2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
11 #include <asm/set_memory.h>
12 #include <asm/e820/api.h>
15 #include <asm/page_types.h>
16 #include <asm/sections.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
20 #include <asm/proto.h>
21 #include <asm/dma.h> /* for MAX_DMA_PFN */
22 #include <asm/microcode.h>
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
27 #include <asm/text-patching.h>
28 #include <asm/memtype.h>
31 * We need to define the tracepoints somewhere, and tlb.c
32 * is only compiled when SMP=y.
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/tlb.h>
37 #include "mm_internal.h"
40 * Tables translating between page_cache_type_t and pte encoding.
42 * The default values are defined statically as minimal supported mode;
43 * WC and WT fall back to UC-. pat_init() updates these values to support
44 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
45 * for the details. Note, __early_ioremap() used during early boot-time
46 * takes pgprot_t (pte encoding) and does not use these tables.
48 * Index into __cachemode2pte_tbl[] is the cachemode.
50 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
51 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
53 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
54 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
55 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
56 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
59 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
62 unsigned long cachemode2protval(enum page_cache_mode pcm)
66 return __cachemode2pte_tbl[pcm];
68 EXPORT_SYMBOL(cachemode2protval);
70 static uint8_t __pte2cachemode_tbl[8] = {
71 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
72 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
73 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
74 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
75 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
76 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
77 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
81 /* Check that the write-protect PAT entry is set for write-protect */
82 bool x86_has_pat_wp(void)
84 return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP;
87 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
91 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
92 if (likely(masked == 0))
94 return __pte2cachemode_tbl[__pte2cm_idx(masked)];
97 static unsigned long __initdata pgt_buf_start;
98 static unsigned long __initdata pgt_buf_end;
99 static unsigned long __initdata pgt_buf_top;
101 static unsigned long min_pfn_mapped;
103 static bool __initdata can_use_brk_pgt = true;
106 * Pages returned are already directly mapped.
108 * Changing that is likely to break Xen, see commit:
110 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
112 * for detailed information.
114 __ref void *alloc_low_pages(unsigned int num)
122 order = get_order((unsigned long)num << PAGE_SHIFT);
123 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
126 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
127 unsigned long ret = 0;
129 if (min_pfn_mapped < max_pfn_mapped) {
130 ret = memblock_phys_alloc_range(
131 PAGE_SIZE * num, PAGE_SIZE,
132 min_pfn_mapped << PAGE_SHIFT,
133 max_pfn_mapped << PAGE_SHIFT);
135 if (!ret && can_use_brk_pgt)
136 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
139 panic("alloc_low_pages: can not alloc memory");
141 pfn = ret >> PAGE_SHIFT;
147 for (i = 0; i < num; i++) {
150 adr = __va((pfn + i) << PAGE_SHIFT);
154 return __va(pfn << PAGE_SHIFT);
158 * By default need to be able to allocate page tables below PGD firstly for
159 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
160 * With KASLR memory randomization, depending on the machine e820 memory and the
161 * PUD alignment, twice that many pages may be needed when KASLR memory
162 * randomization is enabled.
165 #ifndef CONFIG_X86_5LEVEL
166 #define INIT_PGD_PAGE_TABLES 3
168 #define INIT_PGD_PAGE_TABLES 4
171 #ifndef CONFIG_RANDOMIZE_MEMORY
172 #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
174 #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
177 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
178 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
179 void __init early_alloc_pgt_buf(void)
181 unsigned long tables = INIT_PGT_BUF_SIZE;
184 base = __pa(extend_brk(tables, PAGE_SIZE));
186 pgt_buf_start = base >> PAGE_SHIFT;
187 pgt_buf_end = pgt_buf_start;
188 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
193 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
198 unsigned page_size_mask;
201 static int page_size_mask;
204 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
205 * enable and PPro Global page enable), so that any CPU's that boot
206 * up after us can get the correct flags. Invoked on the boot CPU.
208 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
210 mmu_cr4_features |= mask;
211 if (trampoline_cr4_features)
212 *trampoline_cr4_features = mmu_cr4_features;
216 static void __init probe_page_size_mask(void)
219 * For pagealloc debugging, identity mapping will use small pages.
220 * This will simplify cpa(), which otherwise needs to support splitting
221 * large pages into small in interrupt context, etc.
223 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
224 page_size_mask |= 1 << PG_LEVEL_2M;
228 /* Enable PSE if available */
229 if (boot_cpu_has(X86_FEATURE_PSE))
230 cr4_set_bits_and_update_boot(X86_CR4_PSE);
232 /* Enable PGE if available */
233 __supported_pte_mask &= ~_PAGE_GLOBAL;
234 if (boot_cpu_has(X86_FEATURE_PGE)) {
235 cr4_set_bits_and_update_boot(X86_CR4_PGE);
236 __supported_pte_mask |= _PAGE_GLOBAL;
239 /* By the default is everything supported: */
240 __default_kernel_pte_mask = __supported_pte_mask;
241 /* Except when with PTI where the kernel is mostly non-Global: */
242 if (cpu_feature_enabled(X86_FEATURE_PTI))
243 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
245 /* Enable 1 GB linear kernel mappings if available: */
246 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
247 printk(KERN_INFO "Using GB pages for direct mapping\n");
248 page_size_mask |= 1 << PG_LEVEL_1G;
254 static void setup_pcid(void)
256 if (!IS_ENABLED(CONFIG_X86_64))
259 if (!boot_cpu_has(X86_FEATURE_PCID))
262 if (boot_cpu_has(X86_FEATURE_PGE)) {
264 * This can't be cr4_set_bits_and_update_boot() -- the
265 * trampoline code can't handle CR4.PCIDE and it wouldn't
266 * do any good anyway. Despite the name,
267 * cr4_set_bits_and_update_boot() doesn't actually cause
268 * the bits in question to remain set all the way through
269 * the secondary boot asm.
271 * Instead, we brute-force it and set CR4.PCIDE manually in
274 cr4_set_bits(X86_CR4_PCIDE);
277 * INVPCID's single-context modes (2/3) only work if we set
278 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
279 * on systems that have X86_CR4_PCIDE clear, or that have
280 * no INVPCID support at all.
282 if (boot_cpu_has(X86_FEATURE_INVPCID))
283 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
286 * flush_tlb_all(), as currently implemented, won't work if
287 * PCID is on but PGE is not. Since that combination
288 * doesn't exist on real hardware, there's no reason to try
289 * to fully support it, but it's polite to avoid corrupting
290 * data if we're on an improperly configured VM.
292 setup_clear_cpu_cap(X86_FEATURE_PCID);
297 #define NR_RANGE_MR 3
298 #else /* CONFIG_X86_64 */
299 #define NR_RANGE_MR 5
302 static int __meminit save_mr(struct map_range *mr, int nr_range,
303 unsigned long start_pfn, unsigned long end_pfn,
304 unsigned long page_size_mask)
306 if (start_pfn < end_pfn) {
307 if (nr_range >= NR_RANGE_MR)
308 panic("run out of range for init_memory_mapping\n");
309 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
310 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
311 mr[nr_range].page_size_mask = page_size_mask;
319 * adjust the page_size_mask for small range to go with
320 * big page size instead small one if nearby are ram too.
322 static void __ref adjust_range_page_size_mask(struct map_range *mr,
327 for (i = 0; i < nr_range; i++) {
328 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
329 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
330 unsigned long start = round_down(mr[i].start, PMD_SIZE);
331 unsigned long end = round_up(mr[i].end, PMD_SIZE);
334 if ((end >> PAGE_SHIFT) > max_low_pfn)
338 if (memblock_is_region_memory(start, end - start))
339 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
341 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
342 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
343 unsigned long start = round_down(mr[i].start, PUD_SIZE);
344 unsigned long end = round_up(mr[i].end, PUD_SIZE);
346 if (memblock_is_region_memory(start, end - start))
347 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
352 static const char *page_size_string(struct map_range *mr)
354 static const char str_1g[] = "1G";
355 static const char str_2m[] = "2M";
356 static const char str_4m[] = "4M";
357 static const char str_4k[] = "4k";
359 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
362 * 32-bit without PAE has a 4M large page size.
363 * PG_LEVEL_2M is misnamed, but we can at least
364 * print out the right size in the string.
366 if (IS_ENABLED(CONFIG_X86_32) &&
367 !IS_ENABLED(CONFIG_X86_PAE) &&
368 mr->page_size_mask & (1<<PG_LEVEL_2M))
371 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
377 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
381 unsigned long start_pfn, end_pfn, limit_pfn;
385 limit_pfn = PFN_DOWN(end);
387 /* head if not big page alignment ? */
388 pfn = start_pfn = PFN_DOWN(start);
391 * Don't use a large page for the first 2/4MB of memory
392 * because there are often fixed size MTRRs in there
393 * and overlapping MTRRs into large pages can cause
397 end_pfn = PFN_DOWN(PMD_SIZE);
399 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
400 #else /* CONFIG_X86_64 */
401 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
403 if (end_pfn > limit_pfn)
405 if (start_pfn < end_pfn) {
406 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
410 /* big page (2M) range */
411 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
413 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
414 #else /* CONFIG_X86_64 */
415 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
416 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
417 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
420 if (start_pfn < end_pfn) {
421 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
422 page_size_mask & (1<<PG_LEVEL_2M));
427 /* big page (1G) range */
428 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
429 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
430 if (start_pfn < end_pfn) {
431 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
433 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
437 /* tail is not big page (1G) alignment */
438 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
439 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
440 if (start_pfn < end_pfn) {
441 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
442 page_size_mask & (1<<PG_LEVEL_2M));
447 /* tail is not big page (2M) alignment */
450 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
453 adjust_range_page_size_mask(mr, nr_range);
455 /* try to merge same page size and continuous */
456 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
457 unsigned long old_start;
458 if (mr[i].end != mr[i+1].start ||
459 mr[i].page_size_mask != mr[i+1].page_size_mask)
462 old_start = mr[i].start;
463 memmove(&mr[i], &mr[i+1],
464 (nr_range - 1 - i) * sizeof(struct map_range));
465 mr[i--].start = old_start;
469 for (i = 0; i < nr_range; i++)
470 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
471 mr[i].start, mr[i].end - 1,
472 page_size_string(&mr[i]));
477 struct range pfn_mapped[E820_MAX_ENTRIES];
480 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
482 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
483 nr_pfn_mapped, start_pfn, end_pfn);
484 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
486 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
488 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
489 max_low_pfn_mapped = max(max_low_pfn_mapped,
490 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
493 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
497 for (i = 0; i < nr_pfn_mapped; i++)
498 if ((start_pfn >= pfn_mapped[i].start) &&
499 (end_pfn <= pfn_mapped[i].end))
506 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
507 * This runs before bootmem is initialized and gets pages directly from
508 * the physical memory. To access them they are temporarily mapped.
510 unsigned long __ref init_memory_mapping(unsigned long start,
511 unsigned long end, pgprot_t prot)
513 struct map_range mr[NR_RANGE_MR];
514 unsigned long ret = 0;
517 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
520 memset(mr, 0, sizeof(mr));
521 nr_range = split_mem_range(mr, 0, start, end);
523 for (i = 0; i < nr_range; i++)
524 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
525 mr[i].page_size_mask,
528 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
530 return ret >> PAGE_SHIFT;
534 * We need to iterate through the E820 memory map and create direct mappings
535 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
536 * create direct mappings for all pfns from [0 to max_low_pfn) and
537 * [4GB to max_pfn) because of possible memory holes in high addresses
538 * that cannot be marked as UC by fixed/variable range MTRRs.
539 * Depending on the alignment of E820 ranges, this may possibly result
540 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
542 * init_mem_mapping() calls init_range_memory_mapping() with big range.
543 * That range would have hole in the middle or ends, and only ram parts
544 * will be mapped in init_range_memory_mapping().
546 static unsigned long __init init_range_memory_mapping(
547 unsigned long r_start,
550 unsigned long start_pfn, end_pfn;
551 unsigned long mapped_ram_size = 0;
554 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
555 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
556 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
561 * if it is overlapping with brk pgt, we need to
562 * alloc pgt buf from memblock instead.
564 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
565 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
566 init_memory_mapping(start, end, PAGE_KERNEL);
567 mapped_ram_size += end - start;
568 can_use_brk_pgt = true;
571 return mapped_ram_size;
574 static unsigned long __init get_new_step_size(unsigned long step_size)
577 * Initial mapped size is PMD_SIZE (2M).
578 * We can not set step_size to be PUD_SIZE (1G) yet.
579 * In worse case, when we cross the 1G boundary, and
580 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
581 * to map 1G range with PTE. Hence we use one less than the
582 * difference of page table level shifts.
584 * Don't need to worry about overflow in the top-down case, on 32bit,
585 * when step_size is 0, round_down() returns 0 for start, and that
586 * turns it into 0x100000000ULL.
587 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
588 * needs to be taken into consideration by the code below.
590 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
594 * memory_map_top_down - Map [map_start, map_end) top down
595 * @map_start: start address of the target memory range
596 * @map_end: end address of the target memory range
598 * This function will setup direct mapping for memory range
599 * [map_start, map_end) in top-down. That said, the page tables
600 * will be allocated at the end of the memory, and we map the
601 * memory in top-down.
603 static void __init memory_map_top_down(unsigned long map_start,
604 unsigned long map_end)
606 unsigned long real_end, last_start;
607 unsigned long step_size;
609 unsigned long mapped_ram_size = 0;
612 * Systems that have many reserved areas near top of the memory,
613 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
614 * require lots of 4K mappings which may exhaust pgt_buf.
615 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
616 * there is enough mapped memory that can be allocated from
619 addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
621 memblock_phys_free(addr, PMD_SIZE);
622 real_end = addr + PMD_SIZE;
624 /* step_size need to be small so pgt_buf from BRK could cover it */
625 step_size = PMD_SIZE;
626 max_pfn_mapped = 0; /* will get exact value next */
627 min_pfn_mapped = real_end >> PAGE_SHIFT;
628 last_start = real_end;
631 * We start from the top (end of memory) and go to the bottom.
632 * The memblock_find_in_range() gets us a block of RAM from the
633 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
636 while (last_start > map_start) {
639 if (last_start > step_size) {
640 start = round_down(last_start - 1, step_size);
641 if (start < map_start)
645 mapped_ram_size += init_range_memory_mapping(start,
648 min_pfn_mapped = last_start >> PAGE_SHIFT;
649 if (mapped_ram_size >= step_size)
650 step_size = get_new_step_size(step_size);
653 if (real_end < map_end)
654 init_range_memory_mapping(real_end, map_end);
658 * memory_map_bottom_up - Map [map_start, map_end) bottom up
659 * @map_start: start address of the target memory range
660 * @map_end: end address of the target memory range
662 * This function will setup direct mapping for memory range
663 * [map_start, map_end) in bottom-up. Since we have limited the
664 * bottom-up allocation above the kernel, the page tables will
665 * be allocated just above the kernel and we map the memory
666 * in [map_start, map_end) in bottom-up.
668 static void __init memory_map_bottom_up(unsigned long map_start,
669 unsigned long map_end)
671 unsigned long next, start;
672 unsigned long mapped_ram_size = 0;
673 /* step_size need to be small so pgt_buf from BRK could cover it */
674 unsigned long step_size = PMD_SIZE;
677 min_pfn_mapped = start >> PAGE_SHIFT;
680 * We start from the bottom (@map_start) and go to the top (@map_end).
681 * The memblock_find_in_range() gets us a block of RAM from the
682 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
685 while (start < map_end) {
686 if (step_size && map_end - start > step_size) {
687 next = round_up(start + 1, step_size);
694 mapped_ram_size += init_range_memory_mapping(start, next);
697 if (mapped_ram_size >= step_size)
698 step_size = get_new_step_size(step_size);
703 * The real mode trampoline, which is required for bootstrapping CPUs
704 * occupies only a small area under the low 1MB. See reserve_real_mode()
707 * If KASLR is disabled the first PGD entry of the direct mapping is copied
708 * to map the real mode trampoline.
710 * If KASLR is enabled, copy only the PUD which covers the low 1MB
711 * area. This limits the randomization granularity to 1GB for both 4-level
712 * and 5-level paging.
714 static void __init init_trampoline(void)
718 * The code below will alias kernel page-tables in the user-range of the
719 * address space, including the Global bit. So global TLB entries will
720 * be created when using the trampoline page-table.
722 if (!kaslr_memory_enabled())
723 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
725 init_trampoline_kaslr();
729 void __init init_mem_mapping(void)
733 pti_check_boottime_disable();
734 probe_page_size_mask();
738 end = max_pfn << PAGE_SHIFT;
740 end = max_low_pfn << PAGE_SHIFT;
743 /* the ISA range is always mapped regardless of memory holes */
744 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
746 /* Init the trampoline, possibly with KASLR memory offset */
750 * If the allocation is in bottom-up direction, we setup direct mapping
751 * in bottom-up, otherwise we setup direct mapping in top-down.
753 if (memblock_bottom_up()) {
754 unsigned long kernel_end = __pa_symbol(_end);
757 * we need two separate calls here. This is because we want to
758 * allocate page tables above the kernel. So we first map
759 * [kernel_end, end) to make memory above the kernel be mapped
760 * as soon as possible. And then use page tables allocated above
761 * the kernel to map [ISA_END_ADDRESS, kernel_end).
763 memory_map_bottom_up(kernel_end, end);
764 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
766 memory_map_top_down(ISA_END_ADDRESS, end);
770 if (max_pfn > max_low_pfn) {
771 /* can we preserve max_low_pfn ?*/
772 max_low_pfn = max_pfn;
775 early_ioremap_page_table_range_init();
778 load_cr3(swapper_pg_dir);
781 x86_init.hyper.init_mem_mapping();
783 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
787 * Initialize an mm_struct to be used during poking and a pointer to be used
790 void __init poking_init(void)
795 poking_mm = copy_init_mm();
799 * Randomize the poking address, but make sure that the following page
800 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
801 * and adjust the address if the PMD ends after the first one.
803 poking_addr = TASK_UNMAPPED_BASE;
804 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
805 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
806 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
808 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
809 poking_addr += PAGE_SIZE;
812 * We need to trigger the allocation of the page-tables that will be
813 * needed for poking now. Later, poking may be performed in an atomic
814 * section, which might cause allocation to fail.
816 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
818 pte_unmap_unlock(ptep, ptl);
822 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
823 * is valid. The argument is a physical page number.
825 * On x86, access has to be given to the first megabyte of RAM because that
826 * area traditionally contains BIOS code and data regions used by X, dosemu,
827 * and similar apps. Since they map the entire memory range, the whole range
828 * must be allowed (for mapping), but any areas that would otherwise be
829 * disallowed are flagged as being "zero filled" instead of rejected.
830 * Access has to be given to non-kernel-ram areas as well, these contain the
831 * PCI mmio resources as well as potential bios/acpi data regions.
833 int devmem_is_allowed(unsigned long pagenr)
835 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
836 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
837 != REGION_DISJOINT) {
839 * For disallowed memory regions in the low 1MB range,
840 * request that the page be shown as all zeros.
849 * This must follow RAM test, since System RAM is considered a
850 * restricted resource under CONFIG_STRICT_IOMEM.
852 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
853 /* Low 1MB bypasses iomem restrictions. */
863 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
865 unsigned long begin_aligned, end_aligned;
867 /* Make sure boundaries are page aligned */
868 begin_aligned = PAGE_ALIGN(begin);
869 end_aligned = end & PAGE_MASK;
871 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
872 begin = begin_aligned;
880 * If debugging page accesses then do not free this memory but
881 * mark them not present - any buggy init-section access will
882 * create a kernel page fault:
884 if (debug_pagealloc_enabled()) {
885 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
888 * Inform kmemleak about the hole in the memory since the
889 * corresponding pages will be unmapped.
891 kmemleak_free_part((void *)begin, end - begin);
892 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
895 * We just marked the kernel text read only above, now that
896 * we are going to free part of that, we need to make that
897 * writeable and non-executable first.
899 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
900 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
902 free_reserved_area((void *)begin, (void *)end,
903 POISON_FREE_INITMEM, what);
908 * begin/end can be in the direct map or the "high kernel mapping"
909 * used for the kernel image only. free_init_pages() will do the
910 * right thing for either kind of address.
912 void free_kernel_image_pages(const char *what, void *begin, void *end)
914 unsigned long begin_ul = (unsigned long)begin;
915 unsigned long end_ul = (unsigned long)end;
916 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
918 free_init_pages(what, begin_ul, end_ul);
921 * PTI maps some of the kernel into userspace. For performance,
922 * this includes some kernel areas that do not contain secrets.
923 * Those areas might be adjacent to the parts of the kernel image
924 * being freed, which may contain secrets. Remove the "high kernel
925 * image mapping" for these freed areas, ensuring they are not even
926 * potentially vulnerable to Meltdown regardless of the specific
927 * optimizations PTI is currently using.
929 * The "noalias" prevents unmapping the direct map alias which is
930 * needed to access the freed pages.
932 * This is only valid for 64bit kernels. 32bit has only one mapping
933 * which can't be treated in this way for obvious reasons.
935 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
936 set_memory_np_noalias(begin_ul, len_pages);
939 void __ref free_initmem(void)
941 e820__reallocate_tables();
943 mem_encrypt_free_decrypted_mem();
945 free_kernel_image_pages("unused kernel image (initmem)",
946 &__init_begin, &__init_end);
949 #ifdef CONFIG_BLK_DEV_INITRD
950 void __init free_initrd_mem(unsigned long start, unsigned long end)
953 * end could be not aligned, and We can not align that,
954 * decompressor could be confused by aligned initrd_end
955 * We already reserve the end partial page before in
956 * - i386_start_kernel()
957 * - x86_64_start_kernel()
958 * - relocate_initrd()
959 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
961 free_init_pages("initrd", start, PAGE_ALIGN(end));
966 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
967 * and pass it to the MM layer - to help it set zone watermarks more
970 * Done on 64-bit systems only for the time being, although 32-bit systems
971 * might benefit from this as well.
973 void __init memblock_find_dma_reserve(void)
976 u64 nr_pages = 0, nr_free_pages = 0;
977 unsigned long start_pfn, end_pfn;
978 phys_addr_t start_addr, end_addr;
983 * Iterate over all memory ranges (free and reserved ones alike),
984 * to calculate the total number of pages in the first 16 MB of RAM:
987 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
988 start_pfn = min(start_pfn, MAX_DMA_PFN);
989 end_pfn = min(end_pfn, MAX_DMA_PFN);
991 nr_pages += end_pfn - start_pfn;
995 * Iterate over free memory ranges to calculate the number of free
996 * pages in the DMA zone, while not counting potential partial
997 * pages at the beginning or the end of the range:
1000 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1001 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
1002 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
1004 if (start_pfn < end_pfn)
1005 nr_free_pages += end_pfn - start_pfn;
1008 set_dma_reserve(nr_pages - nr_free_pages);
1012 void __init zone_sizes_init(void)
1014 unsigned long max_zone_pfns[MAX_NR_ZONES];
1016 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1018 #ifdef CONFIG_ZONE_DMA
1019 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
1021 #ifdef CONFIG_ZONE_DMA32
1022 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
1024 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1025 #ifdef CONFIG_HIGHMEM
1026 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1029 free_area_init(max_zone_pfns);
1032 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1033 .loaded_mm = &init_mm,
1035 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
1038 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1040 /* entry 0 MUST be WB (hardwired to speed up translations) */
1041 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1043 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1044 __pte2cachemode_tbl[entry] = cache;
1048 unsigned long max_swapfile_size(void)
1050 unsigned long pages;
1052 pages = generic_max_swapfile_size();
1054 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1055 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1056 unsigned long long l1tf_limit = l1tf_pfn_limit();
1058 * We encode swap offsets also with 3 bits below those for pfn
1059 * which makes the usable limit higher.
1061 #if CONFIG_PGTABLE_LEVELS > 2
1062 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1064 pages = min_t(unsigned long long, l1tf_limit, pages);