]> Git Repo - linux.git/blob - drivers/perf/riscv_pmu.c
Merge tag 'ti-k3-dt-for-v6.11-part2' into ti-k3-dts-next
[linux.git] / drivers / perf / riscv_pmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This implementation is based on old RISC-V perf and ARM perf event code
8  * which are in turn based on sparc64 and x86 code.
9  */
10
11 #include <linux/cpumask.h>
12 #include <linux/irq.h>
13 #include <linux/irqdesc.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/printk.h>
16 #include <linux/smp.h>
17 #include <linux/sched_clock.h>
18
19 #include <asm/sbi.h>
20
21 static bool riscv_perf_user_access(struct perf_event *event)
22 {
23         return ((event->attr.type == PERF_TYPE_HARDWARE) ||
24                 (event->attr.type == PERF_TYPE_HW_CACHE) ||
25                 (event->attr.type == PERF_TYPE_RAW)) &&
26                 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) &&
27                 (event->hw.idx != -1);
28 }
29
30 void arch_perf_update_userpage(struct perf_event *event,
31                                struct perf_event_mmap_page *userpg, u64 now)
32 {
33         struct clock_read_data *rd;
34         unsigned int seq;
35         u64 ns;
36
37         userpg->cap_user_time = 0;
38         userpg->cap_user_time_zero = 0;
39         userpg->cap_user_time_short = 0;
40         userpg->cap_user_rdpmc = riscv_perf_user_access(event);
41
42 #ifdef CONFIG_RISCV_PMU
43         /*
44          * The counters are 64-bit but the priv spec doesn't mandate all the
45          * bits to be implemented: that's why, counter width can vary based on
46          * the cpu vendor.
47          */
48         if (userpg->cap_user_rdpmc)
49                 userpg->pmc_width = to_riscv_pmu(event->pmu)->ctr_get_width(event->hw.idx) + 1;
50 #endif
51
52         do {
53                 rd = sched_clock_read_begin(&seq);
54
55                 userpg->time_mult = rd->mult;
56                 userpg->time_shift = rd->shift;
57                 userpg->time_zero = rd->epoch_ns;
58                 userpg->time_cycles = rd->epoch_cyc;
59                 userpg->time_mask = rd->sched_clock_mask;
60
61                 /*
62                  * Subtract the cycle base, such that software that
63                  * doesn't know about cap_user_time_short still 'works'
64                  * assuming no wraps.
65                  */
66                 ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
67                 userpg->time_zero -= ns;
68
69         } while (sched_clock_read_retry(seq));
70
71         userpg->time_offset = userpg->time_zero - now;
72
73         /*
74          * time_shift is not expected to be greater than 31 due to
75          * the original published conversion algorithm shifting a
76          * 32-bit value (now specifies a 64-bit value) - refer
77          * perf_event_mmap_page documentation in perf_event.h.
78          */
79         if (userpg->time_shift == 32) {
80                 userpg->time_shift = 31;
81                 userpg->time_mult >>= 1;
82         }
83
84         /*
85          * Internal timekeeping for enabled/running/stopped times
86          * is always computed with the sched_clock.
87          */
88         userpg->cap_user_time = 1;
89         userpg->cap_user_time_zero = 1;
90         userpg->cap_user_time_short = 1;
91 }
92
93 static unsigned long csr_read_num(int csr_num)
94 {
95 #define switchcase_csr_read(__csr_num, __val)           {\
96         case __csr_num:                                 \
97                 __val = csr_read(__csr_num);            \
98                 break; }
99 #define switchcase_csr_read_2(__csr_num, __val)         {\
100         switchcase_csr_read(__csr_num + 0, __val)        \
101         switchcase_csr_read(__csr_num + 1, __val)}
102 #define switchcase_csr_read_4(__csr_num, __val)         {\
103         switchcase_csr_read_2(__csr_num + 0, __val)      \
104         switchcase_csr_read_2(__csr_num + 2, __val)}
105 #define switchcase_csr_read_8(__csr_num, __val)         {\
106         switchcase_csr_read_4(__csr_num + 0, __val)      \
107         switchcase_csr_read_4(__csr_num + 4, __val)}
108 #define switchcase_csr_read_16(__csr_num, __val)        {\
109         switchcase_csr_read_8(__csr_num + 0, __val)      \
110         switchcase_csr_read_8(__csr_num + 8, __val)}
111 #define switchcase_csr_read_32(__csr_num, __val)        {\
112         switchcase_csr_read_16(__csr_num + 0, __val)     \
113         switchcase_csr_read_16(__csr_num + 16, __val)}
114
115         unsigned long ret = 0;
116
117         switch (csr_num) {
118         switchcase_csr_read_32(CSR_CYCLE, ret)
119         switchcase_csr_read_32(CSR_CYCLEH, ret)
120         default :
121                 break;
122         }
123
124         return ret;
125 #undef switchcase_csr_read_32
126 #undef switchcase_csr_read_16
127 #undef switchcase_csr_read_8
128 #undef switchcase_csr_read_4
129 #undef switchcase_csr_read_2
130 #undef switchcase_csr_read
131 }
132
133 /*
134  * Read the CSR of a corresponding counter.
135  */
136 unsigned long riscv_pmu_ctr_read_csr(unsigned long csr)
137 {
138         if (csr < CSR_CYCLE || csr > CSR_HPMCOUNTER31H ||
139            (csr > CSR_HPMCOUNTER31 && csr < CSR_CYCLEH)) {
140                 pr_err("Invalid performance counter csr %lx\n", csr);
141                 return -EINVAL;
142         }
143
144         return csr_read_num(csr);
145 }
146
147 u64 riscv_pmu_ctr_get_width_mask(struct perf_event *event)
148 {
149         int cwidth;
150         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
151         struct hw_perf_event *hwc = &event->hw;
152
153         if (hwc->idx == -1)
154                 /* Handle init case where idx is not initialized yet */
155                 cwidth = rvpmu->ctr_get_width(0);
156         else
157                 cwidth = rvpmu->ctr_get_width(hwc->idx);
158
159         return GENMASK_ULL(cwidth, 0);
160 }
161
162 u64 riscv_pmu_event_update(struct perf_event *event)
163 {
164         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
165         struct hw_perf_event *hwc = &event->hw;
166         u64 prev_raw_count, new_raw_count;
167         unsigned long cmask;
168         u64 oldval, delta;
169
170         if (!rvpmu->ctr_read || (hwc->state & PERF_HES_UPTODATE))
171                 return 0;
172
173         cmask = riscv_pmu_ctr_get_width_mask(event);
174
175         do {
176                 prev_raw_count = local64_read(&hwc->prev_count);
177                 new_raw_count = rvpmu->ctr_read(event);
178                 oldval = local64_cmpxchg(&hwc->prev_count, prev_raw_count,
179                                          new_raw_count);
180         } while (oldval != prev_raw_count);
181
182         delta = (new_raw_count - prev_raw_count) & cmask;
183         local64_add(delta, &event->count);
184         local64_sub(delta, &hwc->period_left);
185
186         return delta;
187 }
188
189 void riscv_pmu_stop(struct perf_event *event, int flags)
190 {
191         struct hw_perf_event *hwc = &event->hw;
192         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
193
194         if (!(hwc->state & PERF_HES_STOPPED)) {
195                 if (rvpmu->ctr_stop) {
196                         rvpmu->ctr_stop(event, 0);
197                         hwc->state |= PERF_HES_STOPPED;
198                 }
199                 riscv_pmu_event_update(event);
200                 hwc->state |= PERF_HES_UPTODATE;
201         }
202 }
203
204 int riscv_pmu_event_set_period(struct perf_event *event)
205 {
206         struct hw_perf_event *hwc = &event->hw;
207         s64 left = local64_read(&hwc->period_left);
208         s64 period = hwc->sample_period;
209         int overflow = 0;
210         uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
211
212         if (unlikely(left <= -period)) {
213                 left = period;
214                 local64_set(&hwc->period_left, left);
215                 hwc->last_period = period;
216                 overflow = 1;
217         }
218
219         if (unlikely(left <= 0)) {
220                 left += period;
221                 local64_set(&hwc->period_left, left);
222                 hwc->last_period = period;
223                 overflow = 1;
224         }
225
226         /*
227          * Limit the maximum period to prevent the counter value
228          * from overtaking the one we are about to program. In
229          * effect we are reducing max_period to account for
230          * interrupt latency (and we are being very conservative).
231          */
232         if (left > (max_period >> 1))
233                 left = (max_period >> 1);
234
235         local64_set(&hwc->prev_count, (u64)-left);
236
237         perf_event_update_userpage(event);
238
239         return overflow;
240 }
241
242 void riscv_pmu_start(struct perf_event *event, int flags)
243 {
244         struct hw_perf_event *hwc = &event->hw;
245         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
246         uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
247         u64 init_val;
248
249         if (flags & PERF_EF_RELOAD)
250                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
251
252         hwc->state = 0;
253         riscv_pmu_event_set_period(event);
254         init_val = local64_read(&hwc->prev_count) & max_period;
255         rvpmu->ctr_start(event, init_val);
256         perf_event_update_userpage(event);
257 }
258
259 static int riscv_pmu_add(struct perf_event *event, int flags)
260 {
261         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
262         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
263         struct hw_perf_event *hwc = &event->hw;
264         int idx;
265
266         idx = rvpmu->ctr_get_idx(event);
267         if (idx < 0)
268                 return idx;
269
270         hwc->idx = idx;
271         cpuc->events[idx] = event;
272         cpuc->n_events++;
273         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
274         if (flags & PERF_EF_START)
275                 riscv_pmu_start(event, PERF_EF_RELOAD);
276
277         /* Propagate our changes to the userspace mapping. */
278         perf_event_update_userpage(event);
279
280         return 0;
281 }
282
283 static void riscv_pmu_del(struct perf_event *event, int flags)
284 {
285         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
286         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
287         struct hw_perf_event *hwc = &event->hw;
288
289         riscv_pmu_stop(event, PERF_EF_UPDATE);
290         cpuc->events[hwc->idx] = NULL;
291         /* The firmware need to reset the counter mapping */
292         if (rvpmu->ctr_stop)
293                 rvpmu->ctr_stop(event, RISCV_PMU_STOP_FLAG_RESET);
294         cpuc->n_events--;
295         if (rvpmu->ctr_clear_idx)
296                 rvpmu->ctr_clear_idx(event);
297         perf_event_update_userpage(event);
298         hwc->idx = -1;
299 }
300
301 static void riscv_pmu_read(struct perf_event *event)
302 {
303         riscv_pmu_event_update(event);
304 }
305
306 static int riscv_pmu_event_init(struct perf_event *event)
307 {
308         struct hw_perf_event *hwc = &event->hw;
309         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
310         int mapped_event;
311         u64 event_config = 0;
312         uint64_t cmask;
313
314         /* driver does not support branch stack sampling */
315         if (has_branch_stack(event))
316                 return -EOPNOTSUPP;
317
318         hwc->flags = 0;
319         mapped_event = rvpmu->event_map(event, &event_config);
320         if (mapped_event < 0) {
321                 pr_debug("event %x:%llx not supported\n", event->attr.type,
322                          event->attr.config);
323                 return mapped_event;
324         }
325
326         /*
327          * idx is set to -1 because the index of a general event should not be
328          * decided until binding to some counter in pmu->add().
329          * config will contain the information about counter CSR
330          * the idx will contain the counter index
331          */
332         hwc->config = event_config;
333         hwc->idx = -1;
334         hwc->event_base = mapped_event;
335
336         if (rvpmu->event_init)
337                 rvpmu->event_init(event);
338
339         if (!is_sampling_event(event)) {
340                 /*
341                  * For non-sampling runs, limit the sample_period to half
342                  * of the counter width. That way, the new counter value
343                  * is far less likely to overtake the previous one unless
344                  * you have some serious IRQ latency issues.
345                  */
346                 cmask = riscv_pmu_ctr_get_width_mask(event);
347                 hwc->sample_period  =  cmask >> 1;
348                 hwc->last_period    = hwc->sample_period;
349                 local64_set(&hwc->period_left, hwc->sample_period);
350         }
351
352         return 0;
353 }
354
355 static int riscv_pmu_event_idx(struct perf_event *event)
356 {
357         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
358
359         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
360                 return 0;
361
362         if (rvpmu->csr_index)
363                 return rvpmu->csr_index(event) + 1;
364
365         return 0;
366 }
367
368 static void riscv_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
369 {
370         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
371
372         if (rvpmu->event_mapped) {
373                 rvpmu->event_mapped(event, mm);
374                 perf_event_update_userpage(event);
375         }
376 }
377
378 static void riscv_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
379 {
380         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
381
382         if (rvpmu->event_unmapped) {
383                 rvpmu->event_unmapped(event, mm);
384                 perf_event_update_userpage(event);
385         }
386 }
387
388 struct riscv_pmu *riscv_pmu_alloc(void)
389 {
390         struct riscv_pmu *pmu;
391         int cpuid, i;
392         struct cpu_hw_events *cpuc;
393
394         pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
395         if (!pmu)
396                 goto out;
397
398         pmu->hw_events = alloc_percpu_gfp(struct cpu_hw_events, GFP_KERNEL);
399         if (!pmu->hw_events) {
400                 pr_info("failed to allocate per-cpu PMU data.\n");
401                 goto out_free_pmu;
402         }
403
404         for_each_possible_cpu(cpuid) {
405                 cpuc = per_cpu_ptr(pmu->hw_events, cpuid);
406                 cpuc->n_events = 0;
407                 for (i = 0; i < RISCV_MAX_COUNTERS; i++)
408                         cpuc->events[i] = NULL;
409                 cpuc->snapshot_addr = NULL;
410         }
411         pmu->pmu = (struct pmu) {
412                 .event_init     = riscv_pmu_event_init,
413                 .event_mapped   = riscv_pmu_event_mapped,
414                 .event_unmapped = riscv_pmu_event_unmapped,
415                 .event_idx      = riscv_pmu_event_idx,
416                 .add            = riscv_pmu_add,
417                 .del            = riscv_pmu_del,
418                 .start          = riscv_pmu_start,
419                 .stop           = riscv_pmu_stop,
420                 .read           = riscv_pmu_read,
421         };
422
423         return pmu;
424
425 out_free_pmu:
426         kfree(pmu);
427 out:
428         return NULL;
429 }
This page took 0.05724 seconds and 4 git commands to generate.