]> Git Repo - linux.git/blob - mm/kfence/core.c
net/mlx5: Unregister notifier on eswitch init failure
[linux.git] / mm / kfence / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/notifier.h>
25 #include <linux/panic_notifier.h>
26 #include <linux/random.h>
27 #include <linux/rcupdate.h>
28 #include <linux/sched/clock.h>
29 #include <linux/seq_file.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/string.h>
33
34 #include <asm/kfence.h>
35
36 #include "kfence.h"
37
38 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
39 #define KFENCE_WARN_ON(cond)                                                   \
40         ({                                                                     \
41                 const bool __cond = WARN_ON(cond);                             \
42                 if (unlikely(__cond)) {                                        \
43                         WRITE_ONCE(kfence_enabled, false);                     \
44                         disabled_by_warn = true;                               \
45                 }                                                              \
46                 __cond;                                                        \
47         })
48
49 /* === Data ================================================================= */
50
51 static bool kfence_enabled __read_mostly;
52 static bool disabled_by_warn __read_mostly;
53
54 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
55 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
56
57 #ifdef MODULE_PARAM_PREFIX
58 #undef MODULE_PARAM_PREFIX
59 #endif
60 #define MODULE_PARAM_PREFIX "kfence."
61
62 static int kfence_enable_late(void);
63 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
64 {
65         unsigned long num;
66         int ret = kstrtoul(val, 0, &num);
67
68         if (ret < 0)
69                 return ret;
70
71         /* Using 0 to indicate KFENCE is disabled. */
72         if (!num && READ_ONCE(kfence_enabled)) {
73                 pr_info("disabled\n");
74                 WRITE_ONCE(kfence_enabled, false);
75         }
76
77         *((unsigned long *)kp->arg) = num;
78
79         if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
80                 return disabled_by_warn ? -EINVAL : kfence_enable_late();
81         return 0;
82 }
83
84 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
85 {
86         if (!READ_ONCE(kfence_enabled))
87                 return sprintf(buffer, "0\n");
88
89         return param_get_ulong(buffer, kp);
90 }
91
92 static const struct kernel_param_ops sample_interval_param_ops = {
93         .set = param_set_sample_interval,
94         .get = param_get_sample_interval,
95 };
96 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
97
98 /* Pool usage% threshold when currently covered allocations are skipped. */
99 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
100 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
101
102 /* Allocation burst count: number of excess KFENCE allocations per sample. */
103 static unsigned int kfence_burst __read_mostly;
104 module_param_named(burst, kfence_burst, uint, 0644);
105
106 /* If true, use a deferrable timer. */
107 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
108 module_param_named(deferrable, kfence_deferrable, bool, 0444);
109
110 /* If true, check all canary bytes on panic. */
111 static bool kfence_check_on_panic __read_mostly;
112 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
113
114 /* The pool of pages used for guard pages and objects. */
115 char *__kfence_pool __read_mostly;
116 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
117
118 /*
119  * Per-object metadata, with one-to-one mapping of object metadata to
120  * backing pages (in __kfence_pool).
121  */
122 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
123 struct kfence_metadata *kfence_metadata __read_mostly;
124
125 /*
126  * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
127  * So introduce kfence_metadata_init to initialize metadata, and then make
128  * kfence_metadata visible after initialization is successful. This prevents
129  * potential UAF or access to uninitialized metadata.
130  */
131 static struct kfence_metadata *kfence_metadata_init __read_mostly;
132
133 /* Freelist with available objects. */
134 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
135 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
136
137 /*
138  * The static key to set up a KFENCE allocation; or if static keys are not used
139  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
140  */
141 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
142
143 /* Gates the allocation, ensuring only one succeeds in a given period. */
144 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
145
146 /*
147  * A Counting Bloom filter of allocation coverage: limits currently covered
148  * allocations of the same source filling up the pool.
149  *
150  * Assuming a range of 15%-85% unique allocations in the pool at any point in
151  * time, the below parameters provide a probablity of 0.02-0.33 for false
152  * positive hits respectively:
153  *
154  *      P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
155  */
156 #define ALLOC_COVERED_HNUM      2
157 #define ALLOC_COVERED_ORDER     (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
158 #define ALLOC_COVERED_SIZE      (1 << ALLOC_COVERED_ORDER)
159 #define ALLOC_COVERED_HNEXT(h)  hash_32(h, ALLOC_COVERED_ORDER)
160 #define ALLOC_COVERED_MASK      (ALLOC_COVERED_SIZE - 1)
161 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
162
163 /* Stack depth used to determine uniqueness of an allocation. */
164 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
165
166 /*
167  * Randomness for stack hashes, making the same collisions across reboots and
168  * different machines less likely.
169  */
170 static u32 stack_hash_seed __ro_after_init;
171
172 /* Statistics counters for debugfs. */
173 enum kfence_counter_id {
174         KFENCE_COUNTER_ALLOCATED,
175         KFENCE_COUNTER_ALLOCS,
176         KFENCE_COUNTER_FREES,
177         KFENCE_COUNTER_ZOMBIES,
178         KFENCE_COUNTER_BUGS,
179         KFENCE_COUNTER_SKIP_INCOMPAT,
180         KFENCE_COUNTER_SKIP_CAPACITY,
181         KFENCE_COUNTER_SKIP_COVERED,
182         KFENCE_COUNTER_COUNT,
183 };
184 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
185 static const char *const counter_names[] = {
186         [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
187         [KFENCE_COUNTER_ALLOCS]         = "total allocations",
188         [KFENCE_COUNTER_FREES]          = "total frees",
189         [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
190         [KFENCE_COUNTER_BUGS]           = "total bugs",
191         [KFENCE_COUNTER_SKIP_INCOMPAT]  = "skipped allocations (incompatible)",
192         [KFENCE_COUNTER_SKIP_CAPACITY]  = "skipped allocations (capacity)",
193         [KFENCE_COUNTER_SKIP_COVERED]   = "skipped allocations (covered)",
194 };
195 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
196
197 /* === Internals ============================================================ */
198
199 static inline bool should_skip_covered(void)
200 {
201         unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
202
203         return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
204 }
205
206 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
207 {
208         num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
209         num_entries = filter_irq_stacks(stack_entries, num_entries);
210         return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
211 }
212
213 /*
214  * Adds (or subtracts) count @val for allocation stack trace hash
215  * @alloc_stack_hash from Counting Bloom filter.
216  */
217 static void alloc_covered_add(u32 alloc_stack_hash, int val)
218 {
219         int i;
220
221         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
222                 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
223                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
224         }
225 }
226
227 /*
228  * Returns true if the allocation stack trace hash @alloc_stack_hash is
229  * currently contained (non-zero count) in Counting Bloom filter.
230  */
231 static bool alloc_covered_contains(u32 alloc_stack_hash)
232 {
233         int i;
234
235         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
236                 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
237                         return false;
238                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
239         }
240
241         return true;
242 }
243
244 static bool kfence_protect(unsigned long addr)
245 {
246         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
247 }
248
249 static bool kfence_unprotect(unsigned long addr)
250 {
251         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
252 }
253
254 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
255 {
256         unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
257         unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
258
259         /* The checks do not affect performance; only called from slow-paths. */
260
261         /* Only call with a pointer into kfence_metadata. */
262         if (KFENCE_WARN_ON(meta < kfence_metadata ||
263                            meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
264                 return 0;
265
266         /*
267          * This metadata object only ever maps to 1 page; verify that the stored
268          * address is in the expected range.
269          */
270         if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
271                 return 0;
272
273         return pageaddr;
274 }
275
276 static inline bool kfence_obj_allocated(const struct kfence_metadata *meta)
277 {
278         enum kfence_object_state state = READ_ONCE(meta->state);
279
280         return state == KFENCE_OBJECT_ALLOCATED || state == KFENCE_OBJECT_RCU_FREEING;
281 }
282
283 /*
284  * Update the object's metadata state, including updating the alloc/free stacks
285  * depending on the state transition.
286  */
287 static noinline void
288 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
289                       unsigned long *stack_entries, size_t num_stack_entries)
290 {
291         struct kfence_track *track =
292                 next == KFENCE_OBJECT_ALLOCATED ? &meta->alloc_track : &meta->free_track;
293
294         lockdep_assert_held(&meta->lock);
295
296         /* Stack has been saved when calling rcu, skip. */
297         if (READ_ONCE(meta->state) == KFENCE_OBJECT_RCU_FREEING)
298                 goto out;
299
300         if (stack_entries) {
301                 memcpy(track->stack_entries, stack_entries,
302                        num_stack_entries * sizeof(stack_entries[0]));
303         } else {
304                 /*
305                  * Skip over 1 (this) functions; noinline ensures we do not
306                  * accidentally skip over the caller by never inlining.
307                  */
308                 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
309         }
310         track->num_stack_entries = num_stack_entries;
311         track->pid = task_pid_nr(current);
312         track->cpu = raw_smp_processor_id();
313         track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
314
315 out:
316         /*
317          * Pairs with READ_ONCE() in
318          *      kfence_shutdown_cache(),
319          *      kfence_handle_page_fault().
320          */
321         WRITE_ONCE(meta->state, next);
322 }
323
324 #ifdef CONFIG_KMSAN
325 #define check_canary_attributes noinline __no_kmsan_checks
326 #else
327 #define check_canary_attributes inline
328 #endif
329
330 /* Check canary byte at @addr. */
331 static check_canary_attributes bool check_canary_byte(u8 *addr)
332 {
333         struct kfence_metadata *meta;
334         unsigned long flags;
335
336         if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
337                 return true;
338
339         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
340
341         meta = addr_to_metadata((unsigned long)addr);
342         raw_spin_lock_irqsave(&meta->lock, flags);
343         kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
344         raw_spin_unlock_irqrestore(&meta->lock, flags);
345
346         return false;
347 }
348
349 static inline void set_canary(const struct kfence_metadata *meta)
350 {
351         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
352         unsigned long addr = pageaddr;
353
354         /*
355          * The canary may be written to part of the object memory, but it does
356          * not affect it. The user should initialize the object before using it.
357          */
358         for (; addr < meta->addr; addr += sizeof(u64))
359                 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
360
361         addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
362         for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
363                 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
364 }
365
366 static check_canary_attributes void
367 check_canary(const struct kfence_metadata *meta)
368 {
369         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
370         unsigned long addr = pageaddr;
371
372         /*
373          * We'll iterate over each canary byte per-side until a corrupted byte
374          * is found. However, we'll still iterate over the canary bytes to the
375          * right of the object even if there was an error in the canary bytes to
376          * the left of the object. Specifically, if check_canary_byte()
377          * generates an error, showing both sides might give more clues as to
378          * what the error is about when displaying which bytes were corrupted.
379          */
380
381         /* Apply to left of object. */
382         for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
383                 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
384                         break;
385         }
386
387         /*
388          * If the canary is corrupted in a certain 64 bytes, or the canary
389          * memory cannot be completely covered by multiple consecutive 64 bytes,
390          * it needs to be checked one by one.
391          */
392         for (; addr < meta->addr; addr++) {
393                 if (unlikely(!check_canary_byte((u8 *)addr)))
394                         break;
395         }
396
397         /* Apply to right of object. */
398         for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
399                 if (unlikely(!check_canary_byte((u8 *)addr)))
400                         return;
401         }
402         for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
403                 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
404
405                         for (; addr - pageaddr < PAGE_SIZE; addr++) {
406                                 if (!check_canary_byte((u8 *)addr))
407                                         return;
408                         }
409                 }
410         }
411 }
412
413 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
414                                   unsigned long *stack_entries, size_t num_stack_entries,
415                                   u32 alloc_stack_hash)
416 {
417         struct kfence_metadata *meta = NULL;
418         unsigned long flags;
419         struct slab *slab;
420         void *addr;
421         const bool random_right_allocate = get_random_u32_below(2);
422         const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
423                                   !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
424
425         /* Try to obtain a free object. */
426         raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
427         if (!list_empty(&kfence_freelist)) {
428                 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
429                 list_del_init(&meta->list);
430         }
431         raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
432         if (!meta) {
433                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
434                 return NULL;
435         }
436
437         if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
438                 /*
439                  * This is extremely unlikely -- we are reporting on a
440                  * use-after-free, which locked meta->lock, and the reporting
441                  * code via printk calls kmalloc() which ends up in
442                  * kfence_alloc() and tries to grab the same object that we're
443                  * reporting on. While it has never been observed, lockdep does
444                  * report that there is a possibility of deadlock. Fix it by
445                  * using trylock and bailing out gracefully.
446                  */
447                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
448                 /* Put the object back on the freelist. */
449                 list_add_tail(&meta->list, &kfence_freelist);
450                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
451
452                 return NULL;
453         }
454
455         meta->addr = metadata_to_pageaddr(meta);
456         /* Unprotect if we're reusing this page. */
457         if (meta->state == KFENCE_OBJECT_FREED)
458                 kfence_unprotect(meta->addr);
459
460         /*
461          * Note: for allocations made before RNG initialization, will always
462          * return zero. We still benefit from enabling KFENCE as early as
463          * possible, even when the RNG is not yet available, as this will allow
464          * KFENCE to detect bugs due to earlier allocations. The only downside
465          * is that the out-of-bounds accesses detected are deterministic for
466          * such allocations.
467          */
468         if (random_right_allocate) {
469                 /* Allocate on the "right" side, re-calculate address. */
470                 meta->addr += PAGE_SIZE - size;
471                 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
472         }
473
474         addr = (void *)meta->addr;
475
476         /* Update remaining metadata. */
477         metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
478         /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
479         WRITE_ONCE(meta->cache, cache);
480         meta->size = size;
481         meta->alloc_stack_hash = alloc_stack_hash;
482         raw_spin_unlock_irqrestore(&meta->lock, flags);
483
484         alloc_covered_add(alloc_stack_hash, 1);
485
486         /* Set required slab fields. */
487         slab = virt_to_slab((void *)meta->addr);
488         slab->slab_cache = cache;
489         slab->objects = 1;
490
491         /* Memory initialization. */
492         set_canary(meta);
493
494         /*
495          * We check slab_want_init_on_alloc() ourselves, rather than letting
496          * SL*B do the initialization, as otherwise we might overwrite KFENCE's
497          * redzone.
498          */
499         if (unlikely(slab_want_init_on_alloc(gfp, cache)))
500                 memzero_explicit(addr, size);
501         if (cache->ctor)
502                 cache->ctor(addr);
503
504         if (random_fault)
505                 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
506
507         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
508         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
509
510         return addr;
511 }
512
513 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
514 {
515         struct kcsan_scoped_access assert_page_exclusive;
516         unsigned long flags;
517         bool init;
518
519         raw_spin_lock_irqsave(&meta->lock, flags);
520
521         if (!kfence_obj_allocated(meta) || meta->addr != (unsigned long)addr) {
522                 /* Invalid or double-free, bail out. */
523                 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
524                 kfence_report_error((unsigned long)addr, false, NULL, meta,
525                                     KFENCE_ERROR_INVALID_FREE);
526                 raw_spin_unlock_irqrestore(&meta->lock, flags);
527                 return;
528         }
529
530         /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
531         kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
532                                   KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
533                                   &assert_page_exclusive);
534
535         if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
536                 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
537
538         /* Restore page protection if there was an OOB access. */
539         if (meta->unprotected_page) {
540                 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
541                 kfence_protect(meta->unprotected_page);
542                 meta->unprotected_page = 0;
543         }
544
545         /* Mark the object as freed. */
546         metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
547         init = slab_want_init_on_free(meta->cache);
548         raw_spin_unlock_irqrestore(&meta->lock, flags);
549
550         alloc_covered_add(meta->alloc_stack_hash, -1);
551
552         /* Check canary bytes for memory corruption. */
553         check_canary(meta);
554
555         /*
556          * Clear memory if init-on-free is set. While we protect the page, the
557          * data is still there, and after a use-after-free is detected, we
558          * unprotect the page, so the data is still accessible.
559          */
560         if (!zombie && unlikely(init))
561                 memzero_explicit(addr, meta->size);
562
563         /* Protect to detect use-after-frees. */
564         kfence_protect((unsigned long)addr);
565
566         kcsan_end_scoped_access(&assert_page_exclusive);
567         if (!zombie) {
568                 /* Add it to the tail of the freelist for reuse. */
569                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
570                 KFENCE_WARN_ON(!list_empty(&meta->list));
571                 list_add_tail(&meta->list, &kfence_freelist);
572                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
573
574                 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
575                 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
576         } else {
577                 /* See kfence_shutdown_cache(). */
578                 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
579         }
580 }
581
582 static void rcu_guarded_free(struct rcu_head *h)
583 {
584         struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
585
586         kfence_guarded_free((void *)meta->addr, meta, false);
587 }
588
589 /*
590  * Initialization of the KFENCE pool after its allocation.
591  * Returns 0 on success; otherwise returns the address up to
592  * which partial initialization succeeded.
593  */
594 static unsigned long kfence_init_pool(void)
595 {
596         unsigned long addr;
597         struct page *pages;
598         int i;
599
600         if (!arch_kfence_init_pool())
601                 return (unsigned long)__kfence_pool;
602
603         addr = (unsigned long)__kfence_pool;
604         pages = virt_to_page(__kfence_pool);
605
606         /*
607          * Set up object pages: they must have PG_slab set, to avoid freeing
608          * these as real pages.
609          *
610          * We also want to avoid inserting kfence_free() in the kfree()
611          * fast-path in SLUB, and therefore need to ensure kfree() correctly
612          * enters __slab_free() slow-path.
613          */
614         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
615                 struct slab *slab = page_slab(nth_page(pages, i));
616
617                 if (!i || (i % 2))
618                         continue;
619
620                 __folio_set_slab(slab_folio(slab));
621 #ifdef CONFIG_MEMCG
622                 slab->obj_exts = (unsigned long)&kfence_metadata_init[i / 2 - 1].obj_exts |
623                                  MEMCG_DATA_OBJEXTS;
624 #endif
625         }
626
627         /*
628          * Protect the first 2 pages. The first page is mostly unnecessary, and
629          * merely serves as an extended guard page. However, adding one
630          * additional page in the beginning gives us an even number of pages,
631          * which simplifies the mapping of address to metadata index.
632          */
633         for (i = 0; i < 2; i++) {
634                 if (unlikely(!kfence_protect(addr)))
635                         return addr;
636
637                 addr += PAGE_SIZE;
638         }
639
640         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
641                 struct kfence_metadata *meta = &kfence_metadata_init[i];
642
643                 /* Initialize metadata. */
644                 INIT_LIST_HEAD(&meta->list);
645                 raw_spin_lock_init(&meta->lock);
646                 meta->state = KFENCE_OBJECT_UNUSED;
647                 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
648                 list_add_tail(&meta->list, &kfence_freelist);
649
650                 /* Protect the right redzone. */
651                 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
652                         goto reset_slab;
653
654                 addr += 2 * PAGE_SIZE;
655         }
656
657         /*
658          * Make kfence_metadata visible only when initialization is successful.
659          * Otherwise, if the initialization fails and kfence_metadata is freed,
660          * it may cause UAF in kfence_shutdown_cache().
661          */
662         smp_store_release(&kfence_metadata, kfence_metadata_init);
663         return 0;
664
665 reset_slab:
666         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
667                 struct slab *slab = page_slab(nth_page(pages, i));
668
669                 if (!i || (i % 2))
670                         continue;
671 #ifdef CONFIG_MEMCG
672                 slab->obj_exts = 0;
673 #endif
674                 __folio_clear_slab(slab_folio(slab));
675         }
676
677         return addr;
678 }
679
680 static bool __init kfence_init_pool_early(void)
681 {
682         unsigned long addr;
683
684         if (!__kfence_pool)
685                 return false;
686
687         addr = kfence_init_pool();
688
689         if (!addr) {
690                 /*
691                  * The pool is live and will never be deallocated from this point on.
692                  * Ignore the pool object from the kmemleak phys object tree, as it would
693                  * otherwise overlap with allocations returned by kfence_alloc(), which
694                  * are registered with kmemleak through the slab post-alloc hook.
695                  */
696                 kmemleak_ignore_phys(__pa(__kfence_pool));
697                 return true;
698         }
699
700         /*
701          * Only release unprotected pages, and do not try to go back and change
702          * page attributes due to risk of failing to do so as well. If changing
703          * page attributes for some pages fails, it is very likely that it also
704          * fails for the first page, and therefore expect addr==__kfence_pool in
705          * most failure cases.
706          */
707         memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
708         __kfence_pool = NULL;
709
710         memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
711         kfence_metadata_init = NULL;
712
713         return false;
714 }
715
716 /* === DebugFS Interface ==================================================== */
717
718 static int stats_show(struct seq_file *seq, void *v)
719 {
720         int i;
721
722         seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
723         for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
724                 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
725
726         return 0;
727 }
728 DEFINE_SHOW_ATTRIBUTE(stats);
729
730 /*
731  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
732  * start_object() and next_object() return the object index + 1, because NULL is used
733  * to stop iteration.
734  */
735 static void *start_object(struct seq_file *seq, loff_t *pos)
736 {
737         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
738                 return (void *)((long)*pos + 1);
739         return NULL;
740 }
741
742 static void stop_object(struct seq_file *seq, void *v)
743 {
744 }
745
746 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
747 {
748         ++*pos;
749         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
750                 return (void *)((long)*pos + 1);
751         return NULL;
752 }
753
754 static int show_object(struct seq_file *seq, void *v)
755 {
756         struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
757         unsigned long flags;
758
759         raw_spin_lock_irqsave(&meta->lock, flags);
760         kfence_print_object(seq, meta);
761         raw_spin_unlock_irqrestore(&meta->lock, flags);
762         seq_puts(seq, "---------------------------------\n");
763
764         return 0;
765 }
766
767 static const struct seq_operations objects_sops = {
768         .start = start_object,
769         .next = next_object,
770         .stop = stop_object,
771         .show = show_object,
772 };
773 DEFINE_SEQ_ATTRIBUTE(objects);
774
775 static int kfence_debugfs_init(void)
776 {
777         struct dentry *kfence_dir;
778
779         if (!READ_ONCE(kfence_enabled))
780                 return 0;
781
782         kfence_dir = debugfs_create_dir("kfence", NULL);
783         debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
784         debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
785         return 0;
786 }
787
788 late_initcall(kfence_debugfs_init);
789
790 /* === Panic Notifier ====================================================== */
791
792 static void kfence_check_all_canary(void)
793 {
794         int i;
795
796         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
797                 struct kfence_metadata *meta = &kfence_metadata[i];
798
799                 if (kfence_obj_allocated(meta))
800                         check_canary(meta);
801         }
802 }
803
804 static int kfence_check_canary_callback(struct notifier_block *nb,
805                                         unsigned long reason, void *arg)
806 {
807         kfence_check_all_canary();
808         return NOTIFY_OK;
809 }
810
811 static struct notifier_block kfence_check_canary_notifier = {
812         .notifier_call = kfence_check_canary_callback,
813 };
814
815 /* === Allocation Gate Timer ================================================ */
816
817 static struct delayed_work kfence_timer;
818
819 #ifdef CONFIG_KFENCE_STATIC_KEYS
820 /* Wait queue to wake up allocation-gate timer task. */
821 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
822
823 static void wake_up_kfence_timer(struct irq_work *work)
824 {
825         wake_up(&allocation_wait);
826 }
827 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
828 #endif
829
830 /*
831  * Set up delayed work, which will enable and disable the static key. We need to
832  * use a work queue (rather than a simple timer), since enabling and disabling a
833  * static key cannot be done from an interrupt.
834  *
835  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
836  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
837  * more aggressive sampling intervals), we could get away with a variant that
838  * avoids IPIs, at the cost of not immediately capturing allocations if the
839  * instructions remain cached.
840  */
841 static void toggle_allocation_gate(struct work_struct *work)
842 {
843         if (!READ_ONCE(kfence_enabled))
844                 return;
845
846         atomic_set(&kfence_allocation_gate, -kfence_burst);
847 #ifdef CONFIG_KFENCE_STATIC_KEYS
848         /* Enable static key, and await allocation to happen. */
849         static_branch_enable(&kfence_allocation_key);
850
851         wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate) > 0);
852
853         /* Disable static key and reset timer. */
854         static_branch_disable(&kfence_allocation_key);
855 #endif
856         queue_delayed_work(system_unbound_wq, &kfence_timer,
857                            msecs_to_jiffies(kfence_sample_interval));
858 }
859
860 /* === Public interface ===================================================== */
861
862 void __init kfence_alloc_pool_and_metadata(void)
863 {
864         if (!kfence_sample_interval)
865                 return;
866
867         /*
868          * If the pool has already been initialized by arch, there is no need to
869          * re-allocate the memory pool.
870          */
871         if (!__kfence_pool)
872                 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
873
874         if (!__kfence_pool) {
875                 pr_err("failed to allocate pool\n");
876                 return;
877         }
878
879         /* The memory allocated by memblock has been zeroed out. */
880         kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
881         if (!kfence_metadata_init) {
882                 pr_err("failed to allocate metadata\n");
883                 memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
884                 __kfence_pool = NULL;
885         }
886 }
887
888 static void kfence_init_enable(void)
889 {
890         if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
891                 static_branch_enable(&kfence_allocation_key);
892
893         if (kfence_deferrable)
894                 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
895         else
896                 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
897
898         if (kfence_check_on_panic)
899                 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
900
901         WRITE_ONCE(kfence_enabled, true);
902         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
903
904         pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
905                 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
906                 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
907 }
908
909 void __init kfence_init(void)
910 {
911         stack_hash_seed = get_random_u32();
912
913         /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
914         if (!kfence_sample_interval)
915                 return;
916
917         if (!kfence_init_pool_early()) {
918                 pr_err("%s failed\n", __func__);
919                 return;
920         }
921
922         kfence_init_enable();
923 }
924
925 static int kfence_init_late(void)
926 {
927         const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
928         const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
929         unsigned long addr = (unsigned long)__kfence_pool;
930         unsigned long free_size = KFENCE_POOL_SIZE;
931         int err = -ENOMEM;
932
933 #ifdef CONFIG_CONTIG_ALLOC
934         struct page *pages;
935
936         pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
937                                    NULL);
938         if (!pages)
939                 return -ENOMEM;
940
941         __kfence_pool = page_to_virt(pages);
942         pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
943                                    NULL);
944         if (pages)
945                 kfence_metadata_init = page_to_virt(pages);
946 #else
947         if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
948             nr_pages_meta > MAX_ORDER_NR_PAGES) {
949                 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
950                 return -EINVAL;
951         }
952
953         __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
954         if (!__kfence_pool)
955                 return -ENOMEM;
956
957         kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
958 #endif
959
960         if (!kfence_metadata_init)
961                 goto free_pool;
962
963         memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
964         addr = kfence_init_pool();
965         if (!addr) {
966                 kfence_init_enable();
967                 kfence_debugfs_init();
968                 return 0;
969         }
970
971         pr_err("%s failed\n", __func__);
972         free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
973         err = -EBUSY;
974
975 #ifdef CONFIG_CONTIG_ALLOC
976         free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
977                           nr_pages_meta);
978 free_pool:
979         free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
980                           free_size / PAGE_SIZE);
981 #else
982         free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
983 free_pool:
984         free_pages_exact((void *)addr, free_size);
985 #endif
986
987         kfence_metadata_init = NULL;
988         __kfence_pool = NULL;
989         return err;
990 }
991
992 static int kfence_enable_late(void)
993 {
994         if (!__kfence_pool)
995                 return kfence_init_late();
996
997         WRITE_ONCE(kfence_enabled, true);
998         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
999         pr_info("re-enabled\n");
1000         return 0;
1001 }
1002
1003 void kfence_shutdown_cache(struct kmem_cache *s)
1004 {
1005         unsigned long flags;
1006         struct kfence_metadata *meta;
1007         int i;
1008
1009         /* Pairs with release in kfence_init_pool(). */
1010         if (!smp_load_acquire(&kfence_metadata))
1011                 return;
1012
1013         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1014                 bool in_use;
1015
1016                 meta = &kfence_metadata[i];
1017
1018                 /*
1019                  * If we observe some inconsistent cache and state pair where we
1020                  * should have returned false here, cache destruction is racing
1021                  * with either kmem_cache_alloc() or kmem_cache_free(). Taking
1022                  * the lock will not help, as different critical section
1023                  * serialization will have the same outcome.
1024                  */
1025                 if (READ_ONCE(meta->cache) != s || !kfence_obj_allocated(meta))
1026                         continue;
1027
1028                 raw_spin_lock_irqsave(&meta->lock, flags);
1029                 in_use = meta->cache == s && kfence_obj_allocated(meta);
1030                 raw_spin_unlock_irqrestore(&meta->lock, flags);
1031
1032                 if (in_use) {
1033                         /*
1034                          * This cache still has allocations, and we should not
1035                          * release them back into the freelist so they can still
1036                          * safely be used and retain the kernel's default
1037                          * behaviour of keeping the allocations alive (leak the
1038                          * cache); however, they effectively become "zombie
1039                          * allocations" as the KFENCE objects are the only ones
1040                          * still in use and the owning cache is being destroyed.
1041                          *
1042                          * We mark them freed, so that any subsequent use shows
1043                          * more useful error messages that will include stack
1044                          * traces of the user of the object, the original
1045                          * allocation, and caller to shutdown_cache().
1046                          */
1047                         kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
1048                 }
1049         }
1050
1051         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1052                 meta = &kfence_metadata[i];
1053
1054                 /* See above. */
1055                 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
1056                         continue;
1057
1058                 raw_spin_lock_irqsave(&meta->lock, flags);
1059                 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
1060                         meta->cache = NULL;
1061                 raw_spin_unlock_irqrestore(&meta->lock, flags);
1062         }
1063 }
1064
1065 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
1066 {
1067         unsigned long stack_entries[KFENCE_STACK_DEPTH];
1068         size_t num_stack_entries;
1069         u32 alloc_stack_hash;
1070         int allocation_gate;
1071
1072         /*
1073          * Perform size check before switching kfence_allocation_gate, so that
1074          * we don't disable KFENCE without making an allocation.
1075          */
1076         if (size > PAGE_SIZE) {
1077                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1078                 return NULL;
1079         }
1080
1081         /*
1082          * Skip allocations from non-default zones, including DMA. We cannot
1083          * guarantee that pages in the KFENCE pool will have the requested
1084          * properties (e.g. reside in DMAable memory).
1085          */
1086         if ((flags & GFP_ZONEMASK) ||
1087             (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1088                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1089                 return NULL;
1090         }
1091
1092         /*
1093          * Skip allocations for this slab, if KFENCE has been disabled for
1094          * this slab.
1095          */
1096         if (s->flags & SLAB_SKIP_KFENCE)
1097                 return NULL;
1098
1099         allocation_gate = atomic_inc_return(&kfence_allocation_gate);
1100         if (allocation_gate > 1)
1101                 return NULL;
1102 #ifdef CONFIG_KFENCE_STATIC_KEYS
1103         /*
1104          * waitqueue_active() is fully ordered after the update of
1105          * kfence_allocation_gate per atomic_inc_return().
1106          */
1107         if (allocation_gate == 1 && waitqueue_active(&allocation_wait)) {
1108                 /*
1109                  * Calling wake_up() here may deadlock when allocations happen
1110                  * from within timer code. Use an irq_work to defer it.
1111                  */
1112                 irq_work_queue(&wake_up_kfence_timer_work);
1113         }
1114 #endif
1115
1116         if (!READ_ONCE(kfence_enabled))
1117                 return NULL;
1118
1119         num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1120
1121         /*
1122          * Do expensive check for coverage of allocation in slow-path after
1123          * allocation_gate has already become non-zero, even though it might
1124          * mean not making any allocation within a given sample interval.
1125          *
1126          * This ensures reasonable allocation coverage when the pool is almost
1127          * full, including avoiding long-lived allocations of the same source
1128          * filling up the pool (e.g. pagecache allocations).
1129          */
1130         alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1131         if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1132                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1133                 return NULL;
1134         }
1135
1136         return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1137                                     alloc_stack_hash);
1138 }
1139
1140 size_t kfence_ksize(const void *addr)
1141 {
1142         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1143
1144         /*
1145          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1146          * either a use-after-free or invalid access.
1147          */
1148         return meta ? meta->size : 0;
1149 }
1150
1151 void *kfence_object_start(const void *addr)
1152 {
1153         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1154
1155         /*
1156          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1157          * either a use-after-free or invalid access.
1158          */
1159         return meta ? (void *)meta->addr : NULL;
1160 }
1161
1162 void __kfence_free(void *addr)
1163 {
1164         struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1165
1166 #ifdef CONFIG_MEMCG
1167         KFENCE_WARN_ON(meta->obj_exts.objcg);
1168 #endif
1169         /*
1170          * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1171          * the object, as the object page may be recycled for other-typed
1172          * objects once it has been freed. meta->cache may be NULL if the cache
1173          * was destroyed.
1174          * Save the stack trace here so that reports show where the user freed
1175          * the object.
1176          */
1177         if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) {
1178                 unsigned long flags;
1179
1180                 raw_spin_lock_irqsave(&meta->lock, flags);
1181                 metadata_update_state(meta, KFENCE_OBJECT_RCU_FREEING, NULL, 0);
1182                 raw_spin_unlock_irqrestore(&meta->lock, flags);
1183                 call_rcu(&meta->rcu_head, rcu_guarded_free);
1184         } else {
1185                 kfence_guarded_free(addr, meta, false);
1186         }
1187 }
1188
1189 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1190 {
1191         const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1192         struct kfence_metadata *to_report = NULL;
1193         enum kfence_error_type error_type;
1194         unsigned long flags;
1195
1196         if (!is_kfence_address((void *)addr))
1197                 return false;
1198
1199         if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1200                 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1201
1202         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1203
1204         if (page_index % 2) {
1205                 /* This is a redzone, report a buffer overflow. */
1206                 struct kfence_metadata *meta;
1207                 int distance = 0;
1208
1209                 meta = addr_to_metadata(addr - PAGE_SIZE);
1210                 if (meta && kfence_obj_allocated(meta)) {
1211                         to_report = meta;
1212                         /* Data race ok; distance calculation approximate. */
1213                         distance = addr - data_race(meta->addr + meta->size);
1214                 }
1215
1216                 meta = addr_to_metadata(addr + PAGE_SIZE);
1217                 if (meta && kfence_obj_allocated(meta)) {
1218                         /* Data race ok; distance calculation approximate. */
1219                         if (!to_report || distance > data_race(meta->addr) - addr)
1220                                 to_report = meta;
1221                 }
1222
1223                 if (!to_report)
1224                         goto out;
1225
1226                 raw_spin_lock_irqsave(&to_report->lock, flags);
1227                 to_report->unprotected_page = addr;
1228                 error_type = KFENCE_ERROR_OOB;
1229
1230                 /*
1231                  * If the object was freed before we took the look we can still
1232                  * report this as an OOB -- the report will simply show the
1233                  * stacktrace of the free as well.
1234                  */
1235         } else {
1236                 to_report = addr_to_metadata(addr);
1237                 if (!to_report)
1238                         goto out;
1239
1240                 raw_spin_lock_irqsave(&to_report->lock, flags);
1241                 error_type = KFENCE_ERROR_UAF;
1242                 /*
1243                  * We may race with __kfence_alloc(), and it is possible that a
1244                  * freed object may be reallocated. We simply report this as a
1245                  * use-after-free, with the stack trace showing the place where
1246                  * the object was re-allocated.
1247                  */
1248         }
1249
1250 out:
1251         if (to_report) {
1252                 kfence_report_error(addr, is_write, regs, to_report, error_type);
1253                 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1254         } else {
1255                 /* This may be a UAF or OOB access, but we can't be sure. */
1256                 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1257         }
1258
1259         return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1260 }
This page took 0.098949 seconds and 4 git commands to generate.