2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/string_helpers.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/jhash.h>
29 #include <asm/pgtable.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include <linux/page_owner.h>
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
44 * Minimum page order among possible hugepage sizes, set to a proper value
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
49 __initdata LIST_HEAD(huge_boot_pages);
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
61 DEFINE_SPINLOCK(hugetlb_lock);
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 bool free = (spool->count == 0) && (spool->used_hpages == 0);
77 spin_unlock(&spool->lock);
79 /* If no pages are used, and no other handles to the subpool
80 * remain, give up any reservations mased on minimum size and
83 if (spool->min_hpages != -1)
84 hugetlb_acct_memory(spool->hstate,
90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93 struct hugepage_subpool *spool;
95 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
99 spin_lock_init(&spool->lock);
101 spool->max_hpages = max_hpages;
103 spool->min_hpages = min_hpages;
105 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 spool->rsv_hpages = min_hpages;
114 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 spin_lock(&spool->lock);
117 BUG_ON(!spool->count);
119 unlock_or_release_subpool(spool);
123 * Subpool accounting for allocating and reserving pages.
124 * Return -ENOMEM if there are not enough resources to satisfy the
125 * the request. Otherwise, return the number of pages by which the
126 * global pools must be adjusted (upward). The returned value may
127 * only be different than the passed value (delta) in the case where
128 * a subpool minimum size must be manitained.
130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
138 spin_lock(&spool->lock);
140 if (spool->max_hpages != -1) { /* maximum size accounting */
141 if ((spool->used_hpages + delta) <= spool->max_hpages)
142 spool->used_hpages += delta;
149 /* minimum size accounting */
150 if (spool->min_hpages != -1 && spool->rsv_hpages) {
151 if (delta > spool->rsv_hpages) {
153 * Asking for more reserves than those already taken on
154 * behalf of subpool. Return difference.
156 ret = delta - spool->rsv_hpages;
157 spool->rsv_hpages = 0;
159 ret = 0; /* reserves already accounted for */
160 spool->rsv_hpages -= delta;
165 spin_unlock(&spool->lock);
170 * Subpool accounting for freeing and unreserving pages.
171 * Return the number of global page reservations that must be dropped.
172 * The return value may only be different than the passed value (delta)
173 * in the case where a subpool minimum size must be maintained.
175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
183 spin_lock(&spool->lock);
185 if (spool->max_hpages != -1) /* maximum size accounting */
186 spool->used_hpages -= delta;
188 /* minimum size accounting */
189 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190 if (spool->rsv_hpages + delta <= spool->min_hpages)
193 ret = spool->rsv_hpages + delta - spool->min_hpages;
195 spool->rsv_hpages += delta;
196 if (spool->rsv_hpages > spool->min_hpages)
197 spool->rsv_hpages = spool->min_hpages;
201 * If hugetlbfs_put_super couldn't free spool due to an outstanding
202 * quota reference, free it now.
204 unlock_or_release_subpool(spool);
209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 return HUGETLBFS_SB(inode->i_sb)->spool;
214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 return subpool_inode(file_inode(vma->vm_file));
220 * Region tracking -- allows tracking of reservations and instantiated pages
221 * across the pages in a mapping.
223 * The region data structures are embedded into a resv_map and protected
224 * by a resv_map's lock. The set of regions within the resv_map represent
225 * reservations for huge pages, or huge pages that have already been
226 * instantiated within the map. The from and to elements are huge page
227 * indicies into the associated mapping. from indicates the starting index
228 * of the region. to represents the first index past the end of the region.
230 * For example, a file region structure with from == 0 and to == 4 represents
231 * four huge pages in a mapping. It is important to note that the to element
232 * represents the first element past the end of the region. This is used in
233 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 * Interval notation of the form [from, to) will be used to indicate that
236 * the endpoint from is inclusive and to is exclusive.
239 struct list_head link;
245 * Add the huge page range represented by [f, t) to the reserve
246 * map. In the normal case, existing regions will be expanded
247 * to accommodate the specified range. Sufficient regions should
248 * exist for expansion due to the previous call to region_chg
249 * with the same range. However, it is possible that region_del
250 * could have been called after region_chg and modifed the map
251 * in such a way that no region exists to be expanded. In this
252 * case, pull a region descriptor from the cache associated with
253 * the map and use that for the new range.
255 * Return the number of new huge pages added to the map. This
256 * number is greater than or equal to zero.
258 static long region_add(struct resv_map *resv, long f, long t)
260 struct list_head *head = &resv->regions;
261 struct file_region *rg, *nrg, *trg;
264 spin_lock(&resv->lock);
265 /* Locate the region we are either in or before. */
266 list_for_each_entry(rg, head, link)
271 * If no region exists which can be expanded to include the
272 * specified range, the list must have been modified by an
273 * interleving call to region_del(). Pull a region descriptor
274 * from the cache and use it for this range.
276 if (&rg->link == head || t < rg->from) {
277 VM_BUG_ON(resv->region_cache_count <= 0);
279 resv->region_cache_count--;
280 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 list_del(&nrg->link);
286 list_add(&nrg->link, rg->link.prev);
292 /* Round our left edge to the current segment if it encloses us. */
296 /* Check for and consume any regions we now overlap with. */
298 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299 if (&rg->link == head)
304 /* If this area reaches higher then extend our area to
305 * include it completely. If this is not the first area
306 * which we intend to reuse, free it. */
310 /* Decrement return value by the deleted range.
311 * Another range will span this area so that by
312 * end of routine add will be >= zero
314 add -= (rg->to - rg->from);
320 add += (nrg->from - f); /* Added to beginning of region */
322 add += t - nrg->to; /* Added to end of region */
326 resv->adds_in_progress--;
327 spin_unlock(&resv->lock);
333 * Examine the existing reserve map and determine how many
334 * huge pages in the specified range [f, t) are NOT currently
335 * represented. This routine is called before a subsequent
336 * call to region_add that will actually modify the reserve
337 * map to add the specified range [f, t). region_chg does
338 * not change the number of huge pages represented by the
339 * map. However, if the existing regions in the map can not
340 * be expanded to represent the new range, a new file_region
341 * structure is added to the map as a placeholder. This is
342 * so that the subsequent region_add call will have all the
343 * regions it needs and will not fail.
345 * Upon entry, region_chg will also examine the cache of region descriptors
346 * associated with the map. If there are not enough descriptors cached, one
347 * will be allocated for the in progress add operation.
349 * Returns the number of huge pages that need to be added to the existing
350 * reservation map for the range [f, t). This number is greater or equal to
351 * zero. -ENOMEM is returned if a new file_region structure or cache entry
352 * is needed and can not be allocated.
354 static long region_chg(struct resv_map *resv, long f, long t)
356 struct list_head *head = &resv->regions;
357 struct file_region *rg, *nrg = NULL;
361 spin_lock(&resv->lock);
363 resv->adds_in_progress++;
366 * Check for sufficient descriptors in the cache to accommodate
367 * the number of in progress add operations.
369 if (resv->adds_in_progress > resv->region_cache_count) {
370 struct file_region *trg;
372 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373 /* Must drop lock to allocate a new descriptor. */
374 resv->adds_in_progress--;
375 spin_unlock(&resv->lock);
377 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
383 spin_lock(&resv->lock);
384 list_add(&trg->link, &resv->region_cache);
385 resv->region_cache_count++;
389 /* Locate the region we are before or in. */
390 list_for_each_entry(rg, head, link)
394 /* If we are below the current region then a new region is required.
395 * Subtle, allocate a new region at the position but make it zero
396 * size such that we can guarantee to record the reservation. */
397 if (&rg->link == head || t < rg->from) {
399 resv->adds_in_progress--;
400 spin_unlock(&resv->lock);
401 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
407 INIT_LIST_HEAD(&nrg->link);
411 list_add(&nrg->link, rg->link.prev);
416 /* Round our left edge to the current segment if it encloses us. */
421 /* Check for and consume any regions we now overlap with. */
422 list_for_each_entry(rg, rg->link.prev, link) {
423 if (&rg->link == head)
428 /* We overlap with this area, if it extends further than
429 * us then we must extend ourselves. Account for its
430 * existing reservation. */
435 chg -= rg->to - rg->from;
439 spin_unlock(&resv->lock);
440 /* We already know we raced and no longer need the new region */
444 spin_unlock(&resv->lock);
449 * Abort the in progress add operation. The adds_in_progress field
450 * of the resv_map keeps track of the operations in progress between
451 * calls to region_chg and region_add. Operations are sometimes
452 * aborted after the call to region_chg. In such cases, region_abort
453 * is called to decrement the adds_in_progress counter.
455 * NOTE: The range arguments [f, t) are not needed or used in this
456 * routine. They are kept to make reading the calling code easier as
457 * arguments will match the associated region_chg call.
459 static void region_abort(struct resv_map *resv, long f, long t)
461 spin_lock(&resv->lock);
462 VM_BUG_ON(!resv->region_cache_count);
463 resv->adds_in_progress--;
464 spin_unlock(&resv->lock);
468 * Delete the specified range [f, t) from the reserve map. If the
469 * t parameter is LONG_MAX, this indicates that ALL regions after f
470 * should be deleted. Locate the regions which intersect [f, t)
471 * and either trim, delete or split the existing regions.
473 * Returns the number of huge pages deleted from the reserve map.
474 * In the normal case, the return value is zero or more. In the
475 * case where a region must be split, a new region descriptor must
476 * be allocated. If the allocation fails, -ENOMEM will be returned.
477 * NOTE: If the parameter t == LONG_MAX, then we will never split
478 * a region and possibly return -ENOMEM. Callers specifying
479 * t == LONG_MAX do not need to check for -ENOMEM error.
481 static long region_del(struct resv_map *resv, long f, long t)
483 struct list_head *head = &resv->regions;
484 struct file_region *rg, *trg;
485 struct file_region *nrg = NULL;
489 spin_lock(&resv->lock);
490 list_for_each_entry_safe(rg, trg, head, link) {
492 * Skip regions before the range to be deleted. file_region
493 * ranges are normally of the form [from, to). However, there
494 * may be a "placeholder" entry in the map which is of the form
495 * (from, to) with from == to. Check for placeholder entries
496 * at the beginning of the range to be deleted.
498 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
504 if (f > rg->from && t < rg->to) { /* Must split region */
506 * Check for an entry in the cache before dropping
507 * lock and attempting allocation.
510 resv->region_cache_count > resv->adds_in_progress) {
511 nrg = list_first_entry(&resv->region_cache,
514 list_del(&nrg->link);
515 resv->region_cache_count--;
519 spin_unlock(&resv->lock);
520 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
528 /* New entry for end of split region */
531 INIT_LIST_HEAD(&nrg->link);
533 /* Original entry is trimmed */
536 list_add(&nrg->link, &rg->link);
541 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542 del += rg->to - rg->from;
548 if (f <= rg->from) { /* Trim beginning of region */
551 } else { /* Trim end of region */
557 spin_unlock(&resv->lock);
563 * A rare out of memory error was encountered which prevented removal of
564 * the reserve map region for a page. The huge page itself was free'ed
565 * and removed from the page cache. This routine will adjust the subpool
566 * usage count, and the global reserve count if needed. By incrementing
567 * these counts, the reserve map entry which could not be deleted will
568 * appear as a "reserved" entry instead of simply dangling with incorrect
571 void hugetlb_fix_reserve_counts(struct inode *inode)
573 struct hugepage_subpool *spool = subpool_inode(inode);
576 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 struct hstate *h = hstate_inode(inode);
580 hugetlb_acct_memory(h, 1);
585 * Count and return the number of huge pages in the reserve map
586 * that intersect with the range [f, t).
588 static long region_count(struct resv_map *resv, long f, long t)
590 struct list_head *head = &resv->regions;
591 struct file_region *rg;
594 spin_lock(&resv->lock);
595 /* Locate each segment we overlap with, and count that overlap. */
596 list_for_each_entry(rg, head, link) {
605 seg_from = max(rg->from, f);
606 seg_to = min(rg->to, t);
608 chg += seg_to - seg_from;
610 spin_unlock(&resv->lock);
616 * Convert the address within this vma to the page offset within
617 * the mapping, in pagecache page units; huge pages here.
619 static pgoff_t vma_hugecache_offset(struct hstate *h,
620 struct vm_area_struct *vma, unsigned long address)
622 return ((address - vma->vm_start) >> huge_page_shift(h)) +
623 (vma->vm_pgoff >> huge_page_order(h));
626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627 unsigned long address)
629 return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 EXPORT_SYMBOL_GPL(linear_hugepage_index);
634 * Return the size of the pages allocated when backing a VMA. In the majority
635 * cases this will be same size as used by the page table entries.
637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 struct hstate *hstate;
641 if (!is_vm_hugetlb_page(vma))
644 hstate = hstate_vma(vma);
646 return 1UL << huge_page_shift(hstate);
648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
651 * Return the page size being used by the MMU to back a VMA. In the majority
652 * of cases, the page size used by the kernel matches the MMU size. On
653 * architectures where it differs, an architecture-specific version of this
654 * function is required.
656 #ifndef vma_mmu_pagesize
657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659 return vma_kernel_pagesize(vma);
664 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
665 * bits of the reservation map pointer, which are always clear due to
668 #define HPAGE_RESV_OWNER (1UL << 0)
669 #define HPAGE_RESV_UNMAPPED (1UL << 1)
670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
673 * These helpers are used to track how many pages are reserved for
674 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675 * is guaranteed to have their future faults succeed.
677 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678 * the reserve counters are updated with the hugetlb_lock held. It is safe
679 * to reset the VMA at fork() time as it is not in use yet and there is no
680 * chance of the global counters getting corrupted as a result of the values.
682 * The private mapping reservation is represented in a subtly different
683 * manner to a shared mapping. A shared mapping has a region map associated
684 * with the underlying file, this region map represents the backing file
685 * pages which have ever had a reservation assigned which this persists even
686 * after the page is instantiated. A private mapping has a region map
687 * associated with the original mmap which is attached to all VMAs which
688 * reference it, this region map represents those offsets which have consumed
689 * reservation ie. where pages have been instantiated.
691 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693 return (unsigned long)vma->vm_private_data;
696 static void set_vma_private_data(struct vm_area_struct *vma,
699 vma->vm_private_data = (void *)value;
702 struct resv_map *resv_map_alloc(void)
704 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707 if (!resv_map || !rg) {
713 kref_init(&resv_map->refs);
714 spin_lock_init(&resv_map->lock);
715 INIT_LIST_HEAD(&resv_map->regions);
717 resv_map->adds_in_progress = 0;
719 INIT_LIST_HEAD(&resv_map->region_cache);
720 list_add(&rg->link, &resv_map->region_cache);
721 resv_map->region_cache_count = 1;
726 void resv_map_release(struct kref *ref)
728 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729 struct list_head *head = &resv_map->region_cache;
730 struct file_region *rg, *trg;
732 /* Clear out any active regions before we release the map. */
733 region_del(resv_map, 0, LONG_MAX);
735 /* ... and any entries left in the cache */
736 list_for_each_entry_safe(rg, trg, head, link) {
741 VM_BUG_ON(resv_map->adds_in_progress);
746 static inline struct resv_map *inode_resv_map(struct inode *inode)
748 return inode->i_mapping->private_data;
751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
753 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754 if (vma->vm_flags & VM_MAYSHARE) {
755 struct address_space *mapping = vma->vm_file->f_mapping;
756 struct inode *inode = mapping->host;
758 return inode_resv_map(inode);
761 return (struct resv_map *)(get_vma_private_data(vma) &
766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
768 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
771 set_vma_private_data(vma, (get_vma_private_data(vma) &
772 HPAGE_RESV_MASK) | (unsigned long)map);
775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
780 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
787 return (get_vma_private_data(vma) & flag) != 0;
790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794 if (!(vma->vm_flags & VM_MAYSHARE))
795 vma->vm_private_data = (void *)0;
798 /* Returns true if the VMA has associated reserve pages */
799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
801 if (vma->vm_flags & VM_NORESERVE) {
803 * This address is already reserved by other process(chg == 0),
804 * so, we should decrement reserved count. Without decrementing,
805 * reserve count remains after releasing inode, because this
806 * allocated page will go into page cache and is regarded as
807 * coming from reserved pool in releasing step. Currently, we
808 * don't have any other solution to deal with this situation
809 * properly, so add work-around here.
811 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
817 /* Shared mappings always use reserves */
818 if (vma->vm_flags & VM_MAYSHARE) {
820 * We know VM_NORESERVE is not set. Therefore, there SHOULD
821 * be a region map for all pages. The only situation where
822 * there is no region map is if a hole was punched via
823 * fallocate. In this case, there really are no reverves to
824 * use. This situation is indicated if chg != 0.
833 * Only the process that called mmap() has reserves for
836 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838 * Like the shared case above, a hole punch or truncate
839 * could have been performed on the private mapping.
840 * Examine the value of chg to determine if reserves
841 * actually exist or were previously consumed.
842 * Very Subtle - The value of chg comes from a previous
843 * call to vma_needs_reserves(). The reserve map for
844 * private mappings has different (opposite) semantics
845 * than that of shared mappings. vma_needs_reserves()
846 * has already taken this difference in semantics into
847 * account. Therefore, the meaning of chg is the same
848 * as in the shared case above. Code could easily be
849 * combined, but keeping it separate draws attention to
850 * subtle differences.
861 static void enqueue_huge_page(struct hstate *h, struct page *page)
863 int nid = page_to_nid(page);
864 list_move(&page->lru, &h->hugepage_freelists[nid]);
865 h->free_huge_pages++;
866 h->free_huge_pages_node[nid]++;
869 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
873 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874 if (!PageHWPoison(page))
877 * if 'non-isolated free hugepage' not found on the list,
878 * the allocation fails.
880 if (&h->hugepage_freelists[nid] == &page->lru)
882 list_move(&page->lru, &h->hugepage_activelist);
883 set_page_refcounted(page);
884 h->free_huge_pages--;
885 h->free_huge_pages_node[nid]--;
889 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
892 unsigned int cpuset_mems_cookie;
893 struct zonelist *zonelist;
898 zonelist = node_zonelist(nid, gfp_mask);
901 cpuset_mems_cookie = read_mems_allowed_begin();
902 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
905 if (!cpuset_zone_allowed(zone, gfp_mask))
908 * no need to ask again on the same node. Pool is node rather than
911 if (zone_to_nid(zone) == node)
913 node = zone_to_nid(zone);
915 page = dequeue_huge_page_node_exact(h, node);
919 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
925 /* Movability of hugepages depends on migration support. */
926 static inline gfp_t htlb_alloc_mask(struct hstate *h)
928 if (hugepage_migration_supported(h))
929 return GFP_HIGHUSER_MOVABLE;
934 static struct page *dequeue_huge_page_vma(struct hstate *h,
935 struct vm_area_struct *vma,
936 unsigned long address, int avoid_reserve,
940 struct mempolicy *mpol;
942 nodemask_t *nodemask;
946 * A child process with MAP_PRIVATE mappings created by their parent
947 * have no page reserves. This check ensures that reservations are
948 * not "stolen". The child may still get SIGKILLed
950 if (!vma_has_reserves(vma, chg) &&
951 h->free_huge_pages - h->resv_huge_pages == 0)
954 /* If reserves cannot be used, ensure enough pages are in the pool */
955 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
958 gfp_mask = htlb_alloc_mask(h);
959 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
960 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
961 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
962 SetPagePrivate(page);
963 h->resv_huge_pages--;
974 * common helper functions for hstate_next_node_to_{alloc|free}.
975 * We may have allocated or freed a huge page based on a different
976 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
977 * be outside of *nodes_allowed. Ensure that we use an allowed
978 * node for alloc or free.
980 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
982 nid = next_node_in(nid, *nodes_allowed);
983 VM_BUG_ON(nid >= MAX_NUMNODES);
988 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
990 if (!node_isset(nid, *nodes_allowed))
991 nid = next_node_allowed(nid, nodes_allowed);
996 * returns the previously saved node ["this node"] from which to
997 * allocate a persistent huge page for the pool and advance the
998 * next node from which to allocate, handling wrap at end of node
1001 static int hstate_next_node_to_alloc(struct hstate *h,
1002 nodemask_t *nodes_allowed)
1006 VM_BUG_ON(!nodes_allowed);
1008 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1009 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1015 * helper for free_pool_huge_page() - return the previously saved
1016 * node ["this node"] from which to free a huge page. Advance the
1017 * next node id whether or not we find a free huge page to free so
1018 * that the next attempt to free addresses the next node.
1020 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1024 VM_BUG_ON(!nodes_allowed);
1026 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1027 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1035 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1038 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1039 for (nr_nodes = nodes_weight(*mask); \
1041 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1044 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1045 static void destroy_compound_gigantic_page(struct page *page,
1049 int nr_pages = 1 << order;
1050 struct page *p = page + 1;
1052 atomic_set(compound_mapcount_ptr(page), 0);
1053 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1054 clear_compound_head(p);
1055 set_page_refcounted(p);
1058 set_compound_order(page, 0);
1059 __ClearPageHead(page);
1062 static void free_gigantic_page(struct page *page, unsigned int order)
1064 free_contig_range(page_to_pfn(page), 1 << order);
1067 static int __alloc_gigantic_page(unsigned long start_pfn,
1068 unsigned long nr_pages, gfp_t gfp_mask)
1070 unsigned long end_pfn = start_pfn + nr_pages;
1071 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1075 static bool pfn_range_valid_gigantic(struct zone *z,
1076 unsigned long start_pfn, unsigned long nr_pages)
1078 unsigned long i, end_pfn = start_pfn + nr_pages;
1081 for (i = start_pfn; i < end_pfn; i++) {
1085 page = pfn_to_page(i);
1087 if (page_zone(page) != z)
1090 if (PageReserved(page))
1093 if (page_count(page) > 0)
1103 static bool zone_spans_last_pfn(const struct zone *zone,
1104 unsigned long start_pfn, unsigned long nr_pages)
1106 unsigned long last_pfn = start_pfn + nr_pages - 1;
1107 return zone_spans_pfn(zone, last_pfn);
1110 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1111 int nid, nodemask_t *nodemask)
1113 unsigned int order = huge_page_order(h);
1114 unsigned long nr_pages = 1 << order;
1115 unsigned long ret, pfn, flags;
1116 struct zonelist *zonelist;
1120 zonelist = node_zonelist(nid, gfp_mask);
1121 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1122 spin_lock_irqsave(&zone->lock, flags);
1124 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1125 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1126 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1128 * We release the zone lock here because
1129 * alloc_contig_range() will also lock the zone
1130 * at some point. If there's an allocation
1131 * spinning on this lock, it may win the race
1132 * and cause alloc_contig_range() to fail...
1134 spin_unlock_irqrestore(&zone->lock, flags);
1135 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1137 return pfn_to_page(pfn);
1138 spin_lock_irqsave(&zone->lock, flags);
1143 spin_unlock_irqrestore(&zone->lock, flags);
1149 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1150 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1152 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1153 static inline bool gigantic_page_supported(void) { return false; }
1154 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1155 int nid, nodemask_t *nodemask) { return NULL; }
1156 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1157 static inline void destroy_compound_gigantic_page(struct page *page,
1158 unsigned int order) { }
1161 static void update_and_free_page(struct hstate *h, struct page *page)
1165 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1169 h->nr_huge_pages_node[page_to_nid(page)]--;
1170 for (i = 0; i < pages_per_huge_page(h); i++) {
1171 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1172 1 << PG_referenced | 1 << PG_dirty |
1173 1 << PG_active | 1 << PG_private |
1176 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1177 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1178 set_page_refcounted(page);
1179 if (hstate_is_gigantic(h)) {
1180 destroy_compound_gigantic_page(page, huge_page_order(h));
1181 free_gigantic_page(page, huge_page_order(h));
1183 __free_pages(page, huge_page_order(h));
1187 struct hstate *size_to_hstate(unsigned long size)
1191 for_each_hstate(h) {
1192 if (huge_page_size(h) == size)
1199 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1200 * to hstate->hugepage_activelist.)
1202 * This function can be called for tail pages, but never returns true for them.
1204 bool page_huge_active(struct page *page)
1206 VM_BUG_ON_PAGE(!PageHuge(page), page);
1207 return PageHead(page) && PagePrivate(&page[1]);
1210 /* never called for tail page */
1211 static void set_page_huge_active(struct page *page)
1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214 SetPagePrivate(&page[1]);
1217 static void clear_page_huge_active(struct page *page)
1219 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1220 ClearPagePrivate(&page[1]);
1224 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1227 static inline bool PageHugeTemporary(struct page *page)
1229 if (!PageHuge(page))
1232 return (unsigned long)page[2].mapping == -1U;
1235 static inline void SetPageHugeTemporary(struct page *page)
1237 page[2].mapping = (void *)-1U;
1240 static inline void ClearPageHugeTemporary(struct page *page)
1242 page[2].mapping = NULL;
1245 void free_huge_page(struct page *page)
1248 * Can't pass hstate in here because it is called from the
1249 * compound page destructor.
1251 struct hstate *h = page_hstate(page);
1252 int nid = page_to_nid(page);
1253 struct hugepage_subpool *spool =
1254 (struct hugepage_subpool *)page_private(page);
1255 bool restore_reserve;
1257 set_page_private(page, 0);
1258 page->mapping = NULL;
1259 VM_BUG_ON_PAGE(page_count(page), page);
1260 VM_BUG_ON_PAGE(page_mapcount(page), page);
1261 restore_reserve = PagePrivate(page);
1262 ClearPagePrivate(page);
1265 * A return code of zero implies that the subpool will be under its
1266 * minimum size if the reservation is not restored after page is free.
1267 * Therefore, force restore_reserve operation.
1269 if (hugepage_subpool_put_pages(spool, 1) == 0)
1270 restore_reserve = true;
1272 spin_lock(&hugetlb_lock);
1273 clear_page_huge_active(page);
1274 hugetlb_cgroup_uncharge_page(hstate_index(h),
1275 pages_per_huge_page(h), page);
1276 if (restore_reserve)
1277 h->resv_huge_pages++;
1279 if (PageHugeTemporary(page)) {
1280 list_del(&page->lru);
1281 ClearPageHugeTemporary(page);
1282 update_and_free_page(h, page);
1283 } else if (h->surplus_huge_pages_node[nid]) {
1284 /* remove the page from active list */
1285 list_del(&page->lru);
1286 update_and_free_page(h, page);
1287 h->surplus_huge_pages--;
1288 h->surplus_huge_pages_node[nid]--;
1290 arch_clear_hugepage_flags(page);
1291 enqueue_huge_page(h, page);
1293 spin_unlock(&hugetlb_lock);
1296 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1298 INIT_LIST_HEAD(&page->lru);
1299 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1300 spin_lock(&hugetlb_lock);
1301 set_hugetlb_cgroup(page, NULL);
1303 h->nr_huge_pages_node[nid]++;
1304 spin_unlock(&hugetlb_lock);
1307 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1310 int nr_pages = 1 << order;
1311 struct page *p = page + 1;
1313 /* we rely on prep_new_huge_page to set the destructor */
1314 set_compound_order(page, order);
1315 __ClearPageReserved(page);
1316 __SetPageHead(page);
1317 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1319 * For gigantic hugepages allocated through bootmem at
1320 * boot, it's safer to be consistent with the not-gigantic
1321 * hugepages and clear the PG_reserved bit from all tail pages
1322 * too. Otherwse drivers using get_user_pages() to access tail
1323 * pages may get the reference counting wrong if they see
1324 * PG_reserved set on a tail page (despite the head page not
1325 * having PG_reserved set). Enforcing this consistency between
1326 * head and tail pages allows drivers to optimize away a check
1327 * on the head page when they need know if put_page() is needed
1328 * after get_user_pages().
1330 __ClearPageReserved(p);
1331 set_page_count(p, 0);
1332 set_compound_head(p, page);
1334 atomic_set(compound_mapcount_ptr(page), -1);
1338 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339 * transparent huge pages. See the PageTransHuge() documentation for more
1342 int PageHuge(struct page *page)
1344 if (!PageCompound(page))
1347 page = compound_head(page);
1348 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1350 EXPORT_SYMBOL_GPL(PageHuge);
1353 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354 * normal or transparent huge pages.
1356 int PageHeadHuge(struct page *page_head)
1358 if (!PageHead(page_head))
1361 return get_compound_page_dtor(page_head) == free_huge_page;
1364 pgoff_t __basepage_index(struct page *page)
1366 struct page *page_head = compound_head(page);
1367 pgoff_t index = page_index(page_head);
1368 unsigned long compound_idx;
1370 if (!PageHuge(page_head))
1371 return page_index(page);
1373 if (compound_order(page_head) >= MAX_ORDER)
1374 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1376 compound_idx = page - page_head;
1378 return (index << compound_order(page_head)) + compound_idx;
1381 static struct page *alloc_buddy_huge_page(struct hstate *h,
1382 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1384 int order = huge_page_order(h);
1387 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1388 if (nid == NUMA_NO_NODE)
1389 nid = numa_mem_id();
1390 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1392 __count_vm_event(HTLB_BUDDY_PGALLOC);
1394 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1400 * Common helper to allocate a fresh hugetlb page. All specific allocators
1401 * should use this function to get new hugetlb pages
1403 static struct page *alloc_fresh_huge_page(struct hstate *h,
1404 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1408 if (hstate_is_gigantic(h))
1409 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1411 page = alloc_buddy_huge_page(h, gfp_mask,
1416 if (hstate_is_gigantic(h))
1417 prep_compound_gigantic_page(page, huge_page_order(h));
1418 prep_new_huge_page(h, page, page_to_nid(page));
1424 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1427 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1431 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1433 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1434 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1442 put_page(page); /* free it into the hugepage allocator */
1448 * Free huge page from pool from next node to free.
1449 * Attempt to keep persistent huge pages more or less
1450 * balanced over allowed nodes.
1451 * Called with hugetlb_lock locked.
1453 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1459 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1461 * If we're returning unused surplus pages, only examine
1462 * nodes with surplus pages.
1464 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1465 !list_empty(&h->hugepage_freelists[node])) {
1467 list_entry(h->hugepage_freelists[node].next,
1469 list_del(&page->lru);
1470 h->free_huge_pages--;
1471 h->free_huge_pages_node[node]--;
1473 h->surplus_huge_pages--;
1474 h->surplus_huge_pages_node[node]--;
1476 update_and_free_page(h, page);
1486 * Dissolve a given free hugepage into free buddy pages. This function does
1487 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1488 * number of free hugepages would be reduced below the number of reserved
1491 int dissolve_free_huge_page(struct page *page)
1495 spin_lock(&hugetlb_lock);
1496 if (PageHuge(page) && !page_count(page)) {
1497 struct page *head = compound_head(page);
1498 struct hstate *h = page_hstate(head);
1499 int nid = page_to_nid(head);
1500 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1505 * Move PageHWPoison flag from head page to the raw error page,
1506 * which makes any subpages rather than the error page reusable.
1508 if (PageHWPoison(head) && page != head) {
1509 SetPageHWPoison(page);
1510 ClearPageHWPoison(head);
1512 list_del(&head->lru);
1513 h->free_huge_pages--;
1514 h->free_huge_pages_node[nid]--;
1515 h->max_huge_pages--;
1516 update_and_free_page(h, head);
1519 spin_unlock(&hugetlb_lock);
1524 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1525 * make specified memory blocks removable from the system.
1526 * Note that this will dissolve a free gigantic hugepage completely, if any
1527 * part of it lies within the given range.
1528 * Also note that if dissolve_free_huge_page() returns with an error, all
1529 * free hugepages that were dissolved before that error are lost.
1531 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1537 if (!hugepages_supported())
1540 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1541 page = pfn_to_page(pfn);
1542 if (PageHuge(page) && !page_count(page)) {
1543 rc = dissolve_free_huge_page(page);
1553 * Allocates a fresh surplus page from the page allocator.
1555 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1556 int nid, nodemask_t *nmask)
1558 struct page *page = NULL;
1560 if (hstate_is_gigantic(h))
1563 spin_lock(&hugetlb_lock);
1564 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1566 spin_unlock(&hugetlb_lock);
1568 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1572 spin_lock(&hugetlb_lock);
1574 * We could have raced with the pool size change.
1575 * Double check that and simply deallocate the new page
1576 * if we would end up overcommiting the surpluses. Abuse
1577 * temporary page to workaround the nasty free_huge_page
1580 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1581 SetPageHugeTemporary(page);
1585 h->surplus_huge_pages++;
1586 h->nr_huge_pages_node[page_to_nid(page)]++;
1590 spin_unlock(&hugetlb_lock);
1595 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1596 int nid, nodemask_t *nmask)
1600 if (hstate_is_gigantic(h))
1603 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1608 * We do not account these pages as surplus because they are only
1609 * temporary and will be released properly on the last reference
1611 SetPageHugeTemporary(page);
1617 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1620 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1621 struct vm_area_struct *vma, unsigned long addr)
1624 struct mempolicy *mpol;
1625 gfp_t gfp_mask = htlb_alloc_mask(h);
1627 nodemask_t *nodemask;
1629 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1630 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1631 mpol_cond_put(mpol);
1636 /* page migration callback function */
1637 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1639 gfp_t gfp_mask = htlb_alloc_mask(h);
1640 struct page *page = NULL;
1642 if (nid != NUMA_NO_NODE)
1643 gfp_mask |= __GFP_THISNODE;
1645 spin_lock(&hugetlb_lock);
1646 if (h->free_huge_pages - h->resv_huge_pages > 0)
1647 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1648 spin_unlock(&hugetlb_lock);
1651 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1656 /* page migration callback function */
1657 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1660 gfp_t gfp_mask = htlb_alloc_mask(h);
1662 spin_lock(&hugetlb_lock);
1663 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1666 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1668 spin_unlock(&hugetlb_lock);
1672 spin_unlock(&hugetlb_lock);
1674 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1678 * Increase the hugetlb pool such that it can accommodate a reservation
1681 static int gather_surplus_pages(struct hstate *h, int delta)
1683 struct list_head surplus_list;
1684 struct page *page, *tmp;
1686 int needed, allocated;
1687 bool alloc_ok = true;
1689 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1691 h->resv_huge_pages += delta;
1696 INIT_LIST_HEAD(&surplus_list);
1700 spin_unlock(&hugetlb_lock);
1701 for (i = 0; i < needed; i++) {
1702 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1703 NUMA_NO_NODE, NULL);
1708 list_add(&page->lru, &surplus_list);
1714 * After retaking hugetlb_lock, we need to recalculate 'needed'
1715 * because either resv_huge_pages or free_huge_pages may have changed.
1717 spin_lock(&hugetlb_lock);
1718 needed = (h->resv_huge_pages + delta) -
1719 (h->free_huge_pages + allocated);
1724 * We were not able to allocate enough pages to
1725 * satisfy the entire reservation so we free what
1726 * we've allocated so far.
1731 * The surplus_list now contains _at_least_ the number of extra pages
1732 * needed to accommodate the reservation. Add the appropriate number
1733 * of pages to the hugetlb pool and free the extras back to the buddy
1734 * allocator. Commit the entire reservation here to prevent another
1735 * process from stealing the pages as they are added to the pool but
1736 * before they are reserved.
1738 needed += allocated;
1739 h->resv_huge_pages += delta;
1742 /* Free the needed pages to the hugetlb pool */
1743 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1747 * This page is now managed by the hugetlb allocator and has
1748 * no users -- drop the buddy allocator's reference.
1750 put_page_testzero(page);
1751 VM_BUG_ON_PAGE(page_count(page), page);
1752 enqueue_huge_page(h, page);
1755 spin_unlock(&hugetlb_lock);
1757 /* Free unnecessary surplus pages to the buddy allocator */
1758 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1760 spin_lock(&hugetlb_lock);
1766 * This routine has two main purposes:
1767 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1768 * in unused_resv_pages. This corresponds to the prior adjustments made
1769 * to the associated reservation map.
1770 * 2) Free any unused surplus pages that may have been allocated to satisfy
1771 * the reservation. As many as unused_resv_pages may be freed.
1773 * Called with hugetlb_lock held. However, the lock could be dropped (and
1774 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1775 * we must make sure nobody else can claim pages we are in the process of
1776 * freeing. Do this by ensuring resv_huge_page always is greater than the
1777 * number of huge pages we plan to free when dropping the lock.
1779 static void return_unused_surplus_pages(struct hstate *h,
1780 unsigned long unused_resv_pages)
1782 unsigned long nr_pages;
1784 /* Cannot return gigantic pages currently */
1785 if (hstate_is_gigantic(h))
1789 * Part (or even all) of the reservation could have been backed
1790 * by pre-allocated pages. Only free surplus pages.
1792 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1795 * We want to release as many surplus pages as possible, spread
1796 * evenly across all nodes with memory. Iterate across these nodes
1797 * until we can no longer free unreserved surplus pages. This occurs
1798 * when the nodes with surplus pages have no free pages.
1799 * free_pool_huge_page() will balance the the freed pages across the
1800 * on-line nodes with memory and will handle the hstate accounting.
1802 * Note that we decrement resv_huge_pages as we free the pages. If
1803 * we drop the lock, resv_huge_pages will still be sufficiently large
1804 * to cover subsequent pages we may free.
1806 while (nr_pages--) {
1807 h->resv_huge_pages--;
1808 unused_resv_pages--;
1809 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1811 cond_resched_lock(&hugetlb_lock);
1815 /* Fully uncommit the reservation */
1816 h->resv_huge_pages -= unused_resv_pages;
1821 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1822 * are used by the huge page allocation routines to manage reservations.
1824 * vma_needs_reservation is called to determine if the huge page at addr
1825 * within the vma has an associated reservation. If a reservation is
1826 * needed, the value 1 is returned. The caller is then responsible for
1827 * managing the global reservation and subpool usage counts. After
1828 * the huge page has been allocated, vma_commit_reservation is called
1829 * to add the page to the reservation map. If the page allocation fails,
1830 * the reservation must be ended instead of committed. vma_end_reservation
1831 * is called in such cases.
1833 * In the normal case, vma_commit_reservation returns the same value
1834 * as the preceding vma_needs_reservation call. The only time this
1835 * is not the case is if a reserve map was changed between calls. It
1836 * is the responsibility of the caller to notice the difference and
1837 * take appropriate action.
1839 * vma_add_reservation is used in error paths where a reservation must
1840 * be restored when a newly allocated huge page must be freed. It is
1841 * to be called after calling vma_needs_reservation to determine if a
1842 * reservation exists.
1844 enum vma_resv_mode {
1850 static long __vma_reservation_common(struct hstate *h,
1851 struct vm_area_struct *vma, unsigned long addr,
1852 enum vma_resv_mode mode)
1854 struct resv_map *resv;
1858 resv = vma_resv_map(vma);
1862 idx = vma_hugecache_offset(h, vma, addr);
1864 case VMA_NEEDS_RESV:
1865 ret = region_chg(resv, idx, idx + 1);
1867 case VMA_COMMIT_RESV:
1868 ret = region_add(resv, idx, idx + 1);
1871 region_abort(resv, idx, idx + 1);
1875 if (vma->vm_flags & VM_MAYSHARE)
1876 ret = region_add(resv, idx, idx + 1);
1878 region_abort(resv, idx, idx + 1);
1879 ret = region_del(resv, idx, idx + 1);
1886 if (vma->vm_flags & VM_MAYSHARE)
1888 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1890 * In most cases, reserves always exist for private mappings.
1891 * However, a file associated with mapping could have been
1892 * hole punched or truncated after reserves were consumed.
1893 * As subsequent fault on such a range will not use reserves.
1894 * Subtle - The reserve map for private mappings has the
1895 * opposite meaning than that of shared mappings. If NO
1896 * entry is in the reserve map, it means a reservation exists.
1897 * If an entry exists in the reserve map, it means the
1898 * reservation has already been consumed. As a result, the
1899 * return value of this routine is the opposite of the
1900 * value returned from reserve map manipulation routines above.
1908 return ret < 0 ? ret : 0;
1911 static long vma_needs_reservation(struct hstate *h,
1912 struct vm_area_struct *vma, unsigned long addr)
1914 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1917 static long vma_commit_reservation(struct hstate *h,
1918 struct vm_area_struct *vma, unsigned long addr)
1920 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1923 static void vma_end_reservation(struct hstate *h,
1924 struct vm_area_struct *vma, unsigned long addr)
1926 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1929 static long vma_add_reservation(struct hstate *h,
1930 struct vm_area_struct *vma, unsigned long addr)
1932 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1936 * This routine is called to restore a reservation on error paths. In the
1937 * specific error paths, a huge page was allocated (via alloc_huge_page)
1938 * and is about to be freed. If a reservation for the page existed,
1939 * alloc_huge_page would have consumed the reservation and set PagePrivate
1940 * in the newly allocated page. When the page is freed via free_huge_page,
1941 * the global reservation count will be incremented if PagePrivate is set.
1942 * However, free_huge_page can not adjust the reserve map. Adjust the
1943 * reserve map here to be consistent with global reserve count adjustments
1944 * to be made by free_huge_page.
1946 static void restore_reserve_on_error(struct hstate *h,
1947 struct vm_area_struct *vma, unsigned long address,
1950 if (unlikely(PagePrivate(page))) {
1951 long rc = vma_needs_reservation(h, vma, address);
1953 if (unlikely(rc < 0)) {
1955 * Rare out of memory condition in reserve map
1956 * manipulation. Clear PagePrivate so that
1957 * global reserve count will not be incremented
1958 * by free_huge_page. This will make it appear
1959 * as though the reservation for this page was
1960 * consumed. This may prevent the task from
1961 * faulting in the page at a later time. This
1962 * is better than inconsistent global huge page
1963 * accounting of reserve counts.
1965 ClearPagePrivate(page);
1967 rc = vma_add_reservation(h, vma, address);
1968 if (unlikely(rc < 0))
1970 * See above comment about rare out of
1973 ClearPagePrivate(page);
1975 vma_end_reservation(h, vma, address);
1979 struct page *alloc_huge_page(struct vm_area_struct *vma,
1980 unsigned long addr, int avoid_reserve)
1982 struct hugepage_subpool *spool = subpool_vma(vma);
1983 struct hstate *h = hstate_vma(vma);
1985 long map_chg, map_commit;
1988 struct hugetlb_cgroup *h_cg;
1990 idx = hstate_index(h);
1992 * Examine the region/reserve map to determine if the process
1993 * has a reservation for the page to be allocated. A return
1994 * code of zero indicates a reservation exists (no change).
1996 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1998 return ERR_PTR(-ENOMEM);
2001 * Processes that did not create the mapping will have no
2002 * reserves as indicated by the region/reserve map. Check
2003 * that the allocation will not exceed the subpool limit.
2004 * Allocations for MAP_NORESERVE mappings also need to be
2005 * checked against any subpool limit.
2007 if (map_chg || avoid_reserve) {
2008 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2010 vma_end_reservation(h, vma, addr);
2011 return ERR_PTR(-ENOSPC);
2015 * Even though there was no reservation in the region/reserve
2016 * map, there could be reservations associated with the
2017 * subpool that can be used. This would be indicated if the
2018 * return value of hugepage_subpool_get_pages() is zero.
2019 * However, if avoid_reserve is specified we still avoid even
2020 * the subpool reservations.
2026 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2028 goto out_subpool_put;
2030 spin_lock(&hugetlb_lock);
2032 * glb_chg is passed to indicate whether or not a page must be taken
2033 * from the global free pool (global change). gbl_chg == 0 indicates
2034 * a reservation exists for the allocation.
2036 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2038 spin_unlock(&hugetlb_lock);
2039 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2041 goto out_uncharge_cgroup;
2042 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2043 SetPagePrivate(page);
2044 h->resv_huge_pages--;
2046 spin_lock(&hugetlb_lock);
2047 list_move(&page->lru, &h->hugepage_activelist);
2050 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2051 spin_unlock(&hugetlb_lock);
2053 set_page_private(page, (unsigned long)spool);
2055 map_commit = vma_commit_reservation(h, vma, addr);
2056 if (unlikely(map_chg > map_commit)) {
2058 * The page was added to the reservation map between
2059 * vma_needs_reservation and vma_commit_reservation.
2060 * This indicates a race with hugetlb_reserve_pages.
2061 * Adjust for the subpool count incremented above AND
2062 * in hugetlb_reserve_pages for the same page. Also,
2063 * the reservation count added in hugetlb_reserve_pages
2064 * no longer applies.
2068 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2069 hugetlb_acct_memory(h, -rsv_adjust);
2073 out_uncharge_cgroup:
2074 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2076 if (map_chg || avoid_reserve)
2077 hugepage_subpool_put_pages(spool, 1);
2078 vma_end_reservation(h, vma, addr);
2079 return ERR_PTR(-ENOSPC);
2083 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2084 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2085 * where no ERR_VALUE is expected to be returned.
2087 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2088 unsigned long addr, int avoid_reserve)
2090 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2096 int alloc_bootmem_huge_page(struct hstate *h)
2097 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2098 int __alloc_bootmem_huge_page(struct hstate *h)
2100 struct huge_bootmem_page *m;
2103 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2106 addr = memblock_virt_alloc_try_nid_nopanic(
2107 huge_page_size(h), huge_page_size(h),
2108 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2111 * Use the beginning of the huge page to store the
2112 * huge_bootmem_page struct (until gather_bootmem
2113 * puts them into the mem_map).
2122 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2123 /* Put them into a private list first because mem_map is not up yet */
2124 list_add(&m->list, &huge_boot_pages);
2129 static void __init prep_compound_huge_page(struct page *page,
2132 if (unlikely(order > (MAX_ORDER - 1)))
2133 prep_compound_gigantic_page(page, order);
2135 prep_compound_page(page, order);
2138 /* Put bootmem huge pages into the standard lists after mem_map is up */
2139 static void __init gather_bootmem_prealloc(void)
2141 struct huge_bootmem_page *m;
2143 list_for_each_entry(m, &huge_boot_pages, list) {
2144 struct hstate *h = m->hstate;
2147 #ifdef CONFIG_HIGHMEM
2148 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2149 memblock_free_late(__pa(m),
2150 sizeof(struct huge_bootmem_page));
2152 page = virt_to_page(m);
2154 WARN_ON(page_count(page) != 1);
2155 prep_compound_huge_page(page, h->order);
2156 WARN_ON(PageReserved(page));
2157 prep_new_huge_page(h, page, page_to_nid(page));
2158 put_page(page); /* free it into the hugepage allocator */
2161 * If we had gigantic hugepages allocated at boot time, we need
2162 * to restore the 'stolen' pages to totalram_pages in order to
2163 * fix confusing memory reports from free(1) and another
2164 * side-effects, like CommitLimit going negative.
2166 if (hstate_is_gigantic(h))
2167 adjust_managed_page_count(page, 1 << h->order);
2171 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2175 for (i = 0; i < h->max_huge_pages; ++i) {
2176 if (hstate_is_gigantic(h)) {
2177 if (!alloc_bootmem_huge_page(h))
2179 } else if (!alloc_pool_huge_page(h,
2180 &node_states[N_MEMORY]))
2184 if (i < h->max_huge_pages) {
2187 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2188 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2189 h->max_huge_pages, buf, i);
2190 h->max_huge_pages = i;
2194 static void __init hugetlb_init_hstates(void)
2198 for_each_hstate(h) {
2199 if (minimum_order > huge_page_order(h))
2200 minimum_order = huge_page_order(h);
2202 /* oversize hugepages were init'ed in early boot */
2203 if (!hstate_is_gigantic(h))
2204 hugetlb_hstate_alloc_pages(h);
2206 VM_BUG_ON(minimum_order == UINT_MAX);
2209 static void __init report_hugepages(void)
2213 for_each_hstate(h) {
2216 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2217 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2218 buf, h->free_huge_pages);
2222 #ifdef CONFIG_HIGHMEM
2223 static void try_to_free_low(struct hstate *h, unsigned long count,
2224 nodemask_t *nodes_allowed)
2228 if (hstate_is_gigantic(h))
2231 for_each_node_mask(i, *nodes_allowed) {
2232 struct page *page, *next;
2233 struct list_head *freel = &h->hugepage_freelists[i];
2234 list_for_each_entry_safe(page, next, freel, lru) {
2235 if (count >= h->nr_huge_pages)
2237 if (PageHighMem(page))
2239 list_del(&page->lru);
2240 update_and_free_page(h, page);
2241 h->free_huge_pages--;
2242 h->free_huge_pages_node[page_to_nid(page)]--;
2247 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2248 nodemask_t *nodes_allowed)
2254 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2255 * balanced by operating on them in a round-robin fashion.
2256 * Returns 1 if an adjustment was made.
2258 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2263 VM_BUG_ON(delta != -1 && delta != 1);
2266 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2267 if (h->surplus_huge_pages_node[node])
2271 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2272 if (h->surplus_huge_pages_node[node] <
2273 h->nr_huge_pages_node[node])
2280 h->surplus_huge_pages += delta;
2281 h->surplus_huge_pages_node[node] += delta;
2285 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2286 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2287 nodemask_t *nodes_allowed)
2289 unsigned long min_count, ret;
2291 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2292 return h->max_huge_pages;
2295 * Increase the pool size
2296 * First take pages out of surplus state. Then make up the
2297 * remaining difference by allocating fresh huge pages.
2299 * We might race with alloc_surplus_huge_page() here and be unable
2300 * to convert a surplus huge page to a normal huge page. That is
2301 * not critical, though, it just means the overall size of the
2302 * pool might be one hugepage larger than it needs to be, but
2303 * within all the constraints specified by the sysctls.
2305 spin_lock(&hugetlb_lock);
2306 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2307 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2311 while (count > persistent_huge_pages(h)) {
2313 * If this allocation races such that we no longer need the
2314 * page, free_huge_page will handle it by freeing the page
2315 * and reducing the surplus.
2317 spin_unlock(&hugetlb_lock);
2319 /* yield cpu to avoid soft lockup */
2322 ret = alloc_pool_huge_page(h, nodes_allowed);
2323 spin_lock(&hugetlb_lock);
2327 /* Bail for signals. Probably ctrl-c from user */
2328 if (signal_pending(current))
2333 * Decrease the pool size
2334 * First return free pages to the buddy allocator (being careful
2335 * to keep enough around to satisfy reservations). Then place
2336 * pages into surplus state as needed so the pool will shrink
2337 * to the desired size as pages become free.
2339 * By placing pages into the surplus state independent of the
2340 * overcommit value, we are allowing the surplus pool size to
2341 * exceed overcommit. There are few sane options here. Since
2342 * alloc_surplus_huge_page() is checking the global counter,
2343 * though, we'll note that we're not allowed to exceed surplus
2344 * and won't grow the pool anywhere else. Not until one of the
2345 * sysctls are changed, or the surplus pages go out of use.
2347 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2348 min_count = max(count, min_count);
2349 try_to_free_low(h, min_count, nodes_allowed);
2350 while (min_count < persistent_huge_pages(h)) {
2351 if (!free_pool_huge_page(h, nodes_allowed, 0))
2353 cond_resched_lock(&hugetlb_lock);
2355 while (count < persistent_huge_pages(h)) {
2356 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2360 ret = persistent_huge_pages(h);
2361 spin_unlock(&hugetlb_lock);
2365 #define HSTATE_ATTR_RO(_name) \
2366 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2368 #define HSTATE_ATTR(_name) \
2369 static struct kobj_attribute _name##_attr = \
2370 __ATTR(_name, 0644, _name##_show, _name##_store)
2372 static struct kobject *hugepages_kobj;
2373 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2375 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2377 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2381 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2382 if (hstate_kobjs[i] == kobj) {
2384 *nidp = NUMA_NO_NODE;
2388 return kobj_to_node_hstate(kobj, nidp);
2391 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2392 struct kobj_attribute *attr, char *buf)
2395 unsigned long nr_huge_pages;
2398 h = kobj_to_hstate(kobj, &nid);
2399 if (nid == NUMA_NO_NODE)
2400 nr_huge_pages = h->nr_huge_pages;
2402 nr_huge_pages = h->nr_huge_pages_node[nid];
2404 return sprintf(buf, "%lu\n", nr_huge_pages);
2407 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2408 struct hstate *h, int nid,
2409 unsigned long count, size_t len)
2412 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2414 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2419 if (nid == NUMA_NO_NODE) {
2421 * global hstate attribute
2423 if (!(obey_mempolicy &&
2424 init_nodemask_of_mempolicy(nodes_allowed))) {
2425 NODEMASK_FREE(nodes_allowed);
2426 nodes_allowed = &node_states[N_MEMORY];
2428 } else if (nodes_allowed) {
2430 * per node hstate attribute: adjust count to global,
2431 * but restrict alloc/free to the specified node.
2433 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2434 init_nodemask_of_node(nodes_allowed, nid);
2436 nodes_allowed = &node_states[N_MEMORY];
2438 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2440 if (nodes_allowed != &node_states[N_MEMORY])
2441 NODEMASK_FREE(nodes_allowed);
2445 NODEMASK_FREE(nodes_allowed);
2449 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2450 struct kobject *kobj, const char *buf,
2454 unsigned long count;
2458 err = kstrtoul(buf, 10, &count);
2462 h = kobj_to_hstate(kobj, &nid);
2463 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2466 static ssize_t nr_hugepages_show(struct kobject *kobj,
2467 struct kobj_attribute *attr, char *buf)
2469 return nr_hugepages_show_common(kobj, attr, buf);
2472 static ssize_t nr_hugepages_store(struct kobject *kobj,
2473 struct kobj_attribute *attr, const char *buf, size_t len)
2475 return nr_hugepages_store_common(false, kobj, buf, len);
2477 HSTATE_ATTR(nr_hugepages);
2482 * hstate attribute for optionally mempolicy-based constraint on persistent
2483 * huge page alloc/free.
2485 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2486 struct kobj_attribute *attr, char *buf)
2488 return nr_hugepages_show_common(kobj, attr, buf);
2491 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2492 struct kobj_attribute *attr, const char *buf, size_t len)
2494 return nr_hugepages_store_common(true, kobj, buf, len);
2496 HSTATE_ATTR(nr_hugepages_mempolicy);
2500 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2501 struct kobj_attribute *attr, char *buf)
2503 struct hstate *h = kobj_to_hstate(kobj, NULL);
2504 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2507 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2508 struct kobj_attribute *attr, const char *buf, size_t count)
2511 unsigned long input;
2512 struct hstate *h = kobj_to_hstate(kobj, NULL);
2514 if (hstate_is_gigantic(h))
2517 err = kstrtoul(buf, 10, &input);
2521 spin_lock(&hugetlb_lock);
2522 h->nr_overcommit_huge_pages = input;
2523 spin_unlock(&hugetlb_lock);
2527 HSTATE_ATTR(nr_overcommit_hugepages);
2529 static ssize_t free_hugepages_show(struct kobject *kobj,
2530 struct kobj_attribute *attr, char *buf)
2533 unsigned long free_huge_pages;
2536 h = kobj_to_hstate(kobj, &nid);
2537 if (nid == NUMA_NO_NODE)
2538 free_huge_pages = h->free_huge_pages;
2540 free_huge_pages = h->free_huge_pages_node[nid];
2542 return sprintf(buf, "%lu\n", free_huge_pages);
2544 HSTATE_ATTR_RO(free_hugepages);
2546 static ssize_t resv_hugepages_show(struct kobject *kobj,
2547 struct kobj_attribute *attr, char *buf)
2549 struct hstate *h = kobj_to_hstate(kobj, NULL);
2550 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2552 HSTATE_ATTR_RO(resv_hugepages);
2554 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2555 struct kobj_attribute *attr, char *buf)
2558 unsigned long surplus_huge_pages;
2561 h = kobj_to_hstate(kobj, &nid);
2562 if (nid == NUMA_NO_NODE)
2563 surplus_huge_pages = h->surplus_huge_pages;
2565 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2567 return sprintf(buf, "%lu\n", surplus_huge_pages);
2569 HSTATE_ATTR_RO(surplus_hugepages);
2571 static struct attribute *hstate_attrs[] = {
2572 &nr_hugepages_attr.attr,
2573 &nr_overcommit_hugepages_attr.attr,
2574 &free_hugepages_attr.attr,
2575 &resv_hugepages_attr.attr,
2576 &surplus_hugepages_attr.attr,
2578 &nr_hugepages_mempolicy_attr.attr,
2583 static const struct attribute_group hstate_attr_group = {
2584 .attrs = hstate_attrs,
2587 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2588 struct kobject **hstate_kobjs,
2589 const struct attribute_group *hstate_attr_group)
2592 int hi = hstate_index(h);
2594 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2595 if (!hstate_kobjs[hi])
2598 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2600 kobject_put(hstate_kobjs[hi]);
2605 static void __init hugetlb_sysfs_init(void)
2610 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2611 if (!hugepages_kobj)
2614 for_each_hstate(h) {
2615 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2616 hstate_kobjs, &hstate_attr_group);
2618 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2625 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2626 * with node devices in node_devices[] using a parallel array. The array
2627 * index of a node device or _hstate == node id.
2628 * This is here to avoid any static dependency of the node device driver, in
2629 * the base kernel, on the hugetlb module.
2631 struct node_hstate {
2632 struct kobject *hugepages_kobj;
2633 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2635 static struct node_hstate node_hstates[MAX_NUMNODES];
2638 * A subset of global hstate attributes for node devices
2640 static struct attribute *per_node_hstate_attrs[] = {
2641 &nr_hugepages_attr.attr,
2642 &free_hugepages_attr.attr,
2643 &surplus_hugepages_attr.attr,
2647 static const struct attribute_group per_node_hstate_attr_group = {
2648 .attrs = per_node_hstate_attrs,
2652 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2653 * Returns node id via non-NULL nidp.
2655 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2659 for (nid = 0; nid < nr_node_ids; nid++) {
2660 struct node_hstate *nhs = &node_hstates[nid];
2662 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2663 if (nhs->hstate_kobjs[i] == kobj) {
2675 * Unregister hstate attributes from a single node device.
2676 * No-op if no hstate attributes attached.
2678 static void hugetlb_unregister_node(struct node *node)
2681 struct node_hstate *nhs = &node_hstates[node->dev.id];
2683 if (!nhs->hugepages_kobj)
2684 return; /* no hstate attributes */
2686 for_each_hstate(h) {
2687 int idx = hstate_index(h);
2688 if (nhs->hstate_kobjs[idx]) {
2689 kobject_put(nhs->hstate_kobjs[idx]);
2690 nhs->hstate_kobjs[idx] = NULL;
2694 kobject_put(nhs->hugepages_kobj);
2695 nhs->hugepages_kobj = NULL;
2700 * Register hstate attributes for a single node device.
2701 * No-op if attributes already registered.
2703 static void hugetlb_register_node(struct node *node)
2706 struct node_hstate *nhs = &node_hstates[node->dev.id];
2709 if (nhs->hugepages_kobj)
2710 return; /* already allocated */
2712 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2714 if (!nhs->hugepages_kobj)
2717 for_each_hstate(h) {
2718 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2720 &per_node_hstate_attr_group);
2722 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2723 h->name, node->dev.id);
2724 hugetlb_unregister_node(node);
2731 * hugetlb init time: register hstate attributes for all registered node
2732 * devices of nodes that have memory. All on-line nodes should have
2733 * registered their associated device by this time.
2735 static void __init hugetlb_register_all_nodes(void)
2739 for_each_node_state(nid, N_MEMORY) {
2740 struct node *node = node_devices[nid];
2741 if (node->dev.id == nid)
2742 hugetlb_register_node(node);
2746 * Let the node device driver know we're here so it can
2747 * [un]register hstate attributes on node hotplug.
2749 register_hugetlbfs_with_node(hugetlb_register_node,
2750 hugetlb_unregister_node);
2752 #else /* !CONFIG_NUMA */
2754 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2762 static void hugetlb_register_all_nodes(void) { }
2766 static int __init hugetlb_init(void)
2770 if (!hugepages_supported())
2773 if (!size_to_hstate(default_hstate_size)) {
2774 if (default_hstate_size != 0) {
2775 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2776 default_hstate_size, HPAGE_SIZE);
2779 default_hstate_size = HPAGE_SIZE;
2780 if (!size_to_hstate(default_hstate_size))
2781 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2783 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2784 if (default_hstate_max_huge_pages) {
2785 if (!default_hstate.max_huge_pages)
2786 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2789 hugetlb_init_hstates();
2790 gather_bootmem_prealloc();
2793 hugetlb_sysfs_init();
2794 hugetlb_register_all_nodes();
2795 hugetlb_cgroup_file_init();
2798 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2800 num_fault_mutexes = 1;
2802 hugetlb_fault_mutex_table =
2803 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2804 BUG_ON(!hugetlb_fault_mutex_table);
2806 for (i = 0; i < num_fault_mutexes; i++)
2807 mutex_init(&hugetlb_fault_mutex_table[i]);
2810 subsys_initcall(hugetlb_init);
2812 /* Should be called on processing a hugepagesz=... option */
2813 void __init hugetlb_bad_size(void)
2815 parsed_valid_hugepagesz = false;
2818 void __init hugetlb_add_hstate(unsigned int order)
2823 if (size_to_hstate(PAGE_SIZE << order)) {
2824 pr_warn("hugepagesz= specified twice, ignoring\n");
2827 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2829 h = &hstates[hugetlb_max_hstate++];
2831 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2832 h->nr_huge_pages = 0;
2833 h->free_huge_pages = 0;
2834 for (i = 0; i < MAX_NUMNODES; ++i)
2835 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2836 INIT_LIST_HEAD(&h->hugepage_activelist);
2837 h->next_nid_to_alloc = first_memory_node;
2838 h->next_nid_to_free = first_memory_node;
2839 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2840 huge_page_size(h)/1024);
2845 static int __init hugetlb_nrpages_setup(char *s)
2848 static unsigned long *last_mhp;
2850 if (!parsed_valid_hugepagesz) {
2851 pr_warn("hugepages = %s preceded by "
2852 "an unsupported hugepagesz, ignoring\n", s);
2853 parsed_valid_hugepagesz = true;
2857 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2858 * so this hugepages= parameter goes to the "default hstate".
2860 else if (!hugetlb_max_hstate)
2861 mhp = &default_hstate_max_huge_pages;
2863 mhp = &parsed_hstate->max_huge_pages;
2865 if (mhp == last_mhp) {
2866 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2870 if (sscanf(s, "%lu", mhp) <= 0)
2874 * Global state is always initialized later in hugetlb_init.
2875 * But we need to allocate >= MAX_ORDER hstates here early to still
2876 * use the bootmem allocator.
2878 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2879 hugetlb_hstate_alloc_pages(parsed_hstate);
2885 __setup("hugepages=", hugetlb_nrpages_setup);
2887 static int __init hugetlb_default_setup(char *s)
2889 default_hstate_size = memparse(s, &s);
2892 __setup("default_hugepagesz=", hugetlb_default_setup);
2894 static unsigned int cpuset_mems_nr(unsigned int *array)
2897 unsigned int nr = 0;
2899 for_each_node_mask(node, cpuset_current_mems_allowed)
2905 #ifdef CONFIG_SYSCTL
2906 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2907 struct ctl_table *table, int write,
2908 void __user *buffer, size_t *length, loff_t *ppos)
2910 struct hstate *h = &default_hstate;
2911 unsigned long tmp = h->max_huge_pages;
2914 if (!hugepages_supported())
2918 table->maxlen = sizeof(unsigned long);
2919 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2924 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2925 NUMA_NO_NODE, tmp, *length);
2930 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2931 void __user *buffer, size_t *length, loff_t *ppos)
2934 return hugetlb_sysctl_handler_common(false, table, write,
2935 buffer, length, ppos);
2939 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2940 void __user *buffer, size_t *length, loff_t *ppos)
2942 return hugetlb_sysctl_handler_common(true, table, write,
2943 buffer, length, ppos);
2945 #endif /* CONFIG_NUMA */
2947 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2948 void __user *buffer,
2949 size_t *length, loff_t *ppos)
2951 struct hstate *h = &default_hstate;
2955 if (!hugepages_supported())
2958 tmp = h->nr_overcommit_huge_pages;
2960 if (write && hstate_is_gigantic(h))
2964 table->maxlen = sizeof(unsigned long);
2965 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2970 spin_lock(&hugetlb_lock);
2971 h->nr_overcommit_huge_pages = tmp;
2972 spin_unlock(&hugetlb_lock);
2978 #endif /* CONFIG_SYSCTL */
2980 void hugetlb_report_meminfo(struct seq_file *m)
2983 unsigned long total = 0;
2985 if (!hugepages_supported())
2988 for_each_hstate(h) {
2989 unsigned long count = h->nr_huge_pages;
2991 total += (PAGE_SIZE << huge_page_order(h)) * count;
2993 if (h == &default_hstate)
2995 "HugePages_Total: %5lu\n"
2996 "HugePages_Free: %5lu\n"
2997 "HugePages_Rsvd: %5lu\n"
2998 "HugePages_Surp: %5lu\n"
2999 "Hugepagesize: %8lu kB\n",
3003 h->surplus_huge_pages,
3004 (PAGE_SIZE << huge_page_order(h)) / 1024);
3007 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3010 int hugetlb_report_node_meminfo(int nid, char *buf)
3012 struct hstate *h = &default_hstate;
3013 if (!hugepages_supported())
3016 "Node %d HugePages_Total: %5u\n"
3017 "Node %d HugePages_Free: %5u\n"
3018 "Node %d HugePages_Surp: %5u\n",
3019 nid, h->nr_huge_pages_node[nid],
3020 nid, h->free_huge_pages_node[nid],
3021 nid, h->surplus_huge_pages_node[nid]);
3024 void hugetlb_show_meminfo(void)
3029 if (!hugepages_supported())
3032 for_each_node_state(nid, N_MEMORY)
3034 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3036 h->nr_huge_pages_node[nid],
3037 h->free_huge_pages_node[nid],
3038 h->surplus_huge_pages_node[nid],
3039 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3042 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3044 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3045 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3048 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3049 unsigned long hugetlb_total_pages(void)
3052 unsigned long nr_total_pages = 0;
3055 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3056 return nr_total_pages;
3059 static int hugetlb_acct_memory(struct hstate *h, long delta)
3063 spin_lock(&hugetlb_lock);
3065 * When cpuset is configured, it breaks the strict hugetlb page
3066 * reservation as the accounting is done on a global variable. Such
3067 * reservation is completely rubbish in the presence of cpuset because
3068 * the reservation is not checked against page availability for the
3069 * current cpuset. Application can still potentially OOM'ed by kernel
3070 * with lack of free htlb page in cpuset that the task is in.
3071 * Attempt to enforce strict accounting with cpuset is almost
3072 * impossible (or too ugly) because cpuset is too fluid that
3073 * task or memory node can be dynamically moved between cpusets.
3075 * The change of semantics for shared hugetlb mapping with cpuset is
3076 * undesirable. However, in order to preserve some of the semantics,
3077 * we fall back to check against current free page availability as
3078 * a best attempt and hopefully to minimize the impact of changing
3079 * semantics that cpuset has.
3082 if (gather_surplus_pages(h, delta) < 0)
3085 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3086 return_unused_surplus_pages(h, delta);
3093 return_unused_surplus_pages(h, (unsigned long) -delta);
3096 spin_unlock(&hugetlb_lock);
3100 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3102 struct resv_map *resv = vma_resv_map(vma);
3105 * This new VMA should share its siblings reservation map if present.
3106 * The VMA will only ever have a valid reservation map pointer where
3107 * it is being copied for another still existing VMA. As that VMA
3108 * has a reference to the reservation map it cannot disappear until
3109 * after this open call completes. It is therefore safe to take a
3110 * new reference here without additional locking.
3112 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3113 kref_get(&resv->refs);
3116 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3118 struct hstate *h = hstate_vma(vma);
3119 struct resv_map *resv = vma_resv_map(vma);
3120 struct hugepage_subpool *spool = subpool_vma(vma);
3121 unsigned long reserve, start, end;
3124 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3127 start = vma_hugecache_offset(h, vma, vma->vm_start);
3128 end = vma_hugecache_offset(h, vma, vma->vm_end);
3130 reserve = (end - start) - region_count(resv, start, end);
3132 kref_put(&resv->refs, resv_map_release);
3136 * Decrement reserve counts. The global reserve count may be
3137 * adjusted if the subpool has a minimum size.
3139 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3140 hugetlb_acct_memory(h, -gbl_reserve);
3144 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3146 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3152 * We cannot handle pagefaults against hugetlb pages at all. They cause
3153 * handle_mm_fault() to try to instantiate regular-sized pages in the
3154 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3157 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3163 const struct vm_operations_struct hugetlb_vm_ops = {
3164 .fault = hugetlb_vm_op_fault,
3165 .open = hugetlb_vm_op_open,
3166 .close = hugetlb_vm_op_close,
3167 .split = hugetlb_vm_op_split,
3170 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3176 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3177 vma->vm_page_prot)));
3179 entry = huge_pte_wrprotect(mk_huge_pte(page,
3180 vma->vm_page_prot));
3182 entry = pte_mkyoung(entry);
3183 entry = pte_mkhuge(entry);
3184 entry = arch_make_huge_pte(entry, vma, page, writable);
3189 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3190 unsigned long address, pte_t *ptep)
3194 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3195 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3196 update_mmu_cache(vma, address, ptep);
3199 bool is_hugetlb_entry_migration(pte_t pte)
3203 if (huge_pte_none(pte) || pte_present(pte))
3205 swp = pte_to_swp_entry(pte);
3206 if (non_swap_entry(swp) && is_migration_entry(swp))
3212 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3216 if (huge_pte_none(pte) || pte_present(pte))
3218 swp = pte_to_swp_entry(pte);
3219 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3225 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3226 struct vm_area_struct *vma)
3228 pte_t *src_pte, *dst_pte, entry;
3229 struct page *ptepage;
3232 struct hstate *h = hstate_vma(vma);
3233 unsigned long sz = huge_page_size(h);
3234 unsigned long mmun_start; /* For mmu_notifiers */
3235 unsigned long mmun_end; /* For mmu_notifiers */
3238 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3240 mmun_start = vma->vm_start;
3241 mmun_end = vma->vm_end;
3243 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3245 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3246 spinlock_t *src_ptl, *dst_ptl;
3247 src_pte = huge_pte_offset(src, addr, sz);
3250 dst_pte = huge_pte_alloc(dst, addr, sz);
3256 /* If the pagetables are shared don't copy or take references */
3257 if (dst_pte == src_pte)
3260 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3261 src_ptl = huge_pte_lockptr(h, src, src_pte);
3262 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3263 entry = huge_ptep_get(src_pte);
3264 if (huge_pte_none(entry)) { /* skip none entry */
3266 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3267 is_hugetlb_entry_hwpoisoned(entry))) {
3268 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3270 if (is_write_migration_entry(swp_entry) && cow) {
3272 * COW mappings require pages in both
3273 * parent and child to be set to read.
3275 make_migration_entry_read(&swp_entry);
3276 entry = swp_entry_to_pte(swp_entry);
3277 set_huge_swap_pte_at(src, addr, src_pte,
3280 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3284 * No need to notify as we are downgrading page
3285 * table protection not changing it to point
3288 * See Documentation/vm/mmu_notifier.txt
3290 huge_ptep_set_wrprotect(src, addr, src_pte);
3292 entry = huge_ptep_get(src_pte);
3293 ptepage = pte_page(entry);
3295 page_dup_rmap(ptepage, true);
3296 set_huge_pte_at(dst, addr, dst_pte, entry);
3297 hugetlb_count_add(pages_per_huge_page(h), dst);
3299 spin_unlock(src_ptl);
3300 spin_unlock(dst_ptl);
3304 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3309 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3310 unsigned long start, unsigned long end,
3311 struct page *ref_page)
3313 struct mm_struct *mm = vma->vm_mm;
3314 unsigned long address;
3319 struct hstate *h = hstate_vma(vma);
3320 unsigned long sz = huge_page_size(h);
3321 const unsigned long mmun_start = start; /* For mmu_notifiers */
3322 const unsigned long mmun_end = end; /* For mmu_notifiers */
3324 WARN_ON(!is_vm_hugetlb_page(vma));
3325 BUG_ON(start & ~huge_page_mask(h));
3326 BUG_ON(end & ~huge_page_mask(h));
3329 * This is a hugetlb vma, all the pte entries should point
3332 tlb_remove_check_page_size_change(tlb, sz);
3333 tlb_start_vma(tlb, vma);
3334 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3336 for (; address < end; address += sz) {
3337 ptep = huge_pte_offset(mm, address, sz);
3341 ptl = huge_pte_lock(h, mm, ptep);
3342 if (huge_pmd_unshare(mm, &address, ptep)) {
3347 pte = huge_ptep_get(ptep);
3348 if (huge_pte_none(pte)) {
3354 * Migrating hugepage or HWPoisoned hugepage is already
3355 * unmapped and its refcount is dropped, so just clear pte here.
3357 if (unlikely(!pte_present(pte))) {
3358 huge_pte_clear(mm, address, ptep, sz);
3363 page = pte_page(pte);
3365 * If a reference page is supplied, it is because a specific
3366 * page is being unmapped, not a range. Ensure the page we
3367 * are about to unmap is the actual page of interest.
3370 if (page != ref_page) {
3375 * Mark the VMA as having unmapped its page so that
3376 * future faults in this VMA will fail rather than
3377 * looking like data was lost
3379 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3382 pte = huge_ptep_get_and_clear(mm, address, ptep);
3383 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3384 if (huge_pte_dirty(pte))
3385 set_page_dirty(page);
3387 hugetlb_count_sub(pages_per_huge_page(h), mm);
3388 page_remove_rmap(page, true);
3391 tlb_remove_page_size(tlb, page, huge_page_size(h));
3393 * Bail out after unmapping reference page if supplied
3398 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3399 tlb_end_vma(tlb, vma);
3402 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3403 struct vm_area_struct *vma, unsigned long start,
3404 unsigned long end, struct page *ref_page)
3406 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3409 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3410 * test will fail on a vma being torn down, and not grab a page table
3411 * on its way out. We're lucky that the flag has such an appropriate
3412 * name, and can in fact be safely cleared here. We could clear it
3413 * before the __unmap_hugepage_range above, but all that's necessary
3414 * is to clear it before releasing the i_mmap_rwsem. This works
3415 * because in the context this is called, the VMA is about to be
3416 * destroyed and the i_mmap_rwsem is held.
3418 vma->vm_flags &= ~VM_MAYSHARE;
3421 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3422 unsigned long end, struct page *ref_page)
3424 struct mm_struct *mm;
3425 struct mmu_gather tlb;
3429 tlb_gather_mmu(&tlb, mm, start, end);
3430 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3431 tlb_finish_mmu(&tlb, start, end);
3435 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3436 * mappping it owns the reserve page for. The intention is to unmap the page
3437 * from other VMAs and let the children be SIGKILLed if they are faulting the
3440 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3441 struct page *page, unsigned long address)
3443 struct hstate *h = hstate_vma(vma);
3444 struct vm_area_struct *iter_vma;
3445 struct address_space *mapping;
3449 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3450 * from page cache lookup which is in HPAGE_SIZE units.
3452 address = address & huge_page_mask(h);
3453 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3455 mapping = vma->vm_file->f_mapping;
3458 * Take the mapping lock for the duration of the table walk. As
3459 * this mapping should be shared between all the VMAs,
3460 * __unmap_hugepage_range() is called as the lock is already held
3462 i_mmap_lock_write(mapping);
3463 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3464 /* Do not unmap the current VMA */
3465 if (iter_vma == vma)
3469 * Shared VMAs have their own reserves and do not affect
3470 * MAP_PRIVATE accounting but it is possible that a shared
3471 * VMA is using the same page so check and skip such VMAs.
3473 if (iter_vma->vm_flags & VM_MAYSHARE)
3477 * Unmap the page from other VMAs without their own reserves.
3478 * They get marked to be SIGKILLed if they fault in these
3479 * areas. This is because a future no-page fault on this VMA
3480 * could insert a zeroed page instead of the data existing
3481 * from the time of fork. This would look like data corruption
3483 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3484 unmap_hugepage_range(iter_vma, address,
3485 address + huge_page_size(h), page);
3487 i_mmap_unlock_write(mapping);
3491 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3492 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3493 * cannot race with other handlers or page migration.
3494 * Keep the pte_same checks anyway to make transition from the mutex easier.
3496 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3497 unsigned long address, pte_t *ptep,
3498 struct page *pagecache_page, spinlock_t *ptl)
3501 struct hstate *h = hstate_vma(vma);
3502 struct page *old_page, *new_page;
3503 int ret = 0, outside_reserve = 0;
3504 unsigned long mmun_start; /* For mmu_notifiers */
3505 unsigned long mmun_end; /* For mmu_notifiers */
3507 pte = huge_ptep_get(ptep);
3508 old_page = pte_page(pte);
3511 /* If no-one else is actually using this page, avoid the copy
3512 * and just make the page writable */
3513 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3514 page_move_anon_rmap(old_page, vma);
3515 set_huge_ptep_writable(vma, address, ptep);
3520 * If the process that created a MAP_PRIVATE mapping is about to
3521 * perform a COW due to a shared page count, attempt to satisfy
3522 * the allocation without using the existing reserves. The pagecache
3523 * page is used to determine if the reserve at this address was
3524 * consumed or not. If reserves were used, a partial faulted mapping
3525 * at the time of fork() could consume its reserves on COW instead
3526 * of the full address range.
3528 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3529 old_page != pagecache_page)
3530 outside_reserve = 1;
3535 * Drop page table lock as buddy allocator may be called. It will
3536 * be acquired again before returning to the caller, as expected.
3539 new_page = alloc_huge_page(vma, address, outside_reserve);
3541 if (IS_ERR(new_page)) {
3543 * If a process owning a MAP_PRIVATE mapping fails to COW,
3544 * it is due to references held by a child and an insufficient
3545 * huge page pool. To guarantee the original mappers
3546 * reliability, unmap the page from child processes. The child
3547 * may get SIGKILLed if it later faults.
3549 if (outside_reserve) {
3551 BUG_ON(huge_pte_none(pte));
3552 unmap_ref_private(mm, vma, old_page, address);
3553 BUG_ON(huge_pte_none(pte));
3555 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3558 pte_same(huge_ptep_get(ptep), pte)))
3559 goto retry_avoidcopy;
3561 * race occurs while re-acquiring page table
3562 * lock, and our job is done.
3567 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3568 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3569 goto out_release_old;
3573 * When the original hugepage is shared one, it does not have
3574 * anon_vma prepared.
3576 if (unlikely(anon_vma_prepare(vma))) {
3578 goto out_release_all;
3581 copy_user_huge_page(new_page, old_page, address, vma,
3582 pages_per_huge_page(h));
3583 __SetPageUptodate(new_page);
3584 set_page_huge_active(new_page);
3586 mmun_start = address & huge_page_mask(h);
3587 mmun_end = mmun_start + huge_page_size(h);
3588 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3591 * Retake the page table lock to check for racing updates
3592 * before the page tables are altered
3595 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3597 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3598 ClearPagePrivate(new_page);
3601 huge_ptep_clear_flush(vma, address, ptep);
3602 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3603 set_huge_pte_at(mm, address, ptep,
3604 make_huge_pte(vma, new_page, 1));
3605 page_remove_rmap(old_page, true);
3606 hugepage_add_new_anon_rmap(new_page, vma, address);
3607 /* Make the old page be freed below */
3608 new_page = old_page;
3611 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3613 restore_reserve_on_error(h, vma, address, new_page);
3618 spin_lock(ptl); /* Caller expects lock to be held */
3622 /* Return the pagecache page at a given address within a VMA */
3623 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3624 struct vm_area_struct *vma, unsigned long address)
3626 struct address_space *mapping;
3629 mapping = vma->vm_file->f_mapping;
3630 idx = vma_hugecache_offset(h, vma, address);
3632 return find_lock_page(mapping, idx);
3636 * Return whether there is a pagecache page to back given address within VMA.
3637 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3639 static bool hugetlbfs_pagecache_present(struct hstate *h,
3640 struct vm_area_struct *vma, unsigned long address)
3642 struct address_space *mapping;
3646 mapping = vma->vm_file->f_mapping;
3647 idx = vma_hugecache_offset(h, vma, address);
3649 page = find_get_page(mapping, idx);
3652 return page != NULL;
3655 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3658 struct inode *inode = mapping->host;
3659 struct hstate *h = hstate_inode(inode);
3660 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3664 ClearPagePrivate(page);
3666 spin_lock(&inode->i_lock);
3667 inode->i_blocks += blocks_per_huge_page(h);
3668 spin_unlock(&inode->i_lock);
3672 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3673 struct address_space *mapping, pgoff_t idx,
3674 unsigned long address, pte_t *ptep, unsigned int flags)
3676 struct hstate *h = hstate_vma(vma);
3677 int ret = VM_FAULT_SIGBUS;
3685 * Currently, we are forced to kill the process in the event the
3686 * original mapper has unmapped pages from the child due to a failed
3687 * COW. Warn that such a situation has occurred as it may not be obvious
3689 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3690 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3696 * Use page lock to guard against racing truncation
3697 * before we get page_table_lock.
3700 page = find_lock_page(mapping, idx);
3702 size = i_size_read(mapping->host) >> huge_page_shift(h);
3707 * Check for page in userfault range
3709 if (userfaultfd_missing(vma)) {
3711 struct vm_fault vmf = {
3716 * Hard to debug if it ends up being
3717 * used by a callee that assumes
3718 * something about the other
3719 * uninitialized fields... same as in
3725 * hugetlb_fault_mutex must be dropped before
3726 * handling userfault. Reacquire after handling
3727 * fault to make calling code simpler.
3729 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3731 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3732 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3733 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3737 page = alloc_huge_page(vma, address, 0);
3739 ret = PTR_ERR(page);
3743 ret = VM_FAULT_SIGBUS;
3746 clear_huge_page(page, address, pages_per_huge_page(h));
3747 __SetPageUptodate(page);
3748 set_page_huge_active(page);
3750 if (vma->vm_flags & VM_MAYSHARE) {
3751 int err = huge_add_to_page_cache(page, mapping, idx);
3760 if (unlikely(anon_vma_prepare(vma))) {
3762 goto backout_unlocked;
3768 * If memory error occurs between mmap() and fault, some process
3769 * don't have hwpoisoned swap entry for errored virtual address.
3770 * So we need to block hugepage fault by PG_hwpoison bit check.
3772 if (unlikely(PageHWPoison(page))) {
3773 ret = VM_FAULT_HWPOISON |
3774 VM_FAULT_SET_HINDEX(hstate_index(h));
3775 goto backout_unlocked;
3780 * If we are going to COW a private mapping later, we examine the
3781 * pending reservations for this page now. This will ensure that
3782 * any allocations necessary to record that reservation occur outside
3785 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3786 if (vma_needs_reservation(h, vma, address) < 0) {
3788 goto backout_unlocked;
3790 /* Just decrements count, does not deallocate */
3791 vma_end_reservation(h, vma, address);
3794 ptl = huge_pte_lock(h, mm, ptep);
3795 size = i_size_read(mapping->host) >> huge_page_shift(h);
3800 if (!huge_pte_none(huge_ptep_get(ptep)))
3804 ClearPagePrivate(page);
3805 hugepage_add_new_anon_rmap(page, vma, address);
3807 page_dup_rmap(page, true);
3808 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3809 && (vma->vm_flags & VM_SHARED)));
3810 set_huge_pte_at(mm, address, ptep, new_pte);
3812 hugetlb_count_add(pages_per_huge_page(h), mm);
3813 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3814 /* Optimization, do the COW without a second fault */
3815 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3827 restore_reserve_on_error(h, vma, address, page);
3833 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3834 struct vm_area_struct *vma,
3835 struct address_space *mapping,
3836 pgoff_t idx, unsigned long address)
3838 unsigned long key[2];
3841 if (vma->vm_flags & VM_SHARED) {
3842 key[0] = (unsigned long) mapping;
3845 key[0] = (unsigned long) mm;
3846 key[1] = address >> huge_page_shift(h);
3849 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3851 return hash & (num_fault_mutexes - 1);
3855 * For uniprocesor systems we always use a single mutex, so just
3856 * return 0 and avoid the hashing overhead.
3858 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3859 struct vm_area_struct *vma,
3860 struct address_space *mapping,
3861 pgoff_t idx, unsigned long address)
3867 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3868 unsigned long address, unsigned int flags)
3875 struct page *page = NULL;
3876 struct page *pagecache_page = NULL;
3877 struct hstate *h = hstate_vma(vma);
3878 struct address_space *mapping;
3879 int need_wait_lock = 0;
3881 address &= huge_page_mask(h);
3883 ptep = huge_pte_offset(mm, address, huge_page_size(h));
3885 entry = huge_ptep_get(ptep);
3886 if (unlikely(is_hugetlb_entry_migration(entry))) {
3887 migration_entry_wait_huge(vma, mm, ptep);
3889 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3890 return VM_FAULT_HWPOISON_LARGE |
3891 VM_FAULT_SET_HINDEX(hstate_index(h));
3893 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3895 return VM_FAULT_OOM;
3898 mapping = vma->vm_file->f_mapping;
3899 idx = vma_hugecache_offset(h, vma, address);
3902 * Serialize hugepage allocation and instantiation, so that we don't
3903 * get spurious allocation failures if two CPUs race to instantiate
3904 * the same page in the page cache.
3906 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3907 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3909 entry = huge_ptep_get(ptep);
3910 if (huge_pte_none(entry)) {
3911 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3918 * entry could be a migration/hwpoison entry at this point, so this
3919 * check prevents the kernel from going below assuming that we have
3920 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3921 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3924 if (!pte_present(entry))
3928 * If we are going to COW the mapping later, we examine the pending
3929 * reservations for this page now. This will ensure that any
3930 * allocations necessary to record that reservation occur outside the
3931 * spinlock. For private mappings, we also lookup the pagecache
3932 * page now as it is used to determine if a reservation has been
3935 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3936 if (vma_needs_reservation(h, vma, address) < 0) {
3940 /* Just decrements count, does not deallocate */
3941 vma_end_reservation(h, vma, address);
3943 if (!(vma->vm_flags & VM_MAYSHARE))
3944 pagecache_page = hugetlbfs_pagecache_page(h,
3948 ptl = huge_pte_lock(h, mm, ptep);
3950 /* Check for a racing update before calling hugetlb_cow */
3951 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3955 * hugetlb_cow() requires page locks of pte_page(entry) and
3956 * pagecache_page, so here we need take the former one
3957 * when page != pagecache_page or !pagecache_page.
3959 page = pte_page(entry);
3960 if (page != pagecache_page)
3961 if (!trylock_page(page)) {
3968 if (flags & FAULT_FLAG_WRITE) {
3969 if (!huge_pte_write(entry)) {
3970 ret = hugetlb_cow(mm, vma, address, ptep,
3971 pagecache_page, ptl);
3974 entry = huge_pte_mkdirty(entry);
3976 entry = pte_mkyoung(entry);
3977 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3978 flags & FAULT_FLAG_WRITE))
3979 update_mmu_cache(vma, address, ptep);
3981 if (page != pagecache_page)
3987 if (pagecache_page) {
3988 unlock_page(pagecache_page);
3989 put_page(pagecache_page);
3992 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3994 * Generally it's safe to hold refcount during waiting page lock. But
3995 * here we just wait to defer the next page fault to avoid busy loop and
3996 * the page is not used after unlocked before returning from the current
3997 * page fault. So we are safe from accessing freed page, even if we wait
3998 * here without taking refcount.
4001 wait_on_page_locked(page);
4006 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4007 * modifications for huge pages.
4009 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4011 struct vm_area_struct *dst_vma,
4012 unsigned long dst_addr,
4013 unsigned long src_addr,
4014 struct page **pagep)
4016 struct address_space *mapping;
4019 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4020 struct hstate *h = hstate_vma(dst_vma);
4028 page = alloc_huge_page(dst_vma, dst_addr, 0);
4032 ret = copy_huge_page_from_user(page,
4033 (const void __user *) src_addr,
4034 pages_per_huge_page(h), false);
4036 /* fallback to copy_from_user outside mmap_sem */
4037 if (unlikely(ret)) {
4040 /* don't free the page */
4049 * The memory barrier inside __SetPageUptodate makes sure that
4050 * preceding stores to the page contents become visible before
4051 * the set_pte_at() write.
4053 __SetPageUptodate(page);
4054 set_page_huge_active(page);
4056 mapping = dst_vma->vm_file->f_mapping;
4057 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4060 * If shared, add to page cache
4063 size = i_size_read(mapping->host) >> huge_page_shift(h);
4066 goto out_release_nounlock;
4069 * Serialization between remove_inode_hugepages() and
4070 * huge_add_to_page_cache() below happens through the
4071 * hugetlb_fault_mutex_table that here must be hold by
4074 ret = huge_add_to_page_cache(page, mapping, idx);
4076 goto out_release_nounlock;
4079 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4083 * Recheck the i_size after holding PT lock to make sure not
4084 * to leave any page mapped (as page_mapped()) beyond the end
4085 * of the i_size (remove_inode_hugepages() is strict about
4086 * enforcing that). If we bail out here, we'll also leave a
4087 * page in the radix tree in the vm_shared case beyond the end
4088 * of the i_size, but remove_inode_hugepages() will take care
4089 * of it as soon as we drop the hugetlb_fault_mutex_table.
4091 size = i_size_read(mapping->host) >> huge_page_shift(h);
4094 goto out_release_unlock;
4097 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4098 goto out_release_unlock;
4101 page_dup_rmap(page, true);
4103 ClearPagePrivate(page);
4104 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4107 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4108 if (dst_vma->vm_flags & VM_WRITE)
4109 _dst_pte = huge_pte_mkdirty(_dst_pte);
4110 _dst_pte = pte_mkyoung(_dst_pte);
4112 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4114 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4115 dst_vma->vm_flags & VM_WRITE);
4116 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4118 /* No need to invalidate - it was non-present before */
4119 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4131 out_release_nounlock:
4136 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4137 struct page **pages, struct vm_area_struct **vmas,
4138 unsigned long *position, unsigned long *nr_pages,
4139 long i, unsigned int flags, int *nonblocking)
4141 unsigned long pfn_offset;
4142 unsigned long vaddr = *position;
4143 unsigned long remainder = *nr_pages;
4144 struct hstate *h = hstate_vma(vma);
4147 while (vaddr < vma->vm_end && remainder) {
4149 spinlock_t *ptl = NULL;
4154 * If we have a pending SIGKILL, don't keep faulting pages and
4155 * potentially allocating memory.
4157 if (unlikely(fatal_signal_pending(current))) {
4163 * Some archs (sparc64, sh*) have multiple pte_ts to
4164 * each hugepage. We have to make sure we get the
4165 * first, for the page indexing below to work.
4167 * Note that page table lock is not held when pte is null.
4169 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4172 ptl = huge_pte_lock(h, mm, pte);
4173 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4176 * When coredumping, it suits get_dump_page if we just return
4177 * an error where there's an empty slot with no huge pagecache
4178 * to back it. This way, we avoid allocating a hugepage, and
4179 * the sparse dumpfile avoids allocating disk blocks, but its
4180 * huge holes still show up with zeroes where they need to be.
4182 if (absent && (flags & FOLL_DUMP) &&
4183 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4191 * We need call hugetlb_fault for both hugepages under migration
4192 * (in which case hugetlb_fault waits for the migration,) and
4193 * hwpoisoned hugepages (in which case we need to prevent the
4194 * caller from accessing to them.) In order to do this, we use
4195 * here is_swap_pte instead of is_hugetlb_entry_migration and
4196 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4197 * both cases, and because we can't follow correct pages
4198 * directly from any kind of swap entries.
4200 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4201 ((flags & FOLL_WRITE) &&
4202 !huge_pte_write(huge_ptep_get(pte)))) {
4204 unsigned int fault_flags = 0;
4208 if (flags & FOLL_WRITE)
4209 fault_flags |= FAULT_FLAG_WRITE;
4211 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4212 if (flags & FOLL_NOWAIT)
4213 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4214 FAULT_FLAG_RETRY_NOWAIT;
4215 if (flags & FOLL_TRIED) {
4216 VM_WARN_ON_ONCE(fault_flags &
4217 FAULT_FLAG_ALLOW_RETRY);
4218 fault_flags |= FAULT_FLAG_TRIED;
4220 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4221 if (ret & VM_FAULT_ERROR) {
4222 err = vm_fault_to_errno(ret, flags);
4226 if (ret & VM_FAULT_RETRY) {
4231 * VM_FAULT_RETRY must not return an
4232 * error, it will return zero
4235 * No need to update "position" as the
4236 * caller will not check it after
4237 * *nr_pages is set to 0.
4244 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4245 page = pte_page(huge_ptep_get(pte));
4248 pages[i] = mem_map_offset(page, pfn_offset);
4259 if (vaddr < vma->vm_end && remainder &&
4260 pfn_offset < pages_per_huge_page(h)) {
4262 * We use pfn_offset to avoid touching the pageframes
4263 * of this compound page.
4269 *nr_pages = remainder;
4271 * setting position is actually required only if remainder is
4272 * not zero but it's faster not to add a "if (remainder)"
4280 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4282 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4285 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4288 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4289 unsigned long address, unsigned long end, pgprot_t newprot)
4291 struct mm_struct *mm = vma->vm_mm;
4292 unsigned long start = address;
4295 struct hstate *h = hstate_vma(vma);
4296 unsigned long pages = 0;
4298 BUG_ON(address >= end);
4299 flush_cache_range(vma, address, end);
4301 mmu_notifier_invalidate_range_start(mm, start, end);
4302 i_mmap_lock_write(vma->vm_file->f_mapping);
4303 for (; address < end; address += huge_page_size(h)) {
4305 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4308 ptl = huge_pte_lock(h, mm, ptep);
4309 if (huge_pmd_unshare(mm, &address, ptep)) {
4314 pte = huge_ptep_get(ptep);
4315 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4319 if (unlikely(is_hugetlb_entry_migration(pte))) {
4320 swp_entry_t entry = pte_to_swp_entry(pte);
4322 if (is_write_migration_entry(entry)) {
4325 make_migration_entry_read(&entry);
4326 newpte = swp_entry_to_pte(entry);
4327 set_huge_swap_pte_at(mm, address, ptep,
4328 newpte, huge_page_size(h));
4334 if (!huge_pte_none(pte)) {
4335 pte = huge_ptep_get_and_clear(mm, address, ptep);
4336 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4337 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4338 set_huge_pte_at(mm, address, ptep, pte);
4344 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4345 * may have cleared our pud entry and done put_page on the page table:
4346 * once we release i_mmap_rwsem, another task can do the final put_page
4347 * and that page table be reused and filled with junk.
4349 flush_hugetlb_tlb_range(vma, start, end);
4351 * No need to call mmu_notifier_invalidate_range() we are downgrading
4352 * page table protection not changing it to point to a new page.
4354 * See Documentation/vm/mmu_notifier.txt
4356 i_mmap_unlock_write(vma->vm_file->f_mapping);
4357 mmu_notifier_invalidate_range_end(mm, start, end);
4359 return pages << h->order;
4362 int hugetlb_reserve_pages(struct inode *inode,
4364 struct vm_area_struct *vma,
4365 vm_flags_t vm_flags)
4368 struct hstate *h = hstate_inode(inode);
4369 struct hugepage_subpool *spool = subpool_inode(inode);
4370 struct resv_map *resv_map;
4374 * Only apply hugepage reservation if asked. At fault time, an
4375 * attempt will be made for VM_NORESERVE to allocate a page
4376 * without using reserves
4378 if (vm_flags & VM_NORESERVE)
4382 * Shared mappings base their reservation on the number of pages that
4383 * are already allocated on behalf of the file. Private mappings need
4384 * to reserve the full area even if read-only as mprotect() may be
4385 * called to make the mapping read-write. Assume !vma is a shm mapping
4387 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4388 resv_map = inode_resv_map(inode);
4390 chg = region_chg(resv_map, from, to);
4393 resv_map = resv_map_alloc();
4399 set_vma_resv_map(vma, resv_map);
4400 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4409 * There must be enough pages in the subpool for the mapping. If
4410 * the subpool has a minimum size, there may be some global
4411 * reservations already in place (gbl_reserve).
4413 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4414 if (gbl_reserve < 0) {
4420 * Check enough hugepages are available for the reservation.
4421 * Hand the pages back to the subpool if there are not
4423 ret = hugetlb_acct_memory(h, gbl_reserve);
4425 /* put back original number of pages, chg */
4426 (void)hugepage_subpool_put_pages(spool, chg);
4431 * Account for the reservations made. Shared mappings record regions
4432 * that have reservations as they are shared by multiple VMAs.
4433 * When the last VMA disappears, the region map says how much
4434 * the reservation was and the page cache tells how much of
4435 * the reservation was consumed. Private mappings are per-VMA and
4436 * only the consumed reservations are tracked. When the VMA
4437 * disappears, the original reservation is the VMA size and the
4438 * consumed reservations are stored in the map. Hence, nothing
4439 * else has to be done for private mappings here
4441 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4442 long add = region_add(resv_map, from, to);
4444 if (unlikely(chg > add)) {
4446 * pages in this range were added to the reserve
4447 * map between region_chg and region_add. This
4448 * indicates a race with alloc_huge_page. Adjust
4449 * the subpool and reserve counts modified above
4450 * based on the difference.
4454 rsv_adjust = hugepage_subpool_put_pages(spool,
4456 hugetlb_acct_memory(h, -rsv_adjust);
4461 if (!vma || vma->vm_flags & VM_MAYSHARE)
4462 /* Don't call region_abort if region_chg failed */
4464 region_abort(resv_map, from, to);
4465 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4466 kref_put(&resv_map->refs, resv_map_release);
4470 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4473 struct hstate *h = hstate_inode(inode);
4474 struct resv_map *resv_map = inode_resv_map(inode);
4476 struct hugepage_subpool *spool = subpool_inode(inode);
4480 chg = region_del(resv_map, start, end);
4482 * region_del() can fail in the rare case where a region
4483 * must be split and another region descriptor can not be
4484 * allocated. If end == LONG_MAX, it will not fail.
4490 spin_lock(&inode->i_lock);
4491 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4492 spin_unlock(&inode->i_lock);
4495 * If the subpool has a minimum size, the number of global
4496 * reservations to be released may be adjusted.
4498 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4499 hugetlb_acct_memory(h, -gbl_reserve);
4504 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4505 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4506 struct vm_area_struct *vma,
4507 unsigned long addr, pgoff_t idx)
4509 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4511 unsigned long sbase = saddr & PUD_MASK;
4512 unsigned long s_end = sbase + PUD_SIZE;
4514 /* Allow segments to share if only one is marked locked */
4515 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4516 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4519 * match the virtual addresses, permission and the alignment of the
4522 if (pmd_index(addr) != pmd_index(saddr) ||
4523 vm_flags != svm_flags ||
4524 sbase < svma->vm_start || svma->vm_end < s_end)
4530 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4532 unsigned long base = addr & PUD_MASK;
4533 unsigned long end = base + PUD_SIZE;
4536 * check on proper vm_flags and page table alignment
4538 if (vma->vm_flags & VM_MAYSHARE &&
4539 vma->vm_start <= base && end <= vma->vm_end)
4545 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4546 * and returns the corresponding pte. While this is not necessary for the
4547 * !shared pmd case because we can allocate the pmd later as well, it makes the
4548 * code much cleaner. pmd allocation is essential for the shared case because
4549 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4550 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4551 * bad pmd for sharing.
4553 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4555 struct vm_area_struct *vma = find_vma(mm, addr);
4556 struct address_space *mapping = vma->vm_file->f_mapping;
4557 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4559 struct vm_area_struct *svma;
4560 unsigned long saddr;
4565 if (!vma_shareable(vma, addr))
4566 return (pte_t *)pmd_alloc(mm, pud, addr);
4568 i_mmap_lock_write(mapping);
4569 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4573 saddr = page_table_shareable(svma, vma, addr, idx);
4575 spte = huge_pte_offset(svma->vm_mm, saddr,
4576 vma_mmu_pagesize(svma));
4578 get_page(virt_to_page(spte));
4587 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4588 if (pud_none(*pud)) {
4589 pud_populate(mm, pud,
4590 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4593 put_page(virt_to_page(spte));
4597 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4598 i_mmap_unlock_write(mapping);
4603 * unmap huge page backed by shared pte.
4605 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4606 * indicated by page_count > 1, unmap is achieved by clearing pud and
4607 * decrementing the ref count. If count == 1, the pte page is not shared.
4609 * called with page table lock held.
4611 * returns: 1 successfully unmapped a shared pte page
4612 * 0 the underlying pte page is not shared, or it is the last user
4614 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4616 pgd_t *pgd = pgd_offset(mm, *addr);
4617 p4d_t *p4d = p4d_offset(pgd, *addr);
4618 pud_t *pud = pud_offset(p4d, *addr);
4620 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4621 if (page_count(virt_to_page(ptep)) == 1)
4625 put_page(virt_to_page(ptep));
4627 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4630 #define want_pmd_share() (1)
4631 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4632 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4637 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4641 #define want_pmd_share() (0)
4642 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4644 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4645 pte_t *huge_pte_alloc(struct mm_struct *mm,
4646 unsigned long addr, unsigned long sz)
4653 pgd = pgd_offset(mm, addr);
4654 p4d = p4d_alloc(mm, pgd, addr);
4657 pud = pud_alloc(mm, p4d, addr);
4659 if (sz == PUD_SIZE) {
4662 BUG_ON(sz != PMD_SIZE);
4663 if (want_pmd_share() && pud_none(*pud))
4664 pte = huge_pmd_share(mm, addr, pud);
4666 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4669 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4675 * huge_pte_offset() - Walk the page table to resolve the hugepage
4676 * entry at address @addr
4678 * Return: Pointer to page table or swap entry (PUD or PMD) for
4679 * address @addr, or NULL if a p*d_none() entry is encountered and the
4680 * size @sz doesn't match the hugepage size at this level of the page
4683 pte_t *huge_pte_offset(struct mm_struct *mm,
4684 unsigned long addr, unsigned long sz)
4691 pgd = pgd_offset(mm, addr);
4692 if (!pgd_present(*pgd))
4694 p4d = p4d_offset(pgd, addr);
4695 if (!p4d_present(*p4d))
4698 pud = pud_offset(p4d, addr);
4699 if (sz != PUD_SIZE && pud_none(*pud))
4701 /* hugepage or swap? */
4702 if (pud_huge(*pud) || !pud_present(*pud))
4703 return (pte_t *)pud;
4705 pmd = pmd_offset(pud, addr);
4706 if (sz != PMD_SIZE && pmd_none(*pmd))
4708 /* hugepage or swap? */
4709 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4710 return (pte_t *)pmd;
4715 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4718 * These functions are overwritable if your architecture needs its own
4721 struct page * __weak
4722 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4725 return ERR_PTR(-EINVAL);
4728 struct page * __weak
4729 follow_huge_pd(struct vm_area_struct *vma,
4730 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4732 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4736 struct page * __weak
4737 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4738 pmd_t *pmd, int flags)
4740 struct page *page = NULL;
4744 ptl = pmd_lockptr(mm, pmd);
4747 * make sure that the address range covered by this pmd is not
4748 * unmapped from other threads.
4750 if (!pmd_huge(*pmd))
4752 pte = huge_ptep_get((pte_t *)pmd);
4753 if (pte_present(pte)) {
4754 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4755 if (flags & FOLL_GET)
4758 if (is_hugetlb_entry_migration(pte)) {
4760 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4764 * hwpoisoned entry is treated as no_page_table in
4765 * follow_page_mask().
4773 struct page * __weak
4774 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4775 pud_t *pud, int flags)
4777 if (flags & FOLL_GET)
4780 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4783 struct page * __weak
4784 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4786 if (flags & FOLL_GET)
4789 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4792 bool isolate_huge_page(struct page *page, struct list_head *list)
4796 VM_BUG_ON_PAGE(!PageHead(page), page);
4797 spin_lock(&hugetlb_lock);
4798 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4802 clear_page_huge_active(page);
4803 list_move_tail(&page->lru, list);
4805 spin_unlock(&hugetlb_lock);
4809 void putback_active_hugepage(struct page *page)
4811 VM_BUG_ON_PAGE(!PageHead(page), page);
4812 spin_lock(&hugetlb_lock);
4813 set_page_huge_active(page);
4814 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4815 spin_unlock(&hugetlb_lock);
4819 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4821 struct hstate *h = page_hstate(oldpage);
4823 hugetlb_cgroup_migrate(oldpage, newpage);
4824 set_page_owner_migrate_reason(newpage, reason);
4827 * transfer temporary state of the new huge page. This is
4828 * reverse to other transitions because the newpage is going to
4829 * be final while the old one will be freed so it takes over
4830 * the temporary status.
4832 * Also note that we have to transfer the per-node surplus state
4833 * here as well otherwise the global surplus count will not match
4836 if (PageHugeTemporary(newpage)) {
4837 int old_nid = page_to_nid(oldpage);
4838 int new_nid = page_to_nid(newpage);
4840 SetPageHugeTemporary(oldpage);
4841 ClearPageHugeTemporary(newpage);
4843 spin_lock(&hugetlb_lock);
4844 if (h->surplus_huge_pages_node[old_nid]) {
4845 h->surplus_huge_pages_node[old_nid]--;
4846 h->surplus_huge_pages_node[new_nid]++;
4848 spin_unlock(&hugetlb_lock);