601 pci_write_config_word(adapter->pdev, reg, *value);
8604 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8606 struct igb_adapter *adapter = hw->back;
8608 if (pcie_capability_read_word(adapter->pdev, reg, value))
8609 return -E1000_ERR_CONFIG;
8614 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8616 struct igb_adapter *adapter = hw->back;
8618 if (pcie_capability_write_word(adapter->pdev, reg, *value))
8619 return -E1000_ERR_CONFIG;
8624 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8626 struct igb_adapter *adapter = netdev_priv(netdev);
8627 struct e1000_hw *hw = &adapter->hw;
8629 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8632 /* enable VLAN tag insert/strip */
8633 ctrl = rd32(E1000_CTRL);
8634 ctrl |= E1000_CTRL_VME;
8635 wr32(E1000_CTRL, ctrl);
8637 /* Disable CFI check */
8638 rctl = rd32(E1000_RCTL);
8639 rctl &= ~E1000_RCTL_CFIEN;
8640 wr32(E1000_RCTL, rctl);
8642 /* disable VLAN tag insert/strip */
8643 ctrl = rd32(E1000_CTRL);
8644 ctrl &= ~E1000_CTRL_VME;
8645 wr32(E1000_CTRL, ctrl);
8648 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8651 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8652 __be16 proto, u16 vid)
8654 struct igb_adapter *adapter = netdev_priv(netdev);
8655 struct e1000_hw *hw = &adapter->hw;
8656 int pf_id = adapter->vfs_allocated_count;
8658 /* add the filter since PF can receive vlans w/o entry in vlvf */
8659 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8660 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8662 set_bit(vid, adapter->active_vlans);
8667 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8668 __be16 proto, u16 vid)
8670 struct igb_adapter *adapter = netdev_priv(netdev);
8671 int pf_id = adapter->vfs_allocated_count;
8672 struct e1000_hw *hw = &adapter->hw;
8674 /* remove VID from filter table */
8675 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8676 igb_vfta_set(hw, vid, pf_id, false, true);
8678 clear_bit(vid, adapter->active_vlans);
8683 static void igb_restore_vlan(struct igb_adapter *adapter)
8687 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8688 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8690 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8691 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8694 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8696 struct pci_dev *pdev = adapter->pdev;
8697 struct e1000_mac_info *mac = &adapter->hw.mac;
8701 /* Make sure dplx is at most 1 bit and lsb of speed is not set
8702 * for the switch() below to work
8704 if ((spd & 1) || (dplx & ~1))
8707 /* Fiber NIC's only allow 1000 gbps Full duplex
8708 * and 100Mbps Full duplex for 100baseFx sfp
8710 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8711 switch (spd + dplx) {
8712 case SPEED_10 + DUPLEX_HALF:
8713 case SPEED_10 + DUPLEX_FULL:
8714 case SPEED_100 + DUPLEX_HALF:
8721 switch (spd + dplx) {
8722 case SPEED_10 + DUPLEX_HALF:
8723 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8725 case SPEED_10 + DUPLEX_FULL:
8726 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8728 case SPEED_100 + DUPLEX_HALF:
8729 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8731 case SPEED_100 + DUPLEX_FULL:
8732 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8734 case SPEED_1000 + DUPLEX_FULL:
8736 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8738 case SPEED_1000 + DUPLEX_HALF: /* not supported */
8743 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8744 adapter->hw.phy.mdix = AUTO_ALL_MODES;
8749 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8753 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8756 struct net_device *netdev = pci_get_drvdata(pdev);
8757 struct igb_adapter *adapter = netdev_priv(netdev);
8758 struct e1000_hw *hw = &adapter->hw;
8759 u32 ctrl, rctl, status;
8760 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8764 netif_device_detach(netdev);
8766 if (netif_running(netdev))
8767 __igb_close(netdev, true);
8769 igb_ptp_suspend(adapter);
8771 igb_clear_interrupt_scheme(adapter);
8774 status = rd32(E1000_STATUS);
8775 if (status & E1000_STATUS_LU)
8776 wufc &= ~E1000_WUFC_LNKC;
8779 igb_setup_rctl(adapter);
8780 igb_set_rx_mode(netdev);
8782 /* turn on all-multi mode if wake on multicast is enabled */
8783 if (wufc & E1000_WUFC_MC) {
8784 rctl = rd32(E1000_RCTL);
8785 rctl |= E1000_RCTL_MPE;
8786 wr32(E1000_RCTL, rctl);
8789 ctrl = rd32(E1000_CTRL);
8790 ctrl |= E1000_CTRL_ADVD3WUC;
8791 wr32(E1000_CTRL, ctrl);
8793 /* Allow time for pending master requests to run */
8794 igb_disable_pcie_master(hw);
8796 wr32(E1000_WUC, E1000_WUC_PME_EN);
8797 wr32(E1000_WUFC, wufc);
8800 wr32(E1000_WUFC, 0);
8803 wake = wufc || adapter->en_mng_pt;
8805 igb_power_down_link(adapter);
8807 igb_power_up_link(adapter);
8810 *enable_wake = wake;
8812 /* Release control of h/w to f/w. If f/w is AMT enabled, this
8813 * would have already happened in close and is redundant.
8815 igb_release_hw_control(adapter);
8817 pci_disable_device(pdev);
8822 static void igb_deliver_wake_packet(struct net_device *netdev)
8824 struct igb_adapter *adapter = netdev_priv(netdev);
8825 struct e1000_hw *hw = &adapter->hw;
8826 struct sk_buff *skb;
8829 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8831 /* WUPM stores only the first 128 bytes of the wake packet.
8832 * Read the packet only if we have the whole thing.
8834 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8837 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8843 /* Ensure reads are 32-bit aligned */
8844 wupl = roundup(wupl, 4);
8846 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8848 skb->protocol = eth_type_trans(skb, netdev);
8852 static int __maybe_unused igb_suspend(struct device *dev)
8854 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8857 static int __maybe_unused igb_resume(struct device *dev)
8859 struct pci_dev *pdev = to_pci_dev(dev);
8860 struct net_device *netdev = pci_get_drvdata(pdev);
8861 struct igb_adapter *adapter = netdev_priv(netdev);
8862 struct e1000_hw *hw = &adapter->hw;
8865 pci_set_power_state(pdev, PCI_D0);
8866 pci_restore_state(pdev);
8867 pci_save_state(pdev);
8869 if (!pci_device_is_present(pdev))
8871 err = pci_enable_device_mem(pdev);
8874 "igb: Cannot enable PCI device from suspend\n");
8877 pci_set_master(pdev);
8879 pci_enable_wake(pdev, PCI_D3hot, 0);
8880 pci_enable_wake(pdev, PCI_D3cold, 0);
8882 if (igb_init_interrupt_scheme(adapter, true)) {
8883 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8889 /* let the f/w know that the h/w is now under the control of the
8892 igb_get_hw_control(adapter);
8894 val = rd32(E1000_WUS);
8895 if (val & WAKE_PKT_WUS)
8896 igb_deliver_wake_packet(netdev);
8898 wr32(E1000_WUS, ~0);
8901 if (!err && netif_running(netdev))
8902 err = __igb_open(netdev, true);
8905 netif_device_attach(netdev);
8911 static int __maybe_unused igb_runtime_idle(struct device *dev)
8913 struct net_device *netdev = dev_get_drvdata(dev);
8914 struct igb_adapter *adapter = netdev_priv(netdev);
8916 if (!igb_has_link(adapter))
8917 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8922 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8924 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8927 static int __maybe_unused igb_runtime_resume(struct device *dev)
8929 return igb_resume(dev);
8932 static void igb_shutdown(struct pci_dev *pdev)
8936 __igb_shutdown(pdev, &wake, 0);
8938 if (system_state == SYSTEM_POWER_OFF) {
8939 pci_wake_from_d3(pdev, wake);
8940 pci_set_power_state(pdev, PCI_D3hot);
8944 #ifdef CONFIG_PCI_IOV
8945 static int igb_sriov_reinit(struct pci_dev *dev)
8947 struct net_device *netdev = pci_get_drvdata(dev);
8948 struct igb_adapter *adapter = netdev_priv(netdev);
8949 struct pci_dev *pdev = adapter->pdev;
8953 if (netif_running(netdev))
8958 igb_clear_interrupt_scheme(adapter);
8960 igb_init_queue_configuration(adapter);
8962 if (igb_init_interrupt_scheme(adapter, true)) {
8964 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8968 if (netif_running(netdev))
8976 static int igb_pci_disable_sriov(struct pci_dev *dev)
8978 int err = igb_disable_sriov(dev);
8981 err = igb_sriov_reinit(dev);
8986 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8988 int err = igb_enable_sriov(dev, num_vfs);
8993 err = igb_sriov_reinit(dev);
9002 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9004 #ifdef CONFIG_PCI_IOV
9006 return igb_pci_disable_sriov(dev);
9008 return igb_pci_enable_sriov(dev, num_vfs);
9014 * igb_io_error_detected - called when PCI error is detected
9015 * @pdev: Pointer to PCI device
9016 * @state: The current pci connection state
9018 * This function is called after a PCI bus error affecting
9019 * this device has been detected.
9021 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9022 pci_channel_state_t state)
9024 struct net_device *netdev = pci_get_drvdata(pdev);
9025 struct igb_adapter *adapter = netdev_priv(netdev);
9027 netif_device_detach(netdev);
9029 if (state == pci_channel_io_perm_failure)
9030 return PCI_ERS_RESULT_DISCONNECT;
9032 if (netif_running(netdev))
9034 pci_disable_device(pdev);
9036 /* Request a slot slot reset. */
9037 return PCI_ERS_RESULT_NEED_RESET;
9041 * igb_io_slot_reset - called after the pci bus has been reset.
9042 * @pdev: Pointer to PCI device
9044 * Restart the card from scratch, as if from a cold-boot. Implementation
9045 * resembles the first-half of the igb_resume routine.
9047 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9049 struct net_device *netdev = pci_get_drvdata(pdev);
9050 struct igb_adapter *adapter = netdev_priv(netdev);
9051 struct e1000_hw *hw = &adapter->hw;
9052 pci_ers_result_t result;
9054 if (pci_enable_device_mem(pdev)) {
9056 "Cannot re-enable PCI device after reset.\n");
9057 result = PCI_ERS_RESULT_DISCONNECT;
9059 pci_set_master(pdev);
9060 pci_restore_state(pdev);
9061 pci_save_state(pdev);
9063 pci_enable_wake(pdev, PCI_D3hot, 0);
9064 pci_enable_wake(pdev, PCI_D3cold, 0);
9066 /* In case of PCI error, adapter lose its HW address
9067 * so we should re-assign it here.
9069 hw->hw_addr = adapter->io_addr;
9072 wr32(E1000_WUS, ~0);
9073 result = PCI_ERS_RESULT_RECOVERED;
9080 * igb_io_resume - called when traffic can start flowing again.
9081 * @pdev: Pointer to PCI device
9083 * This callback is called when the error recovery driver tells us that
9084 * its OK to resume normal operation. Implementation resembles the
9085 * second-half of the igb_resume routine.
9087 static void igb_io_resume(struct pci_dev *pdev)
9089 struct net_device *netdev = pci_get_drvdata(pdev);
9090 struct igb_adapter *adapter = netdev_priv(netdev);
9092 if (netif_running(netdev)) {
9093 if (igb_up(adapter)) {
9094 dev_err(&pdev->dev, "igb_up failed after reset\n");
9099 netif_device_attach(netdev);
9101 /* let the f/w know that the h/w is now under the control of the
9104 igb_get_hw_control(adapter);
9108 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9109 * @adapter: Pointer to adapter structure
9110 * @index: Index of the RAR entry which need to be synced with MAC table
9112 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9114 struct e1000_hw *hw = &adapter->hw;
9115 u32 rar_low, rar_high;
9116 u8 *addr = adapter->mac_table[index].addr;
9118 /* HW expects these to be in network order when they are plugged
9119 * into the registers which are little endian. In order to guarantee
9120 * that ordering we need to do an leXX_to_cpup here in order to be
9121 * ready for the byteswap that occurs with writel
9123 rar_low = le32_to_cpup((__le32 *)(addr));
9124 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9126 /* Indicate to hardware the Address is Valid. */
9127 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9128 if (is_valid_ether_addr(addr))
9129 rar_high |= E1000_RAH_AV;
9131 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9132 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9134 switch (hw->mac.type) {
9137 if (adapter->mac_table[index].state &
9138 IGB_MAC_STATE_QUEUE_STEERING)
9139 rar_high |= E1000_RAH_QSEL_ENABLE;
9141 rar_high |= E1000_RAH_POOL_1 *
9142 adapter->mac_table[index].queue;
9145 rar_high |= E1000_RAH_POOL_1 <<
9146 adapter->mac_table[index].queue;
9151 wr32(E1000_RAL(index), rar_low);
9153 wr32(E1000_RAH(index), rar_high);
9157 static int igb_set_vf_mac(struct igb_adapter *adapter,
9158 int vf, unsigned char *mac_addr)
9160 struct e1000_hw *hw = &adapter->hw;
9161 /* VF MAC addresses start at end of receive addresses and moves
9162 * towards the first, as a result a collision should not be possible
9164 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9165 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9167 ether_addr_copy(vf_mac_addr, mac_addr);
9168 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9169 adapter->mac_table[rar_entry].queue = vf;
9170 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9171 igb_rar_set_index(adapter, rar_entry);
9176 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9178 struct igb_adapter *adapter = netdev_priv(netdev);
9180 if (vf >= adapter->vfs_allocated_count)
9183 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9184 * flag and allows to overwrite the MAC via VF netdev. This
9185 * is necessary to allow libvirt a way to restore the original
9186 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9189 if (is_zero_ether_addr(mac)) {
9190 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9191 dev_info(&adapter->pdev->dev,
9192 "remove administratively set MAC on VF %d\n",
9194 } else if (is_valid_ether_addr(mac)) {
9195 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9196 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9198 dev_info(&adapter->pdev->dev,
9199 "Reload the VF driver to make this change effective.");
9200 /* Generate additional warning if PF is down */
9201 if (test_bit(__IGB_DOWN, &adapter->state)) {
9202 dev_warn(&adapter->pdev->dev,
9203 "The VF MAC address has been set, but the PF device is not up.\n");
9204 dev_warn(&adapter->pdev->dev,
9205 "Bring the PF device up before attempting to use the VF device.\n");
9210 return igb_set_vf_mac(adapter, vf, mac);
9213 static int igb_link_mbps(int internal_link_speed)
9215 switch (internal_link_speed) {
9225 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9232 /* Calculate the rate factor values to set */
9233 rf_int = link_speed / tx_rate;
9234 rf_dec = (link_speed - (rf_int * tx_rate));
9235 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9238 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9239 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9240 E1000_RTTBCNRC_RF_INT_MASK);
9241 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9246 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9247 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9248 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9250 wr32(E1000_RTTBCNRM, 0x14);
9251 wr32(E1000_RTTBCNRC, bcnrc_val);
9254 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9256 int actual_link_speed, i;
9257 bool reset_rate = false;
9259 /* VF TX rate limit was not set or not supported */
9260 if ((adapter->vf_rate_link_speed == 0) ||
9261 (adapter->hw.mac.type != e1000_82576))
9264 actual_link_speed = igb_link_mbps(adapter->link_speed);
9265 if (actual_link_speed != adapter->vf_rate_link_speed) {
9267 adapter->vf_rate_link_speed = 0;
9268 dev_info(&adapter->pdev->dev,
9269 "Link speed has been changed. VF Transmit rate is disabled\n");
9272 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9274 adapter->vf_data[i].tx_rate = 0;
9276 igb_set_vf_rate_limit(&adapter->hw, i,
9277 adapter->vf_data[i].tx_rate,
9282 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9283 int min_tx_rate, int max_tx_rate)
9285 struct igb_adapter *adapter = netdev_priv(netdev);
9286 struct e1000_hw *hw = &adapter->hw;
9287 int actual_link_speed;
9289 if (hw->mac.type != e1000_82576)
9295 actual_link_speed = igb_link_mbps(adapter->link_speed);
9296 if ((vf >= adapter->vfs_allocated_count) ||
9297 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9298 (max_tx_rate < 0) ||
9299 (max_tx_rate > actual_link_speed))
9302 adapter->vf_rate_link_speed = actual_link_speed;
9303 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9304 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9309 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9312 struct igb_adapter *adapter = netdev_priv(netdev);
9313 struct e1000_hw *hw = &adapter->hw;
9314 u32 reg_val, reg_offset;
9316 if (!adapter->vfs_allocated_count)
9319 if (vf >= adapter->vfs_allocated_count)
9322 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9323 reg_val = rd32(reg_offset);
9325 reg_val |= (BIT(vf) |
9326 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9328 reg_val &= ~(BIT(vf) |
9329 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9330 wr32(reg_offset, reg_val);
9332 adapter->vf_data[vf].spoofchk_enabled = setting;
9336 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9338 struct igb_adapter *adapter = netdev_priv(netdev);
9340 if (vf >= adapter->vfs_allocated_count)
9342 if (adapter->vf_data[vf].trusted == setting)
9345 adapter->vf_data[vf].trusted = setting;
9347 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9348 vf, setting ? "" : "not ");
9352 static int igb_ndo_get_vf_config(struct net_device *netdev,
9353 int vf, struct ifla_vf_info *ivi)
9355 struct igb_adapter *adapter = netdev_priv(netdev);
9356 if (vf >= adapter->vfs_allocated_count)
9359 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9360 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9361 ivi->min_tx_rate = 0;
9362 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9363 ivi->qos = adapter->vf_data[vf].pf_qos;
9364 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9365 ivi->trusted = adapter->vf_data[vf].trusted;
9369 static void igb_vmm_control(struct igb_adapter *adapter)
9371 struct e1000_hw *hw = &adapter->hw;
9374 switch (hw->mac.type) {
9380 /* replication is not supported for 82575 */
9383 /* notify HW that the MAC is adding vlan tags */
9384 reg = rd32(E1000_DTXCTL);
9385 reg |= E1000_DTXCTL_VLAN_ADDED;
9386 wr32(E1000_DTXCTL, reg);
9389 /* enable replication vlan tag stripping */
9390 reg = rd32(E1000_RPLOLR);
9391 reg |= E1000_RPLOLR_STRVLAN;
9392 wr32(E1000_RPLOLR, reg);
9395 /* none of the above registers are supported by i350 */
9399 if (adapter->vfs_allocated_count) {
9400 igb_vmdq_set_loopback_pf(hw, true);
9401 igb_vmdq_set_replication_pf(hw, true);
9402 igb_vmdq_set_anti_spoofing_pf(hw, true,
9403 adapter->vfs_allocated_count);
9405 igb_vmdq_set_loopback_pf(hw, false);
9406 igb_vmdq_set_replication_pf(hw, false);
9410 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9412 struct e1000_hw *hw = &adapter->hw;
9416 if (hw->mac.type > e1000_82580) {
9417 if (adapter->flags & IGB_FLAG_DMAC) {
9420 /* force threshold to 0. */
9421 wr32(E1000_DMCTXTH, 0);
9423 /* DMA Coalescing high water mark needs to be greater
9424 * than the Rx threshold. Set hwm to PBA - max frame
9425 * size in 16B units, capping it at PBA - 6KB.
9427 hwm = 64 * (pba - 6);
9428 reg = rd32(E1000_FCRTC);
9429 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9430 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9431 & E1000_FCRTC_RTH_COAL_MASK);
9432 wr32(E1000_FCRTC, reg);
9434 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9435 * frame size, capping it at PBA - 10KB.
9437 dmac_thr = pba - 10;
9438 reg = rd32(E1000_DMACR);
9439 reg &= ~E1000_DMACR_DMACTHR_MASK;
9440 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9441 & E1000_DMACR_DMACTHR_MASK);
9443 /* transition to L0x or L1 if available..*/
9444 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9446 /* watchdog timer= +-1000 usec in 32usec intervals */
9449 /* Disable BMC-to-OS Watchdog Enable */
9450 if (hw->mac.type != e1000_i354)
9451 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9453 wr32(E1000_DMACR, reg);
9455 /* no lower threshold to disable
9456 * coalescing(smart fifb)-UTRESH=0
9458 wr32(E1000_DMCRTRH, 0);
9460 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9462 wr32(E1000_DMCTLX, reg);
9464 /* free space in tx packet buffer to wake from
9467 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9468 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9470 /* make low power state decision controlled
9473 reg = rd32(E1000_PCIEMISC);
9474 reg &= ~E1000_PCIEMISC_LX_DECISION;
9475 wr32(E1000_PCIEMISC, reg);
9476 } /* endif adapter->dmac is not disabled */
9477 } else if (hw->mac.type == e1000_82580) {
9478 u32 reg = rd32(E1000_PCIEMISC);
9480 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9481 wr32(E1000_DMACR, 0);
9486 * igb_read_i2c_byte - Reads 8 bit word over I2C
9487 * @hw: pointer to hardware structure
9488 * @byte_offset: byte offset to read
9489 * @dev_addr: device address
9492 * Performs byte read operation over I2C interface at
9493 * a specified device address.
9495 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9496 u8 dev_addr, u8 *data)
9498 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9499 struct i2c_client *this_client = adapter->i2c_client;
9504 return E1000_ERR_I2C;
9506 swfw_mask = E1000_SWFW_PHY0_SM;
9508 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9509 return E1000_ERR_SWFW_SYNC;
9511 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9512 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9515 return E1000_ERR_I2C;
9523 * igb_write_i2c_byte - Writes 8 bit word over I2C
9524 * @hw: pointer to hardware structure
9525 * @byte_offset: byte offset to write
9526 * @dev_addr: device address
9527 * @data: value to write
9529 * Performs byte write operation over I2C interface at
9530 * a specified device address.
9532 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9533 u8 dev_addr, u8 data)
9535 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9536 struct i2c_client *this_client = adapter->i2c_client;
9538 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9541 return E1000_ERR_I2C;
9543 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9544 return E1000_ERR_SWFW_SYNC;
9545 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9546 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9549 return E1000_ERR_I2C;
9555 int igb_reinit_queues(struct igb_adapter *adapter)
9557 struct net_device *netdev = adapter->netdev;
9558 struct pci_dev *pdev = adapter->pdev;
9561 if (netif_running(netdev))
9564 igb_reset_interrupt_capability(adapter);
9566 if (igb_init_interrupt_scheme(adapter, true)) {
9567 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9571 if (netif_running(netdev))
9572 err = igb_open(netdev);
9577 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9579 struct igb_nfc_filter *rule;
9581 spin_lock(&adapter->nfc_lock);
9583 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9584 igb_erase_filter(adapter, rule);
9586 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9587 igb_erase_filter(adapter, rule);
9589 spin_unlock(&adapter->nfc_lock);
9592 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9594 struct igb_nfc_filter *rule;
9596 spin_lock(&adapter->nfc_lock);
9598 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9599 igb_add_filter(adapter, rule);
9601 spin_unlock(&adapter->nfc_lock);