]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/display/intel_bios.c
Merge tag 'devicetree-fixes-for-6.4-3' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / gpu / drm / i915 / display / intel_bios.c
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <[email protected]>
25  *
26  */
27
28 #include <drm/display/drm_dp_helper.h>
29 #include <drm/display/drm_dsc_helper.h>
30 #include <drm/drm_edid.h>
31
32 #include "i915_drv.h"
33 #include "i915_reg.h"
34 #include "intel_display.h"
35 #include "intel_display_types.h"
36 #include "intel_gmbus.h"
37
38 #define _INTEL_BIOS_PRIVATE
39 #include "intel_vbt_defs.h"
40
41 /**
42  * DOC: Video BIOS Table (VBT)
43  *
44  * The Video BIOS Table, or VBT, provides platform and board specific
45  * configuration information to the driver that is not discoverable or available
46  * through other means. The configuration is mostly related to display
47  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
48  * the PCI ROM.
49  *
50  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
51  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
52  * contain the actual configuration information. The VBT Header, and thus the
53  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
54  * BDB Header. The data blocks are concatenated after the BDB Header. The data
55  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
56  * data. (Block 53, the MIPI Sequence Block is an exception.)
57  *
58  * The driver parses the VBT during load. The relevant information is stored in
59  * driver private data for ease of use, and the actual VBT is not read after
60  * that.
61  */
62
63 /* Wrapper for VBT child device config */
64 struct intel_bios_encoder_data {
65         struct drm_i915_private *i915;
66
67         struct child_device_config child;
68         struct dsc_compression_parameters_entry *dsc;
69         struct list_head node;
70 };
71
72 #define SLAVE_ADDR1     0x70
73 #define SLAVE_ADDR2     0x72
74
75 /* Get BDB block size given a pointer to Block ID. */
76 static u32 _get_blocksize(const u8 *block_base)
77 {
78         /* The MIPI Sequence Block v3+ has a separate size field. */
79         if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
80                 return *((const u32 *)(block_base + 4));
81         else
82                 return *((const u16 *)(block_base + 1));
83 }
84
85 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
86 static u32 get_blocksize(const void *block_data)
87 {
88         return _get_blocksize(block_data - 3);
89 }
90
91 static const void *
92 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
93 {
94         const struct bdb_header *bdb = _bdb;
95         const u8 *base = _bdb;
96         int index = 0;
97         u32 total, current_size;
98         enum bdb_block_id current_id;
99
100         /* skip to first section */
101         index += bdb->header_size;
102         total = bdb->bdb_size;
103
104         /* walk the sections looking for section_id */
105         while (index + 3 < total) {
106                 current_id = *(base + index);
107                 current_size = _get_blocksize(base + index);
108                 index += 3;
109
110                 if (index + current_size > total)
111                         return NULL;
112
113                 if (current_id == section_id)
114                         return base + index;
115
116                 index += current_size;
117         }
118
119         return NULL;
120 }
121
122 /*
123  * Offset from the start of BDB to the start of the
124  * block data (just past the block header).
125  */
126 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
127 {
128         const void *block;
129
130         block = find_raw_section(bdb, section_id);
131         if (!block)
132                 return 0;
133
134         return block - bdb;
135 }
136
137 struct bdb_block_entry {
138         struct list_head node;
139         enum bdb_block_id section_id;
140         u8 data[];
141 };
142
143 static const void *
144 bdb_find_section(struct drm_i915_private *i915,
145                  enum bdb_block_id section_id)
146 {
147         struct bdb_block_entry *entry;
148
149         list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
150                 if (entry->section_id == section_id)
151                         return entry->data + 3;
152         }
153
154         return NULL;
155 }
156
157 static const struct {
158         enum bdb_block_id section_id;
159         size_t min_size;
160 } bdb_blocks[] = {
161         { .section_id = BDB_GENERAL_FEATURES,
162           .min_size = sizeof(struct bdb_general_features), },
163         { .section_id = BDB_GENERAL_DEFINITIONS,
164           .min_size = sizeof(struct bdb_general_definitions), },
165         { .section_id = BDB_PSR,
166           .min_size = sizeof(struct bdb_psr), },
167         { .section_id = BDB_DRIVER_FEATURES,
168           .min_size = sizeof(struct bdb_driver_features), },
169         { .section_id = BDB_SDVO_LVDS_OPTIONS,
170           .min_size = sizeof(struct bdb_sdvo_lvds_options), },
171         { .section_id = BDB_SDVO_PANEL_DTDS,
172           .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
173         { .section_id = BDB_EDP,
174           .min_size = sizeof(struct bdb_edp), },
175         { .section_id = BDB_LVDS_OPTIONS,
176           .min_size = sizeof(struct bdb_lvds_options), },
177         /*
178          * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
179          * so keep the two ordered.
180          */
181         { .section_id = BDB_LVDS_LFP_DATA_PTRS,
182           .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
183         { .section_id = BDB_LVDS_LFP_DATA,
184           .min_size = 0, /* special case */ },
185         { .section_id = BDB_LVDS_BACKLIGHT,
186           .min_size = sizeof(struct bdb_lfp_backlight_data), },
187         { .section_id = BDB_LFP_POWER,
188           .min_size = sizeof(struct bdb_lfp_power), },
189         { .section_id = BDB_MIPI_CONFIG,
190           .min_size = sizeof(struct bdb_mipi_config), },
191         { .section_id = BDB_MIPI_SEQUENCE,
192           .min_size = sizeof(struct bdb_mipi_sequence) },
193         { .section_id = BDB_COMPRESSION_PARAMETERS,
194           .min_size = sizeof(struct bdb_compression_parameters), },
195         { .section_id = BDB_GENERIC_DTD,
196           .min_size = sizeof(struct bdb_generic_dtd), },
197 };
198
199 static size_t lfp_data_min_size(struct drm_i915_private *i915)
200 {
201         const struct bdb_lvds_lfp_data_ptrs *ptrs;
202         size_t size;
203
204         ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
205         if (!ptrs)
206                 return 0;
207
208         size = sizeof(struct bdb_lvds_lfp_data);
209         if (ptrs->panel_name.table_size)
210                 size = max(size, ptrs->panel_name.offset +
211                            sizeof(struct bdb_lvds_lfp_data_tail));
212
213         return size;
214 }
215
216 static bool validate_lfp_data_ptrs(const void *bdb,
217                                    const struct bdb_lvds_lfp_data_ptrs *ptrs)
218 {
219         int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
220         int data_block_size, lfp_data_size;
221         const void *data_block;
222         int i;
223
224         data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
225         if (!data_block)
226                 return false;
227
228         data_block_size = get_blocksize(data_block);
229         if (data_block_size == 0)
230                 return false;
231
232         /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
233         if (ptrs->lvds_entries != 3)
234                 return false;
235
236         fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
237         dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
238         panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
239         panel_name_size = ptrs->panel_name.table_size;
240
241         /* fp_timing has variable size */
242         if (fp_timing_size < 32 ||
243             dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
244             panel_pnp_id_size != sizeof(struct lvds_pnp_id))
245                 return false;
246
247         /* panel_name is not present in old VBTs */
248         if (panel_name_size != 0 &&
249             panel_name_size != sizeof(struct lvds_lfp_panel_name))
250                 return false;
251
252         lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
253         if (16 * lfp_data_size > data_block_size)
254                 return false;
255
256         /* make sure the table entries have uniform size */
257         for (i = 1; i < 16; i++) {
258                 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
259                     ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
260                     ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
261                         return false;
262
263                 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
264                     ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
265                     ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
266                         return false;
267         }
268
269         /*
270          * Except for vlv/chv machines all real VBTs seem to have 6
271          * unaccounted bytes in the fp_timing table. And it doesn't
272          * appear to be a really intentional hole as the fp_timing
273          * 0xffff terminator is always within those 6 missing bytes.
274          */
275         if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
276                 fp_timing_size += 6;
277
278         if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
279                 return false;
280
281         if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
282             ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
283             ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
284                 return false;
285
286         /* make sure the tables fit inside the data block */
287         for (i = 0; i < 16; i++) {
288                 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
289                     ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
290                     ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
291                         return false;
292         }
293
294         if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
295                 return false;
296
297         /* make sure fp_timing terminators are present at expected locations */
298         for (i = 0; i < 16; i++) {
299                 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
300                         fp_timing_size - 2;
301
302                 if (*t != 0xffff)
303                         return false;
304         }
305
306         return true;
307 }
308
309 /* make the data table offsets relative to the data block */
310 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
311 {
312         struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
313         u32 offset;
314         int i;
315
316         offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
317
318         for (i = 0; i < 16; i++) {
319                 if (ptrs->ptr[i].fp_timing.offset < offset ||
320                     ptrs->ptr[i].dvo_timing.offset < offset ||
321                     ptrs->ptr[i].panel_pnp_id.offset < offset)
322                         return false;
323
324                 ptrs->ptr[i].fp_timing.offset -= offset;
325                 ptrs->ptr[i].dvo_timing.offset -= offset;
326                 ptrs->ptr[i].panel_pnp_id.offset -= offset;
327         }
328
329         if (ptrs->panel_name.table_size) {
330                 if (ptrs->panel_name.offset < offset)
331                         return false;
332
333                 ptrs->panel_name.offset -= offset;
334         }
335
336         return validate_lfp_data_ptrs(bdb, ptrs);
337 }
338
339 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
340                              int table_size, int total_size)
341 {
342         if (total_size < table_size)
343                 return total_size;
344
345         table->table_size = table_size;
346         table->offset = total_size - table_size;
347
348         return total_size - table_size;
349 }
350
351 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
352                               const struct lvds_lfp_data_ptr_table *prev,
353                               int size)
354 {
355         next->table_size = prev->table_size;
356         next->offset = prev->offset + size;
357 }
358
359 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
360                                     const void *bdb)
361 {
362         int i, size, table_size, block_size, offset, fp_timing_size;
363         struct bdb_lvds_lfp_data_ptrs *ptrs;
364         const void *block;
365         void *ptrs_block;
366
367         /*
368          * The hardcoded fp_timing_size is only valid for
369          * modernish VBTs. All older VBTs definitely should
370          * include block 41 and thus we don't need to
371          * generate one.
372          */
373         if (i915->display.vbt.version < 155)
374                 return NULL;
375
376         fp_timing_size = 38;
377
378         block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
379         if (!block)
380                 return NULL;
381
382         drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
383
384         block_size = get_blocksize(block);
385
386         size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
387                 sizeof(struct lvds_pnp_id);
388         if (size * 16 > block_size)
389                 return NULL;
390
391         ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
392         if (!ptrs_block)
393                 return NULL;
394
395         *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
396         *(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
397         ptrs = ptrs_block + 3;
398
399         table_size = sizeof(struct lvds_pnp_id);
400         size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
401
402         table_size = sizeof(struct lvds_dvo_timing);
403         size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
404
405         table_size = fp_timing_size;
406         size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
407
408         if (ptrs->ptr[0].fp_timing.table_size)
409                 ptrs->lvds_entries++;
410         if (ptrs->ptr[0].dvo_timing.table_size)
411                 ptrs->lvds_entries++;
412         if (ptrs->ptr[0].panel_pnp_id.table_size)
413                 ptrs->lvds_entries++;
414
415         if (size != 0 || ptrs->lvds_entries != 3) {
416                 kfree(ptrs_block);
417                 return NULL;
418         }
419
420         size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
421                 sizeof(struct lvds_pnp_id);
422         for (i = 1; i < 16; i++) {
423                 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
424                 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
425                 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
426         }
427
428         table_size = sizeof(struct lvds_lfp_panel_name);
429
430         if (16 * (size + table_size) <= block_size) {
431                 ptrs->panel_name.table_size = table_size;
432                 ptrs->panel_name.offset = size * 16;
433         }
434
435         offset = block - bdb;
436
437         for (i = 0; i < 16; i++) {
438                 ptrs->ptr[i].fp_timing.offset += offset;
439                 ptrs->ptr[i].dvo_timing.offset += offset;
440                 ptrs->ptr[i].panel_pnp_id.offset += offset;
441         }
442
443         if (ptrs->panel_name.table_size)
444                 ptrs->panel_name.offset += offset;
445
446         return ptrs_block;
447 }
448
449 static void
450 init_bdb_block(struct drm_i915_private *i915,
451                const void *bdb, enum bdb_block_id section_id,
452                size_t min_size)
453 {
454         struct bdb_block_entry *entry;
455         void *temp_block = NULL;
456         const void *block;
457         size_t block_size;
458
459         block = find_raw_section(bdb, section_id);
460
461         /* Modern VBTs lack the LFP data table pointers block, make one up */
462         if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
463                 temp_block = generate_lfp_data_ptrs(i915, bdb);
464                 if (temp_block)
465                         block = temp_block + 3;
466         }
467         if (!block)
468                 return;
469
470         drm_WARN(&i915->drm, min_size == 0,
471                  "Block %d min_size is zero\n", section_id);
472
473         block_size = get_blocksize(block);
474
475         /*
476          * Version number and new block size are considered
477          * part of the header for MIPI sequenece block v3+.
478          */
479         if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
480                 block_size += 5;
481
482         entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
483                         GFP_KERNEL);
484         if (!entry) {
485                 kfree(temp_block);
486                 return;
487         }
488
489         entry->section_id = section_id;
490         memcpy(entry->data, block - 3, block_size + 3);
491
492         kfree(temp_block);
493
494         drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
495                     section_id, block_size, min_size);
496
497         if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
498             !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
499                 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
500                 kfree(entry);
501                 return;
502         }
503
504         list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
505 }
506
507 static void init_bdb_blocks(struct drm_i915_private *i915,
508                             const void *bdb)
509 {
510         int i;
511
512         for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
513                 enum bdb_block_id section_id = bdb_blocks[i].section_id;
514                 size_t min_size = bdb_blocks[i].min_size;
515
516                 if (section_id == BDB_LVDS_LFP_DATA)
517                         min_size = lfp_data_min_size(i915);
518
519                 init_bdb_block(i915, bdb, section_id, min_size);
520         }
521 }
522
523 static void
524 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
525                         const struct lvds_dvo_timing *dvo_timing)
526 {
527         panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
528                 dvo_timing->hactive_lo;
529         panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
530                 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
531         panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
532                 ((dvo_timing->hsync_pulse_width_hi << 8) |
533                         dvo_timing->hsync_pulse_width_lo);
534         panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
535                 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
536
537         panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
538                 dvo_timing->vactive_lo;
539         panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
540                 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
541         panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
542                 ((dvo_timing->vsync_pulse_width_hi << 4) |
543                         dvo_timing->vsync_pulse_width_lo);
544         panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
545                 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
546         panel_fixed_mode->clock = dvo_timing->clock * 10;
547         panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
548
549         if (dvo_timing->hsync_positive)
550                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
551         else
552                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
553
554         if (dvo_timing->vsync_positive)
555                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
556         else
557                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
558
559         panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
560                 dvo_timing->himage_lo;
561         panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
562                 dvo_timing->vimage_lo;
563
564         /* Some VBTs have bogus h/vtotal values */
565         if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
566                 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
567         if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
568                 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
569
570         drm_mode_set_name(panel_fixed_mode);
571 }
572
573 static const struct lvds_dvo_timing *
574 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
575                     const struct bdb_lvds_lfp_data_ptrs *ptrs,
576                     int index)
577 {
578         return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
579 }
580
581 static const struct lvds_fp_timing *
582 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
583                    const struct bdb_lvds_lfp_data_ptrs *ptrs,
584                    int index)
585 {
586         return (const void *)data + ptrs->ptr[index].fp_timing.offset;
587 }
588
589 static const struct lvds_pnp_id *
590 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
591                 const struct bdb_lvds_lfp_data_ptrs *ptrs,
592                 int index)
593 {
594         return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
595 }
596
597 static const struct bdb_lvds_lfp_data_tail *
598 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
599                   const struct bdb_lvds_lfp_data_ptrs *ptrs)
600 {
601         if (ptrs->panel_name.table_size)
602                 return (const void *)data + ptrs->panel_name.offset;
603         else
604                 return NULL;
605 }
606
607 static void dump_pnp_id(struct drm_i915_private *i915,
608                         const struct lvds_pnp_id *pnp_id,
609                         const char *name)
610 {
611         u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
612         char vend[4];
613
614         drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
615                     name, drm_edid_decode_mfg_id(mfg_name, vend),
616                     pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
617                     pnp_id->mfg_week, pnp_id->mfg_year + 1990);
618 }
619
620 static int opregion_get_panel_type(struct drm_i915_private *i915,
621                                    const struct intel_bios_encoder_data *devdata,
622                                    const struct drm_edid *drm_edid, bool use_fallback)
623 {
624         return intel_opregion_get_panel_type(i915);
625 }
626
627 static int vbt_get_panel_type(struct drm_i915_private *i915,
628                               const struct intel_bios_encoder_data *devdata,
629                               const struct drm_edid *drm_edid, bool use_fallback)
630 {
631         const struct bdb_lvds_options *lvds_options;
632
633         lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
634         if (!lvds_options)
635                 return -1;
636
637         if (lvds_options->panel_type > 0xf &&
638             lvds_options->panel_type != 0xff) {
639                 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
640                             lvds_options->panel_type);
641                 return -1;
642         }
643
644         if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
645                 return lvds_options->panel_type2;
646
647         drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
648
649         return lvds_options->panel_type;
650 }
651
652 static int pnpid_get_panel_type(struct drm_i915_private *i915,
653                                 const struct intel_bios_encoder_data *devdata,
654                                 const struct drm_edid *drm_edid, bool use_fallback)
655 {
656         const struct bdb_lvds_lfp_data *data;
657         const struct bdb_lvds_lfp_data_ptrs *ptrs;
658         const struct lvds_pnp_id *edid_id;
659         struct lvds_pnp_id edid_id_nodate;
660         const struct edid *edid = drm_edid_raw(drm_edid); /* FIXME */
661         int i, best = -1;
662
663         if (!edid)
664                 return -1;
665
666         edid_id = (const void *)&edid->mfg_id[0];
667
668         edid_id_nodate = *edid_id;
669         edid_id_nodate.mfg_week = 0;
670         edid_id_nodate.mfg_year = 0;
671
672         dump_pnp_id(i915, edid_id, "EDID");
673
674         ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
675         if (!ptrs)
676                 return -1;
677
678         data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
679         if (!data)
680                 return -1;
681
682         for (i = 0; i < 16; i++) {
683                 const struct lvds_pnp_id *vbt_id =
684                         get_lvds_pnp_id(data, ptrs, i);
685
686                 /* full match? */
687                 if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
688                         return i;
689
690                 /*
691                  * Accept a match w/o date if no full match is found,
692                  * and the VBT entry does not specify a date.
693                  */
694                 if (best < 0 &&
695                     !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
696                         best = i;
697         }
698
699         return best;
700 }
701
702 static int fallback_get_panel_type(struct drm_i915_private *i915,
703                                    const struct intel_bios_encoder_data *devdata,
704                                    const struct drm_edid *drm_edid, bool use_fallback)
705 {
706         return use_fallback ? 0 : -1;
707 }
708
709 enum panel_type {
710         PANEL_TYPE_OPREGION,
711         PANEL_TYPE_VBT,
712         PANEL_TYPE_PNPID,
713         PANEL_TYPE_FALLBACK,
714 };
715
716 static int get_panel_type(struct drm_i915_private *i915,
717                           const struct intel_bios_encoder_data *devdata,
718                           const struct drm_edid *drm_edid, bool use_fallback)
719 {
720         struct {
721                 const char *name;
722                 int (*get_panel_type)(struct drm_i915_private *i915,
723                                       const struct intel_bios_encoder_data *devdata,
724                                       const struct drm_edid *drm_edid, bool use_fallback);
725                 int panel_type;
726         } panel_types[] = {
727                 [PANEL_TYPE_OPREGION] = {
728                         .name = "OpRegion",
729                         .get_panel_type = opregion_get_panel_type,
730                 },
731                 [PANEL_TYPE_VBT] = {
732                         .name = "VBT",
733                         .get_panel_type = vbt_get_panel_type,
734                 },
735                 [PANEL_TYPE_PNPID] = {
736                         .name = "PNPID",
737                         .get_panel_type = pnpid_get_panel_type,
738                 },
739                 [PANEL_TYPE_FALLBACK] = {
740                         .name = "fallback",
741                         .get_panel_type = fallback_get_panel_type,
742                 },
743         };
744         int i;
745
746         for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
747                 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata,
748                                                                           drm_edid, use_fallback);
749
750                 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
751                             panel_types[i].panel_type != 0xff);
752
753                 if (panel_types[i].panel_type >= 0)
754                         drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
755                                     panel_types[i].name, panel_types[i].panel_type);
756         }
757
758         if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
759                 i = PANEL_TYPE_OPREGION;
760         else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
761                  panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
762                 i = PANEL_TYPE_PNPID;
763         else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
764                  panel_types[PANEL_TYPE_VBT].panel_type >= 0)
765                 i = PANEL_TYPE_VBT;
766         else
767                 i = PANEL_TYPE_FALLBACK;
768
769         drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
770                     panel_types[i].name, panel_types[i].panel_type);
771
772         return panel_types[i].panel_type;
773 }
774
775 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
776 {
777         return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
778 }
779
780 static bool panel_bool(unsigned int value, int panel_type)
781 {
782         return panel_bits(value, panel_type, 1);
783 }
784
785 /* Parse general panel options */
786 static void
787 parse_panel_options(struct drm_i915_private *i915,
788                     struct intel_panel *panel)
789 {
790         const struct bdb_lvds_options *lvds_options;
791         int panel_type = panel->vbt.panel_type;
792         int drrs_mode;
793
794         lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
795         if (!lvds_options)
796                 return;
797
798         panel->vbt.lvds_dither = lvds_options->pixel_dither;
799
800         /*
801          * Empirical evidence indicates the block size can be
802          * either 4,14,16,24+ bytes. For older VBTs no clear
803          * relationship between the block size vs. BDB version.
804          */
805         if (get_blocksize(lvds_options) < 16)
806                 return;
807
808         drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
809                                panel_type, 2);
810         /*
811          * VBT has static DRRS = 0 and seamless DRRS = 2.
812          * The below piece of code is required to adjust vbt.drrs_type
813          * to match the enum drrs_support_type.
814          */
815         switch (drrs_mode) {
816         case 0:
817                 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
818                 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
819                 break;
820         case 2:
821                 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
822                 drm_dbg_kms(&i915->drm,
823                             "DRRS supported mode is seamless\n");
824                 break;
825         default:
826                 panel->vbt.drrs_type = DRRS_TYPE_NONE;
827                 drm_dbg_kms(&i915->drm,
828                             "DRRS not supported (VBT input)\n");
829                 break;
830         }
831 }
832
833 static void
834 parse_lfp_panel_dtd(struct drm_i915_private *i915,
835                     struct intel_panel *panel,
836                     const struct bdb_lvds_lfp_data *lvds_lfp_data,
837                     const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
838 {
839         const struct lvds_dvo_timing *panel_dvo_timing;
840         const struct lvds_fp_timing *fp_timing;
841         struct drm_display_mode *panel_fixed_mode;
842         int panel_type = panel->vbt.panel_type;
843
844         panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
845                                                lvds_lfp_data_ptrs,
846                                                panel_type);
847
848         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
849         if (!panel_fixed_mode)
850                 return;
851
852         fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
853
854         panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
855
856         drm_dbg_kms(&i915->drm,
857                     "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
858                     DRM_MODE_ARG(panel_fixed_mode));
859
860         fp_timing = get_lvds_fp_timing(lvds_lfp_data,
861                                        lvds_lfp_data_ptrs,
862                                        panel_type);
863
864         /* check the resolution, just to be sure */
865         if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
866             fp_timing->y_res == panel_fixed_mode->vdisplay) {
867                 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
868                 drm_dbg_kms(&i915->drm,
869                             "VBT initial LVDS value %x\n",
870                             panel->vbt.bios_lvds_val);
871         }
872 }
873
874 static void
875 parse_lfp_data(struct drm_i915_private *i915,
876                struct intel_panel *panel)
877 {
878         const struct bdb_lvds_lfp_data *data;
879         const struct bdb_lvds_lfp_data_tail *tail;
880         const struct bdb_lvds_lfp_data_ptrs *ptrs;
881         const struct lvds_pnp_id *pnp_id;
882         int panel_type = panel->vbt.panel_type;
883
884         ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
885         if (!ptrs)
886                 return;
887
888         data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
889         if (!data)
890                 return;
891
892         if (!panel->vbt.lfp_lvds_vbt_mode)
893                 parse_lfp_panel_dtd(i915, panel, data, ptrs);
894
895         pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
896         dump_pnp_id(i915, pnp_id, "Panel");
897
898         tail = get_lfp_data_tail(data, ptrs);
899         if (!tail)
900                 return;
901
902         drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
903                     (int)sizeof(tail->panel_name[0].name),
904                     tail->panel_name[panel_type].name);
905
906         if (i915->display.vbt.version >= 188) {
907                 panel->vbt.seamless_drrs_min_refresh_rate =
908                         tail->seamless_drrs_min_refresh_rate[panel_type];
909                 drm_dbg_kms(&i915->drm,
910                             "Seamless DRRS min refresh rate: %d Hz\n",
911                             panel->vbt.seamless_drrs_min_refresh_rate);
912         }
913 }
914
915 static void
916 parse_generic_dtd(struct drm_i915_private *i915,
917                   struct intel_panel *panel)
918 {
919         const struct bdb_generic_dtd *generic_dtd;
920         const struct generic_dtd_entry *dtd;
921         struct drm_display_mode *panel_fixed_mode;
922         int num_dtd;
923
924         /*
925          * Older VBTs provided DTD information for internal displays through
926          * the "LFP panel tables" block (42).  As of VBT revision 229 the
927          * DTD information should be provided via a newer "generic DTD"
928          * block (58).  Just to be safe, we'll try the new generic DTD block
929          * first on VBT >= 229, but still fall back to trying the old LFP
930          * block if that fails.
931          */
932         if (i915->display.vbt.version < 229)
933                 return;
934
935         generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD);
936         if (!generic_dtd)
937                 return;
938
939         if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
940                 drm_err(&i915->drm, "GDTD size %u is too small.\n",
941                         generic_dtd->gdtd_size);
942                 return;
943         } else if (generic_dtd->gdtd_size !=
944                    sizeof(struct generic_dtd_entry)) {
945                 drm_err(&i915->drm, "Unexpected GDTD size %u\n",
946                         generic_dtd->gdtd_size);
947                 /* DTD has unknown fields, but keep going */
948         }
949
950         num_dtd = (get_blocksize(generic_dtd) -
951                    sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
952         if (panel->vbt.panel_type >= num_dtd) {
953                 drm_err(&i915->drm,
954                         "Panel type %d not found in table of %d DTD's\n",
955                         panel->vbt.panel_type, num_dtd);
956                 return;
957         }
958
959         dtd = &generic_dtd->dtd[panel->vbt.panel_type];
960
961         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
962         if (!panel_fixed_mode)
963                 return;
964
965         panel_fixed_mode->hdisplay = dtd->hactive;
966         panel_fixed_mode->hsync_start =
967                 panel_fixed_mode->hdisplay + dtd->hfront_porch;
968         panel_fixed_mode->hsync_end =
969                 panel_fixed_mode->hsync_start + dtd->hsync;
970         panel_fixed_mode->htotal =
971                 panel_fixed_mode->hdisplay + dtd->hblank;
972
973         panel_fixed_mode->vdisplay = dtd->vactive;
974         panel_fixed_mode->vsync_start =
975                 panel_fixed_mode->vdisplay + dtd->vfront_porch;
976         panel_fixed_mode->vsync_end =
977                 panel_fixed_mode->vsync_start + dtd->vsync;
978         panel_fixed_mode->vtotal =
979                 panel_fixed_mode->vdisplay + dtd->vblank;
980
981         panel_fixed_mode->clock = dtd->pixel_clock;
982         panel_fixed_mode->width_mm = dtd->width_mm;
983         panel_fixed_mode->height_mm = dtd->height_mm;
984
985         panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
986         drm_mode_set_name(panel_fixed_mode);
987
988         if (dtd->hsync_positive_polarity)
989                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
990         else
991                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
992
993         if (dtd->vsync_positive_polarity)
994                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
995         else
996                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
997
998         drm_dbg_kms(&i915->drm,
999                     "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1000                     DRM_MODE_ARG(panel_fixed_mode));
1001
1002         panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
1003 }
1004
1005 static void
1006 parse_lfp_backlight(struct drm_i915_private *i915,
1007                     struct intel_panel *panel)
1008 {
1009         const struct bdb_lfp_backlight_data *backlight_data;
1010         const struct lfp_backlight_data_entry *entry;
1011         int panel_type = panel->vbt.panel_type;
1012         u16 level;
1013
1014         backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT);
1015         if (!backlight_data)
1016                 return;
1017
1018         if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1019                 drm_dbg_kms(&i915->drm,
1020                             "Unsupported backlight data entry size %u\n",
1021                             backlight_data->entry_size);
1022                 return;
1023         }
1024
1025         entry = &backlight_data->data[panel_type];
1026
1027         panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1028         if (!panel->vbt.backlight.present) {
1029                 drm_dbg_kms(&i915->drm,
1030                             "PWM backlight not present in VBT (type %u)\n",
1031                             entry->type);
1032                 return;
1033         }
1034
1035         panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1036         panel->vbt.backlight.controller = 0;
1037         if (i915->display.vbt.version >= 191) {
1038                 size_t exp_size;
1039
1040                 if (i915->display.vbt.version >= 236)
1041                         exp_size = sizeof(struct bdb_lfp_backlight_data);
1042                 else if (i915->display.vbt.version >= 234)
1043                         exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
1044                 else
1045                         exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
1046
1047                 if (get_blocksize(backlight_data) >= exp_size) {
1048                         const struct lfp_backlight_control_method *method;
1049
1050                         method = &backlight_data->backlight_control[panel_type];
1051                         panel->vbt.backlight.type = method->type;
1052                         panel->vbt.backlight.controller = method->controller;
1053                 }
1054         }
1055
1056         panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1057         panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1058
1059         if (i915->display.vbt.version >= 234) {
1060                 u16 min_level;
1061                 bool scale;
1062
1063                 level = backlight_data->brightness_level[panel_type].level;
1064                 min_level = backlight_data->brightness_min_level[panel_type].level;
1065
1066                 if (i915->display.vbt.version >= 236)
1067                         scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1068                 else
1069                         scale = level > 255;
1070
1071                 if (scale)
1072                         min_level = min_level / 255;
1073
1074                 if (min_level > 255) {
1075                         drm_warn(&i915->drm, "Brightness min level > 255\n");
1076                         level = 255;
1077                 }
1078                 panel->vbt.backlight.min_brightness = min_level;
1079
1080                 panel->vbt.backlight.brightness_precision_bits =
1081                         backlight_data->brightness_precision_bits[panel_type];
1082         } else {
1083                 level = backlight_data->level[panel_type];
1084                 panel->vbt.backlight.min_brightness = entry->min_brightness;
1085         }
1086
1087         if (i915->display.vbt.version >= 239)
1088                 panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1089                         DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1090         else
1091                 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1092
1093         drm_dbg_kms(&i915->drm,
1094                     "VBT backlight PWM modulation frequency %u Hz, "
1095                     "active %s, min brightness %u, level %u, controller %u\n",
1096                     panel->vbt.backlight.pwm_freq_hz,
1097                     panel->vbt.backlight.active_low_pwm ? "low" : "high",
1098                     panel->vbt.backlight.min_brightness,
1099                     level,
1100                     panel->vbt.backlight.controller);
1101 }
1102
1103 /* Try to find sdvo panel data */
1104 static void
1105 parse_sdvo_panel_data(struct drm_i915_private *i915,
1106                       struct intel_panel *panel)
1107 {
1108         const struct bdb_sdvo_panel_dtds *dtds;
1109         struct drm_display_mode *panel_fixed_mode;
1110         int index;
1111
1112         index = i915->params.vbt_sdvo_panel_type;
1113         if (index == -2) {
1114                 drm_dbg_kms(&i915->drm,
1115                             "Ignore SDVO panel mode from BIOS VBT tables.\n");
1116                 return;
1117         }
1118
1119         if (index == -1) {
1120                 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1121
1122                 sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1123                 if (!sdvo_lvds_options)
1124                         return;
1125
1126                 index = sdvo_lvds_options->panel_type;
1127         }
1128
1129         dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS);
1130         if (!dtds)
1131                 return;
1132
1133         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1134         if (!panel_fixed_mode)
1135                 return;
1136
1137         fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
1138
1139         panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1140
1141         drm_dbg_kms(&i915->drm,
1142                     "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1143                     DRM_MODE_ARG(panel_fixed_mode));
1144 }
1145
1146 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1147                                     bool alternate)
1148 {
1149         switch (DISPLAY_VER(i915)) {
1150         case 2:
1151                 return alternate ? 66667 : 48000;
1152         case 3:
1153         case 4:
1154                 return alternate ? 100000 : 96000;
1155         default:
1156                 return alternate ? 100000 : 120000;
1157         }
1158 }
1159
1160 static void
1161 parse_general_features(struct drm_i915_private *i915)
1162 {
1163         const struct bdb_general_features *general;
1164
1165         general = bdb_find_section(i915, BDB_GENERAL_FEATURES);
1166         if (!general)
1167                 return;
1168
1169         i915->display.vbt.int_tv_support = general->int_tv_support;
1170         /* int_crt_support can't be trusted on earlier platforms */
1171         if (i915->display.vbt.version >= 155 &&
1172             (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1173                 i915->display.vbt.int_crt_support = general->int_crt_support;
1174         i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1175         i915->display.vbt.lvds_ssc_freq =
1176                 intel_bios_ssc_frequency(i915, general->ssc_freq);
1177         i915->display.vbt.display_clock_mode = general->display_clock_mode;
1178         i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1179         if (i915->display.vbt.version >= 181) {
1180                 i915->display.vbt.orientation = general->rotate_180 ?
1181                         DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1182                         DRM_MODE_PANEL_ORIENTATION_NORMAL;
1183         } else {
1184                 i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1185         }
1186
1187         if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1188                 i915->display.vbt.override_afc_startup = true;
1189                 i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1190         }
1191
1192         drm_dbg_kms(&i915->drm,
1193                     "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1194                     i915->display.vbt.int_tv_support,
1195                     i915->display.vbt.int_crt_support,
1196                     i915->display.vbt.lvds_use_ssc,
1197                     i915->display.vbt.lvds_ssc_freq,
1198                     i915->display.vbt.display_clock_mode,
1199                     i915->display.vbt.fdi_rx_polarity_inverted);
1200 }
1201
1202 static const struct child_device_config *
1203 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1204 {
1205         return (const void *) &defs->devices[i * defs->child_dev_size];
1206 }
1207
1208 static void
1209 parse_sdvo_device_mapping(struct drm_i915_private *i915)
1210 {
1211         const struct intel_bios_encoder_data *devdata;
1212         int count = 0;
1213
1214         /*
1215          * Only parse SDVO mappings on gens that could have SDVO. This isn't
1216          * accurate and doesn't have to be, as long as it's not too strict.
1217          */
1218         if (!IS_DISPLAY_VER(i915, 3, 7)) {
1219                 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1220                 return;
1221         }
1222
1223         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1224                 const struct child_device_config *child = &devdata->child;
1225                 struct sdvo_device_mapping *mapping;
1226
1227                 if (child->slave_addr != SLAVE_ADDR1 &&
1228                     child->slave_addr != SLAVE_ADDR2) {
1229                         /*
1230                          * If the slave address is neither 0x70 nor 0x72,
1231                          * it is not a SDVO device. Skip it.
1232                          */
1233                         continue;
1234                 }
1235                 if (child->dvo_port != DEVICE_PORT_DVOB &&
1236                     child->dvo_port != DEVICE_PORT_DVOC) {
1237                         /* skip the incorrect SDVO port */
1238                         drm_dbg_kms(&i915->drm,
1239                                     "Incorrect SDVO port. Skip it\n");
1240                         continue;
1241                 }
1242                 drm_dbg_kms(&i915->drm,
1243                             "the SDVO device with slave addr %2x is found on"
1244                             " %s port\n",
1245                             child->slave_addr,
1246                             (child->dvo_port == DEVICE_PORT_DVOB) ?
1247                             "SDVOB" : "SDVOC");
1248                 mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1249                 if (!mapping->initialized) {
1250                         mapping->dvo_port = child->dvo_port;
1251                         mapping->slave_addr = child->slave_addr;
1252                         mapping->dvo_wiring = child->dvo_wiring;
1253                         mapping->ddc_pin = child->ddc_pin;
1254                         mapping->i2c_pin = child->i2c_pin;
1255                         mapping->initialized = 1;
1256                         drm_dbg_kms(&i915->drm,
1257                                     "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1258                                     mapping->dvo_port, mapping->slave_addr,
1259                                     mapping->dvo_wiring, mapping->ddc_pin,
1260                                     mapping->i2c_pin);
1261                 } else {
1262                         drm_dbg_kms(&i915->drm,
1263                                     "Maybe one SDVO port is shared by "
1264                                     "two SDVO device.\n");
1265                 }
1266                 if (child->slave2_addr) {
1267                         /* Maybe this is a SDVO device with multiple inputs */
1268                         /* And the mapping info is not added */
1269                         drm_dbg_kms(&i915->drm,
1270                                     "there exists the slave2_addr. Maybe this"
1271                                     " is a SDVO device with multiple inputs.\n");
1272                 }
1273                 count++;
1274         }
1275
1276         if (!count) {
1277                 /* No SDVO device info is found */
1278                 drm_dbg_kms(&i915->drm,
1279                             "No SDVO device info is found in VBT\n");
1280         }
1281 }
1282
1283 static void
1284 parse_driver_features(struct drm_i915_private *i915)
1285 {
1286         const struct bdb_driver_features *driver;
1287
1288         driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1289         if (!driver)
1290                 return;
1291
1292         if (DISPLAY_VER(i915) >= 5) {
1293                 /*
1294                  * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1295                  * to mean "eDP". The VBT spec doesn't agree with that
1296                  * interpretation, but real world VBTs seem to.
1297                  */
1298                 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1299                         i915->display.vbt.int_lvds_support = 0;
1300         } else {
1301                 /*
1302                  * FIXME it's not clear which BDB version has the LVDS config
1303                  * bits defined. Revision history in the VBT spec says:
1304                  * "0.92 | Add two definitions for VBT value of LVDS Active
1305                  *  Config (00b and 11b values defined) | 06/13/2005"
1306                  * but does not the specify the BDB version.
1307                  *
1308                  * So far version 134 (on i945gm) is the oldest VBT observed
1309                  * in the wild with the bits correctly populated. Version
1310                  * 108 (on i85x) does not have the bits correctly populated.
1311                  */
1312                 if (i915->display.vbt.version >= 134 &&
1313                     driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1314                     driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1315                         i915->display.vbt.int_lvds_support = 0;
1316         }
1317 }
1318
1319 static void
1320 parse_panel_driver_features(struct drm_i915_private *i915,
1321                             struct intel_panel *panel)
1322 {
1323         const struct bdb_driver_features *driver;
1324
1325         driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1326         if (!driver)
1327                 return;
1328
1329         if (i915->display.vbt.version < 228) {
1330                 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1331                             driver->drrs_enabled);
1332                 /*
1333                  * If DRRS is not supported, drrs_type has to be set to 0.
1334                  * This is because, VBT is configured in such a way that
1335                  * static DRRS is 0 and DRRS not supported is represented by
1336                  * driver->drrs_enabled=false
1337                  */
1338                 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1339                         /*
1340                          * FIXME Should DMRRS perhaps be treated as seamless
1341                          * but without the automatic downclocking?
1342                          */
1343                         if (driver->dmrrs_enabled)
1344                                 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1345                         else
1346                                 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1347                 }
1348
1349                 panel->vbt.psr.enable = driver->psr_enabled;
1350         }
1351 }
1352
1353 static void
1354 parse_power_conservation_features(struct drm_i915_private *i915,
1355                                   struct intel_panel *panel)
1356 {
1357         const struct bdb_lfp_power *power;
1358         u8 panel_type = panel->vbt.panel_type;
1359
1360         panel->vbt.vrr = true; /* matches Windows behaviour */
1361
1362         if (i915->display.vbt.version < 228)
1363                 return;
1364
1365         power = bdb_find_section(i915, BDB_LFP_POWER);
1366         if (!power)
1367                 return;
1368
1369         panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1370
1371         /*
1372          * If DRRS is not supported, drrs_type has to be set to 0.
1373          * This is because, VBT is configured in such a way that
1374          * static DRRS is 0 and DRRS not supported is represented by
1375          * power->drrs & BIT(panel_type)=false
1376          */
1377         if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1378                 /*
1379                  * FIXME Should DMRRS perhaps be treated as seamless
1380                  * but without the automatic downclocking?
1381                  */
1382                 if (panel_bool(power->dmrrs, panel_type))
1383                         panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1384                 else
1385                         panel->vbt.drrs_type = DRRS_TYPE_NONE;
1386         }
1387
1388         if (i915->display.vbt.version >= 232)
1389                 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1390
1391         if (i915->display.vbt.version >= 233)
1392                 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1393                                             panel_type);
1394 }
1395
1396 static void
1397 parse_edp(struct drm_i915_private *i915,
1398           struct intel_panel *panel)
1399 {
1400         const struct bdb_edp *edp;
1401         const struct edp_power_seq *edp_pps;
1402         const struct edp_fast_link_params *edp_link_params;
1403         int panel_type = panel->vbt.panel_type;
1404
1405         edp = bdb_find_section(i915, BDB_EDP);
1406         if (!edp)
1407                 return;
1408
1409         switch (panel_bits(edp->color_depth, panel_type, 2)) {
1410         case EDP_18BPP:
1411                 panel->vbt.edp.bpp = 18;
1412                 break;
1413         case EDP_24BPP:
1414                 panel->vbt.edp.bpp = 24;
1415                 break;
1416         case EDP_30BPP:
1417                 panel->vbt.edp.bpp = 30;
1418                 break;
1419         }
1420
1421         /* Get the eDP sequencing and link info */
1422         edp_pps = &edp->power_seqs[panel_type];
1423         edp_link_params = &edp->fast_link_params[panel_type];
1424
1425         panel->vbt.edp.pps = *edp_pps;
1426
1427         if (i915->display.vbt.version >= 224) {
1428                 panel->vbt.edp.rate =
1429                         edp->edp_fast_link_training_rate[panel_type] * 20;
1430         } else {
1431                 switch (edp_link_params->rate) {
1432                 case EDP_RATE_1_62:
1433                         panel->vbt.edp.rate = 162000;
1434                         break;
1435                 case EDP_RATE_2_7:
1436                         panel->vbt.edp.rate = 270000;
1437                         break;
1438                 case EDP_RATE_5_4:
1439                         panel->vbt.edp.rate = 540000;
1440                         break;
1441                 default:
1442                         drm_dbg_kms(&i915->drm,
1443                                     "VBT has unknown eDP link rate value %u\n",
1444                                     edp_link_params->rate);
1445                         break;
1446                 }
1447         }
1448
1449         switch (edp_link_params->lanes) {
1450         case EDP_LANE_1:
1451                 panel->vbt.edp.lanes = 1;
1452                 break;
1453         case EDP_LANE_2:
1454                 panel->vbt.edp.lanes = 2;
1455                 break;
1456         case EDP_LANE_4:
1457                 panel->vbt.edp.lanes = 4;
1458                 break;
1459         default:
1460                 drm_dbg_kms(&i915->drm,
1461                             "VBT has unknown eDP lane count value %u\n",
1462                             edp_link_params->lanes);
1463                 break;
1464         }
1465
1466         switch (edp_link_params->preemphasis) {
1467         case EDP_PREEMPHASIS_NONE:
1468                 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1469                 break;
1470         case EDP_PREEMPHASIS_3_5dB:
1471                 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1472                 break;
1473         case EDP_PREEMPHASIS_6dB:
1474                 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1475                 break;
1476         case EDP_PREEMPHASIS_9_5dB:
1477                 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1478                 break;
1479         default:
1480                 drm_dbg_kms(&i915->drm,
1481                             "VBT has unknown eDP pre-emphasis value %u\n",
1482                             edp_link_params->preemphasis);
1483                 break;
1484         }
1485
1486         switch (edp_link_params->vswing) {
1487         case EDP_VSWING_0_4V:
1488                 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1489                 break;
1490         case EDP_VSWING_0_6V:
1491                 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1492                 break;
1493         case EDP_VSWING_0_8V:
1494                 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1495                 break;
1496         case EDP_VSWING_1_2V:
1497                 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1498                 break;
1499         default:
1500                 drm_dbg_kms(&i915->drm,
1501                             "VBT has unknown eDP voltage swing value %u\n",
1502                             edp_link_params->vswing);
1503                 break;
1504         }
1505
1506         if (i915->display.vbt.version >= 173) {
1507                 u8 vswing;
1508
1509                 /* Don't read from VBT if module parameter has valid value*/
1510                 if (i915->params.edp_vswing) {
1511                         panel->vbt.edp.low_vswing =
1512                                 i915->params.edp_vswing == 1;
1513                 } else {
1514                         vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1515                         panel->vbt.edp.low_vswing = vswing == 0;
1516                 }
1517         }
1518
1519         panel->vbt.edp.drrs_msa_timing_delay =
1520                 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1521
1522         if (i915->display.vbt.version >= 244)
1523                 panel->vbt.edp.max_link_rate =
1524                         edp->edp_max_port_link_rate[panel_type] * 20;
1525 }
1526
1527 static void
1528 parse_psr(struct drm_i915_private *i915,
1529           struct intel_panel *panel)
1530 {
1531         const struct bdb_psr *psr;
1532         const struct psr_table *psr_table;
1533         int panel_type = panel->vbt.panel_type;
1534
1535         psr = bdb_find_section(i915, BDB_PSR);
1536         if (!psr) {
1537                 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1538                 return;
1539         }
1540
1541         psr_table = &psr->psr_table[panel_type];
1542
1543         panel->vbt.psr.full_link = psr_table->full_link;
1544         panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1545
1546         /* Allowed VBT values goes from 0 to 15 */
1547         panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1548                 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1549
1550         /*
1551          * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1552          * Old decimal value is wake up time in multiples of 100 us.
1553          */
1554         if (i915->display.vbt.version >= 205 &&
1555             (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1556                 switch (psr_table->tp1_wakeup_time) {
1557                 case 0:
1558                         panel->vbt.psr.tp1_wakeup_time_us = 500;
1559                         break;
1560                 case 1:
1561                         panel->vbt.psr.tp1_wakeup_time_us = 100;
1562                         break;
1563                 case 3:
1564                         panel->vbt.psr.tp1_wakeup_time_us = 0;
1565                         break;
1566                 default:
1567                         drm_dbg_kms(&i915->drm,
1568                                     "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1569                                     psr_table->tp1_wakeup_time);
1570                         fallthrough;
1571                 case 2:
1572                         panel->vbt.psr.tp1_wakeup_time_us = 2500;
1573                         break;
1574                 }
1575
1576                 switch (psr_table->tp2_tp3_wakeup_time) {
1577                 case 0:
1578                         panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1579                         break;
1580                 case 1:
1581                         panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1582                         break;
1583                 case 3:
1584                         panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1585                         break;
1586                 default:
1587                         drm_dbg_kms(&i915->drm,
1588                                     "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1589                                     psr_table->tp2_tp3_wakeup_time);
1590                         fallthrough;
1591                 case 2:
1592                         panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1593                 break;
1594                 }
1595         } else {
1596                 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1597                 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1598         }
1599
1600         if (i915->display.vbt.version >= 226) {
1601                 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1602
1603                 wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1604                 switch (wakeup_time) {
1605                 case 0:
1606                         wakeup_time = 500;
1607                         break;
1608                 case 1:
1609                         wakeup_time = 100;
1610                         break;
1611                 case 3:
1612                         wakeup_time = 50;
1613                         break;
1614                 default:
1615                 case 2:
1616                         wakeup_time = 2500;
1617                         break;
1618                 }
1619                 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1620         } else {
1621                 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1622                 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1623         }
1624 }
1625
1626 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1627                                       struct intel_panel *panel,
1628                                       enum port port)
1629 {
1630         enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1631
1632         if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1633                 panel->vbt.dsi.bl_ports = BIT(port);
1634                 if (panel->vbt.dsi.config->cabc_supported)
1635                         panel->vbt.dsi.cabc_ports = BIT(port);
1636
1637                 return;
1638         }
1639
1640         switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1641         case DL_DCS_PORT_A:
1642                 panel->vbt.dsi.bl_ports = BIT(PORT_A);
1643                 break;
1644         case DL_DCS_PORT_C:
1645                 panel->vbt.dsi.bl_ports = BIT(port_bc);
1646                 break;
1647         default:
1648         case DL_DCS_PORT_A_AND_C:
1649                 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1650                 break;
1651         }
1652
1653         if (!panel->vbt.dsi.config->cabc_supported)
1654                 return;
1655
1656         switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1657         case DL_DCS_PORT_A:
1658                 panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1659                 break;
1660         case DL_DCS_PORT_C:
1661                 panel->vbt.dsi.cabc_ports = BIT(port_bc);
1662                 break;
1663         default:
1664         case DL_DCS_PORT_A_AND_C:
1665                 panel->vbt.dsi.cabc_ports =
1666                                         BIT(PORT_A) | BIT(port_bc);
1667                 break;
1668         }
1669 }
1670
1671 static void
1672 parse_mipi_config(struct drm_i915_private *i915,
1673                   struct intel_panel *panel)
1674 {
1675         const struct bdb_mipi_config *start;
1676         const struct mipi_config *config;
1677         const struct mipi_pps_data *pps;
1678         int panel_type = panel->vbt.panel_type;
1679         enum port port;
1680
1681         /* parse MIPI blocks only if LFP type is MIPI */
1682         if (!intel_bios_is_dsi_present(i915, &port))
1683                 return;
1684
1685         /* Initialize this to undefined indicating no generic MIPI support */
1686         panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1687
1688         /* Block #40 is already parsed and panel_fixed_mode is
1689          * stored in i915->lfp_lvds_vbt_mode
1690          * resuse this when needed
1691          */
1692
1693         /* Parse #52 for panel index used from panel_type already
1694          * parsed
1695          */
1696         start = bdb_find_section(i915, BDB_MIPI_CONFIG);
1697         if (!start) {
1698                 drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1699                 return;
1700         }
1701
1702         drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1703                 panel_type);
1704
1705         /*
1706          * get hold of the correct configuration block and pps data as per
1707          * the panel_type as index
1708          */
1709         config = &start->config[panel_type];
1710         pps = &start->pps[panel_type];
1711
1712         /* store as of now full data. Trim when we realise all is not needed */
1713         panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1714         if (!panel->vbt.dsi.config)
1715                 return;
1716
1717         panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1718         if (!panel->vbt.dsi.pps) {
1719                 kfree(panel->vbt.dsi.config);
1720                 return;
1721         }
1722
1723         parse_dsi_backlight_ports(i915, panel, port);
1724
1725         /* FIXME is the 90 vs. 270 correct? */
1726         switch (config->rotation) {
1727         case ENABLE_ROTATION_0:
1728                 /*
1729                  * Most (all?) VBTs claim 0 degrees despite having
1730                  * an upside down panel, thus we do not trust this.
1731                  */
1732                 panel->vbt.dsi.orientation =
1733                         DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1734                 break;
1735         case ENABLE_ROTATION_90:
1736                 panel->vbt.dsi.orientation =
1737                         DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1738                 break;
1739         case ENABLE_ROTATION_180:
1740                 panel->vbt.dsi.orientation =
1741                         DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1742                 break;
1743         case ENABLE_ROTATION_270:
1744                 panel->vbt.dsi.orientation =
1745                         DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1746                 break;
1747         }
1748
1749         /* We have mandatory mipi config blocks. Initialize as generic panel */
1750         panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1751 }
1752
1753 /* Find the sequence block and size for the given panel. */
1754 static const u8 *
1755 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1756                           u16 panel_id, u32 *seq_size)
1757 {
1758         u32 total = get_blocksize(sequence);
1759         const u8 *data = &sequence->data[0];
1760         u8 current_id;
1761         u32 current_size;
1762         int header_size = sequence->version >= 3 ? 5 : 3;
1763         int index = 0;
1764         int i;
1765
1766         /* skip new block size */
1767         if (sequence->version >= 3)
1768                 data += 4;
1769
1770         for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1771                 if (index + header_size > total) {
1772                         DRM_ERROR("Invalid sequence block (header)\n");
1773                         return NULL;
1774                 }
1775
1776                 current_id = *(data + index);
1777                 if (sequence->version >= 3)
1778                         current_size = *((const u32 *)(data + index + 1));
1779                 else
1780                         current_size = *((const u16 *)(data + index + 1));
1781
1782                 index += header_size;
1783
1784                 if (index + current_size > total) {
1785                         DRM_ERROR("Invalid sequence block\n");
1786                         return NULL;
1787                 }
1788
1789                 if (current_id == panel_id) {
1790                         *seq_size = current_size;
1791                         return data + index;
1792                 }
1793
1794                 index += current_size;
1795         }
1796
1797         DRM_ERROR("Sequence block detected but no valid configuration\n");
1798
1799         return NULL;
1800 }
1801
1802 static int goto_next_sequence(const u8 *data, int index, int total)
1803 {
1804         u16 len;
1805
1806         /* Skip Sequence Byte. */
1807         for (index = index + 1; index < total; index += len) {
1808                 u8 operation_byte = *(data + index);
1809                 index++;
1810
1811                 switch (operation_byte) {
1812                 case MIPI_SEQ_ELEM_END:
1813                         return index;
1814                 case MIPI_SEQ_ELEM_SEND_PKT:
1815                         if (index + 4 > total)
1816                                 return 0;
1817
1818                         len = *((const u16 *)(data + index + 2)) + 4;
1819                         break;
1820                 case MIPI_SEQ_ELEM_DELAY:
1821                         len = 4;
1822                         break;
1823                 case MIPI_SEQ_ELEM_GPIO:
1824                         len = 2;
1825                         break;
1826                 case MIPI_SEQ_ELEM_I2C:
1827                         if (index + 7 > total)
1828                                 return 0;
1829                         len = *(data + index + 6) + 7;
1830                         break;
1831                 default:
1832                         DRM_ERROR("Unknown operation byte\n");
1833                         return 0;
1834                 }
1835         }
1836
1837         return 0;
1838 }
1839
1840 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1841 {
1842         int seq_end;
1843         u16 len;
1844         u32 size_of_sequence;
1845
1846         /*
1847          * Could skip sequence based on Size of Sequence alone, but also do some
1848          * checking on the structure.
1849          */
1850         if (total < 5) {
1851                 DRM_ERROR("Too small sequence size\n");
1852                 return 0;
1853         }
1854
1855         /* Skip Sequence Byte. */
1856         index++;
1857
1858         /*
1859          * Size of Sequence. Excludes the Sequence Byte and the size itself,
1860          * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1861          * byte.
1862          */
1863         size_of_sequence = *((const u32 *)(data + index));
1864         index += 4;
1865
1866         seq_end = index + size_of_sequence;
1867         if (seq_end > total) {
1868                 DRM_ERROR("Invalid sequence size\n");
1869                 return 0;
1870         }
1871
1872         for (; index < total; index += len) {
1873                 u8 operation_byte = *(data + index);
1874                 index++;
1875
1876                 if (operation_byte == MIPI_SEQ_ELEM_END) {
1877                         if (index != seq_end) {
1878                                 DRM_ERROR("Invalid element structure\n");
1879                                 return 0;
1880                         }
1881                         return index;
1882                 }
1883
1884                 len = *(data + index);
1885                 index++;
1886
1887                 /*
1888                  * FIXME: Would be nice to check elements like for v1/v2 in
1889                  * goto_next_sequence() above.
1890                  */
1891                 switch (operation_byte) {
1892                 case MIPI_SEQ_ELEM_SEND_PKT:
1893                 case MIPI_SEQ_ELEM_DELAY:
1894                 case MIPI_SEQ_ELEM_GPIO:
1895                 case MIPI_SEQ_ELEM_I2C:
1896                 case MIPI_SEQ_ELEM_SPI:
1897                 case MIPI_SEQ_ELEM_PMIC:
1898                         break;
1899                 default:
1900                         DRM_ERROR("Unknown operation byte %u\n",
1901                                   operation_byte);
1902                         break;
1903                 }
1904         }
1905
1906         return 0;
1907 }
1908
1909 /*
1910  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1911  * skip all delay + gpio operands and stop at the first DSI packet op.
1912  */
1913 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1914                                               struct intel_panel *panel)
1915 {
1916         const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1917         int index, len;
1918
1919         if (drm_WARN_ON(&i915->drm,
1920                         !data || panel->vbt.dsi.seq_version != 1))
1921                 return 0;
1922
1923         /* index = 1 to skip sequence byte */
1924         for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1925                 switch (data[index]) {
1926                 case MIPI_SEQ_ELEM_SEND_PKT:
1927                         return index == 1 ? 0 : index;
1928                 case MIPI_SEQ_ELEM_DELAY:
1929                         len = 5; /* 1 byte for operand + uint32 */
1930                         break;
1931                 case MIPI_SEQ_ELEM_GPIO:
1932                         len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1933                         break;
1934                 default:
1935                         return 0;
1936                 }
1937         }
1938
1939         return 0;
1940 }
1941
1942 /*
1943  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1944  * The deassert must be done before calling intel_dsi_device_ready, so for
1945  * these devices we split the init OTP sequence into a deassert sequence and
1946  * the actual init OTP part.
1947  */
1948 static void fixup_mipi_sequences(struct drm_i915_private *i915,
1949                                  struct intel_panel *panel)
1950 {
1951         u8 *init_otp;
1952         int len;
1953
1954         /* Limit this to VLV for now. */
1955         if (!IS_VALLEYVIEW(i915))
1956                 return;
1957
1958         /* Limit this to v1 vid-mode sequences */
1959         if (panel->vbt.dsi.config->is_cmd_mode ||
1960             panel->vbt.dsi.seq_version != 1)
1961                 return;
1962
1963         /* Only do this if there are otp and assert seqs and no deassert seq */
1964         if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1965             !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1966             panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1967                 return;
1968
1969         /* The deassert-sequence ends at the first DSI packet */
1970         len = get_init_otp_deassert_fragment_len(i915, panel);
1971         if (!len)
1972                 return;
1973
1974         drm_dbg_kms(&i915->drm,
1975                     "Using init OTP fragment to deassert reset\n");
1976
1977         /* Copy the fragment, update seq byte and terminate it */
1978         init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1979         panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1980         if (!panel->vbt.dsi.deassert_seq)
1981                 return;
1982         panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1983         panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1984         /* Use the copy for deassert */
1985         panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1986                 panel->vbt.dsi.deassert_seq;
1987         /* Replace the last byte of the fragment with init OTP seq byte */
1988         init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1989         /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1990         panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1991 }
1992
1993 static void
1994 parse_mipi_sequence(struct drm_i915_private *i915,
1995                     struct intel_panel *panel)
1996 {
1997         int panel_type = panel->vbt.panel_type;
1998         const struct bdb_mipi_sequence *sequence;
1999         const u8 *seq_data;
2000         u32 seq_size;
2001         u8 *data;
2002         int index = 0;
2003
2004         /* Only our generic panel driver uses the sequence block. */
2005         if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2006                 return;
2007
2008         sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE);
2009         if (!sequence) {
2010                 drm_dbg_kms(&i915->drm,
2011                             "No MIPI Sequence found, parsing complete\n");
2012                 return;
2013         }
2014
2015         /* Fail gracefully for forward incompatible sequence block. */
2016         if (sequence->version >= 4) {
2017                 drm_err(&i915->drm,
2018                         "Unable to parse MIPI Sequence Block v%u\n",
2019                         sequence->version);
2020                 return;
2021         }
2022
2023         drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2024                 sequence->version);
2025
2026         seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
2027         if (!seq_data)
2028                 return;
2029
2030         data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2031         if (!data)
2032                 return;
2033
2034         /* Parse the sequences, store pointers to each sequence. */
2035         for (;;) {
2036                 u8 seq_id = *(data + index);
2037                 if (seq_id == MIPI_SEQ_END)
2038                         break;
2039
2040                 if (seq_id >= MIPI_SEQ_MAX) {
2041                         drm_err(&i915->drm, "Unknown sequence %u\n",
2042                                 seq_id);
2043                         goto err;
2044                 }
2045
2046                 /* Log about presence of sequences we won't run. */
2047                 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2048                         drm_dbg_kms(&i915->drm,
2049                                     "Unsupported sequence %u\n", seq_id);
2050
2051                 panel->vbt.dsi.sequence[seq_id] = data + index;
2052
2053                 if (sequence->version >= 3)
2054                         index = goto_next_sequence_v3(data, index, seq_size);
2055                 else
2056                         index = goto_next_sequence(data, index, seq_size);
2057                 if (!index) {
2058                         drm_err(&i915->drm, "Invalid sequence %u\n",
2059                                 seq_id);
2060                         goto err;
2061                 }
2062         }
2063
2064         panel->vbt.dsi.data = data;
2065         panel->vbt.dsi.size = seq_size;
2066         panel->vbt.dsi.seq_version = sequence->version;
2067
2068         fixup_mipi_sequences(i915, panel);
2069
2070         drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2071         return;
2072
2073 err:
2074         kfree(data);
2075         memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2076 }
2077
2078 static void
2079 parse_compression_parameters(struct drm_i915_private *i915)
2080 {
2081         const struct bdb_compression_parameters *params;
2082         struct intel_bios_encoder_data *devdata;
2083         u16 block_size;
2084         int index;
2085
2086         if (i915->display.vbt.version < 198)
2087                 return;
2088
2089         params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS);
2090         if (params) {
2091                 /* Sanity checks */
2092                 if (params->entry_size != sizeof(params->data[0])) {
2093                         drm_dbg_kms(&i915->drm,
2094                                     "VBT: unsupported compression param entry size\n");
2095                         return;
2096                 }
2097
2098                 block_size = get_blocksize(params);
2099                 if (block_size < sizeof(*params)) {
2100                         drm_dbg_kms(&i915->drm,
2101                                     "VBT: expected 16 compression param entries\n");
2102                         return;
2103                 }
2104         }
2105
2106         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2107                 const struct child_device_config *child = &devdata->child;
2108
2109                 if (!child->compression_enable)
2110                         continue;
2111
2112                 if (!params) {
2113                         drm_dbg_kms(&i915->drm,
2114                                     "VBT: compression params not available\n");
2115                         continue;
2116                 }
2117
2118                 if (child->compression_method_cps) {
2119                         drm_dbg_kms(&i915->drm,
2120                                     "VBT: CPS compression not supported\n");
2121                         continue;
2122                 }
2123
2124                 index = child->compression_structure_index;
2125
2126                 devdata->dsc = kmemdup(&params->data[index],
2127                                        sizeof(*devdata->dsc), GFP_KERNEL);
2128         }
2129 }
2130
2131 static u8 translate_iboost(u8 val)
2132 {
2133         static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2134
2135         if (val >= ARRAY_SIZE(mapping)) {
2136                 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2137                 return 0;
2138         }
2139         return mapping[val];
2140 }
2141
2142 static const u8 cnp_ddc_pin_map[] = {
2143         [0] = 0, /* N/A */
2144         [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
2145         [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
2146         [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
2147         [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
2148 };
2149
2150 static const u8 icp_ddc_pin_map[] = {
2151         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2152         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2153         [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
2154         [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
2155         [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
2156         [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
2157         [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
2158         [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
2159         [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
2160 };
2161
2162 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2163         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2164         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2165         [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
2166         [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
2167 };
2168
2169 static const u8 adls_ddc_pin_map[] = {
2170         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2171         [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2172         [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2173         [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2174         [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2175 };
2176
2177 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2178         [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2179         [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
2180         [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
2181 };
2182
2183 static const u8 adlp_ddc_pin_map[] = {
2184         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2185         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2186         [ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2187         [ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2188         [ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2189         [ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2190 };
2191
2192 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2193 {
2194         const u8 *ddc_pin_map;
2195         int n_entries;
2196
2197         if (HAS_PCH_MTP(i915) || IS_ALDERLAKE_P(i915)) {
2198                 ddc_pin_map = adlp_ddc_pin_map;
2199                 n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2200         } else if (IS_ALDERLAKE_S(i915)) {
2201                 ddc_pin_map = adls_ddc_pin_map;
2202                 n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2203         } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2204                 return vbt_pin;
2205         } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2206                 ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2207                 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2208         } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2209                 ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2210                 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2211         } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2212                 ddc_pin_map = icp_ddc_pin_map;
2213                 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2214         } else if (HAS_PCH_CNP(i915)) {
2215                 ddc_pin_map = cnp_ddc_pin_map;
2216                 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2217         } else {
2218                 /* Assuming direct map */
2219                 return vbt_pin;
2220         }
2221
2222         if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
2223                 return ddc_pin_map[vbt_pin];
2224
2225         drm_dbg_kms(&i915->drm,
2226                     "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2227                     vbt_pin);
2228         return 0;
2229 }
2230
2231 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
2232 {
2233         enum port port;
2234
2235         if (!ddc_pin)
2236                 return PORT_NONE;
2237
2238         for_each_port(port) {
2239                 const struct intel_bios_encoder_data *devdata =
2240                         i915->display.vbt.ports[port];
2241
2242                 if (devdata && ddc_pin == devdata->child.ddc_pin)
2243                         return port;
2244         }
2245
2246         return PORT_NONE;
2247 }
2248
2249 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata,
2250                              enum port port)
2251 {
2252         struct drm_i915_private *i915 = devdata->i915;
2253         struct child_device_config *child;
2254         u8 mapped_ddc_pin;
2255         enum port p;
2256
2257         if (!devdata->child.ddc_pin)
2258                 return;
2259
2260         mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin);
2261         if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) {
2262                 drm_dbg_kms(&i915->drm,
2263                             "Port %c has invalid DDC pin %d, "
2264                             "sticking to defaults\n",
2265                             port_name(port), mapped_ddc_pin);
2266                 devdata->child.ddc_pin = 0;
2267                 return;
2268         }
2269
2270         p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin);
2271         if (p == PORT_NONE)
2272                 return;
2273
2274         drm_dbg_kms(&i915->drm,
2275                     "port %c trying to use the same DDC pin (0x%x) as port %c, "
2276                     "disabling port %c DVI/HDMI support\n",
2277                     port_name(port), mapped_ddc_pin,
2278                     port_name(p), port_name(p));
2279
2280         /*
2281          * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
2282          * couldn't exist on the shared port. Otherwise they share the same ddc
2283          * pin and system couldn't communicate with them separately.
2284          *
2285          * Give inverse child device order the priority, last one wins. Yes,
2286          * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2287          * port A and port E with the same AUX ch and we must pick port E :(
2288          */
2289         child = &i915->display.vbt.ports[p]->child;
2290
2291         child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2292         child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2293
2294         child->ddc_pin = 0;
2295 }
2296
2297 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
2298 {
2299         enum port port;
2300
2301         if (!aux_ch)
2302                 return PORT_NONE;
2303
2304         for_each_port(port) {
2305                 const struct intel_bios_encoder_data *devdata =
2306                         i915->display.vbt.ports[port];
2307
2308                 if (devdata && aux_ch == devdata->child.aux_channel)
2309                         return port;
2310         }
2311
2312         return PORT_NONE;
2313 }
2314
2315 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata,
2316                             enum port port)
2317 {
2318         struct drm_i915_private *i915 = devdata->i915;
2319         struct child_device_config *child;
2320         enum port p;
2321
2322         p = get_port_by_aux_ch(i915, devdata->child.aux_channel);
2323         if (p == PORT_NONE)
2324                 return;
2325
2326         drm_dbg_kms(&i915->drm,
2327                     "port %c trying to use the same AUX CH (0x%x) as port %c, "
2328                     "disabling port %c DP support\n",
2329                     port_name(port), devdata->child.aux_channel,
2330                     port_name(p), port_name(p));
2331
2332         /*
2333          * If we have multiple ports supposedly sharing the aux channel, then DP
2334          * couldn't exist on the shared port. Otherwise they share the same aux
2335          * channel and system couldn't communicate with them separately.
2336          *
2337          * Give inverse child device order the priority, last one wins. Yes,
2338          * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2339          * port A and port E with the same AUX ch and we must pick port E :(
2340          */
2341         child = &i915->display.vbt.ports[p]->child;
2342
2343         child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2344         child->aux_channel = 0;
2345 }
2346
2347 static u8 dvo_port_type(u8 dvo_port)
2348 {
2349         switch (dvo_port) {
2350         case DVO_PORT_HDMIA:
2351         case DVO_PORT_HDMIB:
2352         case DVO_PORT_HDMIC:
2353         case DVO_PORT_HDMID:
2354         case DVO_PORT_HDMIE:
2355         case DVO_PORT_HDMIF:
2356         case DVO_PORT_HDMIG:
2357         case DVO_PORT_HDMIH:
2358         case DVO_PORT_HDMII:
2359                 return DVO_PORT_HDMIA;
2360         case DVO_PORT_DPA:
2361         case DVO_PORT_DPB:
2362         case DVO_PORT_DPC:
2363         case DVO_PORT_DPD:
2364         case DVO_PORT_DPE:
2365         case DVO_PORT_DPF:
2366         case DVO_PORT_DPG:
2367         case DVO_PORT_DPH:
2368         case DVO_PORT_DPI:
2369                 return DVO_PORT_DPA;
2370         case DVO_PORT_MIPIA:
2371         case DVO_PORT_MIPIB:
2372         case DVO_PORT_MIPIC:
2373         case DVO_PORT_MIPID:
2374                 return DVO_PORT_MIPIA;
2375         default:
2376                 return dvo_port;
2377         }
2378 }
2379
2380 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2381                                     const int port_mapping[][3], u8 dvo_port)
2382 {
2383         enum port port;
2384         int i;
2385
2386         for (port = PORT_A; port < n_ports; port++) {
2387                 for (i = 0; i < n_dvo; i++) {
2388                         if (port_mapping[port][i] == -1)
2389                                 break;
2390
2391                         if (dvo_port == port_mapping[port][i])
2392                                 return port;
2393                 }
2394         }
2395
2396         return PORT_NONE;
2397 }
2398
2399 static enum port dvo_port_to_port(struct drm_i915_private *i915,
2400                                   u8 dvo_port)
2401 {
2402         /*
2403          * Each DDI port can have more than one value on the "DVO Port" field,
2404          * so look for all the possible values for each port.
2405          */
2406         static const int port_mapping[][3] = {
2407                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2408                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2409                 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2410                 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2411                 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2412                 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2413                 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2414                 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2415                 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2416         };
2417         /*
2418          * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2419          * map to DDI A,B,TC1,TC2 respectively.
2420          */
2421         static const int rkl_port_mapping[][3] = {
2422                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2423                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2424                 [PORT_C] = { -1 },
2425                 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2426                 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2427         };
2428         /*
2429          * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2430          * PORT_F and PORT_G, we need to map that to correct VBT sections.
2431          */
2432         static const int adls_port_mapping[][3] = {
2433                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2434                 [PORT_B] = { -1 },
2435                 [PORT_C] = { -1 },
2436                 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2437                 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2438                 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2439                 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2440         };
2441         static const int xelpd_port_mapping[][3] = {
2442                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2443                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2444                 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2445                 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2446                 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2447                 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2448                 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2449                 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2450                 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2451         };
2452
2453         if (DISPLAY_VER(i915) >= 13)
2454                 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2455                                           ARRAY_SIZE(xelpd_port_mapping[0]),
2456                                           xelpd_port_mapping,
2457                                           dvo_port);
2458         else if (IS_ALDERLAKE_S(i915))
2459                 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2460                                           ARRAY_SIZE(adls_port_mapping[0]),
2461                                           adls_port_mapping,
2462                                           dvo_port);
2463         else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2464                 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2465                                           ARRAY_SIZE(rkl_port_mapping[0]),
2466                                           rkl_port_mapping,
2467                                           dvo_port);
2468         else
2469                 return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2470                                           ARRAY_SIZE(port_mapping[0]),
2471                                           port_mapping,
2472                                           dvo_port);
2473 }
2474
2475 static enum port
2476 dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port)
2477 {
2478         switch (dvo_port) {
2479         case DVO_PORT_MIPIA:
2480                 return PORT_A;
2481         case DVO_PORT_MIPIC:
2482                 if (DISPLAY_VER(i915) >= 11)
2483                         return PORT_B;
2484                 else
2485                         return PORT_C;
2486         default:
2487                 return PORT_NONE;
2488         }
2489 }
2490
2491 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2492 {
2493         switch (vbt_max_link_rate) {
2494         default:
2495         case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2496                 return 0;
2497         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2498                 return 2000000;
2499         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2500                 return 1350000;
2501         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2502                 return 1000000;
2503         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2504                 return 810000;
2505         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2506                 return 540000;
2507         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2508                 return 270000;
2509         case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2510                 return 162000;
2511         }
2512 }
2513
2514 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2515 {
2516         switch (vbt_max_link_rate) {
2517         default:
2518         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2519                 return 810000;
2520         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2521                 return 540000;
2522         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2523                 return 270000;
2524         case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2525                 return 162000;
2526         }
2527 }
2528
2529 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2530 {
2531         if (!devdata || devdata->i915->display.vbt.version < 216)
2532                 return 0;
2533
2534         if (devdata->i915->display.vbt.version >= 230)
2535                 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2536         else
2537                 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2538 }
2539
2540 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2541 {
2542         if (!devdata || devdata->i915->display.vbt.version < 244)
2543                 return 0;
2544
2545         return devdata->child.dp_max_lane_count + 1;
2546 }
2547
2548 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2549                                  enum port port)
2550 {
2551         struct drm_i915_private *i915 = devdata->i915;
2552         bool is_hdmi;
2553
2554         if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2555                 return;
2556
2557         if (!intel_bios_encoder_supports_dvi(devdata))
2558                 return;
2559
2560         is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2561
2562         drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2563                     is_hdmi ? "/HDMI" : "");
2564
2565         devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2566         devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2567 }
2568
2569 static bool
2570 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2571 {
2572         return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2573 }
2574
2575 bool
2576 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2577 {
2578         return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2579 }
2580
2581 bool
2582 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2583 {
2584         return intel_bios_encoder_supports_dvi(devdata) &&
2585                 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2586 }
2587
2588 bool
2589 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2590 {
2591         return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2592 }
2593
2594 bool
2595 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2596 {
2597         return intel_bios_encoder_supports_dp(devdata) &&
2598                 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2599 }
2600
2601 static bool
2602 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2603 {
2604         return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2605 }
2606
2607 bool
2608 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2609 {
2610         return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon;
2611 }
2612
2613 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
2614 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2615 {
2616         if (!devdata || devdata->i915->display.vbt.version < 158)
2617                 return -1;
2618
2619         return devdata->child.hdmi_level_shifter_value;
2620 }
2621
2622 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2623 {
2624         if (!devdata || devdata->i915->display.vbt.version < 204)
2625                 return 0;
2626
2627         switch (devdata->child.hdmi_max_data_rate) {
2628         default:
2629                 MISSING_CASE(devdata->child.hdmi_max_data_rate);
2630                 fallthrough;
2631         case HDMI_MAX_DATA_RATE_PLATFORM:
2632                 return 0;
2633         case HDMI_MAX_DATA_RATE_594:
2634                 return 594000;
2635         case HDMI_MAX_DATA_RATE_340:
2636                 return 340000;
2637         case HDMI_MAX_DATA_RATE_300:
2638                 return 300000;
2639         case HDMI_MAX_DATA_RATE_297:
2640                 return 297000;
2641         case HDMI_MAX_DATA_RATE_165:
2642                 return 165000;
2643         }
2644 }
2645
2646 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2647 {
2648         /*
2649          * On some ICL SKUs port F is not present, but broken VBTs mark
2650          * the port as present. Only try to initialize port F for the
2651          * SKUs that may actually have it.
2652          */
2653         if (port == PORT_F && IS_ICELAKE(i915))
2654                 return IS_ICL_WITH_PORT_F(i915);
2655
2656         return true;
2657 }
2658
2659 static void print_ddi_port(const struct intel_bios_encoder_data *devdata,
2660                            enum port port)
2661 {
2662         struct drm_i915_private *i915 = devdata->i915;
2663         const struct child_device_config *child = &devdata->child;
2664         bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2665         int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2666
2667         is_dvi = intel_bios_encoder_supports_dvi(devdata);
2668         is_dp = intel_bios_encoder_supports_dp(devdata);
2669         is_crt = intel_bios_encoder_supports_crt(devdata);
2670         is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2671         is_edp = intel_bios_encoder_supports_edp(devdata);
2672         is_dsi = intel_bios_encoder_supports_dsi(devdata);
2673
2674         supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2675         supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2676
2677         drm_dbg_kms(&i915->drm,
2678                     "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2679                     port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2680                     intel_bios_encoder_is_lspcon(devdata),
2681                     supports_typec_usb, supports_tbt,
2682                     devdata->dsc != NULL);
2683
2684         hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2685         if (hdmi_level_shift >= 0) {
2686                 drm_dbg_kms(&i915->drm,
2687                             "Port %c VBT HDMI level shift: %d\n",
2688                             port_name(port), hdmi_level_shift);
2689         }
2690
2691         max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2692         if (max_tmds_clock)
2693                 drm_dbg_kms(&i915->drm,
2694                             "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2695                             port_name(port), max_tmds_clock);
2696
2697         /* I_boost config for SKL and above */
2698         dp_boost_level = intel_bios_dp_boost_level(devdata);
2699         if (dp_boost_level)
2700                 drm_dbg_kms(&i915->drm,
2701                             "Port %c VBT (e)DP boost level: %d\n",
2702                             port_name(port), dp_boost_level);
2703
2704         hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2705         if (hdmi_boost_level)
2706                 drm_dbg_kms(&i915->drm,
2707                             "Port %c VBT HDMI boost level: %d\n",
2708                             port_name(port), hdmi_boost_level);
2709
2710         dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2711         if (dp_max_link_rate)
2712                 drm_dbg_kms(&i915->drm,
2713                             "Port %c VBT DP max link rate: %d\n",
2714                             port_name(port), dp_max_link_rate);
2715
2716         /*
2717          * FIXME need to implement support for VBT
2718          * vswing/preemph tables should this ever trigger.
2719          */
2720         drm_WARN(&i915->drm, child->use_vbt_vswing,
2721                  "Port %c asks to use VBT vswing/preemph tables\n",
2722                  port_name(port));
2723 }
2724
2725 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2726 {
2727         struct drm_i915_private *i915 = devdata->i915;
2728         const struct child_device_config *child = &devdata->child;
2729         enum port port;
2730
2731         port = dvo_port_to_port(i915, child->dvo_port);
2732         if (port == PORT_NONE && DISPLAY_VER(i915) >= 11)
2733                 port = dsi_dvo_port_to_port(i915, child->dvo_port);
2734         if (port == PORT_NONE)
2735                 return;
2736
2737         if (!is_port_valid(i915, port)) {
2738                 drm_dbg_kms(&i915->drm,
2739                             "VBT reports port %c as supported, but that can't be true: skipping\n",
2740                             port_name(port));
2741                 return;
2742         }
2743
2744         if (i915->display.vbt.ports[port]) {
2745                 drm_dbg_kms(&i915->drm,
2746                             "More than one child device for port %c in VBT, using the first.\n",
2747                             port_name(port));
2748                 return;
2749         }
2750
2751         sanitize_device_type(devdata, port);
2752
2753         if (intel_bios_encoder_supports_dvi(devdata))
2754                 sanitize_ddc_pin(devdata, port);
2755
2756         if (intel_bios_encoder_supports_dp(devdata))
2757                 sanitize_aux_ch(devdata, port);
2758
2759         i915->display.vbt.ports[port] = devdata;
2760 }
2761
2762 static bool has_ddi_port_info(struct drm_i915_private *i915)
2763 {
2764         return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2765 }
2766
2767 static void parse_ddi_ports(struct drm_i915_private *i915)
2768 {
2769         struct intel_bios_encoder_data *devdata;
2770         enum port port;
2771
2772         if (!has_ddi_port_info(i915))
2773                 return;
2774
2775         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2776                 parse_ddi_port(devdata);
2777
2778         for_each_port(port) {
2779                 if (i915->display.vbt.ports[port])
2780                         print_ddi_port(i915->display.vbt.ports[port], port);
2781         }
2782 }
2783
2784 static void
2785 parse_general_definitions(struct drm_i915_private *i915)
2786 {
2787         const struct bdb_general_definitions *defs;
2788         struct intel_bios_encoder_data *devdata;
2789         const struct child_device_config *child;
2790         int i, child_device_num;
2791         u8 expected_size;
2792         u16 block_size;
2793         int bus_pin;
2794
2795         defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS);
2796         if (!defs) {
2797                 drm_dbg_kms(&i915->drm,
2798                             "No general definition block is found, no devices defined.\n");
2799                 return;
2800         }
2801
2802         block_size = get_blocksize(defs);
2803         if (block_size < sizeof(*defs)) {
2804                 drm_dbg_kms(&i915->drm,
2805                             "General definitions block too small (%u)\n",
2806                             block_size);
2807                 return;
2808         }
2809
2810         bus_pin = defs->crt_ddc_gmbus_pin;
2811         drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2812         if (intel_gmbus_is_valid_pin(i915, bus_pin))
2813                 i915->display.vbt.crt_ddc_pin = bus_pin;
2814
2815         if (i915->display.vbt.version < 106) {
2816                 expected_size = 22;
2817         } else if (i915->display.vbt.version < 111) {
2818                 expected_size = 27;
2819         } else if (i915->display.vbt.version < 195) {
2820                 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2821         } else if (i915->display.vbt.version == 195) {
2822                 expected_size = 37;
2823         } else if (i915->display.vbt.version <= 215) {
2824                 expected_size = 38;
2825         } else if (i915->display.vbt.version <= 250) {
2826                 expected_size = 39;
2827         } else {
2828                 expected_size = sizeof(*child);
2829                 BUILD_BUG_ON(sizeof(*child) < 39);
2830                 drm_dbg(&i915->drm,
2831                         "Expected child device config size for VBT version %u not known; assuming %u\n",
2832                         i915->display.vbt.version, expected_size);
2833         }
2834
2835         /* Flag an error for unexpected size, but continue anyway. */
2836         if (defs->child_dev_size != expected_size)
2837                 drm_err(&i915->drm,
2838                         "Unexpected child device config size %u (expected %u for VBT version %u)\n",
2839                         defs->child_dev_size, expected_size, i915->display.vbt.version);
2840
2841         /* The legacy sized child device config is the minimum we need. */
2842         if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2843                 drm_dbg_kms(&i915->drm,
2844                             "Child device config size %u is too small.\n",
2845                             defs->child_dev_size);
2846                 return;
2847         }
2848
2849         /* get the number of child device */
2850         child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2851
2852         for (i = 0; i < child_device_num; i++) {
2853                 child = child_device_ptr(defs, i);
2854                 if (!child->device_type)
2855                         continue;
2856
2857                 drm_dbg_kms(&i915->drm,
2858                             "Found VBT child device with type 0x%x\n",
2859                             child->device_type);
2860
2861                 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2862                 if (!devdata)
2863                         break;
2864
2865                 devdata->i915 = i915;
2866
2867                 /*
2868                  * Copy as much as we know (sizeof) and is available
2869                  * (child_dev_size) of the child device config. Accessing the
2870                  * data must depend on VBT version.
2871                  */
2872                 memcpy(&devdata->child, child,
2873                        min_t(size_t, defs->child_dev_size, sizeof(*child)));
2874
2875                 list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2876         }
2877
2878         if (list_empty(&i915->display.vbt.display_devices))
2879                 drm_dbg_kms(&i915->drm,
2880                             "no child dev is parsed from VBT\n");
2881 }
2882
2883 /* Common defaults which may be overridden by VBT. */
2884 static void
2885 init_vbt_defaults(struct drm_i915_private *i915)
2886 {
2887         i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2888
2889         /* general features */
2890         i915->display.vbt.int_tv_support = 1;
2891         i915->display.vbt.int_crt_support = 1;
2892
2893         /* driver features */
2894         i915->display.vbt.int_lvds_support = 1;
2895
2896         /* Default to using SSC */
2897         i915->display.vbt.lvds_use_ssc = 1;
2898         /*
2899          * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2900          * clock for LVDS.
2901          */
2902         i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2903                                                                    !HAS_PCH_SPLIT(i915));
2904         drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2905                     i915->display.vbt.lvds_ssc_freq);
2906 }
2907
2908 /* Common defaults which may be overridden by VBT. */
2909 static void
2910 init_vbt_panel_defaults(struct intel_panel *panel)
2911 {
2912         /* Default to having backlight */
2913         panel->vbt.backlight.present = true;
2914
2915         /* LFP panel data */
2916         panel->vbt.lvds_dither = true;
2917 }
2918
2919 /* Defaults to initialize only if there is no VBT. */
2920 static void
2921 init_vbt_missing_defaults(struct drm_i915_private *i915)
2922 {
2923         enum port port;
2924         int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2925                     BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2926
2927         if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2928                 return;
2929
2930         for_each_port_masked(port, ports) {
2931                 struct intel_bios_encoder_data *devdata;
2932                 struct child_device_config *child;
2933                 enum phy phy = intel_port_to_phy(i915, port);
2934
2935                 /*
2936                  * VBT has the TypeC mode (native,TBT/USB) and we don't want
2937                  * to detect it.
2938                  */
2939                 if (intel_phy_is_tc(i915, phy))
2940                         continue;
2941
2942                 /* Create fake child device config */
2943                 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2944                 if (!devdata)
2945                         break;
2946
2947                 devdata->i915 = i915;
2948                 child = &devdata->child;
2949
2950                 if (port == PORT_F)
2951                         child->dvo_port = DVO_PORT_HDMIF;
2952                 else if (port == PORT_E)
2953                         child->dvo_port = DVO_PORT_HDMIE;
2954                 else
2955                         child->dvo_port = DVO_PORT_HDMIA + port;
2956
2957                 if (port != PORT_A && port != PORT_E)
2958                         child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2959
2960                 if (port != PORT_E)
2961                         child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2962
2963                 if (port == PORT_A)
2964                         child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2965
2966                 list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2967
2968                 drm_dbg_kms(&i915->drm,
2969                             "Generating default VBT child device with type 0x04%x on port %c\n",
2970                             child->device_type, port_name(port));
2971         }
2972
2973         /* Bypass some minimum baseline VBT version checks */
2974         i915->display.vbt.version = 155;
2975 }
2976
2977 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2978 {
2979         const void *_vbt = vbt;
2980
2981         return _vbt + vbt->bdb_offset;
2982 }
2983
2984 /**
2985  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2986  * @buf:        pointer to a buffer to validate
2987  * @size:       size of the buffer
2988  *
2989  * Returns true on valid VBT.
2990  */
2991 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2992 {
2993         const struct vbt_header *vbt = buf;
2994         const struct bdb_header *bdb;
2995
2996         if (!vbt)
2997                 return false;
2998
2999         if (sizeof(struct vbt_header) > size) {
3000                 DRM_DEBUG_DRIVER("VBT header incomplete\n");
3001                 return false;
3002         }
3003
3004         if (memcmp(vbt->signature, "$VBT", 4)) {
3005                 DRM_DEBUG_DRIVER("VBT invalid signature\n");
3006                 return false;
3007         }
3008
3009         if (vbt->vbt_size > size) {
3010                 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
3011                 return false;
3012         }
3013
3014         size = vbt->vbt_size;
3015
3016         if (range_overflows_t(size_t,
3017                               vbt->bdb_offset,
3018                               sizeof(struct bdb_header),
3019                               size)) {
3020                 DRM_DEBUG_DRIVER("BDB header incomplete\n");
3021                 return false;
3022         }
3023
3024         bdb = get_bdb_header(vbt);
3025         if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
3026                 DRM_DEBUG_DRIVER("BDB incomplete\n");
3027                 return false;
3028         }
3029
3030         return vbt;
3031 }
3032
3033 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
3034 {
3035         u32 count, data, found, store = 0;
3036         u32 static_region, oprom_offset;
3037         u32 oprom_size = 0x200000;
3038         u16 vbt_size;
3039         u32 *vbt;
3040
3041         static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
3042         static_region &= OPTIONROM_SPI_REGIONID_MASK;
3043         intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
3044
3045         oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
3046         oprom_offset &= OROM_OFFSET_MASK;
3047
3048         for (count = 0; count < oprom_size; count += 4) {
3049                 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count);
3050                 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3051
3052                 if (data == *((const u32 *)"$VBT")) {
3053                         found = oprom_offset + count;
3054                         break;
3055                 }
3056         }
3057
3058         if (count >= oprom_size)
3059                 goto err_not_found;
3060
3061         /* Get VBT size and allocate space for the VBT */
3062         intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found +
3063                    offsetof(struct vbt_header, vbt_size));
3064         vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3065         vbt_size &= 0xffff;
3066
3067         vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3068         if (!vbt)
3069                 goto err_not_found;
3070
3071         for (count = 0; count < vbt_size; count += 4) {
3072                 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count);
3073                 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3074                 *(vbt + store++) = data;
3075         }
3076
3077         if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3078                 goto err_free_vbt;
3079
3080         drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
3081
3082         return (struct vbt_header *)vbt;
3083
3084 err_free_vbt:
3085         kfree(vbt);
3086 err_not_found:
3087         return NULL;
3088 }
3089
3090 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
3091 {
3092         struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
3093         void __iomem *p = NULL, *oprom;
3094         struct vbt_header *vbt;
3095         u16 vbt_size;
3096         size_t i, size;
3097
3098         oprom = pci_map_rom(pdev, &size);
3099         if (!oprom)
3100                 return NULL;
3101
3102         /* Scour memory looking for the VBT signature. */
3103         for (i = 0; i + 4 < size; i += 4) {
3104                 if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3105                         continue;
3106
3107                 p = oprom + i;
3108                 size -= i;
3109                 break;
3110         }
3111
3112         if (!p)
3113                 goto err_unmap_oprom;
3114
3115         if (sizeof(struct vbt_header) > size) {
3116                 drm_dbg(&i915->drm, "VBT header incomplete\n");
3117                 goto err_unmap_oprom;
3118         }
3119
3120         vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3121         if (vbt_size > size) {
3122                 drm_dbg(&i915->drm,
3123                         "VBT incomplete (vbt_size overflows)\n");
3124                 goto err_unmap_oprom;
3125         }
3126
3127         /* The rest will be validated by intel_bios_is_valid_vbt() */
3128         vbt = kmalloc(vbt_size, GFP_KERNEL);
3129         if (!vbt)
3130                 goto err_unmap_oprom;
3131
3132         memcpy_fromio(vbt, p, vbt_size);
3133
3134         if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3135                 goto err_free_vbt;
3136
3137         pci_unmap_rom(pdev, oprom);
3138
3139         drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3140
3141         return vbt;
3142
3143 err_free_vbt:
3144         kfree(vbt);
3145 err_unmap_oprom:
3146         pci_unmap_rom(pdev, oprom);
3147
3148         return NULL;
3149 }
3150
3151 /**
3152  * intel_bios_init - find VBT and initialize settings from the BIOS
3153  * @i915: i915 device instance
3154  *
3155  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3156  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3157  * initialize some defaults if the VBT is not present at all.
3158  */
3159 void intel_bios_init(struct drm_i915_private *i915)
3160 {
3161         const struct vbt_header *vbt = i915->display.opregion.vbt;
3162         struct vbt_header *oprom_vbt = NULL;
3163         const struct bdb_header *bdb;
3164
3165         INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3166         INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3167
3168         if (!HAS_DISPLAY(i915)) {
3169                 drm_dbg_kms(&i915->drm,
3170                             "Skipping VBT init due to disabled display.\n");
3171                 return;
3172         }
3173
3174         init_vbt_defaults(i915);
3175
3176         /*
3177          * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3178          * PCI mapping
3179          */
3180         if (!vbt && IS_DGFX(i915)) {
3181                 oprom_vbt = spi_oprom_get_vbt(i915);
3182                 vbt = oprom_vbt;
3183         }
3184
3185         if (!vbt) {
3186                 oprom_vbt = oprom_get_vbt(i915);
3187                 vbt = oprom_vbt;
3188         }
3189
3190         if (!vbt)
3191                 goto out;
3192
3193         bdb = get_bdb_header(vbt);
3194         i915->display.vbt.version = bdb->version;
3195
3196         drm_dbg_kms(&i915->drm,
3197                     "VBT signature \"%.*s\", BDB version %d\n",
3198                     (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3199
3200         init_bdb_blocks(i915, bdb);
3201
3202         /* Grab useful general definitions */
3203         parse_general_features(i915);
3204         parse_general_definitions(i915);
3205         parse_driver_features(i915);
3206
3207         /* Depends on child device list */
3208         parse_compression_parameters(i915);
3209
3210 out:
3211         if (!vbt) {
3212                 drm_info(&i915->drm,
3213                          "Failed to find VBIOS tables (VBT)\n");
3214                 init_vbt_missing_defaults(i915);
3215         }
3216
3217         /* Further processing on pre-parsed or generated child device data */
3218         parse_sdvo_device_mapping(i915);
3219         parse_ddi_ports(i915);
3220
3221         kfree(oprom_vbt);
3222 }
3223
3224 static void intel_bios_init_panel(struct drm_i915_private *i915,
3225                                   struct intel_panel *panel,
3226                                   const struct intel_bios_encoder_data *devdata,
3227                                   const struct drm_edid *drm_edid,
3228                                   bool use_fallback)
3229 {
3230         /* already have it? */
3231         if (panel->vbt.panel_type >= 0) {
3232                 drm_WARN_ON(&i915->drm, !use_fallback);
3233                 return;
3234         }
3235
3236         panel->vbt.panel_type = get_panel_type(i915, devdata,
3237                                                drm_edid, use_fallback);
3238         if (panel->vbt.panel_type < 0) {
3239                 drm_WARN_ON(&i915->drm, use_fallback);
3240                 return;
3241         }
3242
3243         init_vbt_panel_defaults(panel);
3244
3245         parse_panel_options(i915, panel);
3246         parse_generic_dtd(i915, panel);
3247         parse_lfp_data(i915, panel);
3248         parse_lfp_backlight(i915, panel);
3249         parse_sdvo_panel_data(i915, panel);
3250         parse_panel_driver_features(i915, panel);
3251         parse_power_conservation_features(i915, panel);
3252         parse_edp(i915, panel);
3253         parse_psr(i915, panel);
3254         parse_mipi_config(i915, panel);
3255         parse_mipi_sequence(i915, panel);
3256 }
3257
3258 void intel_bios_init_panel_early(struct drm_i915_private *i915,
3259                                  struct intel_panel *panel,
3260                                  const struct intel_bios_encoder_data *devdata)
3261 {
3262         intel_bios_init_panel(i915, panel, devdata, NULL, false);
3263 }
3264
3265 void intel_bios_init_panel_late(struct drm_i915_private *i915,
3266                                 struct intel_panel *panel,
3267                                 const struct intel_bios_encoder_data *devdata,
3268                                 const struct drm_edid *drm_edid)
3269 {
3270         intel_bios_init_panel(i915, panel, devdata, drm_edid, true);
3271 }
3272
3273 /**
3274  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3275  * @i915: i915 device instance
3276  */
3277 void intel_bios_driver_remove(struct drm_i915_private *i915)
3278 {
3279         struct intel_bios_encoder_data *devdata, *nd;
3280         struct bdb_block_entry *entry, *ne;
3281
3282         list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3283                 list_del(&devdata->node);
3284                 kfree(devdata->dsc);
3285                 kfree(devdata);
3286         }
3287
3288         list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3289                 list_del(&entry->node);
3290                 kfree(entry);
3291         }
3292 }
3293
3294 void intel_bios_fini_panel(struct intel_panel *panel)
3295 {
3296         kfree(panel->vbt.sdvo_lvds_vbt_mode);
3297         panel->vbt.sdvo_lvds_vbt_mode = NULL;
3298         kfree(panel->vbt.lfp_lvds_vbt_mode);
3299         panel->vbt.lfp_lvds_vbt_mode = NULL;
3300         kfree(panel->vbt.dsi.data);
3301         panel->vbt.dsi.data = NULL;
3302         kfree(panel->vbt.dsi.pps);
3303         panel->vbt.dsi.pps = NULL;
3304         kfree(panel->vbt.dsi.config);
3305         panel->vbt.dsi.config = NULL;
3306         kfree(panel->vbt.dsi.deassert_seq);
3307         panel->vbt.dsi.deassert_seq = NULL;
3308 }
3309
3310 /**
3311  * intel_bios_is_tv_present - is integrated TV present in VBT
3312  * @i915: i915 device instance
3313  *
3314  * Return true if TV is present. If no child devices were parsed from VBT,
3315  * assume TV is present.
3316  */
3317 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3318 {
3319         const struct intel_bios_encoder_data *devdata;
3320
3321         if (!i915->display.vbt.int_tv_support)
3322                 return false;
3323
3324         if (list_empty(&i915->display.vbt.display_devices))
3325                 return true;
3326
3327         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3328                 const struct child_device_config *child = &devdata->child;
3329
3330                 /*
3331                  * If the device type is not TV, continue.
3332                  */
3333                 switch (child->device_type) {
3334                 case DEVICE_TYPE_INT_TV:
3335                 case DEVICE_TYPE_TV:
3336                 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3337                         break;
3338                 default:
3339                         continue;
3340                 }
3341                 /* Only when the addin_offset is non-zero, it is regarded
3342                  * as present.
3343                  */
3344                 if (child->addin_offset)
3345                         return true;
3346         }
3347
3348         return false;
3349 }
3350
3351 /**
3352  * intel_bios_is_lvds_present - is LVDS present in VBT
3353  * @i915:       i915 device instance
3354  * @i2c_pin:    i2c pin for LVDS if present
3355  *
3356  * Return true if LVDS is present. If no child devices were parsed from VBT,
3357  * assume LVDS is present.
3358  */
3359 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3360 {
3361         const struct intel_bios_encoder_data *devdata;
3362
3363         if (list_empty(&i915->display.vbt.display_devices))
3364                 return true;
3365
3366         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3367                 const struct child_device_config *child = &devdata->child;
3368
3369                 /* If the device type is not LFP, continue.
3370                  * We have to check both the new identifiers as well as the
3371                  * old for compatibility with some BIOSes.
3372                  */
3373                 if (child->device_type != DEVICE_TYPE_INT_LFP &&
3374                     child->device_type != DEVICE_TYPE_LFP)
3375                         continue;
3376
3377                 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3378                         *i2c_pin = child->i2c_pin;
3379
3380                 /* However, we cannot trust the BIOS writers to populate
3381                  * the VBT correctly.  Since LVDS requires additional
3382                  * information from AIM blocks, a non-zero addin offset is
3383                  * a good indicator that the LVDS is actually present.
3384                  */
3385                 if (child->addin_offset)
3386                         return true;
3387
3388                 /* But even then some BIOS writers perform some black magic
3389                  * and instantiate the device without reference to any
3390                  * additional data.  Trust that if the VBT was written into
3391                  * the OpRegion then they have validated the LVDS's existence.
3392                  */
3393                 if (i915->display.opregion.vbt)
3394                         return true;
3395         }
3396
3397         return false;
3398 }
3399
3400 /**
3401  * intel_bios_is_port_present - is the specified digital port present
3402  * @i915:       i915 device instance
3403  * @port:       port to check
3404  *
3405  * Return true if the device in %port is present.
3406  */
3407 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3408 {
3409         const struct intel_bios_encoder_data *devdata;
3410
3411         if (WARN_ON(!has_ddi_port_info(i915)))
3412                 return true;
3413
3414         if (!is_port_valid(i915, port))
3415                 return false;
3416
3417         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3418                 const struct child_device_config *child = &devdata->child;
3419
3420                 if (dvo_port_to_port(i915, child->dvo_port) == port)
3421                         return true;
3422         }
3423
3424         return false;
3425 }
3426
3427 static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3428 {
3429         const struct child_device_config *child = &devdata->child;
3430
3431         if (!intel_bios_encoder_supports_dp(devdata) ||
3432             !intel_bios_encoder_supports_hdmi(devdata))
3433                 return false;
3434
3435         if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3436                 return true;
3437
3438         /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3439         if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3440             child->aux_channel != 0)
3441                 return true;
3442
3443         return false;
3444 }
3445
3446 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
3447                                      enum port port)
3448 {
3449         const struct intel_bios_encoder_data *devdata =
3450                 intel_bios_encoder_data_lookup(i915, port);
3451
3452         return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata);
3453 }
3454
3455 /**
3456  * intel_bios_is_dsi_present - is DSI present in VBT
3457  * @i915:       i915 device instance
3458  * @port:       port for DSI if present
3459  *
3460  * Return true if DSI is present, and return the port in %port.
3461  */
3462 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3463                                enum port *port)
3464 {
3465         const struct intel_bios_encoder_data *devdata;
3466
3467         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3468                 const struct child_device_config *child = &devdata->child;
3469                 u8 dvo_port = child->dvo_port;
3470
3471                 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3472                         continue;
3473
3474                 if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) {
3475                         drm_dbg_kms(&i915->drm,
3476                                     "VBT has unsupported DSI port %c\n",
3477                                     port_name(dvo_port - DVO_PORT_MIPIA));
3478                         continue;
3479                 }
3480
3481                 if (port)
3482                         *port = dsi_dvo_port_to_port(i915, dvo_port);
3483                 return true;
3484         }
3485
3486         return false;
3487 }
3488
3489 static void fill_dsc(struct intel_crtc_state *crtc_state,
3490                      struct dsc_compression_parameters_entry *dsc,
3491                      int dsc_max_bpc)
3492 {
3493         struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3494         int bpc = 8;
3495
3496         vdsc_cfg->dsc_version_major = dsc->version_major;
3497         vdsc_cfg->dsc_version_minor = dsc->version_minor;
3498
3499         if (dsc->support_12bpc && dsc_max_bpc >= 12)
3500                 bpc = 12;
3501         else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3502                 bpc = 10;
3503         else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3504                 bpc = 8;
3505         else
3506                 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
3507                               dsc_max_bpc);
3508
3509         crtc_state->pipe_bpp = bpc * 3;
3510
3511         crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
3512                                              VBT_DSC_MAX_BPP(dsc->max_bpp));
3513
3514         /*
3515          * FIXME: This is ugly, and slice count should take DSC engine
3516          * throughput etc. into account.
3517          *
3518          * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3519          */
3520         if (dsc->slices_per_line & BIT(2)) {
3521                 crtc_state->dsc.slice_count = 4;
3522         } else if (dsc->slices_per_line & BIT(1)) {
3523                 crtc_state->dsc.slice_count = 2;
3524         } else {
3525                 /* FIXME */
3526                 if (!(dsc->slices_per_line & BIT(0)))
3527                         DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
3528
3529                 crtc_state->dsc.slice_count = 1;
3530         }
3531
3532         if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3533             crtc_state->dsc.slice_count != 0)
3534                 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
3535                               crtc_state->hw.adjusted_mode.crtc_hdisplay,
3536                               crtc_state->dsc.slice_count);
3537
3538         /*
3539          * The VBT rc_buffer_block_size and rc_buffer_size definitions
3540          * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3541          */
3542         vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3543                                                             dsc->rc_buffer_size);
3544
3545         /* FIXME: DSI spec says bpc + 1 for this one */
3546         vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3547
3548         vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3549
3550         vdsc_cfg->slice_height = dsc->slice_height;
3551 }
3552
3553 /* FIXME: initially DSI specific */
3554 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3555                                struct intel_crtc_state *crtc_state,
3556                                int dsc_max_bpc)
3557 {
3558         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3559         const struct intel_bios_encoder_data *devdata;
3560
3561         list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3562                 const struct child_device_config *child = &devdata->child;
3563
3564                 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3565                         continue;
3566
3567                 if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) {
3568                         if (!devdata->dsc)
3569                                 return false;
3570
3571                         if (crtc_state)
3572                                 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3573
3574                         return true;
3575                 }
3576         }
3577
3578         return false;
3579 }
3580
3581 static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel)
3582 {
3583         enum aux_ch aux_ch;
3584
3585         /*
3586          * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3587          * map to DDI A,B,TC1,TC2 respectively.
3588          *
3589          * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3590          * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3591          */
3592         switch (aux_channel) {
3593         case DP_AUX_A:
3594                 aux_ch = AUX_CH_A;
3595                 break;
3596         case DP_AUX_B:
3597                 if (IS_ALDERLAKE_S(i915))
3598                         aux_ch = AUX_CH_USBC1;
3599                 else
3600                         aux_ch = AUX_CH_B;
3601                 break;
3602         case DP_AUX_C:
3603                 if (IS_ALDERLAKE_S(i915))
3604                         aux_ch = AUX_CH_USBC2;
3605                 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3606                         aux_ch = AUX_CH_USBC1;
3607                 else
3608                         aux_ch = AUX_CH_C;
3609                 break;
3610         case DP_AUX_D:
3611                 if (DISPLAY_VER(i915) >= 13)
3612                         aux_ch = AUX_CH_D_XELPD;
3613                 else if (IS_ALDERLAKE_S(i915))
3614                         aux_ch = AUX_CH_USBC3;
3615                 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3616                         aux_ch = AUX_CH_USBC2;
3617                 else
3618                         aux_ch = AUX_CH_D;
3619                 break;
3620         case DP_AUX_E:
3621                 if (DISPLAY_VER(i915) >= 13)
3622                         aux_ch = AUX_CH_E_XELPD;
3623                 else if (IS_ALDERLAKE_S(i915))
3624                         aux_ch = AUX_CH_USBC4;
3625                 else
3626                         aux_ch = AUX_CH_E;
3627                 break;
3628         case DP_AUX_F:
3629                 if (DISPLAY_VER(i915) >= 13)
3630                         aux_ch = AUX_CH_USBC1;
3631                 else
3632                         aux_ch = AUX_CH_F;
3633                 break;
3634         case DP_AUX_G:
3635                 if (DISPLAY_VER(i915) >= 13)
3636                         aux_ch = AUX_CH_USBC2;
3637                 else
3638                         aux_ch = AUX_CH_G;
3639                 break;
3640         case DP_AUX_H:
3641                 if (DISPLAY_VER(i915) >= 13)
3642                         aux_ch = AUX_CH_USBC3;
3643                 else
3644                         aux_ch = AUX_CH_H;
3645                 break;
3646         case DP_AUX_I:
3647                 if (DISPLAY_VER(i915) >= 13)
3648                         aux_ch = AUX_CH_USBC4;
3649                 else
3650                         aux_ch = AUX_CH_I;
3651                 break;
3652         default:
3653                 MISSING_CASE(aux_channel);
3654                 aux_ch = AUX_CH_A;
3655                 break;
3656         }
3657
3658         return aux_ch;
3659 }
3660
3661 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3662 {
3663         if (!devdata || !devdata->child.aux_channel)
3664                 return AUX_CH_NONE;
3665
3666         return map_aux_ch(devdata->i915, devdata->child.aux_channel);
3667 }
3668
3669 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3670 {
3671         if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3672                 return 0;
3673
3674         return translate_iboost(devdata->child.dp_iboost_level);
3675 }
3676
3677 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3678 {
3679         if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3680                 return 0;
3681
3682         return translate_iboost(devdata->child.hdmi_iboost_level);
3683 }
3684
3685 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3686 {
3687         if (!devdata || !devdata->child.ddc_pin)
3688                 return 0;
3689
3690         return map_ddc_pin(devdata->i915, devdata->child.ddc_pin);
3691 }
3692
3693 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3694 {
3695         return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3696 }
3697
3698 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3699 {
3700         return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3701 }
3702
3703 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3704 {
3705         return devdata && devdata->child.lane_reversal;
3706 }
3707
3708 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3709 {
3710         return devdata && devdata->child.hpd_invert;
3711 }
3712
3713 const struct intel_bios_encoder_data *
3714 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3715 {
3716         return i915->display.vbt.ports[port];
3717 }
This page took 0.253103 seconds and 4 git commands to generate.