2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
42 #include "ext4_jbd2.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
86 __u32 provided, calculated;
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
101 return provided == calculated;
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 trace_ext4_begin_ordered_truncate(inode, new_size);
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
131 if (!EXT4_I(inode)->jinode)
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 int ext4_inode_is_fast_symlink(struct inode *inode)
151 return S_ISLNK(inode->i_mode) && inode->i_size &&
152 (inode->i_size < EXT4_N_BLOCKS * 4);
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
182 * Called at the last iput() if i_nlink is zero.
184 void ext4_evict_inode(struct inode *inode)
188 int extra_credits = 3;
189 struct ext4_xattr_inode_array *ea_inode_array = NULL;
191 trace_ext4_evict_inode(inode);
193 if (inode->i_nlink) {
195 * When journalling data dirty buffers are tracked only in the
196 * journal. So although mm thinks everything is clean and
197 * ready for reaping the inode might still have some pages to
198 * write in the running transaction or waiting to be
199 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 * (via truncate_inode_pages()) to discard these buffers can
201 * cause data loss. Also even if we did not discard these
202 * buffers, we would have no way to find them after the inode
203 * is reaped and thus user could see stale data if he tries to
204 * read them before the transaction is checkpointed. So be
205 * careful and force everything to disk here... We use
206 * ei->i_datasync_tid to store the newest transaction
207 * containing inode's data.
209 * Note that directories do not have this problem because they
210 * don't use page cache.
212 if (inode->i_ino != EXT4_JOURNAL_INO &&
213 ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
215 inode->i_data.nrpages) {
216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 jbd2_complete_transaction(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
222 truncate_inode_pages_final(&inode->i_data);
227 if (is_bad_inode(inode))
229 dquot_initialize(inode);
231 if (ext4_should_order_data(inode))
232 ext4_begin_ordered_truncate(inode, 0);
233 truncate_inode_pages_final(&inode->i_data);
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
239 sb_start_intwrite(inode->i_sb);
241 if (!IS_NOQUOTA(inode))
242 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
244 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245 ext4_blocks_for_truncate(inode)+extra_credits);
246 if (IS_ERR(handle)) {
247 ext4_std_error(inode->i_sb, PTR_ERR(handle));
249 * If we're going to skip the normal cleanup, we still need to
250 * make sure that the in-core orphan linked list is properly
253 ext4_orphan_del(NULL, inode);
254 sb_end_intwrite(inode->i_sb);
259 ext4_handle_sync(handle);
262 * Set inode->i_size to 0 before calling ext4_truncate(). We need
263 * special handling of symlinks here because i_size is used to
264 * determine whether ext4_inode_info->i_data contains symlink data or
265 * block mappings. Setting i_size to 0 will remove its fast symlink
266 * status. Erase i_data so that it becomes a valid empty block map.
268 if (ext4_inode_is_fast_symlink(inode))
269 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
271 err = ext4_mark_inode_dirty(handle, inode);
273 ext4_warning(inode->i_sb,
274 "couldn't mark inode dirty (err %d)", err);
277 if (inode->i_blocks) {
278 err = ext4_truncate(inode);
280 ext4_error(inode->i_sb,
281 "couldn't truncate inode %lu (err %d)",
287 /* Remove xattr references. */
288 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
291 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
293 ext4_journal_stop(handle);
294 ext4_orphan_del(NULL, inode);
295 sb_end_intwrite(inode->i_sb);
296 ext4_xattr_inode_array_free(ea_inode_array);
301 * Kill off the orphan record which ext4_truncate created.
302 * AKPM: I think this can be inside the above `if'.
303 * Note that ext4_orphan_del() has to be able to cope with the
304 * deletion of a non-existent orphan - this is because we don't
305 * know if ext4_truncate() actually created an orphan record.
306 * (Well, we could do this if we need to, but heck - it works)
308 ext4_orphan_del(handle, inode);
309 EXT4_I(inode)->i_dtime = get_seconds();
312 * One subtle ordering requirement: if anything has gone wrong
313 * (transaction abort, IO errors, whatever), then we can still
314 * do these next steps (the fs will already have been marked as
315 * having errors), but we can't free the inode if the mark_dirty
318 if (ext4_mark_inode_dirty(handle, inode))
319 /* If that failed, just do the required in-core inode clear. */
320 ext4_clear_inode(inode);
322 ext4_free_inode(handle, inode);
323 ext4_journal_stop(handle);
324 sb_end_intwrite(inode->i_sb);
325 ext4_xattr_inode_array_free(ea_inode_array);
328 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
332 qsize_t *ext4_get_reserved_space(struct inode *inode)
334 return &EXT4_I(inode)->i_reserved_quota;
339 * Called with i_data_sem down, which is important since we can call
340 * ext4_discard_preallocations() from here.
342 void ext4_da_update_reserve_space(struct inode *inode,
343 int used, int quota_claim)
345 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
346 struct ext4_inode_info *ei = EXT4_I(inode);
348 spin_lock(&ei->i_block_reservation_lock);
349 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
350 if (unlikely(used > ei->i_reserved_data_blocks)) {
351 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
352 "with only %d reserved data blocks",
353 __func__, inode->i_ino, used,
354 ei->i_reserved_data_blocks);
356 used = ei->i_reserved_data_blocks;
359 /* Update per-inode reservations */
360 ei->i_reserved_data_blocks -= used;
361 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
363 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
365 /* Update quota subsystem for data blocks */
367 dquot_claim_block(inode, EXT4_C2B(sbi, used));
370 * We did fallocate with an offset that is already delayed
371 * allocated. So on delayed allocated writeback we should
372 * not re-claim the quota for fallocated blocks.
374 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
378 * If we have done all the pending block allocations and if
379 * there aren't any writers on the inode, we can discard the
380 * inode's preallocations.
382 if ((ei->i_reserved_data_blocks == 0) &&
383 (atomic_read(&inode->i_writecount) == 0))
384 ext4_discard_preallocations(inode);
387 static int __check_block_validity(struct inode *inode, const char *func,
389 struct ext4_map_blocks *map)
391 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
393 ext4_error_inode(inode, func, line, map->m_pblk,
394 "lblock %lu mapped to illegal pblock "
395 "(length %d)", (unsigned long) map->m_lblk,
397 return -EFSCORRUPTED;
402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
407 if (ext4_encrypted_inode(inode))
408 return fscrypt_zeroout_range(inode, lblk, pblk, len);
410 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
417 #define check_block_validity(inode, map) \
418 __check_block_validity((inode), __func__, __LINE__, (map))
420 #ifdef ES_AGGRESSIVE_TEST
421 static void ext4_map_blocks_es_recheck(handle_t *handle,
423 struct ext4_map_blocks *es_map,
424 struct ext4_map_blocks *map,
431 * There is a race window that the result is not the same.
432 * e.g. xfstests #223 when dioread_nolock enables. The reason
433 * is that we lookup a block mapping in extent status tree with
434 * out taking i_data_sem. So at the time the unwritten extent
435 * could be converted.
437 down_read(&EXT4_I(inode)->i_data_sem);
438 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
439 retval = ext4_ext_map_blocks(handle, inode, map, flags &
440 EXT4_GET_BLOCKS_KEEP_SIZE);
442 retval = ext4_ind_map_blocks(handle, inode, map, flags &
443 EXT4_GET_BLOCKS_KEEP_SIZE);
445 up_read((&EXT4_I(inode)->i_data_sem));
448 * We don't check m_len because extent will be collpased in status
449 * tree. So the m_len might not equal.
451 if (es_map->m_lblk != map->m_lblk ||
452 es_map->m_flags != map->m_flags ||
453 es_map->m_pblk != map->m_pblk) {
454 printk("ES cache assertion failed for inode: %lu "
455 "es_cached ex [%d/%d/%llu/%x] != "
456 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
457 inode->i_ino, es_map->m_lblk, es_map->m_len,
458 es_map->m_pblk, es_map->m_flags, map->m_lblk,
459 map->m_len, map->m_pblk, map->m_flags,
463 #endif /* ES_AGGRESSIVE_TEST */
466 * The ext4_map_blocks() function tries to look up the requested blocks,
467 * and returns if the blocks are already mapped.
469 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
470 * and store the allocated blocks in the result buffer head and mark it
473 * If file type is extents based, it will call ext4_ext_map_blocks(),
474 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
477 * On success, it returns the number of blocks being mapped or allocated. if
478 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
479 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
481 * It returns 0 if plain look up failed (blocks have not been allocated), in
482 * that case, @map is returned as unmapped but we still do fill map->m_len to
483 * indicate the length of a hole starting at map->m_lblk.
485 * It returns the error in case of allocation failure.
487 int ext4_map_blocks(handle_t *handle, struct inode *inode,
488 struct ext4_map_blocks *map, int flags)
490 struct extent_status es;
493 #ifdef ES_AGGRESSIVE_TEST
494 struct ext4_map_blocks orig_map;
496 memcpy(&orig_map, map, sizeof(*map));
500 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
501 "logical block %lu\n", inode->i_ino, flags, map->m_len,
502 (unsigned long) map->m_lblk);
505 * ext4_map_blocks returns an int, and m_len is an unsigned int
507 if (unlikely(map->m_len > INT_MAX))
508 map->m_len = INT_MAX;
510 /* We can handle the block number less than EXT_MAX_BLOCKS */
511 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
512 return -EFSCORRUPTED;
514 /* Lookup extent status tree firstly */
515 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517 map->m_pblk = ext4_es_pblock(&es) +
518 map->m_lblk - es.es_lblk;
519 map->m_flags |= ext4_es_is_written(&es) ?
520 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
525 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
527 retval = es.es_len - (map->m_lblk - es.es_lblk);
528 if (retval > map->m_len)
535 #ifdef ES_AGGRESSIVE_TEST
536 ext4_map_blocks_es_recheck(handle, inode, map,
543 * Try to see if we can get the block without requesting a new
546 down_read(&EXT4_I(inode)->i_data_sem);
547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
557 if (unlikely(retval != map->m_len)) {
558 ext4_warning(inode->i_sb,
559 "ES len assertion failed for inode "
560 "%lu: retval %d != map->m_len %d",
561 inode->i_ino, retval, map->m_len);
565 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568 !(status & EXTENT_STATUS_WRITTEN) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
577 up_read((&EXT4_I(inode)->i_data_sem));
580 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581 ret = check_block_validity(inode, map);
586 /* If it is only a block(s) look up */
587 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
591 * Returns if the blocks have already allocated
593 * Note that if blocks have been preallocated
594 * ext4_ext_get_block() returns the create = 0
595 * with buffer head unmapped.
597 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599 * If we need to convert extent to unwritten
600 * we continue and do the actual work in
601 * ext4_ext_map_blocks()
603 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
607 * Here we clear m_flags because after allocating an new extent,
608 * it will be set again.
610 map->m_flags &= ~EXT4_MAP_FLAGS;
613 * New blocks allocate and/or writing to unwritten extent
614 * will possibly result in updating i_data, so we take
615 * the write lock of i_data_sem, and call get_block()
616 * with create == 1 flag.
618 down_write(&EXT4_I(inode)->i_data_sem);
621 * We need to check for EXT4 here because migrate
622 * could have changed the inode type in between
624 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625 retval = ext4_ext_map_blocks(handle, inode, map, flags);
627 retval = ext4_ind_map_blocks(handle, inode, map, flags);
629 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
631 * We allocated new blocks which will result in
632 * i_data's format changing. Force the migrate
633 * to fail by clearing migrate flags
635 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639 * Update reserved blocks/metadata blocks after successful
640 * block allocation which had been deferred till now. We don't
641 * support fallocate for non extent files. So we can update
642 * reserve space here.
645 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646 ext4_da_update_reserve_space(inode, retval, 1);
652 if (unlikely(retval != map->m_len)) {
653 ext4_warning(inode->i_sb,
654 "ES len assertion failed for inode "
655 "%lu: retval %d != map->m_len %d",
656 inode->i_ino, retval, map->m_len);
661 * We have to zeroout blocks before inserting them into extent
662 * status tree. Otherwise someone could look them up there and
663 * use them before they are really zeroed. We also have to
664 * unmap metadata before zeroing as otherwise writeback can
665 * overwrite zeros with stale data from block device.
667 if (flags & EXT4_GET_BLOCKS_ZERO &&
668 map->m_flags & EXT4_MAP_MAPPED &&
669 map->m_flags & EXT4_MAP_NEW) {
670 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
672 ret = ext4_issue_zeroout(inode, map->m_lblk,
673 map->m_pblk, map->m_len);
681 * If the extent has been zeroed out, we don't need to update
682 * extent status tree.
684 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
685 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
686 if (ext4_es_is_written(&es))
689 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
690 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
691 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
692 !(status & EXTENT_STATUS_WRITTEN) &&
693 ext4_find_delalloc_range(inode, map->m_lblk,
694 map->m_lblk + map->m_len - 1))
695 status |= EXTENT_STATUS_DELAYED;
696 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
697 map->m_pblk, status);
705 up_write((&EXT4_I(inode)->i_data_sem));
706 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
707 ret = check_block_validity(inode, map);
712 * Inodes with freshly allocated blocks where contents will be
713 * visible after transaction commit must be on transaction's
716 if (map->m_flags & EXT4_MAP_NEW &&
717 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
718 !(flags & EXT4_GET_BLOCKS_ZERO) &&
719 !ext4_is_quota_file(inode) &&
720 ext4_should_order_data(inode)) {
721 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722 ret = ext4_jbd2_inode_add_wait(handle, inode);
724 ret = ext4_jbd2_inode_add_write(handle, inode);
733 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734 * we have to be careful as someone else may be manipulating b_state as well.
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
738 unsigned long old_state;
739 unsigned long new_state;
741 flags &= EXT4_MAP_FLAGS;
743 /* Dummy buffer_head? Set non-atomically. */
745 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
749 * Someone else may be modifying b_state. Be careful! This is ugly but
750 * once we get rid of using bh as a container for mapping information
751 * to pass to / from get_block functions, this can go away.
754 old_state = READ_ONCE(bh->b_state);
755 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
757 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int flags)
763 struct ext4_map_blocks map;
766 if (ext4_has_inline_data(inode))
770 map.m_len = bh->b_size >> inode->i_blkbits;
772 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
775 map_bh(bh, inode->i_sb, map.m_pblk);
776 ext4_update_bh_state(bh, map.m_flags);
777 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
779 } else if (ret == 0) {
780 /* hole case, need to fill in bh->b_size */
781 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787 struct buffer_head *bh, int create)
789 return _ext4_get_block(inode, iblock, bh,
790 create ? EXT4_GET_BLOCKS_CREATE : 0);
794 * Get block function used when preparing for buffered write if we require
795 * creating an unwritten extent if blocks haven't been allocated. The extent
796 * will be converted to written after the IO is complete.
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799 struct buffer_head *bh_result, int create)
801 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802 inode->i_ino, create);
803 return _ext4_get_block(inode, iblock, bh_result,
804 EXT4_GET_BLOCKS_IO_CREATE_EXT);
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
811 * Get blocks function for the cases that need to start a transaction -
812 * generally difference cases of direct IO and DAX IO. It also handles retries
815 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
816 struct buffer_head *bh_result, int flags)
823 /* Trim mapping request to maximum we can map at once for DIO */
824 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
825 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
826 dio_credits = ext4_chunk_trans_blocks(inode,
827 bh_result->b_size >> inode->i_blkbits);
829 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
831 return PTR_ERR(handle);
833 ret = _ext4_get_block(inode, iblock, bh_result, flags);
834 ext4_journal_stop(handle);
836 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
841 /* Get block function for DIO reads and writes to inodes without extents */
842 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
843 struct buffer_head *bh, int create)
845 /* We don't expect handle for direct IO */
846 WARN_ON_ONCE(ext4_journal_current_handle());
849 return _ext4_get_block(inode, iblock, bh, 0);
850 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
854 * Get block function for AIO DIO writes when we create unwritten extent if
855 * blocks are not allocated yet. The extent will be converted to written
856 * after IO is complete.
858 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
859 sector_t iblock, struct buffer_head *bh_result, int create)
863 /* We don't expect handle for direct IO */
864 WARN_ON_ONCE(ext4_journal_current_handle());
866 ret = ext4_get_block_trans(inode, iblock, bh_result,
867 EXT4_GET_BLOCKS_IO_CREATE_EXT);
870 * When doing DIO using unwritten extents, we need io_end to convert
871 * unwritten extents to written on IO completion. We allocate io_end
872 * once we spot unwritten extent and store it in b_private. Generic
873 * DIO code keeps b_private set and furthermore passes the value to
874 * our completion callback in 'private' argument.
876 if (!ret && buffer_unwritten(bh_result)) {
877 if (!bh_result->b_private) {
878 ext4_io_end_t *io_end;
880 io_end = ext4_init_io_end(inode, GFP_KERNEL);
883 bh_result->b_private = io_end;
884 ext4_set_io_unwritten_flag(inode, io_end);
886 set_buffer_defer_completion(bh_result);
893 * Get block function for non-AIO DIO writes when we create unwritten extent if
894 * blocks are not allocated yet. The extent will be converted to written
895 * after IO is complete by ext4_direct_IO_write().
897 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
898 sector_t iblock, struct buffer_head *bh_result, int create)
902 /* We don't expect handle for direct IO */
903 WARN_ON_ONCE(ext4_journal_current_handle());
905 ret = ext4_get_block_trans(inode, iblock, bh_result,
906 EXT4_GET_BLOCKS_IO_CREATE_EXT);
909 * Mark inode as having pending DIO writes to unwritten extents.
910 * ext4_direct_IO_write() checks this flag and converts extents to
913 if (!ret && buffer_unwritten(bh_result))
914 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
919 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
920 struct buffer_head *bh_result, int create)
924 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
925 inode->i_ino, create);
926 /* We don't expect handle for direct IO */
927 WARN_ON_ONCE(ext4_journal_current_handle());
929 ret = _ext4_get_block(inode, iblock, bh_result, 0);
931 * Blocks should have been preallocated! ext4_file_write_iter() checks
934 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
941 * `handle' can be NULL if create is zero
943 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
944 ext4_lblk_t block, int map_flags)
946 struct ext4_map_blocks map;
947 struct buffer_head *bh;
948 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
951 J_ASSERT(handle != NULL || create == 0);
955 err = ext4_map_blocks(handle, inode, &map, map_flags);
958 return create ? ERR_PTR(-ENOSPC) : NULL;
962 bh = sb_getblk(inode->i_sb, map.m_pblk);
964 return ERR_PTR(-ENOMEM);
965 if (map.m_flags & EXT4_MAP_NEW) {
966 J_ASSERT(create != 0);
967 J_ASSERT(handle != NULL);
970 * Now that we do not always journal data, we should
971 * keep in mind whether this should always journal the
972 * new buffer as metadata. For now, regular file
973 * writes use ext4_get_block instead, so it's not a
977 BUFFER_TRACE(bh, "call get_create_access");
978 err = ext4_journal_get_create_access(handle, bh);
983 if (!buffer_uptodate(bh)) {
984 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
985 set_buffer_uptodate(bh);
988 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
989 err = ext4_handle_dirty_metadata(handle, inode, bh);
993 BUFFER_TRACE(bh, "not a new buffer");
1000 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1001 ext4_lblk_t block, int map_flags)
1003 struct buffer_head *bh;
1005 bh = ext4_getblk(handle, inode, block, map_flags);
1008 if (!bh || buffer_uptodate(bh))
1010 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1012 if (buffer_uptodate(bh))
1015 return ERR_PTR(-EIO);
1018 /* Read a contiguous batch of blocks. */
1019 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1020 bool wait, struct buffer_head **bhs)
1024 for (i = 0; i < bh_count; i++) {
1025 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1026 if (IS_ERR(bhs[i])) {
1027 err = PTR_ERR(bhs[i]);
1033 for (i = 0; i < bh_count; i++)
1034 /* Note that NULL bhs[i] is valid because of holes. */
1035 if (bhs[i] && !buffer_uptodate(bhs[i]))
1036 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1042 for (i = 0; i < bh_count; i++)
1044 wait_on_buffer(bhs[i]);
1046 for (i = 0; i < bh_count; i++) {
1047 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1055 for (i = 0; i < bh_count; i++) {
1062 int ext4_walk_page_buffers(handle_t *handle,
1063 struct buffer_head *head,
1067 int (*fn)(handle_t *handle,
1068 struct buffer_head *bh))
1070 struct buffer_head *bh;
1071 unsigned block_start, block_end;
1072 unsigned blocksize = head->b_size;
1074 struct buffer_head *next;
1076 for (bh = head, block_start = 0;
1077 ret == 0 && (bh != head || !block_start);
1078 block_start = block_end, bh = next) {
1079 next = bh->b_this_page;
1080 block_end = block_start + blocksize;
1081 if (block_end <= from || block_start >= to) {
1082 if (partial && !buffer_uptodate(bh))
1086 err = (*fn)(handle, bh);
1094 * To preserve ordering, it is essential that the hole instantiation and
1095 * the data write be encapsulated in a single transaction. We cannot
1096 * close off a transaction and start a new one between the ext4_get_block()
1097 * and the commit_write(). So doing the jbd2_journal_start at the start of
1098 * prepare_write() is the right place.
1100 * Also, this function can nest inside ext4_writepage(). In that case, we
1101 * *know* that ext4_writepage() has generated enough buffer credits to do the
1102 * whole page. So we won't block on the journal in that case, which is good,
1103 * because the caller may be PF_MEMALLOC.
1105 * By accident, ext4 can be reentered when a transaction is open via
1106 * quota file writes. If we were to commit the transaction while thus
1107 * reentered, there can be a deadlock - we would be holding a quota
1108 * lock, and the commit would never complete if another thread had a
1109 * transaction open and was blocking on the quota lock - a ranking
1112 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1113 * will _not_ run commit under these circumstances because handle->h_ref
1114 * is elevated. We'll still have enough credits for the tiny quotafile
1117 int do_journal_get_write_access(handle_t *handle,
1118 struct buffer_head *bh)
1120 int dirty = buffer_dirty(bh);
1123 if (!buffer_mapped(bh) || buffer_freed(bh))
1126 * __block_write_begin() could have dirtied some buffers. Clean
1127 * the dirty bit as jbd2_journal_get_write_access() could complain
1128 * otherwise about fs integrity issues. Setting of the dirty bit
1129 * by __block_write_begin() isn't a real problem here as we clear
1130 * the bit before releasing a page lock and thus writeback cannot
1131 * ever write the buffer.
1134 clear_buffer_dirty(bh);
1135 BUFFER_TRACE(bh, "get write access");
1136 ret = ext4_journal_get_write_access(handle, bh);
1138 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1143 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1144 get_block_t *get_block)
1146 unsigned from = pos & (PAGE_SIZE - 1);
1147 unsigned to = from + len;
1148 struct inode *inode = page->mapping->host;
1149 unsigned block_start, block_end;
1152 unsigned blocksize = inode->i_sb->s_blocksize;
1154 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1155 bool decrypt = false;
1157 BUG_ON(!PageLocked(page));
1158 BUG_ON(from > PAGE_SIZE);
1159 BUG_ON(to > PAGE_SIZE);
1162 if (!page_has_buffers(page))
1163 create_empty_buffers(page, blocksize, 0);
1164 head = page_buffers(page);
1165 bbits = ilog2(blocksize);
1166 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1168 for (bh = head, block_start = 0; bh != head || !block_start;
1169 block++, block_start = block_end, bh = bh->b_this_page) {
1170 block_end = block_start + blocksize;
1171 if (block_end <= from || block_start >= to) {
1172 if (PageUptodate(page)) {
1173 if (!buffer_uptodate(bh))
1174 set_buffer_uptodate(bh);
1179 clear_buffer_new(bh);
1180 if (!buffer_mapped(bh)) {
1181 WARN_ON(bh->b_size != blocksize);
1182 err = get_block(inode, block, bh, 1);
1185 if (buffer_new(bh)) {
1186 clean_bdev_bh_alias(bh);
1187 if (PageUptodate(page)) {
1188 clear_buffer_new(bh);
1189 set_buffer_uptodate(bh);
1190 mark_buffer_dirty(bh);
1193 if (block_end > to || block_start < from)
1194 zero_user_segments(page, to, block_end,
1199 if (PageUptodate(page)) {
1200 if (!buffer_uptodate(bh))
1201 set_buffer_uptodate(bh);
1204 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1205 !buffer_unwritten(bh) &&
1206 (block_start < from || block_end > to)) {
1207 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1209 decrypt = ext4_encrypted_inode(inode) &&
1210 S_ISREG(inode->i_mode);
1214 * If we issued read requests, let them complete.
1216 while (wait_bh > wait) {
1217 wait_on_buffer(*--wait_bh);
1218 if (!buffer_uptodate(*wait_bh))
1222 page_zero_new_buffers(page, from, to);
1224 err = fscrypt_decrypt_page(page->mapping->host, page,
1225 PAGE_SIZE, 0, page->index);
1230 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1231 loff_t pos, unsigned len, unsigned flags,
1232 struct page **pagep, void **fsdata)
1234 struct inode *inode = mapping->host;
1235 int ret, needed_blocks;
1242 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1245 trace_ext4_write_begin(inode, pos, len, flags);
1247 * Reserve one block more for addition to orphan list in case
1248 * we allocate blocks but write fails for some reason
1250 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1251 index = pos >> PAGE_SHIFT;
1252 from = pos & (PAGE_SIZE - 1);
1255 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1256 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1265 * grab_cache_page_write_begin() can take a long time if the
1266 * system is thrashing due to memory pressure, or if the page
1267 * is being written back. So grab it first before we start
1268 * the transaction handle. This also allows us to allocate
1269 * the page (if needed) without using GFP_NOFS.
1272 page = grab_cache_page_write_begin(mapping, index, flags);
1278 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1279 if (IS_ERR(handle)) {
1281 return PTR_ERR(handle);
1285 if (page->mapping != mapping) {
1286 /* The page got truncated from under us */
1289 ext4_journal_stop(handle);
1292 /* In case writeback began while the page was unlocked */
1293 wait_for_stable_page(page);
1295 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1296 if (ext4_should_dioread_nolock(inode))
1297 ret = ext4_block_write_begin(page, pos, len,
1298 ext4_get_block_unwritten);
1300 ret = ext4_block_write_begin(page, pos, len,
1303 if (ext4_should_dioread_nolock(inode))
1304 ret = __block_write_begin(page, pos, len,
1305 ext4_get_block_unwritten);
1307 ret = __block_write_begin(page, pos, len, ext4_get_block);
1309 if (!ret && ext4_should_journal_data(inode)) {
1310 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1312 do_journal_get_write_access);
1318 * __block_write_begin may have instantiated a few blocks
1319 * outside i_size. Trim these off again. Don't need
1320 * i_size_read because we hold i_mutex.
1322 * Add inode to orphan list in case we crash before
1325 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1326 ext4_orphan_add(handle, inode);
1328 ext4_journal_stop(handle);
1329 if (pos + len > inode->i_size) {
1330 ext4_truncate_failed_write(inode);
1332 * If truncate failed early the inode might
1333 * still be on the orphan list; we need to
1334 * make sure the inode is removed from the
1335 * orphan list in that case.
1338 ext4_orphan_del(NULL, inode);
1341 if (ret == -ENOSPC &&
1342 ext4_should_retry_alloc(inode->i_sb, &retries))
1351 /* For write_end() in data=journal mode */
1352 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1355 if (!buffer_mapped(bh) || buffer_freed(bh))
1357 set_buffer_uptodate(bh);
1358 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1359 clear_buffer_meta(bh);
1360 clear_buffer_prio(bh);
1365 * We need to pick up the new inode size which generic_commit_write gave us
1366 * `file' can be NULL - eg, when called from page_symlink().
1368 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1369 * buffers are managed internally.
1371 static int ext4_write_end(struct file *file,
1372 struct address_space *mapping,
1373 loff_t pos, unsigned len, unsigned copied,
1374 struct page *page, void *fsdata)
1376 handle_t *handle = ext4_journal_current_handle();
1377 struct inode *inode = mapping->host;
1378 loff_t old_size = inode->i_size;
1380 int i_size_changed = 0;
1382 trace_ext4_write_end(inode, pos, len, copied);
1383 if (ext4_has_inline_data(inode)) {
1384 ret = ext4_write_inline_data_end(inode, pos, len,
1393 copied = block_write_end(file, mapping, pos,
1394 len, copied, page, fsdata);
1396 * it's important to update i_size while still holding page lock:
1397 * page writeout could otherwise come in and zero beyond i_size.
1399 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1404 pagecache_isize_extended(inode, old_size, pos);
1406 * Don't mark the inode dirty under page lock. First, it unnecessarily
1407 * makes the holding time of page lock longer. Second, it forces lock
1408 * ordering of page lock and transaction start for journaling
1412 ext4_mark_inode_dirty(handle, inode);
1414 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1415 /* if we have allocated more blocks and copied
1416 * less. We will have blocks allocated outside
1417 * inode->i_size. So truncate them
1419 ext4_orphan_add(handle, inode);
1421 ret2 = ext4_journal_stop(handle);
1425 if (pos + len > inode->i_size) {
1426 ext4_truncate_failed_write(inode);
1428 * If truncate failed early the inode might still be
1429 * on the orphan list; we need to make sure the inode
1430 * is removed from the orphan list in that case.
1433 ext4_orphan_del(NULL, inode);
1436 return ret ? ret : copied;
1440 * This is a private version of page_zero_new_buffers() which doesn't
1441 * set the buffer to be dirty, since in data=journalled mode we need
1442 * to call ext4_handle_dirty_metadata() instead.
1444 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1446 unsigned from, unsigned to)
1448 unsigned int block_start = 0, block_end;
1449 struct buffer_head *head, *bh;
1451 bh = head = page_buffers(page);
1453 block_end = block_start + bh->b_size;
1454 if (buffer_new(bh)) {
1455 if (block_end > from && block_start < to) {
1456 if (!PageUptodate(page)) {
1457 unsigned start, size;
1459 start = max(from, block_start);
1460 size = min(to, block_end) - start;
1462 zero_user(page, start, size);
1463 write_end_fn(handle, bh);
1465 clear_buffer_new(bh);
1468 block_start = block_end;
1469 bh = bh->b_this_page;
1470 } while (bh != head);
1473 static int ext4_journalled_write_end(struct file *file,
1474 struct address_space *mapping,
1475 loff_t pos, unsigned len, unsigned copied,
1476 struct page *page, void *fsdata)
1478 handle_t *handle = ext4_journal_current_handle();
1479 struct inode *inode = mapping->host;
1480 loff_t old_size = inode->i_size;
1484 int size_changed = 0;
1486 trace_ext4_journalled_write_end(inode, pos, len, copied);
1487 from = pos & (PAGE_SIZE - 1);
1490 BUG_ON(!ext4_handle_valid(handle));
1492 if (ext4_has_inline_data(inode)) {
1493 ret = ext4_write_inline_data_end(inode, pos, len,
1501 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1503 ext4_journalled_zero_new_buffers(handle, page, from, to);
1505 if (unlikely(copied < len))
1506 ext4_journalled_zero_new_buffers(handle, page,
1508 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1509 from + copied, &partial,
1512 SetPageUptodate(page);
1514 size_changed = ext4_update_inode_size(inode, pos + copied);
1515 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1516 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1521 pagecache_isize_extended(inode, old_size, pos);
1524 ret2 = ext4_mark_inode_dirty(handle, inode);
1529 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1530 /* if we have allocated more blocks and copied
1531 * less. We will have blocks allocated outside
1532 * inode->i_size. So truncate them
1534 ext4_orphan_add(handle, inode);
1537 ret2 = ext4_journal_stop(handle);
1540 if (pos + len > inode->i_size) {
1541 ext4_truncate_failed_write(inode);
1543 * If truncate failed early the inode might still be
1544 * on the orphan list; we need to make sure the inode
1545 * is removed from the orphan list in that case.
1548 ext4_orphan_del(NULL, inode);
1551 return ret ? ret : copied;
1555 * Reserve space for a single cluster
1557 static int ext4_da_reserve_space(struct inode *inode)
1559 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1560 struct ext4_inode_info *ei = EXT4_I(inode);
1564 * We will charge metadata quota at writeout time; this saves
1565 * us from metadata over-estimation, though we may go over by
1566 * a small amount in the end. Here we just reserve for data.
1568 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1572 spin_lock(&ei->i_block_reservation_lock);
1573 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1574 spin_unlock(&ei->i_block_reservation_lock);
1575 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1578 ei->i_reserved_data_blocks++;
1579 trace_ext4_da_reserve_space(inode);
1580 spin_unlock(&ei->i_block_reservation_lock);
1582 return 0; /* success */
1585 static void ext4_da_release_space(struct inode *inode, int to_free)
1587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1588 struct ext4_inode_info *ei = EXT4_I(inode);
1591 return; /* Nothing to release, exit */
1593 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1595 trace_ext4_da_release_space(inode, to_free);
1596 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1598 * if there aren't enough reserved blocks, then the
1599 * counter is messed up somewhere. Since this
1600 * function is called from invalidate page, it's
1601 * harmless to return without any action.
1603 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1604 "ino %lu, to_free %d with only %d reserved "
1605 "data blocks", inode->i_ino, to_free,
1606 ei->i_reserved_data_blocks);
1608 to_free = ei->i_reserved_data_blocks;
1610 ei->i_reserved_data_blocks -= to_free;
1612 /* update fs dirty data blocks counter */
1613 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1615 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1617 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1620 static void ext4_da_page_release_reservation(struct page *page,
1621 unsigned int offset,
1622 unsigned int length)
1624 int to_release = 0, contiguous_blks = 0;
1625 struct buffer_head *head, *bh;
1626 unsigned int curr_off = 0;
1627 struct inode *inode = page->mapping->host;
1628 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629 unsigned int stop = offset + length;
1633 BUG_ON(stop > PAGE_SIZE || stop < length);
1635 head = page_buffers(page);
1638 unsigned int next_off = curr_off + bh->b_size;
1640 if (next_off > stop)
1643 if ((offset <= curr_off) && (buffer_delay(bh))) {
1646 clear_buffer_delay(bh);
1647 } else if (contiguous_blks) {
1648 lblk = page->index <<
1649 (PAGE_SHIFT - inode->i_blkbits);
1650 lblk += (curr_off >> inode->i_blkbits) -
1652 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1653 contiguous_blks = 0;
1655 curr_off = next_off;
1656 } while ((bh = bh->b_this_page) != head);
1658 if (contiguous_blks) {
1659 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1660 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1661 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664 /* If we have released all the blocks belonging to a cluster, then we
1665 * need to release the reserved space for that cluster. */
1666 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1667 while (num_clusters > 0) {
1668 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1669 ((num_clusters - 1) << sbi->s_cluster_bits);
1670 if (sbi->s_cluster_ratio == 1 ||
1671 !ext4_find_delalloc_cluster(inode, lblk))
1672 ext4_da_release_space(inode, 1);
1679 * Delayed allocation stuff
1682 struct mpage_da_data {
1683 struct inode *inode;
1684 struct writeback_control *wbc;
1686 pgoff_t first_page; /* The first page to write */
1687 pgoff_t next_page; /* Current page to examine */
1688 pgoff_t last_page; /* Last page to examine */
1690 * Extent to map - this can be after first_page because that can be
1691 * fully mapped. We somewhat abuse m_flags to store whether the extent
1692 * is delalloc or unwritten.
1694 struct ext4_map_blocks map;
1695 struct ext4_io_submit io_submit; /* IO submission data */
1696 unsigned int do_map:1;
1699 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1704 struct pagevec pvec;
1705 struct inode *inode = mpd->inode;
1706 struct address_space *mapping = inode->i_mapping;
1708 /* This is necessary when next_page == 0. */
1709 if (mpd->first_page >= mpd->next_page)
1712 index = mpd->first_page;
1713 end = mpd->next_page - 1;
1715 ext4_lblk_t start, last;
1716 start = index << (PAGE_SHIFT - inode->i_blkbits);
1717 last = end << (PAGE_SHIFT - inode->i_blkbits);
1718 ext4_es_remove_extent(inode, start, last - start + 1);
1721 pagevec_init(&pvec, 0);
1722 while (index <= end) {
1723 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1726 for (i = 0; i < nr_pages; i++) {
1727 struct page *page = pvec.pages[i];
1729 BUG_ON(!PageLocked(page));
1730 BUG_ON(PageWriteback(page));
1732 if (page_mapped(page))
1733 clear_page_dirty_for_io(page);
1734 block_invalidatepage(page, 0, PAGE_SIZE);
1735 ClearPageUptodate(page);
1739 pagevec_release(&pvec);
1743 static void ext4_print_free_blocks(struct inode *inode)
1745 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1746 struct super_block *sb = inode->i_sb;
1747 struct ext4_inode_info *ei = EXT4_I(inode);
1749 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1750 EXT4_C2B(EXT4_SB(inode->i_sb),
1751 ext4_count_free_clusters(sb)));
1752 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1753 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1754 (long long) EXT4_C2B(EXT4_SB(sb),
1755 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1756 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1757 (long long) EXT4_C2B(EXT4_SB(sb),
1758 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1759 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1760 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1761 ei->i_reserved_data_blocks);
1765 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1767 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1771 * This function is grabs code from the very beginning of
1772 * ext4_map_blocks, but assumes that the caller is from delayed write
1773 * time. This function looks up the requested blocks and sets the
1774 * buffer delay bit under the protection of i_data_sem.
1776 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1777 struct ext4_map_blocks *map,
1778 struct buffer_head *bh)
1780 struct extent_status es;
1782 sector_t invalid_block = ~((sector_t) 0xffff);
1783 #ifdef ES_AGGRESSIVE_TEST
1784 struct ext4_map_blocks orig_map;
1786 memcpy(&orig_map, map, sizeof(*map));
1789 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1793 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1794 "logical block %lu\n", inode->i_ino, map->m_len,
1795 (unsigned long) map->m_lblk);
1797 /* Lookup extent status tree firstly */
1798 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1799 if (ext4_es_is_hole(&es)) {
1801 down_read(&EXT4_I(inode)->i_data_sem);
1806 * Delayed extent could be allocated by fallocate.
1807 * So we need to check it.
1809 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1810 map_bh(bh, inode->i_sb, invalid_block);
1812 set_buffer_delay(bh);
1816 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1817 retval = es.es_len - (iblock - es.es_lblk);
1818 if (retval > map->m_len)
1819 retval = map->m_len;
1820 map->m_len = retval;
1821 if (ext4_es_is_written(&es))
1822 map->m_flags |= EXT4_MAP_MAPPED;
1823 else if (ext4_es_is_unwritten(&es))
1824 map->m_flags |= EXT4_MAP_UNWRITTEN;
1828 #ifdef ES_AGGRESSIVE_TEST
1829 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1835 * Try to see if we can get the block without requesting a new
1836 * file system block.
1838 down_read(&EXT4_I(inode)->i_data_sem);
1839 if (ext4_has_inline_data(inode))
1841 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1842 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1844 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1850 * XXX: __block_prepare_write() unmaps passed block,
1854 * If the block was allocated from previously allocated cluster,
1855 * then we don't need to reserve it again. However we still need
1856 * to reserve metadata for every block we're going to write.
1858 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1859 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1860 ret = ext4_da_reserve_space(inode);
1862 /* not enough space to reserve */
1868 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1869 ~0, EXTENT_STATUS_DELAYED);
1875 map_bh(bh, inode->i_sb, invalid_block);
1877 set_buffer_delay(bh);
1878 } else if (retval > 0) {
1880 unsigned int status;
1882 if (unlikely(retval != map->m_len)) {
1883 ext4_warning(inode->i_sb,
1884 "ES len assertion failed for inode "
1885 "%lu: retval %d != map->m_len %d",
1886 inode->i_ino, retval, map->m_len);
1890 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1891 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1892 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1893 map->m_pblk, status);
1899 up_read((&EXT4_I(inode)->i_data_sem));
1905 * This is a special get_block_t callback which is used by
1906 * ext4_da_write_begin(). It will either return mapped block or
1907 * reserve space for a single block.
1909 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1910 * We also have b_blocknr = -1 and b_bdev initialized properly
1912 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1913 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1914 * initialized properly.
1916 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1917 struct buffer_head *bh, int create)
1919 struct ext4_map_blocks map;
1922 BUG_ON(create == 0);
1923 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1925 map.m_lblk = iblock;
1929 * first, we need to know whether the block is allocated already
1930 * preallocated blocks are unmapped but should treated
1931 * the same as allocated blocks.
1933 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1937 map_bh(bh, inode->i_sb, map.m_pblk);
1938 ext4_update_bh_state(bh, map.m_flags);
1940 if (buffer_unwritten(bh)) {
1941 /* A delayed write to unwritten bh should be marked
1942 * new and mapped. Mapped ensures that we don't do
1943 * get_block multiple times when we write to the same
1944 * offset and new ensures that we do proper zero out
1945 * for partial write.
1948 set_buffer_mapped(bh);
1953 static int bget_one(handle_t *handle, struct buffer_head *bh)
1959 static int bput_one(handle_t *handle, struct buffer_head *bh)
1965 static int __ext4_journalled_writepage(struct page *page,
1968 struct address_space *mapping = page->mapping;
1969 struct inode *inode = mapping->host;
1970 struct buffer_head *page_bufs = NULL;
1971 handle_t *handle = NULL;
1972 int ret = 0, err = 0;
1973 int inline_data = ext4_has_inline_data(inode);
1974 struct buffer_head *inode_bh = NULL;
1976 ClearPageChecked(page);
1979 BUG_ON(page->index != 0);
1980 BUG_ON(len > ext4_get_max_inline_size(inode));
1981 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1982 if (inode_bh == NULL)
1985 page_bufs = page_buffers(page);
1990 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1994 * We need to release the page lock before we start the
1995 * journal, so grab a reference so the page won't disappear
1996 * out from under us.
2001 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2002 ext4_writepage_trans_blocks(inode));
2003 if (IS_ERR(handle)) {
2004 ret = PTR_ERR(handle);
2006 goto out_no_pagelock;
2008 BUG_ON(!ext4_handle_valid(handle));
2012 if (page->mapping != mapping) {
2013 /* The page got truncated from under us */
2014 ext4_journal_stop(handle);
2020 BUFFER_TRACE(inode_bh, "get write access");
2021 ret = ext4_journal_get_write_access(handle, inode_bh);
2023 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2026 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2027 do_journal_get_write_access);
2029 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2034 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2035 err = ext4_journal_stop(handle);
2039 if (!ext4_has_inline_data(inode))
2040 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2042 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2051 * Note that we don't need to start a transaction unless we're journaling data
2052 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2053 * need to file the inode to the transaction's list in ordered mode because if
2054 * we are writing back data added by write(), the inode is already there and if
2055 * we are writing back data modified via mmap(), no one guarantees in which
2056 * transaction the data will hit the disk. In case we are journaling data, we
2057 * cannot start transaction directly because transaction start ranks above page
2058 * lock so we have to do some magic.
2060 * This function can get called via...
2061 * - ext4_writepages after taking page lock (have journal handle)
2062 * - journal_submit_inode_data_buffers (no journal handle)
2063 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2064 * - grab_page_cache when doing write_begin (have journal handle)
2066 * We don't do any block allocation in this function. If we have page with
2067 * multiple blocks we need to write those buffer_heads that are mapped. This
2068 * is important for mmaped based write. So if we do with blocksize 1K
2069 * truncate(f, 1024);
2070 * a = mmap(f, 0, 4096);
2072 * truncate(f, 4096);
2073 * we have in the page first buffer_head mapped via page_mkwrite call back
2074 * but other buffer_heads would be unmapped but dirty (dirty done via the
2075 * do_wp_page). So writepage should write the first block. If we modify
2076 * the mmap area beyond 1024 we will again get a page_fault and the
2077 * page_mkwrite callback will do the block allocation and mark the
2078 * buffer_heads mapped.
2080 * We redirty the page if we have any buffer_heads that is either delay or
2081 * unwritten in the page.
2083 * We can get recursively called as show below.
2085 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2088 * But since we don't do any block allocation we should not deadlock.
2089 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2091 static int ext4_writepage(struct page *page,
2092 struct writeback_control *wbc)
2097 struct buffer_head *page_bufs = NULL;
2098 struct inode *inode = page->mapping->host;
2099 struct ext4_io_submit io_submit;
2100 bool keep_towrite = false;
2102 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2103 ext4_invalidatepage(page, 0, PAGE_SIZE);
2108 trace_ext4_writepage(page);
2109 size = i_size_read(inode);
2110 if (page->index == size >> PAGE_SHIFT)
2111 len = size & ~PAGE_MASK;
2115 page_bufs = page_buffers(page);
2117 * We cannot do block allocation or other extent handling in this
2118 * function. If there are buffers needing that, we have to redirty
2119 * the page. But we may reach here when we do a journal commit via
2120 * journal_submit_inode_data_buffers() and in that case we must write
2121 * allocated buffers to achieve data=ordered mode guarantees.
2123 * Also, if there is only one buffer per page (the fs block
2124 * size == the page size), if one buffer needs block
2125 * allocation or needs to modify the extent tree to clear the
2126 * unwritten flag, we know that the page can't be written at
2127 * all, so we might as well refuse the write immediately.
2128 * Unfortunately if the block size != page size, we can't as
2129 * easily detect this case using ext4_walk_page_buffers(), but
2130 * for the extremely common case, this is an optimization that
2131 * skips a useless round trip through ext4_bio_write_page().
2133 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2134 ext4_bh_delay_or_unwritten)) {
2135 redirty_page_for_writepage(wbc, page);
2136 if ((current->flags & PF_MEMALLOC) ||
2137 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2139 * For memory cleaning there's no point in writing only
2140 * some buffers. So just bail out. Warn if we came here
2141 * from direct reclaim.
2143 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2148 keep_towrite = true;
2151 if (PageChecked(page) && ext4_should_journal_data(inode))
2153 * It's mmapped pagecache. Add buffers and journal it. There
2154 * doesn't seem much point in redirtying the page here.
2156 return __ext4_journalled_writepage(page, len);
2158 ext4_io_submit_init(&io_submit, wbc);
2159 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2160 if (!io_submit.io_end) {
2161 redirty_page_for_writepage(wbc, page);
2165 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2166 ext4_io_submit(&io_submit);
2167 /* Drop io_end reference we got from init */
2168 ext4_put_io_end_defer(io_submit.io_end);
2172 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2178 BUG_ON(page->index != mpd->first_page);
2179 clear_page_dirty_for_io(page);
2181 * We have to be very careful here! Nothing protects writeback path
2182 * against i_size changes and the page can be writeably mapped into
2183 * page tables. So an application can be growing i_size and writing
2184 * data through mmap while writeback runs. clear_page_dirty_for_io()
2185 * write-protects our page in page tables and the page cannot get
2186 * written to again until we release page lock. So only after
2187 * clear_page_dirty_for_io() we are safe to sample i_size for
2188 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2189 * on the barrier provided by TestClearPageDirty in
2190 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2191 * after page tables are updated.
2193 size = i_size_read(mpd->inode);
2194 if (page->index == size >> PAGE_SHIFT)
2195 len = size & ~PAGE_MASK;
2198 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2200 mpd->wbc->nr_to_write--;
2206 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2209 * mballoc gives us at most this number of blocks...
2210 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2211 * The rest of mballoc seems to handle chunks up to full group size.
2213 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2216 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2218 * @mpd - extent of blocks
2219 * @lblk - logical number of the block in the file
2220 * @bh - buffer head we want to add to the extent
2222 * The function is used to collect contig. blocks in the same state. If the
2223 * buffer doesn't require mapping for writeback and we haven't started the
2224 * extent of buffers to map yet, the function returns 'true' immediately - the
2225 * caller can write the buffer right away. Otherwise the function returns true
2226 * if the block has been added to the extent, false if the block couldn't be
2229 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2230 struct buffer_head *bh)
2232 struct ext4_map_blocks *map = &mpd->map;
2234 /* Buffer that doesn't need mapping for writeback? */
2235 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2236 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2237 /* So far no extent to map => we write the buffer right away */
2238 if (map->m_len == 0)
2243 /* First block in the extent? */
2244 if (map->m_len == 0) {
2245 /* We cannot map unless handle is started... */
2250 map->m_flags = bh->b_state & BH_FLAGS;
2254 /* Don't go larger than mballoc is willing to allocate */
2255 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2258 /* Can we merge the block to our big extent? */
2259 if (lblk == map->m_lblk + map->m_len &&
2260 (bh->b_state & BH_FLAGS) == map->m_flags) {
2268 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2270 * @mpd - extent of blocks for mapping
2271 * @head - the first buffer in the page
2272 * @bh - buffer we should start processing from
2273 * @lblk - logical number of the block in the file corresponding to @bh
2275 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2276 * the page for IO if all buffers in this page were mapped and there's no
2277 * accumulated extent of buffers to map or add buffers in the page to the
2278 * extent of buffers to map. The function returns 1 if the caller can continue
2279 * by processing the next page, 0 if it should stop adding buffers to the
2280 * extent to map because we cannot extend it anymore. It can also return value
2281 * < 0 in case of error during IO submission.
2283 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2284 struct buffer_head *head,
2285 struct buffer_head *bh,
2288 struct inode *inode = mpd->inode;
2290 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2291 >> inode->i_blkbits;
2294 BUG_ON(buffer_locked(bh));
2296 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2297 /* Found extent to map? */
2300 /* Buffer needs mapping and handle is not started? */
2303 /* Everything mapped so far and we hit EOF */
2306 } while (lblk++, (bh = bh->b_this_page) != head);
2307 /* So far everything mapped? Submit the page for IO. */
2308 if (mpd->map.m_len == 0) {
2309 err = mpage_submit_page(mpd, head->b_page);
2313 return lblk < blocks;
2317 * mpage_map_buffers - update buffers corresponding to changed extent and
2318 * submit fully mapped pages for IO
2320 * @mpd - description of extent to map, on return next extent to map
2322 * Scan buffers corresponding to changed extent (we expect corresponding pages
2323 * to be already locked) and update buffer state according to new extent state.
2324 * We map delalloc buffers to their physical location, clear unwritten bits,
2325 * and mark buffers as uninit when we perform writes to unwritten extents
2326 * and do extent conversion after IO is finished. If the last page is not fully
2327 * mapped, we update @map to the next extent in the last page that needs
2328 * mapping. Otherwise we submit the page for IO.
2330 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2332 struct pagevec pvec;
2334 struct inode *inode = mpd->inode;
2335 struct buffer_head *head, *bh;
2336 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2342 start = mpd->map.m_lblk >> bpp_bits;
2343 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2344 lblk = start << bpp_bits;
2345 pblock = mpd->map.m_pblk;
2347 pagevec_init(&pvec, 0);
2348 while (start <= end) {
2349 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2353 for (i = 0; i < nr_pages; i++) {
2354 struct page *page = pvec.pages[i];
2356 bh = head = page_buffers(page);
2358 if (lblk < mpd->map.m_lblk)
2360 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2362 * Buffer after end of mapped extent.
2363 * Find next buffer in the page to map.
2366 mpd->map.m_flags = 0;
2368 * FIXME: If dioread_nolock supports
2369 * blocksize < pagesize, we need to make
2370 * sure we add size mapped so far to
2371 * io_end->size as the following call
2372 * can submit the page for IO.
2374 err = mpage_process_page_bufs(mpd, head,
2376 pagevec_release(&pvec);
2381 if (buffer_delay(bh)) {
2382 clear_buffer_delay(bh);
2383 bh->b_blocknr = pblock++;
2385 clear_buffer_unwritten(bh);
2386 } while (lblk++, (bh = bh->b_this_page) != head);
2389 * FIXME: This is going to break if dioread_nolock
2390 * supports blocksize < pagesize as we will try to
2391 * convert potentially unmapped parts of inode.
2393 mpd->io_submit.io_end->size += PAGE_SIZE;
2394 /* Page fully mapped - let IO run! */
2395 err = mpage_submit_page(mpd, page);
2397 pagevec_release(&pvec);
2401 pagevec_release(&pvec);
2403 /* Extent fully mapped and matches with page boundary. We are done. */
2405 mpd->map.m_flags = 0;
2409 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2411 struct inode *inode = mpd->inode;
2412 struct ext4_map_blocks *map = &mpd->map;
2413 int get_blocks_flags;
2414 int err, dioread_nolock;
2416 trace_ext4_da_write_pages_extent(inode, map);
2418 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2419 * to convert an unwritten extent to be initialized (in the case
2420 * where we have written into one or more preallocated blocks). It is
2421 * possible that we're going to need more metadata blocks than
2422 * previously reserved. However we must not fail because we're in
2423 * writeback and there is nothing we can do about it so it might result
2424 * in data loss. So use reserved blocks to allocate metadata if
2427 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2428 * the blocks in question are delalloc blocks. This indicates
2429 * that the blocks and quotas has already been checked when
2430 * the data was copied into the page cache.
2432 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2433 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2434 EXT4_GET_BLOCKS_IO_SUBMIT;
2435 dioread_nolock = ext4_should_dioread_nolock(inode);
2437 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2438 if (map->m_flags & (1 << BH_Delay))
2439 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2441 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2444 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2445 if (!mpd->io_submit.io_end->handle &&
2446 ext4_handle_valid(handle)) {
2447 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2448 handle->h_rsv_handle = NULL;
2450 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2453 BUG_ON(map->m_len == 0);
2454 if (map->m_flags & EXT4_MAP_NEW) {
2455 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2462 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2463 * mpd->len and submit pages underlying it for IO
2465 * @handle - handle for journal operations
2466 * @mpd - extent to map
2467 * @give_up_on_write - we set this to true iff there is a fatal error and there
2468 * is no hope of writing the data. The caller should discard
2469 * dirty pages to avoid infinite loops.
2471 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2472 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2473 * them to initialized or split the described range from larger unwritten
2474 * extent. Note that we need not map all the described range since allocation
2475 * can return less blocks or the range is covered by more unwritten extents. We
2476 * cannot map more because we are limited by reserved transaction credits. On
2477 * the other hand we always make sure that the last touched page is fully
2478 * mapped so that it can be written out (and thus forward progress is
2479 * guaranteed). After mapping we submit all mapped pages for IO.
2481 static int mpage_map_and_submit_extent(handle_t *handle,
2482 struct mpage_da_data *mpd,
2483 bool *give_up_on_write)
2485 struct inode *inode = mpd->inode;
2486 struct ext4_map_blocks *map = &mpd->map;
2491 mpd->io_submit.io_end->offset =
2492 ((loff_t)map->m_lblk) << inode->i_blkbits;
2494 err = mpage_map_one_extent(handle, mpd);
2496 struct super_block *sb = inode->i_sb;
2498 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2499 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2500 goto invalidate_dirty_pages;
2502 * Let the uper layers retry transient errors.
2503 * In the case of ENOSPC, if ext4_count_free_blocks()
2504 * is non-zero, a commit should free up blocks.
2506 if ((err == -ENOMEM) ||
2507 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2509 goto update_disksize;
2512 ext4_msg(sb, KERN_CRIT,
2513 "Delayed block allocation failed for "
2514 "inode %lu at logical offset %llu with"
2515 " max blocks %u with error %d",
2517 (unsigned long long)map->m_lblk,
2518 (unsigned)map->m_len, -err);
2519 ext4_msg(sb, KERN_CRIT,
2520 "This should not happen!! Data will "
2523 ext4_print_free_blocks(inode);
2524 invalidate_dirty_pages:
2525 *give_up_on_write = true;
2530 * Update buffer state, submit mapped pages, and get us new
2533 err = mpage_map_and_submit_buffers(mpd);
2535 goto update_disksize;
2536 } while (map->m_len);
2540 * Update on-disk size after IO is submitted. Races with
2541 * truncate are avoided by checking i_size under i_data_sem.
2543 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2544 if (disksize > EXT4_I(inode)->i_disksize) {
2548 down_write(&EXT4_I(inode)->i_data_sem);
2549 i_size = i_size_read(inode);
2550 if (disksize > i_size)
2552 if (disksize > EXT4_I(inode)->i_disksize)
2553 EXT4_I(inode)->i_disksize = disksize;
2554 up_write(&EXT4_I(inode)->i_data_sem);
2555 err2 = ext4_mark_inode_dirty(handle, inode);
2557 ext4_error(inode->i_sb,
2558 "Failed to mark inode %lu dirty",
2567 * Calculate the total number of credits to reserve for one writepages
2568 * iteration. This is called from ext4_writepages(). We map an extent of
2569 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2570 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2571 * bpp - 1 blocks in bpp different extents.
2573 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2575 int bpp = ext4_journal_blocks_per_page(inode);
2577 return ext4_meta_trans_blocks(inode,
2578 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2582 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2583 * and underlying extent to map
2585 * @mpd - where to look for pages
2587 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2588 * IO immediately. When we find a page which isn't mapped we start accumulating
2589 * extent of buffers underlying these pages that needs mapping (formed by
2590 * either delayed or unwritten buffers). We also lock the pages containing
2591 * these buffers. The extent found is returned in @mpd structure (starting at
2592 * mpd->lblk with length mpd->len blocks).
2594 * Note that this function can attach bios to one io_end structure which are
2595 * neither logically nor physically contiguous. Although it may seem as an
2596 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2597 * case as we need to track IO to all buffers underlying a page in one io_end.
2599 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2601 struct address_space *mapping = mpd->inode->i_mapping;
2602 struct pagevec pvec;
2603 unsigned int nr_pages;
2604 long left = mpd->wbc->nr_to_write;
2605 pgoff_t index = mpd->first_page;
2606 pgoff_t end = mpd->last_page;
2609 int blkbits = mpd->inode->i_blkbits;
2611 struct buffer_head *head;
2613 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2614 tag = PAGECACHE_TAG_TOWRITE;
2616 tag = PAGECACHE_TAG_DIRTY;
2618 pagevec_init(&pvec, 0);
2620 mpd->next_page = index;
2621 while (index <= end) {
2622 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2623 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2627 for (i = 0; i < nr_pages; i++) {
2628 struct page *page = pvec.pages[i];
2631 * At this point, the page may be truncated or
2632 * invalidated (changing page->mapping to NULL), or
2633 * even swizzled back from swapper_space to tmpfs file
2634 * mapping. However, page->index will not change
2635 * because we have a reference on the page.
2637 if (page->index > end)
2641 * Accumulated enough dirty pages? This doesn't apply
2642 * to WB_SYNC_ALL mode. For integrity sync we have to
2643 * keep going because someone may be concurrently
2644 * dirtying pages, and we might have synced a lot of
2645 * newly appeared dirty pages, but have not synced all
2646 * of the old dirty pages.
2648 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2651 /* If we can't merge this page, we are done. */
2652 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2657 * If the page is no longer dirty, or its mapping no
2658 * longer corresponds to inode we are writing (which
2659 * means it has been truncated or invalidated), or the
2660 * page is already under writeback and we are not doing
2661 * a data integrity writeback, skip the page
2663 if (!PageDirty(page) ||
2664 (PageWriteback(page) &&
2665 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2666 unlikely(page->mapping != mapping)) {
2671 wait_on_page_writeback(page);
2672 BUG_ON(PageWriteback(page));
2674 if (mpd->map.m_len == 0)
2675 mpd->first_page = page->index;
2676 mpd->next_page = page->index + 1;
2677 /* Add all dirty buffers to mpd */
2678 lblk = ((ext4_lblk_t)page->index) <<
2679 (PAGE_SHIFT - blkbits);
2680 head = page_buffers(page);
2681 err = mpage_process_page_bufs(mpd, head, head, lblk);
2687 pagevec_release(&pvec);
2692 pagevec_release(&pvec);
2696 static int __writepage(struct page *page, struct writeback_control *wbc,
2699 struct address_space *mapping = data;
2700 int ret = ext4_writepage(page, wbc);
2701 mapping_set_error(mapping, ret);
2705 static int ext4_writepages(struct address_space *mapping,
2706 struct writeback_control *wbc)
2708 pgoff_t writeback_index = 0;
2709 long nr_to_write = wbc->nr_to_write;
2710 int range_whole = 0;
2712 handle_t *handle = NULL;
2713 struct mpage_da_data mpd;
2714 struct inode *inode = mapping->host;
2715 int needed_blocks, rsv_blocks = 0, ret = 0;
2716 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2718 struct blk_plug plug;
2719 bool give_up_on_write = false;
2721 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2724 percpu_down_read(&sbi->s_journal_flag_rwsem);
2725 trace_ext4_writepages(inode, wbc);
2727 if (dax_mapping(mapping)) {
2728 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2730 goto out_writepages;
2734 * No pages to write? This is mainly a kludge to avoid starting
2735 * a transaction for special inodes like journal inode on last iput()
2736 * because that could violate lock ordering on umount
2738 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2739 goto out_writepages;
2741 if (ext4_should_journal_data(inode)) {
2742 struct blk_plug plug;
2744 blk_start_plug(&plug);
2745 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2746 blk_finish_plug(&plug);
2747 goto out_writepages;
2751 * If the filesystem has aborted, it is read-only, so return
2752 * right away instead of dumping stack traces later on that
2753 * will obscure the real source of the problem. We test
2754 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2755 * the latter could be true if the filesystem is mounted
2756 * read-only, and in that case, ext4_writepages should
2757 * *never* be called, so if that ever happens, we would want
2760 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2761 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2763 goto out_writepages;
2766 if (ext4_should_dioread_nolock(inode)) {
2768 * We may need to convert up to one extent per block in
2769 * the page and we may dirty the inode.
2771 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2775 * If we have inline data and arrive here, it means that
2776 * we will soon create the block for the 1st page, so
2777 * we'd better clear the inline data here.
2779 if (ext4_has_inline_data(inode)) {
2780 /* Just inode will be modified... */
2781 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2782 if (IS_ERR(handle)) {
2783 ret = PTR_ERR(handle);
2784 goto out_writepages;
2786 BUG_ON(ext4_test_inode_state(inode,
2787 EXT4_STATE_MAY_INLINE_DATA));
2788 ext4_destroy_inline_data(handle, inode);
2789 ext4_journal_stop(handle);
2792 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2795 if (wbc->range_cyclic) {
2796 writeback_index = mapping->writeback_index;
2797 if (writeback_index)
2799 mpd.first_page = writeback_index;
2802 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2803 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2808 ext4_io_submit_init(&mpd.io_submit, wbc);
2810 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2811 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2813 blk_start_plug(&plug);
2816 * First writeback pages that don't need mapping - we can avoid
2817 * starting a transaction unnecessarily and also avoid being blocked
2818 * in the block layer on device congestion while having transaction
2822 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2823 if (!mpd.io_submit.io_end) {
2827 ret = mpage_prepare_extent_to_map(&mpd);
2828 /* Submit prepared bio */
2829 ext4_io_submit(&mpd.io_submit);
2830 ext4_put_io_end_defer(mpd.io_submit.io_end);
2831 mpd.io_submit.io_end = NULL;
2832 /* Unlock pages we didn't use */
2833 mpage_release_unused_pages(&mpd, false);
2837 while (!done && mpd.first_page <= mpd.last_page) {
2838 /* For each extent of pages we use new io_end */
2839 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2840 if (!mpd.io_submit.io_end) {
2846 * We have two constraints: We find one extent to map and we
2847 * must always write out whole page (makes a difference when
2848 * blocksize < pagesize) so that we don't block on IO when we
2849 * try to write out the rest of the page. Journalled mode is
2850 * not supported by delalloc.
2852 BUG_ON(ext4_should_journal_data(inode));
2853 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2855 /* start a new transaction */
2856 handle = ext4_journal_start_with_reserve(inode,
2857 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2858 if (IS_ERR(handle)) {
2859 ret = PTR_ERR(handle);
2860 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2861 "%ld pages, ino %lu; err %d", __func__,
2862 wbc->nr_to_write, inode->i_ino, ret);
2863 /* Release allocated io_end */
2864 ext4_put_io_end(mpd.io_submit.io_end);
2865 mpd.io_submit.io_end = NULL;
2870 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2871 ret = mpage_prepare_extent_to_map(&mpd);
2874 ret = mpage_map_and_submit_extent(handle, &mpd,
2878 * We scanned the whole range (or exhausted
2879 * nr_to_write), submitted what was mapped and
2880 * didn't find anything needing mapping. We are
2887 * Caution: If the handle is synchronous,
2888 * ext4_journal_stop() can wait for transaction commit
2889 * to finish which may depend on writeback of pages to
2890 * complete or on page lock to be released. In that
2891 * case, we have to wait until after after we have
2892 * submitted all the IO, released page locks we hold,
2893 * and dropped io_end reference (for extent conversion
2894 * to be able to complete) before stopping the handle.
2896 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2897 ext4_journal_stop(handle);
2901 /* Submit prepared bio */
2902 ext4_io_submit(&mpd.io_submit);
2903 /* Unlock pages we didn't use */
2904 mpage_release_unused_pages(&mpd, give_up_on_write);
2906 * Drop our io_end reference we got from init. We have
2907 * to be careful and use deferred io_end finishing if
2908 * we are still holding the transaction as we can
2909 * release the last reference to io_end which may end
2910 * up doing unwritten extent conversion.
2913 ext4_put_io_end_defer(mpd.io_submit.io_end);
2914 ext4_journal_stop(handle);
2916 ext4_put_io_end(mpd.io_submit.io_end);
2917 mpd.io_submit.io_end = NULL;
2919 if (ret == -ENOSPC && sbi->s_journal) {
2921 * Commit the transaction which would
2922 * free blocks released in the transaction
2925 jbd2_journal_force_commit_nested(sbi->s_journal);
2929 /* Fatal error - ENOMEM, EIO... */
2934 blk_finish_plug(&plug);
2935 if (!ret && !cycled && wbc->nr_to_write > 0) {
2937 mpd.last_page = writeback_index - 1;
2943 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2945 * Set the writeback_index so that range_cyclic
2946 * mode will write it back later
2948 mapping->writeback_index = mpd.first_page;
2951 trace_ext4_writepages_result(inode, wbc, ret,
2952 nr_to_write - wbc->nr_to_write);
2953 percpu_up_read(&sbi->s_journal_flag_rwsem);
2957 static int ext4_nonda_switch(struct super_block *sb)
2959 s64 free_clusters, dirty_clusters;
2960 struct ext4_sb_info *sbi = EXT4_SB(sb);
2963 * switch to non delalloc mode if we are running low
2964 * on free block. The free block accounting via percpu
2965 * counters can get slightly wrong with percpu_counter_batch getting
2966 * accumulated on each CPU without updating global counters
2967 * Delalloc need an accurate free block accounting. So switch
2968 * to non delalloc when we are near to error range.
2971 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2973 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2975 * Start pushing delalloc when 1/2 of free blocks are dirty.
2977 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2978 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2980 if (2 * free_clusters < 3 * dirty_clusters ||
2981 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2983 * free block count is less than 150% of dirty blocks
2984 * or free blocks is less than watermark
2991 /* We always reserve for an inode update; the superblock could be there too */
2992 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2994 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2997 if (pos + len <= 0x7fffffffULL)
3000 /* We might need to update the superblock to set LARGE_FILE */
3004 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3005 loff_t pos, unsigned len, unsigned flags,
3006 struct page **pagep, void **fsdata)
3008 int ret, retries = 0;
3011 struct inode *inode = mapping->host;
3014 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3017 index = pos >> PAGE_SHIFT;
3019 if (ext4_nonda_switch(inode->i_sb) ||
3020 S_ISLNK(inode->i_mode)) {
3021 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3022 return ext4_write_begin(file, mapping, pos,
3023 len, flags, pagep, fsdata);
3025 *fsdata = (void *)0;
3026 trace_ext4_da_write_begin(inode, pos, len, flags);
3028 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3029 ret = ext4_da_write_inline_data_begin(mapping, inode,
3039 * grab_cache_page_write_begin() can take a long time if the
3040 * system is thrashing due to memory pressure, or if the page
3041 * is being written back. So grab it first before we start
3042 * the transaction handle. This also allows us to allocate
3043 * the page (if needed) without using GFP_NOFS.
3046 page = grab_cache_page_write_begin(mapping, index, flags);
3052 * With delayed allocation, we don't log the i_disksize update
3053 * if there is delayed block allocation. But we still need
3054 * to journalling the i_disksize update if writes to the end
3055 * of file which has an already mapped buffer.
3058 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3059 ext4_da_write_credits(inode, pos, len));
3060 if (IS_ERR(handle)) {
3062 return PTR_ERR(handle);
3066 if (page->mapping != mapping) {
3067 /* The page got truncated from under us */
3070 ext4_journal_stop(handle);
3073 /* In case writeback began while the page was unlocked */
3074 wait_for_stable_page(page);
3076 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3077 ret = ext4_block_write_begin(page, pos, len,
3078 ext4_da_get_block_prep);
3080 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3084 ext4_journal_stop(handle);
3086 * block_write_begin may have instantiated a few blocks
3087 * outside i_size. Trim these off again. Don't need
3088 * i_size_read because we hold i_mutex.
3090 if (pos + len > inode->i_size)
3091 ext4_truncate_failed_write(inode);
3093 if (ret == -ENOSPC &&
3094 ext4_should_retry_alloc(inode->i_sb, &retries))
3106 * Check if we should update i_disksize
3107 * when write to the end of file but not require block allocation
3109 static int ext4_da_should_update_i_disksize(struct page *page,
3110 unsigned long offset)
3112 struct buffer_head *bh;
3113 struct inode *inode = page->mapping->host;
3117 bh = page_buffers(page);
3118 idx = offset >> inode->i_blkbits;
3120 for (i = 0; i < idx; i++)
3121 bh = bh->b_this_page;
3123 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3128 static int ext4_da_write_end(struct file *file,
3129 struct address_space *mapping,
3130 loff_t pos, unsigned len, unsigned copied,
3131 struct page *page, void *fsdata)
3133 struct inode *inode = mapping->host;
3135 handle_t *handle = ext4_journal_current_handle();
3137 unsigned long start, end;
3138 int write_mode = (int)(unsigned long)fsdata;
3140 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3141 return ext4_write_end(file, mapping, pos,
3142 len, copied, page, fsdata);
3144 trace_ext4_da_write_end(inode, pos, len, copied);
3145 start = pos & (PAGE_SIZE - 1);
3146 end = start + copied - 1;
3149 * generic_write_end() will run mark_inode_dirty() if i_size
3150 * changes. So let's piggyback the i_disksize mark_inode_dirty
3153 new_i_size = pos + copied;
3154 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3155 if (ext4_has_inline_data(inode) ||
3156 ext4_da_should_update_i_disksize(page, end)) {
3157 ext4_update_i_disksize(inode, new_i_size);
3158 /* We need to mark inode dirty even if
3159 * new_i_size is less that inode->i_size
3160 * bu greater than i_disksize.(hint delalloc)
3162 ext4_mark_inode_dirty(handle, inode);
3166 if (write_mode != CONVERT_INLINE_DATA &&
3167 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3168 ext4_has_inline_data(inode))
3169 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3172 ret2 = generic_write_end(file, mapping, pos, len, copied,
3178 ret2 = ext4_journal_stop(handle);
3182 return ret ? ret : copied;
3185 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3186 unsigned int length)
3189 * Drop reserved blocks
3191 BUG_ON(!PageLocked(page));
3192 if (!page_has_buffers(page))
3195 ext4_da_page_release_reservation(page, offset, length);
3198 ext4_invalidatepage(page, offset, length);
3204 * Force all delayed allocation blocks to be allocated for a given inode.
3206 int ext4_alloc_da_blocks(struct inode *inode)
3208 trace_ext4_alloc_da_blocks(inode);
3210 if (!EXT4_I(inode)->i_reserved_data_blocks)
3214 * We do something simple for now. The filemap_flush() will
3215 * also start triggering a write of the data blocks, which is
3216 * not strictly speaking necessary (and for users of
3217 * laptop_mode, not even desirable). However, to do otherwise
3218 * would require replicating code paths in:
3220 * ext4_writepages() ->
3221 * write_cache_pages() ---> (via passed in callback function)
3222 * __mpage_da_writepage() -->
3223 * mpage_add_bh_to_extent()
3224 * mpage_da_map_blocks()
3226 * The problem is that write_cache_pages(), located in
3227 * mm/page-writeback.c, marks pages clean in preparation for
3228 * doing I/O, which is not desirable if we're not planning on
3231 * We could call write_cache_pages(), and then redirty all of
3232 * the pages by calling redirty_page_for_writepage() but that
3233 * would be ugly in the extreme. So instead we would need to
3234 * replicate parts of the code in the above functions,
3235 * simplifying them because we wouldn't actually intend to
3236 * write out the pages, but rather only collect contiguous
3237 * logical block extents, call the multi-block allocator, and
3238 * then update the buffer heads with the block allocations.
3240 * For now, though, we'll cheat by calling filemap_flush(),
3241 * which will map the blocks, and start the I/O, but not
3242 * actually wait for the I/O to complete.
3244 return filemap_flush(inode->i_mapping);
3248 * bmap() is special. It gets used by applications such as lilo and by
3249 * the swapper to find the on-disk block of a specific piece of data.
3251 * Naturally, this is dangerous if the block concerned is still in the
3252 * journal. If somebody makes a swapfile on an ext4 data-journaling
3253 * filesystem and enables swap, then they may get a nasty shock when the
3254 * data getting swapped to that swapfile suddenly gets overwritten by
3255 * the original zero's written out previously to the journal and
3256 * awaiting writeback in the kernel's buffer cache.
3258 * So, if we see any bmap calls here on a modified, data-journaled file,
3259 * take extra steps to flush any blocks which might be in the cache.
3261 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3263 struct inode *inode = mapping->host;
3268 * We can get here for an inline file via the FIBMAP ioctl
3270 if (ext4_has_inline_data(inode))
3273 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3274 test_opt(inode->i_sb, DELALLOC)) {
3276 * With delalloc we want to sync the file
3277 * so that we can make sure we allocate
3280 filemap_write_and_wait(mapping);
3283 if (EXT4_JOURNAL(inode) &&
3284 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3286 * This is a REALLY heavyweight approach, but the use of
3287 * bmap on dirty files is expected to be extremely rare:
3288 * only if we run lilo or swapon on a freshly made file
3289 * do we expect this to happen.
3291 * (bmap requires CAP_SYS_RAWIO so this does not
3292 * represent an unprivileged user DOS attack --- we'd be
3293 * in trouble if mortal users could trigger this path at
3296 * NB. EXT4_STATE_JDATA is not set on files other than
3297 * regular files. If somebody wants to bmap a directory
3298 * or symlink and gets confused because the buffer
3299 * hasn't yet been flushed to disk, they deserve
3300 * everything they get.
3303 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3304 journal = EXT4_JOURNAL(inode);
3305 jbd2_journal_lock_updates(journal);
3306 err = jbd2_journal_flush(journal);
3307 jbd2_journal_unlock_updates(journal);
3313 return generic_block_bmap(mapping, block, ext4_get_block);
3316 static int ext4_readpage(struct file *file, struct page *page)
3319 struct inode *inode = page->mapping->host;
3321 trace_ext4_readpage(page);
3323 if (ext4_has_inline_data(inode))
3324 ret = ext4_readpage_inline(inode, page);
3327 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3333 ext4_readpages(struct file *file, struct address_space *mapping,
3334 struct list_head *pages, unsigned nr_pages)
3336 struct inode *inode = mapping->host;
3338 /* If the file has inline data, no need to do readpages. */
3339 if (ext4_has_inline_data(inode))
3342 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3345 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346 unsigned int length)
3348 trace_ext4_invalidatepage(page, offset, length);
3350 /* No journalling happens on data buffers when this function is used */
3351 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3353 block_invalidatepage(page, offset, length);
3356 static int __ext4_journalled_invalidatepage(struct page *page,
3357 unsigned int offset,
3358 unsigned int length)
3360 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3362 trace_ext4_journalled_invalidatepage(page, offset, length);
3365 * If it's a full truncate we just forget about the pending dirtying
3367 if (offset == 0 && length == PAGE_SIZE)
3368 ClearPageChecked(page);
3370 return jbd2_journal_invalidatepage(journal, page, offset, length);
3373 /* Wrapper for aops... */
3374 static void ext4_journalled_invalidatepage(struct page *page,
3375 unsigned int offset,
3376 unsigned int length)
3378 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3381 static int ext4_releasepage(struct page *page, gfp_t wait)
3383 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3385 trace_ext4_releasepage(page);
3387 /* Page has dirty journalled data -> cannot release */
3388 if (PageChecked(page))
3391 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3393 return try_to_free_buffers(page);
3396 #ifdef CONFIG_FS_DAX
3397 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3398 unsigned flags, struct iomap *iomap)
3400 struct block_device *bdev;
3401 unsigned int blkbits = inode->i_blkbits;
3402 unsigned long first_block = offset >> blkbits;
3403 unsigned long last_block = (offset + length - 1) >> blkbits;
3404 struct ext4_map_blocks map;
3407 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3410 map.m_lblk = first_block;
3411 map.m_len = last_block - first_block + 1;
3413 if (!(flags & IOMAP_WRITE)) {
3414 ret = ext4_map_blocks(NULL, inode, &map, 0);
3420 /* Trim mapping request to maximum we can map at once for DIO */
3421 if (map.m_len > DIO_MAX_BLOCKS)
3422 map.m_len = DIO_MAX_BLOCKS;
3423 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3426 * Either we allocate blocks and then we don't get unwritten
3427 * extent so we have reserved enough credits, or the blocks
3428 * are already allocated and unwritten and in that case
3429 * extent conversion fits in the credits as well.
3431 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3434 return PTR_ERR(handle);
3436 ret = ext4_map_blocks(handle, inode, &map,
3437 EXT4_GET_BLOCKS_CREATE_ZERO);
3439 ext4_journal_stop(handle);
3440 if (ret == -ENOSPC &&
3441 ext4_should_retry_alloc(inode->i_sb, &retries))
3447 * If we added blocks beyond i_size, we need to make sure they
3448 * will get truncated if we crash before updating i_size in
3449 * ext4_iomap_end(). For faults we don't need to do that (and
3450 * even cannot because for orphan list operations inode_lock is
3451 * required) - if we happen to instantiate block beyond i_size,
3452 * it is because we race with truncate which has already added
3453 * the inode to the orphan list.
3455 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3456 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3459 err = ext4_orphan_add(handle, inode);
3461 ext4_journal_stop(handle);
3465 ext4_journal_stop(handle);
3469 bdev = inode->i_sb->s_bdev;
3471 if (blk_queue_dax(bdev->bd_queue))
3472 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3474 iomap->dax_dev = NULL;
3475 iomap->offset = first_block << blkbits;
3478 iomap->type = IOMAP_HOLE;
3479 iomap->blkno = IOMAP_NULL_BLOCK;
3480 iomap->length = (u64)map.m_len << blkbits;
3482 if (map.m_flags & EXT4_MAP_MAPPED) {
3483 iomap->type = IOMAP_MAPPED;
3484 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3485 iomap->type = IOMAP_UNWRITTEN;
3490 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3491 iomap->length = (u64)map.m_len << blkbits;
3494 if (map.m_flags & EXT4_MAP_NEW)
3495 iomap->flags |= IOMAP_F_NEW;
3499 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3500 ssize_t written, unsigned flags, struct iomap *iomap)
3504 int blkbits = inode->i_blkbits;
3505 bool truncate = false;
3507 fs_put_dax(iomap->dax_dev);
3508 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3511 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3512 if (IS_ERR(handle)) {
3513 ret = PTR_ERR(handle);
3516 if (ext4_update_inode_size(inode, offset + written))
3517 ext4_mark_inode_dirty(handle, inode);
3519 * We may need to truncate allocated but not written blocks beyond EOF.
3521 if (iomap->offset + iomap->length >
3522 ALIGN(inode->i_size, 1 << blkbits)) {
3523 ext4_lblk_t written_blk, end_blk;
3525 written_blk = (offset + written) >> blkbits;
3526 end_blk = (offset + length) >> blkbits;
3527 if (written_blk < end_blk && ext4_can_truncate(inode))
3531 * Remove inode from orphan list if we were extending a inode and
3532 * everything went fine.
3534 if (!truncate && inode->i_nlink &&
3535 !list_empty(&EXT4_I(inode)->i_orphan))
3536 ext4_orphan_del(handle, inode);
3537 ext4_journal_stop(handle);
3539 ext4_truncate_failed_write(inode);
3542 * If truncate failed early the inode might still be on the
3543 * orphan list; we need to make sure the inode is removed from
3544 * the orphan list in that case.
3547 ext4_orphan_del(NULL, inode);
3552 const struct iomap_ops ext4_iomap_ops = {
3553 .iomap_begin = ext4_iomap_begin,
3554 .iomap_end = ext4_iomap_end,
3559 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3560 ssize_t size, void *private)
3562 ext4_io_end_t *io_end = private;
3564 /* if not async direct IO just return */
3568 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3569 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3570 io_end, io_end->inode->i_ino, iocb, offset, size);
3573 * Error during AIO DIO. We cannot convert unwritten extents as the
3574 * data was not written. Just clear the unwritten flag and drop io_end.
3577 ext4_clear_io_unwritten_flag(io_end);
3580 io_end->offset = offset;
3581 io_end->size = size;
3582 ext4_put_io_end(io_end);
3588 * Handling of direct IO writes.
3590 * For ext4 extent files, ext4 will do direct-io write even to holes,
3591 * preallocated extents, and those write extend the file, no need to
3592 * fall back to buffered IO.
3594 * For holes, we fallocate those blocks, mark them as unwritten
3595 * If those blocks were preallocated, we mark sure they are split, but
3596 * still keep the range to write as unwritten.
3598 * The unwritten extents will be converted to written when DIO is completed.
3599 * For async direct IO, since the IO may still pending when return, we
3600 * set up an end_io call back function, which will do the conversion
3601 * when async direct IO completed.
3603 * If the O_DIRECT write will extend the file then add this inode to the
3604 * orphan list. So recovery will truncate it back to the original size
3605 * if the machine crashes during the write.
3608 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3610 struct file *file = iocb->ki_filp;
3611 struct inode *inode = file->f_mapping->host;
3612 struct ext4_inode_info *ei = EXT4_I(inode);
3614 loff_t offset = iocb->ki_pos;
3615 size_t count = iov_iter_count(iter);
3617 get_block_t *get_block_func = NULL;
3619 loff_t final_size = offset + count;
3623 if (final_size > inode->i_size) {
3624 /* Credits for sb + inode write */
3625 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3626 if (IS_ERR(handle)) {
3627 ret = PTR_ERR(handle);
3630 ret = ext4_orphan_add(handle, inode);
3632 ext4_journal_stop(handle);
3636 ei->i_disksize = inode->i_size;
3637 ext4_journal_stop(handle);
3640 BUG_ON(iocb->private == NULL);
3643 * Make all waiters for direct IO properly wait also for extent
3644 * conversion. This also disallows race between truncate() and
3645 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3647 inode_dio_begin(inode);
3649 /* If we do a overwrite dio, i_mutex locking can be released */
3650 overwrite = *((int *)iocb->private);
3653 inode_unlock(inode);
3656 * For extent mapped files we could direct write to holes and fallocate.
3658 * Allocated blocks to fill the hole are marked as unwritten to prevent
3659 * parallel buffered read to expose the stale data before DIO complete
3662 * As to previously fallocated extents, ext4 get_block will just simply
3663 * mark the buffer mapped but still keep the extents unwritten.
3665 * For non AIO case, we will convert those unwritten extents to written
3666 * after return back from blockdev_direct_IO. That way we save us from
3667 * allocating io_end structure and also the overhead of offloading
3668 * the extent convertion to a workqueue.
3670 * For async DIO, the conversion needs to be deferred when the
3671 * IO is completed. The ext4 end_io callback function will be
3672 * called to take care of the conversion work. Here for async
3673 * case, we allocate an io_end structure to hook to the iocb.
3675 iocb->private = NULL;
3677 get_block_func = ext4_dio_get_block_overwrite;
3678 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3679 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3680 get_block_func = ext4_dio_get_block;
3681 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3682 } else if (is_sync_kiocb(iocb)) {
3683 get_block_func = ext4_dio_get_block_unwritten_sync;
3684 dio_flags = DIO_LOCKING;
3686 get_block_func = ext4_dio_get_block_unwritten_async;
3687 dio_flags = DIO_LOCKING;
3689 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3690 get_block_func, ext4_end_io_dio, NULL,
3693 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3694 EXT4_STATE_DIO_UNWRITTEN)) {
3697 * for non AIO case, since the IO is already
3698 * completed, we could do the conversion right here
3700 err = ext4_convert_unwritten_extents(NULL, inode,
3704 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3707 inode_dio_end(inode);
3708 /* take i_mutex locking again if we do a ovewrite dio */
3712 if (ret < 0 && final_size > inode->i_size)
3713 ext4_truncate_failed_write(inode);
3715 /* Handle extending of i_size after direct IO write */
3719 /* Credits for sb + inode write */
3720 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3721 if (IS_ERR(handle)) {
3722 /* This is really bad luck. We've written the data
3723 * but cannot extend i_size. Bail out and pretend
3724 * the write failed... */
3725 ret = PTR_ERR(handle);
3727 ext4_orphan_del(NULL, inode);
3732 ext4_orphan_del(handle, inode);
3734 loff_t end = offset + ret;
3735 if (end > inode->i_size) {
3736 ei->i_disksize = end;
3737 i_size_write(inode, end);
3739 * We're going to return a positive `ret'
3740 * here due to non-zero-length I/O, so there's
3741 * no way of reporting error returns from
3742 * ext4_mark_inode_dirty() to userspace. So
3745 ext4_mark_inode_dirty(handle, inode);
3748 err = ext4_journal_stop(handle);
3756 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3758 struct address_space *mapping = iocb->ki_filp->f_mapping;
3759 struct inode *inode = mapping->host;
3760 size_t count = iov_iter_count(iter);
3764 * Shared inode_lock is enough for us - it protects against concurrent
3765 * writes & truncates and since we take care of writing back page cache,
3766 * we are protected against page writeback as well.
3768 inode_lock_shared(inode);
3769 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3770 iocb->ki_pos + count - 1);
3773 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3774 iter, ext4_dio_get_block, NULL, NULL, 0);
3776 inode_unlock_shared(inode);
3780 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3782 struct file *file = iocb->ki_filp;
3783 struct inode *inode = file->f_mapping->host;
3784 size_t count = iov_iter_count(iter);
3785 loff_t offset = iocb->ki_pos;
3788 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3789 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3794 * If we are doing data journalling we don't support O_DIRECT
3796 if (ext4_should_journal_data(inode))
3799 /* Let buffer I/O handle the inline data case. */
3800 if (ext4_has_inline_data(inode))
3803 /* DAX uses iomap path now */
3804 if (WARN_ON_ONCE(IS_DAX(inode)))
3807 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3808 if (iov_iter_rw(iter) == READ)
3809 ret = ext4_direct_IO_read(iocb, iter);
3811 ret = ext4_direct_IO_write(iocb, iter);
3812 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3817 * Pages can be marked dirty completely asynchronously from ext4's journalling
3818 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3819 * much here because ->set_page_dirty is called under VFS locks. The page is
3820 * not necessarily locked.
3822 * We cannot just dirty the page and leave attached buffers clean, because the
3823 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3824 * or jbddirty because all the journalling code will explode.
3826 * So what we do is to mark the page "pending dirty" and next time writepage
3827 * is called, propagate that into the buffers appropriately.
3829 static int ext4_journalled_set_page_dirty(struct page *page)
3831 SetPageChecked(page);
3832 return __set_page_dirty_nobuffers(page);
3835 static int ext4_set_page_dirty(struct page *page)
3837 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3838 WARN_ON_ONCE(!page_has_buffers(page));
3839 return __set_page_dirty_buffers(page);
3842 static const struct address_space_operations ext4_aops = {
3843 .readpage = ext4_readpage,
3844 .readpages = ext4_readpages,
3845 .writepage = ext4_writepage,
3846 .writepages = ext4_writepages,
3847 .write_begin = ext4_write_begin,
3848 .write_end = ext4_write_end,
3849 .set_page_dirty = ext4_set_page_dirty,
3851 .invalidatepage = ext4_invalidatepage,
3852 .releasepage = ext4_releasepage,
3853 .direct_IO = ext4_direct_IO,
3854 .migratepage = buffer_migrate_page,
3855 .is_partially_uptodate = block_is_partially_uptodate,
3856 .error_remove_page = generic_error_remove_page,
3859 static const struct address_space_operations ext4_journalled_aops = {
3860 .readpage = ext4_readpage,
3861 .readpages = ext4_readpages,
3862 .writepage = ext4_writepage,
3863 .writepages = ext4_writepages,
3864 .write_begin = ext4_write_begin,
3865 .write_end = ext4_journalled_write_end,
3866 .set_page_dirty = ext4_journalled_set_page_dirty,
3868 .invalidatepage = ext4_journalled_invalidatepage,
3869 .releasepage = ext4_releasepage,
3870 .direct_IO = ext4_direct_IO,
3871 .is_partially_uptodate = block_is_partially_uptodate,
3872 .error_remove_page = generic_error_remove_page,
3875 static const struct address_space_operations ext4_da_aops = {
3876 .readpage = ext4_readpage,
3877 .readpages = ext4_readpages,
3878 .writepage = ext4_writepage,
3879 .writepages = ext4_writepages,
3880 .write_begin = ext4_da_write_begin,
3881 .write_end = ext4_da_write_end,
3882 .set_page_dirty = ext4_set_page_dirty,
3884 .invalidatepage = ext4_da_invalidatepage,
3885 .releasepage = ext4_releasepage,
3886 .direct_IO = ext4_direct_IO,
3887 .migratepage = buffer_migrate_page,
3888 .is_partially_uptodate = block_is_partially_uptodate,
3889 .error_remove_page = generic_error_remove_page,
3892 void ext4_set_aops(struct inode *inode)
3894 switch (ext4_inode_journal_mode(inode)) {
3895 case EXT4_INODE_ORDERED_DATA_MODE:
3896 case EXT4_INODE_WRITEBACK_DATA_MODE:
3898 case EXT4_INODE_JOURNAL_DATA_MODE:
3899 inode->i_mapping->a_ops = &ext4_journalled_aops;
3904 if (test_opt(inode->i_sb, DELALLOC))
3905 inode->i_mapping->a_ops = &ext4_da_aops;
3907 inode->i_mapping->a_ops = &ext4_aops;
3910 static int __ext4_block_zero_page_range(handle_t *handle,
3911 struct address_space *mapping, loff_t from, loff_t length)
3913 ext4_fsblk_t index = from >> PAGE_SHIFT;
3914 unsigned offset = from & (PAGE_SIZE-1);
3915 unsigned blocksize, pos;
3917 struct inode *inode = mapping->host;
3918 struct buffer_head *bh;
3922 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3923 mapping_gfp_constraint(mapping, ~__GFP_FS));
3927 blocksize = inode->i_sb->s_blocksize;
3929 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3931 if (!page_has_buffers(page))
3932 create_empty_buffers(page, blocksize, 0);
3934 /* Find the buffer that contains "offset" */
3935 bh = page_buffers(page);
3937 while (offset >= pos) {
3938 bh = bh->b_this_page;
3942 if (buffer_freed(bh)) {
3943 BUFFER_TRACE(bh, "freed: skip");
3946 if (!buffer_mapped(bh)) {
3947 BUFFER_TRACE(bh, "unmapped");
3948 ext4_get_block(inode, iblock, bh, 0);
3949 /* unmapped? It's a hole - nothing to do */
3950 if (!buffer_mapped(bh)) {
3951 BUFFER_TRACE(bh, "still unmapped");
3956 /* Ok, it's mapped. Make sure it's up-to-date */
3957 if (PageUptodate(page))
3958 set_buffer_uptodate(bh);
3960 if (!buffer_uptodate(bh)) {
3962 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3964 /* Uhhuh. Read error. Complain and punt. */
3965 if (!buffer_uptodate(bh))
3967 if (S_ISREG(inode->i_mode) &&
3968 ext4_encrypted_inode(inode)) {
3969 /* We expect the key to be set. */
3970 BUG_ON(!fscrypt_has_encryption_key(inode));
3971 BUG_ON(blocksize != PAGE_SIZE);
3972 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3973 page, PAGE_SIZE, 0, page->index));
3976 if (ext4_should_journal_data(inode)) {
3977 BUFFER_TRACE(bh, "get write access");
3978 err = ext4_journal_get_write_access(handle, bh);
3982 zero_user(page, offset, length);
3983 BUFFER_TRACE(bh, "zeroed end of block");
3985 if (ext4_should_journal_data(inode)) {
3986 err = ext4_handle_dirty_metadata(handle, inode, bh);
3989 mark_buffer_dirty(bh);
3990 if (ext4_should_order_data(inode))
3991 err = ext4_jbd2_inode_add_write(handle, inode);
4001 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4002 * starting from file offset 'from'. The range to be zero'd must
4003 * be contained with in one block. If the specified range exceeds
4004 * the end of the block it will be shortened to end of the block
4005 * that cooresponds to 'from'
4007 static int ext4_block_zero_page_range(handle_t *handle,
4008 struct address_space *mapping, loff_t from, loff_t length)
4010 struct inode *inode = mapping->host;
4011 unsigned offset = from & (PAGE_SIZE-1);
4012 unsigned blocksize = inode->i_sb->s_blocksize;
4013 unsigned max = blocksize - (offset & (blocksize - 1));
4016 * correct length if it does not fall between
4017 * 'from' and the end of the block
4019 if (length > max || length < 0)
4022 if (IS_DAX(inode)) {
4023 return iomap_zero_range(inode, from, length, NULL,
4026 return __ext4_block_zero_page_range(handle, mapping, from, length);
4030 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4031 * up to the end of the block which corresponds to `from'.
4032 * This required during truncate. We need to physically zero the tail end
4033 * of that block so it doesn't yield old data if the file is later grown.
4035 static int ext4_block_truncate_page(handle_t *handle,
4036 struct address_space *mapping, loff_t from)
4038 unsigned offset = from & (PAGE_SIZE-1);
4041 struct inode *inode = mapping->host;
4043 /* If we are processing an encrypted inode during orphan list handling */
4044 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4047 blocksize = inode->i_sb->s_blocksize;
4048 length = blocksize - (offset & (blocksize - 1));
4050 return ext4_block_zero_page_range(handle, mapping, from, length);
4053 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4054 loff_t lstart, loff_t length)
4056 struct super_block *sb = inode->i_sb;
4057 struct address_space *mapping = inode->i_mapping;
4058 unsigned partial_start, partial_end;
4059 ext4_fsblk_t start, end;
4060 loff_t byte_end = (lstart + length - 1);
4063 partial_start = lstart & (sb->s_blocksize - 1);
4064 partial_end = byte_end & (sb->s_blocksize - 1);
4066 start = lstart >> sb->s_blocksize_bits;
4067 end = byte_end >> sb->s_blocksize_bits;
4069 /* Handle partial zero within the single block */
4071 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4072 err = ext4_block_zero_page_range(handle, mapping,
4076 /* Handle partial zero out on the start of the range */
4077 if (partial_start) {
4078 err = ext4_block_zero_page_range(handle, mapping,
4079 lstart, sb->s_blocksize);
4083 /* Handle partial zero out on the end of the range */
4084 if (partial_end != sb->s_blocksize - 1)
4085 err = ext4_block_zero_page_range(handle, mapping,
4086 byte_end - partial_end,
4091 int ext4_can_truncate(struct inode *inode)
4093 if (S_ISREG(inode->i_mode))
4095 if (S_ISDIR(inode->i_mode))
4097 if (S_ISLNK(inode->i_mode))
4098 return !ext4_inode_is_fast_symlink(inode);
4103 * We have to make sure i_disksize gets properly updated before we truncate
4104 * page cache due to hole punching or zero range. Otherwise i_disksize update
4105 * can get lost as it may have been postponed to submission of writeback but
4106 * that will never happen after we truncate page cache.
4108 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4112 loff_t size = i_size_read(inode);
4114 WARN_ON(!inode_is_locked(inode));
4115 if (offset > size || offset + len < size)
4118 if (EXT4_I(inode)->i_disksize >= size)
4121 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4123 return PTR_ERR(handle);
4124 ext4_update_i_disksize(inode, size);
4125 ext4_mark_inode_dirty(handle, inode);
4126 ext4_journal_stop(handle);
4132 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4133 * associated with the given offset and length
4135 * @inode: File inode
4136 * @offset: The offset where the hole will begin
4137 * @len: The length of the hole
4139 * Returns: 0 on success or negative on failure
4142 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4144 struct super_block *sb = inode->i_sb;
4145 ext4_lblk_t first_block, stop_block;
4146 struct address_space *mapping = inode->i_mapping;
4147 loff_t first_block_offset, last_block_offset;
4149 unsigned int credits;
4152 if (!S_ISREG(inode->i_mode))
4155 trace_ext4_punch_hole(inode, offset, length, 0);
4158 * Write out all dirty pages to avoid race conditions
4159 * Then release them.
4161 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4162 ret = filemap_write_and_wait_range(mapping, offset,
4163 offset + length - 1);
4170 /* No need to punch hole beyond i_size */
4171 if (offset >= inode->i_size)
4175 * If the hole extends beyond i_size, set the hole
4176 * to end after the page that contains i_size
4178 if (offset + length > inode->i_size) {
4179 length = inode->i_size +
4180 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4184 if (offset & (sb->s_blocksize - 1) ||
4185 (offset + length) & (sb->s_blocksize - 1)) {
4187 * Attach jinode to inode for jbd2 if we do any zeroing of
4190 ret = ext4_inode_attach_jinode(inode);
4196 /* Wait all existing dio workers, newcomers will block on i_mutex */
4197 ext4_inode_block_unlocked_dio(inode);
4198 inode_dio_wait(inode);
4201 * Prevent page faults from reinstantiating pages we have released from
4204 down_write(&EXT4_I(inode)->i_mmap_sem);
4205 first_block_offset = round_up(offset, sb->s_blocksize);
4206 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4208 /* Now release the pages and zero block aligned part of pages*/
4209 if (last_block_offset > first_block_offset) {
4210 ret = ext4_update_disksize_before_punch(inode, offset, length);
4213 truncate_pagecache_range(inode, first_block_offset,
4217 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4218 credits = ext4_writepage_trans_blocks(inode);
4220 credits = ext4_blocks_for_truncate(inode);
4221 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4222 if (IS_ERR(handle)) {
4223 ret = PTR_ERR(handle);
4224 ext4_std_error(sb, ret);
4228 ret = ext4_zero_partial_blocks(handle, inode, offset,
4233 first_block = (offset + sb->s_blocksize - 1) >>
4234 EXT4_BLOCK_SIZE_BITS(sb);
4235 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4237 /* If there are no blocks to remove, return now */
4238 if (first_block >= stop_block)
4241 down_write(&EXT4_I(inode)->i_data_sem);
4242 ext4_discard_preallocations(inode);
4244 ret = ext4_es_remove_extent(inode, first_block,
4245 stop_block - first_block);
4247 up_write(&EXT4_I(inode)->i_data_sem);
4251 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4252 ret = ext4_ext_remove_space(inode, first_block,
4255 ret = ext4_ind_remove_space(handle, inode, first_block,
4258 up_write(&EXT4_I(inode)->i_data_sem);
4260 ext4_handle_sync(handle);
4262 inode->i_mtime = inode->i_ctime = current_time(inode);
4263 ext4_mark_inode_dirty(handle, inode);
4265 ext4_update_inode_fsync_trans(handle, inode, 1);
4267 ext4_journal_stop(handle);
4269 up_write(&EXT4_I(inode)->i_mmap_sem);
4270 ext4_inode_resume_unlocked_dio(inode);
4272 inode_unlock(inode);
4276 int ext4_inode_attach_jinode(struct inode *inode)
4278 struct ext4_inode_info *ei = EXT4_I(inode);
4279 struct jbd2_inode *jinode;
4281 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4284 jinode = jbd2_alloc_inode(GFP_KERNEL);
4285 spin_lock(&inode->i_lock);
4288 spin_unlock(&inode->i_lock);
4291 ei->jinode = jinode;
4292 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4295 spin_unlock(&inode->i_lock);
4296 if (unlikely(jinode != NULL))
4297 jbd2_free_inode(jinode);
4304 * We block out ext4_get_block() block instantiations across the entire
4305 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4306 * simultaneously on behalf of the same inode.
4308 * As we work through the truncate and commit bits of it to the journal there
4309 * is one core, guiding principle: the file's tree must always be consistent on
4310 * disk. We must be able to restart the truncate after a crash.
4312 * The file's tree may be transiently inconsistent in memory (although it
4313 * probably isn't), but whenever we close off and commit a journal transaction,
4314 * the contents of (the filesystem + the journal) must be consistent and
4315 * restartable. It's pretty simple, really: bottom up, right to left (although
4316 * left-to-right works OK too).
4318 * Note that at recovery time, journal replay occurs *before* the restart of
4319 * truncate against the orphan inode list.
4321 * The committed inode has the new, desired i_size (which is the same as
4322 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4323 * that this inode's truncate did not complete and it will again call
4324 * ext4_truncate() to have another go. So there will be instantiated blocks
4325 * to the right of the truncation point in a crashed ext4 filesystem. But
4326 * that's fine - as long as they are linked from the inode, the post-crash
4327 * ext4_truncate() run will find them and release them.
4329 int ext4_truncate(struct inode *inode)
4331 struct ext4_inode_info *ei = EXT4_I(inode);
4332 unsigned int credits;
4335 struct address_space *mapping = inode->i_mapping;
4338 * There is a possibility that we're either freeing the inode
4339 * or it's a completely new inode. In those cases we might not
4340 * have i_mutex locked because it's not necessary.
4342 if (!(inode->i_state & (I_NEW|I_FREEING)))
4343 WARN_ON(!inode_is_locked(inode));
4344 trace_ext4_truncate_enter(inode);
4346 if (!ext4_can_truncate(inode))
4349 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4351 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4352 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4354 if (ext4_has_inline_data(inode)) {
4357 err = ext4_inline_data_truncate(inode, &has_inline);
4364 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4365 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4366 if (ext4_inode_attach_jinode(inode) < 0)
4370 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4371 credits = ext4_writepage_trans_blocks(inode);
4373 credits = ext4_blocks_for_truncate(inode);
4375 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4377 return PTR_ERR(handle);
4379 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4380 ext4_block_truncate_page(handle, mapping, inode->i_size);
4383 * We add the inode to the orphan list, so that if this
4384 * truncate spans multiple transactions, and we crash, we will
4385 * resume the truncate when the filesystem recovers. It also
4386 * marks the inode dirty, to catch the new size.
4388 * Implication: the file must always be in a sane, consistent
4389 * truncatable state while each transaction commits.
4391 err = ext4_orphan_add(handle, inode);
4395 down_write(&EXT4_I(inode)->i_data_sem);
4397 ext4_discard_preallocations(inode);
4399 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4400 err = ext4_ext_truncate(handle, inode);
4402 ext4_ind_truncate(handle, inode);
4404 up_write(&ei->i_data_sem);
4409 ext4_handle_sync(handle);
4413 * If this was a simple ftruncate() and the file will remain alive,
4414 * then we need to clear up the orphan record which we created above.
4415 * However, if this was a real unlink then we were called by
4416 * ext4_evict_inode(), and we allow that function to clean up the
4417 * orphan info for us.
4420 ext4_orphan_del(handle, inode);
4422 inode->i_mtime = inode->i_ctime = current_time(inode);
4423 ext4_mark_inode_dirty(handle, inode);
4424 ext4_journal_stop(handle);
4426 trace_ext4_truncate_exit(inode);
4431 * ext4_get_inode_loc returns with an extra refcount against the inode's
4432 * underlying buffer_head on success. If 'in_mem' is true, we have all
4433 * data in memory that is needed to recreate the on-disk version of this
4436 static int __ext4_get_inode_loc(struct inode *inode,
4437 struct ext4_iloc *iloc, int in_mem)
4439 struct ext4_group_desc *gdp;
4440 struct buffer_head *bh;
4441 struct super_block *sb = inode->i_sb;
4443 int inodes_per_block, inode_offset;
4446 if (!ext4_valid_inum(sb, inode->i_ino))
4447 return -EFSCORRUPTED;
4449 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4450 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4455 * Figure out the offset within the block group inode table
4457 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4458 inode_offset = ((inode->i_ino - 1) %
4459 EXT4_INODES_PER_GROUP(sb));
4460 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4461 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4463 bh = sb_getblk(sb, block);
4466 if (!buffer_uptodate(bh)) {
4470 * If the buffer has the write error flag, we have failed
4471 * to write out another inode in the same block. In this
4472 * case, we don't have to read the block because we may
4473 * read the old inode data successfully.
4475 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4476 set_buffer_uptodate(bh);
4478 if (buffer_uptodate(bh)) {
4479 /* someone brought it uptodate while we waited */
4485 * If we have all information of the inode in memory and this
4486 * is the only valid inode in the block, we need not read the
4490 struct buffer_head *bitmap_bh;
4493 start = inode_offset & ~(inodes_per_block - 1);
4495 /* Is the inode bitmap in cache? */
4496 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4497 if (unlikely(!bitmap_bh))
4501 * If the inode bitmap isn't in cache then the
4502 * optimisation may end up performing two reads instead
4503 * of one, so skip it.
4505 if (!buffer_uptodate(bitmap_bh)) {
4509 for (i = start; i < start + inodes_per_block; i++) {
4510 if (i == inode_offset)
4512 if (ext4_test_bit(i, bitmap_bh->b_data))
4516 if (i == start + inodes_per_block) {
4517 /* all other inodes are free, so skip I/O */
4518 memset(bh->b_data, 0, bh->b_size);
4519 set_buffer_uptodate(bh);
4527 * If we need to do any I/O, try to pre-readahead extra
4528 * blocks from the inode table.
4530 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4531 ext4_fsblk_t b, end, table;
4533 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4535 table = ext4_inode_table(sb, gdp);
4536 /* s_inode_readahead_blks is always a power of 2 */
4537 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4541 num = EXT4_INODES_PER_GROUP(sb);
4542 if (ext4_has_group_desc_csum(sb))
4543 num -= ext4_itable_unused_count(sb, gdp);
4544 table += num / inodes_per_block;
4548 sb_breadahead(sb, b++);
4552 * There are other valid inodes in the buffer, this inode
4553 * has in-inode xattrs, or we don't have this inode in memory.
4554 * Read the block from disk.
4556 trace_ext4_load_inode(inode);
4558 bh->b_end_io = end_buffer_read_sync;
4559 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4561 if (!buffer_uptodate(bh)) {
4562 EXT4_ERROR_INODE_BLOCK(inode, block,
4563 "unable to read itable block");
4573 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4575 /* We have all inode data except xattrs in memory here. */
4576 return __ext4_get_inode_loc(inode, iloc,
4577 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4580 void ext4_set_inode_flags(struct inode *inode)
4582 unsigned int flags = EXT4_I(inode)->i_flags;
4583 unsigned int new_fl = 0;
4585 if (flags & EXT4_SYNC_FL)
4587 if (flags & EXT4_APPEND_FL)
4589 if (flags & EXT4_IMMUTABLE_FL)
4590 new_fl |= S_IMMUTABLE;
4591 if (flags & EXT4_NOATIME_FL)
4592 new_fl |= S_NOATIME;
4593 if (flags & EXT4_DIRSYNC_FL)
4594 new_fl |= S_DIRSYNC;
4595 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4596 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4597 !ext4_encrypted_inode(inode))
4599 inode_set_flags(inode, new_fl,
4600 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4603 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4604 struct ext4_inode_info *ei)
4607 struct inode *inode = &(ei->vfs_inode);
4608 struct super_block *sb = inode->i_sb;
4610 if (ext4_has_feature_huge_file(sb)) {
4611 /* we are using combined 48 bit field */
4612 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4613 le32_to_cpu(raw_inode->i_blocks_lo);
4614 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4615 /* i_blocks represent file system block size */
4616 return i_blocks << (inode->i_blkbits - 9);
4621 return le32_to_cpu(raw_inode->i_blocks_lo);
4625 static inline void ext4_iget_extra_inode(struct inode *inode,
4626 struct ext4_inode *raw_inode,
4627 struct ext4_inode_info *ei)
4629 __le32 *magic = (void *)raw_inode +
4630 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4631 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4632 EXT4_INODE_SIZE(inode->i_sb) &&
4633 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4634 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4635 ext4_find_inline_data_nolock(inode);
4637 EXT4_I(inode)->i_inline_off = 0;
4640 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4642 if (!ext4_has_feature_project(inode->i_sb))
4644 *projid = EXT4_I(inode)->i_projid;
4648 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4650 struct ext4_iloc iloc;
4651 struct ext4_inode *raw_inode;
4652 struct ext4_inode_info *ei;
4653 struct inode *inode;
4654 journal_t *journal = EXT4_SB(sb)->s_journal;
4662 inode = iget_locked(sb, ino);
4664 return ERR_PTR(-ENOMEM);
4665 if (!(inode->i_state & I_NEW))
4671 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4674 raw_inode = ext4_raw_inode(&iloc);
4676 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4677 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4678 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4679 EXT4_INODE_SIZE(inode->i_sb) ||
4680 (ei->i_extra_isize & 3)) {
4681 EXT4_ERROR_INODE(inode,
4682 "bad extra_isize %u (inode size %u)",
4684 EXT4_INODE_SIZE(inode->i_sb));
4685 ret = -EFSCORRUPTED;
4689 ei->i_extra_isize = 0;
4691 /* Precompute checksum seed for inode metadata */
4692 if (ext4_has_metadata_csum(sb)) {
4693 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4695 __le32 inum = cpu_to_le32(inode->i_ino);
4696 __le32 gen = raw_inode->i_generation;
4697 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4699 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4703 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4704 EXT4_ERROR_INODE(inode, "checksum invalid");
4709 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4710 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4711 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4712 if (ext4_has_feature_project(sb) &&
4713 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4714 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4715 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4717 i_projid = EXT4_DEF_PROJID;
4719 if (!(test_opt(inode->i_sb, NO_UID32))) {
4720 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4721 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4723 i_uid_write(inode, i_uid);
4724 i_gid_write(inode, i_gid);
4725 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4726 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4728 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4729 ei->i_inline_off = 0;
4730 ei->i_dir_start_lookup = 0;
4731 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4732 /* We now have enough fields to check if the inode was active or not.
4733 * This is needed because nfsd might try to access dead inodes
4734 * the test is that same one that e2fsck uses
4735 * NeilBrown 1999oct15
4737 if (inode->i_nlink == 0) {
4738 if ((inode->i_mode == 0 ||
4739 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4740 ino != EXT4_BOOT_LOADER_INO) {
4741 /* this inode is deleted */
4745 /* The only unlinked inodes we let through here have
4746 * valid i_mode and are being read by the orphan
4747 * recovery code: that's fine, we're about to complete
4748 * the process of deleting those.
4749 * OR it is the EXT4_BOOT_LOADER_INO which is
4750 * not initialized on a new filesystem. */
4752 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4753 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4754 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4755 if (ext4_has_feature_64bit(sb))
4757 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4758 inode->i_size = ext4_isize(sb, raw_inode);
4759 if ((size = i_size_read(inode)) < 0) {
4760 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4761 ret = -EFSCORRUPTED;
4764 ei->i_disksize = inode->i_size;
4766 ei->i_reserved_quota = 0;
4768 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4769 ei->i_block_group = iloc.block_group;
4770 ei->i_last_alloc_group = ~0;
4772 * NOTE! The in-memory inode i_data array is in little-endian order
4773 * even on big-endian machines: we do NOT byteswap the block numbers!
4775 for (block = 0; block < EXT4_N_BLOCKS; block++)
4776 ei->i_data[block] = raw_inode->i_block[block];
4777 INIT_LIST_HEAD(&ei->i_orphan);
4780 * Set transaction id's of transactions that have to be committed
4781 * to finish f[data]sync. We set them to currently running transaction
4782 * as we cannot be sure that the inode or some of its metadata isn't
4783 * part of the transaction - the inode could have been reclaimed and
4784 * now it is reread from disk.
4787 transaction_t *transaction;
4790 read_lock(&journal->j_state_lock);
4791 if (journal->j_running_transaction)
4792 transaction = journal->j_running_transaction;
4794 transaction = journal->j_committing_transaction;
4796 tid = transaction->t_tid;
4798 tid = journal->j_commit_sequence;
4799 read_unlock(&journal->j_state_lock);
4800 ei->i_sync_tid = tid;
4801 ei->i_datasync_tid = tid;
4804 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4805 if (ei->i_extra_isize == 0) {
4806 /* The extra space is currently unused. Use it. */
4807 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4808 ei->i_extra_isize = sizeof(struct ext4_inode) -
4809 EXT4_GOOD_OLD_INODE_SIZE;
4811 ext4_iget_extra_inode(inode, raw_inode, ei);
4815 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4816 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4817 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4818 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4820 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4821 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4822 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4823 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4825 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4830 if (ei->i_file_acl &&
4831 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4832 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4834 ret = -EFSCORRUPTED;
4836 } else if (!ext4_has_inline_data(inode)) {
4837 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4838 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4839 (S_ISLNK(inode->i_mode) &&
4840 !ext4_inode_is_fast_symlink(inode))))
4841 /* Validate extent which is part of inode */
4842 ret = ext4_ext_check_inode(inode);
4843 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4844 (S_ISLNK(inode->i_mode) &&
4845 !ext4_inode_is_fast_symlink(inode))) {
4846 /* Validate block references which are part of inode */
4847 ret = ext4_ind_check_inode(inode);
4853 if (S_ISREG(inode->i_mode)) {
4854 inode->i_op = &ext4_file_inode_operations;
4855 inode->i_fop = &ext4_file_operations;
4856 ext4_set_aops(inode);
4857 } else if (S_ISDIR(inode->i_mode)) {
4858 inode->i_op = &ext4_dir_inode_operations;
4859 inode->i_fop = &ext4_dir_operations;
4860 } else if (S_ISLNK(inode->i_mode)) {
4861 if (ext4_encrypted_inode(inode)) {
4862 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4863 ext4_set_aops(inode);
4864 } else if (ext4_inode_is_fast_symlink(inode)) {
4865 inode->i_link = (char *)ei->i_data;
4866 inode->i_op = &ext4_fast_symlink_inode_operations;
4867 nd_terminate_link(ei->i_data, inode->i_size,
4868 sizeof(ei->i_data) - 1);
4870 inode->i_op = &ext4_symlink_inode_operations;
4871 ext4_set_aops(inode);
4873 inode_nohighmem(inode);
4874 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4875 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4876 inode->i_op = &ext4_special_inode_operations;
4877 if (raw_inode->i_block[0])
4878 init_special_inode(inode, inode->i_mode,
4879 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4881 init_special_inode(inode, inode->i_mode,
4882 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4883 } else if (ino == EXT4_BOOT_LOADER_INO) {
4884 make_bad_inode(inode);
4886 ret = -EFSCORRUPTED;
4887 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4891 ext4_set_inode_flags(inode);
4893 unlock_new_inode(inode);
4899 return ERR_PTR(ret);
4902 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4904 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4905 return ERR_PTR(-EFSCORRUPTED);
4906 return ext4_iget(sb, ino);
4909 static int ext4_inode_blocks_set(handle_t *handle,
4910 struct ext4_inode *raw_inode,
4911 struct ext4_inode_info *ei)
4913 struct inode *inode = &(ei->vfs_inode);
4914 u64 i_blocks = inode->i_blocks;
4915 struct super_block *sb = inode->i_sb;
4917 if (i_blocks <= ~0U) {
4919 * i_blocks can be represented in a 32 bit variable
4920 * as multiple of 512 bytes
4922 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4923 raw_inode->i_blocks_high = 0;
4924 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4927 if (!ext4_has_feature_huge_file(sb))
4930 if (i_blocks <= 0xffffffffffffULL) {
4932 * i_blocks can be represented in a 48 bit variable
4933 * as multiple of 512 bytes
4935 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4936 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4937 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4939 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4940 /* i_block is stored in file system block size */
4941 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4942 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4943 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4948 struct other_inode {
4949 unsigned long orig_ino;
4950 struct ext4_inode *raw_inode;
4953 static int other_inode_match(struct inode * inode, unsigned long ino,
4956 struct other_inode *oi = (struct other_inode *) data;
4958 if ((inode->i_ino != ino) ||
4959 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4960 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4961 ((inode->i_state & I_DIRTY_TIME) == 0))
4963 spin_lock(&inode->i_lock);
4964 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4965 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4966 (inode->i_state & I_DIRTY_TIME)) {
4967 struct ext4_inode_info *ei = EXT4_I(inode);
4969 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4970 spin_unlock(&inode->i_lock);
4972 spin_lock(&ei->i_raw_lock);
4973 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4974 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4975 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4976 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4977 spin_unlock(&ei->i_raw_lock);
4978 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4981 spin_unlock(&inode->i_lock);
4986 * Opportunistically update the other time fields for other inodes in
4987 * the same inode table block.
4989 static void ext4_update_other_inodes_time(struct super_block *sb,
4990 unsigned long orig_ino, char *buf)
4992 struct other_inode oi;
4994 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4995 int inode_size = EXT4_INODE_SIZE(sb);
4997 oi.orig_ino = orig_ino;
4999 * Calculate the first inode in the inode table block. Inode
5000 * numbers are one-based. That is, the first inode in a block
5001 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5003 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5004 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5005 if (ino == orig_ino)
5007 oi.raw_inode = (struct ext4_inode *) buf;
5008 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5013 * Post the struct inode info into an on-disk inode location in the
5014 * buffer-cache. This gobbles the caller's reference to the
5015 * buffer_head in the inode location struct.
5017 * The caller must have write access to iloc->bh.
5019 static int ext4_do_update_inode(handle_t *handle,
5020 struct inode *inode,
5021 struct ext4_iloc *iloc)
5023 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5024 struct ext4_inode_info *ei = EXT4_I(inode);
5025 struct buffer_head *bh = iloc->bh;
5026 struct super_block *sb = inode->i_sb;
5027 int err = 0, rc, block;
5028 int need_datasync = 0, set_large_file = 0;
5033 spin_lock(&ei->i_raw_lock);
5035 /* For fields not tracked in the in-memory inode,
5036 * initialise them to zero for new inodes. */
5037 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5038 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5040 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5041 i_uid = i_uid_read(inode);
5042 i_gid = i_gid_read(inode);
5043 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5044 if (!(test_opt(inode->i_sb, NO_UID32))) {
5045 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5046 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5048 * Fix up interoperability with old kernels. Otherwise, old inodes get
5049 * re-used with the upper 16 bits of the uid/gid intact
5051 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5052 raw_inode->i_uid_high = 0;
5053 raw_inode->i_gid_high = 0;
5055 raw_inode->i_uid_high =
5056 cpu_to_le16(high_16_bits(i_uid));
5057 raw_inode->i_gid_high =
5058 cpu_to_le16(high_16_bits(i_gid));
5061 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5062 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5063 raw_inode->i_uid_high = 0;
5064 raw_inode->i_gid_high = 0;
5066 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5068 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5069 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5070 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5071 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5073 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5075 spin_unlock(&ei->i_raw_lock);
5078 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5079 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5080 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5081 raw_inode->i_file_acl_high =
5082 cpu_to_le16(ei->i_file_acl >> 32);
5083 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5084 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5085 ext4_isize_set(raw_inode, ei->i_disksize);
5088 if (ei->i_disksize > 0x7fffffffULL) {
5089 if (!ext4_has_feature_large_file(sb) ||
5090 EXT4_SB(sb)->s_es->s_rev_level ==
5091 cpu_to_le32(EXT4_GOOD_OLD_REV))
5094 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5095 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5096 if (old_valid_dev(inode->i_rdev)) {
5097 raw_inode->i_block[0] =
5098 cpu_to_le32(old_encode_dev(inode->i_rdev));
5099 raw_inode->i_block[1] = 0;
5101 raw_inode->i_block[0] = 0;
5102 raw_inode->i_block[1] =
5103 cpu_to_le32(new_encode_dev(inode->i_rdev));
5104 raw_inode->i_block[2] = 0;
5106 } else if (!ext4_has_inline_data(inode)) {
5107 for (block = 0; block < EXT4_N_BLOCKS; block++)
5108 raw_inode->i_block[block] = ei->i_data[block];
5111 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5112 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5113 if (ei->i_extra_isize) {
5114 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5115 raw_inode->i_version_hi =
5116 cpu_to_le32(inode->i_version >> 32);
5117 raw_inode->i_extra_isize =
5118 cpu_to_le16(ei->i_extra_isize);
5122 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5123 i_projid != EXT4_DEF_PROJID);
5125 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5126 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5127 raw_inode->i_projid = cpu_to_le32(i_projid);
5129 ext4_inode_csum_set(inode, raw_inode, ei);
5130 spin_unlock(&ei->i_raw_lock);
5131 if (inode->i_sb->s_flags & MS_LAZYTIME)
5132 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5135 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5136 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5139 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5140 if (set_large_file) {
5141 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5142 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5145 ext4_update_dynamic_rev(sb);
5146 ext4_set_feature_large_file(sb);
5147 ext4_handle_sync(handle);
5148 err = ext4_handle_dirty_super(handle, sb);
5150 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5153 ext4_std_error(inode->i_sb, err);
5158 * ext4_write_inode()
5160 * We are called from a few places:
5162 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5163 * Here, there will be no transaction running. We wait for any running
5164 * transaction to commit.
5166 * - Within flush work (sys_sync(), kupdate and such).
5167 * We wait on commit, if told to.
5169 * - Within iput_final() -> write_inode_now()
5170 * We wait on commit, if told to.
5172 * In all cases it is actually safe for us to return without doing anything,
5173 * because the inode has been copied into a raw inode buffer in
5174 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5177 * Note that we are absolutely dependent upon all inode dirtiers doing the
5178 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5179 * which we are interested.
5181 * It would be a bug for them to not do this. The code:
5183 * mark_inode_dirty(inode)
5185 * inode->i_size = expr;
5187 * is in error because write_inode() could occur while `stuff()' is running,
5188 * and the new i_size will be lost. Plus the inode will no longer be on the
5189 * superblock's dirty inode list.
5191 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5195 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5198 if (EXT4_SB(inode->i_sb)->s_journal) {
5199 if (ext4_journal_current_handle()) {
5200 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5206 * No need to force transaction in WB_SYNC_NONE mode. Also
5207 * ext4_sync_fs() will force the commit after everything is
5210 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5213 err = ext4_force_commit(inode->i_sb);
5215 struct ext4_iloc iloc;
5217 err = __ext4_get_inode_loc(inode, &iloc, 0);
5221 * sync(2) will flush the whole buffer cache. No need to do
5222 * it here separately for each inode.
5224 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5225 sync_dirty_buffer(iloc.bh);
5226 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5227 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5228 "IO error syncing inode");
5237 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5238 * buffers that are attached to a page stradding i_size and are undergoing
5239 * commit. In that case we have to wait for commit to finish and try again.
5241 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5245 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5246 tid_t commit_tid = 0;
5249 offset = inode->i_size & (PAGE_SIZE - 1);
5251 * All buffers in the last page remain valid? Then there's nothing to
5252 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5255 if (offset > PAGE_SIZE - i_blocksize(inode))
5258 page = find_lock_page(inode->i_mapping,
5259 inode->i_size >> PAGE_SHIFT);
5262 ret = __ext4_journalled_invalidatepage(page, offset,
5263 PAGE_SIZE - offset);
5269 read_lock(&journal->j_state_lock);
5270 if (journal->j_committing_transaction)
5271 commit_tid = journal->j_committing_transaction->t_tid;
5272 read_unlock(&journal->j_state_lock);
5274 jbd2_log_wait_commit(journal, commit_tid);
5281 * Called from notify_change.
5283 * We want to trap VFS attempts to truncate the file as soon as
5284 * possible. In particular, we want to make sure that when the VFS
5285 * shrinks i_size, we put the inode on the orphan list and modify
5286 * i_disksize immediately, so that during the subsequent flushing of
5287 * dirty pages and freeing of disk blocks, we can guarantee that any
5288 * commit will leave the blocks being flushed in an unused state on
5289 * disk. (On recovery, the inode will get truncated and the blocks will
5290 * be freed, so we have a strong guarantee that no future commit will
5291 * leave these blocks visible to the user.)
5293 * Another thing we have to assure is that if we are in ordered mode
5294 * and inode is still attached to the committing transaction, we must
5295 * we start writeout of all the dirty pages which are being truncated.
5296 * This way we are sure that all the data written in the previous
5297 * transaction are already on disk (truncate waits for pages under
5300 * Called with inode->i_mutex down.
5302 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5304 struct inode *inode = d_inode(dentry);
5307 const unsigned int ia_valid = attr->ia_valid;
5309 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5312 error = setattr_prepare(dentry, attr);
5316 if (is_quota_modification(inode, attr)) {
5317 error = dquot_initialize(inode);
5321 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5322 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5325 /* (user+group)*(old+new) structure, inode write (sb,
5326 * inode block, ? - but truncate inode update has it) */
5327 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5328 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5329 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5330 if (IS_ERR(handle)) {
5331 error = PTR_ERR(handle);
5335 /* dquot_transfer() calls back ext4_get_inode_usage() which
5336 * counts xattr inode references.
5338 down_read(&EXT4_I(inode)->xattr_sem);
5339 error = dquot_transfer(inode, attr);
5340 up_read(&EXT4_I(inode)->xattr_sem);
5343 ext4_journal_stop(handle);
5346 /* Update corresponding info in inode so that everything is in
5347 * one transaction */
5348 if (attr->ia_valid & ATTR_UID)
5349 inode->i_uid = attr->ia_uid;
5350 if (attr->ia_valid & ATTR_GID)
5351 inode->i_gid = attr->ia_gid;
5352 error = ext4_mark_inode_dirty(handle, inode);
5353 ext4_journal_stop(handle);
5356 if (attr->ia_valid & ATTR_SIZE) {
5358 loff_t oldsize = inode->i_size;
5359 int shrink = (attr->ia_size <= inode->i_size);
5361 if (ext4_encrypted_inode(inode)) {
5362 error = fscrypt_get_encryption_info(inode);
5365 if (!fscrypt_has_encryption_key(inode))
5369 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5372 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5375 if (!S_ISREG(inode->i_mode))
5378 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5379 inode_inc_iversion(inode);
5381 if (ext4_should_order_data(inode) &&
5382 (attr->ia_size < inode->i_size)) {
5383 error = ext4_begin_ordered_truncate(inode,
5388 if (attr->ia_size != inode->i_size) {
5389 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5390 if (IS_ERR(handle)) {
5391 error = PTR_ERR(handle);
5394 if (ext4_handle_valid(handle) && shrink) {
5395 error = ext4_orphan_add(handle, inode);
5399 * Update c/mtime on truncate up, ext4_truncate() will
5400 * update c/mtime in shrink case below
5403 inode->i_mtime = current_time(inode);
5404 inode->i_ctime = inode->i_mtime;
5406 down_write(&EXT4_I(inode)->i_data_sem);
5407 EXT4_I(inode)->i_disksize = attr->ia_size;
5408 rc = ext4_mark_inode_dirty(handle, inode);
5412 * We have to update i_size under i_data_sem together
5413 * with i_disksize to avoid races with writeback code
5414 * running ext4_wb_update_i_disksize().
5417 i_size_write(inode, attr->ia_size);
5418 up_write(&EXT4_I(inode)->i_data_sem);
5419 ext4_journal_stop(handle);
5422 ext4_orphan_del(NULL, inode);
5427 pagecache_isize_extended(inode, oldsize, inode->i_size);
5430 * Blocks are going to be removed from the inode. Wait
5431 * for dio in flight. Temporarily disable
5432 * dioread_nolock to prevent livelock.
5435 if (!ext4_should_journal_data(inode)) {
5436 ext4_inode_block_unlocked_dio(inode);
5437 inode_dio_wait(inode);
5438 ext4_inode_resume_unlocked_dio(inode);
5440 ext4_wait_for_tail_page_commit(inode);
5442 down_write(&EXT4_I(inode)->i_mmap_sem);
5444 * Truncate pagecache after we've waited for commit
5445 * in data=journal mode to make pages freeable.
5447 truncate_pagecache(inode, inode->i_size);
5449 rc = ext4_truncate(inode);
5453 up_write(&EXT4_I(inode)->i_mmap_sem);
5457 setattr_copy(inode, attr);
5458 mark_inode_dirty(inode);
5462 * If the call to ext4_truncate failed to get a transaction handle at
5463 * all, we need to clean up the in-core orphan list manually.
5465 if (orphan && inode->i_nlink)
5466 ext4_orphan_del(NULL, inode);
5468 if (!error && (ia_valid & ATTR_MODE))
5469 rc = posix_acl_chmod(inode, inode->i_mode);
5472 ext4_std_error(inode->i_sb, error);
5478 int ext4_getattr(const struct path *path, struct kstat *stat,
5479 u32 request_mask, unsigned int query_flags)
5481 struct inode *inode = d_inode(path->dentry);
5482 struct ext4_inode *raw_inode;
5483 struct ext4_inode_info *ei = EXT4_I(inode);
5486 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5487 stat->result_mask |= STATX_BTIME;
5488 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5489 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5492 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5493 if (flags & EXT4_APPEND_FL)
5494 stat->attributes |= STATX_ATTR_APPEND;
5495 if (flags & EXT4_COMPR_FL)
5496 stat->attributes |= STATX_ATTR_COMPRESSED;
5497 if (flags & EXT4_ENCRYPT_FL)
5498 stat->attributes |= STATX_ATTR_ENCRYPTED;
5499 if (flags & EXT4_IMMUTABLE_FL)
5500 stat->attributes |= STATX_ATTR_IMMUTABLE;
5501 if (flags & EXT4_NODUMP_FL)
5502 stat->attributes |= STATX_ATTR_NODUMP;
5504 stat->attributes_mask |= (STATX_ATTR_APPEND |
5505 STATX_ATTR_COMPRESSED |
5506 STATX_ATTR_ENCRYPTED |
5507 STATX_ATTR_IMMUTABLE |
5510 generic_fillattr(inode, stat);
5514 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5515 u32 request_mask, unsigned int query_flags)
5517 struct inode *inode = d_inode(path->dentry);
5518 u64 delalloc_blocks;
5520 ext4_getattr(path, stat, request_mask, query_flags);
5523 * If there is inline data in the inode, the inode will normally not
5524 * have data blocks allocated (it may have an external xattr block).
5525 * Report at least one sector for such files, so tools like tar, rsync,
5526 * others don't incorrectly think the file is completely sparse.
5528 if (unlikely(ext4_has_inline_data(inode)))
5529 stat->blocks += (stat->size + 511) >> 9;
5532 * We can't update i_blocks if the block allocation is delayed
5533 * otherwise in the case of system crash before the real block
5534 * allocation is done, we will have i_blocks inconsistent with
5535 * on-disk file blocks.
5536 * We always keep i_blocks updated together with real
5537 * allocation. But to not confuse with user, stat
5538 * will return the blocks that include the delayed allocation
5539 * blocks for this file.
5541 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5542 EXT4_I(inode)->i_reserved_data_blocks);
5543 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5547 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5550 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5551 return ext4_ind_trans_blocks(inode, lblocks);
5552 return ext4_ext_index_trans_blocks(inode, pextents);
5556 * Account for index blocks, block groups bitmaps and block group
5557 * descriptor blocks if modify datablocks and index blocks
5558 * worse case, the indexs blocks spread over different block groups
5560 * If datablocks are discontiguous, they are possible to spread over
5561 * different block groups too. If they are contiguous, with flexbg,
5562 * they could still across block group boundary.
5564 * Also account for superblock, inode, quota and xattr blocks
5566 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5569 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5575 * How many index blocks need to touch to map @lblocks logical blocks
5576 * to @pextents physical extents?
5578 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5583 * Now let's see how many group bitmaps and group descriptors need
5586 groups = idxblocks + pextents;
5588 if (groups > ngroups)
5590 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5591 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5593 /* bitmaps and block group descriptor blocks */
5594 ret += groups + gdpblocks;
5596 /* Blocks for super block, inode, quota and xattr blocks */
5597 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5603 * Calculate the total number of credits to reserve to fit
5604 * the modification of a single pages into a single transaction,
5605 * which may include multiple chunks of block allocations.
5607 * This could be called via ext4_write_begin()
5609 * We need to consider the worse case, when
5610 * one new block per extent.
5612 int ext4_writepage_trans_blocks(struct inode *inode)
5614 int bpp = ext4_journal_blocks_per_page(inode);
5617 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5619 /* Account for data blocks for journalled mode */
5620 if (ext4_should_journal_data(inode))
5626 * Calculate the journal credits for a chunk of data modification.
5628 * This is called from DIO, fallocate or whoever calling
5629 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5631 * journal buffers for data blocks are not included here, as DIO
5632 * and fallocate do no need to journal data buffers.
5634 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5636 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5640 * The caller must have previously called ext4_reserve_inode_write().
5641 * Give this, we know that the caller already has write access to iloc->bh.
5643 int ext4_mark_iloc_dirty(handle_t *handle,
5644 struct inode *inode, struct ext4_iloc *iloc)
5648 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5651 if (IS_I_VERSION(inode))
5652 inode_inc_iversion(inode);
5654 /* the do_update_inode consumes one bh->b_count */
5657 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5658 err = ext4_do_update_inode(handle, inode, iloc);
5664 * On success, We end up with an outstanding reference count against
5665 * iloc->bh. This _must_ be cleaned up later.
5669 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5670 struct ext4_iloc *iloc)
5674 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5677 err = ext4_get_inode_loc(inode, iloc);
5679 BUFFER_TRACE(iloc->bh, "get_write_access");
5680 err = ext4_journal_get_write_access(handle, iloc->bh);
5686 ext4_std_error(inode->i_sb, err);
5690 static int __ext4_expand_extra_isize(struct inode *inode,
5691 unsigned int new_extra_isize,
5692 struct ext4_iloc *iloc,
5693 handle_t *handle, int *no_expand)
5695 struct ext4_inode *raw_inode;
5696 struct ext4_xattr_ibody_header *header;
5699 raw_inode = ext4_raw_inode(iloc);
5701 header = IHDR(inode, raw_inode);
5703 /* No extended attributes present */
5704 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5705 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5706 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5707 EXT4_I(inode)->i_extra_isize, 0,
5708 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5709 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5713 /* try to expand with EAs present */
5714 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5718 * Inode size expansion failed; don't try again
5727 * Expand an inode by new_extra_isize bytes.
5728 * Returns 0 on success or negative error number on failure.
5730 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5731 unsigned int new_extra_isize,
5732 struct ext4_iloc iloc,
5738 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5742 * In nojournal mode, we can immediately attempt to expand
5743 * the inode. When journaled, we first need to obtain extra
5744 * buffer credits since we may write into the EA block
5745 * with this same handle. If journal_extend fails, then it will
5746 * only result in a minor loss of functionality for that inode.
5747 * If this is felt to be critical, then e2fsck should be run to
5748 * force a large enough s_min_extra_isize.
5750 if (ext4_handle_valid(handle) &&
5751 jbd2_journal_extend(handle,
5752 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5755 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5758 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5759 handle, &no_expand);
5760 ext4_write_unlock_xattr(inode, &no_expand);
5765 int ext4_expand_extra_isize(struct inode *inode,
5766 unsigned int new_extra_isize,
5767 struct ext4_iloc *iloc)
5773 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5778 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5779 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5780 if (IS_ERR(handle)) {
5781 error = PTR_ERR(handle);
5786 ext4_write_lock_xattr(inode, &no_expand);
5788 BUFFER_TRACE(iloc.bh, "get_write_access");
5789 error = ext4_journal_get_write_access(handle, iloc->bh);
5795 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5796 handle, &no_expand);
5798 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5802 ext4_write_unlock_xattr(inode, &no_expand);
5804 ext4_journal_stop(handle);
5809 * What we do here is to mark the in-core inode as clean with respect to inode
5810 * dirtiness (it may still be data-dirty).
5811 * This means that the in-core inode may be reaped by prune_icache
5812 * without having to perform any I/O. This is a very good thing,
5813 * because *any* task may call prune_icache - even ones which
5814 * have a transaction open against a different journal.
5816 * Is this cheating? Not really. Sure, we haven't written the
5817 * inode out, but prune_icache isn't a user-visible syncing function.
5818 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5819 * we start and wait on commits.
5821 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5823 struct ext4_iloc iloc;
5824 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5828 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5829 err = ext4_reserve_inode_write(handle, inode, &iloc);
5833 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5834 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5837 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5841 * ext4_dirty_inode() is called from __mark_inode_dirty()
5843 * We're really interested in the case where a file is being extended.
5844 * i_size has been changed by generic_commit_write() and we thus need
5845 * to include the updated inode in the current transaction.
5847 * Also, dquot_alloc_block() will always dirty the inode when blocks
5848 * are allocated to the file.
5850 * If the inode is marked synchronous, we don't honour that here - doing
5851 * so would cause a commit on atime updates, which we don't bother doing.
5852 * We handle synchronous inodes at the highest possible level.
5854 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5855 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5856 * to copy into the on-disk inode structure are the timestamp files.
5858 void ext4_dirty_inode(struct inode *inode, int flags)
5862 if (flags == I_DIRTY_TIME)
5864 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5868 ext4_mark_inode_dirty(handle, inode);
5870 ext4_journal_stop(handle);
5877 * Bind an inode's backing buffer_head into this transaction, to prevent
5878 * it from being flushed to disk early. Unlike
5879 * ext4_reserve_inode_write, this leaves behind no bh reference and
5880 * returns no iloc structure, so the caller needs to repeat the iloc
5881 * lookup to mark the inode dirty later.
5883 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5885 struct ext4_iloc iloc;
5889 err = ext4_get_inode_loc(inode, &iloc);
5891 BUFFER_TRACE(iloc.bh, "get_write_access");
5892 err = jbd2_journal_get_write_access(handle, iloc.bh);
5894 err = ext4_handle_dirty_metadata(handle,
5900 ext4_std_error(inode->i_sb, err);
5905 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5910 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5913 * We have to be very careful here: changing a data block's
5914 * journaling status dynamically is dangerous. If we write a
5915 * data block to the journal, change the status and then delete
5916 * that block, we risk forgetting to revoke the old log record
5917 * from the journal and so a subsequent replay can corrupt data.
5918 * So, first we make sure that the journal is empty and that
5919 * nobody is changing anything.
5922 journal = EXT4_JOURNAL(inode);
5925 if (is_journal_aborted(journal))
5928 /* Wait for all existing dio workers */
5929 ext4_inode_block_unlocked_dio(inode);
5930 inode_dio_wait(inode);
5933 * Before flushing the journal and switching inode's aops, we have
5934 * to flush all dirty data the inode has. There can be outstanding
5935 * delayed allocations, there can be unwritten extents created by
5936 * fallocate or buffered writes in dioread_nolock mode covered by
5937 * dirty data which can be converted only after flushing the dirty
5938 * data (and journalled aops don't know how to handle these cases).
5941 down_write(&EXT4_I(inode)->i_mmap_sem);
5942 err = filemap_write_and_wait(inode->i_mapping);
5944 up_write(&EXT4_I(inode)->i_mmap_sem);
5945 ext4_inode_resume_unlocked_dio(inode);
5950 percpu_down_write(&sbi->s_journal_flag_rwsem);
5951 jbd2_journal_lock_updates(journal);
5954 * OK, there are no updates running now, and all cached data is
5955 * synced to disk. We are now in a completely consistent state
5956 * which doesn't have anything in the journal, and we know that
5957 * no filesystem updates are running, so it is safe to modify
5958 * the inode's in-core data-journaling state flag now.
5962 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5964 err = jbd2_journal_flush(journal);
5966 jbd2_journal_unlock_updates(journal);
5967 percpu_up_write(&sbi->s_journal_flag_rwsem);
5968 ext4_inode_resume_unlocked_dio(inode);
5971 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5973 ext4_set_aops(inode);
5975 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5976 * E.g. S_DAX may get cleared / set.
5978 ext4_set_inode_flags(inode);
5980 jbd2_journal_unlock_updates(journal);
5981 percpu_up_write(&sbi->s_journal_flag_rwsem);
5984 up_write(&EXT4_I(inode)->i_mmap_sem);
5985 ext4_inode_resume_unlocked_dio(inode);
5987 /* Finally we can mark the inode as dirty. */
5989 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5991 return PTR_ERR(handle);
5993 err = ext4_mark_inode_dirty(handle, inode);
5994 ext4_handle_sync(handle);
5995 ext4_journal_stop(handle);
5996 ext4_std_error(inode->i_sb, err);
6001 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6003 return !buffer_mapped(bh);
6006 int ext4_page_mkwrite(struct vm_fault *vmf)
6008 struct vm_area_struct *vma = vmf->vma;
6009 struct page *page = vmf->page;
6013 struct file *file = vma->vm_file;
6014 struct inode *inode = file_inode(file);
6015 struct address_space *mapping = inode->i_mapping;
6017 get_block_t *get_block;
6020 sb_start_pagefault(inode->i_sb);
6021 file_update_time(vma->vm_file);
6023 down_read(&EXT4_I(inode)->i_mmap_sem);
6025 ret = ext4_convert_inline_data(inode);
6029 /* Delalloc case is easy... */
6030 if (test_opt(inode->i_sb, DELALLOC) &&
6031 !ext4_should_journal_data(inode) &&
6032 !ext4_nonda_switch(inode->i_sb)) {
6034 ret = block_page_mkwrite(vma, vmf,
6035 ext4_da_get_block_prep);
6036 } while (ret == -ENOSPC &&
6037 ext4_should_retry_alloc(inode->i_sb, &retries));
6042 size = i_size_read(inode);
6043 /* Page got truncated from under us? */
6044 if (page->mapping != mapping || page_offset(page) > size) {
6046 ret = VM_FAULT_NOPAGE;
6050 if (page->index == size >> PAGE_SHIFT)
6051 len = size & ~PAGE_MASK;
6055 * Return if we have all the buffers mapped. This avoids the need to do
6056 * journal_start/journal_stop which can block and take a long time
6058 if (page_has_buffers(page)) {
6059 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6061 ext4_bh_unmapped)) {
6062 /* Wait so that we don't change page under IO */
6063 wait_for_stable_page(page);
6064 ret = VM_FAULT_LOCKED;
6069 /* OK, we need to fill the hole... */
6070 if (ext4_should_dioread_nolock(inode))
6071 get_block = ext4_get_block_unwritten;
6073 get_block = ext4_get_block;
6075 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6076 ext4_writepage_trans_blocks(inode));
6077 if (IS_ERR(handle)) {
6078 ret = VM_FAULT_SIGBUS;
6081 ret = block_page_mkwrite(vma, vmf, get_block);
6082 if (!ret && ext4_should_journal_data(inode)) {
6083 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6084 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6086 ret = VM_FAULT_SIGBUS;
6087 ext4_journal_stop(handle);
6090 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6092 ext4_journal_stop(handle);
6093 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6096 ret = block_page_mkwrite_return(ret);
6098 up_read(&EXT4_I(inode)->i_mmap_sem);
6099 sb_end_pagefault(inode->i_sb);
6103 int ext4_filemap_fault(struct vm_fault *vmf)
6105 struct inode *inode = file_inode(vmf->vma->vm_file);
6108 down_read(&EXT4_I(inode)->i_mmap_sem);
6109 err = filemap_fault(vmf);
6110 up_read(&EXT4_I(inode)->i_mmap_sem);
6116 * Find the first extent at or after @lblk in an inode that is not a hole.
6117 * Search for @map_len blocks at most. The extent is returned in @result.
6119 * The function returns 1 if we found an extent. The function returns 0 in
6120 * case there is no extent at or after @lblk and in that case also sets
6121 * @result->es_len to 0. In case of error, the error code is returned.
6123 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6124 unsigned int map_len, struct extent_status *result)
6126 struct ext4_map_blocks map;
6127 struct extent_status es = {};
6131 map.m_len = map_len;
6134 * For non-extent based files this loop may iterate several times since
6135 * we do not determine full hole size.
6137 while (map.m_len > 0) {
6138 ret = ext4_map_blocks(NULL, inode, &map, 0);
6141 /* There's extent covering m_lblk? Just return it. */
6145 ext4_es_store_pblock(result, map.m_pblk);
6146 result->es_lblk = map.m_lblk;
6147 result->es_len = map.m_len;
6148 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6149 status = EXTENT_STATUS_UNWRITTEN;
6151 status = EXTENT_STATUS_WRITTEN;
6152 ext4_es_store_status(result, status);
6155 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6156 map.m_lblk + map.m_len - 1,
6158 /* Is delalloc data before next block in extent tree? */
6159 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6160 ext4_lblk_t offset = 0;
6162 if (es.es_lblk < lblk)
6163 offset = lblk - es.es_lblk;
6164 result->es_lblk = es.es_lblk + offset;
6165 ext4_es_store_pblock(result,
6166 ext4_es_pblock(&es) + offset);
6167 result->es_len = es.es_len - offset;
6168 ext4_es_store_status(result, ext4_es_status(&es));
6172 /* There's a hole at m_lblk, advance us after it */
6173 map.m_lblk += map.m_len;
6174 map_len -= map.m_len;
6175 map.m_len = map_len;