]> Git Repo - linux.git/blob - drivers/perf/riscv_pmu.c
Linux 6.14-rc3
[linux.git] / drivers / perf / riscv_pmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This implementation is based on old RISC-V perf and ARM perf event code
8  * which are in turn based on sparc64 and x86 code.
9  */
10
11 #include <linux/cpumask.h>
12 #include <linux/irq.h>
13 #include <linux/irqdesc.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/printk.h>
16 #include <linux/smp.h>
17 #include <linux/sched_clock.h>
18
19 #include <asm/sbi.h>
20
21 static bool riscv_perf_user_access(struct perf_event *event)
22 {
23         return ((event->attr.type == PERF_TYPE_HARDWARE) ||
24                 (event->attr.type == PERF_TYPE_HW_CACHE) ||
25                 (event->attr.type == PERF_TYPE_RAW)) &&
26                 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) &&
27                 (event->hw.idx != -1);
28 }
29
30 void arch_perf_update_userpage(struct perf_event *event,
31                                struct perf_event_mmap_page *userpg, u64 now)
32 {
33         struct clock_read_data *rd;
34         unsigned int seq;
35         u64 ns;
36
37         userpg->cap_user_time = 0;
38         userpg->cap_user_time_zero = 0;
39         userpg->cap_user_time_short = 0;
40         userpg->cap_user_rdpmc = riscv_perf_user_access(event);
41
42         /*
43          * The counters are 64-bit but the priv spec doesn't mandate all the
44          * bits to be implemented: that's why, counter width can vary based on
45          * the cpu vendor.
46          */
47         if (userpg->cap_user_rdpmc)
48                 userpg->pmc_width = to_riscv_pmu(event->pmu)->ctr_get_width(event->hw.idx) + 1;
49
50         do {
51                 rd = sched_clock_read_begin(&seq);
52
53                 userpg->time_mult = rd->mult;
54                 userpg->time_shift = rd->shift;
55                 userpg->time_zero = rd->epoch_ns;
56                 userpg->time_cycles = rd->epoch_cyc;
57                 userpg->time_mask = rd->sched_clock_mask;
58
59                 /*
60                  * Subtract the cycle base, such that software that
61                  * doesn't know about cap_user_time_short still 'works'
62                  * assuming no wraps.
63                  */
64                 ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
65                 userpg->time_zero -= ns;
66
67         } while (sched_clock_read_retry(seq));
68
69         userpg->time_offset = userpg->time_zero - now;
70
71         /*
72          * time_shift is not expected to be greater than 31 due to
73          * the original published conversion algorithm shifting a
74          * 32-bit value (now specifies a 64-bit value) - refer
75          * perf_event_mmap_page documentation in perf_event.h.
76          */
77         if (userpg->time_shift == 32) {
78                 userpg->time_shift = 31;
79                 userpg->time_mult >>= 1;
80         }
81
82         /*
83          * Internal timekeeping for enabled/running/stopped times
84          * is always computed with the sched_clock.
85          */
86         userpg->cap_user_time = 1;
87         userpg->cap_user_time_zero = 1;
88         userpg->cap_user_time_short = 1;
89 }
90
91 static unsigned long csr_read_num(int csr_num)
92 {
93 #define switchcase_csr_read(__csr_num, __val)           {\
94         case __csr_num:                                 \
95                 __val = csr_read(__csr_num);            \
96                 break; }
97 #define switchcase_csr_read_2(__csr_num, __val)         {\
98         switchcase_csr_read(__csr_num + 0, __val)        \
99         switchcase_csr_read(__csr_num + 1, __val)}
100 #define switchcase_csr_read_4(__csr_num, __val)         {\
101         switchcase_csr_read_2(__csr_num + 0, __val)      \
102         switchcase_csr_read_2(__csr_num + 2, __val)}
103 #define switchcase_csr_read_8(__csr_num, __val)         {\
104         switchcase_csr_read_4(__csr_num + 0, __val)      \
105         switchcase_csr_read_4(__csr_num + 4, __val)}
106 #define switchcase_csr_read_16(__csr_num, __val)        {\
107         switchcase_csr_read_8(__csr_num + 0, __val)      \
108         switchcase_csr_read_8(__csr_num + 8, __val)}
109 #define switchcase_csr_read_32(__csr_num, __val)        {\
110         switchcase_csr_read_16(__csr_num + 0, __val)     \
111         switchcase_csr_read_16(__csr_num + 16, __val)}
112
113         unsigned long ret = 0;
114
115         switch (csr_num) {
116         switchcase_csr_read_32(CSR_CYCLE, ret)
117         switchcase_csr_read_32(CSR_CYCLEH, ret)
118         default :
119                 break;
120         }
121
122         return ret;
123 #undef switchcase_csr_read_32
124 #undef switchcase_csr_read_16
125 #undef switchcase_csr_read_8
126 #undef switchcase_csr_read_4
127 #undef switchcase_csr_read_2
128 #undef switchcase_csr_read
129 }
130
131 /*
132  * Read the CSR of a corresponding counter.
133  */
134 unsigned long riscv_pmu_ctr_read_csr(unsigned long csr)
135 {
136         if (csr < CSR_CYCLE || csr > CSR_HPMCOUNTER31H ||
137            (csr > CSR_HPMCOUNTER31 && csr < CSR_CYCLEH)) {
138                 pr_err("Invalid performance counter csr %lx\n", csr);
139                 return -EINVAL;
140         }
141
142         return csr_read_num(csr);
143 }
144
145 u64 riscv_pmu_ctr_get_width_mask(struct perf_event *event)
146 {
147         int cwidth;
148         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
149         struct hw_perf_event *hwc = &event->hw;
150
151         if (hwc->idx == -1)
152                 /* Handle init case where idx is not initialized yet */
153                 cwidth = rvpmu->ctr_get_width(0);
154         else
155                 cwidth = rvpmu->ctr_get_width(hwc->idx);
156
157         return GENMASK_ULL(cwidth, 0);
158 }
159
160 u64 riscv_pmu_event_update(struct perf_event *event)
161 {
162         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
163         struct hw_perf_event *hwc = &event->hw;
164         u64 prev_raw_count, new_raw_count;
165         unsigned long cmask;
166         u64 oldval, delta;
167
168         if (!rvpmu->ctr_read || (hwc->state & PERF_HES_UPTODATE))
169                 return 0;
170
171         cmask = riscv_pmu_ctr_get_width_mask(event);
172
173         do {
174                 prev_raw_count = local64_read(&hwc->prev_count);
175                 new_raw_count = rvpmu->ctr_read(event);
176                 oldval = local64_cmpxchg(&hwc->prev_count, prev_raw_count,
177                                          new_raw_count);
178         } while (oldval != prev_raw_count);
179
180         delta = (new_raw_count - prev_raw_count) & cmask;
181         local64_add(delta, &event->count);
182         local64_sub(delta, &hwc->period_left);
183
184         return delta;
185 }
186
187 void riscv_pmu_stop(struct perf_event *event, int flags)
188 {
189         struct hw_perf_event *hwc = &event->hw;
190         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
191
192         if (!(hwc->state & PERF_HES_STOPPED)) {
193                 if (rvpmu->ctr_stop) {
194                         rvpmu->ctr_stop(event, 0);
195                         hwc->state |= PERF_HES_STOPPED;
196                 }
197                 riscv_pmu_event_update(event);
198                 hwc->state |= PERF_HES_UPTODATE;
199         }
200 }
201
202 int riscv_pmu_event_set_period(struct perf_event *event)
203 {
204         struct hw_perf_event *hwc = &event->hw;
205         s64 left = local64_read(&hwc->period_left);
206         s64 period = hwc->sample_period;
207         int overflow = 0;
208         uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
209
210         if (unlikely(left <= -period)) {
211                 left = period;
212                 local64_set(&hwc->period_left, left);
213                 hwc->last_period = period;
214                 overflow = 1;
215         }
216
217         if (unlikely(left <= 0)) {
218                 left += period;
219                 local64_set(&hwc->period_left, left);
220                 hwc->last_period = period;
221                 overflow = 1;
222         }
223
224         /*
225          * Limit the maximum period to prevent the counter value
226          * from overtaking the one we are about to program. In
227          * effect we are reducing max_period to account for
228          * interrupt latency (and we are being very conservative).
229          */
230         if (left > (max_period >> 1))
231                 left = (max_period >> 1);
232
233         local64_set(&hwc->prev_count, (u64)-left);
234
235         perf_event_update_userpage(event);
236
237         return overflow;
238 }
239
240 void riscv_pmu_start(struct perf_event *event, int flags)
241 {
242         struct hw_perf_event *hwc = &event->hw;
243         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
244         uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
245         u64 init_val;
246
247         if (flags & PERF_EF_RELOAD)
248                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
249
250         hwc->state = 0;
251         riscv_pmu_event_set_period(event);
252         init_val = local64_read(&hwc->prev_count) & max_period;
253         rvpmu->ctr_start(event, init_val);
254         perf_event_update_userpage(event);
255 }
256
257 static int riscv_pmu_add(struct perf_event *event, int flags)
258 {
259         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
260         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
261         struct hw_perf_event *hwc = &event->hw;
262         int idx;
263
264         idx = rvpmu->ctr_get_idx(event);
265         if (idx < 0)
266                 return idx;
267
268         hwc->idx = idx;
269         cpuc->events[idx] = event;
270         cpuc->n_events++;
271         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
272         if (flags & PERF_EF_START)
273                 riscv_pmu_start(event, PERF_EF_RELOAD);
274
275         /* Propagate our changes to the userspace mapping. */
276         perf_event_update_userpage(event);
277
278         return 0;
279 }
280
281 static void riscv_pmu_del(struct perf_event *event, int flags)
282 {
283         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
284         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
285         struct hw_perf_event *hwc = &event->hw;
286
287         riscv_pmu_stop(event, PERF_EF_UPDATE);
288         cpuc->events[hwc->idx] = NULL;
289         /* The firmware need to reset the counter mapping */
290         if (rvpmu->ctr_stop)
291                 rvpmu->ctr_stop(event, RISCV_PMU_STOP_FLAG_RESET);
292         cpuc->n_events--;
293         if (rvpmu->ctr_clear_idx)
294                 rvpmu->ctr_clear_idx(event);
295         perf_event_update_userpage(event);
296         hwc->idx = -1;
297 }
298
299 static void riscv_pmu_read(struct perf_event *event)
300 {
301         riscv_pmu_event_update(event);
302 }
303
304 static int riscv_pmu_event_init(struct perf_event *event)
305 {
306         struct hw_perf_event *hwc = &event->hw;
307         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
308         int mapped_event;
309         u64 event_config = 0;
310         uint64_t cmask;
311
312         /* driver does not support branch stack sampling */
313         if (has_branch_stack(event))
314                 return -EOPNOTSUPP;
315
316         hwc->flags = 0;
317         mapped_event = rvpmu->event_map(event, &event_config);
318         if (mapped_event < 0) {
319                 pr_debug("event %x:%llx not supported\n", event->attr.type,
320                          event->attr.config);
321                 return mapped_event;
322         }
323
324         /*
325          * idx is set to -1 because the index of a general event should not be
326          * decided until binding to some counter in pmu->add().
327          * config will contain the information about counter CSR
328          * the idx will contain the counter index
329          */
330         hwc->config = event_config;
331         hwc->idx = -1;
332         hwc->event_base = mapped_event;
333
334         if (rvpmu->event_init)
335                 rvpmu->event_init(event);
336
337         if (!is_sampling_event(event)) {
338                 /*
339                  * For non-sampling runs, limit the sample_period to half
340                  * of the counter width. That way, the new counter value
341                  * is far less likely to overtake the previous one unless
342                  * you have some serious IRQ latency issues.
343                  */
344                 cmask = riscv_pmu_ctr_get_width_mask(event);
345                 hwc->sample_period  =  cmask >> 1;
346                 hwc->last_period    = hwc->sample_period;
347                 local64_set(&hwc->period_left, hwc->sample_period);
348         }
349
350         return 0;
351 }
352
353 static int riscv_pmu_event_idx(struct perf_event *event)
354 {
355         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
356
357         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
358                 return 0;
359
360         if (rvpmu->csr_index)
361                 return rvpmu->csr_index(event) + 1;
362
363         return 0;
364 }
365
366 static void riscv_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
367 {
368         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
369
370         if (rvpmu->event_mapped) {
371                 rvpmu->event_mapped(event, mm);
372                 perf_event_update_userpage(event);
373         }
374 }
375
376 static void riscv_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
377 {
378         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
379
380         if (rvpmu->event_unmapped) {
381                 rvpmu->event_unmapped(event, mm);
382                 perf_event_update_userpage(event);
383         }
384 }
385
386 struct riscv_pmu *riscv_pmu_alloc(void)
387 {
388         struct riscv_pmu *pmu;
389         int cpuid, i;
390         struct cpu_hw_events *cpuc;
391
392         pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
393         if (!pmu)
394                 goto out;
395
396         pmu->hw_events = alloc_percpu_gfp(struct cpu_hw_events, GFP_KERNEL);
397         if (!pmu->hw_events) {
398                 pr_info("failed to allocate per-cpu PMU data.\n");
399                 goto out_free_pmu;
400         }
401
402         for_each_possible_cpu(cpuid) {
403                 cpuc = per_cpu_ptr(pmu->hw_events, cpuid);
404                 cpuc->n_events = 0;
405                 for (i = 0; i < RISCV_MAX_COUNTERS; i++)
406                         cpuc->events[i] = NULL;
407                 cpuc->snapshot_addr = NULL;
408         }
409         pmu->pmu = (struct pmu) {
410                 .event_init     = riscv_pmu_event_init,
411                 .event_mapped   = riscv_pmu_event_mapped,
412                 .event_unmapped = riscv_pmu_event_unmapped,
413                 .event_idx      = riscv_pmu_event_idx,
414                 .add            = riscv_pmu_add,
415                 .del            = riscv_pmu_del,
416                 .start          = riscv_pmu_start,
417                 .stop           = riscv_pmu_stop,
418                 .read           = riscv_pmu_read,
419         };
420
421         return pmu;
422
423 out_free_pmu:
424         kfree(pmu);
425 out:
426         return NULL;
427 }
This page took 0.055456 seconds and 4 git commands to generate.