]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/intel_gt_clock_utils.c
Merge tag 'devicetree-fixes-for-6.4-3' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / gpu / drm / i915 / gt / intel_gt_clock_utils.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_gt.h"
9 #include "intel_gt_clock_utils.h"
10 #include "intel_gt_print.h"
11 #include "intel_gt_regs.h"
12
13 static u32 read_reference_ts_freq(struct intel_uncore *uncore)
14 {
15         u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
16         u32 base_freq, frac_freq;
17
18         base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
19                      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
20         base_freq *= 1000000;
21
22         frac_freq = ((ts_override &
23                       GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
24                      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
25         frac_freq = 1000000 / (frac_freq + 1);
26
27         return base_freq + frac_freq;
28 }
29
30 static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
31                                         u32 rpm_config_reg)
32 {
33         u32 f19_2_mhz = 19200000;
34         u32 f24_mhz = 24000000;
35         u32 f25_mhz = 25000000;
36         u32 f38_4_mhz = 38400000;
37         u32 crystal_clock =
38                 (rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
39                 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
40
41         switch (crystal_clock) {
42         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
43                 return f24_mhz;
44         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
45                 return f19_2_mhz;
46         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
47                 return f38_4_mhz;
48         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
49                 return f25_mhz;
50         default:
51                 MISSING_CASE(crystal_clock);
52                 return 0;
53         }
54 }
55
56 static u32 gen11_read_clock_frequency(struct intel_uncore *uncore)
57 {
58         u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
59         u32 freq = 0;
60
61         /*
62          * Note that on gen11+, the clock frequency may be reconfigured.
63          * We do not, and we assume nobody else does.
64          *
65          * First figure out the reference frequency. There are 2 ways
66          * we can compute the frequency, either through the
67          * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
68          * tells us which one we should use.
69          */
70         if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
71                 freq = read_reference_ts_freq(uncore);
72         } else {
73                 u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
74
75                 freq = gen11_get_crystal_clock_freq(uncore, c0);
76
77                 /*
78                  * Now figure out how the command stream's timestamp
79                  * register increments from this frequency (it might
80                  * increment only every few clock cycle).
81                  */
82                 freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
83                               GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
84         }
85
86         return freq;
87 }
88
89 static u32 gen9_read_clock_frequency(struct intel_uncore *uncore)
90 {
91         u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
92         u32 freq = 0;
93
94         if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
95                 freq = read_reference_ts_freq(uncore);
96         } else {
97                 freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000;
98
99                 /*
100                  * Now figure out how the command stream's timestamp
101                  * register increments from this frequency (it might
102                  * increment only every few clock cycle).
103                  */
104                 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
105                               CTC_SHIFT_PARAMETER_SHIFT);
106         }
107
108         return freq;
109 }
110
111 static u32 gen6_read_clock_frequency(struct intel_uncore *uncore)
112 {
113         /*
114          * PRMs say:
115          *
116          *     "The PCU TSC counts 10ns increments; this timestamp
117          *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
118          *      rolling over every 1.5 hours).
119          */
120         return 12500000;
121 }
122
123 static u32 gen5_read_clock_frequency(struct intel_uncore *uncore)
124 {
125         /*
126          * 63:32 increments every 1000 ns
127          * 31:0 mbz
128          */
129         return 1000000000 / 1000;
130 }
131
132 static u32 g4x_read_clock_frequency(struct intel_uncore *uncore)
133 {
134         /*
135          * 63:20 increments every 1/4 ns
136          * 19:0 mbz
137          *
138          * -> 63:32 increments every 1024 ns
139          */
140         return 1000000000 / 1024;
141 }
142
143 static u32 gen4_read_clock_frequency(struct intel_uncore *uncore)
144 {
145         /*
146          * PRMs say:
147          *
148          *     "The value in this register increments once every 16
149          *      hclks." (through the “Clocking Configuration”
150          *      (“CLKCFG”) MCHBAR register)
151          *
152          * Testing on actual hardware has shown there is no /16.
153          */
154         return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000;
155 }
156
157 static u32 read_clock_frequency(struct intel_uncore *uncore)
158 {
159         if (GRAPHICS_VER(uncore->i915) >= 11)
160                 return gen11_read_clock_frequency(uncore);
161         else if (GRAPHICS_VER(uncore->i915) >= 9)
162                 return gen9_read_clock_frequency(uncore);
163         else if (GRAPHICS_VER(uncore->i915) >= 6)
164                 return gen6_read_clock_frequency(uncore);
165         else if (GRAPHICS_VER(uncore->i915) == 5)
166                 return gen5_read_clock_frequency(uncore);
167         else if (IS_G4X(uncore->i915))
168                 return g4x_read_clock_frequency(uncore);
169         else if (GRAPHICS_VER(uncore->i915) == 4)
170                 return gen4_read_clock_frequency(uncore);
171         else
172                 return 0;
173 }
174
175 void intel_gt_init_clock_frequency(struct intel_gt *gt)
176 {
177         gt->clock_frequency = read_clock_frequency(gt->uncore);
178
179         /* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */
180         if (GRAPHICS_VER(gt->i915) == 11)
181                 gt->clock_period_ns = NSEC_PER_SEC / 13750000;
182         else if (gt->clock_frequency)
183                 gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
184
185         GT_TRACE(gt,
186                  "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
187                  gt->clock_frequency / 1000,
188                  gt->clock_period_ns,
189                  div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
190                          USEC_PER_SEC));
191 }
192
193 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
194 void intel_gt_check_clock_frequency(const struct intel_gt *gt)
195 {
196         if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
197                 gt_err(gt, "GT clock frequency changed, was %uHz, now %uHz!\n",
198                        gt->clock_frequency,
199                        read_clock_frequency(gt->uncore));
200         }
201 }
202 #endif
203
204 static u64 div_u64_roundup(u64 nom, u32 den)
205 {
206         return div_u64(nom + den - 1, den);
207 }
208
209 u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
210 {
211         return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
212 }
213
214 u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
215 {
216         return intel_gt_clock_interval_to_ns(gt, 16 * count);
217 }
218
219 u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
220 {
221         return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
222 }
223
224 u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
225 {
226         u64 val;
227
228         /*
229          * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
230          * 8300) freezing up around GPU hangs. Looks as if even
231          * scheduling/timer interrupts start misbehaving if the RPS
232          * EI/thresholds are "bad", leading to a very sluggish or even
233          * frozen machine.
234          */
235         val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
236         if (GRAPHICS_VER(gt->i915) == 6)
237                 val = div_u64_roundup(val, 25) * 25;
238
239         return val;
240 }
This page took 0.045172 seconds and 4 git commands to generate.