1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
36 #include <linux/dca.h>
38 #include <linux/i2c.h>
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
48 QUEUE_MODE_STRICT_PRIORITY,
49 QUEUE_MODE_STREAM_RESERVATION,
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60 "Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62 "Copyright (c) 2007-2014 Intel Corporation.";
64 static const struct e1000_info *igb_info_tbl[] = {
65 [board_82575] = &e1000_82575_info,
68 static const struct pci_device_id igb_pci_tbl[] = {
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104 /* required last entry */
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133 struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152 netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 .notifier_call = igb_notify_dca,
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215 pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
219 static const struct pci_error_handlers igb_err_handler = {
220 .error_detected = igb_io_error_detected,
221 .slot_reset = igb_io_slot_reset,
222 .resume = igb_io_resume,
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
227 static struct pci_driver igb_driver = {
228 .name = igb_driver_name,
229 .id_table = igb_pci_tbl,
231 .remove = igb_remove,
233 .driver.pm = &igb_pm_ops,
235 .shutdown = igb_shutdown,
236 .sriov_configure = igb_pci_sriov_configure,
237 .err_handler = &igb_err_handler
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL v2");
243 MODULE_VERSION(DRV_VERSION);
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
250 struct igb_reg_info {
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
257 /* General Registers */
258 {E1000_CTRL, "CTRL"},
259 {E1000_STATUS, "STATUS"},
260 {E1000_CTRL_EXT, "CTRL_EXT"},
262 /* Interrupt Registers */
266 {E1000_RCTL, "RCTL"},
267 {E1000_RDLEN(0), "RDLEN"},
268 {E1000_RDH(0), "RDH"},
269 {E1000_RDT(0), "RDT"},
270 {E1000_RXDCTL(0), "RXDCTL"},
271 {E1000_RDBAL(0), "RDBAL"},
272 {E1000_RDBAH(0), "RDBAH"},
275 {E1000_TCTL, "TCTL"},
276 {E1000_TDBAL(0), "TDBAL"},
277 {E1000_TDBAH(0), "TDBAH"},
278 {E1000_TDLEN(0), "TDLEN"},
279 {E1000_TDH(0), "TDH"},
280 {E1000_TDT(0), "TDT"},
281 {E1000_TXDCTL(0), "TXDCTL"},
282 {E1000_TDFH, "TDFH"},
283 {E1000_TDFT, "TDFT"},
284 {E1000_TDFHS, "TDFHS"},
285 {E1000_TDFPC, "TDFPC"},
287 /* List Terminator */
291 /* igb_regdump - register printout routine */
292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
298 switch (reginfo->ofs) {
300 for (n = 0; n < 4; n++)
301 regs[n] = rd32(E1000_RDLEN(n));
304 for (n = 0; n < 4; n++)
305 regs[n] = rd32(E1000_RDH(n));
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_RDT(n));
311 case E1000_RXDCTL(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_RXDCTL(n));
316 for (n = 0; n < 4; n++)
317 regs[n] = rd32(E1000_RDBAL(n));
320 for (n = 0; n < 4; n++)
321 regs[n] = rd32(E1000_RDBAH(n));
324 for (n = 0; n < 4; n++)
325 regs[n] = rd32(E1000_RDBAL(n));
328 for (n = 0; n < 4; n++)
329 regs[n] = rd32(E1000_TDBAH(n));
332 for (n = 0; n < 4; n++)
333 regs[n] = rd32(E1000_TDLEN(n));
336 for (n = 0; n < 4; n++)
337 regs[n] = rd32(E1000_TDH(n));
340 for (n = 0; n < 4; n++)
341 regs[n] = rd32(E1000_TDT(n));
343 case E1000_TXDCTL(0):
344 for (n = 0; n < 4; n++)
345 regs[n] = rd32(E1000_TXDCTL(n));
348 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
352 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
358 static void igb_dump(struct igb_adapter *adapter)
360 struct net_device *netdev = adapter->netdev;
361 struct e1000_hw *hw = &adapter->hw;
362 struct igb_reg_info *reginfo;
363 struct igb_ring *tx_ring;
364 union e1000_adv_tx_desc *tx_desc;
365 struct my_u0 { u64 a; u64 b; } *u0;
366 struct igb_ring *rx_ring;
367 union e1000_adv_rx_desc *rx_desc;
371 if (!netif_msg_hw(adapter))
374 /* Print netdevice Info */
376 dev_info(&adapter->pdev->dev, "Net device Info\n");
377 pr_info("Device Name state trans_start\n");
378 pr_info("%-15s %016lX %016lX\n", netdev->name,
379 netdev->state, dev_trans_start(netdev));
382 /* Print Registers */
383 dev_info(&adapter->pdev->dev, "Register Dump\n");
384 pr_info(" Register Name Value\n");
385 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386 reginfo->name; reginfo++) {
387 igb_regdump(hw, reginfo);
390 /* Print TX Ring Summary */
391 if (!netdev || !netif_running(netdev))
394 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
396 for (n = 0; n < adapter->num_tx_queues; n++) {
397 struct igb_tx_buffer *buffer_info;
398 tx_ring = adapter->tx_ring[n];
399 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401 n, tx_ring->next_to_use, tx_ring->next_to_clean,
402 (u64)dma_unmap_addr(buffer_info, dma),
403 dma_unmap_len(buffer_info, len),
404 buffer_info->next_to_watch,
405 (u64)buffer_info->time_stamp);
409 if (!netif_msg_tx_done(adapter))
410 goto rx_ring_summary;
412 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
414 /* Transmit Descriptor Formats
416 * Advanced Transmit Descriptor
417 * +--------------------------------------------------------------+
418 * 0 | Buffer Address [63:0] |
419 * +--------------------------------------------------------------+
420 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
421 * +--------------------------------------------------------------+
422 * 63 46 45 40 39 38 36 35 32 31 24 15 0
425 for (n = 0; n < adapter->num_tx_queues; n++) {
426 tx_ring = adapter->tx_ring[n];
427 pr_info("------------------------------------\n");
428 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429 pr_info("------------------------------------\n");
430 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
432 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433 const char *next_desc;
434 struct igb_tx_buffer *buffer_info;
435 tx_desc = IGB_TX_DESC(tx_ring, i);
436 buffer_info = &tx_ring->tx_buffer_info[i];
437 u0 = (struct my_u0 *)tx_desc;
438 if (i == tx_ring->next_to_use &&
439 i == tx_ring->next_to_clean)
440 next_desc = " NTC/U";
441 else if (i == tx_ring->next_to_use)
443 else if (i == tx_ring->next_to_clean)
448 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
449 i, le64_to_cpu(u0->a),
451 (u64)dma_unmap_addr(buffer_info, dma),
452 dma_unmap_len(buffer_info, len),
453 buffer_info->next_to_watch,
454 (u64)buffer_info->time_stamp,
455 buffer_info->skb, next_desc);
457 if (netif_msg_pktdata(adapter) && buffer_info->skb)
458 print_hex_dump(KERN_INFO, "",
460 16, 1, buffer_info->skb->data,
461 dma_unmap_len(buffer_info, len),
466 /* Print RX Rings Summary */
468 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469 pr_info("Queue [NTU] [NTC]\n");
470 for (n = 0; n < adapter->num_rx_queues; n++) {
471 rx_ring = adapter->rx_ring[n];
472 pr_info(" %5d %5X %5X\n",
473 n, rx_ring->next_to_use, rx_ring->next_to_clean);
477 if (!netif_msg_rx_status(adapter))
480 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
482 /* Advanced Receive Descriptor (Read) Format
484 * +-----------------------------------------------------+
485 * 0 | Packet Buffer Address [63:1] |A0/NSE|
486 * +----------------------------------------------+------+
487 * 8 | Header Buffer Address [63:1] | DD |
488 * +-----------------------------------------------------+
491 * Advanced Receive Descriptor (Write-Back) Format
493 * 63 48 47 32 31 30 21 20 17 16 4 3 0
494 * +------------------------------------------------------+
495 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
496 * | Checksum Ident | | | | Type | Type |
497 * +------------------------------------------------------+
498 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499 * +------------------------------------------------------+
500 * 63 48 47 32 31 20 19 0
503 for (n = 0; n < adapter->num_rx_queues; n++) {
504 rx_ring = adapter->rx_ring[n];
505 pr_info("------------------------------------\n");
506 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507 pr_info("------------------------------------\n");
508 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
509 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
511 for (i = 0; i < rx_ring->count; i++) {
512 const char *next_desc;
513 struct igb_rx_buffer *buffer_info;
514 buffer_info = &rx_ring->rx_buffer_info[i];
515 rx_desc = IGB_RX_DESC(rx_ring, i);
516 u0 = (struct my_u0 *)rx_desc;
517 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
519 if (i == rx_ring->next_to_use)
521 else if (i == rx_ring->next_to_clean)
526 if (staterr & E1000_RXD_STAT_DD) {
527 /* Descriptor Done */
528 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
534 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
538 (u64)buffer_info->dma,
541 if (netif_msg_pktdata(adapter) &&
542 buffer_info->dma && buffer_info->page) {
543 print_hex_dump(KERN_INFO, "",
546 page_address(buffer_info->page) +
547 buffer_info->page_offset,
548 igb_rx_bufsz(rx_ring), true);
559 * igb_get_i2c_data - Reads the I2C SDA data bit
560 * @hw: pointer to hardware structure
561 * @i2cctl: Current value of I2CCTL register
563 * Returns the I2C data bit value
565 static int igb_get_i2c_data(void *data)
567 struct igb_adapter *adapter = (struct igb_adapter *)data;
568 struct e1000_hw *hw = &adapter->hw;
569 s32 i2cctl = rd32(E1000_I2CPARAMS);
571 return !!(i2cctl & E1000_I2C_DATA_IN);
575 * igb_set_i2c_data - Sets the I2C data bit
576 * @data: pointer to hardware structure
577 * @state: I2C data value (0 or 1) to set
579 * Sets the I2C data bit
581 static void igb_set_i2c_data(void *data, int state)
583 struct igb_adapter *adapter = (struct igb_adapter *)data;
584 struct e1000_hw *hw = &adapter->hw;
585 s32 i2cctl = rd32(E1000_I2CPARAMS);
588 i2cctl |= E1000_I2C_DATA_OUT;
590 i2cctl &= ~E1000_I2C_DATA_OUT;
592 i2cctl &= ~E1000_I2C_DATA_OE_N;
593 i2cctl |= E1000_I2C_CLK_OE_N;
594 wr32(E1000_I2CPARAMS, i2cctl);
600 * igb_set_i2c_clk - Sets the I2C SCL clock
601 * @data: pointer to hardware structure
602 * @state: state to set clock
604 * Sets the I2C clock line to state
606 static void igb_set_i2c_clk(void *data, int state)
608 struct igb_adapter *adapter = (struct igb_adapter *)data;
609 struct e1000_hw *hw = &adapter->hw;
610 s32 i2cctl = rd32(E1000_I2CPARAMS);
613 i2cctl |= E1000_I2C_CLK_OUT;
614 i2cctl &= ~E1000_I2C_CLK_OE_N;
616 i2cctl &= ~E1000_I2C_CLK_OUT;
617 i2cctl &= ~E1000_I2C_CLK_OE_N;
619 wr32(E1000_I2CPARAMS, i2cctl);
624 * igb_get_i2c_clk - Gets the I2C SCL clock state
625 * @data: pointer to hardware structure
627 * Gets the I2C clock state
629 static int igb_get_i2c_clk(void *data)
631 struct igb_adapter *adapter = (struct igb_adapter *)data;
632 struct e1000_hw *hw = &adapter->hw;
633 s32 i2cctl = rd32(E1000_I2CPARAMS);
635 return !!(i2cctl & E1000_I2C_CLK_IN);
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639 .setsda = igb_set_i2c_data,
640 .setscl = igb_set_i2c_clk,
641 .getsda = igb_get_i2c_data,
642 .getscl = igb_get_i2c_clk,
648 * igb_get_hw_dev - return device
649 * @hw: pointer to hardware structure
651 * used by hardware layer to print debugging information
653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
655 struct igb_adapter *adapter = hw->back;
656 return adapter->netdev;
660 * igb_init_module - Driver Registration Routine
662 * igb_init_module is the first routine called when the driver is
663 * loaded. All it does is register with the PCI subsystem.
665 static int __init igb_init_module(void)
669 pr_info("%s - version %s\n",
670 igb_driver_string, igb_driver_version);
671 pr_info("%s\n", igb_copyright);
673 #ifdef CONFIG_IGB_DCA
674 dca_register_notify(&dca_notifier);
676 ret = pci_register_driver(&igb_driver);
680 module_init(igb_init_module);
683 * igb_exit_module - Driver Exit Cleanup Routine
685 * igb_exit_module is called just before the driver is removed
688 static void __exit igb_exit_module(void)
690 #ifdef CONFIG_IGB_DCA
691 dca_unregister_notify(&dca_notifier);
693 pci_unregister_driver(&igb_driver);
696 module_exit(igb_exit_module);
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
700 * igb_cache_ring_register - Descriptor ring to register mapping
701 * @adapter: board private structure to initialize
703 * Once we know the feature-set enabled for the device, we'll cache
704 * the register offset the descriptor ring is assigned to.
706 static void igb_cache_ring_register(struct igb_adapter *adapter)
709 u32 rbase_offset = adapter->vfs_allocated_count;
711 switch (adapter->hw.mac.type) {
713 /* The queues are allocated for virtualization such that VF 0
714 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715 * In order to avoid collision we start at the first free queue
716 * and continue consuming queues in the same sequence
718 if (adapter->vfs_allocated_count) {
719 for (; i < adapter->rss_queues; i++)
720 adapter->rx_ring[i]->reg_idx = rbase_offset +
732 for (; i < adapter->num_rx_queues; i++)
733 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734 for (; j < adapter->num_tx_queues; j++)
735 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
742 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
746 if (E1000_REMOVED(hw_addr))
749 value = readl(&hw_addr[reg]);
751 /* reads should not return all F's */
752 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753 struct net_device *netdev = igb->netdev;
755 netdev_err(netdev, "PCIe link lost\n");
762 * igb_write_ivar - configure ivar for given MSI-X vector
763 * @hw: pointer to the HW structure
764 * @msix_vector: vector number we are allocating to a given ring
765 * @index: row index of IVAR register to write within IVAR table
766 * @offset: column offset of in IVAR, should be multiple of 8
768 * This function is intended to handle the writing of the IVAR register
769 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
770 * each containing an cause allocation for an Rx and Tx ring, and a
771 * variable number of rows depending on the number of queues supported.
773 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
774 int index, int offset)
776 u32 ivar = array_rd32(E1000_IVAR0, index);
778 /* clear any bits that are currently set */
779 ivar &= ~((u32)0xFF << offset);
781 /* write vector and valid bit */
782 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
784 array_wr32(E1000_IVAR0, index, ivar);
787 #define IGB_N0_QUEUE -1
788 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
790 struct igb_adapter *adapter = q_vector->adapter;
791 struct e1000_hw *hw = &adapter->hw;
792 int rx_queue = IGB_N0_QUEUE;
793 int tx_queue = IGB_N0_QUEUE;
796 if (q_vector->rx.ring)
797 rx_queue = q_vector->rx.ring->reg_idx;
798 if (q_vector->tx.ring)
799 tx_queue = q_vector->tx.ring->reg_idx;
801 switch (hw->mac.type) {
803 /* The 82575 assigns vectors using a bitmask, which matches the
804 * bitmask for the EICR/EIMS/EIMC registers. To assign one
805 * or more queues to a vector, we write the appropriate bits
806 * into the MSIXBM register for that vector.
808 if (rx_queue > IGB_N0_QUEUE)
809 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
810 if (tx_queue > IGB_N0_QUEUE)
811 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
812 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
813 msixbm |= E1000_EIMS_OTHER;
814 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
815 q_vector->eims_value = msixbm;
818 /* 82576 uses a table that essentially consists of 2 columns
819 * with 8 rows. The ordering is column-major so we use the
820 * lower 3 bits as the row index, and the 4th bit as the
823 if (rx_queue > IGB_N0_QUEUE)
824 igb_write_ivar(hw, msix_vector,
826 (rx_queue & 0x8) << 1);
827 if (tx_queue > IGB_N0_QUEUE)
828 igb_write_ivar(hw, msix_vector,
830 ((tx_queue & 0x8) << 1) + 8);
831 q_vector->eims_value = BIT(msix_vector);
838 /* On 82580 and newer adapters the scheme is similar to 82576
839 * however instead of ordering column-major we have things
840 * ordered row-major. So we traverse the table by using
841 * bit 0 as the column offset, and the remaining bits as the
844 if (rx_queue > IGB_N0_QUEUE)
845 igb_write_ivar(hw, msix_vector,
847 (rx_queue & 0x1) << 4);
848 if (tx_queue > IGB_N0_QUEUE)
849 igb_write_ivar(hw, msix_vector,
851 ((tx_queue & 0x1) << 4) + 8);
852 q_vector->eims_value = BIT(msix_vector);
859 /* add q_vector eims value to global eims_enable_mask */
860 adapter->eims_enable_mask |= q_vector->eims_value;
862 /* configure q_vector to set itr on first interrupt */
863 q_vector->set_itr = 1;
867 * igb_configure_msix - Configure MSI-X hardware
868 * @adapter: board private structure to initialize
870 * igb_configure_msix sets up the hardware to properly
871 * generate MSI-X interrupts.
873 static void igb_configure_msix(struct igb_adapter *adapter)
877 struct e1000_hw *hw = &adapter->hw;
879 adapter->eims_enable_mask = 0;
881 /* set vector for other causes, i.e. link changes */
882 switch (hw->mac.type) {
884 tmp = rd32(E1000_CTRL_EXT);
885 /* enable MSI-X PBA support*/
886 tmp |= E1000_CTRL_EXT_PBA_CLR;
888 /* Auto-Mask interrupts upon ICR read. */
889 tmp |= E1000_CTRL_EXT_EIAME;
890 tmp |= E1000_CTRL_EXT_IRCA;
892 wr32(E1000_CTRL_EXT, tmp);
894 /* enable msix_other interrupt */
895 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
896 adapter->eims_other = E1000_EIMS_OTHER;
906 /* Turn on MSI-X capability first, or our settings
907 * won't stick. And it will take days to debug.
909 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
910 E1000_GPIE_PBA | E1000_GPIE_EIAME |
913 /* enable msix_other interrupt */
914 adapter->eims_other = BIT(vector);
915 tmp = (vector++ | E1000_IVAR_VALID) << 8;
917 wr32(E1000_IVAR_MISC, tmp);
920 /* do nothing, since nothing else supports MSI-X */
922 } /* switch (hw->mac.type) */
924 adapter->eims_enable_mask |= adapter->eims_other;
926 for (i = 0; i < adapter->num_q_vectors; i++)
927 igb_assign_vector(adapter->q_vector[i], vector++);
933 * igb_request_msix - Initialize MSI-X interrupts
934 * @adapter: board private structure to initialize
936 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
939 static int igb_request_msix(struct igb_adapter *adapter)
941 struct net_device *netdev = adapter->netdev;
942 int i, err = 0, vector = 0, free_vector = 0;
944 err = request_irq(adapter->msix_entries[vector].vector,
945 igb_msix_other, 0, netdev->name, adapter);
949 for (i = 0; i < adapter->num_q_vectors; i++) {
950 struct igb_q_vector *q_vector = adapter->q_vector[i];
954 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
956 if (q_vector->rx.ring && q_vector->tx.ring)
957 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958 q_vector->rx.ring->queue_index);
959 else if (q_vector->tx.ring)
960 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961 q_vector->tx.ring->queue_index);
962 else if (q_vector->rx.ring)
963 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964 q_vector->rx.ring->queue_index);
966 sprintf(q_vector->name, "%s-unused", netdev->name);
968 err = request_irq(adapter->msix_entries[vector].vector,
969 igb_msix_ring, 0, q_vector->name,
975 igb_configure_msix(adapter);
979 /* free already assigned IRQs */
980 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
983 for (i = 0; i < vector; i++) {
984 free_irq(adapter->msix_entries[free_vector++].vector,
985 adapter->q_vector[i]);
992 * igb_free_q_vector - Free memory allocated for specific interrupt vector
993 * @adapter: board private structure to initialize
994 * @v_idx: Index of vector to be freed
996 * This function frees the memory allocated to the q_vector.
998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1000 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1002 adapter->q_vector[v_idx] = NULL;
1004 /* igb_get_stats64() might access the rings on this vector,
1005 * we must wait a grace period before freeing it.
1008 kfree_rcu(q_vector, rcu);
1012 * igb_reset_q_vector - Reset config for interrupt vector
1013 * @adapter: board private structure to initialize
1014 * @v_idx: Index of vector to be reset
1016 * If NAPI is enabled it will delete any references to the
1017 * NAPI struct. This is preparation for igb_free_q_vector.
1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1021 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1023 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1024 * allocated. So, q_vector is NULL so we should stop here.
1029 if (q_vector->tx.ring)
1030 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1032 if (q_vector->rx.ring)
1033 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1035 netif_napi_del(&q_vector->napi);
1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1041 int v_idx = adapter->num_q_vectors;
1043 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044 pci_disable_msix(adapter->pdev);
1045 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046 pci_disable_msi(adapter->pdev);
1049 igb_reset_q_vector(adapter, v_idx);
1053 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1054 * @adapter: board private structure to initialize
1056 * This function frees the memory allocated to the q_vectors. In addition if
1057 * NAPI is enabled it will delete any references to the NAPI struct prior
1058 * to freeing the q_vector.
1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1062 int v_idx = adapter->num_q_vectors;
1064 adapter->num_tx_queues = 0;
1065 adapter->num_rx_queues = 0;
1066 adapter->num_q_vectors = 0;
1069 igb_reset_q_vector(adapter, v_idx);
1070 igb_free_q_vector(adapter, v_idx);
1075 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076 * @adapter: board private structure to initialize
1078 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1079 * MSI-X interrupts allocated.
1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1083 igb_free_q_vectors(adapter);
1084 igb_reset_interrupt_capability(adapter);
1088 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1089 * @adapter: board private structure to initialize
1090 * @msix: boolean value of MSIX capability
1092 * Attempt to configure interrupts using the best available
1093 * capabilities of the hardware and kernel.
1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1102 adapter->flags |= IGB_FLAG_HAS_MSIX;
1104 /* Number of supported queues. */
1105 adapter->num_rx_queues = adapter->rss_queues;
1106 if (adapter->vfs_allocated_count)
1107 adapter->num_tx_queues = 1;
1109 adapter->num_tx_queues = adapter->rss_queues;
1111 /* start with one vector for every Rx queue */
1112 numvecs = adapter->num_rx_queues;
1114 /* if Tx handler is separate add 1 for every Tx queue */
1115 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116 numvecs += adapter->num_tx_queues;
1118 /* store the number of vectors reserved for queues */
1119 adapter->num_q_vectors = numvecs;
1121 /* add 1 vector for link status interrupts */
1123 for (i = 0; i < numvecs; i++)
1124 adapter->msix_entries[i].entry = i;
1126 err = pci_enable_msix_range(adapter->pdev,
1127 adapter->msix_entries,
1133 igb_reset_interrupt_capability(adapter);
1135 /* If we can't do MSI-X, try MSI */
1137 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139 /* disable SR-IOV for non MSI-X configurations */
1140 if (adapter->vf_data) {
1141 struct e1000_hw *hw = &adapter->hw;
1142 /* disable iov and allow time for transactions to clear */
1143 pci_disable_sriov(adapter->pdev);
1146 kfree(adapter->vf_mac_list);
1147 adapter->vf_mac_list = NULL;
1148 kfree(adapter->vf_data);
1149 adapter->vf_data = NULL;
1150 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1153 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1156 adapter->vfs_allocated_count = 0;
1157 adapter->rss_queues = 1;
1158 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159 adapter->num_rx_queues = 1;
1160 adapter->num_tx_queues = 1;
1161 adapter->num_q_vectors = 1;
1162 if (!pci_enable_msi(adapter->pdev))
1163 adapter->flags |= IGB_FLAG_HAS_MSI;
1166 static void igb_add_ring(struct igb_ring *ring,
1167 struct igb_ring_container *head)
1174 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175 * @adapter: board private structure to initialize
1176 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1177 * @v_idx: index of vector in adapter struct
1178 * @txr_count: total number of Tx rings to allocate
1179 * @txr_idx: index of first Tx ring to allocate
1180 * @rxr_count: total number of Rx rings to allocate
1181 * @rxr_idx: index of first Rx ring to allocate
1183 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186 int v_count, int v_idx,
1187 int txr_count, int txr_idx,
1188 int rxr_count, int rxr_idx)
1190 struct igb_q_vector *q_vector;
1191 struct igb_ring *ring;
1195 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1196 if (txr_count > 1 || rxr_count > 1)
1199 ring_count = txr_count + rxr_count;
1200 size = struct_size(q_vector, ring, ring_count);
1202 /* allocate q_vector and rings */
1203 q_vector = adapter->q_vector[v_idx];
1205 q_vector = kzalloc(size, GFP_KERNEL);
1206 } else if (size > ksize(q_vector)) {
1207 kfree_rcu(q_vector, rcu);
1208 q_vector = kzalloc(size, GFP_KERNEL);
1210 memset(q_vector, 0, size);
1215 /* initialize NAPI */
1216 netif_napi_add(adapter->netdev, &q_vector->napi,
1219 /* tie q_vector and adapter together */
1220 adapter->q_vector[v_idx] = q_vector;
1221 q_vector->adapter = adapter;
1223 /* initialize work limits */
1224 q_vector->tx.work_limit = adapter->tx_work_limit;
1226 /* initialize ITR configuration */
1227 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1228 q_vector->itr_val = IGB_START_ITR;
1230 /* initialize pointer to rings */
1231 ring = q_vector->ring;
1235 /* rx or rx/tx vector */
1236 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 q_vector->itr_val = adapter->rx_itr_setting;
1239 /* tx only vector */
1240 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 q_vector->itr_val = adapter->tx_itr_setting;
1245 /* assign generic ring traits */
1246 ring->dev = &adapter->pdev->dev;
1247 ring->netdev = adapter->netdev;
1249 /* configure backlink on ring */
1250 ring->q_vector = q_vector;
1252 /* update q_vector Tx values */
1253 igb_add_ring(ring, &q_vector->tx);
1255 /* For 82575, context index must be unique per ring. */
1256 if (adapter->hw.mac.type == e1000_82575)
1257 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1259 /* apply Tx specific ring traits */
1260 ring->count = adapter->tx_ring_count;
1261 ring->queue_index = txr_idx;
1263 ring->cbs_enable = false;
1264 ring->idleslope = 0;
1265 ring->sendslope = 0;
1269 u64_stats_init(&ring->tx_syncp);
1270 u64_stats_init(&ring->tx_syncp2);
1272 /* assign ring to adapter */
1273 adapter->tx_ring[txr_idx] = ring;
1275 /* push pointer to next ring */
1280 /* assign generic ring traits */
1281 ring->dev = &adapter->pdev->dev;
1282 ring->netdev = adapter->netdev;
1284 /* configure backlink on ring */
1285 ring->q_vector = q_vector;
1287 /* update q_vector Rx values */
1288 igb_add_ring(ring, &q_vector->rx);
1290 /* set flag indicating ring supports SCTP checksum offload */
1291 if (adapter->hw.mac.type >= e1000_82576)
1292 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1294 /* On i350, i354, i210, and i211, loopback VLAN packets
1295 * have the tag byte-swapped.
1297 if (adapter->hw.mac.type >= e1000_i350)
1298 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1300 /* apply Rx specific ring traits */
1301 ring->count = adapter->rx_ring_count;
1302 ring->queue_index = rxr_idx;
1304 u64_stats_init(&ring->rx_syncp);
1306 /* assign ring to adapter */
1307 adapter->rx_ring[rxr_idx] = ring;
1315 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316 * @adapter: board private structure to initialize
1318 * We allocate one q_vector per queue interrupt. If allocation fails we
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1323 int q_vectors = adapter->num_q_vectors;
1324 int rxr_remaining = adapter->num_rx_queues;
1325 int txr_remaining = adapter->num_tx_queues;
1326 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 for (; rxr_remaining; v_idx++) {
1331 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1337 /* update counts and index */
1343 for (; v_idx < q_vectors; v_idx++) {
1344 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1347 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 tqpv, txr_idx, rqpv, rxr_idx);
1353 /* update counts and index */
1354 rxr_remaining -= rqpv;
1355 txr_remaining -= tqpv;
1363 adapter->num_tx_queues = 0;
1364 adapter->num_rx_queues = 0;
1365 adapter->num_q_vectors = 0;
1368 igb_free_q_vector(adapter, v_idx);
1374 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375 * @adapter: board private structure to initialize
1376 * @msix: boolean value of MSIX capability
1378 * This function initializes the interrupts and allocates all of the queues.
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382 struct pci_dev *pdev = adapter->pdev;
1385 igb_set_interrupt_capability(adapter, msix);
1387 err = igb_alloc_q_vectors(adapter);
1389 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 goto err_alloc_q_vectors;
1393 igb_cache_ring_register(adapter);
1397 err_alloc_q_vectors:
1398 igb_reset_interrupt_capability(adapter);
1403 * igb_request_irq - initialize interrupts
1404 * @adapter: board private structure to initialize
1406 * Attempts to configure interrupts using the best available
1407 * capabilities of the hardware and kernel.
1409 static int igb_request_irq(struct igb_adapter *adapter)
1411 struct net_device *netdev = adapter->netdev;
1412 struct pci_dev *pdev = adapter->pdev;
1415 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 err = igb_request_msix(adapter);
1419 /* fall back to MSI */
1420 igb_free_all_tx_resources(adapter);
1421 igb_free_all_rx_resources(adapter);
1423 igb_clear_interrupt_scheme(adapter);
1424 err = igb_init_interrupt_scheme(adapter, false);
1428 igb_setup_all_tx_resources(adapter);
1429 igb_setup_all_rx_resources(adapter);
1430 igb_configure(adapter);
1433 igb_assign_vector(adapter->q_vector[0], 0);
1435 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 netdev->name, adapter);
1441 /* fall back to legacy interrupts */
1442 igb_reset_interrupt_capability(adapter);
1443 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1446 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 netdev->name, adapter);
1450 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1457 static void igb_free_irq(struct igb_adapter *adapter)
1459 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1462 free_irq(adapter->msix_entries[vector++].vector, adapter);
1464 for (i = 0; i < adapter->num_q_vectors; i++)
1465 free_irq(adapter->msix_entries[vector++].vector,
1466 adapter->q_vector[i]);
1468 free_irq(adapter->pdev->irq, adapter);
1473 * igb_irq_disable - Mask off interrupt generation on the NIC
1474 * @adapter: board private structure
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1478 struct e1000_hw *hw = &adapter->hw;
1480 /* we need to be careful when disabling interrupts. The VFs are also
1481 * mapped into these registers and so clearing the bits can cause
1482 * issues on the VF drivers so we only need to clear what we set
1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 u32 regval = rd32(E1000_EIAM);
1487 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 regval = rd32(E1000_EIAC);
1490 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1494 wr32(E1000_IMC, ~0);
1496 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499 for (i = 0; i < adapter->num_q_vectors; i++)
1500 synchronize_irq(adapter->msix_entries[i].vector);
1502 synchronize_irq(adapter->pdev->irq);
1507 * igb_irq_enable - Enable default interrupt generation settings
1508 * @adapter: board private structure
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1512 struct e1000_hw *hw = &adapter->hw;
1514 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 u32 regval = rd32(E1000_EIAC);
1518 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 regval = rd32(E1000_EIAM);
1520 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 if (adapter->vfs_allocated_count) {
1523 wr32(E1000_MBVFIMR, 0xFF);
1524 ims |= E1000_IMS_VMMB;
1526 wr32(E1000_IMS, ims);
1528 wr32(E1000_IMS, IMS_ENABLE_MASK |
1530 wr32(E1000_IAM, IMS_ENABLE_MASK |
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1537 struct e1000_hw *hw = &adapter->hw;
1538 u16 pf_id = adapter->vfs_allocated_count;
1539 u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 u16 old_vid = adapter->mng_vlan_id;
1542 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 /* add VID to filter table */
1544 igb_vfta_set(hw, vid, pf_id, true, true);
1545 adapter->mng_vlan_id = vid;
1547 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1550 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1552 !test_bit(old_vid, adapter->active_vlans)) {
1553 /* remove VID from filter table */
1554 igb_vfta_set(hw, vid, pf_id, false, true);
1559 * igb_release_hw_control - release control of the h/w to f/w
1560 * @adapter: address of board private structure
1562 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563 * For ASF and Pass Through versions of f/w this means that the
1564 * driver is no longer loaded.
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1568 struct e1000_hw *hw = &adapter->hw;
1571 /* Let firmware take over control of h/w */
1572 ctrl_ext = rd32(E1000_CTRL_EXT);
1573 wr32(E1000_CTRL_EXT,
1574 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1578 * igb_get_hw_control - get control of the h/w from f/w
1579 * @adapter: address of board private structure
1581 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582 * For ASF and Pass Through versions of f/w this means that
1583 * the driver is loaded.
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1587 struct e1000_hw *hw = &adapter->hw;
1590 /* Let firmware know the driver has taken over */
1591 ctrl_ext = rd32(E1000_CTRL_EXT);
1592 wr32(E1000_CTRL_EXT,
1593 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1596 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1598 struct net_device *netdev = adapter->netdev;
1599 struct e1000_hw *hw = &adapter->hw;
1601 WARN_ON(hw->mac.type != e1000_i210);
1604 adapter->flags |= IGB_FLAG_FQTSS;
1606 adapter->flags &= ~IGB_FLAG_FQTSS;
1608 if (netif_running(netdev))
1609 schedule_work(&adapter->reset_task);
1612 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1614 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1617 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1618 enum tx_queue_prio prio)
1622 WARN_ON(hw->mac.type != e1000_i210);
1623 WARN_ON(queue < 0 || queue > 4);
1625 val = rd32(E1000_I210_TXDCTL(queue));
1627 if (prio == TX_QUEUE_PRIO_HIGH)
1628 val |= E1000_TXDCTL_PRIORITY;
1630 val &= ~E1000_TXDCTL_PRIORITY;
1632 wr32(E1000_I210_TXDCTL(queue), val);
1635 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1639 WARN_ON(hw->mac.type != e1000_i210);
1640 WARN_ON(queue < 0 || queue > 1);
1642 val = rd32(E1000_I210_TQAVCC(queue));
1644 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1645 val |= E1000_TQAVCC_QUEUEMODE;
1647 val &= ~E1000_TQAVCC_QUEUEMODE;
1649 wr32(E1000_I210_TQAVCC(queue), val);
1652 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1656 for (i = 0; i < adapter->num_tx_queues; i++) {
1657 if (adapter->tx_ring[i]->cbs_enable)
1664 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1668 for (i = 0; i < adapter->num_tx_queues; i++) {
1669 if (adapter->tx_ring[i]->launchtime_enable)
1677 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1678 * @adapter: pointer to adapter struct
1679 * @queue: queue number
1681 * Configure CBS and Launchtime for a given hardware queue.
1682 * Parameters are retrieved from the correct Tx ring, so
1683 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1684 * for setting those correctly prior to this function being called.
1686 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1688 struct igb_ring *ring = adapter->tx_ring[queue];
1689 struct net_device *netdev = adapter->netdev;
1690 struct e1000_hw *hw = &adapter->hw;
1691 u32 tqavcc, tqavctrl;
1694 WARN_ON(hw->mac.type != e1000_i210);
1695 WARN_ON(queue < 0 || queue > 1);
1697 /* If any of the Qav features is enabled, configure queues as SR and
1698 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1701 if (ring->cbs_enable || ring->launchtime_enable) {
1702 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1705 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1706 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1709 /* If CBS is enabled, set DataTranARB and config its parameters. */
1710 if (ring->cbs_enable || queue == 0) {
1711 /* i210 does not allow the queue 0 to be in the Strict
1712 * Priority mode while the Qav mode is enabled, so,
1713 * instead of disabling strict priority mode, we give
1714 * queue 0 the maximum of credits possible.
1716 * See section 8.12.19 of the i210 datasheet, "Note:
1717 * Queue0 QueueMode must be set to 1b when
1718 * TransmitMode is set to Qav."
1720 if (queue == 0 && !ring->cbs_enable) {
1721 /* max "linkspeed" idleslope in kbps */
1722 ring->idleslope = 1000000;
1723 ring->hicredit = ETH_FRAME_LEN;
1726 /* Always set data transfer arbitration to credit-based
1727 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1730 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1731 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1732 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1734 /* According to i210 datasheet section 7.2.7.7, we should set
1735 * the 'idleSlope' field from TQAVCC register following the
1738 * For 100 Mbps link speed:
1740 * value = BW * 0x7735 * 0.2 (E1)
1742 * For 1000Mbps link speed:
1744 * value = BW * 0x7735 * 2 (E2)
1746 * E1 and E2 can be merged into one equation as shown below.
1747 * Note that 'link-speed' is in Mbps.
1749 * value = BW * 0x7735 * 2 * link-speed
1750 * -------------- (E3)
1753 * 'BW' is the percentage bandwidth out of full link speed
1754 * which can be found with the following equation. Note that
1755 * idleSlope here is the parameter from this function which
1759 * ----------------- (E4)
1762 * That said, we can come up with a generic equation to
1763 * calculate the value we should set it TQAVCC register by
1764 * replacing 'BW' in E3 by E4. The resulting equation is:
1766 * value = idleSlope * 0x7735 * 2 * link-speed
1767 * ----------------- -------------- (E5)
1768 * link-speed * 1000 1000
1770 * 'link-speed' is present in both sides of the fraction so
1771 * it is canceled out. The final equation is the following:
1773 * value = idleSlope * 61034
1774 * ----------------- (E6)
1777 * NOTE: For i210, given the above, we can see that idleslope
1778 * is represented in 16.38431 kbps units by the value at
1779 * the TQAVCC register (1Gbps / 61034), which reduces
1780 * the granularity for idleslope increments.
1781 * For instance, if you want to configure a 2576kbps
1782 * idleslope, the value to be written on the register
1783 * would have to be 157.23. If rounded down, you end
1784 * up with less bandwidth available than originally
1785 * required (~2572 kbps). If rounded up, you end up
1786 * with a higher bandwidth (~2589 kbps). Below the
1787 * approach we take is to always round up the
1788 * calculated value, so the resulting bandwidth might
1789 * be slightly higher for some configurations.
1791 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1793 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1794 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1796 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1798 wr32(E1000_I210_TQAVHC(queue),
1799 0x80000000 + ring->hicredit * 0x7735);
1802 /* Set idleSlope to zero. */
1803 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1804 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1805 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1807 /* Set hiCredit to zero. */
1808 wr32(E1000_I210_TQAVHC(queue), 0);
1810 /* If CBS is not enabled for any queues anymore, then return to
1811 * the default state of Data Transmission Arbitration on
1814 if (!is_any_cbs_enabled(adapter)) {
1815 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1816 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1817 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1821 /* If LaunchTime is enabled, set DataTranTIM. */
1822 if (ring->launchtime_enable) {
1823 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1824 * for any of the SR queues, and configure fetchtime delta.
1826 * - LaunchTime will be enabled for all SR queues.
1827 * - A fixed offset can be added relative to the launch
1828 * time of all packets if configured at reg LAUNCH_OS0.
1829 * We are keeping it as 0 for now (default value).
1831 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1832 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1833 E1000_TQAVCTRL_FETCHTIME_DELTA;
1834 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1836 /* If Launchtime is not enabled for any SR queues anymore,
1837 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1838 * effectively disabling Launchtime.
1840 if (!is_any_txtime_enabled(adapter)) {
1841 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1842 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1843 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1844 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1848 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1849 * CBS are not configurable by software so we don't do any 'controller
1850 * configuration' in respect to these parameters.
1853 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1854 ring->cbs_enable ? "enabled" : "disabled",
1855 ring->launchtime_enable ? "enabled" : "disabled",
1857 ring->idleslope, ring->sendslope,
1858 ring->hicredit, ring->locredit);
1861 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1864 struct igb_ring *ring;
1866 if (queue < 0 || queue > adapter->num_tx_queues)
1869 ring = adapter->tx_ring[queue];
1870 ring->launchtime_enable = enable;
1875 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1876 bool enable, int idleslope, int sendslope,
1877 int hicredit, int locredit)
1879 struct igb_ring *ring;
1881 if (queue < 0 || queue > adapter->num_tx_queues)
1884 ring = adapter->tx_ring[queue];
1886 ring->cbs_enable = enable;
1887 ring->idleslope = idleslope;
1888 ring->sendslope = sendslope;
1889 ring->hicredit = hicredit;
1890 ring->locredit = locredit;
1896 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1897 * @adapter: pointer to adapter struct
1899 * Configure TQAVCTRL register switching the controller's Tx mode
1900 * if FQTSS mode is enabled or disabled. Additionally, will issue
1901 * a call to igb_config_tx_modes() per queue so any previously saved
1902 * Tx parameters are applied.
1904 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1906 struct net_device *netdev = adapter->netdev;
1907 struct e1000_hw *hw = &adapter->hw;
1910 /* Only i210 controller supports changing the transmission mode. */
1911 if (hw->mac.type != e1000_i210)
1914 if (is_fqtss_enabled(adapter)) {
1917 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1918 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1919 * so SP queues wait for SR ones.
1921 val = rd32(E1000_I210_TQAVCTRL);
1922 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1923 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1924 wr32(E1000_I210_TQAVCTRL, val);
1926 /* Configure Tx and Rx packet buffers sizes as described in
1927 * i210 datasheet section 7.2.7.7.
1929 val = rd32(E1000_TXPBS);
1930 val &= ~I210_TXPBSIZE_MASK;
1931 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1932 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1933 wr32(E1000_TXPBS, val);
1935 val = rd32(E1000_RXPBS);
1936 val &= ~I210_RXPBSIZE_MASK;
1937 val |= I210_RXPBSIZE_PB_30KB;
1938 wr32(E1000_RXPBS, val);
1940 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1941 * register should not exceed the buffer size programmed in
1942 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1943 * so according to the datasheet we should set MAX_TPKT_SIZE to
1946 * However, when we do so, no frame from queue 2 and 3 are
1947 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1948 * or _equal_ to the buffer size programmed in TXPBS. For this
1949 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1951 val = (4096 - 1) / 64;
1952 wr32(E1000_I210_DTXMXPKTSZ, val);
1954 /* Since FQTSS mode is enabled, apply any CBS configuration
1955 * previously set. If no previous CBS configuration has been
1956 * done, then the initial configuration is applied, which means
1959 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1960 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1962 for (i = 0; i < max_queue; i++) {
1963 igb_config_tx_modes(adapter, i);
1966 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1967 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1968 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1970 val = rd32(E1000_I210_TQAVCTRL);
1971 /* According to Section 8.12.21, the other flags we've set when
1972 * enabling FQTSS are not relevant when disabling FQTSS so we
1973 * don't set they here.
1975 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1976 wr32(E1000_I210_TQAVCTRL, val);
1979 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1980 "enabled" : "disabled");
1984 * igb_configure - configure the hardware for RX and TX
1985 * @adapter: private board structure
1987 static void igb_configure(struct igb_adapter *adapter)
1989 struct net_device *netdev = adapter->netdev;
1992 igb_get_hw_control(adapter);
1993 igb_set_rx_mode(netdev);
1994 igb_setup_tx_mode(adapter);
1996 igb_restore_vlan(adapter);
1998 igb_setup_tctl(adapter);
1999 igb_setup_mrqc(adapter);
2000 igb_setup_rctl(adapter);
2002 igb_nfc_filter_restore(adapter);
2003 igb_configure_tx(adapter);
2004 igb_configure_rx(adapter);
2006 igb_rx_fifo_flush_82575(&adapter->hw);
2008 /* call igb_desc_unused which always leaves
2009 * at least 1 descriptor unused to make sure
2010 * next_to_use != next_to_clean
2012 for (i = 0; i < adapter->num_rx_queues; i++) {
2013 struct igb_ring *ring = adapter->rx_ring[i];
2014 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2019 * igb_power_up_link - Power up the phy/serdes link
2020 * @adapter: address of board private structure
2022 void igb_power_up_link(struct igb_adapter *adapter)
2024 igb_reset_phy(&adapter->hw);
2026 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2027 igb_power_up_phy_copper(&adapter->hw);
2029 igb_power_up_serdes_link_82575(&adapter->hw);
2031 igb_setup_link(&adapter->hw);
2035 * igb_power_down_link - Power down the phy/serdes link
2036 * @adapter: address of board private structure
2038 static void igb_power_down_link(struct igb_adapter *adapter)
2040 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2041 igb_power_down_phy_copper_82575(&adapter->hw);
2043 igb_shutdown_serdes_link_82575(&adapter->hw);
2047 * Detect and switch function for Media Auto Sense
2048 * @adapter: address of the board private structure
2050 static void igb_check_swap_media(struct igb_adapter *adapter)
2052 struct e1000_hw *hw = &adapter->hw;
2053 u32 ctrl_ext, connsw;
2054 bool swap_now = false;
2056 ctrl_ext = rd32(E1000_CTRL_EXT);
2057 connsw = rd32(E1000_CONNSW);
2059 /* need to live swap if current media is copper and we have fiber/serdes
2063 if ((hw->phy.media_type == e1000_media_type_copper) &&
2064 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2066 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
2067 /* copper signal takes time to appear */
2068 if (adapter->copper_tries < 4) {
2069 adapter->copper_tries++;
2070 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2071 wr32(E1000_CONNSW, connsw);
2074 adapter->copper_tries = 0;
2075 if ((connsw & E1000_CONNSW_PHYSD) &&
2076 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2078 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2079 wr32(E1000_CONNSW, connsw);
2087 switch (hw->phy.media_type) {
2088 case e1000_media_type_copper:
2089 netdev_info(adapter->netdev,
2090 "MAS: changing media to fiber/serdes\n");
2092 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2093 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2094 adapter->copper_tries = 0;
2096 case e1000_media_type_internal_serdes:
2097 case e1000_media_type_fiber:
2098 netdev_info(adapter->netdev,
2099 "MAS: changing media to copper\n");
2101 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2102 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2105 /* shouldn't get here during regular operation */
2106 netdev_err(adapter->netdev,
2107 "AMS: Invalid media type found, returning\n");
2110 wr32(E1000_CTRL_EXT, ctrl_ext);
2114 * igb_up - Open the interface and prepare it to handle traffic
2115 * @adapter: board private structure
2117 int igb_up(struct igb_adapter *adapter)
2119 struct e1000_hw *hw = &adapter->hw;
2122 /* hardware has been reset, we need to reload some things */
2123 igb_configure(adapter);
2125 clear_bit(__IGB_DOWN, &adapter->state);
2127 for (i = 0; i < adapter->num_q_vectors; i++)
2128 napi_enable(&(adapter->q_vector[i]->napi));
2130 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2131 igb_configure_msix(adapter);
2133 igb_assign_vector(adapter->q_vector[0], 0);
2135 /* Clear any pending interrupts. */
2138 igb_irq_enable(adapter);
2140 /* notify VFs that reset has been completed */
2141 if (adapter->vfs_allocated_count) {
2142 u32 reg_data = rd32(E1000_CTRL_EXT);
2144 reg_data |= E1000_CTRL_EXT_PFRSTD;
2145 wr32(E1000_CTRL_EXT, reg_data);
2148 netif_tx_start_all_queues(adapter->netdev);
2150 /* start the watchdog. */
2151 hw->mac.get_link_status = 1;
2152 schedule_work(&adapter->watchdog_task);
2154 if ((adapter->flags & IGB_FLAG_EEE) &&
2155 (!hw->dev_spec._82575.eee_disable))
2156 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2161 void igb_down(struct igb_adapter *adapter)
2163 struct net_device *netdev = adapter->netdev;
2164 struct e1000_hw *hw = &adapter->hw;
2168 /* signal that we're down so the interrupt handler does not
2169 * reschedule our watchdog timer
2171 set_bit(__IGB_DOWN, &adapter->state);
2173 /* disable receives in the hardware */
2174 rctl = rd32(E1000_RCTL);
2175 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2176 /* flush and sleep below */
2178 igb_nfc_filter_exit(adapter);
2180 netif_carrier_off(netdev);
2181 netif_tx_stop_all_queues(netdev);
2183 /* disable transmits in the hardware */
2184 tctl = rd32(E1000_TCTL);
2185 tctl &= ~E1000_TCTL_EN;
2186 wr32(E1000_TCTL, tctl);
2187 /* flush both disables and wait for them to finish */
2189 usleep_range(10000, 11000);
2191 igb_irq_disable(adapter);
2193 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2195 for (i = 0; i < adapter->num_q_vectors; i++) {
2196 if (adapter->q_vector[i]) {
2197 napi_synchronize(&adapter->q_vector[i]->napi);
2198 napi_disable(&adapter->q_vector[i]->napi);
2202 del_timer_sync(&adapter->watchdog_timer);
2203 del_timer_sync(&adapter->phy_info_timer);
2205 /* record the stats before reset*/
2206 spin_lock(&adapter->stats64_lock);
2207 igb_update_stats(adapter);
2208 spin_unlock(&adapter->stats64_lock);
2210 adapter->link_speed = 0;
2211 adapter->link_duplex = 0;
2213 if (!pci_channel_offline(adapter->pdev))
2216 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2217 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2219 igb_clean_all_tx_rings(adapter);
2220 igb_clean_all_rx_rings(adapter);
2221 #ifdef CONFIG_IGB_DCA
2223 /* since we reset the hardware DCA settings were cleared */
2224 igb_setup_dca(adapter);
2228 void igb_reinit_locked(struct igb_adapter *adapter)
2230 WARN_ON(in_interrupt());
2231 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2232 usleep_range(1000, 2000);
2235 clear_bit(__IGB_RESETTING, &adapter->state);
2238 /** igb_enable_mas - Media Autosense re-enable after swap
2240 * @adapter: adapter struct
2242 static void igb_enable_mas(struct igb_adapter *adapter)
2244 struct e1000_hw *hw = &adapter->hw;
2245 u32 connsw = rd32(E1000_CONNSW);
2247 /* configure for SerDes media detect */
2248 if ((hw->phy.media_type == e1000_media_type_copper) &&
2249 (!(connsw & E1000_CONNSW_SERDESD))) {
2250 connsw |= E1000_CONNSW_ENRGSRC;
2251 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2252 wr32(E1000_CONNSW, connsw);
2257 void igb_reset(struct igb_adapter *adapter)
2259 struct pci_dev *pdev = adapter->pdev;
2260 struct e1000_hw *hw = &adapter->hw;
2261 struct e1000_mac_info *mac = &hw->mac;
2262 struct e1000_fc_info *fc = &hw->fc;
2265 /* Repartition Pba for greater than 9k mtu
2266 * To take effect CTRL.RST is required.
2268 switch (mac->type) {
2272 pba = rd32(E1000_RXPBS);
2273 pba = igb_rxpbs_adjust_82580(pba);
2276 pba = rd32(E1000_RXPBS);
2277 pba &= E1000_RXPBS_SIZE_MASK_82576;
2283 pba = E1000_PBA_34K;
2287 if (mac->type == e1000_82575) {
2288 u32 min_rx_space, min_tx_space, needed_tx_space;
2290 /* write Rx PBA so that hardware can report correct Tx PBA */
2291 wr32(E1000_PBA, pba);
2293 /* To maintain wire speed transmits, the Tx FIFO should be
2294 * large enough to accommodate two full transmit packets,
2295 * rounded up to the next 1KB and expressed in KB. Likewise,
2296 * the Rx FIFO should be large enough to accommodate at least
2297 * one full receive packet and is similarly rounded up and
2300 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2302 /* The Tx FIFO also stores 16 bytes of information about the Tx
2303 * but don't include Ethernet FCS because hardware appends it.
2304 * We only need to round down to the nearest 512 byte block
2305 * count since the value we care about is 2 frames, not 1.
2307 min_tx_space = adapter->max_frame_size;
2308 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2309 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2311 /* upper 16 bits has Tx packet buffer allocation size in KB */
2312 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2314 /* If current Tx allocation is less than the min Tx FIFO size,
2315 * and the min Tx FIFO size is less than the current Rx FIFO
2316 * allocation, take space away from current Rx allocation.
2318 if (needed_tx_space < pba) {
2319 pba -= needed_tx_space;
2321 /* if short on Rx space, Rx wins and must trump Tx
2324 if (pba < min_rx_space)
2328 /* adjust PBA for jumbo frames */
2329 wr32(E1000_PBA, pba);
2332 /* flow control settings
2333 * The high water mark must be low enough to fit one full frame
2334 * after transmitting the pause frame. As such we must have enough
2335 * space to allow for us to complete our current transmit and then
2336 * receive the frame that is in progress from the link partner.
2338 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2340 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2342 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2343 fc->low_water = fc->high_water - 16;
2344 fc->pause_time = 0xFFFF;
2346 fc->current_mode = fc->requested_mode;
2348 /* disable receive for all VFs and wait one second */
2349 if (adapter->vfs_allocated_count) {
2352 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2353 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2355 /* ping all the active vfs to let them know we are going down */
2356 igb_ping_all_vfs(adapter);
2358 /* disable transmits and receives */
2359 wr32(E1000_VFRE, 0);
2360 wr32(E1000_VFTE, 0);
2363 /* Allow time for pending master requests to run */
2364 hw->mac.ops.reset_hw(hw);
2367 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2368 /* need to resetup here after media swap */
2369 adapter->ei.get_invariants(hw);
2370 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2372 if ((mac->type == e1000_82575) &&
2373 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2374 igb_enable_mas(adapter);
2376 if (hw->mac.ops.init_hw(hw))
2377 dev_err(&pdev->dev, "Hardware Error\n");
2379 /* RAR registers were cleared during init_hw, clear mac table */
2380 igb_flush_mac_table(adapter);
2381 __dev_uc_unsync(adapter->netdev, NULL);
2383 /* Recover default RAR entry */
2384 igb_set_default_mac_filter(adapter);
2386 /* Flow control settings reset on hardware reset, so guarantee flow
2387 * control is off when forcing speed.
2389 if (!hw->mac.autoneg)
2390 igb_force_mac_fc(hw);
2392 igb_init_dmac(adapter, pba);
2393 #ifdef CONFIG_IGB_HWMON
2394 /* Re-initialize the thermal sensor on i350 devices. */
2395 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2396 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2397 /* If present, re-initialize the external thermal sensor
2401 mac->ops.init_thermal_sensor_thresh(hw);
2405 /* Re-establish EEE setting */
2406 if (hw->phy.media_type == e1000_media_type_copper) {
2407 switch (mac->type) {
2411 igb_set_eee_i350(hw, true, true);
2414 igb_set_eee_i354(hw, true, true);
2420 if (!netif_running(adapter->netdev))
2421 igb_power_down_link(adapter);
2423 igb_update_mng_vlan(adapter);
2425 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2426 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2428 /* Re-enable PTP, where applicable. */
2429 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2430 igb_ptp_reset(adapter);
2432 igb_get_phy_info(hw);
2435 static netdev_features_t igb_fix_features(struct net_device *netdev,
2436 netdev_features_t features)
2438 /* Since there is no support for separate Rx/Tx vlan accel
2439 * enable/disable make sure Tx flag is always in same state as Rx.
2441 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2442 features |= NETIF_F_HW_VLAN_CTAG_TX;
2444 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2449 static int igb_set_features(struct net_device *netdev,
2450 netdev_features_t features)
2452 netdev_features_t changed = netdev->features ^ features;
2453 struct igb_adapter *adapter = netdev_priv(netdev);
2455 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2456 igb_vlan_mode(netdev, features);
2458 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2461 if (!(features & NETIF_F_NTUPLE)) {
2462 struct hlist_node *node2;
2463 struct igb_nfc_filter *rule;
2465 spin_lock(&adapter->nfc_lock);
2466 hlist_for_each_entry_safe(rule, node2,
2467 &adapter->nfc_filter_list, nfc_node) {
2468 igb_erase_filter(adapter, rule);
2469 hlist_del(&rule->nfc_node);
2472 spin_unlock(&adapter->nfc_lock);
2473 adapter->nfc_filter_count = 0;
2476 netdev->features = features;
2478 if (netif_running(netdev))
2479 igb_reinit_locked(adapter);
2486 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2487 struct net_device *dev,
2488 const unsigned char *addr, u16 vid,
2490 struct netlink_ext_ack *extack)
2492 /* guarantee we can provide a unique filter for the unicast address */
2493 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2494 struct igb_adapter *adapter = netdev_priv(dev);
2495 int vfn = adapter->vfs_allocated_count;
2497 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2501 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2504 #define IGB_MAX_MAC_HDR_LEN 127
2505 #define IGB_MAX_NETWORK_HDR_LEN 511
2507 static netdev_features_t
2508 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2509 netdev_features_t features)
2511 unsigned int network_hdr_len, mac_hdr_len;
2513 /* Make certain the headers can be described by a context descriptor */
2514 mac_hdr_len = skb_network_header(skb) - skb->data;
2515 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2516 return features & ~(NETIF_F_HW_CSUM |
2518 NETIF_F_HW_VLAN_CTAG_TX |
2522 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2523 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2524 return features & ~(NETIF_F_HW_CSUM |
2529 /* We can only support IPV4 TSO in tunnels if we can mangle the
2530 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2532 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2533 features &= ~NETIF_F_TSO;
2538 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2540 if (!is_fqtss_enabled(adapter)) {
2541 enable_fqtss(adapter, true);
2545 igb_config_tx_modes(adapter, queue);
2547 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2548 enable_fqtss(adapter, false);
2551 static int igb_offload_cbs(struct igb_adapter *adapter,
2552 struct tc_cbs_qopt_offload *qopt)
2554 struct e1000_hw *hw = &adapter->hw;
2557 /* CBS offloading is only supported by i210 controller. */
2558 if (hw->mac.type != e1000_i210)
2561 /* CBS offloading is only supported by queue 0 and queue 1. */
2562 if (qopt->queue < 0 || qopt->queue > 1)
2565 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2566 qopt->idleslope, qopt->sendslope,
2567 qopt->hicredit, qopt->locredit);
2571 igb_offload_apply(adapter, qopt->queue);
2576 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2577 #define VLAN_PRIO_FULL_MASK (0x07)
2579 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2580 struct tc_cls_flower_offload *f,
2582 struct igb_nfc_filter *input)
2584 struct flow_rule *rule = tc_cls_flower_offload_flow_rule(f);
2585 struct flow_dissector *dissector = rule->match.dissector;
2586 struct netlink_ext_ack *extack = f->common.extack;
2588 if (dissector->used_keys &
2589 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2590 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2591 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2592 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2593 NL_SET_ERR_MSG_MOD(extack,
2594 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2598 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2599 struct flow_match_eth_addrs match;
2601 flow_rule_match_eth_addrs(rule, &match);
2602 if (!is_zero_ether_addr(match.mask->dst)) {
2603 if (!is_broadcast_ether_addr(match.mask->dst)) {
2604 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2608 input->filter.match_flags |=
2609 IGB_FILTER_FLAG_DST_MAC_ADDR;
2610 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2613 if (!is_zero_ether_addr(match.mask->src)) {
2614 if (!is_broadcast_ether_addr(match.mask->src)) {
2615 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2619 input->filter.match_flags |=
2620 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2621 ether_addr_copy(input->filter.src_addr, match.key->src);
2625 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2626 struct flow_match_basic match;
2628 flow_rule_match_basic(rule, &match);
2629 if (match.mask->n_proto) {
2630 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2631 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2635 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2636 input->filter.etype = match.key->n_proto;
2640 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2641 struct flow_match_vlan match;
2643 flow_rule_match_vlan(rule, &match);
2644 if (match.mask->vlan_priority) {
2645 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2646 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2650 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2651 input->filter.vlan_tci = match.key->vlan_priority;
2655 input->action = traffic_class;
2656 input->cookie = f->cookie;
2661 static int igb_configure_clsflower(struct igb_adapter *adapter,
2662 struct tc_cls_flower_offload *cls_flower)
2664 struct netlink_ext_ack *extack = cls_flower->common.extack;
2665 struct igb_nfc_filter *filter, *f;
2668 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2670 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2674 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2678 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2682 spin_lock(&adapter->nfc_lock);
2684 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2685 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2687 NL_SET_ERR_MSG_MOD(extack,
2688 "This filter is already set in ethtool");
2693 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2694 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2696 NL_SET_ERR_MSG_MOD(extack,
2697 "This filter is already set in cls_flower");
2702 err = igb_add_filter(adapter, filter);
2704 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2708 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2710 spin_unlock(&adapter->nfc_lock);
2715 spin_unlock(&adapter->nfc_lock);
2723 static int igb_delete_clsflower(struct igb_adapter *adapter,
2724 struct tc_cls_flower_offload *cls_flower)
2726 struct igb_nfc_filter *filter;
2729 spin_lock(&adapter->nfc_lock);
2731 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2732 if (filter->cookie == cls_flower->cookie)
2740 err = igb_erase_filter(adapter, filter);
2744 hlist_del(&filter->nfc_node);
2748 spin_unlock(&adapter->nfc_lock);
2753 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2754 struct tc_cls_flower_offload *cls_flower)
2756 switch (cls_flower->command) {
2757 case TC_CLSFLOWER_REPLACE:
2758 return igb_configure_clsflower(adapter, cls_flower);
2759 case TC_CLSFLOWER_DESTROY:
2760 return igb_delete_clsflower(adapter, cls_flower);
2761 case TC_CLSFLOWER_STATS:
2768 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2771 struct igb_adapter *adapter = cb_priv;
2773 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2777 case TC_SETUP_CLSFLOWER:
2778 return igb_setup_tc_cls_flower(adapter, type_data);
2785 static int igb_setup_tc_block(struct igb_adapter *adapter,
2786 struct tc_block_offload *f)
2788 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2791 switch (f->command) {
2793 return tcf_block_cb_register(f->block, igb_setup_tc_block_cb,
2794 adapter, adapter, f->extack);
2795 case TC_BLOCK_UNBIND:
2796 tcf_block_cb_unregister(f->block, igb_setup_tc_block_cb,
2804 static int igb_offload_txtime(struct igb_adapter *adapter,
2805 struct tc_etf_qopt_offload *qopt)
2807 struct e1000_hw *hw = &adapter->hw;
2810 /* Launchtime offloading is only supported by i210 controller. */
2811 if (hw->mac.type != e1000_i210)
2814 /* Launchtime offloading is only supported by queues 0 and 1. */
2815 if (qopt->queue < 0 || qopt->queue > 1)
2818 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2822 igb_offload_apply(adapter, qopt->queue);
2827 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2830 struct igb_adapter *adapter = netdev_priv(dev);
2833 case TC_SETUP_QDISC_CBS:
2834 return igb_offload_cbs(adapter, type_data);
2835 case TC_SETUP_BLOCK:
2836 return igb_setup_tc_block(adapter, type_data);
2837 case TC_SETUP_QDISC_ETF:
2838 return igb_offload_txtime(adapter, type_data);
2845 static const struct net_device_ops igb_netdev_ops = {
2846 .ndo_open = igb_open,
2847 .ndo_stop = igb_close,
2848 .ndo_start_xmit = igb_xmit_frame,
2849 .ndo_get_stats64 = igb_get_stats64,
2850 .ndo_set_rx_mode = igb_set_rx_mode,
2851 .ndo_set_mac_address = igb_set_mac,
2852 .ndo_change_mtu = igb_change_mtu,
2853 .ndo_do_ioctl = igb_ioctl,
2854 .ndo_tx_timeout = igb_tx_timeout,
2855 .ndo_validate_addr = eth_validate_addr,
2856 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2857 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2858 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2859 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2860 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2861 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2862 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
2863 .ndo_get_vf_config = igb_ndo_get_vf_config,
2864 .ndo_fix_features = igb_fix_features,
2865 .ndo_set_features = igb_set_features,
2866 .ndo_fdb_add = igb_ndo_fdb_add,
2867 .ndo_features_check = igb_features_check,
2868 .ndo_setup_tc = igb_setup_tc,
2872 * igb_set_fw_version - Configure version string for ethtool
2873 * @adapter: adapter struct
2875 void igb_set_fw_version(struct igb_adapter *adapter)
2877 struct e1000_hw *hw = &adapter->hw;
2878 struct e1000_fw_version fw;
2880 igb_get_fw_version(hw, &fw);
2882 switch (hw->mac.type) {
2885 if (!(igb_get_flash_presence_i210(hw))) {
2886 snprintf(adapter->fw_version,
2887 sizeof(adapter->fw_version),
2889 fw.invm_major, fw.invm_minor,
2895 /* if option is rom valid, display its version too */
2897 snprintf(adapter->fw_version,
2898 sizeof(adapter->fw_version),
2899 "%d.%d, 0x%08x, %d.%d.%d",
2900 fw.eep_major, fw.eep_minor, fw.etrack_id,
2901 fw.or_major, fw.or_build, fw.or_patch);
2903 } else if (fw.etrack_id != 0X0000) {
2904 snprintf(adapter->fw_version,
2905 sizeof(adapter->fw_version),
2907 fw.eep_major, fw.eep_minor, fw.etrack_id);
2909 snprintf(adapter->fw_version,
2910 sizeof(adapter->fw_version),
2912 fw.eep_major, fw.eep_minor, fw.eep_build);
2919 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2921 * @adapter: adapter struct
2923 static void igb_init_mas(struct igb_adapter *adapter)
2925 struct e1000_hw *hw = &adapter->hw;
2928 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2929 switch (hw->bus.func) {
2931 if (eeprom_data & IGB_MAS_ENABLE_0) {
2932 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2933 netdev_info(adapter->netdev,
2934 "MAS: Enabling Media Autosense for port %d\n",
2939 if (eeprom_data & IGB_MAS_ENABLE_1) {
2940 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2941 netdev_info(adapter->netdev,
2942 "MAS: Enabling Media Autosense for port %d\n",
2947 if (eeprom_data & IGB_MAS_ENABLE_2) {
2948 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2949 netdev_info(adapter->netdev,
2950 "MAS: Enabling Media Autosense for port %d\n",
2955 if (eeprom_data & IGB_MAS_ENABLE_3) {
2956 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2957 netdev_info(adapter->netdev,
2958 "MAS: Enabling Media Autosense for port %d\n",
2963 /* Shouldn't get here */
2964 netdev_err(adapter->netdev,
2965 "MAS: Invalid port configuration, returning\n");
2971 * igb_init_i2c - Init I2C interface
2972 * @adapter: pointer to adapter structure
2974 static s32 igb_init_i2c(struct igb_adapter *adapter)
2978 /* I2C interface supported on i350 devices */
2979 if (adapter->hw.mac.type != e1000_i350)
2982 /* Initialize the i2c bus which is controlled by the registers.
2983 * This bus will use the i2c_algo_bit structue that implements
2984 * the protocol through toggling of the 4 bits in the register.
2986 adapter->i2c_adap.owner = THIS_MODULE;
2987 adapter->i2c_algo = igb_i2c_algo;
2988 adapter->i2c_algo.data = adapter;
2989 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2990 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2991 strlcpy(adapter->i2c_adap.name, "igb BB",
2992 sizeof(adapter->i2c_adap.name));
2993 status = i2c_bit_add_bus(&adapter->i2c_adap);
2998 * igb_probe - Device Initialization Routine
2999 * @pdev: PCI device information struct
3000 * @ent: entry in igb_pci_tbl
3002 * Returns 0 on success, negative on failure
3004 * igb_probe initializes an adapter identified by a pci_dev structure.
3005 * The OS initialization, configuring of the adapter private structure,
3006 * and a hardware reset occur.
3008 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3010 struct net_device *netdev;
3011 struct igb_adapter *adapter;
3012 struct e1000_hw *hw;
3013 u16 eeprom_data = 0;
3015 static int global_quad_port_a; /* global quad port a indication */
3016 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3017 int err, pci_using_dac;
3018 u8 part_str[E1000_PBANUM_LENGTH];
3020 /* Catch broken hardware that put the wrong VF device ID in
3021 * the PCIe SR-IOV capability.
3023 if (pdev->is_virtfn) {
3024 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3025 pci_name(pdev), pdev->vendor, pdev->device);
3029 err = pci_enable_device_mem(pdev);
3034 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3038 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3041 "No usable DMA configuration, aborting\n");
3046 err = pci_request_mem_regions(pdev, igb_driver_name);
3050 pci_enable_pcie_error_reporting(pdev);
3052 pci_set_master(pdev);
3053 pci_save_state(pdev);
3056 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3059 goto err_alloc_etherdev;
3061 SET_NETDEV_DEV(netdev, &pdev->dev);
3063 pci_set_drvdata(pdev, netdev);
3064 adapter = netdev_priv(netdev);
3065 adapter->netdev = netdev;
3066 adapter->pdev = pdev;
3069 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3072 adapter->io_addr = pci_iomap(pdev, 0, 0);
3073 if (!adapter->io_addr)
3075 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3076 hw->hw_addr = adapter->io_addr;
3078 netdev->netdev_ops = &igb_netdev_ops;
3079 igb_set_ethtool_ops(netdev);
3080 netdev->watchdog_timeo = 5 * HZ;
3082 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3084 netdev->mem_start = pci_resource_start(pdev, 0);
3085 netdev->mem_end = pci_resource_end(pdev, 0);
3087 /* PCI config space info */
3088 hw->vendor_id = pdev->vendor;
3089 hw->device_id = pdev->device;
3090 hw->revision_id = pdev->revision;
3091 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3092 hw->subsystem_device_id = pdev->subsystem_device;
3094 /* Copy the default MAC, PHY and NVM function pointers */
3095 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3096 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3097 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3098 /* Initialize skew-specific constants */
3099 err = ei->get_invariants(hw);
3103 /* setup the private structure */
3104 err = igb_sw_init(adapter);
3108 igb_get_bus_info_pcie(hw);
3110 hw->phy.autoneg_wait_to_complete = false;
3112 /* Copper options */
3113 if (hw->phy.media_type == e1000_media_type_copper) {
3114 hw->phy.mdix = AUTO_ALL_MODES;
3115 hw->phy.disable_polarity_correction = false;
3116 hw->phy.ms_type = e1000_ms_hw_default;
3119 if (igb_check_reset_block(hw))
3120 dev_info(&pdev->dev,
3121 "PHY reset is blocked due to SOL/IDER session.\n");
3123 /* features is initialized to 0 in allocation, it might have bits
3124 * set by igb_sw_init so we should use an or instead of an
3127 netdev->features |= NETIF_F_SG |
3134 if (hw->mac.type >= e1000_82576)
3135 netdev->features |= NETIF_F_SCTP_CRC;
3137 if (hw->mac.type >= e1000_i350)
3138 netdev->features |= NETIF_F_HW_TC;
3140 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3141 NETIF_F_GSO_GRE_CSUM | \
3142 NETIF_F_GSO_IPXIP4 | \
3143 NETIF_F_GSO_IPXIP6 | \
3144 NETIF_F_GSO_UDP_TUNNEL | \
3145 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3147 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3148 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3150 /* copy netdev features into list of user selectable features */
3151 netdev->hw_features |= netdev->features |
3152 NETIF_F_HW_VLAN_CTAG_RX |
3153 NETIF_F_HW_VLAN_CTAG_TX |
3156 if (hw->mac.type >= e1000_i350)
3157 netdev->hw_features |= NETIF_F_NTUPLE;
3160 netdev->features |= NETIF_F_HIGHDMA;
3162 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3163 netdev->mpls_features |= NETIF_F_HW_CSUM;
3164 netdev->hw_enc_features |= netdev->vlan_features;
3166 /* set this bit last since it cannot be part of vlan_features */
3167 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3168 NETIF_F_HW_VLAN_CTAG_RX |
3169 NETIF_F_HW_VLAN_CTAG_TX;
3171 netdev->priv_flags |= IFF_SUPP_NOFCS;
3173 netdev->priv_flags |= IFF_UNICAST_FLT;
3175 /* MTU range: 68 - 9216 */
3176 netdev->min_mtu = ETH_MIN_MTU;
3177 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3179 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3181 /* before reading the NVM, reset the controller to put the device in a
3182 * known good starting state
3184 hw->mac.ops.reset_hw(hw);
3186 /* make sure the NVM is good , i211/i210 parts can have special NVM
3187 * that doesn't contain a checksum
3189 switch (hw->mac.type) {
3192 if (igb_get_flash_presence_i210(hw)) {
3193 if (hw->nvm.ops.validate(hw) < 0) {
3195 "The NVM Checksum Is Not Valid\n");
3202 if (hw->nvm.ops.validate(hw) < 0) {
3203 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3210 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3211 /* copy the MAC address out of the NVM */
3212 if (hw->mac.ops.read_mac_addr(hw))
3213 dev_err(&pdev->dev, "NVM Read Error\n");
3216 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3218 if (!is_valid_ether_addr(netdev->dev_addr)) {
3219 dev_err(&pdev->dev, "Invalid MAC Address\n");
3224 igb_set_default_mac_filter(adapter);
3226 /* get firmware version for ethtool -i */
3227 igb_set_fw_version(adapter);
3229 /* configure RXPBSIZE and TXPBSIZE */
3230 if (hw->mac.type == e1000_i210) {
3231 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3232 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3235 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3236 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3238 INIT_WORK(&adapter->reset_task, igb_reset_task);
3239 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3241 /* Initialize link properties that are user-changeable */
3242 adapter->fc_autoneg = true;
3243 hw->mac.autoneg = true;
3244 hw->phy.autoneg_advertised = 0x2f;
3246 hw->fc.requested_mode = e1000_fc_default;
3247 hw->fc.current_mode = e1000_fc_default;
3249 igb_validate_mdi_setting(hw);
3251 /* By default, support wake on port A */
3252 if (hw->bus.func == 0)
3253 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3255 /* Check the NVM for wake support on non-port A ports */
3256 if (hw->mac.type >= e1000_82580)
3257 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3258 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3260 else if (hw->bus.func == 1)
3261 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3263 if (eeprom_data & IGB_EEPROM_APME)
3264 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3266 /* now that we have the eeprom settings, apply the special cases where
3267 * the eeprom may be wrong or the board simply won't support wake on
3268 * lan on a particular port
3270 switch (pdev->device) {
3271 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3272 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3274 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3275 case E1000_DEV_ID_82576_FIBER:
3276 case E1000_DEV_ID_82576_SERDES:
3277 /* Wake events only supported on port A for dual fiber
3278 * regardless of eeprom setting
3280 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3281 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3283 case E1000_DEV_ID_82576_QUAD_COPPER:
3284 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3285 /* if quad port adapter, disable WoL on all but port A */
3286 if (global_quad_port_a != 0)
3287 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3289 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3290 /* Reset for multiple quad port adapters */
3291 if (++global_quad_port_a == 4)
3292 global_quad_port_a = 0;
3295 /* If the device can't wake, don't set software support */
3296 if (!device_can_wakeup(&adapter->pdev->dev))
3297 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3300 /* initialize the wol settings based on the eeprom settings */
3301 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3302 adapter->wol |= E1000_WUFC_MAG;
3304 /* Some vendors want WoL disabled by default, but still supported */
3305 if ((hw->mac.type == e1000_i350) &&
3306 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3307 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3311 /* Some vendors want the ability to Use the EEPROM setting as
3312 * enable/disable only, and not for capability
3314 if (((hw->mac.type == e1000_i350) ||
3315 (hw->mac.type == e1000_i354)) &&
3316 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3317 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3320 if (hw->mac.type == e1000_i350) {
3321 if (((pdev->subsystem_device == 0x5001) ||
3322 (pdev->subsystem_device == 0x5002)) &&
3323 (hw->bus.func == 0)) {
3324 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3327 if (pdev->subsystem_device == 0x1F52)
3328 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3331 device_set_wakeup_enable(&adapter->pdev->dev,
3332 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3334 /* reset the hardware with the new settings */
3337 /* Init the I2C interface */
3338 err = igb_init_i2c(adapter);
3340 dev_err(&pdev->dev, "failed to init i2c interface\n");
3344 /* let the f/w know that the h/w is now under the control of the
3347 igb_get_hw_control(adapter);
3349 strcpy(netdev->name, "eth%d");
3350 err = register_netdev(netdev);
3354 /* carrier off reporting is important to ethtool even BEFORE open */
3355 netif_carrier_off(netdev);
3357 #ifdef CONFIG_IGB_DCA
3358 if (dca_add_requester(&pdev->dev) == 0) {
3359 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3360 dev_info(&pdev->dev, "DCA enabled\n");
3361 igb_setup_dca(adapter);
3365 #ifdef CONFIG_IGB_HWMON
3366 /* Initialize the thermal sensor on i350 devices. */
3367 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3370 /* Read the NVM to determine if this i350 device supports an
3371 * external thermal sensor.
3373 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3374 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3375 adapter->ets = true;
3377 adapter->ets = false;
3378 if (igb_sysfs_init(adapter))
3380 "failed to allocate sysfs resources\n");
3382 adapter->ets = false;
3385 /* Check if Media Autosense is enabled */
3387 if (hw->dev_spec._82575.mas_capable)
3388 igb_init_mas(adapter);
3390 /* do hw tstamp init after resetting */
3391 igb_ptp_init(adapter);
3393 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3394 /* print bus type/speed/width info, not applicable to i354 */
3395 if (hw->mac.type != e1000_i354) {
3396 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3398 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3399 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3401 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3403 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3405 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3406 "Width x1" : "unknown"), netdev->dev_addr);
3409 if ((hw->mac.type >= e1000_i210 ||
3410 igb_get_flash_presence_i210(hw))) {
3411 ret_val = igb_read_part_string(hw, part_str,
3412 E1000_PBANUM_LENGTH);
3414 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3418 strcpy(part_str, "Unknown");
3419 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3420 dev_info(&pdev->dev,
3421 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3422 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3423 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3424 adapter->num_rx_queues, adapter->num_tx_queues);
3425 if (hw->phy.media_type == e1000_media_type_copper) {
3426 switch (hw->mac.type) {
3430 /* Enable EEE for internal copper PHY devices */
3431 err = igb_set_eee_i350(hw, true, true);
3433 (!hw->dev_spec._82575.eee_disable)) {
3434 adapter->eee_advert =
3435 MDIO_EEE_100TX | MDIO_EEE_1000T;
3436 adapter->flags |= IGB_FLAG_EEE;
3440 if ((rd32(E1000_CTRL_EXT) &
3441 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3442 err = igb_set_eee_i354(hw, true, true);
3444 (!hw->dev_spec._82575.eee_disable)) {
3445 adapter->eee_advert =
3446 MDIO_EEE_100TX | MDIO_EEE_1000T;
3447 adapter->flags |= IGB_FLAG_EEE;
3455 pm_runtime_put_noidle(&pdev->dev);
3459 igb_release_hw_control(adapter);
3460 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3462 if (!igb_check_reset_block(hw))
3465 if (hw->flash_address)
3466 iounmap(hw->flash_address);
3468 kfree(adapter->mac_table);
3469 kfree(adapter->shadow_vfta);
3470 igb_clear_interrupt_scheme(adapter);
3471 #ifdef CONFIG_PCI_IOV
3472 igb_disable_sriov(pdev);
3474 pci_iounmap(pdev, adapter->io_addr);
3476 free_netdev(netdev);
3478 pci_release_mem_regions(pdev);
3481 pci_disable_device(pdev);
3485 #ifdef CONFIG_PCI_IOV
3486 static int igb_disable_sriov(struct pci_dev *pdev)
3488 struct net_device *netdev = pci_get_drvdata(pdev);
3489 struct igb_adapter *adapter = netdev_priv(netdev);
3490 struct e1000_hw *hw = &adapter->hw;
3492 /* reclaim resources allocated to VFs */
3493 if (adapter->vf_data) {
3494 /* disable iov and allow time for transactions to clear */
3495 if (pci_vfs_assigned(pdev)) {
3496 dev_warn(&pdev->dev,
3497 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3500 pci_disable_sriov(pdev);
3504 kfree(adapter->vf_mac_list);
3505 adapter->vf_mac_list = NULL;
3506 kfree(adapter->vf_data);
3507 adapter->vf_data = NULL;
3508 adapter->vfs_allocated_count = 0;
3509 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3512 dev_info(&pdev->dev, "IOV Disabled\n");
3514 /* Re-enable DMA Coalescing flag since IOV is turned off */
3515 adapter->flags |= IGB_FLAG_DMAC;
3521 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3523 struct net_device *netdev = pci_get_drvdata(pdev);
3524 struct igb_adapter *adapter = netdev_priv(netdev);
3525 int old_vfs = pci_num_vf(pdev);
3526 struct vf_mac_filter *mac_list;
3528 int num_vf_mac_filters, i;
3530 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3538 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3540 adapter->vfs_allocated_count = old_vfs;
3542 adapter->vfs_allocated_count = num_vfs;
3544 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3545 sizeof(struct vf_data_storage), GFP_KERNEL);
3547 /* if allocation failed then we do not support SR-IOV */
3548 if (!adapter->vf_data) {
3549 adapter->vfs_allocated_count = 0;
3554 /* Due to the limited number of RAR entries calculate potential
3555 * number of MAC filters available for the VFs. Reserve entries
3556 * for PF default MAC, PF MAC filters and at least one RAR entry
3557 * for each VF for VF MAC.
3559 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3560 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3561 adapter->vfs_allocated_count);
3563 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3564 sizeof(struct vf_mac_filter),
3567 mac_list = adapter->vf_mac_list;
3568 INIT_LIST_HEAD(&adapter->vf_macs.l);
3570 if (adapter->vf_mac_list) {
3571 /* Initialize list of VF MAC filters */
3572 for (i = 0; i < num_vf_mac_filters; i++) {
3574 mac_list->free = true;
3575 list_add(&mac_list->l, &adapter->vf_macs.l);
3579 /* If we could not allocate memory for the VF MAC filters
3580 * we can continue without this feature but warn user.
3583 "Unable to allocate memory for VF MAC filter list\n");
3586 /* only call pci_enable_sriov() if no VFs are allocated already */
3588 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3592 dev_info(&pdev->dev, "%d VFs allocated\n",
3593 adapter->vfs_allocated_count);
3594 for (i = 0; i < adapter->vfs_allocated_count; i++)
3595 igb_vf_configure(adapter, i);
3597 /* DMA Coalescing is not supported in IOV mode. */
3598 adapter->flags &= ~IGB_FLAG_DMAC;
3602 kfree(adapter->vf_mac_list);
3603 adapter->vf_mac_list = NULL;
3604 kfree(adapter->vf_data);
3605 adapter->vf_data = NULL;
3606 adapter->vfs_allocated_count = 0;
3613 * igb_remove_i2c - Cleanup I2C interface
3614 * @adapter: pointer to adapter structure
3616 static void igb_remove_i2c(struct igb_adapter *adapter)
3618 /* free the adapter bus structure */
3619 i2c_del_adapter(&adapter->i2c_adap);
3623 * igb_remove - Device Removal Routine
3624 * @pdev: PCI device information struct
3626 * igb_remove is called by the PCI subsystem to alert the driver
3627 * that it should release a PCI device. The could be caused by a
3628 * Hot-Plug event, or because the driver is going to be removed from
3631 static void igb_remove(struct pci_dev *pdev)
3633 struct net_device *netdev = pci_get_drvdata(pdev);
3634 struct igb_adapter *adapter = netdev_priv(netdev);
3635 struct e1000_hw *hw = &adapter->hw;
3637 pm_runtime_get_noresume(&pdev->dev);
3638 #ifdef CONFIG_IGB_HWMON
3639 igb_sysfs_exit(adapter);
3641 igb_remove_i2c(adapter);
3642 igb_ptp_stop(adapter);
3643 /* The watchdog timer may be rescheduled, so explicitly
3644 * disable watchdog from being rescheduled.
3646 set_bit(__IGB_DOWN, &adapter->state);
3647 del_timer_sync(&adapter->watchdog_timer);
3648 del_timer_sync(&adapter->phy_info_timer);
3650 cancel_work_sync(&adapter->reset_task);
3651 cancel_work_sync(&adapter->watchdog_task);
3653 #ifdef CONFIG_IGB_DCA
3654 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3655 dev_info(&pdev->dev, "DCA disabled\n");
3656 dca_remove_requester(&pdev->dev);
3657 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3658 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3662 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3663 * would have already happened in close and is redundant.
3665 igb_release_hw_control(adapter);
3667 #ifdef CONFIG_PCI_IOV
3668 igb_disable_sriov(pdev);
3671 unregister_netdev(netdev);
3673 igb_clear_interrupt_scheme(adapter);
3675 pci_iounmap(pdev, adapter->io_addr);
3676 if (hw->flash_address)
3677 iounmap(hw->flash_address);
3678 pci_release_mem_regions(pdev);
3680 kfree(adapter->mac_table);
3681 kfree(adapter->shadow_vfta);
3682 free_netdev(netdev);
3684 pci_disable_pcie_error_reporting(pdev);
3686 pci_disable_device(pdev);
3690 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3691 * @adapter: board private structure to initialize
3693 * This function initializes the vf specific data storage and then attempts to
3694 * allocate the VFs. The reason for ordering it this way is because it is much
3695 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3696 * the memory for the VFs.
3698 static void igb_probe_vfs(struct igb_adapter *adapter)
3700 #ifdef CONFIG_PCI_IOV
3701 struct pci_dev *pdev = adapter->pdev;
3702 struct e1000_hw *hw = &adapter->hw;
3704 /* Virtualization features not supported on i210 family. */
3705 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3708 /* Of the below we really only want the effect of getting
3709 * IGB_FLAG_HAS_MSIX set (if available), without which
3710 * igb_enable_sriov() has no effect.
3712 igb_set_interrupt_capability(adapter, true);
3713 igb_reset_interrupt_capability(adapter);
3715 pci_sriov_set_totalvfs(pdev, 7);
3716 igb_enable_sriov(pdev, max_vfs);
3718 #endif /* CONFIG_PCI_IOV */
3721 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3723 struct e1000_hw *hw = &adapter->hw;
3724 unsigned int max_rss_queues;
3726 /* Determine the maximum number of RSS queues supported. */
3727 switch (hw->mac.type) {
3729 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3733 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3736 /* I350 cannot do RSS and SR-IOV at the same time */
3737 if (!!adapter->vfs_allocated_count) {
3743 if (!!adapter->vfs_allocated_count) {
3751 max_rss_queues = IGB_MAX_RX_QUEUES;
3755 return max_rss_queues;
3758 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3762 max_rss_queues = igb_get_max_rss_queues(adapter);
3763 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3765 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3768 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3769 const u32 max_rss_queues)
3771 struct e1000_hw *hw = &adapter->hw;
3773 /* Determine if we need to pair queues. */
3774 switch (hw->mac.type) {
3777 /* Device supports enough interrupts without queue pairing. */
3785 /* If rss_queues > half of max_rss_queues, pair the queues in
3786 * order to conserve interrupts due to limited supply.
3788 if (adapter->rss_queues > (max_rss_queues / 2))
3789 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3791 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3797 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3798 * @adapter: board private structure to initialize
3800 * igb_sw_init initializes the Adapter private data structure.
3801 * Fields are initialized based on PCI device information and
3802 * OS network device settings (MTU size).
3804 static int igb_sw_init(struct igb_adapter *adapter)
3806 struct e1000_hw *hw = &adapter->hw;
3807 struct net_device *netdev = adapter->netdev;
3808 struct pci_dev *pdev = adapter->pdev;
3810 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3812 /* set default ring sizes */
3813 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3814 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3816 /* set default ITR values */
3817 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3818 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3820 /* set default work limits */
3821 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3823 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3825 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3827 spin_lock_init(&adapter->nfc_lock);
3828 spin_lock_init(&adapter->stats64_lock);
3829 #ifdef CONFIG_PCI_IOV
3830 switch (hw->mac.type) {
3834 dev_warn(&pdev->dev,
3835 "Maximum of 7 VFs per PF, using max\n");
3836 max_vfs = adapter->vfs_allocated_count = 7;
3838 adapter->vfs_allocated_count = max_vfs;
3839 if (adapter->vfs_allocated_count)
3840 dev_warn(&pdev->dev,
3841 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3846 #endif /* CONFIG_PCI_IOV */
3848 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3849 adapter->flags |= IGB_FLAG_HAS_MSIX;
3851 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3852 sizeof(struct igb_mac_addr),
3854 if (!adapter->mac_table)
3857 igb_probe_vfs(adapter);
3859 igb_init_queue_configuration(adapter);
3861 /* Setup and initialize a copy of the hw vlan table array */
3862 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3864 if (!adapter->shadow_vfta)
3867 /* This call may decrease the number of queues */
3868 if (igb_init_interrupt_scheme(adapter, true)) {
3869 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3873 /* Explicitly disable IRQ since the NIC can be in any state. */
3874 igb_irq_disable(adapter);
3876 if (hw->mac.type >= e1000_i350)
3877 adapter->flags &= ~IGB_FLAG_DMAC;
3879 set_bit(__IGB_DOWN, &adapter->state);
3884 * igb_open - Called when a network interface is made active
3885 * @netdev: network interface device structure
3887 * Returns 0 on success, negative value on failure
3889 * The open entry point is called when a network interface is made
3890 * active by the system (IFF_UP). At this point all resources needed
3891 * for transmit and receive operations are allocated, the interrupt
3892 * handler is registered with the OS, the watchdog timer is started,
3893 * and the stack is notified that the interface is ready.
3895 static int __igb_open(struct net_device *netdev, bool resuming)
3897 struct igb_adapter *adapter = netdev_priv(netdev);
3898 struct e1000_hw *hw = &adapter->hw;
3899 struct pci_dev *pdev = adapter->pdev;
3903 /* disallow open during test */
3904 if (test_bit(__IGB_TESTING, &adapter->state)) {
3910 pm_runtime_get_sync(&pdev->dev);
3912 netif_carrier_off(netdev);
3914 /* allocate transmit descriptors */
3915 err = igb_setup_all_tx_resources(adapter);
3919 /* allocate receive descriptors */
3920 err = igb_setup_all_rx_resources(adapter);
3924 igb_power_up_link(adapter);
3926 /* before we allocate an interrupt, we must be ready to handle it.
3927 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3928 * as soon as we call pci_request_irq, so we have to setup our
3929 * clean_rx handler before we do so.
3931 igb_configure(adapter);
3933 err = igb_request_irq(adapter);
3937 /* Notify the stack of the actual queue counts. */
3938 err = netif_set_real_num_tx_queues(adapter->netdev,
3939 adapter->num_tx_queues);
3941 goto err_set_queues;
3943 err = netif_set_real_num_rx_queues(adapter->netdev,
3944 adapter->num_rx_queues);
3946 goto err_set_queues;
3948 /* From here on the code is the same as igb_up() */
3949 clear_bit(__IGB_DOWN, &adapter->state);
3951 for (i = 0; i < adapter->num_q_vectors; i++)
3952 napi_enable(&(adapter->q_vector[i]->napi));
3954 /* Clear any pending interrupts. */
3958 igb_irq_enable(adapter);
3960 /* notify VFs that reset has been completed */
3961 if (adapter->vfs_allocated_count) {
3962 u32 reg_data = rd32(E1000_CTRL_EXT);
3964 reg_data |= E1000_CTRL_EXT_PFRSTD;
3965 wr32(E1000_CTRL_EXT, reg_data);
3968 netif_tx_start_all_queues(netdev);
3971 pm_runtime_put(&pdev->dev);
3973 /* start the watchdog. */
3974 hw->mac.get_link_status = 1;
3975 schedule_work(&adapter->watchdog_task);
3980 igb_free_irq(adapter);
3982 igb_release_hw_control(adapter);
3983 igb_power_down_link(adapter);
3984 igb_free_all_rx_resources(adapter);
3986 igb_free_all_tx_resources(adapter);
3990 pm_runtime_put(&pdev->dev);
3995 int igb_open(struct net_device *netdev)
3997 return __igb_open(netdev, false);
4001 * igb_close - Disables a network interface
4002 * @netdev: network interface device structure
4004 * Returns 0, this is not allowed to fail
4006 * The close entry point is called when an interface is de-activated
4007 * by the OS. The hardware is still under the driver's control, but
4008 * needs to be disabled. A global MAC reset is issued to stop the
4009 * hardware, and all transmit and receive resources are freed.
4011 static int __igb_close(struct net_device *netdev, bool suspending)
4013 struct igb_adapter *adapter = netdev_priv(netdev);
4014 struct pci_dev *pdev = adapter->pdev;
4016 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4019 pm_runtime_get_sync(&pdev->dev);
4022 igb_free_irq(adapter);
4024 igb_free_all_tx_resources(adapter);
4025 igb_free_all_rx_resources(adapter);
4028 pm_runtime_put_sync(&pdev->dev);
4032 int igb_close(struct net_device *netdev)
4034 if (netif_device_present(netdev) || netdev->dismantle)
4035 return __igb_close(netdev, false);
4040 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4041 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4043 * Return 0 on success, negative on failure
4045 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4047 struct device *dev = tx_ring->dev;
4050 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4052 tx_ring->tx_buffer_info = vmalloc(size);
4053 if (!tx_ring->tx_buffer_info)
4056 /* round up to nearest 4K */
4057 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4058 tx_ring->size = ALIGN(tx_ring->size, 4096);
4060 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4061 &tx_ring->dma, GFP_KERNEL);
4065 tx_ring->next_to_use = 0;
4066 tx_ring->next_to_clean = 0;
4071 vfree(tx_ring->tx_buffer_info);
4072 tx_ring->tx_buffer_info = NULL;
4073 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4078 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4079 * (Descriptors) for all queues
4080 * @adapter: board private structure
4082 * Return 0 on success, negative on failure
4084 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4086 struct pci_dev *pdev = adapter->pdev;
4089 for (i = 0; i < adapter->num_tx_queues; i++) {
4090 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4093 "Allocation for Tx Queue %u failed\n", i);
4094 for (i--; i >= 0; i--)
4095 igb_free_tx_resources(adapter->tx_ring[i]);
4104 * igb_setup_tctl - configure the transmit control registers
4105 * @adapter: Board private structure
4107 void igb_setup_tctl(struct igb_adapter *adapter)
4109 struct e1000_hw *hw = &adapter->hw;
4112 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4113 wr32(E1000_TXDCTL(0), 0);
4115 /* Program the Transmit Control Register */
4116 tctl = rd32(E1000_TCTL);
4117 tctl &= ~E1000_TCTL_CT;
4118 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4119 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4121 igb_config_collision_dist(hw);
4123 /* Enable transmits */
4124 tctl |= E1000_TCTL_EN;
4126 wr32(E1000_TCTL, tctl);
4130 * igb_configure_tx_ring - Configure transmit ring after Reset
4131 * @adapter: board private structure
4132 * @ring: tx ring to configure
4134 * Configure a transmit ring after a reset.
4136 void igb_configure_tx_ring(struct igb_adapter *adapter,
4137 struct igb_ring *ring)
4139 struct e1000_hw *hw = &adapter->hw;
4141 u64 tdba = ring->dma;
4142 int reg_idx = ring->reg_idx;
4144 wr32(E1000_TDLEN(reg_idx),
4145 ring->count * sizeof(union e1000_adv_tx_desc));
4146 wr32(E1000_TDBAL(reg_idx),
4147 tdba & 0x00000000ffffffffULL);
4148 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4150 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4151 wr32(E1000_TDH(reg_idx), 0);
4152 writel(0, ring->tail);
4154 txdctl |= IGB_TX_PTHRESH;
4155 txdctl |= IGB_TX_HTHRESH << 8;
4156 txdctl |= IGB_TX_WTHRESH << 16;
4158 /* reinitialize tx_buffer_info */
4159 memset(ring->tx_buffer_info, 0,
4160 sizeof(struct igb_tx_buffer) * ring->count);
4162 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4163 wr32(E1000_TXDCTL(reg_idx), txdctl);
4167 * igb_configure_tx - Configure transmit Unit after Reset
4168 * @adapter: board private structure
4170 * Configure the Tx unit of the MAC after a reset.
4172 static void igb_configure_tx(struct igb_adapter *adapter)
4174 struct e1000_hw *hw = &adapter->hw;
4177 /* disable the queues */
4178 for (i = 0; i < adapter->num_tx_queues; i++)
4179 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4182 usleep_range(10000, 20000);
4184 for (i = 0; i < adapter->num_tx_queues; i++)
4185 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4189 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4190 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4192 * Returns 0 on success, negative on failure
4194 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4196 struct device *dev = rx_ring->dev;
4199 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4201 rx_ring->rx_buffer_info = vmalloc(size);
4202 if (!rx_ring->rx_buffer_info)
4205 /* Round up to nearest 4K */
4206 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4207 rx_ring->size = ALIGN(rx_ring->size, 4096);
4209 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4210 &rx_ring->dma, GFP_KERNEL);
4214 rx_ring->next_to_alloc = 0;
4215 rx_ring->next_to_clean = 0;
4216 rx_ring->next_to_use = 0;
4221 vfree(rx_ring->rx_buffer_info);
4222 rx_ring->rx_buffer_info = NULL;
4223 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4228 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4229 * (Descriptors) for all queues
4230 * @adapter: board private structure
4232 * Return 0 on success, negative on failure
4234 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4236 struct pci_dev *pdev = adapter->pdev;
4239 for (i = 0; i < adapter->num_rx_queues; i++) {
4240 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4243 "Allocation for Rx Queue %u failed\n", i);
4244 for (i--; i >= 0; i--)
4245 igb_free_rx_resources(adapter->rx_ring[i]);
4254 * igb_setup_mrqc - configure the multiple receive queue control registers
4255 * @adapter: Board private structure
4257 static void igb_setup_mrqc(struct igb_adapter *adapter)
4259 struct e1000_hw *hw = &adapter->hw;
4261 u32 j, num_rx_queues;
4264 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4265 for (j = 0; j < 10; j++)
4266 wr32(E1000_RSSRK(j), rss_key[j]);
4268 num_rx_queues = adapter->rss_queues;
4270 switch (hw->mac.type) {
4272 /* 82576 supports 2 RSS queues for SR-IOV */
4273 if (adapter->vfs_allocated_count)
4280 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4281 for (j = 0; j < IGB_RETA_SIZE; j++)
4282 adapter->rss_indir_tbl[j] =
4283 (j * num_rx_queues) / IGB_RETA_SIZE;
4284 adapter->rss_indir_tbl_init = num_rx_queues;
4286 igb_write_rss_indir_tbl(adapter);
4288 /* Disable raw packet checksumming so that RSS hash is placed in
4289 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4290 * offloads as they are enabled by default
4292 rxcsum = rd32(E1000_RXCSUM);
4293 rxcsum |= E1000_RXCSUM_PCSD;
4295 if (adapter->hw.mac.type >= e1000_82576)
4296 /* Enable Receive Checksum Offload for SCTP */
4297 rxcsum |= E1000_RXCSUM_CRCOFL;
4299 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4300 wr32(E1000_RXCSUM, rxcsum);
4302 /* Generate RSS hash based on packet types, TCP/UDP
4303 * port numbers and/or IPv4/v6 src and dst addresses
4305 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4306 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4307 E1000_MRQC_RSS_FIELD_IPV6 |
4308 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4309 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4311 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4312 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4313 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4314 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4316 /* If VMDq is enabled then we set the appropriate mode for that, else
4317 * we default to RSS so that an RSS hash is calculated per packet even
4318 * if we are only using one queue
4320 if (adapter->vfs_allocated_count) {
4321 if (hw->mac.type > e1000_82575) {
4322 /* Set the default pool for the PF's first queue */
4323 u32 vtctl = rd32(E1000_VT_CTL);
4325 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4326 E1000_VT_CTL_DISABLE_DEF_POOL);
4327 vtctl |= adapter->vfs_allocated_count <<
4328 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4329 wr32(E1000_VT_CTL, vtctl);
4331 if (adapter->rss_queues > 1)
4332 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4334 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4336 if (hw->mac.type != e1000_i211)
4337 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4339 igb_vmm_control(adapter);
4341 wr32(E1000_MRQC, mrqc);
4345 * igb_setup_rctl - configure the receive control registers
4346 * @adapter: Board private structure
4348 void igb_setup_rctl(struct igb_adapter *adapter)
4350 struct e1000_hw *hw = &adapter->hw;
4353 rctl = rd32(E1000_RCTL);
4355 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4356 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4358 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4359 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4361 /* enable stripping of CRC. It's unlikely this will break BMC
4362 * redirection as it did with e1000. Newer features require
4363 * that the HW strips the CRC.
4365 rctl |= E1000_RCTL_SECRC;
4367 /* disable store bad packets and clear size bits. */
4368 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4370 /* enable LPE to allow for reception of jumbo frames */
4371 rctl |= E1000_RCTL_LPE;
4373 /* disable queue 0 to prevent tail write w/o re-config */
4374 wr32(E1000_RXDCTL(0), 0);
4376 /* Attention!!! For SR-IOV PF driver operations you must enable
4377 * queue drop for all VF and PF queues to prevent head of line blocking
4378 * if an un-trusted VF does not provide descriptors to hardware.
4380 if (adapter->vfs_allocated_count) {
4381 /* set all queue drop enable bits */
4382 wr32(E1000_QDE, ALL_QUEUES);
4385 /* This is useful for sniffing bad packets. */
4386 if (adapter->netdev->features & NETIF_F_RXALL) {
4387 /* UPE and MPE will be handled by normal PROMISC logic
4388 * in e1000e_set_rx_mode
4390 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4391 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4392 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4394 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4395 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4396 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4397 * and that breaks VLANs.
4401 wr32(E1000_RCTL, rctl);
4404 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4407 struct e1000_hw *hw = &adapter->hw;
4410 if (size > MAX_JUMBO_FRAME_SIZE)
4411 size = MAX_JUMBO_FRAME_SIZE;
4413 vmolr = rd32(E1000_VMOLR(vfn));
4414 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4415 vmolr |= size | E1000_VMOLR_LPE;
4416 wr32(E1000_VMOLR(vfn), vmolr);
4421 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4422 int vfn, bool enable)
4424 struct e1000_hw *hw = &adapter->hw;
4427 if (hw->mac.type < e1000_82576)
4430 if (hw->mac.type == e1000_i350)
4431 reg = E1000_DVMOLR(vfn);
4433 reg = E1000_VMOLR(vfn);
4437 val |= E1000_VMOLR_STRVLAN;
4439 val &= ~(E1000_VMOLR_STRVLAN);
4443 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4446 struct e1000_hw *hw = &adapter->hw;
4449 /* This register exists only on 82576 and newer so if we are older then
4450 * we should exit and do nothing
4452 if (hw->mac.type < e1000_82576)
4455 vmolr = rd32(E1000_VMOLR(vfn));
4457 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4459 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4461 /* clear all bits that might not be set */
4462 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4464 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4465 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4466 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4469 if (vfn <= adapter->vfs_allocated_count)
4470 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4472 wr32(E1000_VMOLR(vfn), vmolr);
4476 * igb_configure_rx_ring - Configure a receive ring after Reset
4477 * @adapter: board private structure
4478 * @ring: receive ring to be configured
4480 * Configure the Rx unit of the MAC after a reset.
4482 void igb_configure_rx_ring(struct igb_adapter *adapter,
4483 struct igb_ring *ring)
4485 struct e1000_hw *hw = &adapter->hw;
4486 union e1000_adv_rx_desc *rx_desc;
4487 u64 rdba = ring->dma;
4488 int reg_idx = ring->reg_idx;
4489 u32 srrctl = 0, rxdctl = 0;
4491 /* disable the queue */
4492 wr32(E1000_RXDCTL(reg_idx), 0);
4494 /* Set DMA base address registers */
4495 wr32(E1000_RDBAL(reg_idx),
4496 rdba & 0x00000000ffffffffULL);
4497 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4498 wr32(E1000_RDLEN(reg_idx),
4499 ring->count * sizeof(union e1000_adv_rx_desc));
4501 /* initialize head and tail */
4502 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4503 wr32(E1000_RDH(reg_idx), 0);
4504 writel(0, ring->tail);
4506 /* set descriptor configuration */
4507 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4508 if (ring_uses_large_buffer(ring))
4509 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4511 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4512 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4513 if (hw->mac.type >= e1000_82580)
4514 srrctl |= E1000_SRRCTL_TIMESTAMP;
4515 /* Only set Drop Enable if we are supporting multiple queues */
4516 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4517 srrctl |= E1000_SRRCTL_DROP_EN;
4519 wr32(E1000_SRRCTL(reg_idx), srrctl);
4521 /* set filtering for VMDQ pools */
4522 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4524 rxdctl |= IGB_RX_PTHRESH;
4525 rxdctl |= IGB_RX_HTHRESH << 8;
4526 rxdctl |= IGB_RX_WTHRESH << 16;
4528 /* initialize rx_buffer_info */
4529 memset(ring->rx_buffer_info, 0,
4530 sizeof(struct igb_rx_buffer) * ring->count);
4532 /* initialize Rx descriptor 0 */
4533 rx_desc = IGB_RX_DESC(ring, 0);
4534 rx_desc->wb.upper.length = 0;
4536 /* enable receive descriptor fetching */
4537 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4538 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4541 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4542 struct igb_ring *rx_ring)
4544 /* set build_skb and buffer size flags */
4545 clear_ring_build_skb_enabled(rx_ring);
4546 clear_ring_uses_large_buffer(rx_ring);
4548 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4551 set_ring_build_skb_enabled(rx_ring);
4553 #if (PAGE_SIZE < 8192)
4554 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4557 set_ring_uses_large_buffer(rx_ring);
4562 * igb_configure_rx - Configure receive Unit after Reset
4563 * @adapter: board private structure
4565 * Configure the Rx unit of the MAC after a reset.
4567 static void igb_configure_rx(struct igb_adapter *adapter)
4571 /* set the correct pool for the PF default MAC address in entry 0 */
4572 igb_set_default_mac_filter(adapter);
4574 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4575 * the Base and Length of the Rx Descriptor Ring
4577 for (i = 0; i < adapter->num_rx_queues; i++) {
4578 struct igb_ring *rx_ring = adapter->rx_ring[i];
4580 igb_set_rx_buffer_len(adapter, rx_ring);
4581 igb_configure_rx_ring(adapter, rx_ring);
4586 * igb_free_tx_resources - Free Tx Resources per Queue
4587 * @tx_ring: Tx descriptor ring for a specific queue
4589 * Free all transmit software resources
4591 void igb_free_tx_resources(struct igb_ring *tx_ring)
4593 igb_clean_tx_ring(tx_ring);
4595 vfree(tx_ring->tx_buffer_info);
4596 tx_ring->tx_buffer_info = NULL;
4598 /* if not set, then don't free */
4602 dma_free_coherent(tx_ring->dev, tx_ring->size,
4603 tx_ring->desc, tx_ring->dma);
4605 tx_ring->desc = NULL;
4609 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4610 * @adapter: board private structure
4612 * Free all transmit software resources
4614 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4618 for (i = 0; i < adapter->num_tx_queues; i++)
4619 if (adapter->tx_ring[i])
4620 igb_free_tx_resources(adapter->tx_ring[i]);
4624 * igb_clean_tx_ring - Free Tx Buffers
4625 * @tx_ring: ring to be cleaned
4627 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4629 u16 i = tx_ring->next_to_clean;
4630 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4632 while (i != tx_ring->next_to_use) {
4633 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4635 /* Free all the Tx ring sk_buffs */
4636 dev_kfree_skb_any(tx_buffer->skb);
4638 /* unmap skb header data */
4639 dma_unmap_single(tx_ring->dev,
4640 dma_unmap_addr(tx_buffer, dma),
4641 dma_unmap_len(tx_buffer, len),
4644 /* check for eop_desc to determine the end of the packet */
4645 eop_desc = tx_buffer->next_to_watch;
4646 tx_desc = IGB_TX_DESC(tx_ring, i);
4648 /* unmap remaining buffers */
4649 while (tx_desc != eop_desc) {
4653 if (unlikely(i == tx_ring->count)) {
4655 tx_buffer = tx_ring->tx_buffer_info;
4656 tx_desc = IGB_TX_DESC(tx_ring, 0);
4659 /* unmap any remaining paged data */
4660 if (dma_unmap_len(tx_buffer, len))
4661 dma_unmap_page(tx_ring->dev,
4662 dma_unmap_addr(tx_buffer, dma),
4663 dma_unmap_len(tx_buffer, len),
4667 /* move us one more past the eop_desc for start of next pkt */
4670 if (unlikely(i == tx_ring->count)) {
4672 tx_buffer = tx_ring->tx_buffer_info;
4676 /* reset BQL for queue */
4677 netdev_tx_reset_queue(txring_txq(tx_ring));
4679 /* reset next_to_use and next_to_clean */
4680 tx_ring->next_to_use = 0;
4681 tx_ring->next_to_clean = 0;
4685 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4686 * @adapter: board private structure
4688 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4692 for (i = 0; i < adapter->num_tx_queues; i++)
4693 if (adapter->tx_ring[i])
4694 igb_clean_tx_ring(adapter->tx_ring[i]);
4698 * igb_free_rx_resources - Free Rx Resources
4699 * @rx_ring: ring to clean the resources from
4701 * Free all receive software resources
4703 void igb_free_rx_resources(struct igb_ring *rx_ring)
4705 igb_clean_rx_ring(rx_ring);
4707 vfree(rx_ring->rx_buffer_info);
4708 rx_ring->rx_buffer_info = NULL;
4710 /* if not set, then don't free */
4714 dma_free_coherent(rx_ring->dev, rx_ring->size,
4715 rx_ring->desc, rx_ring->dma);
4717 rx_ring->desc = NULL;
4721 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4722 * @adapter: board private structure
4724 * Free all receive software resources
4726 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4730 for (i = 0; i < adapter->num_rx_queues; i++)
4731 if (adapter->rx_ring[i])
4732 igb_free_rx_resources(adapter->rx_ring[i]);
4736 * igb_clean_rx_ring - Free Rx Buffers per Queue
4737 * @rx_ring: ring to free buffers from
4739 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4741 u16 i = rx_ring->next_to_clean;
4744 dev_kfree_skb(rx_ring->skb);
4745 rx_ring->skb = NULL;
4747 /* Free all the Rx ring sk_buffs */
4748 while (i != rx_ring->next_to_alloc) {
4749 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4751 /* Invalidate cache lines that may have been written to by
4752 * device so that we avoid corrupting memory.
4754 dma_sync_single_range_for_cpu(rx_ring->dev,
4756 buffer_info->page_offset,
4757 igb_rx_bufsz(rx_ring),
4760 /* free resources associated with mapping */
4761 dma_unmap_page_attrs(rx_ring->dev,
4763 igb_rx_pg_size(rx_ring),
4766 __page_frag_cache_drain(buffer_info->page,
4767 buffer_info->pagecnt_bias);
4770 if (i == rx_ring->count)
4774 rx_ring->next_to_alloc = 0;
4775 rx_ring->next_to_clean = 0;
4776 rx_ring->next_to_use = 0;
4780 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4781 * @adapter: board private structure
4783 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4787 for (i = 0; i < adapter->num_rx_queues; i++)
4788 if (adapter->rx_ring[i])
4789 igb_clean_rx_ring(adapter->rx_ring[i]);
4793 * igb_set_mac - Change the Ethernet Address of the NIC
4794 * @netdev: network interface device structure
4795 * @p: pointer to an address structure
4797 * Returns 0 on success, negative on failure
4799 static int igb_set_mac(struct net_device *netdev, void *p)
4801 struct igb_adapter *adapter = netdev_priv(netdev);
4802 struct e1000_hw *hw = &adapter->hw;
4803 struct sockaddr *addr = p;
4805 if (!is_valid_ether_addr(addr->sa_data))
4806 return -EADDRNOTAVAIL;
4808 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4809 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4811 /* set the correct pool for the new PF MAC address in entry 0 */
4812 igb_set_default_mac_filter(adapter);
4818 * igb_write_mc_addr_list - write multicast addresses to MTA
4819 * @netdev: network interface device structure
4821 * Writes multicast address list to the MTA hash table.
4822 * Returns: -ENOMEM on failure
4823 * 0 on no addresses written
4824 * X on writing X addresses to MTA
4826 static int igb_write_mc_addr_list(struct net_device *netdev)
4828 struct igb_adapter *adapter = netdev_priv(netdev);
4829 struct e1000_hw *hw = &adapter->hw;
4830 struct netdev_hw_addr *ha;
4834 if (netdev_mc_empty(netdev)) {
4835 /* nothing to program, so clear mc list */
4836 igb_update_mc_addr_list(hw, NULL, 0);
4837 igb_restore_vf_multicasts(adapter);
4841 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4845 /* The shared function expects a packed array of only addresses. */
4847 netdev_for_each_mc_addr(ha, netdev)
4848 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4850 igb_update_mc_addr_list(hw, mta_list, i);
4853 return netdev_mc_count(netdev);
4856 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4858 struct e1000_hw *hw = &adapter->hw;
4861 switch (hw->mac.type) {
4865 /* VLAN filtering needed for VLAN prio filter */
4866 if (adapter->netdev->features & NETIF_F_NTUPLE)
4872 /* VLAN filtering needed for pool filtering */
4873 if (adapter->vfs_allocated_count)
4880 /* We are already in VLAN promisc, nothing to do */
4881 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4884 if (!adapter->vfs_allocated_count)
4887 /* Add PF to all active pools */
4888 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4890 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4891 u32 vlvf = rd32(E1000_VLVF(i));
4894 wr32(E1000_VLVF(i), vlvf);
4898 /* Set all bits in the VLAN filter table array */
4899 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4900 hw->mac.ops.write_vfta(hw, i, ~0U);
4902 /* Set flag so we don't redo unnecessary work */
4903 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4908 #define VFTA_BLOCK_SIZE 8
4909 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4911 struct e1000_hw *hw = &adapter->hw;
4912 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4913 u32 vid_start = vfta_offset * 32;
4914 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4915 u32 i, vid, word, bits, pf_id;
4917 /* guarantee that we don't scrub out management VLAN */
4918 vid = adapter->mng_vlan_id;
4919 if (vid >= vid_start && vid < vid_end)
4920 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4922 if (!adapter->vfs_allocated_count)
4925 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4927 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4928 u32 vlvf = rd32(E1000_VLVF(i));
4930 /* pull VLAN ID from VLVF */
4931 vid = vlvf & VLAN_VID_MASK;
4933 /* only concern ourselves with a certain range */
4934 if (vid < vid_start || vid >= vid_end)
4937 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4938 /* record VLAN ID in VFTA */
4939 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4941 /* if PF is part of this then continue */
4942 if (test_bit(vid, adapter->active_vlans))
4946 /* remove PF from the pool */
4948 bits &= rd32(E1000_VLVF(i));
4949 wr32(E1000_VLVF(i), bits);
4953 /* extract values from active_vlans and write back to VFTA */
4954 for (i = VFTA_BLOCK_SIZE; i--;) {
4955 vid = (vfta_offset + i) * 32;
4956 word = vid / BITS_PER_LONG;
4957 bits = vid % BITS_PER_LONG;
4959 vfta[i] |= adapter->active_vlans[word] >> bits;
4961 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4965 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4969 /* We are not in VLAN promisc, nothing to do */
4970 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4973 /* Set flag so we don't redo unnecessary work */
4974 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4976 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4977 igb_scrub_vfta(adapter, i);
4981 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4982 * @netdev: network interface device structure
4984 * The set_rx_mode entry point is called whenever the unicast or multicast
4985 * address lists or the network interface flags are updated. This routine is
4986 * responsible for configuring the hardware for proper unicast, multicast,
4987 * promiscuous mode, and all-multi behavior.
4989 static void igb_set_rx_mode(struct net_device *netdev)
4991 struct igb_adapter *adapter = netdev_priv(netdev);
4992 struct e1000_hw *hw = &adapter->hw;
4993 unsigned int vfn = adapter->vfs_allocated_count;
4994 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4997 /* Check for Promiscuous and All Multicast modes */
4998 if (netdev->flags & IFF_PROMISC) {
4999 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5000 vmolr |= E1000_VMOLR_MPME;
5002 /* enable use of UTA filter to force packets to default pool */
5003 if (hw->mac.type == e1000_82576)
5004 vmolr |= E1000_VMOLR_ROPE;
5006 if (netdev->flags & IFF_ALLMULTI) {
5007 rctl |= E1000_RCTL_MPE;
5008 vmolr |= E1000_VMOLR_MPME;
5010 /* Write addresses to the MTA, if the attempt fails
5011 * then we should just turn on promiscuous mode so
5012 * that we can at least receive multicast traffic
5014 count = igb_write_mc_addr_list(netdev);
5016 rctl |= E1000_RCTL_MPE;
5017 vmolr |= E1000_VMOLR_MPME;
5019 vmolr |= E1000_VMOLR_ROMPE;
5024 /* Write addresses to available RAR registers, if there is not
5025 * sufficient space to store all the addresses then enable
5026 * unicast promiscuous mode
5028 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5029 rctl |= E1000_RCTL_UPE;
5030 vmolr |= E1000_VMOLR_ROPE;
5033 /* enable VLAN filtering by default */
5034 rctl |= E1000_RCTL_VFE;
5036 /* disable VLAN filtering for modes that require it */
5037 if ((netdev->flags & IFF_PROMISC) ||
5038 (netdev->features & NETIF_F_RXALL)) {
5039 /* if we fail to set all rules then just clear VFE */
5040 if (igb_vlan_promisc_enable(adapter))
5041 rctl &= ~E1000_RCTL_VFE;
5043 igb_vlan_promisc_disable(adapter);
5046 /* update state of unicast, multicast, and VLAN filtering modes */
5047 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5049 wr32(E1000_RCTL, rctl);
5051 #if (PAGE_SIZE < 8192)
5052 if (!adapter->vfs_allocated_count) {
5053 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5054 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5057 wr32(E1000_RLPML, rlpml);
5059 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5060 * the VMOLR to enable the appropriate modes. Without this workaround
5061 * we will have issues with VLAN tag stripping not being done for frames
5062 * that are only arriving because we are the default pool
5064 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5067 /* set UTA to appropriate mode */
5068 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5070 vmolr |= rd32(E1000_VMOLR(vfn)) &
5071 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5073 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5074 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5075 #if (PAGE_SIZE < 8192)
5076 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5077 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5080 vmolr |= MAX_JUMBO_FRAME_SIZE;
5081 vmolr |= E1000_VMOLR_LPE;
5083 wr32(E1000_VMOLR(vfn), vmolr);
5085 igb_restore_vf_multicasts(adapter);
5088 static void igb_check_wvbr(struct igb_adapter *adapter)
5090 struct e1000_hw *hw = &adapter->hw;
5093 switch (hw->mac.type) {
5096 wvbr = rd32(E1000_WVBR);
5104 adapter->wvbr |= wvbr;
5107 #define IGB_STAGGERED_QUEUE_OFFSET 8
5109 static void igb_spoof_check(struct igb_adapter *adapter)
5116 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5117 if (adapter->wvbr & BIT(j) ||
5118 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5119 dev_warn(&adapter->pdev->dev,
5120 "Spoof event(s) detected on VF %d\n", j);
5123 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5128 /* Need to wait a few seconds after link up to get diagnostic information from
5131 static void igb_update_phy_info(struct timer_list *t)
5133 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5134 igb_get_phy_info(&adapter->hw);
5138 * igb_has_link - check shared code for link and determine up/down
5139 * @adapter: pointer to driver private info
5141 bool igb_has_link(struct igb_adapter *adapter)
5143 struct e1000_hw *hw = &adapter->hw;
5144 bool link_active = false;
5146 /* get_link_status is set on LSC (link status) interrupt or
5147 * rx sequence error interrupt. get_link_status will stay
5148 * false until the e1000_check_for_link establishes link
5149 * for copper adapters ONLY
5151 switch (hw->phy.media_type) {
5152 case e1000_media_type_copper:
5153 if (!hw->mac.get_link_status)
5156 case e1000_media_type_internal_serdes:
5157 hw->mac.ops.check_for_link(hw);
5158 link_active = !hw->mac.get_link_status;
5161 case e1000_media_type_unknown:
5165 if (((hw->mac.type == e1000_i210) ||
5166 (hw->mac.type == e1000_i211)) &&
5167 (hw->phy.id == I210_I_PHY_ID)) {
5168 if (!netif_carrier_ok(adapter->netdev)) {
5169 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5170 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5171 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5172 adapter->link_check_timeout = jiffies;
5179 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5182 u32 ctrl_ext, thstat;
5184 /* check for thermal sensor event on i350 copper only */
5185 if (hw->mac.type == e1000_i350) {
5186 thstat = rd32(E1000_THSTAT);
5187 ctrl_ext = rd32(E1000_CTRL_EXT);
5189 if ((hw->phy.media_type == e1000_media_type_copper) &&
5190 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5191 ret = !!(thstat & event);
5198 * igb_check_lvmmc - check for malformed packets received
5199 * and indicated in LVMMC register
5200 * @adapter: pointer to adapter
5202 static void igb_check_lvmmc(struct igb_adapter *adapter)
5204 struct e1000_hw *hw = &adapter->hw;
5207 lvmmc = rd32(E1000_LVMMC);
5209 if (unlikely(net_ratelimit())) {
5210 netdev_warn(adapter->netdev,
5211 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5218 * igb_watchdog - Timer Call-back
5219 * @data: pointer to adapter cast into an unsigned long
5221 static void igb_watchdog(struct timer_list *t)
5223 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5224 /* Do the rest outside of interrupt context */
5225 schedule_work(&adapter->watchdog_task);
5228 static void igb_watchdog_task(struct work_struct *work)
5230 struct igb_adapter *adapter = container_of(work,
5233 struct e1000_hw *hw = &adapter->hw;
5234 struct e1000_phy_info *phy = &hw->phy;
5235 struct net_device *netdev = adapter->netdev;
5239 u16 phy_data, retry_count = 20;
5241 link = igb_has_link(adapter);
5243 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5244 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5245 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5250 /* Force link down if we have fiber to swap to */
5251 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5252 if (hw->phy.media_type == e1000_media_type_copper) {
5253 connsw = rd32(E1000_CONNSW);
5254 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5259 /* Perform a reset if the media type changed. */
5260 if (hw->dev_spec._82575.media_changed) {
5261 hw->dev_spec._82575.media_changed = false;
5262 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5265 /* Cancel scheduled suspend requests. */
5266 pm_runtime_resume(netdev->dev.parent);
5268 if (!netif_carrier_ok(netdev)) {
5271 hw->mac.ops.get_speed_and_duplex(hw,
5272 &adapter->link_speed,
5273 &adapter->link_duplex);
5275 ctrl = rd32(E1000_CTRL);
5276 /* Links status message must follow this format */
5278 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5280 adapter->link_speed,
5281 adapter->link_duplex == FULL_DUPLEX ?
5283 (ctrl & E1000_CTRL_TFCE) &&
5284 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5285 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5286 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5288 /* disable EEE if enabled */
5289 if ((adapter->flags & IGB_FLAG_EEE) &&
5290 (adapter->link_duplex == HALF_DUPLEX)) {
5291 dev_info(&adapter->pdev->dev,
5292 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5293 adapter->hw.dev_spec._82575.eee_disable = true;
5294 adapter->flags &= ~IGB_FLAG_EEE;
5297 /* check if SmartSpeed worked */
5298 igb_check_downshift(hw);
5299 if (phy->speed_downgraded)
5300 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5302 /* check for thermal sensor event */
5303 if (igb_thermal_sensor_event(hw,
5304 E1000_THSTAT_LINK_THROTTLE))
5305 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5307 /* adjust timeout factor according to speed/duplex */
5308 adapter->tx_timeout_factor = 1;
5309 switch (adapter->link_speed) {
5311 adapter->tx_timeout_factor = 14;
5314 /* maybe add some timeout factor ? */
5318 if (adapter->link_speed != SPEED_1000)
5321 /* wait for Remote receiver status OK */
5323 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5325 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5329 goto retry_read_status;
5330 } else if (!retry_count) {
5331 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5334 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5337 netif_carrier_on(netdev);
5339 igb_ping_all_vfs(adapter);
5340 igb_check_vf_rate_limit(adapter);
5342 /* link state has changed, schedule phy info update */
5343 if (!test_bit(__IGB_DOWN, &adapter->state))
5344 mod_timer(&adapter->phy_info_timer,
5345 round_jiffies(jiffies + 2 * HZ));
5348 if (netif_carrier_ok(netdev)) {
5349 adapter->link_speed = 0;
5350 adapter->link_duplex = 0;
5352 /* check for thermal sensor event */
5353 if (igb_thermal_sensor_event(hw,
5354 E1000_THSTAT_PWR_DOWN)) {
5355 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5358 /* Links status message must follow this format */
5359 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5361 netif_carrier_off(netdev);
5363 igb_ping_all_vfs(adapter);
5365 /* link state has changed, schedule phy info update */
5366 if (!test_bit(__IGB_DOWN, &adapter->state))
5367 mod_timer(&adapter->phy_info_timer,
5368 round_jiffies(jiffies + 2 * HZ));
5370 /* link is down, time to check for alternate media */
5371 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5372 igb_check_swap_media(adapter);
5373 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5374 schedule_work(&adapter->reset_task);
5375 /* return immediately */
5379 pm_schedule_suspend(netdev->dev.parent,
5382 /* also check for alternate media here */
5383 } else if (!netif_carrier_ok(netdev) &&
5384 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5385 igb_check_swap_media(adapter);
5386 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5387 schedule_work(&adapter->reset_task);
5388 /* return immediately */
5394 spin_lock(&adapter->stats64_lock);
5395 igb_update_stats(adapter);
5396 spin_unlock(&adapter->stats64_lock);
5398 for (i = 0; i < adapter->num_tx_queues; i++) {
5399 struct igb_ring *tx_ring = adapter->tx_ring[i];
5400 if (!netif_carrier_ok(netdev)) {
5401 /* We've lost link, so the controller stops DMA,
5402 * but we've got queued Tx work that's never going
5403 * to get done, so reset controller to flush Tx.
5404 * (Do the reset outside of interrupt context).
5406 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5407 adapter->tx_timeout_count++;
5408 schedule_work(&adapter->reset_task);
5409 /* return immediately since reset is imminent */
5414 /* Force detection of hung controller every watchdog period */
5415 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5418 /* Cause software interrupt to ensure Rx ring is cleaned */
5419 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5422 for (i = 0; i < adapter->num_q_vectors; i++)
5423 eics |= adapter->q_vector[i]->eims_value;
5424 wr32(E1000_EICS, eics);
5426 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5429 igb_spoof_check(adapter);
5430 igb_ptp_rx_hang(adapter);
5431 igb_ptp_tx_hang(adapter);
5433 /* Check LVMMC register on i350/i354 only */
5434 if ((adapter->hw.mac.type == e1000_i350) ||
5435 (adapter->hw.mac.type == e1000_i354))
5436 igb_check_lvmmc(adapter);
5438 /* Reset the timer */
5439 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5440 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5441 mod_timer(&adapter->watchdog_timer,
5442 round_jiffies(jiffies + HZ));
5444 mod_timer(&adapter->watchdog_timer,
5445 round_jiffies(jiffies + 2 * HZ));
5449 enum latency_range {
5453 latency_invalid = 255
5457 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5458 * @q_vector: pointer to q_vector
5460 * Stores a new ITR value based on strictly on packet size. This
5461 * algorithm is less sophisticated than that used in igb_update_itr,
5462 * due to the difficulty of synchronizing statistics across multiple
5463 * receive rings. The divisors and thresholds used by this function
5464 * were determined based on theoretical maximum wire speed and testing
5465 * data, in order to minimize response time while increasing bulk
5467 * This functionality is controlled by ethtool's coalescing settings.
5468 * NOTE: This function is called only when operating in a multiqueue
5469 * receive environment.
5471 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5473 int new_val = q_vector->itr_val;
5474 int avg_wire_size = 0;
5475 struct igb_adapter *adapter = q_vector->adapter;
5476 unsigned int packets;
5478 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5479 * ints/sec - ITR timer value of 120 ticks.
5481 if (adapter->link_speed != SPEED_1000) {
5482 new_val = IGB_4K_ITR;
5486 packets = q_vector->rx.total_packets;
5488 avg_wire_size = q_vector->rx.total_bytes / packets;
5490 packets = q_vector->tx.total_packets;
5492 avg_wire_size = max_t(u32, avg_wire_size,
5493 q_vector->tx.total_bytes / packets);
5495 /* if avg_wire_size isn't set no work was done */
5499 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5500 avg_wire_size += 24;
5502 /* Don't starve jumbo frames */
5503 avg_wire_size = min(avg_wire_size, 3000);
5505 /* Give a little boost to mid-size frames */
5506 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5507 new_val = avg_wire_size / 3;
5509 new_val = avg_wire_size / 2;
5511 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5512 if (new_val < IGB_20K_ITR &&
5513 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5514 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5515 new_val = IGB_20K_ITR;
5518 if (new_val != q_vector->itr_val) {
5519 q_vector->itr_val = new_val;
5520 q_vector->set_itr = 1;
5523 q_vector->rx.total_bytes = 0;
5524 q_vector->rx.total_packets = 0;
5525 q_vector->tx.total_bytes = 0;
5526 q_vector->tx.total_packets = 0;
5530 * igb_update_itr - update the dynamic ITR value based on statistics
5531 * @q_vector: pointer to q_vector
5532 * @ring_container: ring info to update the itr for
5534 * Stores a new ITR value based on packets and byte
5535 * counts during the last interrupt. The advantage of per interrupt
5536 * computation is faster updates and more accurate ITR for the current
5537 * traffic pattern. Constants in this function were computed
5538 * based on theoretical maximum wire speed and thresholds were set based
5539 * on testing data as well as attempting to minimize response time
5540 * while increasing bulk throughput.
5541 * This functionality is controlled by ethtool's coalescing settings.
5542 * NOTE: These calculations are only valid when operating in a single-
5543 * queue environment.
5545 static void igb_update_itr(struct igb_q_vector *q_vector,
5546 struct igb_ring_container *ring_container)
5548 unsigned int packets = ring_container->total_packets;
5549 unsigned int bytes = ring_container->total_bytes;
5550 u8 itrval = ring_container->itr;
5552 /* no packets, exit with status unchanged */
5557 case lowest_latency:
5558 /* handle TSO and jumbo frames */
5559 if (bytes/packets > 8000)
5560 itrval = bulk_latency;
5561 else if ((packets < 5) && (bytes > 512))
5562 itrval = low_latency;
5564 case low_latency: /* 50 usec aka 20000 ints/s */
5565 if (bytes > 10000) {
5566 /* this if handles the TSO accounting */
5567 if (bytes/packets > 8000)
5568 itrval = bulk_latency;
5569 else if ((packets < 10) || ((bytes/packets) > 1200))
5570 itrval = bulk_latency;
5571 else if ((packets > 35))
5572 itrval = lowest_latency;
5573 } else if (bytes/packets > 2000) {
5574 itrval = bulk_latency;
5575 } else if (packets <= 2 && bytes < 512) {
5576 itrval = lowest_latency;
5579 case bulk_latency: /* 250 usec aka 4000 ints/s */
5580 if (bytes > 25000) {
5582 itrval = low_latency;
5583 } else if (bytes < 1500) {
5584 itrval = low_latency;
5589 /* clear work counters since we have the values we need */
5590 ring_container->total_bytes = 0;
5591 ring_container->total_packets = 0;
5593 /* write updated itr to ring container */
5594 ring_container->itr = itrval;
5597 static void igb_set_itr(struct igb_q_vector *q_vector)
5599 struct igb_adapter *adapter = q_vector->adapter;
5600 u32 new_itr = q_vector->itr_val;
5603 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5604 if (adapter->link_speed != SPEED_1000) {
5606 new_itr = IGB_4K_ITR;
5610 igb_update_itr(q_vector, &q_vector->tx);
5611 igb_update_itr(q_vector, &q_vector->rx);
5613 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5615 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5616 if (current_itr == lowest_latency &&
5617 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5618 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5619 current_itr = low_latency;
5621 switch (current_itr) {
5622 /* counts and packets in update_itr are dependent on these numbers */
5623 case lowest_latency:
5624 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5627 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5630 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5637 if (new_itr != q_vector->itr_val) {
5638 /* this attempts to bias the interrupt rate towards Bulk
5639 * by adding intermediate steps when interrupt rate is
5642 new_itr = new_itr > q_vector->itr_val ?
5643 max((new_itr * q_vector->itr_val) /
5644 (new_itr + (q_vector->itr_val >> 2)),
5646 /* Don't write the value here; it resets the adapter's
5647 * internal timer, and causes us to delay far longer than
5648 * we should between interrupts. Instead, we write the ITR
5649 * value at the beginning of the next interrupt so the timing
5650 * ends up being correct.
5652 q_vector->itr_val = new_itr;
5653 q_vector->set_itr = 1;
5657 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5658 struct igb_tx_buffer *first,
5659 u32 vlan_macip_lens, u32 type_tucmd,
5662 struct e1000_adv_tx_context_desc *context_desc;
5663 u16 i = tx_ring->next_to_use;
5664 struct timespec64 ts;
5666 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5669 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5671 /* set bits to identify this as an advanced context descriptor */
5672 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5674 /* For 82575, context index must be unique per ring. */
5675 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5676 mss_l4len_idx |= tx_ring->reg_idx << 4;
5678 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5679 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5680 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5682 /* We assume there is always a valid tx time available. Invalid times
5683 * should have been handled by the upper layers.
5685 if (tx_ring->launchtime_enable) {
5686 ts = ns_to_timespec64(first->skb->tstamp);
5687 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5689 context_desc->seqnum_seed = 0;
5693 static int igb_tso(struct igb_ring *tx_ring,
5694 struct igb_tx_buffer *first,
5697 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5698 struct sk_buff *skb = first->skb;
5708 u32 paylen, l4_offset;
5711 if (skb->ip_summed != CHECKSUM_PARTIAL)
5714 if (!skb_is_gso(skb))
5717 err = skb_cow_head(skb, 0);
5721 ip.hdr = skb_network_header(skb);
5722 l4.hdr = skb_checksum_start(skb);
5724 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5725 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5727 /* initialize outer IP header fields */
5728 if (ip.v4->version == 4) {
5729 unsigned char *csum_start = skb_checksum_start(skb);
5730 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5732 /* IP header will have to cancel out any data that
5733 * is not a part of the outer IP header
5735 ip.v4->check = csum_fold(csum_partial(trans_start,
5736 csum_start - trans_start,
5738 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5741 first->tx_flags |= IGB_TX_FLAGS_TSO |
5745 ip.v6->payload_len = 0;
5746 first->tx_flags |= IGB_TX_FLAGS_TSO |
5750 /* determine offset of inner transport header */
5751 l4_offset = l4.hdr - skb->data;
5753 /* compute length of segmentation header */
5754 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5756 /* remove payload length from inner checksum */
5757 paylen = skb->len - l4_offset;
5758 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5760 /* update gso size and bytecount with header size */
5761 first->gso_segs = skb_shinfo(skb)->gso_segs;
5762 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5765 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5766 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5768 /* VLAN MACLEN IPLEN */
5769 vlan_macip_lens = l4.hdr - ip.hdr;
5770 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5771 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5773 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5774 type_tucmd, mss_l4len_idx);
5779 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5781 unsigned int offset = 0;
5783 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5785 return offset == skb_checksum_start_offset(skb);
5788 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5790 struct sk_buff *skb = first->skb;
5791 u32 vlan_macip_lens = 0;
5794 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5796 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5797 !tx_ring->launchtime_enable)
5802 switch (skb->csum_offset) {
5803 case offsetof(struct tcphdr, check):
5804 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5806 case offsetof(struct udphdr, check):
5808 case offsetof(struct sctphdr, checksum):
5809 /* validate that this is actually an SCTP request */
5810 if (((first->protocol == htons(ETH_P_IP)) &&
5811 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5812 ((first->protocol == htons(ETH_P_IPV6)) &&
5813 igb_ipv6_csum_is_sctp(skb))) {
5814 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5819 skb_checksum_help(skb);
5823 /* update TX checksum flag */
5824 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5825 vlan_macip_lens = skb_checksum_start_offset(skb) -
5826 skb_network_offset(skb);
5828 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5829 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5831 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5834 #define IGB_SET_FLAG(_input, _flag, _result) \
5835 ((_flag <= _result) ? \
5836 ((u32)(_input & _flag) * (_result / _flag)) : \
5837 ((u32)(_input & _flag) / (_flag / _result)))
5839 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5841 /* set type for advanced descriptor with frame checksum insertion */
5842 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5843 E1000_ADVTXD_DCMD_DEXT |
5844 E1000_ADVTXD_DCMD_IFCS;
5846 /* set HW vlan bit if vlan is present */
5847 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5848 (E1000_ADVTXD_DCMD_VLE));
5850 /* set segmentation bits for TSO */
5851 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5852 (E1000_ADVTXD_DCMD_TSE));
5854 /* set timestamp bit if present */
5855 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5856 (E1000_ADVTXD_MAC_TSTAMP));
5858 /* insert frame checksum */
5859 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5864 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5865 union e1000_adv_tx_desc *tx_desc,
5866 u32 tx_flags, unsigned int paylen)
5868 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5870 /* 82575 requires a unique index per ring */
5871 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5872 olinfo_status |= tx_ring->reg_idx << 4;
5874 /* insert L4 checksum */
5875 olinfo_status |= IGB_SET_FLAG(tx_flags,
5877 (E1000_TXD_POPTS_TXSM << 8));
5879 /* insert IPv4 checksum */
5880 olinfo_status |= IGB_SET_FLAG(tx_flags,
5882 (E1000_TXD_POPTS_IXSM << 8));
5884 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5887 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5889 struct net_device *netdev = tx_ring->netdev;
5891 netif_stop_subqueue(netdev, tx_ring->queue_index);
5893 /* Herbert's original patch had:
5894 * smp_mb__after_netif_stop_queue();
5895 * but since that doesn't exist yet, just open code it.
5899 /* We need to check again in a case another CPU has just
5900 * made room available.
5902 if (igb_desc_unused(tx_ring) < size)
5906 netif_wake_subqueue(netdev, tx_ring->queue_index);
5908 u64_stats_update_begin(&tx_ring->tx_syncp2);
5909 tx_ring->tx_stats.restart_queue2++;
5910 u64_stats_update_end(&tx_ring->tx_syncp2);
5915 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5917 if (igb_desc_unused(tx_ring) >= size)
5919 return __igb_maybe_stop_tx(tx_ring, size);
5922 static int igb_tx_map(struct igb_ring *tx_ring,
5923 struct igb_tx_buffer *first,
5926 struct sk_buff *skb = first->skb;
5927 struct igb_tx_buffer *tx_buffer;
5928 union e1000_adv_tx_desc *tx_desc;
5929 struct skb_frag_struct *frag;
5931 unsigned int data_len, size;
5932 u32 tx_flags = first->tx_flags;
5933 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5934 u16 i = tx_ring->next_to_use;
5936 tx_desc = IGB_TX_DESC(tx_ring, i);
5938 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5940 size = skb_headlen(skb);
5941 data_len = skb->data_len;
5943 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5947 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5948 if (dma_mapping_error(tx_ring->dev, dma))
5951 /* record length, and DMA address */
5952 dma_unmap_len_set(tx_buffer, len, size);
5953 dma_unmap_addr_set(tx_buffer, dma, dma);
5955 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5957 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5958 tx_desc->read.cmd_type_len =
5959 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5963 if (i == tx_ring->count) {
5964 tx_desc = IGB_TX_DESC(tx_ring, 0);
5967 tx_desc->read.olinfo_status = 0;
5969 dma += IGB_MAX_DATA_PER_TXD;
5970 size -= IGB_MAX_DATA_PER_TXD;
5972 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5975 if (likely(!data_len))
5978 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5982 if (i == tx_ring->count) {
5983 tx_desc = IGB_TX_DESC(tx_ring, 0);
5986 tx_desc->read.olinfo_status = 0;
5988 size = skb_frag_size(frag);
5991 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5992 size, DMA_TO_DEVICE);
5994 tx_buffer = &tx_ring->tx_buffer_info[i];
5997 /* write last descriptor with RS and EOP bits */
5998 cmd_type |= size | IGB_TXD_DCMD;
5999 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6001 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6003 /* set the timestamp */
6004 first->time_stamp = jiffies;
6006 skb_tx_timestamp(skb);
6008 /* Force memory writes to complete before letting h/w know there
6009 * are new descriptors to fetch. (Only applicable for weak-ordered
6010 * memory model archs, such as IA-64).
6012 * We also need this memory barrier to make certain all of the
6013 * status bits have been updated before next_to_watch is written.
6017 /* set next_to_watch value indicating a packet is present */
6018 first->next_to_watch = tx_desc;
6021 if (i == tx_ring->count)
6024 tx_ring->next_to_use = i;
6026 /* Make sure there is space in the ring for the next send. */
6027 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6029 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
6030 writel(i, tx_ring->tail);
6032 /* we need this if more than one processor can write to our tail
6033 * at a time, it synchronizes IO on IA64/Altix systems
6040 dev_err(tx_ring->dev, "TX DMA map failed\n");
6041 tx_buffer = &tx_ring->tx_buffer_info[i];
6043 /* clear dma mappings for failed tx_buffer_info map */
6044 while (tx_buffer != first) {
6045 if (dma_unmap_len(tx_buffer, len))
6046 dma_unmap_page(tx_ring->dev,
6047 dma_unmap_addr(tx_buffer, dma),
6048 dma_unmap_len(tx_buffer, len),
6050 dma_unmap_len_set(tx_buffer, len, 0);
6053 i += tx_ring->count;
6054 tx_buffer = &tx_ring->tx_buffer_info[i];
6057 if (dma_unmap_len(tx_buffer, len))
6058 dma_unmap_single(tx_ring->dev,
6059 dma_unmap_addr(tx_buffer, dma),
6060 dma_unmap_len(tx_buffer, len),
6062 dma_unmap_len_set(tx_buffer, len, 0);
6064 dev_kfree_skb_any(tx_buffer->skb);
6065 tx_buffer->skb = NULL;
6067 tx_ring->next_to_use = i;
6072 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6073 struct igb_ring *tx_ring)
6075 struct igb_tx_buffer *first;
6079 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6080 __be16 protocol = vlan_get_protocol(skb);
6083 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6084 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6085 * + 2 desc gap to keep tail from touching head,
6086 * + 1 desc for context descriptor,
6087 * otherwise try next time
6089 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6090 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
6092 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6093 /* this is a hard error */
6094 return NETDEV_TX_BUSY;
6097 /* record the location of the first descriptor for this packet */
6098 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6100 first->bytecount = skb->len;
6101 first->gso_segs = 1;
6103 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6104 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6106 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6107 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6109 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6110 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6112 adapter->ptp_tx_skb = skb_get(skb);
6113 adapter->ptp_tx_start = jiffies;
6114 if (adapter->hw.mac.type == e1000_82576)
6115 schedule_work(&adapter->ptp_tx_work);
6117 adapter->tx_hwtstamp_skipped++;
6121 if (skb_vlan_tag_present(skb)) {
6122 tx_flags |= IGB_TX_FLAGS_VLAN;
6123 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6126 /* record initial flags and protocol */
6127 first->tx_flags = tx_flags;
6128 first->protocol = protocol;
6130 tso = igb_tso(tx_ring, first, &hdr_len);
6134 igb_tx_csum(tx_ring, first);
6136 if (igb_tx_map(tx_ring, first, hdr_len))
6137 goto cleanup_tx_tstamp;
6139 return NETDEV_TX_OK;
6142 dev_kfree_skb_any(first->skb);
6145 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6146 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6148 dev_kfree_skb_any(adapter->ptp_tx_skb);
6149 adapter->ptp_tx_skb = NULL;
6150 if (adapter->hw.mac.type == e1000_82576)
6151 cancel_work_sync(&adapter->ptp_tx_work);
6152 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6155 return NETDEV_TX_OK;
6158 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6159 struct sk_buff *skb)
6161 unsigned int r_idx = skb->queue_mapping;
6163 if (r_idx >= adapter->num_tx_queues)
6164 r_idx = r_idx % adapter->num_tx_queues;
6166 return adapter->tx_ring[r_idx];
6169 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6170 struct net_device *netdev)
6172 struct igb_adapter *adapter = netdev_priv(netdev);
6174 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6175 * in order to meet this minimum size requirement.
6177 if (skb_put_padto(skb, 17))
6178 return NETDEV_TX_OK;
6180 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6184 * igb_tx_timeout - Respond to a Tx Hang
6185 * @netdev: network interface device structure
6187 static void igb_tx_timeout(struct net_device *netdev)
6189 struct igb_adapter *adapter = netdev_priv(netdev);
6190 struct e1000_hw *hw = &adapter->hw;
6192 /* Do the reset outside of interrupt context */
6193 adapter->tx_timeout_count++;
6195 if (hw->mac.type >= e1000_82580)
6196 hw->dev_spec._82575.global_device_reset = true;
6198 schedule_work(&adapter->reset_task);
6200 (adapter->eims_enable_mask & ~adapter->eims_other));
6203 static void igb_reset_task(struct work_struct *work)
6205 struct igb_adapter *adapter;
6206 adapter = container_of(work, struct igb_adapter, reset_task);
6209 netdev_err(adapter->netdev, "Reset adapter\n");
6210 igb_reinit_locked(adapter);
6214 * igb_get_stats64 - Get System Network Statistics
6215 * @netdev: network interface device structure
6216 * @stats: rtnl_link_stats64 pointer
6218 static void igb_get_stats64(struct net_device *netdev,
6219 struct rtnl_link_stats64 *stats)
6221 struct igb_adapter *adapter = netdev_priv(netdev);
6223 spin_lock(&adapter->stats64_lock);
6224 igb_update_stats(adapter);
6225 memcpy(stats, &adapter->stats64, sizeof(*stats));
6226 spin_unlock(&adapter->stats64_lock);
6230 * igb_change_mtu - Change the Maximum Transfer Unit
6231 * @netdev: network interface device structure
6232 * @new_mtu: new value for maximum frame size
6234 * Returns 0 on success, negative on failure
6236 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6238 struct igb_adapter *adapter = netdev_priv(netdev);
6239 struct pci_dev *pdev = adapter->pdev;
6240 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6242 /* adjust max frame to be at least the size of a standard frame */
6243 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6244 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6246 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6247 usleep_range(1000, 2000);
6249 /* igb_down has a dependency on max_frame_size */
6250 adapter->max_frame_size = max_frame;
6252 if (netif_running(netdev))
6255 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6256 netdev->mtu, new_mtu);
6257 netdev->mtu = new_mtu;
6259 if (netif_running(netdev))
6264 clear_bit(__IGB_RESETTING, &adapter->state);
6270 * igb_update_stats - Update the board statistics counters
6271 * @adapter: board private structure
6273 void igb_update_stats(struct igb_adapter *adapter)
6275 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6276 struct e1000_hw *hw = &adapter->hw;
6277 struct pci_dev *pdev = adapter->pdev;
6282 u64 _bytes, _packets;
6284 /* Prevent stats update while adapter is being reset, or if the pci
6285 * connection is down.
6287 if (adapter->link_speed == 0)
6289 if (pci_channel_offline(pdev))
6296 for (i = 0; i < adapter->num_rx_queues; i++) {
6297 struct igb_ring *ring = adapter->rx_ring[i];
6298 u32 rqdpc = rd32(E1000_RQDPC(i));
6299 if (hw->mac.type >= e1000_i210)
6300 wr32(E1000_RQDPC(i), 0);
6303 ring->rx_stats.drops += rqdpc;
6304 net_stats->rx_fifo_errors += rqdpc;
6308 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6309 _bytes = ring->rx_stats.bytes;
6310 _packets = ring->rx_stats.packets;
6311 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6313 packets += _packets;
6316 net_stats->rx_bytes = bytes;
6317 net_stats->rx_packets = packets;
6321 for (i = 0; i < adapter->num_tx_queues; i++) {
6322 struct igb_ring *ring = adapter->tx_ring[i];
6324 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6325 _bytes = ring->tx_stats.bytes;
6326 _packets = ring->tx_stats.packets;
6327 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6329 packets += _packets;
6331 net_stats->tx_bytes = bytes;
6332 net_stats->tx_packets = packets;
6335 /* read stats registers */
6336 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6337 adapter->stats.gprc += rd32(E1000_GPRC);
6338 adapter->stats.gorc += rd32(E1000_GORCL);
6339 rd32(E1000_GORCH); /* clear GORCL */
6340 adapter->stats.bprc += rd32(E1000_BPRC);
6341 adapter->stats.mprc += rd32(E1000_MPRC);
6342 adapter->stats.roc += rd32(E1000_ROC);
6344 adapter->stats.prc64 += rd32(E1000_PRC64);
6345 adapter->stats.prc127 += rd32(E1000_PRC127);
6346 adapter->stats.prc255 += rd32(E1000_PRC255);
6347 adapter->stats.prc511 += rd32(E1000_PRC511);
6348 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6349 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6350 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6351 adapter->stats.sec += rd32(E1000_SEC);
6353 mpc = rd32(E1000_MPC);
6354 adapter->stats.mpc += mpc;
6355 net_stats->rx_fifo_errors += mpc;
6356 adapter->stats.scc += rd32(E1000_SCC);
6357 adapter->stats.ecol += rd32(E1000_ECOL);
6358 adapter->stats.mcc += rd32(E1000_MCC);
6359 adapter->stats.latecol += rd32(E1000_LATECOL);
6360 adapter->stats.dc += rd32(E1000_DC);
6361 adapter->stats.rlec += rd32(E1000_RLEC);
6362 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6363 adapter->stats.xontxc += rd32(E1000_XONTXC);
6364 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6365 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6366 adapter->stats.fcruc += rd32(E1000_FCRUC);
6367 adapter->stats.gptc += rd32(E1000_GPTC);
6368 adapter->stats.gotc += rd32(E1000_GOTCL);
6369 rd32(E1000_GOTCH); /* clear GOTCL */
6370 adapter->stats.rnbc += rd32(E1000_RNBC);
6371 adapter->stats.ruc += rd32(E1000_RUC);
6372 adapter->stats.rfc += rd32(E1000_RFC);
6373 adapter->stats.rjc += rd32(E1000_RJC);
6374 adapter->stats.tor += rd32(E1000_TORH);
6375 adapter->stats.tot += rd32(E1000_TOTH);
6376 adapter->stats.tpr += rd32(E1000_TPR);
6378 adapter->stats.ptc64 += rd32(E1000_PTC64);
6379 adapter->stats.ptc127 += rd32(E1000_PTC127);
6380 adapter->stats.ptc255 += rd32(E1000_PTC255);
6381 adapter->stats.ptc511 += rd32(E1000_PTC511);
6382 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6383 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6385 adapter->stats.mptc += rd32(E1000_MPTC);
6386 adapter->stats.bptc += rd32(E1000_BPTC);
6388 adapter->stats.tpt += rd32(E1000_TPT);
6389 adapter->stats.colc += rd32(E1000_COLC);
6391 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6392 /* read internal phy specific stats */
6393 reg = rd32(E1000_CTRL_EXT);
6394 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6395 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6397 /* this stat has invalid values on i210/i211 */
6398 if ((hw->mac.type != e1000_i210) &&
6399 (hw->mac.type != e1000_i211))
6400 adapter->stats.tncrs += rd32(E1000_TNCRS);
6403 adapter->stats.tsctc += rd32(E1000_TSCTC);
6404 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6406 adapter->stats.iac += rd32(E1000_IAC);
6407 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6408 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6409 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6410 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6411 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6412 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6413 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6414 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6416 /* Fill out the OS statistics structure */
6417 net_stats->multicast = adapter->stats.mprc;
6418 net_stats->collisions = adapter->stats.colc;
6422 /* RLEC on some newer hardware can be incorrect so build
6423 * our own version based on RUC and ROC
6425 net_stats->rx_errors = adapter->stats.rxerrc +
6426 adapter->stats.crcerrs + adapter->stats.algnerrc +
6427 adapter->stats.ruc + adapter->stats.roc +
6428 adapter->stats.cexterr;
6429 net_stats->rx_length_errors = adapter->stats.ruc +
6431 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6432 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6433 net_stats->rx_missed_errors = adapter->stats.mpc;
6436 net_stats->tx_errors = adapter->stats.ecol +
6437 adapter->stats.latecol;
6438 net_stats->tx_aborted_errors = adapter->stats.ecol;
6439 net_stats->tx_window_errors = adapter->stats.latecol;
6440 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6442 /* Tx Dropped needs to be maintained elsewhere */
6444 /* Management Stats */
6445 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6446 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6447 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6450 reg = rd32(E1000_MANC);
6451 if (reg & E1000_MANC_EN_BMC2OS) {
6452 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6453 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6454 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6455 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6459 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6461 struct e1000_hw *hw = &adapter->hw;
6462 struct ptp_clock_event event;
6463 struct timespec64 ts;
6464 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6466 if (tsicr & TSINTR_SYS_WRAP) {
6467 event.type = PTP_CLOCK_PPS;
6468 if (adapter->ptp_caps.pps)
6469 ptp_clock_event(adapter->ptp_clock, &event);
6470 ack |= TSINTR_SYS_WRAP;
6473 if (tsicr & E1000_TSICR_TXTS) {
6474 /* retrieve hardware timestamp */
6475 schedule_work(&adapter->ptp_tx_work);
6476 ack |= E1000_TSICR_TXTS;
6479 if (tsicr & TSINTR_TT0) {
6480 spin_lock(&adapter->tmreg_lock);
6481 ts = timespec64_add(adapter->perout[0].start,
6482 adapter->perout[0].period);
6483 /* u32 conversion of tv_sec is safe until y2106 */
6484 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6485 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6486 tsauxc = rd32(E1000_TSAUXC);
6487 tsauxc |= TSAUXC_EN_TT0;
6488 wr32(E1000_TSAUXC, tsauxc);
6489 adapter->perout[0].start = ts;
6490 spin_unlock(&adapter->tmreg_lock);
6494 if (tsicr & TSINTR_TT1) {
6495 spin_lock(&adapter->tmreg_lock);
6496 ts = timespec64_add(adapter->perout[1].start,
6497 adapter->perout[1].period);
6498 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6499 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6500 tsauxc = rd32(E1000_TSAUXC);
6501 tsauxc |= TSAUXC_EN_TT1;
6502 wr32(E1000_TSAUXC, tsauxc);
6503 adapter->perout[1].start = ts;
6504 spin_unlock(&adapter->tmreg_lock);
6508 if (tsicr & TSINTR_AUTT0) {
6509 nsec = rd32(E1000_AUXSTMPL0);
6510 sec = rd32(E1000_AUXSTMPH0);
6511 event.type = PTP_CLOCK_EXTTS;
6513 event.timestamp = sec * 1000000000ULL + nsec;
6514 ptp_clock_event(adapter->ptp_clock, &event);
6515 ack |= TSINTR_AUTT0;
6518 if (tsicr & TSINTR_AUTT1) {
6519 nsec = rd32(E1000_AUXSTMPL1);
6520 sec = rd32(E1000_AUXSTMPH1);
6521 event.type = PTP_CLOCK_EXTTS;
6523 event.timestamp = sec * 1000000000ULL + nsec;
6524 ptp_clock_event(adapter->ptp_clock, &event);
6525 ack |= TSINTR_AUTT1;
6528 /* acknowledge the interrupts */
6529 wr32(E1000_TSICR, ack);
6532 static irqreturn_t igb_msix_other(int irq, void *data)
6534 struct igb_adapter *adapter = data;
6535 struct e1000_hw *hw = &adapter->hw;
6536 u32 icr = rd32(E1000_ICR);
6537 /* reading ICR causes bit 31 of EICR to be cleared */
6539 if (icr & E1000_ICR_DRSTA)
6540 schedule_work(&adapter->reset_task);
6542 if (icr & E1000_ICR_DOUTSYNC) {
6543 /* HW is reporting DMA is out of sync */
6544 adapter->stats.doosync++;
6545 /* The DMA Out of Sync is also indication of a spoof event
6546 * in IOV mode. Check the Wrong VM Behavior register to
6547 * see if it is really a spoof event.
6549 igb_check_wvbr(adapter);
6552 /* Check for a mailbox event */
6553 if (icr & E1000_ICR_VMMB)
6554 igb_msg_task(adapter);
6556 if (icr & E1000_ICR_LSC) {
6557 hw->mac.get_link_status = 1;
6558 /* guard against interrupt when we're going down */
6559 if (!test_bit(__IGB_DOWN, &adapter->state))
6560 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6563 if (icr & E1000_ICR_TS)
6564 igb_tsync_interrupt(adapter);
6566 wr32(E1000_EIMS, adapter->eims_other);
6571 static void igb_write_itr(struct igb_q_vector *q_vector)
6573 struct igb_adapter *adapter = q_vector->adapter;
6574 u32 itr_val = q_vector->itr_val & 0x7FFC;
6576 if (!q_vector->set_itr)
6582 if (adapter->hw.mac.type == e1000_82575)
6583 itr_val |= itr_val << 16;
6585 itr_val |= E1000_EITR_CNT_IGNR;
6587 writel(itr_val, q_vector->itr_register);
6588 q_vector->set_itr = 0;
6591 static irqreturn_t igb_msix_ring(int irq, void *data)
6593 struct igb_q_vector *q_vector = data;
6595 /* Write the ITR value calculated from the previous interrupt. */
6596 igb_write_itr(q_vector);
6598 napi_schedule(&q_vector->napi);
6603 #ifdef CONFIG_IGB_DCA
6604 static void igb_update_tx_dca(struct igb_adapter *adapter,
6605 struct igb_ring *tx_ring,
6608 struct e1000_hw *hw = &adapter->hw;
6609 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6611 if (hw->mac.type != e1000_82575)
6612 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6614 /* We can enable relaxed ordering for reads, but not writes when
6615 * DCA is enabled. This is due to a known issue in some chipsets
6616 * which will cause the DCA tag to be cleared.
6618 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6619 E1000_DCA_TXCTRL_DATA_RRO_EN |
6620 E1000_DCA_TXCTRL_DESC_DCA_EN;
6622 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6625 static void igb_update_rx_dca(struct igb_adapter *adapter,
6626 struct igb_ring *rx_ring,
6629 struct e1000_hw *hw = &adapter->hw;
6630 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6632 if (hw->mac.type != e1000_82575)
6633 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6635 /* We can enable relaxed ordering for reads, but not writes when
6636 * DCA is enabled. This is due to a known issue in some chipsets
6637 * which will cause the DCA tag to be cleared.
6639 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6640 E1000_DCA_RXCTRL_DESC_DCA_EN;
6642 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6645 static void igb_update_dca(struct igb_q_vector *q_vector)
6647 struct igb_adapter *adapter = q_vector->adapter;
6648 int cpu = get_cpu();
6650 if (q_vector->cpu == cpu)
6653 if (q_vector->tx.ring)
6654 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6656 if (q_vector->rx.ring)
6657 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6659 q_vector->cpu = cpu;
6664 static void igb_setup_dca(struct igb_adapter *adapter)
6666 struct e1000_hw *hw = &adapter->hw;
6669 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6672 /* Always use CB2 mode, difference is masked in the CB driver. */
6673 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6675 for (i = 0; i < adapter->num_q_vectors; i++) {
6676 adapter->q_vector[i]->cpu = -1;
6677 igb_update_dca(adapter->q_vector[i]);
6681 static int __igb_notify_dca(struct device *dev, void *data)
6683 struct net_device *netdev = dev_get_drvdata(dev);
6684 struct igb_adapter *adapter = netdev_priv(netdev);
6685 struct pci_dev *pdev = adapter->pdev;
6686 struct e1000_hw *hw = &adapter->hw;
6687 unsigned long event = *(unsigned long *)data;
6690 case DCA_PROVIDER_ADD:
6691 /* if already enabled, don't do it again */
6692 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6694 if (dca_add_requester(dev) == 0) {
6695 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6696 dev_info(&pdev->dev, "DCA enabled\n");
6697 igb_setup_dca(adapter);
6700 /* Fall Through since DCA is disabled. */
6701 case DCA_PROVIDER_REMOVE:
6702 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6703 /* without this a class_device is left
6704 * hanging around in the sysfs model
6706 dca_remove_requester(dev);
6707 dev_info(&pdev->dev, "DCA disabled\n");
6708 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6709 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6717 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6722 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6725 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6727 #endif /* CONFIG_IGB_DCA */
6729 #ifdef CONFIG_PCI_IOV
6730 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6732 unsigned char mac_addr[ETH_ALEN];
6734 eth_zero_addr(mac_addr);
6735 igb_set_vf_mac(adapter, vf, mac_addr);
6737 /* By default spoof check is enabled for all VFs */
6738 adapter->vf_data[vf].spoofchk_enabled = true;
6740 /* By default VFs are not trusted */
6741 adapter->vf_data[vf].trusted = false;
6747 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6749 struct e1000_hw *hw = &adapter->hw;
6753 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6754 ping = E1000_PF_CONTROL_MSG;
6755 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6756 ping |= E1000_VT_MSGTYPE_CTS;
6757 igb_write_mbx(hw, &ping, 1, i);
6761 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6763 struct e1000_hw *hw = &adapter->hw;
6764 u32 vmolr = rd32(E1000_VMOLR(vf));
6765 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6767 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6768 IGB_VF_FLAG_MULTI_PROMISC);
6769 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6771 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6772 vmolr |= E1000_VMOLR_MPME;
6773 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6774 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6776 /* if we have hashes and we are clearing a multicast promisc
6777 * flag we need to write the hashes to the MTA as this step
6778 * was previously skipped
6780 if (vf_data->num_vf_mc_hashes > 30) {
6781 vmolr |= E1000_VMOLR_MPME;
6782 } else if (vf_data->num_vf_mc_hashes) {
6785 vmolr |= E1000_VMOLR_ROMPE;
6786 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6787 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6791 wr32(E1000_VMOLR(vf), vmolr);
6793 /* there are flags left unprocessed, likely not supported */
6794 if (*msgbuf & E1000_VT_MSGINFO_MASK)
6800 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6801 u32 *msgbuf, u32 vf)
6803 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6804 u16 *hash_list = (u16 *)&msgbuf[1];
6805 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6808 /* salt away the number of multicast addresses assigned
6809 * to this VF for later use to restore when the PF multi cast
6812 vf_data->num_vf_mc_hashes = n;
6814 /* only up to 30 hash values supported */
6818 /* store the hashes for later use */
6819 for (i = 0; i < n; i++)
6820 vf_data->vf_mc_hashes[i] = hash_list[i];
6822 /* Flush and reset the mta with the new values */
6823 igb_set_rx_mode(adapter->netdev);
6828 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6830 struct e1000_hw *hw = &adapter->hw;
6831 struct vf_data_storage *vf_data;
6834 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6835 u32 vmolr = rd32(E1000_VMOLR(i));
6837 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6839 vf_data = &adapter->vf_data[i];
6841 if ((vf_data->num_vf_mc_hashes > 30) ||
6842 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6843 vmolr |= E1000_VMOLR_MPME;
6844 } else if (vf_data->num_vf_mc_hashes) {
6845 vmolr |= E1000_VMOLR_ROMPE;
6846 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6847 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6849 wr32(E1000_VMOLR(i), vmolr);
6853 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6855 struct e1000_hw *hw = &adapter->hw;
6856 u32 pool_mask, vlvf_mask, i;
6858 /* create mask for VF and other pools */
6859 pool_mask = E1000_VLVF_POOLSEL_MASK;
6860 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6862 /* drop PF from pool bits */
6863 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6864 adapter->vfs_allocated_count);
6866 /* Find the vlan filter for this id */
6867 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6868 u32 vlvf = rd32(E1000_VLVF(i));
6869 u32 vfta_mask, vid, vfta;
6871 /* remove the vf from the pool */
6872 if (!(vlvf & vlvf_mask))
6875 /* clear out bit from VLVF */
6878 /* if other pools are present, just remove ourselves */
6879 if (vlvf & pool_mask)
6882 /* if PF is present, leave VFTA */
6883 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6886 vid = vlvf & E1000_VLVF_VLANID_MASK;
6887 vfta_mask = BIT(vid % 32);
6889 /* clear bit from VFTA */
6890 vfta = adapter->shadow_vfta[vid / 32];
6891 if (vfta & vfta_mask)
6892 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6894 /* clear pool selection enable */
6895 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6896 vlvf &= E1000_VLVF_POOLSEL_MASK;
6900 /* clear pool bits */
6901 wr32(E1000_VLVF(i), vlvf);
6905 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6910 /* short cut the special case */
6914 /* Search for the VLAN id in the VLVF entries */
6915 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6916 vlvf = rd32(E1000_VLVF(idx));
6917 if ((vlvf & VLAN_VID_MASK) == vlan)
6924 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6926 struct e1000_hw *hw = &adapter->hw;
6930 idx = igb_find_vlvf_entry(hw, vid);
6934 /* See if any other pools are set for this VLAN filter
6935 * entry other than the PF.
6937 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6938 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6939 bits &= rd32(E1000_VLVF(idx));
6941 /* Disable the filter so this falls into the default pool. */
6943 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6944 wr32(E1000_VLVF(idx), BIT(pf_id));
6946 wr32(E1000_VLVF(idx), 0);
6950 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6953 int pf_id = adapter->vfs_allocated_count;
6954 struct e1000_hw *hw = &adapter->hw;
6957 /* If VLAN overlaps with one the PF is currently monitoring make
6958 * sure that we are able to allocate a VLVF entry. This may be
6959 * redundant but it guarantees PF will maintain visibility to
6962 if (add && test_bit(vid, adapter->active_vlans)) {
6963 err = igb_vfta_set(hw, vid, pf_id, true, false);
6968 err = igb_vfta_set(hw, vid, vf, add, false);
6973 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6974 * we may need to drop the PF pool bit in order to allow us to free
6975 * up the VLVF resources.
6977 if (test_bit(vid, adapter->active_vlans) ||
6978 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6979 igb_update_pf_vlvf(adapter, vid);
6984 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6986 struct e1000_hw *hw = &adapter->hw;
6989 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6991 wr32(E1000_VMVIR(vf), 0);
6994 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6999 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7003 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7004 igb_set_vmolr(adapter, vf, !vlan);
7006 /* revoke access to previous VLAN */
7007 if (vlan != adapter->vf_data[vf].pf_vlan)
7008 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7011 adapter->vf_data[vf].pf_vlan = vlan;
7012 adapter->vf_data[vf].pf_qos = qos;
7013 igb_set_vf_vlan_strip(adapter, vf, true);
7014 dev_info(&adapter->pdev->dev,
7015 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7016 if (test_bit(__IGB_DOWN, &adapter->state)) {
7017 dev_warn(&adapter->pdev->dev,
7018 "The VF VLAN has been set, but the PF device is not up.\n");
7019 dev_warn(&adapter->pdev->dev,
7020 "Bring the PF device up before attempting to use the VF device.\n");
7026 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7028 /* Restore tagless access via VLAN 0 */
7029 igb_set_vf_vlan(adapter, 0, true, vf);
7031 igb_set_vmvir(adapter, 0, vf);
7032 igb_set_vmolr(adapter, vf, true);
7034 /* Remove any PF assigned VLAN */
7035 if (adapter->vf_data[vf].pf_vlan)
7036 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7039 adapter->vf_data[vf].pf_vlan = 0;
7040 adapter->vf_data[vf].pf_qos = 0;
7041 igb_set_vf_vlan_strip(adapter, vf, false);
7046 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7047 u16 vlan, u8 qos, __be16 vlan_proto)
7049 struct igb_adapter *adapter = netdev_priv(netdev);
7051 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7054 if (vlan_proto != htons(ETH_P_8021Q))
7055 return -EPROTONOSUPPORT;
7057 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7058 igb_disable_port_vlan(adapter, vf);
7061 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7063 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7064 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7067 if (adapter->vf_data[vf].pf_vlan)
7070 /* VLAN 0 is a special case, don't allow it to be removed */
7074 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7076 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7080 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7082 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7084 /* clear flags - except flag that indicates PF has set the MAC */
7085 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7086 vf_data->last_nack = jiffies;
7088 /* reset vlans for device */
7089 igb_clear_vf_vfta(adapter, vf);
7090 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7091 igb_set_vmvir(adapter, vf_data->pf_vlan |
7092 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7093 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7094 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7096 /* reset multicast table array for vf */
7097 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7099 /* Flush and reset the mta with the new values */
7100 igb_set_rx_mode(adapter->netdev);
7103 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7105 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7107 /* clear mac address as we were hotplug removed/added */
7108 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7109 eth_zero_addr(vf_mac);
7111 /* process remaining reset events */
7112 igb_vf_reset(adapter, vf);
7115 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7117 struct e1000_hw *hw = &adapter->hw;
7118 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7120 u8 *addr = (u8 *)(&msgbuf[1]);
7122 /* process all the same items cleared in a function level reset */
7123 igb_vf_reset(adapter, vf);
7125 /* set vf mac address */
7126 igb_set_vf_mac(adapter, vf, vf_mac);
7128 /* enable transmit and receive for vf */
7129 reg = rd32(E1000_VFTE);
7130 wr32(E1000_VFTE, reg | BIT(vf));
7131 reg = rd32(E1000_VFRE);
7132 wr32(E1000_VFRE, reg | BIT(vf));
7134 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7136 /* reply to reset with ack and vf mac address */
7137 if (!is_zero_ether_addr(vf_mac)) {
7138 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7139 memcpy(addr, vf_mac, ETH_ALEN);
7141 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7143 igb_write_mbx(hw, msgbuf, 3, vf);
7146 static void igb_flush_mac_table(struct igb_adapter *adapter)
7148 struct e1000_hw *hw = &adapter->hw;
7151 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7152 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7153 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7154 adapter->mac_table[i].queue = 0;
7155 igb_rar_set_index(adapter, i);
7159 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7161 struct e1000_hw *hw = &adapter->hw;
7162 /* do not count rar entries reserved for VFs MAC addresses */
7163 int rar_entries = hw->mac.rar_entry_count -
7164 adapter->vfs_allocated_count;
7167 for (i = 0; i < rar_entries; i++) {
7168 /* do not count default entries */
7169 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7172 /* do not count "in use" entries for different queues */
7173 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7174 (adapter->mac_table[i].queue != queue))
7183 /* Set default MAC address for the PF in the first RAR entry */
7184 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7186 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7188 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7189 mac_table->queue = adapter->vfs_allocated_count;
7190 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7192 igb_rar_set_index(adapter, 0);
7195 /* If the filter to be added and an already existing filter express
7196 * the same address and address type, it should be possible to only
7197 * override the other configurations, for example the queue to steer
7200 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7201 const u8 *addr, const u8 flags)
7203 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7206 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7207 (flags & IGB_MAC_STATE_SRC_ADDR))
7210 if (!ether_addr_equal(addr, entry->addr))
7216 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7217 * 'flags' is used to indicate what kind of match is made, match is by
7218 * default for the destination address, if matching by source address
7219 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7221 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7222 const u8 *addr, const u8 queue,
7225 struct e1000_hw *hw = &adapter->hw;
7226 int rar_entries = hw->mac.rar_entry_count -
7227 adapter->vfs_allocated_count;
7230 if (is_zero_ether_addr(addr))
7233 /* Search for the first empty entry in the MAC table.
7234 * Do not touch entries at the end of the table reserved for the VF MAC
7237 for (i = 0; i < rar_entries; i++) {
7238 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7242 ether_addr_copy(adapter->mac_table[i].addr, addr);
7243 adapter->mac_table[i].queue = queue;
7244 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7246 igb_rar_set_index(adapter, i);
7253 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7256 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7259 /* Remove a MAC filter for 'addr' directing matching traffic to
7260 * 'queue', 'flags' is used to indicate what kind of match need to be
7261 * removed, match is by default for the destination address, if
7262 * matching by source address is to be removed the flag
7263 * IGB_MAC_STATE_SRC_ADDR can be used.
7265 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7266 const u8 *addr, const u8 queue,
7269 struct e1000_hw *hw = &adapter->hw;
7270 int rar_entries = hw->mac.rar_entry_count -
7271 adapter->vfs_allocated_count;
7274 if (is_zero_ether_addr(addr))
7277 /* Search for matching entry in the MAC table based on given address
7278 * and queue. Do not touch entries at the end of the table reserved
7279 * for the VF MAC addresses.
7281 for (i = 0; i < rar_entries; i++) {
7282 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7284 if ((adapter->mac_table[i].state & flags) != flags)
7286 if (adapter->mac_table[i].queue != queue)
7288 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7291 /* When a filter for the default address is "deleted",
7292 * we return it to its initial configuration
7294 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7295 adapter->mac_table[i].state =
7296 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7297 adapter->mac_table[i].queue =
7298 adapter->vfs_allocated_count;
7300 adapter->mac_table[i].state = 0;
7301 adapter->mac_table[i].queue = 0;
7302 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7305 igb_rar_set_index(adapter, i);
7312 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7315 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7318 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7319 const u8 *addr, u8 queue, u8 flags)
7321 struct e1000_hw *hw = &adapter->hw;
7323 /* In theory, this should be supported on 82575 as well, but
7324 * that part wasn't easily accessible during development.
7326 if (hw->mac.type != e1000_i210)
7329 return igb_add_mac_filter_flags(adapter, addr, queue,
7330 IGB_MAC_STATE_QUEUE_STEERING | flags);
7333 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7334 const u8 *addr, u8 queue, u8 flags)
7336 return igb_del_mac_filter_flags(adapter, addr, queue,
7337 IGB_MAC_STATE_QUEUE_STEERING | flags);
7340 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7342 struct igb_adapter *adapter = netdev_priv(netdev);
7345 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7347 return min_t(int, ret, 0);
7350 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7352 struct igb_adapter *adapter = netdev_priv(netdev);
7354 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7359 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7360 const u32 info, const u8 *addr)
7362 struct pci_dev *pdev = adapter->pdev;
7363 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7364 struct list_head *pos;
7365 struct vf_mac_filter *entry = NULL;
7369 case E1000_VF_MAC_FILTER_CLR:
7370 /* remove all unicast MAC filters related to the current VF */
7371 list_for_each(pos, &adapter->vf_macs.l) {
7372 entry = list_entry(pos, struct vf_mac_filter, l);
7373 if (entry->vf == vf) {
7376 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7380 case E1000_VF_MAC_FILTER_ADD:
7381 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7382 !vf_data->trusted) {
7383 dev_warn(&pdev->dev,
7384 "VF %d requested MAC filter but is administratively denied\n",
7388 if (!is_valid_ether_addr(addr)) {
7389 dev_warn(&pdev->dev,
7390 "VF %d attempted to set invalid MAC filter\n",
7395 /* try to find empty slot in the list */
7396 list_for_each(pos, &adapter->vf_macs.l) {
7397 entry = list_entry(pos, struct vf_mac_filter, l);
7402 if (entry && entry->free) {
7403 entry->free = false;
7405 ether_addr_copy(entry->vf_mac, addr);
7407 ret = igb_add_mac_filter(adapter, addr, vf);
7408 ret = min_t(int, ret, 0);
7414 dev_warn(&pdev->dev,
7415 "VF %d has requested MAC filter but there is no space for it\n",
7426 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7428 struct pci_dev *pdev = adapter->pdev;
7429 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7430 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7432 /* The VF MAC Address is stored in a packed array of bytes
7433 * starting at the second 32 bit word of the msg array
7435 unsigned char *addr = (unsigned char *)&msg[1];
7439 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7440 !vf_data->trusted) {
7441 dev_warn(&pdev->dev,
7442 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7447 if (!is_valid_ether_addr(addr)) {
7448 dev_warn(&pdev->dev,
7449 "VF %d attempted to set invalid MAC\n",
7454 ret = igb_set_vf_mac(adapter, vf, addr);
7456 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7462 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7464 struct e1000_hw *hw = &adapter->hw;
7465 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7466 u32 msg = E1000_VT_MSGTYPE_NACK;
7468 /* if device isn't clear to send it shouldn't be reading either */
7469 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7470 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7471 igb_write_mbx(hw, &msg, 1, vf);
7472 vf_data->last_nack = jiffies;
7476 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7478 struct pci_dev *pdev = adapter->pdev;
7479 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7480 struct e1000_hw *hw = &adapter->hw;
7481 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7484 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7487 /* if receive failed revoke VF CTS stats and restart init */
7488 dev_err(&pdev->dev, "Error receiving message from VF\n");
7489 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7490 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7495 /* this is a message we already processed, do nothing */
7496 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7499 /* until the vf completes a reset it should not be
7500 * allowed to start any configuration.
7502 if (msgbuf[0] == E1000_VF_RESET) {
7503 /* unlocks mailbox */
7504 igb_vf_reset_msg(adapter, vf);
7508 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7509 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7515 switch ((msgbuf[0] & 0xFFFF)) {
7516 case E1000_VF_SET_MAC_ADDR:
7517 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7519 case E1000_VF_SET_PROMISC:
7520 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7522 case E1000_VF_SET_MULTICAST:
7523 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7525 case E1000_VF_SET_LPE:
7526 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7528 case E1000_VF_SET_VLAN:
7530 if (vf_data->pf_vlan)
7531 dev_warn(&pdev->dev,
7532 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7535 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7538 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7543 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7545 /* notify the VF of the results of what it sent us */
7547 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7549 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7551 /* unlocks mailbox */
7552 igb_write_mbx(hw, msgbuf, 1, vf);
7556 igb_unlock_mbx(hw, vf);
7559 static void igb_msg_task(struct igb_adapter *adapter)
7561 struct e1000_hw *hw = &adapter->hw;
7564 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7565 /* process any reset requests */
7566 if (!igb_check_for_rst(hw, vf))
7567 igb_vf_reset_event(adapter, vf);
7569 /* process any messages pending */
7570 if (!igb_check_for_msg(hw, vf))
7571 igb_rcv_msg_from_vf(adapter, vf);
7573 /* process any acks */
7574 if (!igb_check_for_ack(hw, vf))
7575 igb_rcv_ack_from_vf(adapter, vf);
7580 * igb_set_uta - Set unicast filter table address
7581 * @adapter: board private structure
7582 * @set: boolean indicating if we are setting or clearing bits
7584 * The unicast table address is a register array of 32-bit registers.
7585 * The table is meant to be used in a way similar to how the MTA is used
7586 * however due to certain limitations in the hardware it is necessary to
7587 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7588 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7590 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7592 struct e1000_hw *hw = &adapter->hw;
7593 u32 uta = set ? ~0 : 0;
7596 /* we only need to do this if VMDq is enabled */
7597 if (!adapter->vfs_allocated_count)
7600 for (i = hw->mac.uta_reg_count; i--;)
7601 array_wr32(E1000_UTA, i, uta);
7605 * igb_intr_msi - Interrupt Handler
7606 * @irq: interrupt number
7607 * @data: pointer to a network interface device structure
7609 static irqreturn_t igb_intr_msi(int irq, void *data)
7611 struct igb_adapter *adapter = data;
7612 struct igb_q_vector *q_vector = adapter->q_vector[0];
7613 struct e1000_hw *hw = &adapter->hw;
7614 /* read ICR disables interrupts using IAM */
7615 u32 icr = rd32(E1000_ICR);
7617 igb_write_itr(q_vector);
7619 if (icr & E1000_ICR_DRSTA)
7620 schedule_work(&adapter->reset_task);
7622 if (icr & E1000_ICR_DOUTSYNC) {
7623 /* HW is reporting DMA is out of sync */
7624 adapter->stats.doosync++;
7627 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7628 hw->mac.get_link_status = 1;
7629 if (!test_bit(__IGB_DOWN, &adapter->state))
7630 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7633 if (icr & E1000_ICR_TS)
7634 igb_tsync_interrupt(adapter);
7636 napi_schedule(&q_vector->napi);
7642 * igb_intr - Legacy Interrupt Handler
7643 * @irq: interrupt number
7644 * @data: pointer to a network interface device structure
7646 static irqreturn_t igb_intr(int irq, void *data)
7648 struct igb_adapter *adapter = data;
7649 struct igb_q_vector *q_vector = adapter->q_vector[0];
7650 struct e1000_hw *hw = &adapter->hw;
7651 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7652 * need for the IMC write
7654 u32 icr = rd32(E1000_ICR);
7656 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7657 * not set, then the adapter didn't send an interrupt
7659 if (!(icr & E1000_ICR_INT_ASSERTED))
7662 igb_write_itr(q_vector);
7664 if (icr & E1000_ICR_DRSTA)
7665 schedule_work(&adapter->reset_task);
7667 if (icr & E1000_ICR_DOUTSYNC) {
7668 /* HW is reporting DMA is out of sync */
7669 adapter->stats.doosync++;
7672 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7673 hw->mac.get_link_status = 1;
7674 /* guard against interrupt when we're going down */
7675 if (!test_bit(__IGB_DOWN, &adapter->state))
7676 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7679 if (icr & E1000_ICR_TS)
7680 igb_tsync_interrupt(adapter);
7682 napi_schedule(&q_vector->napi);
7687 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7689 struct igb_adapter *adapter = q_vector->adapter;
7690 struct e1000_hw *hw = &adapter->hw;
7692 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7693 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7694 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7695 igb_set_itr(q_vector);
7697 igb_update_ring_itr(q_vector);
7700 if (!test_bit(__IGB_DOWN, &adapter->state)) {
7701 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7702 wr32(E1000_EIMS, q_vector->eims_value);
7704 igb_irq_enable(adapter);
7709 * igb_poll - NAPI Rx polling callback
7710 * @napi: napi polling structure
7711 * @budget: count of how many packets we should handle
7713 static int igb_poll(struct napi_struct *napi, int budget)
7715 struct igb_q_vector *q_vector = container_of(napi,
7716 struct igb_q_vector,
7718 bool clean_complete = true;
7721 #ifdef CONFIG_IGB_DCA
7722 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7723 igb_update_dca(q_vector);
7725 if (q_vector->tx.ring)
7726 clean_complete = igb_clean_tx_irq(q_vector, budget);
7728 if (q_vector->rx.ring) {
7729 int cleaned = igb_clean_rx_irq(q_vector, budget);
7731 work_done += cleaned;
7732 if (cleaned >= budget)
7733 clean_complete = false;
7736 /* If all work not completed, return budget and keep polling */
7737 if (!clean_complete)
7740 /* Exit the polling mode, but don't re-enable interrupts if stack might
7741 * poll us due to busy-polling
7743 if (likely(napi_complete_done(napi, work_done)))
7744 igb_ring_irq_enable(q_vector);
7746 return min(work_done, budget - 1);
7750 * igb_clean_tx_irq - Reclaim resources after transmit completes
7751 * @q_vector: pointer to q_vector containing needed info
7752 * @napi_budget: Used to determine if we are in netpoll
7754 * returns true if ring is completely cleaned
7756 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7758 struct igb_adapter *adapter = q_vector->adapter;
7759 struct igb_ring *tx_ring = q_vector->tx.ring;
7760 struct igb_tx_buffer *tx_buffer;
7761 union e1000_adv_tx_desc *tx_desc;
7762 unsigned int total_bytes = 0, total_packets = 0;
7763 unsigned int budget = q_vector->tx.work_limit;
7764 unsigned int i = tx_ring->next_to_clean;
7766 if (test_bit(__IGB_DOWN, &adapter->state))
7769 tx_buffer = &tx_ring->tx_buffer_info[i];
7770 tx_desc = IGB_TX_DESC(tx_ring, i);
7771 i -= tx_ring->count;
7774 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7776 /* if next_to_watch is not set then there is no work pending */
7780 /* prevent any other reads prior to eop_desc */
7783 /* if DD is not set pending work has not been completed */
7784 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7787 /* clear next_to_watch to prevent false hangs */
7788 tx_buffer->next_to_watch = NULL;
7790 /* update the statistics for this packet */
7791 total_bytes += tx_buffer->bytecount;
7792 total_packets += tx_buffer->gso_segs;
7795 napi_consume_skb(tx_buffer->skb, napi_budget);
7797 /* unmap skb header data */
7798 dma_unmap_single(tx_ring->dev,
7799 dma_unmap_addr(tx_buffer, dma),
7800 dma_unmap_len(tx_buffer, len),
7803 /* clear tx_buffer data */
7804 dma_unmap_len_set(tx_buffer, len, 0);
7806 /* clear last DMA location and unmap remaining buffers */
7807 while (tx_desc != eop_desc) {
7812 i -= tx_ring->count;
7813 tx_buffer = tx_ring->tx_buffer_info;
7814 tx_desc = IGB_TX_DESC(tx_ring, 0);
7817 /* unmap any remaining paged data */
7818 if (dma_unmap_len(tx_buffer, len)) {
7819 dma_unmap_page(tx_ring->dev,
7820 dma_unmap_addr(tx_buffer, dma),
7821 dma_unmap_len(tx_buffer, len),
7823 dma_unmap_len_set(tx_buffer, len, 0);
7827 /* move us one more past the eop_desc for start of next pkt */
7832 i -= tx_ring->count;
7833 tx_buffer = tx_ring->tx_buffer_info;
7834 tx_desc = IGB_TX_DESC(tx_ring, 0);
7837 /* issue prefetch for next Tx descriptor */
7840 /* update budget accounting */
7842 } while (likely(budget));
7844 netdev_tx_completed_queue(txring_txq(tx_ring),
7845 total_packets, total_bytes);
7846 i += tx_ring->count;
7847 tx_ring->next_to_clean = i;
7848 u64_stats_update_begin(&tx_ring->tx_syncp);
7849 tx_ring->tx_stats.bytes += total_bytes;
7850 tx_ring->tx_stats.packets += total_packets;
7851 u64_stats_update_end(&tx_ring->tx_syncp);
7852 q_vector->tx.total_bytes += total_bytes;
7853 q_vector->tx.total_packets += total_packets;
7855 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7856 struct e1000_hw *hw = &adapter->hw;
7858 /* Detect a transmit hang in hardware, this serializes the
7859 * check with the clearing of time_stamp and movement of i
7861 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7862 if (tx_buffer->next_to_watch &&
7863 time_after(jiffies, tx_buffer->time_stamp +
7864 (adapter->tx_timeout_factor * HZ)) &&
7865 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7867 /* detected Tx unit hang */
7868 dev_err(tx_ring->dev,
7869 "Detected Tx Unit Hang\n"
7873 " next_to_use <%x>\n"
7874 " next_to_clean <%x>\n"
7875 "buffer_info[next_to_clean]\n"
7876 " time_stamp <%lx>\n"
7877 " next_to_watch <%p>\n"
7879 " desc.status <%x>\n",
7880 tx_ring->queue_index,
7881 rd32(E1000_TDH(tx_ring->reg_idx)),
7882 readl(tx_ring->tail),
7883 tx_ring->next_to_use,
7884 tx_ring->next_to_clean,
7885 tx_buffer->time_stamp,
7886 tx_buffer->next_to_watch,
7888 tx_buffer->next_to_watch->wb.status);
7889 netif_stop_subqueue(tx_ring->netdev,
7890 tx_ring->queue_index);
7892 /* we are about to reset, no point in enabling stuff */
7897 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7898 if (unlikely(total_packets &&
7899 netif_carrier_ok(tx_ring->netdev) &&
7900 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7901 /* Make sure that anybody stopping the queue after this
7902 * sees the new next_to_clean.
7905 if (__netif_subqueue_stopped(tx_ring->netdev,
7906 tx_ring->queue_index) &&
7907 !(test_bit(__IGB_DOWN, &adapter->state))) {
7908 netif_wake_subqueue(tx_ring->netdev,
7909 tx_ring->queue_index);
7911 u64_stats_update_begin(&tx_ring->tx_syncp);
7912 tx_ring->tx_stats.restart_queue++;
7913 u64_stats_update_end(&tx_ring->tx_syncp);
7921 * igb_reuse_rx_page - page flip buffer and store it back on the ring
7922 * @rx_ring: rx descriptor ring to store buffers on
7923 * @old_buff: donor buffer to have page reused
7925 * Synchronizes page for reuse by the adapter
7927 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7928 struct igb_rx_buffer *old_buff)
7930 struct igb_rx_buffer *new_buff;
7931 u16 nta = rx_ring->next_to_alloc;
7933 new_buff = &rx_ring->rx_buffer_info[nta];
7935 /* update, and store next to alloc */
7937 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7939 /* Transfer page from old buffer to new buffer.
7940 * Move each member individually to avoid possible store
7941 * forwarding stalls.
7943 new_buff->dma = old_buff->dma;
7944 new_buff->page = old_buff->page;
7945 new_buff->page_offset = old_buff->page_offset;
7946 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
7949 static inline bool igb_page_is_reserved(struct page *page)
7951 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7954 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7956 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7957 struct page *page = rx_buffer->page;
7959 /* avoid re-using remote pages */
7960 if (unlikely(igb_page_is_reserved(page)))
7963 #if (PAGE_SIZE < 8192)
7964 /* if we are only owner of page we can reuse it */
7965 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7968 #define IGB_LAST_OFFSET \
7969 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7971 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7975 /* If we have drained the page fragment pool we need to update
7976 * the pagecnt_bias and page count so that we fully restock the
7977 * number of references the driver holds.
7979 if (unlikely(!pagecnt_bias)) {
7980 page_ref_add(page, USHRT_MAX);
7981 rx_buffer->pagecnt_bias = USHRT_MAX;
7988 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7989 * @rx_ring: rx descriptor ring to transact packets on
7990 * @rx_buffer: buffer containing page to add
7991 * @skb: sk_buff to place the data into
7992 * @size: size of buffer to be added
7994 * This function will add the data contained in rx_buffer->page to the skb.
7996 static void igb_add_rx_frag(struct igb_ring *rx_ring,
7997 struct igb_rx_buffer *rx_buffer,
7998 struct sk_buff *skb,
8001 #if (PAGE_SIZE < 8192)
8002 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8004 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8005 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8006 SKB_DATA_ALIGN(size);
8008 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8009 rx_buffer->page_offset, size, truesize);
8010 #if (PAGE_SIZE < 8192)
8011 rx_buffer->page_offset ^= truesize;
8013 rx_buffer->page_offset += truesize;
8017 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8018 struct igb_rx_buffer *rx_buffer,
8019 union e1000_adv_rx_desc *rx_desc,
8022 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8023 #if (PAGE_SIZE < 8192)
8024 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8026 unsigned int truesize = SKB_DATA_ALIGN(size);
8028 unsigned int headlen;
8029 struct sk_buff *skb;
8031 /* prefetch first cache line of first page */
8033 #if L1_CACHE_BYTES < 128
8034 prefetch(va + L1_CACHE_BYTES);
8037 /* allocate a skb to store the frags */
8038 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8042 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8043 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8044 va += IGB_TS_HDR_LEN;
8045 size -= IGB_TS_HDR_LEN;
8048 /* Determine available headroom for copy */
8050 if (headlen > IGB_RX_HDR_LEN)
8051 headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
8053 /* align pull length to size of long to optimize memcpy performance */
8054 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8056 /* update all of the pointers */
8059 skb_add_rx_frag(skb, 0, rx_buffer->page,
8060 (va + headlen) - page_address(rx_buffer->page),
8062 #if (PAGE_SIZE < 8192)
8063 rx_buffer->page_offset ^= truesize;
8065 rx_buffer->page_offset += truesize;
8068 rx_buffer->pagecnt_bias++;
8074 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8075 struct igb_rx_buffer *rx_buffer,
8076 union e1000_adv_rx_desc *rx_desc,
8079 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8080 #if (PAGE_SIZE < 8192)
8081 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8083 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8084 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8086 struct sk_buff *skb;
8088 /* prefetch first cache line of first page */
8090 #if L1_CACHE_BYTES < 128
8091 prefetch(va + L1_CACHE_BYTES);
8094 /* build an skb around the page buffer */
8095 skb = build_skb(va - IGB_SKB_PAD, truesize);
8099 /* update pointers within the skb to store the data */
8100 skb_reserve(skb, IGB_SKB_PAD);
8101 __skb_put(skb, size);
8103 /* pull timestamp out of packet data */
8104 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8105 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8106 __skb_pull(skb, IGB_TS_HDR_LEN);
8109 /* update buffer offset */
8110 #if (PAGE_SIZE < 8192)
8111 rx_buffer->page_offset ^= truesize;
8113 rx_buffer->page_offset += truesize;
8119 static inline void igb_rx_checksum(struct igb_ring *ring,
8120 union e1000_adv_rx_desc *rx_desc,
8121 struct sk_buff *skb)
8123 skb_checksum_none_assert(skb);
8125 /* Ignore Checksum bit is set */
8126 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8129 /* Rx checksum disabled via ethtool */
8130 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8133 /* TCP/UDP checksum error bit is set */
8134 if (igb_test_staterr(rx_desc,
8135 E1000_RXDEXT_STATERR_TCPE |
8136 E1000_RXDEXT_STATERR_IPE)) {
8137 /* work around errata with sctp packets where the TCPE aka
8138 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8139 * packets, (aka let the stack check the crc32c)
8141 if (!((skb->len == 60) &&
8142 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8143 u64_stats_update_begin(&ring->rx_syncp);
8144 ring->rx_stats.csum_err++;
8145 u64_stats_update_end(&ring->rx_syncp);
8147 /* let the stack verify checksum errors */
8150 /* It must be a TCP or UDP packet with a valid checksum */
8151 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8152 E1000_RXD_STAT_UDPCS))
8153 skb->ip_summed = CHECKSUM_UNNECESSARY;
8155 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8156 le32_to_cpu(rx_desc->wb.upper.status_error));
8159 static inline void igb_rx_hash(struct igb_ring *ring,
8160 union e1000_adv_rx_desc *rx_desc,
8161 struct sk_buff *skb)
8163 if (ring->netdev->features & NETIF_F_RXHASH)
8165 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8170 * igb_is_non_eop - process handling of non-EOP buffers
8171 * @rx_ring: Rx ring being processed
8172 * @rx_desc: Rx descriptor for current buffer
8173 * @skb: current socket buffer containing buffer in progress
8175 * This function updates next to clean. If the buffer is an EOP buffer
8176 * this function exits returning false, otherwise it will place the
8177 * sk_buff in the next buffer to be chained and return true indicating
8178 * that this is in fact a non-EOP buffer.
8180 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8181 union e1000_adv_rx_desc *rx_desc)
8183 u32 ntc = rx_ring->next_to_clean + 1;
8185 /* fetch, update, and store next to clean */
8186 ntc = (ntc < rx_ring->count) ? ntc : 0;
8187 rx_ring->next_to_clean = ntc;
8189 prefetch(IGB_RX_DESC(rx_ring, ntc));
8191 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8198 * igb_cleanup_headers - Correct corrupted or empty headers
8199 * @rx_ring: rx descriptor ring packet is being transacted on
8200 * @rx_desc: pointer to the EOP Rx descriptor
8201 * @skb: pointer to current skb being fixed
8203 * Address the case where we are pulling data in on pages only
8204 * and as such no data is present in the skb header.
8206 * In addition if skb is not at least 60 bytes we need to pad it so that
8207 * it is large enough to qualify as a valid Ethernet frame.
8209 * Returns true if an error was encountered and skb was freed.
8211 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8212 union e1000_adv_rx_desc *rx_desc,
8213 struct sk_buff *skb)
8215 if (unlikely((igb_test_staterr(rx_desc,
8216 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8217 struct net_device *netdev = rx_ring->netdev;
8218 if (!(netdev->features & NETIF_F_RXALL)) {
8219 dev_kfree_skb_any(skb);
8224 /* if eth_skb_pad returns an error the skb was freed */
8225 if (eth_skb_pad(skb))
8232 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8233 * @rx_ring: rx descriptor ring packet is being transacted on
8234 * @rx_desc: pointer to the EOP Rx descriptor
8235 * @skb: pointer to current skb being populated
8237 * This function checks the ring, descriptor, and packet information in
8238 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8239 * other fields within the skb.
8241 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8242 union e1000_adv_rx_desc *rx_desc,
8243 struct sk_buff *skb)
8245 struct net_device *dev = rx_ring->netdev;
8247 igb_rx_hash(rx_ring, rx_desc, skb);
8249 igb_rx_checksum(rx_ring, rx_desc, skb);
8251 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8252 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8253 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8255 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8256 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8259 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8260 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8261 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8263 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8265 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8268 skb_record_rx_queue(skb, rx_ring->queue_index);
8270 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8273 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8274 const unsigned int size)
8276 struct igb_rx_buffer *rx_buffer;
8278 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8279 prefetchw(rx_buffer->page);
8281 /* we are reusing so sync this buffer for CPU use */
8282 dma_sync_single_range_for_cpu(rx_ring->dev,
8284 rx_buffer->page_offset,
8288 rx_buffer->pagecnt_bias--;
8293 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8294 struct igb_rx_buffer *rx_buffer)
8296 if (igb_can_reuse_rx_page(rx_buffer)) {
8297 /* hand second half of page back to the ring */
8298 igb_reuse_rx_page(rx_ring, rx_buffer);
8300 /* We are not reusing the buffer so unmap it and free
8301 * any references we are holding to it
8303 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8304 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8306 __page_frag_cache_drain(rx_buffer->page,
8307 rx_buffer->pagecnt_bias);
8310 /* clear contents of rx_buffer */
8311 rx_buffer->page = NULL;
8314 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8316 struct igb_ring *rx_ring = q_vector->rx.ring;
8317 struct sk_buff *skb = rx_ring->skb;
8318 unsigned int total_bytes = 0, total_packets = 0;
8319 u16 cleaned_count = igb_desc_unused(rx_ring);
8321 while (likely(total_packets < budget)) {
8322 union e1000_adv_rx_desc *rx_desc;
8323 struct igb_rx_buffer *rx_buffer;
8326 /* return some buffers to hardware, one at a time is too slow */
8327 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8328 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8332 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8333 size = le16_to_cpu(rx_desc->wb.upper.length);
8337 /* This memory barrier is needed to keep us from reading
8338 * any other fields out of the rx_desc until we know the
8339 * descriptor has been written back
8343 rx_buffer = igb_get_rx_buffer(rx_ring, size);
8345 /* retrieve a buffer from the ring */
8347 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8348 else if (ring_uses_build_skb(rx_ring))
8349 skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8351 skb = igb_construct_skb(rx_ring, rx_buffer,
8354 /* exit if we failed to retrieve a buffer */
8356 rx_ring->rx_stats.alloc_failed++;
8357 rx_buffer->pagecnt_bias++;
8361 igb_put_rx_buffer(rx_ring, rx_buffer);
8364 /* fetch next buffer in frame if non-eop */
8365 if (igb_is_non_eop(rx_ring, rx_desc))
8368 /* verify the packet layout is correct */
8369 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8374 /* probably a little skewed due to removing CRC */
8375 total_bytes += skb->len;
8377 /* populate checksum, timestamp, VLAN, and protocol */
8378 igb_process_skb_fields(rx_ring, rx_desc, skb);
8380 napi_gro_receive(&q_vector->napi, skb);
8382 /* reset skb pointer */
8385 /* update budget accounting */
8389 /* place incomplete frames back on ring for completion */
8392 u64_stats_update_begin(&rx_ring->rx_syncp);
8393 rx_ring->rx_stats.packets += total_packets;
8394 rx_ring->rx_stats.bytes += total_bytes;
8395 u64_stats_update_end(&rx_ring->rx_syncp);
8396 q_vector->rx.total_packets += total_packets;
8397 q_vector->rx.total_bytes += total_bytes;
8400 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8402 return total_packets;
8405 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8407 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8410 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8411 struct igb_rx_buffer *bi)
8413 struct page *page = bi->page;
8416 /* since we are recycling buffers we should seldom need to alloc */
8420 /* alloc new page for storage */
8421 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8422 if (unlikely(!page)) {
8423 rx_ring->rx_stats.alloc_failed++;
8427 /* map page for use */
8428 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8429 igb_rx_pg_size(rx_ring),
8433 /* if mapping failed free memory back to system since
8434 * there isn't much point in holding memory we can't use
8436 if (dma_mapping_error(rx_ring->dev, dma)) {
8437 __free_pages(page, igb_rx_pg_order(rx_ring));
8439 rx_ring->rx_stats.alloc_failed++;
8445 bi->page_offset = igb_rx_offset(rx_ring);
8446 bi->pagecnt_bias = 1;
8452 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
8453 * @adapter: address of board private structure
8455 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8457 union e1000_adv_rx_desc *rx_desc;
8458 struct igb_rx_buffer *bi;
8459 u16 i = rx_ring->next_to_use;
8466 rx_desc = IGB_RX_DESC(rx_ring, i);
8467 bi = &rx_ring->rx_buffer_info[i];
8468 i -= rx_ring->count;
8470 bufsz = igb_rx_bufsz(rx_ring);
8473 if (!igb_alloc_mapped_page(rx_ring, bi))
8476 /* sync the buffer for use by the device */
8477 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8478 bi->page_offset, bufsz,
8481 /* Refresh the desc even if buffer_addrs didn't change
8482 * because each write-back erases this info.
8484 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8490 rx_desc = IGB_RX_DESC(rx_ring, 0);
8491 bi = rx_ring->rx_buffer_info;
8492 i -= rx_ring->count;
8495 /* clear the length for the next_to_use descriptor */
8496 rx_desc->wb.upper.length = 0;
8499 } while (cleaned_count);
8501 i += rx_ring->count;
8503 if (rx_ring->next_to_use != i) {
8504 /* record the next descriptor to use */
8505 rx_ring->next_to_use = i;
8507 /* update next to alloc since we have filled the ring */
8508 rx_ring->next_to_alloc = i;
8510 /* Force memory writes to complete before letting h/w
8511 * know there are new descriptors to fetch. (Only
8512 * applicable for weak-ordered memory model archs,
8516 writel(i, rx_ring->tail);
8526 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8528 struct igb_adapter *adapter = netdev_priv(netdev);
8529 struct mii_ioctl_data *data = if_mii(ifr);
8531 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8536 data->phy_id = adapter->hw.phy.addr;
8539 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8556 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8562 return igb_mii_ioctl(netdev, ifr, cmd);
8564 return igb_ptp_get_ts_config(netdev, ifr);
8566 return igb_ptp_set_ts_config(netdev, ifr);
8572 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8574 struct igb_adapter *adapter = hw->back;
8576 pci_read_config_word(adapter->pdev, reg, value);
8579 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8581 struct igb_adapter *adapter = hw->back;
8583 pci_write_config_word(adapter->pdev, reg, *value);
8586 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8588 struct igb_adapter *adapter = hw->back;
8590 if (pcie_capability_read_word(adapter->pdev, reg, value))
8591 return -E1000_ERR_CONFIG;
8596 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8598 struct igb_adapter *adapter = hw->back;
8600 if (pcie_capability_write_word(adapter->pdev, reg, *value))
8601 return -E1000_ERR_CONFIG;
8606 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8608 struct igb_adapter *adapter = netdev_priv(netdev);
8609 struct e1000_hw *hw = &adapter->hw;
8611 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8614 /* enable VLAN tag insert/strip */
8615 ctrl = rd32(E1000_CTRL);
8616 ctrl |= E1000_CTRL_VME;
8617 wr32(E1000_CTRL, ctrl);
8619 /* Disable CFI check */
8620 rctl = rd32(E1000_RCTL);
8621 rctl &= ~E1000_RCTL_CFIEN;
8622 wr32(E1000_RCTL, rctl);
8624 /* disable VLAN tag insert/strip */
8625 ctrl = rd32(E1000_CTRL);
8626 ctrl &= ~E1000_CTRL_VME;
8627 wr32(E1000_CTRL, ctrl);
8630 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8633 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8634 __be16 proto, u16 vid)
8636 struct igb_adapter *adapter = netdev_priv(netdev);
8637 struct e1000_hw *hw = &adapter->hw;
8638 int pf_id = adapter->vfs_allocated_count;
8640 /* add the filter since PF can receive vlans w/o entry in vlvf */
8641 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8642 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8644 set_bit(vid, adapter->active_vlans);
8649 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8650 __be16 proto, u16 vid)
8652 struct igb_adapter *adapter = netdev_priv(netdev);
8653 int pf_id = adapter->vfs_allocated_count;
8654 struct e1000_hw *hw = &adapter->hw;
8656 /* remove VID from filter table */
8657 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8658 igb_vfta_set(hw, vid, pf_id, false, true);
8660 clear_bit(vid, adapter->active_vlans);
8665 static void igb_restore_vlan(struct igb_adapter *adapter)
8669 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8670 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8672 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8673 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8676 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8678 struct pci_dev *pdev = adapter->pdev;
8679 struct e1000_mac_info *mac = &adapter->hw.mac;
8683 /* Make sure dplx is at most 1 bit and lsb of speed is not set
8684 * for the switch() below to work
8686 if ((spd & 1) || (dplx & ~1))
8689 /* Fiber NIC's only allow 1000 gbps Full duplex
8690 * and 100Mbps Full duplex for 100baseFx sfp
8692 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8693 switch (spd + dplx) {
8694 case SPEED_10 + DUPLEX_HALF:
8695 case SPEED_10 + DUPLEX_FULL:
8696 case SPEED_100 + DUPLEX_HALF:
8703 switch (spd + dplx) {
8704 case SPEED_10 + DUPLEX_HALF:
8705 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8707 case SPEED_10 + DUPLEX_FULL:
8708 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8710 case SPEED_100 + DUPLEX_HALF:
8711 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8713 case SPEED_100 + DUPLEX_FULL:
8714 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8716 case SPEED_1000 + DUPLEX_FULL:
8718 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8720 case SPEED_1000 + DUPLEX_HALF: /* not supported */
8725 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8726 adapter->hw.phy.mdix = AUTO_ALL_MODES;
8731 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8735 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8738 struct net_device *netdev = pci_get_drvdata(pdev);
8739 struct igb_adapter *adapter = netdev_priv(netdev);
8740 struct e1000_hw *hw = &adapter->hw;
8741 u32 ctrl, rctl, status;
8742 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8746 netif_device_detach(netdev);
8748 if (netif_running(netdev))
8749 __igb_close(netdev, true);
8751 igb_ptp_suspend(adapter);
8753 igb_clear_interrupt_scheme(adapter);
8756 status = rd32(E1000_STATUS);
8757 if (status & E1000_STATUS_LU)
8758 wufc &= ~E1000_WUFC_LNKC;
8761 igb_setup_rctl(adapter);
8762 igb_set_rx_mode(netdev);
8764 /* turn on all-multi mode if wake on multicast is enabled */
8765 if (wufc & E1000_WUFC_MC) {
8766 rctl = rd32(E1000_RCTL);
8767 rctl |= E1000_RCTL_MPE;
8768 wr32(E1000_RCTL, rctl);
8771 ctrl = rd32(E1000_CTRL);
8772 ctrl |= E1000_CTRL_ADVD3WUC;
8773 wr32(E1000_CTRL, ctrl);
8775 /* Allow time for pending master requests to run */
8776 igb_disable_pcie_master(hw);
8778 wr32(E1000_WUC, E1000_WUC_PME_EN);
8779 wr32(E1000_WUFC, wufc);
8782 wr32(E1000_WUFC, 0);
8785 wake = wufc || adapter->en_mng_pt;
8787 igb_power_down_link(adapter);
8789 igb_power_up_link(adapter);
8792 *enable_wake = wake;
8794 /* Release control of h/w to f/w. If f/w is AMT enabled, this
8795 * would have already happened in close and is redundant.
8797 igb_release_hw_control(adapter);
8799 pci_disable_device(pdev);
8804 static void igb_deliver_wake_packet(struct net_device *netdev)
8806 struct igb_adapter *adapter = netdev_priv(netdev);
8807 struct e1000_hw *hw = &adapter->hw;
8808 struct sk_buff *skb;
8811 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8813 /* WUPM stores only the first 128 bytes of the wake packet.
8814 * Read the packet only if we have the whole thing.
8816 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8819 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8825 /* Ensure reads are 32-bit aligned */
8826 wupl = roundup(wupl, 4);
8828 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8830 skb->protocol = eth_type_trans(skb, netdev);
8834 static int __maybe_unused igb_suspend(struct device *dev)
8836 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8839 static int __maybe_unused igb_resume(struct device *dev)
8841 struct pci_dev *pdev = to_pci_dev(dev);
8842 struct net_device *netdev = pci_get_drvdata(pdev);
8843 struct igb_adapter *adapter = netdev_priv(netdev);
8844 struct e1000_hw *hw = &adapter->hw;
8847 pci_set_power_state(pdev, PCI_D0);
8848 pci_restore_state(pdev);
8849 pci_save_state(pdev);
8851 if (!pci_device_is_present(pdev))
8853 err = pci_enable_device_mem(pdev);
8856 "igb: Cannot enable PCI device from suspend\n");
8859 pci_set_master(pdev);
8861 pci_enable_wake(pdev, PCI_D3hot, 0);
8862 pci_enable_wake(pdev, PCI_D3cold, 0);
8864 if (igb_init_interrupt_scheme(adapter, true)) {
8865 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8871 /* let the f/w know that the h/w is now under the control of the
8874 igb_get_hw_control(adapter);
8876 val = rd32(E1000_WUS);
8877 if (val & WAKE_PKT_WUS)
8878 igb_deliver_wake_packet(netdev);
8880 wr32(E1000_WUS, ~0);
8883 if (!err && netif_running(netdev))
8884 err = __igb_open(netdev, true);
8887 netif_device_attach(netdev);
8893 static int __maybe_unused igb_runtime_idle(struct device *dev)
8895 struct pci_dev *pdev = to_pci_dev(dev);
8896 struct net_device *netdev = pci_get_drvdata(pdev);
8897 struct igb_adapter *adapter = netdev_priv(netdev);
8899 if (!igb_has_link(adapter))
8900 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8905 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8907 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8910 static int __maybe_unused igb_runtime_resume(struct device *dev)
8912 return igb_resume(dev);
8915 static void igb_shutdown(struct pci_dev *pdev)
8919 __igb_shutdown(pdev, &wake, 0);
8921 if (system_state == SYSTEM_POWER_OFF) {
8922 pci_wake_from_d3(pdev, wake);
8923 pci_set_power_state(pdev, PCI_D3hot);
8927 #ifdef CONFIG_PCI_IOV
8928 static int igb_sriov_reinit(struct pci_dev *dev)
8930 struct net_device *netdev = pci_get_drvdata(dev);
8931 struct igb_adapter *adapter = netdev_priv(netdev);
8932 struct pci_dev *pdev = adapter->pdev;
8936 if (netif_running(netdev))
8941 igb_clear_interrupt_scheme(adapter);
8943 igb_init_queue_configuration(adapter);
8945 if (igb_init_interrupt_scheme(adapter, true)) {
8947 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8951 if (netif_running(netdev))
8959 static int igb_pci_disable_sriov(struct pci_dev *dev)
8961 int err = igb_disable_sriov(dev);
8964 err = igb_sriov_reinit(dev);
8969 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8971 int err = igb_enable_sriov(dev, num_vfs);
8976 err = igb_sriov_reinit(dev);
8985 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8987 #ifdef CONFIG_PCI_IOV
8989 return igb_pci_disable_sriov(dev);
8991 return igb_pci_enable_sriov(dev, num_vfs);
8997 * igb_io_error_detected - called when PCI error is detected
8998 * @pdev: Pointer to PCI device
8999 * @state: The current pci connection state
9001 * This function is called after a PCI bus error affecting
9002 * this device has been detected.
9004 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9005 pci_channel_state_t state)
9007 struct net_device *netdev = pci_get_drvdata(pdev);
9008 struct igb_adapter *adapter = netdev_priv(netdev);
9010 netif_device_detach(netdev);
9012 if (state == pci_channel_io_perm_failure)
9013 return PCI_ERS_RESULT_DISCONNECT;
9015 if (netif_running(netdev))
9017 pci_disable_device(pdev);
9019 /* Request a slot slot reset. */
9020 return PCI_ERS_RESULT_NEED_RESET;
9024 * igb_io_slot_reset - called after the pci bus has been reset.
9025 * @pdev: Pointer to PCI device
9027 * Restart the card from scratch, as if from a cold-boot. Implementation
9028 * resembles the first-half of the igb_resume routine.
9030 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9032 struct net_device *netdev = pci_get_drvdata(pdev);
9033 struct igb_adapter *adapter = netdev_priv(netdev);
9034 struct e1000_hw *hw = &adapter->hw;
9035 pci_ers_result_t result;
9037 if (pci_enable_device_mem(pdev)) {
9039 "Cannot re-enable PCI device after reset.\n");
9040 result = PCI_ERS_RESULT_DISCONNECT;
9042 pci_set_master(pdev);
9043 pci_restore_state(pdev);
9044 pci_save_state(pdev);
9046 pci_enable_wake(pdev, PCI_D3hot, 0);
9047 pci_enable_wake(pdev, PCI_D3cold, 0);
9049 /* In case of PCI error, adapter lose its HW address
9050 * so we should re-assign it here.
9052 hw->hw_addr = adapter->io_addr;
9055 wr32(E1000_WUS, ~0);
9056 result = PCI_ERS_RESULT_RECOVERED;
9063 * igb_io_resume - called when traffic can start flowing again.
9064 * @pdev: Pointer to PCI device
9066 * This callback is called when the error recovery driver tells us that
9067 * its OK to resume normal operation. Implementation resembles the
9068 * second-half of the igb_resume routine.
9070 static void igb_io_resume(struct pci_dev *pdev)
9072 struct net_device *netdev = pci_get_drvdata(pdev);
9073 struct igb_adapter *adapter = netdev_priv(netdev);
9075 if (netif_running(netdev)) {
9076 if (igb_up(adapter)) {
9077 dev_err(&pdev->dev, "igb_up failed after reset\n");
9082 netif_device_attach(netdev);
9084 /* let the f/w know that the h/w is now under the control of the
9087 igb_get_hw_control(adapter);
9091 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9092 * @adapter: Pointer to adapter structure
9093 * @index: Index of the RAR entry which need to be synced with MAC table
9095 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9097 struct e1000_hw *hw = &adapter->hw;
9098 u32 rar_low, rar_high;
9099 u8 *addr = adapter->mac_table[index].addr;
9101 /* HW expects these to be in network order when they are plugged
9102 * into the registers which are little endian. In order to guarantee
9103 * that ordering we need to do an leXX_to_cpup here in order to be
9104 * ready for the byteswap that occurs with writel
9106 rar_low = le32_to_cpup((__le32 *)(addr));
9107 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9109 /* Indicate to hardware the Address is Valid. */
9110 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9111 if (is_valid_ether_addr(addr))
9112 rar_high |= E1000_RAH_AV;
9114 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9115 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9117 switch (hw->mac.type) {
9120 if (adapter->mac_table[index].state &
9121 IGB_MAC_STATE_QUEUE_STEERING)
9122 rar_high |= E1000_RAH_QSEL_ENABLE;
9124 rar_high |= E1000_RAH_POOL_1 *
9125 adapter->mac_table[index].queue;
9128 rar_high |= E1000_RAH_POOL_1 <<
9129 adapter->mac_table[index].queue;
9134 wr32(E1000_RAL(index), rar_low);
9136 wr32(E1000_RAH(index), rar_high);
9140 static int igb_set_vf_mac(struct igb_adapter *adapter,
9141 int vf, unsigned char *mac_addr)
9143 struct e1000_hw *hw = &adapter->hw;
9144 /* VF MAC addresses start at end of receive addresses and moves
9145 * towards the first, as a result a collision should not be possible
9147 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9148 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9150 ether_addr_copy(vf_mac_addr, mac_addr);
9151 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9152 adapter->mac_table[rar_entry].queue = vf;
9153 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9154 igb_rar_set_index(adapter, rar_entry);
9159 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9161 struct igb_adapter *adapter = netdev_priv(netdev);
9163 if (vf >= adapter->vfs_allocated_count)
9166 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9167 * flag and allows to overwrite the MAC via VF netdev. This
9168 * is necessary to allow libvirt a way to restore the original
9169 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9172 if (is_zero_ether_addr(mac)) {
9173 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9174 dev_info(&adapter->pdev->dev,
9175 "remove administratively set MAC on VF %d\n",
9177 } else if (is_valid_ether_addr(mac)) {
9178 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9179 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9181 dev_info(&adapter->pdev->dev,
9182 "Reload the VF driver to make this change effective.");
9183 /* Generate additional warning if PF is down */
9184 if (test_bit(__IGB_DOWN, &adapter->state)) {
9185 dev_warn(&adapter->pdev->dev,
9186 "The VF MAC address has been set, but the PF device is not up.\n");
9187 dev_warn(&adapter->pdev->dev,
9188 "Bring the PF device up before attempting to use the VF device.\n");
9193 return igb_set_vf_mac(adapter, vf, mac);
9196 static int igb_link_mbps(int internal_link_speed)
9198 switch (internal_link_speed) {
9208 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9215 /* Calculate the rate factor values to set */
9216 rf_int = link_speed / tx_rate;
9217 rf_dec = (link_speed - (rf_int * tx_rate));
9218 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9221 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9222 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9223 E1000_RTTBCNRC_RF_INT_MASK);
9224 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9229 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9230 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9231 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9233 wr32(E1000_RTTBCNRM, 0x14);
9234 wr32(E1000_RTTBCNRC, bcnrc_val);
9237 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9239 int actual_link_speed, i;
9240 bool reset_rate = false;
9242 /* VF TX rate limit was not set or not supported */
9243 if ((adapter->vf_rate_link_speed == 0) ||
9244 (adapter->hw.mac.type != e1000_82576))
9247 actual_link_speed = igb_link_mbps(adapter->link_speed);
9248 if (actual_link_speed != adapter->vf_rate_link_speed) {
9250 adapter->vf_rate_link_speed = 0;
9251 dev_info(&adapter->pdev->dev,
9252 "Link speed has been changed. VF Transmit rate is disabled\n");
9255 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9257 adapter->vf_data[i].tx_rate = 0;
9259 igb_set_vf_rate_limit(&adapter->hw, i,
9260 adapter->vf_data[i].tx_rate,
9265 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9266 int min_tx_rate, int max_tx_rate)
9268 struct igb_adapter *adapter = netdev_priv(netdev);
9269 struct e1000_hw *hw = &adapter->hw;
9270 int actual_link_speed;
9272 if (hw->mac.type != e1000_82576)
9278 actual_link_speed = igb_link_mbps(adapter->link_speed);
9279 if ((vf >= adapter->vfs_allocated_count) ||
9280 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9281 (max_tx_rate < 0) ||
9282 (max_tx_rate > actual_link_speed))
9285 adapter->vf_rate_link_speed = actual_link_speed;
9286 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9287 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9292 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9295 struct igb_adapter *adapter = netdev_priv(netdev);
9296 struct e1000_hw *hw = &adapter->hw;
9297 u32 reg_val, reg_offset;
9299 if (!adapter->vfs_allocated_count)
9302 if (vf >= adapter->vfs_allocated_count)
9305 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9306 reg_val = rd32(reg_offset);
9308 reg_val |= (BIT(vf) |
9309 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9311 reg_val &= ~(BIT(vf) |
9312 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9313 wr32(reg_offset, reg_val);
9315 adapter->vf_data[vf].spoofchk_enabled = setting;
9319 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9321 struct igb_adapter *adapter = netdev_priv(netdev);
9323 if (vf >= adapter->vfs_allocated_count)
9325 if (adapter->vf_data[vf].trusted == setting)
9328 adapter->vf_data[vf].trusted = setting;
9330 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9331 vf, setting ? "" : "not ");
9335 static int igb_ndo_get_vf_config(struct net_device *netdev,
9336 int vf, struct ifla_vf_info *ivi)
9338 struct igb_adapter *adapter = netdev_priv(netdev);
9339 if (vf >= adapter->vfs_allocated_count)
9342 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9343 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9344 ivi->min_tx_rate = 0;
9345 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9346 ivi->qos = adapter->vf_data[vf].pf_qos;
9347 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9348 ivi->trusted = adapter->vf_data[vf].trusted;
9352 static void igb_vmm_control(struct igb_adapter *adapter)
9354 struct e1000_hw *hw = &adapter->hw;
9357 switch (hw->mac.type) {
9363 /* replication is not supported for 82575 */
9366 /* notify HW that the MAC is adding vlan tags */
9367 reg = rd32(E1000_DTXCTL);
9368 reg |= E1000_DTXCTL_VLAN_ADDED;
9369 wr32(E1000_DTXCTL, reg);
9372 /* enable replication vlan tag stripping */
9373 reg = rd32(E1000_RPLOLR);
9374 reg |= E1000_RPLOLR_STRVLAN;
9375 wr32(E1000_RPLOLR, reg);
9378 /* none of the above registers are supported by i350 */
9382 if (adapter->vfs_allocated_count) {
9383 igb_vmdq_set_loopback_pf(hw, true);
9384 igb_vmdq_set_replication_pf(hw, true);
9385 igb_vmdq_set_anti_spoofing_pf(hw, true,
9386 adapter->vfs_allocated_count);
9388 igb_vmdq_set_loopback_pf(hw, false);
9389 igb_vmdq_set_replication_pf(hw, false);
9393 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9395 struct e1000_hw *hw = &adapter->hw;
9399 if (hw->mac.type > e1000_82580) {
9400 if (adapter->flags & IGB_FLAG_DMAC) {
9403 /* force threshold to 0. */
9404 wr32(E1000_DMCTXTH, 0);
9406 /* DMA Coalescing high water mark needs to be greater
9407 * than the Rx threshold. Set hwm to PBA - max frame
9408 * size in 16B units, capping it at PBA - 6KB.
9410 hwm = 64 * (pba - 6);
9411 reg = rd32(E1000_FCRTC);
9412 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9413 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9414 & E1000_FCRTC_RTH_COAL_MASK);
9415 wr32(E1000_FCRTC, reg);
9417 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9418 * frame size, capping it at PBA - 10KB.
9420 dmac_thr = pba - 10;
9421 reg = rd32(E1000_DMACR);
9422 reg &= ~E1000_DMACR_DMACTHR_MASK;
9423 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9424 & E1000_DMACR_DMACTHR_MASK);
9426 /* transition to L0x or L1 if available..*/
9427 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9429 /* watchdog timer= +-1000 usec in 32usec intervals */
9432 /* Disable BMC-to-OS Watchdog Enable */
9433 if (hw->mac.type != e1000_i354)
9434 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9436 wr32(E1000_DMACR, reg);
9438 /* no lower threshold to disable
9439 * coalescing(smart fifb)-UTRESH=0
9441 wr32(E1000_DMCRTRH, 0);
9443 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9445 wr32(E1000_DMCTLX, reg);
9447 /* free space in tx packet buffer to wake from
9450 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9451 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9453 /* make low power state decision controlled
9456 reg = rd32(E1000_PCIEMISC);
9457 reg &= ~E1000_PCIEMISC_LX_DECISION;
9458 wr32(E1000_PCIEMISC, reg);
9459 } /* endif adapter->dmac is not disabled */
9460 } else if (hw->mac.type == e1000_82580) {
9461 u32 reg = rd32(E1000_PCIEMISC);
9463 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9464 wr32(E1000_DMACR, 0);
9469 * igb_read_i2c_byte - Reads 8 bit word over I2C
9470 * @hw: pointer to hardware structure
9471 * @byte_offset: byte offset to read
9472 * @dev_addr: device address
9475 * Performs byte read operation over I2C interface at
9476 * a specified device address.
9478 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9479 u8 dev_addr, u8 *data)
9481 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9482 struct i2c_client *this_client = adapter->i2c_client;
9487 return E1000_ERR_I2C;
9489 swfw_mask = E1000_SWFW_PHY0_SM;
9491 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9492 return E1000_ERR_SWFW_SYNC;
9494 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9495 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9498 return E1000_ERR_I2C;
9506 * igb_write_i2c_byte - Writes 8 bit word over I2C
9507 * @hw: pointer to hardware structure
9508 * @byte_offset: byte offset to write
9509 * @dev_addr: device address
9510 * @data: value to write
9512 * Performs byte write operation over I2C interface at
9513 * a specified device address.
9515 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9516 u8 dev_addr, u8 data)
9518 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9519 struct i2c_client *this_client = adapter->i2c_client;
9521 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9524 return E1000_ERR_I2C;
9526 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9527 return E1000_ERR_SWFW_SYNC;
9528 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9529 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9532 return E1000_ERR_I2C;
9538 int igb_reinit_queues(struct igb_adapter *adapter)
9540 struct net_device *netdev = adapter->netdev;
9541 struct pci_dev *pdev = adapter->pdev;
9544 if (netif_running(netdev))
9547 igb_reset_interrupt_capability(adapter);
9549 if (igb_init_interrupt_scheme(adapter, true)) {
9550 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9554 if (netif_running(netdev))
9555 err = igb_open(netdev);
9560 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9562 struct igb_nfc_filter *rule;
9564 spin_lock(&adapter->nfc_lock);
9566 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9567 igb_erase_filter(adapter, rule);
9569 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9570 igb_erase_filter(adapter, rule);
9572 spin_unlock(&adapter->nfc_lock);
9575 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9577 struct igb_nfc_filter *rule;
9579 spin_lock(&adapter->nfc_lock);
9581 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9582 igb_add_filter(adapter, rule);
9584 spin_unlock(&adapter->nfc_lock);