]> Git Repo - linux.git/blob - mm/hugetlb.c
mm, hugetlb: further simplify hugetlb allocation API
[linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/string_helpers.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include <linux/page_owner.h>
38 #include "internal.h"
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
56
57 /*
58  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59  * free_huge_pages, and surplus_huge_pages.
60  */
61 DEFINE_SPINLOCK(hugetlb_lock);
62
63 /*
64  * Serializes faults on the same logical page.  This is used to
65  * prevent spurious OOMs when the hugepage pool is fully utilized.
66  */
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
72
73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 {
75         bool free = (spool->count == 0) && (spool->used_hpages == 0);
76
77         spin_unlock(&spool->lock);
78
79         /* If no pages are used, and no other handles to the subpool
80          * remain, give up any reservations mased on minimum size and
81          * free the subpool */
82         if (free) {
83                 if (spool->min_hpages != -1)
84                         hugetlb_acct_memory(spool->hstate,
85                                                 -spool->min_hpages);
86                 kfree(spool);
87         }
88 }
89
90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91                                                 long min_hpages)
92 {
93         struct hugepage_subpool *spool;
94
95         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
96         if (!spool)
97                 return NULL;
98
99         spin_lock_init(&spool->lock);
100         spool->count = 1;
101         spool->max_hpages = max_hpages;
102         spool->hstate = h;
103         spool->min_hpages = min_hpages;
104
105         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106                 kfree(spool);
107                 return NULL;
108         }
109         spool->rsv_hpages = min_hpages;
110
111         return spool;
112 }
113
114 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 {
116         spin_lock(&spool->lock);
117         BUG_ON(!spool->count);
118         spool->count--;
119         unlock_or_release_subpool(spool);
120 }
121
122 /*
123  * Subpool accounting for allocating and reserving pages.
124  * Return -ENOMEM if there are not enough resources to satisfy the
125  * the request.  Otherwise, return the number of pages by which the
126  * global pools must be adjusted (upward).  The returned value may
127  * only be different than the passed value (delta) in the case where
128  * a subpool minimum size must be manitained.
129  */
130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
131                                       long delta)
132 {
133         long ret = delta;
134
135         if (!spool)
136                 return ret;
137
138         spin_lock(&spool->lock);
139
140         if (spool->max_hpages != -1) {          /* maximum size accounting */
141                 if ((spool->used_hpages + delta) <= spool->max_hpages)
142                         spool->used_hpages += delta;
143                 else {
144                         ret = -ENOMEM;
145                         goto unlock_ret;
146                 }
147         }
148
149         /* minimum size accounting */
150         if (spool->min_hpages != -1 && spool->rsv_hpages) {
151                 if (delta > spool->rsv_hpages) {
152                         /*
153                          * Asking for more reserves than those already taken on
154                          * behalf of subpool.  Return difference.
155                          */
156                         ret = delta - spool->rsv_hpages;
157                         spool->rsv_hpages = 0;
158                 } else {
159                         ret = 0;        /* reserves already accounted for */
160                         spool->rsv_hpages -= delta;
161                 }
162         }
163
164 unlock_ret:
165         spin_unlock(&spool->lock);
166         return ret;
167 }
168
169 /*
170  * Subpool accounting for freeing and unreserving pages.
171  * Return the number of global page reservations that must be dropped.
172  * The return value may only be different than the passed value (delta)
173  * in the case where a subpool minimum size must be maintained.
174  */
175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
176                                        long delta)
177 {
178         long ret = delta;
179
180         if (!spool)
181                 return delta;
182
183         spin_lock(&spool->lock);
184
185         if (spool->max_hpages != -1)            /* maximum size accounting */
186                 spool->used_hpages -= delta;
187
188          /* minimum size accounting */
189         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190                 if (spool->rsv_hpages + delta <= spool->min_hpages)
191                         ret = 0;
192                 else
193                         ret = spool->rsv_hpages + delta - spool->min_hpages;
194
195                 spool->rsv_hpages += delta;
196                 if (spool->rsv_hpages > spool->min_hpages)
197                         spool->rsv_hpages = spool->min_hpages;
198         }
199
200         /*
201          * If hugetlbfs_put_super couldn't free spool due to an outstanding
202          * quota reference, free it now.
203          */
204         unlock_or_release_subpool(spool);
205
206         return ret;
207 }
208
209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 {
211         return HUGETLBFS_SB(inode->i_sb)->spool;
212 }
213
214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 {
216         return subpool_inode(file_inode(vma->vm_file));
217 }
218
219 /*
220  * Region tracking -- allows tracking of reservations and instantiated pages
221  *                    across the pages in a mapping.
222  *
223  * The region data structures are embedded into a resv_map and protected
224  * by a resv_map's lock.  The set of regions within the resv_map represent
225  * reservations for huge pages, or huge pages that have already been
226  * instantiated within the map.  The from and to elements are huge page
227  * indicies into the associated mapping.  from indicates the starting index
228  * of the region.  to represents the first index past the end of  the region.
229  *
230  * For example, a file region structure with from == 0 and to == 4 represents
231  * four huge pages in a mapping.  It is important to note that the to element
232  * represents the first element past the end of the region. This is used in
233  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234  *
235  * Interval notation of the form [from, to) will be used to indicate that
236  * the endpoint from is inclusive and to is exclusive.
237  */
238 struct file_region {
239         struct list_head link;
240         long from;
241         long to;
242 };
243
244 /*
245  * Add the huge page range represented by [f, t) to the reserve
246  * map.  In the normal case, existing regions will be expanded
247  * to accommodate the specified range.  Sufficient regions should
248  * exist for expansion due to the previous call to region_chg
249  * with the same range.  However, it is possible that region_del
250  * could have been called after region_chg and modifed the map
251  * in such a way that no region exists to be expanded.  In this
252  * case, pull a region descriptor from the cache associated with
253  * the map and use that for the new range.
254  *
255  * Return the number of new huge pages added to the map.  This
256  * number is greater than or equal to zero.
257  */
258 static long region_add(struct resv_map *resv, long f, long t)
259 {
260         struct list_head *head = &resv->regions;
261         struct file_region *rg, *nrg, *trg;
262         long add = 0;
263
264         spin_lock(&resv->lock);
265         /* Locate the region we are either in or before. */
266         list_for_each_entry(rg, head, link)
267                 if (f <= rg->to)
268                         break;
269
270         /*
271          * If no region exists which can be expanded to include the
272          * specified range, the list must have been modified by an
273          * interleving call to region_del().  Pull a region descriptor
274          * from the cache and use it for this range.
275          */
276         if (&rg->link == head || t < rg->from) {
277                 VM_BUG_ON(resv->region_cache_count <= 0);
278
279                 resv->region_cache_count--;
280                 nrg = list_first_entry(&resv->region_cache, struct file_region,
281                                         link);
282                 list_del(&nrg->link);
283
284                 nrg->from = f;
285                 nrg->to = t;
286                 list_add(&nrg->link, rg->link.prev);
287
288                 add += t - f;
289                 goto out_locked;
290         }
291
292         /* Round our left edge to the current segment if it encloses us. */
293         if (f > rg->from)
294                 f = rg->from;
295
296         /* Check for and consume any regions we now overlap with. */
297         nrg = rg;
298         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299                 if (&rg->link == head)
300                         break;
301                 if (rg->from > t)
302                         break;
303
304                 /* If this area reaches higher then extend our area to
305                  * include it completely.  If this is not the first area
306                  * which we intend to reuse, free it. */
307                 if (rg->to > t)
308                         t = rg->to;
309                 if (rg != nrg) {
310                         /* Decrement return value by the deleted range.
311                          * Another range will span this area so that by
312                          * end of routine add will be >= zero
313                          */
314                         add -= (rg->to - rg->from);
315                         list_del(&rg->link);
316                         kfree(rg);
317                 }
318         }
319
320         add += (nrg->from - f);         /* Added to beginning of region */
321         nrg->from = f;
322         add += t - nrg->to;             /* Added to end of region */
323         nrg->to = t;
324
325 out_locked:
326         resv->adds_in_progress--;
327         spin_unlock(&resv->lock);
328         VM_BUG_ON(add < 0);
329         return add;
330 }
331
332 /*
333  * Examine the existing reserve map and determine how many
334  * huge pages in the specified range [f, t) are NOT currently
335  * represented.  This routine is called before a subsequent
336  * call to region_add that will actually modify the reserve
337  * map to add the specified range [f, t).  region_chg does
338  * not change the number of huge pages represented by the
339  * map.  However, if the existing regions in the map can not
340  * be expanded to represent the new range, a new file_region
341  * structure is added to the map as a placeholder.  This is
342  * so that the subsequent region_add call will have all the
343  * regions it needs and will not fail.
344  *
345  * Upon entry, region_chg will also examine the cache of region descriptors
346  * associated with the map.  If there are not enough descriptors cached, one
347  * will be allocated for the in progress add operation.
348  *
349  * Returns the number of huge pages that need to be added to the existing
350  * reservation map for the range [f, t).  This number is greater or equal to
351  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
352  * is needed and can not be allocated.
353  */
354 static long region_chg(struct resv_map *resv, long f, long t)
355 {
356         struct list_head *head = &resv->regions;
357         struct file_region *rg, *nrg = NULL;
358         long chg = 0;
359
360 retry:
361         spin_lock(&resv->lock);
362 retry_locked:
363         resv->adds_in_progress++;
364
365         /*
366          * Check for sufficient descriptors in the cache to accommodate
367          * the number of in progress add operations.
368          */
369         if (resv->adds_in_progress > resv->region_cache_count) {
370                 struct file_region *trg;
371
372                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373                 /* Must drop lock to allocate a new descriptor. */
374                 resv->adds_in_progress--;
375                 spin_unlock(&resv->lock);
376
377                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
378                 if (!trg) {
379                         kfree(nrg);
380                         return -ENOMEM;
381                 }
382
383                 spin_lock(&resv->lock);
384                 list_add(&trg->link, &resv->region_cache);
385                 resv->region_cache_count++;
386                 goto retry_locked;
387         }
388
389         /* Locate the region we are before or in. */
390         list_for_each_entry(rg, head, link)
391                 if (f <= rg->to)
392                         break;
393
394         /* If we are below the current region then a new region is required.
395          * Subtle, allocate a new region at the position but make it zero
396          * size such that we can guarantee to record the reservation. */
397         if (&rg->link == head || t < rg->from) {
398                 if (!nrg) {
399                         resv->adds_in_progress--;
400                         spin_unlock(&resv->lock);
401                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402                         if (!nrg)
403                                 return -ENOMEM;
404
405                         nrg->from = f;
406                         nrg->to   = f;
407                         INIT_LIST_HEAD(&nrg->link);
408                         goto retry;
409                 }
410
411                 list_add(&nrg->link, rg->link.prev);
412                 chg = t - f;
413                 goto out_nrg;
414         }
415
416         /* Round our left edge to the current segment if it encloses us. */
417         if (f > rg->from)
418                 f = rg->from;
419         chg = t - f;
420
421         /* Check for and consume any regions we now overlap with. */
422         list_for_each_entry(rg, rg->link.prev, link) {
423                 if (&rg->link == head)
424                         break;
425                 if (rg->from > t)
426                         goto out;
427
428                 /* We overlap with this area, if it extends further than
429                  * us then we must extend ourselves.  Account for its
430                  * existing reservation. */
431                 if (rg->to > t) {
432                         chg += rg->to - t;
433                         t = rg->to;
434                 }
435                 chg -= rg->to - rg->from;
436         }
437
438 out:
439         spin_unlock(&resv->lock);
440         /*  We already know we raced and no longer need the new region */
441         kfree(nrg);
442         return chg;
443 out_nrg:
444         spin_unlock(&resv->lock);
445         return chg;
446 }
447
448 /*
449  * Abort the in progress add operation.  The adds_in_progress field
450  * of the resv_map keeps track of the operations in progress between
451  * calls to region_chg and region_add.  Operations are sometimes
452  * aborted after the call to region_chg.  In such cases, region_abort
453  * is called to decrement the adds_in_progress counter.
454  *
455  * NOTE: The range arguments [f, t) are not needed or used in this
456  * routine.  They are kept to make reading the calling code easier as
457  * arguments will match the associated region_chg call.
458  */
459 static void region_abort(struct resv_map *resv, long f, long t)
460 {
461         spin_lock(&resv->lock);
462         VM_BUG_ON(!resv->region_cache_count);
463         resv->adds_in_progress--;
464         spin_unlock(&resv->lock);
465 }
466
467 /*
468  * Delete the specified range [f, t) from the reserve map.  If the
469  * t parameter is LONG_MAX, this indicates that ALL regions after f
470  * should be deleted.  Locate the regions which intersect [f, t)
471  * and either trim, delete or split the existing regions.
472  *
473  * Returns the number of huge pages deleted from the reserve map.
474  * In the normal case, the return value is zero or more.  In the
475  * case where a region must be split, a new region descriptor must
476  * be allocated.  If the allocation fails, -ENOMEM will be returned.
477  * NOTE: If the parameter t == LONG_MAX, then we will never split
478  * a region and possibly return -ENOMEM.  Callers specifying
479  * t == LONG_MAX do not need to check for -ENOMEM error.
480  */
481 static long region_del(struct resv_map *resv, long f, long t)
482 {
483         struct list_head *head = &resv->regions;
484         struct file_region *rg, *trg;
485         struct file_region *nrg = NULL;
486         long del = 0;
487
488 retry:
489         spin_lock(&resv->lock);
490         list_for_each_entry_safe(rg, trg, head, link) {
491                 /*
492                  * Skip regions before the range to be deleted.  file_region
493                  * ranges are normally of the form [from, to).  However, there
494                  * may be a "placeholder" entry in the map which is of the form
495                  * (from, to) with from == to.  Check for placeholder entries
496                  * at the beginning of the range to be deleted.
497                  */
498                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
499                         continue;
500
501                 if (rg->from >= t)
502                         break;
503
504                 if (f > rg->from && t < rg->to) { /* Must split region */
505                         /*
506                          * Check for an entry in the cache before dropping
507                          * lock and attempting allocation.
508                          */
509                         if (!nrg &&
510                             resv->region_cache_count > resv->adds_in_progress) {
511                                 nrg = list_first_entry(&resv->region_cache,
512                                                         struct file_region,
513                                                         link);
514                                 list_del(&nrg->link);
515                                 resv->region_cache_count--;
516                         }
517
518                         if (!nrg) {
519                                 spin_unlock(&resv->lock);
520                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521                                 if (!nrg)
522                                         return -ENOMEM;
523                                 goto retry;
524                         }
525
526                         del += t - f;
527
528                         /* New entry for end of split region */
529                         nrg->from = t;
530                         nrg->to = rg->to;
531                         INIT_LIST_HEAD(&nrg->link);
532
533                         /* Original entry is trimmed */
534                         rg->to = f;
535
536                         list_add(&nrg->link, &rg->link);
537                         nrg = NULL;
538                         break;
539                 }
540
541                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542                         del += rg->to - rg->from;
543                         list_del(&rg->link);
544                         kfree(rg);
545                         continue;
546                 }
547
548                 if (f <= rg->from) {    /* Trim beginning of region */
549                         del += t - rg->from;
550                         rg->from = t;
551                 } else {                /* Trim end of region */
552                         del += rg->to - f;
553                         rg->to = f;
554                 }
555         }
556
557         spin_unlock(&resv->lock);
558         kfree(nrg);
559         return del;
560 }
561
562 /*
563  * A rare out of memory error was encountered which prevented removal of
564  * the reserve map region for a page.  The huge page itself was free'ed
565  * and removed from the page cache.  This routine will adjust the subpool
566  * usage count, and the global reserve count if needed.  By incrementing
567  * these counts, the reserve map entry which could not be deleted will
568  * appear as a "reserved" entry instead of simply dangling with incorrect
569  * counts.
570  */
571 void hugetlb_fix_reserve_counts(struct inode *inode)
572 {
573         struct hugepage_subpool *spool = subpool_inode(inode);
574         long rsv_adjust;
575
576         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577         if (rsv_adjust) {
578                 struct hstate *h = hstate_inode(inode);
579
580                 hugetlb_acct_memory(h, 1);
581         }
582 }
583
584 /*
585  * Count and return the number of huge pages in the reserve map
586  * that intersect with the range [f, t).
587  */
588 static long region_count(struct resv_map *resv, long f, long t)
589 {
590         struct list_head *head = &resv->regions;
591         struct file_region *rg;
592         long chg = 0;
593
594         spin_lock(&resv->lock);
595         /* Locate each segment we overlap with, and count that overlap. */
596         list_for_each_entry(rg, head, link) {
597                 long seg_from;
598                 long seg_to;
599
600                 if (rg->to <= f)
601                         continue;
602                 if (rg->from >= t)
603                         break;
604
605                 seg_from = max(rg->from, f);
606                 seg_to = min(rg->to, t);
607
608                 chg += seg_to - seg_from;
609         }
610         spin_unlock(&resv->lock);
611
612         return chg;
613 }
614
615 /*
616  * Convert the address within this vma to the page offset within
617  * the mapping, in pagecache page units; huge pages here.
618  */
619 static pgoff_t vma_hugecache_offset(struct hstate *h,
620                         struct vm_area_struct *vma, unsigned long address)
621 {
622         return ((address - vma->vm_start) >> huge_page_shift(h)) +
623                         (vma->vm_pgoff >> huge_page_order(h));
624 }
625
626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627                                      unsigned long address)
628 {
629         return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 }
631 EXPORT_SYMBOL_GPL(linear_hugepage_index);
632
633 /*
634  * Return the size of the pages allocated when backing a VMA. In the majority
635  * cases this will be same size as used by the page table entries.
636  */
637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 {
639         struct hstate *hstate;
640
641         if (!is_vm_hugetlb_page(vma))
642                 return PAGE_SIZE;
643
644         hstate = hstate_vma(vma);
645
646         return 1UL << huge_page_shift(hstate);
647 }
648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649
650 /*
651  * Return the page size being used by the MMU to back a VMA. In the majority
652  * of cases, the page size used by the kernel matches the MMU size. On
653  * architectures where it differs, an architecture-specific version of this
654  * function is required.
655  */
656 #ifndef vma_mmu_pagesize
657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 {
659         return vma_kernel_pagesize(vma);
660 }
661 #endif
662
663 /*
664  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
665  * bits of the reservation map pointer, which are always clear due to
666  * alignment.
667  */
668 #define HPAGE_RESV_OWNER    (1UL << 0)
669 #define HPAGE_RESV_UNMAPPED (1UL << 1)
670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
671
672 /*
673  * These helpers are used to track how many pages are reserved for
674  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675  * is guaranteed to have their future faults succeed.
676  *
677  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678  * the reserve counters are updated with the hugetlb_lock held. It is safe
679  * to reset the VMA at fork() time as it is not in use yet and there is no
680  * chance of the global counters getting corrupted as a result of the values.
681  *
682  * The private mapping reservation is represented in a subtly different
683  * manner to a shared mapping.  A shared mapping has a region map associated
684  * with the underlying file, this region map represents the backing file
685  * pages which have ever had a reservation assigned which this persists even
686  * after the page is instantiated.  A private mapping has a region map
687  * associated with the original mmap which is attached to all VMAs which
688  * reference it, this region map represents those offsets which have consumed
689  * reservation ie. where pages have been instantiated.
690  */
691 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 {
693         return (unsigned long)vma->vm_private_data;
694 }
695
696 static void set_vma_private_data(struct vm_area_struct *vma,
697                                                         unsigned long value)
698 {
699         vma->vm_private_data = (void *)value;
700 }
701
702 struct resv_map *resv_map_alloc(void)
703 {
704         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706
707         if (!resv_map || !rg) {
708                 kfree(resv_map);
709                 kfree(rg);
710                 return NULL;
711         }
712
713         kref_init(&resv_map->refs);
714         spin_lock_init(&resv_map->lock);
715         INIT_LIST_HEAD(&resv_map->regions);
716
717         resv_map->adds_in_progress = 0;
718
719         INIT_LIST_HEAD(&resv_map->region_cache);
720         list_add(&rg->link, &resv_map->region_cache);
721         resv_map->region_cache_count = 1;
722
723         return resv_map;
724 }
725
726 void resv_map_release(struct kref *ref)
727 {
728         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729         struct list_head *head = &resv_map->region_cache;
730         struct file_region *rg, *trg;
731
732         /* Clear out any active regions before we release the map. */
733         region_del(resv_map, 0, LONG_MAX);
734
735         /* ... and any entries left in the cache */
736         list_for_each_entry_safe(rg, trg, head, link) {
737                 list_del(&rg->link);
738                 kfree(rg);
739         }
740
741         VM_BUG_ON(resv_map->adds_in_progress);
742
743         kfree(resv_map);
744 }
745
746 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 {
748         return inode->i_mapping->private_data;
749 }
750
751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 {
753         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754         if (vma->vm_flags & VM_MAYSHARE) {
755                 struct address_space *mapping = vma->vm_file->f_mapping;
756                 struct inode *inode = mapping->host;
757
758                 return inode_resv_map(inode);
759
760         } else {
761                 return (struct resv_map *)(get_vma_private_data(vma) &
762                                                         ~HPAGE_RESV_MASK);
763         }
764 }
765
766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 {
768         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770
771         set_vma_private_data(vma, (get_vma_private_data(vma) &
772                                 HPAGE_RESV_MASK) | (unsigned long)map);
773 }
774
775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 {
777         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779
780         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
781 }
782
783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 {
785         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786
787         return (get_vma_private_data(vma) & flag) != 0;
788 }
789
790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 {
793         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794         if (!(vma->vm_flags & VM_MAYSHARE))
795                 vma->vm_private_data = (void *)0;
796 }
797
798 /* Returns true if the VMA has associated reserve pages */
799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 {
801         if (vma->vm_flags & VM_NORESERVE) {
802                 /*
803                  * This address is already reserved by other process(chg == 0),
804                  * so, we should decrement reserved count. Without decrementing,
805                  * reserve count remains after releasing inode, because this
806                  * allocated page will go into page cache and is regarded as
807                  * coming from reserved pool in releasing step.  Currently, we
808                  * don't have any other solution to deal with this situation
809                  * properly, so add work-around here.
810                  */
811                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
812                         return true;
813                 else
814                         return false;
815         }
816
817         /* Shared mappings always use reserves */
818         if (vma->vm_flags & VM_MAYSHARE) {
819                 /*
820                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
821                  * be a region map for all pages.  The only situation where
822                  * there is no region map is if a hole was punched via
823                  * fallocate.  In this case, there really are no reverves to
824                  * use.  This situation is indicated if chg != 0.
825                  */
826                 if (chg)
827                         return false;
828                 else
829                         return true;
830         }
831
832         /*
833          * Only the process that called mmap() has reserves for
834          * private mappings.
835          */
836         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837                 /*
838                  * Like the shared case above, a hole punch or truncate
839                  * could have been performed on the private mapping.
840                  * Examine the value of chg to determine if reserves
841                  * actually exist or were previously consumed.
842                  * Very Subtle - The value of chg comes from a previous
843                  * call to vma_needs_reserves().  The reserve map for
844                  * private mappings has different (opposite) semantics
845                  * than that of shared mappings.  vma_needs_reserves()
846                  * has already taken this difference in semantics into
847                  * account.  Therefore, the meaning of chg is the same
848                  * as in the shared case above.  Code could easily be
849                  * combined, but keeping it separate draws attention to
850                  * subtle differences.
851                  */
852                 if (chg)
853                         return false;
854                 else
855                         return true;
856         }
857
858         return false;
859 }
860
861 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 {
863         int nid = page_to_nid(page);
864         list_move(&page->lru, &h->hugepage_freelists[nid]);
865         h->free_huge_pages++;
866         h->free_huge_pages_node[nid]++;
867 }
868
869 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
870 {
871         struct page *page;
872
873         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874                 if (!PageHWPoison(page))
875                         break;
876         /*
877          * if 'non-isolated free hugepage' not found on the list,
878          * the allocation fails.
879          */
880         if (&h->hugepage_freelists[nid] == &page->lru)
881                 return NULL;
882         list_move(&page->lru, &h->hugepage_activelist);
883         set_page_refcounted(page);
884         h->free_huge_pages--;
885         h->free_huge_pages_node[nid]--;
886         return page;
887 }
888
889 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
890                 nodemask_t *nmask)
891 {
892         unsigned int cpuset_mems_cookie;
893         struct zonelist *zonelist;
894         struct zone *zone;
895         struct zoneref *z;
896         int node = -1;
897
898         zonelist = node_zonelist(nid, gfp_mask);
899
900 retry_cpuset:
901         cpuset_mems_cookie = read_mems_allowed_begin();
902         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
903                 struct page *page;
904
905                 if (!cpuset_zone_allowed(zone, gfp_mask))
906                         continue;
907                 /*
908                  * no need to ask again on the same node. Pool is node rather than
909                  * zone aware
910                  */
911                 if (zone_to_nid(zone) == node)
912                         continue;
913                 node = zone_to_nid(zone);
914
915                 page = dequeue_huge_page_node_exact(h, node);
916                 if (page)
917                         return page;
918         }
919         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
920                 goto retry_cpuset;
921
922         return NULL;
923 }
924
925 /* Movability of hugepages depends on migration support. */
926 static inline gfp_t htlb_alloc_mask(struct hstate *h)
927 {
928         if (hugepage_migration_supported(h))
929                 return GFP_HIGHUSER_MOVABLE;
930         else
931                 return GFP_HIGHUSER;
932 }
933
934 static struct page *dequeue_huge_page_vma(struct hstate *h,
935                                 struct vm_area_struct *vma,
936                                 unsigned long address, int avoid_reserve,
937                                 long chg)
938 {
939         struct page *page;
940         struct mempolicy *mpol;
941         gfp_t gfp_mask;
942         nodemask_t *nodemask;
943         int nid;
944
945         /*
946          * A child process with MAP_PRIVATE mappings created by their parent
947          * have no page reserves. This check ensures that reservations are
948          * not "stolen". The child may still get SIGKILLed
949          */
950         if (!vma_has_reserves(vma, chg) &&
951                         h->free_huge_pages - h->resv_huge_pages == 0)
952                 goto err;
953
954         /* If reserves cannot be used, ensure enough pages are in the pool */
955         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
956                 goto err;
957
958         gfp_mask = htlb_alloc_mask(h);
959         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
960         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
961         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
962                 SetPagePrivate(page);
963                 h->resv_huge_pages--;
964         }
965
966         mpol_cond_put(mpol);
967         return page;
968
969 err:
970         return NULL;
971 }
972
973 /*
974  * common helper functions for hstate_next_node_to_{alloc|free}.
975  * We may have allocated or freed a huge page based on a different
976  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
977  * be outside of *nodes_allowed.  Ensure that we use an allowed
978  * node for alloc or free.
979  */
980 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
981 {
982         nid = next_node_in(nid, *nodes_allowed);
983         VM_BUG_ON(nid >= MAX_NUMNODES);
984
985         return nid;
986 }
987
988 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
989 {
990         if (!node_isset(nid, *nodes_allowed))
991                 nid = next_node_allowed(nid, nodes_allowed);
992         return nid;
993 }
994
995 /*
996  * returns the previously saved node ["this node"] from which to
997  * allocate a persistent huge page for the pool and advance the
998  * next node from which to allocate, handling wrap at end of node
999  * mask.
1000  */
1001 static int hstate_next_node_to_alloc(struct hstate *h,
1002                                         nodemask_t *nodes_allowed)
1003 {
1004         int nid;
1005
1006         VM_BUG_ON(!nodes_allowed);
1007
1008         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1009         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1010
1011         return nid;
1012 }
1013
1014 /*
1015  * helper for free_pool_huge_page() - return the previously saved
1016  * node ["this node"] from which to free a huge page.  Advance the
1017  * next node id whether or not we find a free huge page to free so
1018  * that the next attempt to free addresses the next node.
1019  */
1020 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1021 {
1022         int nid;
1023
1024         VM_BUG_ON(!nodes_allowed);
1025
1026         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1027         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1028
1029         return nid;
1030 }
1031
1032 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1033         for (nr_nodes = nodes_weight(*mask);                            \
1034                 nr_nodes > 0 &&                                         \
1035                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1036                 nr_nodes--)
1037
1038 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1039         for (nr_nodes = nodes_weight(*mask);                            \
1040                 nr_nodes > 0 &&                                         \
1041                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1042                 nr_nodes--)
1043
1044 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1045 static void destroy_compound_gigantic_page(struct page *page,
1046                                         unsigned int order)
1047 {
1048         int i;
1049         int nr_pages = 1 << order;
1050         struct page *p = page + 1;
1051
1052         atomic_set(compound_mapcount_ptr(page), 0);
1053         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1054                 clear_compound_head(p);
1055                 set_page_refcounted(p);
1056         }
1057
1058         set_compound_order(page, 0);
1059         __ClearPageHead(page);
1060 }
1061
1062 static void free_gigantic_page(struct page *page, unsigned int order)
1063 {
1064         free_contig_range(page_to_pfn(page), 1 << order);
1065 }
1066
1067 static int __alloc_gigantic_page(unsigned long start_pfn,
1068                                 unsigned long nr_pages, gfp_t gfp_mask)
1069 {
1070         unsigned long end_pfn = start_pfn + nr_pages;
1071         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1072                                   gfp_mask);
1073 }
1074
1075 static bool pfn_range_valid_gigantic(struct zone *z,
1076                         unsigned long start_pfn, unsigned long nr_pages)
1077 {
1078         unsigned long i, end_pfn = start_pfn + nr_pages;
1079         struct page *page;
1080
1081         for (i = start_pfn; i < end_pfn; i++) {
1082                 if (!pfn_valid(i))
1083                         return false;
1084
1085                 page = pfn_to_page(i);
1086
1087                 if (page_zone(page) != z)
1088                         return false;
1089
1090                 if (PageReserved(page))
1091                         return false;
1092
1093                 if (page_count(page) > 0)
1094                         return false;
1095
1096                 if (PageHuge(page))
1097                         return false;
1098         }
1099
1100         return true;
1101 }
1102
1103 static bool zone_spans_last_pfn(const struct zone *zone,
1104                         unsigned long start_pfn, unsigned long nr_pages)
1105 {
1106         unsigned long last_pfn = start_pfn + nr_pages - 1;
1107         return zone_spans_pfn(zone, last_pfn);
1108 }
1109
1110 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1111                 int nid, nodemask_t *nodemask)
1112 {
1113         unsigned int order = huge_page_order(h);
1114         unsigned long nr_pages = 1 << order;
1115         unsigned long ret, pfn, flags;
1116         struct zonelist *zonelist;
1117         struct zone *zone;
1118         struct zoneref *z;
1119
1120         zonelist = node_zonelist(nid, gfp_mask);
1121         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1122                 spin_lock_irqsave(&zone->lock, flags);
1123
1124                 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1125                 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1126                         if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1127                                 /*
1128                                  * We release the zone lock here because
1129                                  * alloc_contig_range() will also lock the zone
1130                                  * at some point. If there's an allocation
1131                                  * spinning on this lock, it may win the race
1132                                  * and cause alloc_contig_range() to fail...
1133                                  */
1134                                 spin_unlock_irqrestore(&zone->lock, flags);
1135                                 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1136                                 if (!ret)
1137                                         return pfn_to_page(pfn);
1138                                 spin_lock_irqsave(&zone->lock, flags);
1139                         }
1140                         pfn += nr_pages;
1141                 }
1142
1143                 spin_unlock_irqrestore(&zone->lock, flags);
1144         }
1145
1146         return NULL;
1147 }
1148
1149 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1150 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1151
1152 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1153 static inline bool gigantic_page_supported(void) { return false; }
1154 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1155                 int nid, nodemask_t *nodemask) { return NULL; }
1156 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1157 static inline void destroy_compound_gigantic_page(struct page *page,
1158                                                 unsigned int order) { }
1159 #endif
1160
1161 static void update_and_free_page(struct hstate *h, struct page *page)
1162 {
1163         int i;
1164
1165         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1166                 return;
1167
1168         h->nr_huge_pages--;
1169         h->nr_huge_pages_node[page_to_nid(page)]--;
1170         for (i = 0; i < pages_per_huge_page(h); i++) {
1171                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1172                                 1 << PG_referenced | 1 << PG_dirty |
1173                                 1 << PG_active | 1 << PG_private |
1174                                 1 << PG_writeback);
1175         }
1176         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1177         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1178         set_page_refcounted(page);
1179         if (hstate_is_gigantic(h)) {
1180                 destroy_compound_gigantic_page(page, huge_page_order(h));
1181                 free_gigantic_page(page, huge_page_order(h));
1182         } else {
1183                 __free_pages(page, huge_page_order(h));
1184         }
1185 }
1186
1187 struct hstate *size_to_hstate(unsigned long size)
1188 {
1189         struct hstate *h;
1190
1191         for_each_hstate(h) {
1192                 if (huge_page_size(h) == size)
1193                         return h;
1194         }
1195         return NULL;
1196 }
1197
1198 /*
1199  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1200  * to hstate->hugepage_activelist.)
1201  *
1202  * This function can be called for tail pages, but never returns true for them.
1203  */
1204 bool page_huge_active(struct page *page)
1205 {
1206         VM_BUG_ON_PAGE(!PageHuge(page), page);
1207         return PageHead(page) && PagePrivate(&page[1]);
1208 }
1209
1210 /* never called for tail page */
1211 static void set_page_huge_active(struct page *page)
1212 {
1213         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214         SetPagePrivate(&page[1]);
1215 }
1216
1217 static void clear_page_huge_active(struct page *page)
1218 {
1219         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1220         ClearPagePrivate(&page[1]);
1221 }
1222
1223 /*
1224  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1225  * code
1226  */
1227 static inline bool PageHugeTemporary(struct page *page)
1228 {
1229         if (!PageHuge(page))
1230                 return false;
1231
1232         return (unsigned long)page[2].mapping == -1U;
1233 }
1234
1235 static inline void SetPageHugeTemporary(struct page *page)
1236 {
1237         page[2].mapping = (void *)-1U;
1238 }
1239
1240 static inline void ClearPageHugeTemporary(struct page *page)
1241 {
1242         page[2].mapping = NULL;
1243 }
1244
1245 void free_huge_page(struct page *page)
1246 {
1247         /*
1248          * Can't pass hstate in here because it is called from the
1249          * compound page destructor.
1250          */
1251         struct hstate *h = page_hstate(page);
1252         int nid = page_to_nid(page);
1253         struct hugepage_subpool *spool =
1254                 (struct hugepage_subpool *)page_private(page);
1255         bool restore_reserve;
1256
1257         set_page_private(page, 0);
1258         page->mapping = NULL;
1259         VM_BUG_ON_PAGE(page_count(page), page);
1260         VM_BUG_ON_PAGE(page_mapcount(page), page);
1261         restore_reserve = PagePrivate(page);
1262         ClearPagePrivate(page);
1263
1264         /*
1265          * A return code of zero implies that the subpool will be under its
1266          * minimum size if the reservation is not restored after page is free.
1267          * Therefore, force restore_reserve operation.
1268          */
1269         if (hugepage_subpool_put_pages(spool, 1) == 0)
1270                 restore_reserve = true;
1271
1272         spin_lock(&hugetlb_lock);
1273         clear_page_huge_active(page);
1274         hugetlb_cgroup_uncharge_page(hstate_index(h),
1275                                      pages_per_huge_page(h), page);
1276         if (restore_reserve)
1277                 h->resv_huge_pages++;
1278
1279         if (PageHugeTemporary(page)) {
1280                 list_del(&page->lru);
1281                 ClearPageHugeTemporary(page);
1282                 update_and_free_page(h, page);
1283         } else if (h->surplus_huge_pages_node[nid]) {
1284                 /* remove the page from active list */
1285                 list_del(&page->lru);
1286                 update_and_free_page(h, page);
1287                 h->surplus_huge_pages--;
1288                 h->surplus_huge_pages_node[nid]--;
1289         } else {
1290                 arch_clear_hugepage_flags(page);
1291                 enqueue_huge_page(h, page);
1292         }
1293         spin_unlock(&hugetlb_lock);
1294 }
1295
1296 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1297 {
1298         INIT_LIST_HEAD(&page->lru);
1299         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1300         spin_lock(&hugetlb_lock);
1301         set_hugetlb_cgroup(page, NULL);
1302         h->nr_huge_pages++;
1303         h->nr_huge_pages_node[nid]++;
1304         spin_unlock(&hugetlb_lock);
1305 }
1306
1307 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1308 {
1309         int i;
1310         int nr_pages = 1 << order;
1311         struct page *p = page + 1;
1312
1313         /* we rely on prep_new_huge_page to set the destructor */
1314         set_compound_order(page, order);
1315         __ClearPageReserved(page);
1316         __SetPageHead(page);
1317         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1318                 /*
1319                  * For gigantic hugepages allocated through bootmem at
1320                  * boot, it's safer to be consistent with the not-gigantic
1321                  * hugepages and clear the PG_reserved bit from all tail pages
1322                  * too.  Otherwse drivers using get_user_pages() to access tail
1323                  * pages may get the reference counting wrong if they see
1324                  * PG_reserved set on a tail page (despite the head page not
1325                  * having PG_reserved set).  Enforcing this consistency between
1326                  * head and tail pages allows drivers to optimize away a check
1327                  * on the head page when they need know if put_page() is needed
1328                  * after get_user_pages().
1329                  */
1330                 __ClearPageReserved(p);
1331                 set_page_count(p, 0);
1332                 set_compound_head(p, page);
1333         }
1334         atomic_set(compound_mapcount_ptr(page), -1);
1335 }
1336
1337 /*
1338  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339  * transparent huge pages.  See the PageTransHuge() documentation for more
1340  * details.
1341  */
1342 int PageHuge(struct page *page)
1343 {
1344         if (!PageCompound(page))
1345                 return 0;
1346
1347         page = compound_head(page);
1348         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1349 }
1350 EXPORT_SYMBOL_GPL(PageHuge);
1351
1352 /*
1353  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354  * normal or transparent huge pages.
1355  */
1356 int PageHeadHuge(struct page *page_head)
1357 {
1358         if (!PageHead(page_head))
1359                 return 0;
1360
1361         return get_compound_page_dtor(page_head) == free_huge_page;
1362 }
1363
1364 pgoff_t __basepage_index(struct page *page)
1365 {
1366         struct page *page_head = compound_head(page);
1367         pgoff_t index = page_index(page_head);
1368         unsigned long compound_idx;
1369
1370         if (!PageHuge(page_head))
1371                 return page_index(page);
1372
1373         if (compound_order(page_head) >= MAX_ORDER)
1374                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1375         else
1376                 compound_idx = page - page_head;
1377
1378         return (index << compound_order(page_head)) + compound_idx;
1379 }
1380
1381 static struct page *alloc_buddy_huge_page(struct hstate *h,
1382                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1383 {
1384         int order = huge_page_order(h);
1385         struct page *page;
1386
1387         gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1388         if (nid == NUMA_NO_NODE)
1389                 nid = numa_mem_id();
1390         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1391         if (page)
1392                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1393         else
1394                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1395
1396         return page;
1397 }
1398
1399 /*
1400  * Common helper to allocate a fresh hugetlb page. All specific allocators
1401  * should use this function to get new hugetlb pages
1402  */
1403 static struct page *alloc_fresh_huge_page(struct hstate *h,
1404                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1405 {
1406         struct page *page;
1407
1408         if (hstate_is_gigantic(h))
1409                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1410         else
1411                 page = alloc_buddy_huge_page(h, gfp_mask,
1412                                 nid, nmask);
1413         if (!page)
1414                 return NULL;
1415
1416         if (hstate_is_gigantic(h))
1417                 prep_compound_gigantic_page(page, huge_page_order(h));
1418         prep_new_huge_page(h, page, page_to_nid(page));
1419
1420         return page;
1421 }
1422
1423 /*
1424  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1425  * manner.
1426  */
1427 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1428 {
1429         struct page *page;
1430         int nr_nodes, node;
1431         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1432
1433         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1434                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1435                 if (page)
1436                         break;
1437         }
1438
1439         if (!page)
1440                 return 0;
1441
1442         put_page(page); /* free it into the hugepage allocator */
1443
1444         return 1;
1445 }
1446
1447 /*
1448  * Free huge page from pool from next node to free.
1449  * Attempt to keep persistent huge pages more or less
1450  * balanced over allowed nodes.
1451  * Called with hugetlb_lock locked.
1452  */
1453 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1454                                                          bool acct_surplus)
1455 {
1456         int nr_nodes, node;
1457         int ret = 0;
1458
1459         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1460                 /*
1461                  * If we're returning unused surplus pages, only examine
1462                  * nodes with surplus pages.
1463                  */
1464                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1465                     !list_empty(&h->hugepage_freelists[node])) {
1466                         struct page *page =
1467                                 list_entry(h->hugepage_freelists[node].next,
1468                                           struct page, lru);
1469                         list_del(&page->lru);
1470                         h->free_huge_pages--;
1471                         h->free_huge_pages_node[node]--;
1472                         if (acct_surplus) {
1473                                 h->surplus_huge_pages--;
1474                                 h->surplus_huge_pages_node[node]--;
1475                         }
1476                         update_and_free_page(h, page);
1477                         ret = 1;
1478                         break;
1479                 }
1480         }
1481
1482         return ret;
1483 }
1484
1485 /*
1486  * Dissolve a given free hugepage into free buddy pages. This function does
1487  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1488  * number of free hugepages would be reduced below the number of reserved
1489  * hugepages.
1490  */
1491 int dissolve_free_huge_page(struct page *page)
1492 {
1493         int rc = 0;
1494
1495         spin_lock(&hugetlb_lock);
1496         if (PageHuge(page) && !page_count(page)) {
1497                 struct page *head = compound_head(page);
1498                 struct hstate *h = page_hstate(head);
1499                 int nid = page_to_nid(head);
1500                 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1501                         rc = -EBUSY;
1502                         goto out;
1503                 }
1504                 /*
1505                  * Move PageHWPoison flag from head page to the raw error page,
1506                  * which makes any subpages rather than the error page reusable.
1507                  */
1508                 if (PageHWPoison(head) && page != head) {
1509                         SetPageHWPoison(page);
1510                         ClearPageHWPoison(head);
1511                 }
1512                 list_del(&head->lru);
1513                 h->free_huge_pages--;
1514                 h->free_huge_pages_node[nid]--;
1515                 h->max_huge_pages--;
1516                 update_and_free_page(h, head);
1517         }
1518 out:
1519         spin_unlock(&hugetlb_lock);
1520         return rc;
1521 }
1522
1523 /*
1524  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1525  * make specified memory blocks removable from the system.
1526  * Note that this will dissolve a free gigantic hugepage completely, if any
1527  * part of it lies within the given range.
1528  * Also note that if dissolve_free_huge_page() returns with an error, all
1529  * free hugepages that were dissolved before that error are lost.
1530  */
1531 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1532 {
1533         unsigned long pfn;
1534         struct page *page;
1535         int rc = 0;
1536
1537         if (!hugepages_supported())
1538                 return rc;
1539
1540         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1541                 page = pfn_to_page(pfn);
1542                 if (PageHuge(page) && !page_count(page)) {
1543                         rc = dissolve_free_huge_page(page);
1544                         if (rc)
1545                                 break;
1546                 }
1547         }
1548
1549         return rc;
1550 }
1551
1552 /*
1553  * Allocates a fresh surplus page from the page allocator.
1554  */
1555 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1556                 int nid, nodemask_t *nmask)
1557 {
1558         struct page *page = NULL;
1559
1560         if (hstate_is_gigantic(h))
1561                 return NULL;
1562
1563         spin_lock(&hugetlb_lock);
1564         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1565                 goto out_unlock;
1566         spin_unlock(&hugetlb_lock);
1567
1568         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1569         if (!page)
1570                 return NULL;
1571
1572         spin_lock(&hugetlb_lock);
1573         /*
1574          * We could have raced with the pool size change.
1575          * Double check that and simply deallocate the new page
1576          * if we would end up overcommiting the surpluses. Abuse
1577          * temporary page to workaround the nasty free_huge_page
1578          * codeflow
1579          */
1580         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1581                 SetPageHugeTemporary(page);
1582                 put_page(page);
1583                 page = NULL;
1584         } else {
1585                 h->surplus_huge_pages++;
1586                 h->nr_huge_pages_node[page_to_nid(page)]++;
1587         }
1588
1589 out_unlock:
1590         spin_unlock(&hugetlb_lock);
1591
1592         return page;
1593 }
1594
1595 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1596                 int nid, nodemask_t *nmask)
1597 {
1598         struct page *page;
1599
1600         if (hstate_is_gigantic(h))
1601                 return NULL;
1602
1603         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1604         if (!page)
1605                 return NULL;
1606
1607         /*
1608          * We do not account these pages as surplus because they are only
1609          * temporary and will be released properly on the last reference
1610          */
1611         SetPageHugeTemporary(page);
1612
1613         return page;
1614 }
1615
1616 /*
1617  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1618  */
1619 static
1620 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1621                 struct vm_area_struct *vma, unsigned long addr)
1622 {
1623         struct page *page;
1624         struct mempolicy *mpol;
1625         gfp_t gfp_mask = htlb_alloc_mask(h);
1626         int nid;
1627         nodemask_t *nodemask;
1628
1629         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1630         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1631         mpol_cond_put(mpol);
1632
1633         return page;
1634 }
1635
1636 /* page migration callback function */
1637 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1638 {
1639         gfp_t gfp_mask = htlb_alloc_mask(h);
1640         struct page *page = NULL;
1641
1642         if (nid != NUMA_NO_NODE)
1643                 gfp_mask |= __GFP_THISNODE;
1644
1645         spin_lock(&hugetlb_lock);
1646         if (h->free_huge_pages - h->resv_huge_pages > 0)
1647                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1648         spin_unlock(&hugetlb_lock);
1649
1650         if (!page)
1651                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1652
1653         return page;
1654 }
1655
1656 /* page migration callback function */
1657 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1658                 nodemask_t *nmask)
1659 {
1660         gfp_t gfp_mask = htlb_alloc_mask(h);
1661
1662         spin_lock(&hugetlb_lock);
1663         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1664                 struct page *page;
1665
1666                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1667                 if (page) {
1668                         spin_unlock(&hugetlb_lock);
1669                         return page;
1670                 }
1671         }
1672         spin_unlock(&hugetlb_lock);
1673
1674         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1675 }
1676
1677 /*
1678  * Increase the hugetlb pool such that it can accommodate a reservation
1679  * of size 'delta'.
1680  */
1681 static int gather_surplus_pages(struct hstate *h, int delta)
1682 {
1683         struct list_head surplus_list;
1684         struct page *page, *tmp;
1685         int ret, i;
1686         int needed, allocated;
1687         bool alloc_ok = true;
1688
1689         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1690         if (needed <= 0) {
1691                 h->resv_huge_pages += delta;
1692                 return 0;
1693         }
1694
1695         allocated = 0;
1696         INIT_LIST_HEAD(&surplus_list);
1697
1698         ret = -ENOMEM;
1699 retry:
1700         spin_unlock(&hugetlb_lock);
1701         for (i = 0; i < needed; i++) {
1702                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1703                                 NUMA_NO_NODE, NULL);
1704                 if (!page) {
1705                         alloc_ok = false;
1706                         break;
1707                 }
1708                 list_add(&page->lru, &surplus_list);
1709                 cond_resched();
1710         }
1711         allocated += i;
1712
1713         /*
1714          * After retaking hugetlb_lock, we need to recalculate 'needed'
1715          * because either resv_huge_pages or free_huge_pages may have changed.
1716          */
1717         spin_lock(&hugetlb_lock);
1718         needed = (h->resv_huge_pages + delta) -
1719                         (h->free_huge_pages + allocated);
1720         if (needed > 0) {
1721                 if (alloc_ok)
1722                         goto retry;
1723                 /*
1724                  * We were not able to allocate enough pages to
1725                  * satisfy the entire reservation so we free what
1726                  * we've allocated so far.
1727                  */
1728                 goto free;
1729         }
1730         /*
1731          * The surplus_list now contains _at_least_ the number of extra pages
1732          * needed to accommodate the reservation.  Add the appropriate number
1733          * of pages to the hugetlb pool and free the extras back to the buddy
1734          * allocator.  Commit the entire reservation here to prevent another
1735          * process from stealing the pages as they are added to the pool but
1736          * before they are reserved.
1737          */
1738         needed += allocated;
1739         h->resv_huge_pages += delta;
1740         ret = 0;
1741
1742         /* Free the needed pages to the hugetlb pool */
1743         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1744                 if ((--needed) < 0)
1745                         break;
1746                 /*
1747                  * This page is now managed by the hugetlb allocator and has
1748                  * no users -- drop the buddy allocator's reference.
1749                  */
1750                 put_page_testzero(page);
1751                 VM_BUG_ON_PAGE(page_count(page), page);
1752                 enqueue_huge_page(h, page);
1753         }
1754 free:
1755         spin_unlock(&hugetlb_lock);
1756
1757         /* Free unnecessary surplus pages to the buddy allocator */
1758         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1759                 put_page(page);
1760         spin_lock(&hugetlb_lock);
1761
1762         return ret;
1763 }
1764
1765 /*
1766  * This routine has two main purposes:
1767  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1768  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1769  *    to the associated reservation map.
1770  * 2) Free any unused surplus pages that may have been allocated to satisfy
1771  *    the reservation.  As many as unused_resv_pages may be freed.
1772  *
1773  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1774  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1775  * we must make sure nobody else can claim pages we are in the process of
1776  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1777  * number of huge pages we plan to free when dropping the lock.
1778  */
1779 static void return_unused_surplus_pages(struct hstate *h,
1780                                         unsigned long unused_resv_pages)
1781 {
1782         unsigned long nr_pages;
1783
1784         /* Cannot return gigantic pages currently */
1785         if (hstate_is_gigantic(h))
1786                 goto out;
1787
1788         /*
1789          * Part (or even all) of the reservation could have been backed
1790          * by pre-allocated pages. Only free surplus pages.
1791          */
1792         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1793
1794         /*
1795          * We want to release as many surplus pages as possible, spread
1796          * evenly across all nodes with memory. Iterate across these nodes
1797          * until we can no longer free unreserved surplus pages. This occurs
1798          * when the nodes with surplus pages have no free pages.
1799          * free_pool_huge_page() will balance the the freed pages across the
1800          * on-line nodes with memory and will handle the hstate accounting.
1801          *
1802          * Note that we decrement resv_huge_pages as we free the pages.  If
1803          * we drop the lock, resv_huge_pages will still be sufficiently large
1804          * to cover subsequent pages we may free.
1805          */
1806         while (nr_pages--) {
1807                 h->resv_huge_pages--;
1808                 unused_resv_pages--;
1809                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1810                         goto out;
1811                 cond_resched_lock(&hugetlb_lock);
1812         }
1813
1814 out:
1815         /* Fully uncommit the reservation */
1816         h->resv_huge_pages -= unused_resv_pages;
1817 }
1818
1819
1820 /*
1821  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1822  * are used by the huge page allocation routines to manage reservations.
1823  *
1824  * vma_needs_reservation is called to determine if the huge page at addr
1825  * within the vma has an associated reservation.  If a reservation is
1826  * needed, the value 1 is returned.  The caller is then responsible for
1827  * managing the global reservation and subpool usage counts.  After
1828  * the huge page has been allocated, vma_commit_reservation is called
1829  * to add the page to the reservation map.  If the page allocation fails,
1830  * the reservation must be ended instead of committed.  vma_end_reservation
1831  * is called in such cases.
1832  *
1833  * In the normal case, vma_commit_reservation returns the same value
1834  * as the preceding vma_needs_reservation call.  The only time this
1835  * is not the case is if a reserve map was changed between calls.  It
1836  * is the responsibility of the caller to notice the difference and
1837  * take appropriate action.
1838  *
1839  * vma_add_reservation is used in error paths where a reservation must
1840  * be restored when a newly allocated huge page must be freed.  It is
1841  * to be called after calling vma_needs_reservation to determine if a
1842  * reservation exists.
1843  */
1844 enum vma_resv_mode {
1845         VMA_NEEDS_RESV,
1846         VMA_COMMIT_RESV,
1847         VMA_END_RESV,
1848         VMA_ADD_RESV,
1849 };
1850 static long __vma_reservation_common(struct hstate *h,
1851                                 struct vm_area_struct *vma, unsigned long addr,
1852                                 enum vma_resv_mode mode)
1853 {
1854         struct resv_map *resv;
1855         pgoff_t idx;
1856         long ret;
1857
1858         resv = vma_resv_map(vma);
1859         if (!resv)
1860                 return 1;
1861
1862         idx = vma_hugecache_offset(h, vma, addr);
1863         switch (mode) {
1864         case VMA_NEEDS_RESV:
1865                 ret = region_chg(resv, idx, idx + 1);
1866                 break;
1867         case VMA_COMMIT_RESV:
1868                 ret = region_add(resv, idx, idx + 1);
1869                 break;
1870         case VMA_END_RESV:
1871                 region_abort(resv, idx, idx + 1);
1872                 ret = 0;
1873                 break;
1874         case VMA_ADD_RESV:
1875                 if (vma->vm_flags & VM_MAYSHARE)
1876                         ret = region_add(resv, idx, idx + 1);
1877                 else {
1878                         region_abort(resv, idx, idx + 1);
1879                         ret = region_del(resv, idx, idx + 1);
1880                 }
1881                 break;
1882         default:
1883                 BUG();
1884         }
1885
1886         if (vma->vm_flags & VM_MAYSHARE)
1887                 return ret;
1888         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1889                 /*
1890                  * In most cases, reserves always exist for private mappings.
1891                  * However, a file associated with mapping could have been
1892                  * hole punched or truncated after reserves were consumed.
1893                  * As subsequent fault on such a range will not use reserves.
1894                  * Subtle - The reserve map for private mappings has the
1895                  * opposite meaning than that of shared mappings.  If NO
1896                  * entry is in the reserve map, it means a reservation exists.
1897                  * If an entry exists in the reserve map, it means the
1898                  * reservation has already been consumed.  As a result, the
1899                  * return value of this routine is the opposite of the
1900                  * value returned from reserve map manipulation routines above.
1901                  */
1902                 if (ret)
1903                         return 0;
1904                 else
1905                         return 1;
1906         }
1907         else
1908                 return ret < 0 ? ret : 0;
1909 }
1910
1911 static long vma_needs_reservation(struct hstate *h,
1912                         struct vm_area_struct *vma, unsigned long addr)
1913 {
1914         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1915 }
1916
1917 static long vma_commit_reservation(struct hstate *h,
1918                         struct vm_area_struct *vma, unsigned long addr)
1919 {
1920         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1921 }
1922
1923 static void vma_end_reservation(struct hstate *h,
1924                         struct vm_area_struct *vma, unsigned long addr)
1925 {
1926         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1927 }
1928
1929 static long vma_add_reservation(struct hstate *h,
1930                         struct vm_area_struct *vma, unsigned long addr)
1931 {
1932         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1933 }
1934
1935 /*
1936  * This routine is called to restore a reservation on error paths.  In the
1937  * specific error paths, a huge page was allocated (via alloc_huge_page)
1938  * and is about to be freed.  If a reservation for the page existed,
1939  * alloc_huge_page would have consumed the reservation and set PagePrivate
1940  * in the newly allocated page.  When the page is freed via free_huge_page,
1941  * the global reservation count will be incremented if PagePrivate is set.
1942  * However, free_huge_page can not adjust the reserve map.  Adjust the
1943  * reserve map here to be consistent with global reserve count adjustments
1944  * to be made by free_huge_page.
1945  */
1946 static void restore_reserve_on_error(struct hstate *h,
1947                         struct vm_area_struct *vma, unsigned long address,
1948                         struct page *page)
1949 {
1950         if (unlikely(PagePrivate(page))) {
1951                 long rc = vma_needs_reservation(h, vma, address);
1952
1953                 if (unlikely(rc < 0)) {
1954                         /*
1955                          * Rare out of memory condition in reserve map
1956                          * manipulation.  Clear PagePrivate so that
1957                          * global reserve count will not be incremented
1958                          * by free_huge_page.  This will make it appear
1959                          * as though the reservation for this page was
1960                          * consumed.  This may prevent the task from
1961                          * faulting in the page at a later time.  This
1962                          * is better than inconsistent global huge page
1963                          * accounting of reserve counts.
1964                          */
1965                         ClearPagePrivate(page);
1966                 } else if (rc) {
1967                         rc = vma_add_reservation(h, vma, address);
1968                         if (unlikely(rc < 0))
1969                                 /*
1970                                  * See above comment about rare out of
1971                                  * memory condition.
1972                                  */
1973                                 ClearPagePrivate(page);
1974                 } else
1975                         vma_end_reservation(h, vma, address);
1976         }
1977 }
1978
1979 struct page *alloc_huge_page(struct vm_area_struct *vma,
1980                                     unsigned long addr, int avoid_reserve)
1981 {
1982         struct hugepage_subpool *spool = subpool_vma(vma);
1983         struct hstate *h = hstate_vma(vma);
1984         struct page *page;
1985         long map_chg, map_commit;
1986         long gbl_chg;
1987         int ret, idx;
1988         struct hugetlb_cgroup *h_cg;
1989
1990         idx = hstate_index(h);
1991         /*
1992          * Examine the region/reserve map to determine if the process
1993          * has a reservation for the page to be allocated.  A return
1994          * code of zero indicates a reservation exists (no change).
1995          */
1996         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1997         if (map_chg < 0)
1998                 return ERR_PTR(-ENOMEM);
1999
2000         /*
2001          * Processes that did not create the mapping will have no
2002          * reserves as indicated by the region/reserve map. Check
2003          * that the allocation will not exceed the subpool limit.
2004          * Allocations for MAP_NORESERVE mappings also need to be
2005          * checked against any subpool limit.
2006          */
2007         if (map_chg || avoid_reserve) {
2008                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2009                 if (gbl_chg < 0) {
2010                         vma_end_reservation(h, vma, addr);
2011                         return ERR_PTR(-ENOSPC);
2012                 }
2013
2014                 /*
2015                  * Even though there was no reservation in the region/reserve
2016                  * map, there could be reservations associated with the
2017                  * subpool that can be used.  This would be indicated if the
2018                  * return value of hugepage_subpool_get_pages() is zero.
2019                  * However, if avoid_reserve is specified we still avoid even
2020                  * the subpool reservations.
2021                  */
2022                 if (avoid_reserve)
2023                         gbl_chg = 1;
2024         }
2025
2026         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2027         if (ret)
2028                 goto out_subpool_put;
2029
2030         spin_lock(&hugetlb_lock);
2031         /*
2032          * glb_chg is passed to indicate whether or not a page must be taken
2033          * from the global free pool (global change).  gbl_chg == 0 indicates
2034          * a reservation exists for the allocation.
2035          */
2036         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2037         if (!page) {
2038                 spin_unlock(&hugetlb_lock);
2039                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2040                 if (!page)
2041                         goto out_uncharge_cgroup;
2042                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2043                         SetPagePrivate(page);
2044                         h->resv_huge_pages--;
2045                 }
2046                 spin_lock(&hugetlb_lock);
2047                 list_move(&page->lru, &h->hugepage_activelist);
2048                 /* Fall through */
2049         }
2050         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2051         spin_unlock(&hugetlb_lock);
2052
2053         set_page_private(page, (unsigned long)spool);
2054
2055         map_commit = vma_commit_reservation(h, vma, addr);
2056         if (unlikely(map_chg > map_commit)) {
2057                 /*
2058                  * The page was added to the reservation map between
2059                  * vma_needs_reservation and vma_commit_reservation.
2060                  * This indicates a race with hugetlb_reserve_pages.
2061                  * Adjust for the subpool count incremented above AND
2062                  * in hugetlb_reserve_pages for the same page.  Also,
2063                  * the reservation count added in hugetlb_reserve_pages
2064                  * no longer applies.
2065                  */
2066                 long rsv_adjust;
2067
2068                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2069                 hugetlb_acct_memory(h, -rsv_adjust);
2070         }
2071         return page;
2072
2073 out_uncharge_cgroup:
2074         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2075 out_subpool_put:
2076         if (map_chg || avoid_reserve)
2077                 hugepage_subpool_put_pages(spool, 1);
2078         vma_end_reservation(h, vma, addr);
2079         return ERR_PTR(-ENOSPC);
2080 }
2081
2082 /*
2083  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2084  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2085  * where no ERR_VALUE is expected to be returned.
2086  */
2087 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2088                                 unsigned long addr, int avoid_reserve)
2089 {
2090         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2091         if (IS_ERR(page))
2092                 page = NULL;
2093         return page;
2094 }
2095
2096 int alloc_bootmem_huge_page(struct hstate *h)
2097         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2098 int __alloc_bootmem_huge_page(struct hstate *h)
2099 {
2100         struct huge_bootmem_page *m;
2101         int nr_nodes, node;
2102
2103         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2104                 void *addr;
2105
2106                 addr = memblock_virt_alloc_try_nid_nopanic(
2107                                 huge_page_size(h), huge_page_size(h),
2108                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2109                 if (addr) {
2110                         /*
2111                          * Use the beginning of the huge page to store the
2112                          * huge_bootmem_page struct (until gather_bootmem
2113                          * puts them into the mem_map).
2114                          */
2115                         m = addr;
2116                         goto found;
2117                 }
2118         }
2119         return 0;
2120
2121 found:
2122         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2123         /* Put them into a private list first because mem_map is not up yet */
2124         list_add(&m->list, &huge_boot_pages);
2125         m->hstate = h;
2126         return 1;
2127 }
2128
2129 static void __init prep_compound_huge_page(struct page *page,
2130                 unsigned int order)
2131 {
2132         if (unlikely(order > (MAX_ORDER - 1)))
2133                 prep_compound_gigantic_page(page, order);
2134         else
2135                 prep_compound_page(page, order);
2136 }
2137
2138 /* Put bootmem huge pages into the standard lists after mem_map is up */
2139 static void __init gather_bootmem_prealloc(void)
2140 {
2141         struct huge_bootmem_page *m;
2142
2143         list_for_each_entry(m, &huge_boot_pages, list) {
2144                 struct hstate *h = m->hstate;
2145                 struct page *page;
2146
2147 #ifdef CONFIG_HIGHMEM
2148                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2149                 memblock_free_late(__pa(m),
2150                                    sizeof(struct huge_bootmem_page));
2151 #else
2152                 page = virt_to_page(m);
2153 #endif
2154                 WARN_ON(page_count(page) != 1);
2155                 prep_compound_huge_page(page, h->order);
2156                 WARN_ON(PageReserved(page));
2157                 prep_new_huge_page(h, page, page_to_nid(page));
2158                 put_page(page); /* free it into the hugepage allocator */
2159
2160                 /*
2161                  * If we had gigantic hugepages allocated at boot time, we need
2162                  * to restore the 'stolen' pages to totalram_pages in order to
2163                  * fix confusing memory reports from free(1) and another
2164                  * side-effects, like CommitLimit going negative.
2165                  */
2166                 if (hstate_is_gigantic(h))
2167                         adjust_managed_page_count(page, 1 << h->order);
2168         }
2169 }
2170
2171 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2172 {
2173         unsigned long i;
2174
2175         for (i = 0; i < h->max_huge_pages; ++i) {
2176                 if (hstate_is_gigantic(h)) {
2177                         if (!alloc_bootmem_huge_page(h))
2178                                 break;
2179                 } else if (!alloc_pool_huge_page(h,
2180                                          &node_states[N_MEMORY]))
2181                         break;
2182                 cond_resched();
2183         }
2184         if (i < h->max_huge_pages) {
2185                 char buf[32];
2186
2187                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2188                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2189                         h->max_huge_pages, buf, i);
2190                 h->max_huge_pages = i;
2191         }
2192 }
2193
2194 static void __init hugetlb_init_hstates(void)
2195 {
2196         struct hstate *h;
2197
2198         for_each_hstate(h) {
2199                 if (minimum_order > huge_page_order(h))
2200                         minimum_order = huge_page_order(h);
2201
2202                 /* oversize hugepages were init'ed in early boot */
2203                 if (!hstate_is_gigantic(h))
2204                         hugetlb_hstate_alloc_pages(h);
2205         }
2206         VM_BUG_ON(minimum_order == UINT_MAX);
2207 }
2208
2209 static void __init report_hugepages(void)
2210 {
2211         struct hstate *h;
2212
2213         for_each_hstate(h) {
2214                 char buf[32];
2215
2216                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2217                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2218                         buf, h->free_huge_pages);
2219         }
2220 }
2221
2222 #ifdef CONFIG_HIGHMEM
2223 static void try_to_free_low(struct hstate *h, unsigned long count,
2224                                                 nodemask_t *nodes_allowed)
2225 {
2226         int i;
2227
2228         if (hstate_is_gigantic(h))
2229                 return;
2230
2231         for_each_node_mask(i, *nodes_allowed) {
2232                 struct page *page, *next;
2233                 struct list_head *freel = &h->hugepage_freelists[i];
2234                 list_for_each_entry_safe(page, next, freel, lru) {
2235                         if (count >= h->nr_huge_pages)
2236                                 return;
2237                         if (PageHighMem(page))
2238                                 continue;
2239                         list_del(&page->lru);
2240                         update_and_free_page(h, page);
2241                         h->free_huge_pages--;
2242                         h->free_huge_pages_node[page_to_nid(page)]--;
2243                 }
2244         }
2245 }
2246 #else
2247 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2248                                                 nodemask_t *nodes_allowed)
2249 {
2250 }
2251 #endif
2252
2253 /*
2254  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2255  * balanced by operating on them in a round-robin fashion.
2256  * Returns 1 if an adjustment was made.
2257  */
2258 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2259                                 int delta)
2260 {
2261         int nr_nodes, node;
2262
2263         VM_BUG_ON(delta != -1 && delta != 1);
2264
2265         if (delta < 0) {
2266                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2267                         if (h->surplus_huge_pages_node[node])
2268                                 goto found;
2269                 }
2270         } else {
2271                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2272                         if (h->surplus_huge_pages_node[node] <
2273                                         h->nr_huge_pages_node[node])
2274                                 goto found;
2275                 }
2276         }
2277         return 0;
2278
2279 found:
2280         h->surplus_huge_pages += delta;
2281         h->surplus_huge_pages_node[node] += delta;
2282         return 1;
2283 }
2284
2285 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2286 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2287                                                 nodemask_t *nodes_allowed)
2288 {
2289         unsigned long min_count, ret;
2290
2291         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2292                 return h->max_huge_pages;
2293
2294         /*
2295          * Increase the pool size
2296          * First take pages out of surplus state.  Then make up the
2297          * remaining difference by allocating fresh huge pages.
2298          *
2299          * We might race with alloc_surplus_huge_page() here and be unable
2300          * to convert a surplus huge page to a normal huge page. That is
2301          * not critical, though, it just means the overall size of the
2302          * pool might be one hugepage larger than it needs to be, but
2303          * within all the constraints specified by the sysctls.
2304          */
2305         spin_lock(&hugetlb_lock);
2306         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2307                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2308                         break;
2309         }
2310
2311         while (count > persistent_huge_pages(h)) {
2312                 /*
2313                  * If this allocation races such that we no longer need the
2314                  * page, free_huge_page will handle it by freeing the page
2315                  * and reducing the surplus.
2316                  */
2317                 spin_unlock(&hugetlb_lock);
2318
2319                 /* yield cpu to avoid soft lockup */
2320                 cond_resched();
2321
2322                 ret = alloc_pool_huge_page(h, nodes_allowed);
2323                 spin_lock(&hugetlb_lock);
2324                 if (!ret)
2325                         goto out;
2326
2327                 /* Bail for signals. Probably ctrl-c from user */
2328                 if (signal_pending(current))
2329                         goto out;
2330         }
2331
2332         /*
2333          * Decrease the pool size
2334          * First return free pages to the buddy allocator (being careful
2335          * to keep enough around to satisfy reservations).  Then place
2336          * pages into surplus state as needed so the pool will shrink
2337          * to the desired size as pages become free.
2338          *
2339          * By placing pages into the surplus state independent of the
2340          * overcommit value, we are allowing the surplus pool size to
2341          * exceed overcommit. There are few sane options here. Since
2342          * alloc_surplus_huge_page() is checking the global counter,
2343          * though, we'll note that we're not allowed to exceed surplus
2344          * and won't grow the pool anywhere else. Not until one of the
2345          * sysctls are changed, or the surplus pages go out of use.
2346          */
2347         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2348         min_count = max(count, min_count);
2349         try_to_free_low(h, min_count, nodes_allowed);
2350         while (min_count < persistent_huge_pages(h)) {
2351                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2352                         break;
2353                 cond_resched_lock(&hugetlb_lock);
2354         }
2355         while (count < persistent_huge_pages(h)) {
2356                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2357                         break;
2358         }
2359 out:
2360         ret = persistent_huge_pages(h);
2361         spin_unlock(&hugetlb_lock);
2362         return ret;
2363 }
2364
2365 #define HSTATE_ATTR_RO(_name) \
2366         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2367
2368 #define HSTATE_ATTR(_name) \
2369         static struct kobj_attribute _name##_attr = \
2370                 __ATTR(_name, 0644, _name##_show, _name##_store)
2371
2372 static struct kobject *hugepages_kobj;
2373 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2374
2375 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2376
2377 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2378 {
2379         int i;
2380
2381         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2382                 if (hstate_kobjs[i] == kobj) {
2383                         if (nidp)
2384                                 *nidp = NUMA_NO_NODE;
2385                         return &hstates[i];
2386                 }
2387
2388         return kobj_to_node_hstate(kobj, nidp);
2389 }
2390
2391 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2392                                         struct kobj_attribute *attr, char *buf)
2393 {
2394         struct hstate *h;
2395         unsigned long nr_huge_pages;
2396         int nid;
2397
2398         h = kobj_to_hstate(kobj, &nid);
2399         if (nid == NUMA_NO_NODE)
2400                 nr_huge_pages = h->nr_huge_pages;
2401         else
2402                 nr_huge_pages = h->nr_huge_pages_node[nid];
2403
2404         return sprintf(buf, "%lu\n", nr_huge_pages);
2405 }
2406
2407 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2408                                            struct hstate *h, int nid,
2409                                            unsigned long count, size_t len)
2410 {
2411         int err;
2412         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2413
2414         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2415                 err = -EINVAL;
2416                 goto out;
2417         }
2418
2419         if (nid == NUMA_NO_NODE) {
2420                 /*
2421                  * global hstate attribute
2422                  */
2423                 if (!(obey_mempolicy &&
2424                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2425                         NODEMASK_FREE(nodes_allowed);
2426                         nodes_allowed = &node_states[N_MEMORY];
2427                 }
2428         } else if (nodes_allowed) {
2429                 /*
2430                  * per node hstate attribute: adjust count to global,
2431                  * but restrict alloc/free to the specified node.
2432                  */
2433                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2434                 init_nodemask_of_node(nodes_allowed, nid);
2435         } else
2436                 nodes_allowed = &node_states[N_MEMORY];
2437
2438         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2439
2440         if (nodes_allowed != &node_states[N_MEMORY])
2441                 NODEMASK_FREE(nodes_allowed);
2442
2443         return len;
2444 out:
2445         NODEMASK_FREE(nodes_allowed);
2446         return err;
2447 }
2448
2449 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2450                                          struct kobject *kobj, const char *buf,
2451                                          size_t len)
2452 {
2453         struct hstate *h;
2454         unsigned long count;
2455         int nid;
2456         int err;
2457
2458         err = kstrtoul(buf, 10, &count);
2459         if (err)
2460                 return err;
2461
2462         h = kobj_to_hstate(kobj, &nid);
2463         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2464 }
2465
2466 static ssize_t nr_hugepages_show(struct kobject *kobj,
2467                                        struct kobj_attribute *attr, char *buf)
2468 {
2469         return nr_hugepages_show_common(kobj, attr, buf);
2470 }
2471
2472 static ssize_t nr_hugepages_store(struct kobject *kobj,
2473                struct kobj_attribute *attr, const char *buf, size_t len)
2474 {
2475         return nr_hugepages_store_common(false, kobj, buf, len);
2476 }
2477 HSTATE_ATTR(nr_hugepages);
2478
2479 #ifdef CONFIG_NUMA
2480
2481 /*
2482  * hstate attribute for optionally mempolicy-based constraint on persistent
2483  * huge page alloc/free.
2484  */
2485 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2486                                        struct kobj_attribute *attr, char *buf)
2487 {
2488         return nr_hugepages_show_common(kobj, attr, buf);
2489 }
2490
2491 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2492                struct kobj_attribute *attr, const char *buf, size_t len)
2493 {
2494         return nr_hugepages_store_common(true, kobj, buf, len);
2495 }
2496 HSTATE_ATTR(nr_hugepages_mempolicy);
2497 #endif
2498
2499
2500 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2501                                         struct kobj_attribute *attr, char *buf)
2502 {
2503         struct hstate *h = kobj_to_hstate(kobj, NULL);
2504         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2505 }
2506
2507 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2508                 struct kobj_attribute *attr, const char *buf, size_t count)
2509 {
2510         int err;
2511         unsigned long input;
2512         struct hstate *h = kobj_to_hstate(kobj, NULL);
2513
2514         if (hstate_is_gigantic(h))
2515                 return -EINVAL;
2516
2517         err = kstrtoul(buf, 10, &input);
2518         if (err)
2519                 return err;
2520
2521         spin_lock(&hugetlb_lock);
2522         h->nr_overcommit_huge_pages = input;
2523         spin_unlock(&hugetlb_lock);
2524
2525         return count;
2526 }
2527 HSTATE_ATTR(nr_overcommit_hugepages);
2528
2529 static ssize_t free_hugepages_show(struct kobject *kobj,
2530                                         struct kobj_attribute *attr, char *buf)
2531 {
2532         struct hstate *h;
2533         unsigned long free_huge_pages;
2534         int nid;
2535
2536         h = kobj_to_hstate(kobj, &nid);
2537         if (nid == NUMA_NO_NODE)
2538                 free_huge_pages = h->free_huge_pages;
2539         else
2540                 free_huge_pages = h->free_huge_pages_node[nid];
2541
2542         return sprintf(buf, "%lu\n", free_huge_pages);
2543 }
2544 HSTATE_ATTR_RO(free_hugepages);
2545
2546 static ssize_t resv_hugepages_show(struct kobject *kobj,
2547                                         struct kobj_attribute *attr, char *buf)
2548 {
2549         struct hstate *h = kobj_to_hstate(kobj, NULL);
2550         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2551 }
2552 HSTATE_ATTR_RO(resv_hugepages);
2553
2554 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2555                                         struct kobj_attribute *attr, char *buf)
2556 {
2557         struct hstate *h;
2558         unsigned long surplus_huge_pages;
2559         int nid;
2560
2561         h = kobj_to_hstate(kobj, &nid);
2562         if (nid == NUMA_NO_NODE)
2563                 surplus_huge_pages = h->surplus_huge_pages;
2564         else
2565                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2566
2567         return sprintf(buf, "%lu\n", surplus_huge_pages);
2568 }
2569 HSTATE_ATTR_RO(surplus_hugepages);
2570
2571 static struct attribute *hstate_attrs[] = {
2572         &nr_hugepages_attr.attr,
2573         &nr_overcommit_hugepages_attr.attr,
2574         &free_hugepages_attr.attr,
2575         &resv_hugepages_attr.attr,
2576         &surplus_hugepages_attr.attr,
2577 #ifdef CONFIG_NUMA
2578         &nr_hugepages_mempolicy_attr.attr,
2579 #endif
2580         NULL,
2581 };
2582
2583 static const struct attribute_group hstate_attr_group = {
2584         .attrs = hstate_attrs,
2585 };
2586
2587 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2588                                     struct kobject **hstate_kobjs,
2589                                     const struct attribute_group *hstate_attr_group)
2590 {
2591         int retval;
2592         int hi = hstate_index(h);
2593
2594         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2595         if (!hstate_kobjs[hi])
2596                 return -ENOMEM;
2597
2598         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2599         if (retval)
2600                 kobject_put(hstate_kobjs[hi]);
2601
2602         return retval;
2603 }
2604
2605 static void __init hugetlb_sysfs_init(void)
2606 {
2607         struct hstate *h;
2608         int err;
2609
2610         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2611         if (!hugepages_kobj)
2612                 return;
2613
2614         for_each_hstate(h) {
2615                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2616                                          hstate_kobjs, &hstate_attr_group);
2617                 if (err)
2618                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2619         }
2620 }
2621
2622 #ifdef CONFIG_NUMA
2623
2624 /*
2625  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2626  * with node devices in node_devices[] using a parallel array.  The array
2627  * index of a node device or _hstate == node id.
2628  * This is here to avoid any static dependency of the node device driver, in
2629  * the base kernel, on the hugetlb module.
2630  */
2631 struct node_hstate {
2632         struct kobject          *hugepages_kobj;
2633         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2634 };
2635 static struct node_hstate node_hstates[MAX_NUMNODES];
2636
2637 /*
2638  * A subset of global hstate attributes for node devices
2639  */
2640 static struct attribute *per_node_hstate_attrs[] = {
2641         &nr_hugepages_attr.attr,
2642         &free_hugepages_attr.attr,
2643         &surplus_hugepages_attr.attr,
2644         NULL,
2645 };
2646
2647 static const struct attribute_group per_node_hstate_attr_group = {
2648         .attrs = per_node_hstate_attrs,
2649 };
2650
2651 /*
2652  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2653  * Returns node id via non-NULL nidp.
2654  */
2655 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2656 {
2657         int nid;
2658
2659         for (nid = 0; nid < nr_node_ids; nid++) {
2660                 struct node_hstate *nhs = &node_hstates[nid];
2661                 int i;
2662                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2663                         if (nhs->hstate_kobjs[i] == kobj) {
2664                                 if (nidp)
2665                                         *nidp = nid;
2666                                 return &hstates[i];
2667                         }
2668         }
2669
2670         BUG();
2671         return NULL;
2672 }
2673
2674 /*
2675  * Unregister hstate attributes from a single node device.
2676  * No-op if no hstate attributes attached.
2677  */
2678 static void hugetlb_unregister_node(struct node *node)
2679 {
2680         struct hstate *h;
2681         struct node_hstate *nhs = &node_hstates[node->dev.id];
2682
2683         if (!nhs->hugepages_kobj)
2684                 return;         /* no hstate attributes */
2685
2686         for_each_hstate(h) {
2687                 int idx = hstate_index(h);
2688                 if (nhs->hstate_kobjs[idx]) {
2689                         kobject_put(nhs->hstate_kobjs[idx]);
2690                         nhs->hstate_kobjs[idx] = NULL;
2691                 }
2692         }
2693
2694         kobject_put(nhs->hugepages_kobj);
2695         nhs->hugepages_kobj = NULL;
2696 }
2697
2698
2699 /*
2700  * Register hstate attributes for a single node device.
2701  * No-op if attributes already registered.
2702  */
2703 static void hugetlb_register_node(struct node *node)
2704 {
2705         struct hstate *h;
2706         struct node_hstate *nhs = &node_hstates[node->dev.id];
2707         int err;
2708
2709         if (nhs->hugepages_kobj)
2710                 return;         /* already allocated */
2711
2712         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2713                                                         &node->dev.kobj);
2714         if (!nhs->hugepages_kobj)
2715                 return;
2716
2717         for_each_hstate(h) {
2718                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2719                                                 nhs->hstate_kobjs,
2720                                                 &per_node_hstate_attr_group);
2721                 if (err) {
2722                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2723                                 h->name, node->dev.id);
2724                         hugetlb_unregister_node(node);
2725                         break;
2726                 }
2727         }
2728 }
2729
2730 /*
2731  * hugetlb init time:  register hstate attributes for all registered node
2732  * devices of nodes that have memory.  All on-line nodes should have
2733  * registered their associated device by this time.
2734  */
2735 static void __init hugetlb_register_all_nodes(void)
2736 {
2737         int nid;
2738
2739         for_each_node_state(nid, N_MEMORY) {
2740                 struct node *node = node_devices[nid];
2741                 if (node->dev.id == nid)
2742                         hugetlb_register_node(node);
2743         }
2744
2745         /*
2746          * Let the node device driver know we're here so it can
2747          * [un]register hstate attributes on node hotplug.
2748          */
2749         register_hugetlbfs_with_node(hugetlb_register_node,
2750                                      hugetlb_unregister_node);
2751 }
2752 #else   /* !CONFIG_NUMA */
2753
2754 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2755 {
2756         BUG();
2757         if (nidp)
2758                 *nidp = -1;
2759         return NULL;
2760 }
2761
2762 static void hugetlb_register_all_nodes(void) { }
2763
2764 #endif
2765
2766 static int __init hugetlb_init(void)
2767 {
2768         int i;
2769
2770         if (!hugepages_supported())
2771                 return 0;
2772
2773         if (!size_to_hstate(default_hstate_size)) {
2774                 if (default_hstate_size != 0) {
2775                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2776                                default_hstate_size, HPAGE_SIZE);
2777                 }
2778
2779                 default_hstate_size = HPAGE_SIZE;
2780                 if (!size_to_hstate(default_hstate_size))
2781                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2782         }
2783         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2784         if (default_hstate_max_huge_pages) {
2785                 if (!default_hstate.max_huge_pages)
2786                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2787         }
2788
2789         hugetlb_init_hstates();
2790         gather_bootmem_prealloc();
2791         report_hugepages();
2792
2793         hugetlb_sysfs_init();
2794         hugetlb_register_all_nodes();
2795         hugetlb_cgroup_file_init();
2796
2797 #ifdef CONFIG_SMP
2798         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2799 #else
2800         num_fault_mutexes = 1;
2801 #endif
2802         hugetlb_fault_mutex_table =
2803                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2804         BUG_ON(!hugetlb_fault_mutex_table);
2805
2806         for (i = 0; i < num_fault_mutexes; i++)
2807                 mutex_init(&hugetlb_fault_mutex_table[i]);
2808         return 0;
2809 }
2810 subsys_initcall(hugetlb_init);
2811
2812 /* Should be called on processing a hugepagesz=... option */
2813 void __init hugetlb_bad_size(void)
2814 {
2815         parsed_valid_hugepagesz = false;
2816 }
2817
2818 void __init hugetlb_add_hstate(unsigned int order)
2819 {
2820         struct hstate *h;
2821         unsigned long i;
2822
2823         if (size_to_hstate(PAGE_SIZE << order)) {
2824                 pr_warn("hugepagesz= specified twice, ignoring\n");
2825                 return;
2826         }
2827         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2828         BUG_ON(order == 0);
2829         h = &hstates[hugetlb_max_hstate++];
2830         h->order = order;
2831         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2832         h->nr_huge_pages = 0;
2833         h->free_huge_pages = 0;
2834         for (i = 0; i < MAX_NUMNODES; ++i)
2835                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2836         INIT_LIST_HEAD(&h->hugepage_activelist);
2837         h->next_nid_to_alloc = first_memory_node;
2838         h->next_nid_to_free = first_memory_node;
2839         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2840                                         huge_page_size(h)/1024);
2841
2842         parsed_hstate = h;
2843 }
2844
2845 static int __init hugetlb_nrpages_setup(char *s)
2846 {
2847         unsigned long *mhp;
2848         static unsigned long *last_mhp;
2849
2850         if (!parsed_valid_hugepagesz) {
2851                 pr_warn("hugepages = %s preceded by "
2852                         "an unsupported hugepagesz, ignoring\n", s);
2853                 parsed_valid_hugepagesz = true;
2854                 return 1;
2855         }
2856         /*
2857          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2858          * so this hugepages= parameter goes to the "default hstate".
2859          */
2860         else if (!hugetlb_max_hstate)
2861                 mhp = &default_hstate_max_huge_pages;
2862         else
2863                 mhp = &parsed_hstate->max_huge_pages;
2864
2865         if (mhp == last_mhp) {
2866                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2867                 return 1;
2868         }
2869
2870         if (sscanf(s, "%lu", mhp) <= 0)
2871                 *mhp = 0;
2872
2873         /*
2874          * Global state is always initialized later in hugetlb_init.
2875          * But we need to allocate >= MAX_ORDER hstates here early to still
2876          * use the bootmem allocator.
2877          */
2878         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2879                 hugetlb_hstate_alloc_pages(parsed_hstate);
2880
2881         last_mhp = mhp;
2882
2883         return 1;
2884 }
2885 __setup("hugepages=", hugetlb_nrpages_setup);
2886
2887 static int __init hugetlb_default_setup(char *s)
2888 {
2889         default_hstate_size = memparse(s, &s);
2890         return 1;
2891 }
2892 __setup("default_hugepagesz=", hugetlb_default_setup);
2893
2894 static unsigned int cpuset_mems_nr(unsigned int *array)
2895 {
2896         int node;
2897         unsigned int nr = 0;
2898
2899         for_each_node_mask(node, cpuset_current_mems_allowed)
2900                 nr += array[node];
2901
2902         return nr;
2903 }
2904
2905 #ifdef CONFIG_SYSCTL
2906 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2907                          struct ctl_table *table, int write,
2908                          void __user *buffer, size_t *length, loff_t *ppos)
2909 {
2910         struct hstate *h = &default_hstate;
2911         unsigned long tmp = h->max_huge_pages;
2912         int ret;
2913
2914         if (!hugepages_supported())
2915                 return -EOPNOTSUPP;
2916
2917         table->data = &tmp;
2918         table->maxlen = sizeof(unsigned long);
2919         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2920         if (ret)
2921                 goto out;
2922
2923         if (write)
2924                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2925                                                   NUMA_NO_NODE, tmp, *length);
2926 out:
2927         return ret;
2928 }
2929
2930 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2931                           void __user *buffer, size_t *length, loff_t *ppos)
2932 {
2933
2934         return hugetlb_sysctl_handler_common(false, table, write,
2935                                                         buffer, length, ppos);
2936 }
2937
2938 #ifdef CONFIG_NUMA
2939 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2940                           void __user *buffer, size_t *length, loff_t *ppos)
2941 {
2942         return hugetlb_sysctl_handler_common(true, table, write,
2943                                                         buffer, length, ppos);
2944 }
2945 #endif /* CONFIG_NUMA */
2946
2947 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2948                         void __user *buffer,
2949                         size_t *length, loff_t *ppos)
2950 {
2951         struct hstate *h = &default_hstate;
2952         unsigned long tmp;
2953         int ret;
2954
2955         if (!hugepages_supported())
2956                 return -EOPNOTSUPP;
2957
2958         tmp = h->nr_overcommit_huge_pages;
2959
2960         if (write && hstate_is_gigantic(h))
2961                 return -EINVAL;
2962
2963         table->data = &tmp;
2964         table->maxlen = sizeof(unsigned long);
2965         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2966         if (ret)
2967                 goto out;
2968
2969         if (write) {
2970                 spin_lock(&hugetlb_lock);
2971                 h->nr_overcommit_huge_pages = tmp;
2972                 spin_unlock(&hugetlb_lock);
2973         }
2974 out:
2975         return ret;
2976 }
2977
2978 #endif /* CONFIG_SYSCTL */
2979
2980 void hugetlb_report_meminfo(struct seq_file *m)
2981 {
2982         struct hstate *h;
2983         unsigned long total = 0;
2984
2985         if (!hugepages_supported())
2986                 return;
2987
2988         for_each_hstate(h) {
2989                 unsigned long count = h->nr_huge_pages;
2990
2991                 total += (PAGE_SIZE << huge_page_order(h)) * count;
2992
2993                 if (h == &default_hstate)
2994                         seq_printf(m,
2995                                    "HugePages_Total:   %5lu\n"
2996                                    "HugePages_Free:    %5lu\n"
2997                                    "HugePages_Rsvd:    %5lu\n"
2998                                    "HugePages_Surp:    %5lu\n"
2999                                    "Hugepagesize:   %8lu kB\n",
3000                                    count,
3001                                    h->free_huge_pages,
3002                                    h->resv_huge_pages,
3003                                    h->surplus_huge_pages,
3004                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3005         }
3006
3007         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3008 }
3009
3010 int hugetlb_report_node_meminfo(int nid, char *buf)
3011 {
3012         struct hstate *h = &default_hstate;
3013         if (!hugepages_supported())
3014                 return 0;
3015         return sprintf(buf,
3016                 "Node %d HugePages_Total: %5u\n"
3017                 "Node %d HugePages_Free:  %5u\n"
3018                 "Node %d HugePages_Surp:  %5u\n",
3019                 nid, h->nr_huge_pages_node[nid],
3020                 nid, h->free_huge_pages_node[nid],
3021                 nid, h->surplus_huge_pages_node[nid]);
3022 }
3023
3024 void hugetlb_show_meminfo(void)
3025 {
3026         struct hstate *h;
3027         int nid;
3028
3029         if (!hugepages_supported())
3030                 return;
3031
3032         for_each_node_state(nid, N_MEMORY)
3033                 for_each_hstate(h)
3034                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3035                                 nid,
3036                                 h->nr_huge_pages_node[nid],
3037                                 h->free_huge_pages_node[nid],
3038                                 h->surplus_huge_pages_node[nid],
3039                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3040 }
3041
3042 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3043 {
3044         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3045                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3046 }
3047
3048 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3049 unsigned long hugetlb_total_pages(void)
3050 {
3051         struct hstate *h;
3052         unsigned long nr_total_pages = 0;
3053
3054         for_each_hstate(h)
3055                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3056         return nr_total_pages;
3057 }
3058
3059 static int hugetlb_acct_memory(struct hstate *h, long delta)
3060 {
3061         int ret = -ENOMEM;
3062
3063         spin_lock(&hugetlb_lock);
3064         /*
3065          * When cpuset is configured, it breaks the strict hugetlb page
3066          * reservation as the accounting is done on a global variable. Such
3067          * reservation is completely rubbish in the presence of cpuset because
3068          * the reservation is not checked against page availability for the
3069          * current cpuset. Application can still potentially OOM'ed by kernel
3070          * with lack of free htlb page in cpuset that the task is in.
3071          * Attempt to enforce strict accounting with cpuset is almost
3072          * impossible (or too ugly) because cpuset is too fluid that
3073          * task or memory node can be dynamically moved between cpusets.
3074          *
3075          * The change of semantics for shared hugetlb mapping with cpuset is
3076          * undesirable. However, in order to preserve some of the semantics,
3077          * we fall back to check against current free page availability as
3078          * a best attempt and hopefully to minimize the impact of changing
3079          * semantics that cpuset has.
3080          */
3081         if (delta > 0) {
3082                 if (gather_surplus_pages(h, delta) < 0)
3083                         goto out;
3084
3085                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3086                         return_unused_surplus_pages(h, delta);
3087                         goto out;
3088                 }
3089         }
3090
3091         ret = 0;
3092         if (delta < 0)
3093                 return_unused_surplus_pages(h, (unsigned long) -delta);
3094
3095 out:
3096         spin_unlock(&hugetlb_lock);
3097         return ret;
3098 }
3099
3100 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3101 {
3102         struct resv_map *resv = vma_resv_map(vma);
3103
3104         /*
3105          * This new VMA should share its siblings reservation map if present.
3106          * The VMA will only ever have a valid reservation map pointer where
3107          * it is being copied for another still existing VMA.  As that VMA
3108          * has a reference to the reservation map it cannot disappear until
3109          * after this open call completes.  It is therefore safe to take a
3110          * new reference here without additional locking.
3111          */
3112         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3113                 kref_get(&resv->refs);
3114 }
3115
3116 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3117 {
3118         struct hstate *h = hstate_vma(vma);
3119         struct resv_map *resv = vma_resv_map(vma);
3120         struct hugepage_subpool *spool = subpool_vma(vma);
3121         unsigned long reserve, start, end;
3122         long gbl_reserve;
3123
3124         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3125                 return;
3126
3127         start = vma_hugecache_offset(h, vma, vma->vm_start);
3128         end = vma_hugecache_offset(h, vma, vma->vm_end);
3129
3130         reserve = (end - start) - region_count(resv, start, end);
3131
3132         kref_put(&resv->refs, resv_map_release);
3133
3134         if (reserve) {
3135                 /*
3136                  * Decrement reserve counts.  The global reserve count may be
3137                  * adjusted if the subpool has a minimum size.
3138                  */
3139                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3140                 hugetlb_acct_memory(h, -gbl_reserve);
3141         }
3142 }
3143
3144 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3145 {
3146         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3147                 return -EINVAL;
3148         return 0;
3149 }
3150
3151 /*
3152  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3153  * handle_mm_fault() to try to instantiate regular-sized pages in the
3154  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3155  * this far.
3156  */
3157 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3158 {
3159         BUG();
3160         return 0;
3161 }
3162
3163 const struct vm_operations_struct hugetlb_vm_ops = {
3164         .fault = hugetlb_vm_op_fault,
3165         .open = hugetlb_vm_op_open,
3166         .close = hugetlb_vm_op_close,
3167         .split = hugetlb_vm_op_split,
3168 };
3169
3170 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3171                                 int writable)
3172 {
3173         pte_t entry;
3174
3175         if (writable) {
3176                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3177                                          vma->vm_page_prot)));
3178         } else {
3179                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3180                                            vma->vm_page_prot));
3181         }
3182         entry = pte_mkyoung(entry);
3183         entry = pte_mkhuge(entry);
3184         entry = arch_make_huge_pte(entry, vma, page, writable);
3185
3186         return entry;
3187 }
3188
3189 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3190                                    unsigned long address, pte_t *ptep)
3191 {
3192         pte_t entry;
3193
3194         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3195         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3196                 update_mmu_cache(vma, address, ptep);
3197 }
3198
3199 bool is_hugetlb_entry_migration(pte_t pte)
3200 {
3201         swp_entry_t swp;
3202
3203         if (huge_pte_none(pte) || pte_present(pte))
3204                 return false;
3205         swp = pte_to_swp_entry(pte);
3206         if (non_swap_entry(swp) && is_migration_entry(swp))
3207                 return true;
3208         else
3209                 return false;
3210 }
3211
3212 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3213 {
3214         swp_entry_t swp;
3215
3216         if (huge_pte_none(pte) || pte_present(pte))
3217                 return 0;
3218         swp = pte_to_swp_entry(pte);
3219         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3220                 return 1;
3221         else
3222                 return 0;
3223 }
3224
3225 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3226                             struct vm_area_struct *vma)
3227 {
3228         pte_t *src_pte, *dst_pte, entry;
3229         struct page *ptepage;
3230         unsigned long addr;
3231         int cow;
3232         struct hstate *h = hstate_vma(vma);
3233         unsigned long sz = huge_page_size(h);
3234         unsigned long mmun_start;       /* For mmu_notifiers */
3235         unsigned long mmun_end;         /* For mmu_notifiers */
3236         int ret = 0;
3237
3238         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3239
3240         mmun_start = vma->vm_start;
3241         mmun_end = vma->vm_end;
3242         if (cow)
3243                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3244
3245         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3246                 spinlock_t *src_ptl, *dst_ptl;
3247                 src_pte = huge_pte_offset(src, addr, sz);
3248                 if (!src_pte)
3249                         continue;
3250                 dst_pte = huge_pte_alloc(dst, addr, sz);
3251                 if (!dst_pte) {
3252                         ret = -ENOMEM;
3253                         break;
3254                 }
3255
3256                 /* If the pagetables are shared don't copy or take references */
3257                 if (dst_pte == src_pte)
3258                         continue;
3259
3260                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3261                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3262                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3263                 entry = huge_ptep_get(src_pte);
3264                 if (huge_pte_none(entry)) { /* skip none entry */
3265                         ;
3266                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3267                                     is_hugetlb_entry_hwpoisoned(entry))) {
3268                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3269
3270                         if (is_write_migration_entry(swp_entry) && cow) {
3271                                 /*
3272                                  * COW mappings require pages in both
3273                                  * parent and child to be set to read.
3274                                  */
3275                                 make_migration_entry_read(&swp_entry);
3276                                 entry = swp_entry_to_pte(swp_entry);
3277                                 set_huge_swap_pte_at(src, addr, src_pte,
3278                                                      entry, sz);
3279                         }
3280                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3281                 } else {
3282                         if (cow) {
3283                                 /*
3284                                  * No need to notify as we are downgrading page
3285                                  * table protection not changing it to point
3286                                  * to a new page.
3287                                  *
3288                                  * See Documentation/vm/mmu_notifier.txt
3289                                  */
3290                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3291                         }
3292                         entry = huge_ptep_get(src_pte);
3293                         ptepage = pte_page(entry);
3294                         get_page(ptepage);
3295                         page_dup_rmap(ptepage, true);
3296                         set_huge_pte_at(dst, addr, dst_pte, entry);
3297                         hugetlb_count_add(pages_per_huge_page(h), dst);
3298                 }
3299                 spin_unlock(src_ptl);
3300                 spin_unlock(dst_ptl);
3301         }
3302
3303         if (cow)
3304                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3305
3306         return ret;
3307 }
3308
3309 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3310                             unsigned long start, unsigned long end,
3311                             struct page *ref_page)
3312 {
3313         struct mm_struct *mm = vma->vm_mm;
3314         unsigned long address;
3315         pte_t *ptep;
3316         pte_t pte;
3317         spinlock_t *ptl;
3318         struct page *page;
3319         struct hstate *h = hstate_vma(vma);
3320         unsigned long sz = huge_page_size(h);
3321         const unsigned long mmun_start = start; /* For mmu_notifiers */
3322         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3323
3324         WARN_ON(!is_vm_hugetlb_page(vma));
3325         BUG_ON(start & ~huge_page_mask(h));
3326         BUG_ON(end & ~huge_page_mask(h));
3327
3328         /*
3329          * This is a hugetlb vma, all the pte entries should point
3330          * to huge page.
3331          */
3332         tlb_remove_check_page_size_change(tlb, sz);
3333         tlb_start_vma(tlb, vma);
3334         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3335         address = start;
3336         for (; address < end; address += sz) {
3337                 ptep = huge_pte_offset(mm, address, sz);
3338                 if (!ptep)
3339                         continue;
3340
3341                 ptl = huge_pte_lock(h, mm, ptep);
3342                 if (huge_pmd_unshare(mm, &address, ptep)) {
3343                         spin_unlock(ptl);
3344                         continue;
3345                 }
3346
3347                 pte = huge_ptep_get(ptep);
3348                 if (huge_pte_none(pte)) {
3349                         spin_unlock(ptl);
3350                         continue;
3351                 }
3352
3353                 /*
3354                  * Migrating hugepage or HWPoisoned hugepage is already
3355                  * unmapped and its refcount is dropped, so just clear pte here.
3356                  */
3357                 if (unlikely(!pte_present(pte))) {
3358                         huge_pte_clear(mm, address, ptep, sz);
3359                         spin_unlock(ptl);
3360                         continue;
3361                 }
3362
3363                 page = pte_page(pte);
3364                 /*
3365                  * If a reference page is supplied, it is because a specific
3366                  * page is being unmapped, not a range. Ensure the page we
3367                  * are about to unmap is the actual page of interest.
3368                  */
3369                 if (ref_page) {
3370                         if (page != ref_page) {
3371                                 spin_unlock(ptl);
3372                                 continue;
3373                         }
3374                         /*
3375                          * Mark the VMA as having unmapped its page so that
3376                          * future faults in this VMA will fail rather than
3377                          * looking like data was lost
3378                          */
3379                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3380                 }
3381
3382                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3383                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3384                 if (huge_pte_dirty(pte))
3385                         set_page_dirty(page);
3386
3387                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3388                 page_remove_rmap(page, true);
3389
3390                 spin_unlock(ptl);
3391                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3392                 /*
3393                  * Bail out after unmapping reference page if supplied
3394                  */
3395                 if (ref_page)
3396                         break;
3397         }
3398         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3399         tlb_end_vma(tlb, vma);
3400 }
3401
3402 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3403                           struct vm_area_struct *vma, unsigned long start,
3404                           unsigned long end, struct page *ref_page)
3405 {
3406         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3407
3408         /*
3409          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3410          * test will fail on a vma being torn down, and not grab a page table
3411          * on its way out.  We're lucky that the flag has such an appropriate
3412          * name, and can in fact be safely cleared here. We could clear it
3413          * before the __unmap_hugepage_range above, but all that's necessary
3414          * is to clear it before releasing the i_mmap_rwsem. This works
3415          * because in the context this is called, the VMA is about to be
3416          * destroyed and the i_mmap_rwsem is held.
3417          */
3418         vma->vm_flags &= ~VM_MAYSHARE;
3419 }
3420
3421 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3422                           unsigned long end, struct page *ref_page)
3423 {
3424         struct mm_struct *mm;
3425         struct mmu_gather tlb;
3426
3427         mm = vma->vm_mm;
3428
3429         tlb_gather_mmu(&tlb, mm, start, end);
3430         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3431         tlb_finish_mmu(&tlb, start, end);
3432 }
3433
3434 /*
3435  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3436  * mappping it owns the reserve page for. The intention is to unmap the page
3437  * from other VMAs and let the children be SIGKILLed if they are faulting the
3438  * same region.
3439  */
3440 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3441                               struct page *page, unsigned long address)
3442 {
3443         struct hstate *h = hstate_vma(vma);
3444         struct vm_area_struct *iter_vma;
3445         struct address_space *mapping;
3446         pgoff_t pgoff;
3447
3448         /*
3449          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3450          * from page cache lookup which is in HPAGE_SIZE units.
3451          */
3452         address = address & huge_page_mask(h);
3453         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3454                         vma->vm_pgoff;
3455         mapping = vma->vm_file->f_mapping;
3456
3457         /*
3458          * Take the mapping lock for the duration of the table walk. As
3459          * this mapping should be shared between all the VMAs,
3460          * __unmap_hugepage_range() is called as the lock is already held
3461          */
3462         i_mmap_lock_write(mapping);
3463         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3464                 /* Do not unmap the current VMA */
3465                 if (iter_vma == vma)
3466                         continue;
3467
3468                 /*
3469                  * Shared VMAs have their own reserves and do not affect
3470                  * MAP_PRIVATE accounting but it is possible that a shared
3471                  * VMA is using the same page so check and skip such VMAs.
3472                  */
3473                 if (iter_vma->vm_flags & VM_MAYSHARE)
3474                         continue;
3475
3476                 /*
3477                  * Unmap the page from other VMAs without their own reserves.
3478                  * They get marked to be SIGKILLed if they fault in these
3479                  * areas. This is because a future no-page fault on this VMA
3480                  * could insert a zeroed page instead of the data existing
3481                  * from the time of fork. This would look like data corruption
3482                  */
3483                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3484                         unmap_hugepage_range(iter_vma, address,
3485                                              address + huge_page_size(h), page);
3486         }
3487         i_mmap_unlock_write(mapping);
3488 }
3489
3490 /*
3491  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3492  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3493  * cannot race with other handlers or page migration.
3494  * Keep the pte_same checks anyway to make transition from the mutex easier.
3495  */
3496 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3497                        unsigned long address, pte_t *ptep,
3498                        struct page *pagecache_page, spinlock_t *ptl)
3499 {
3500         pte_t pte;
3501         struct hstate *h = hstate_vma(vma);
3502         struct page *old_page, *new_page;
3503         int ret = 0, outside_reserve = 0;
3504         unsigned long mmun_start;       /* For mmu_notifiers */
3505         unsigned long mmun_end;         /* For mmu_notifiers */
3506
3507         pte = huge_ptep_get(ptep);
3508         old_page = pte_page(pte);
3509
3510 retry_avoidcopy:
3511         /* If no-one else is actually using this page, avoid the copy
3512          * and just make the page writable */
3513         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3514                 page_move_anon_rmap(old_page, vma);
3515                 set_huge_ptep_writable(vma, address, ptep);
3516                 return 0;
3517         }
3518
3519         /*
3520          * If the process that created a MAP_PRIVATE mapping is about to
3521          * perform a COW due to a shared page count, attempt to satisfy
3522          * the allocation without using the existing reserves. The pagecache
3523          * page is used to determine if the reserve at this address was
3524          * consumed or not. If reserves were used, a partial faulted mapping
3525          * at the time of fork() could consume its reserves on COW instead
3526          * of the full address range.
3527          */
3528         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3529                         old_page != pagecache_page)
3530                 outside_reserve = 1;
3531
3532         get_page(old_page);
3533
3534         /*
3535          * Drop page table lock as buddy allocator may be called. It will
3536          * be acquired again before returning to the caller, as expected.
3537          */
3538         spin_unlock(ptl);
3539         new_page = alloc_huge_page(vma, address, outside_reserve);
3540
3541         if (IS_ERR(new_page)) {
3542                 /*
3543                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3544                  * it is due to references held by a child and an insufficient
3545                  * huge page pool. To guarantee the original mappers
3546                  * reliability, unmap the page from child processes. The child
3547                  * may get SIGKILLed if it later faults.
3548                  */
3549                 if (outside_reserve) {
3550                         put_page(old_page);
3551                         BUG_ON(huge_pte_none(pte));
3552                         unmap_ref_private(mm, vma, old_page, address);
3553                         BUG_ON(huge_pte_none(pte));
3554                         spin_lock(ptl);
3555                         ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3556                                                huge_page_size(h));
3557                         if (likely(ptep &&
3558                                    pte_same(huge_ptep_get(ptep), pte)))
3559                                 goto retry_avoidcopy;
3560                         /*
3561                          * race occurs while re-acquiring page table
3562                          * lock, and our job is done.
3563                          */
3564                         return 0;
3565                 }
3566
3567                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3568                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3569                 goto out_release_old;
3570         }
3571
3572         /*
3573          * When the original hugepage is shared one, it does not have
3574          * anon_vma prepared.
3575          */
3576         if (unlikely(anon_vma_prepare(vma))) {
3577                 ret = VM_FAULT_OOM;
3578                 goto out_release_all;
3579         }
3580
3581         copy_user_huge_page(new_page, old_page, address, vma,
3582                             pages_per_huge_page(h));
3583         __SetPageUptodate(new_page);
3584         set_page_huge_active(new_page);
3585
3586         mmun_start = address & huge_page_mask(h);
3587         mmun_end = mmun_start + huge_page_size(h);
3588         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3589
3590         /*
3591          * Retake the page table lock to check for racing updates
3592          * before the page tables are altered
3593          */
3594         spin_lock(ptl);
3595         ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3596                                huge_page_size(h));
3597         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3598                 ClearPagePrivate(new_page);
3599
3600                 /* Break COW */
3601                 huge_ptep_clear_flush(vma, address, ptep);
3602                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3603                 set_huge_pte_at(mm, address, ptep,
3604                                 make_huge_pte(vma, new_page, 1));
3605                 page_remove_rmap(old_page, true);
3606                 hugepage_add_new_anon_rmap(new_page, vma, address);
3607                 /* Make the old page be freed below */
3608                 new_page = old_page;
3609         }
3610         spin_unlock(ptl);
3611         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3612 out_release_all:
3613         restore_reserve_on_error(h, vma, address, new_page);
3614         put_page(new_page);
3615 out_release_old:
3616         put_page(old_page);
3617
3618         spin_lock(ptl); /* Caller expects lock to be held */
3619         return ret;
3620 }
3621
3622 /* Return the pagecache page at a given address within a VMA */
3623 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3624                         struct vm_area_struct *vma, unsigned long address)
3625 {
3626         struct address_space *mapping;
3627         pgoff_t idx;
3628
3629         mapping = vma->vm_file->f_mapping;
3630         idx = vma_hugecache_offset(h, vma, address);
3631
3632         return find_lock_page(mapping, idx);
3633 }
3634
3635 /*
3636  * Return whether there is a pagecache page to back given address within VMA.
3637  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3638  */
3639 static bool hugetlbfs_pagecache_present(struct hstate *h,
3640                         struct vm_area_struct *vma, unsigned long address)
3641 {
3642         struct address_space *mapping;
3643         pgoff_t idx;
3644         struct page *page;
3645
3646         mapping = vma->vm_file->f_mapping;
3647         idx = vma_hugecache_offset(h, vma, address);
3648
3649         page = find_get_page(mapping, idx);
3650         if (page)
3651                 put_page(page);
3652         return page != NULL;
3653 }
3654
3655 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3656                            pgoff_t idx)
3657 {
3658         struct inode *inode = mapping->host;
3659         struct hstate *h = hstate_inode(inode);
3660         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3661
3662         if (err)
3663                 return err;
3664         ClearPagePrivate(page);
3665
3666         spin_lock(&inode->i_lock);
3667         inode->i_blocks += blocks_per_huge_page(h);
3668         spin_unlock(&inode->i_lock);
3669         return 0;
3670 }
3671
3672 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3673                            struct address_space *mapping, pgoff_t idx,
3674                            unsigned long address, pte_t *ptep, unsigned int flags)
3675 {
3676         struct hstate *h = hstate_vma(vma);
3677         int ret = VM_FAULT_SIGBUS;
3678         int anon_rmap = 0;
3679         unsigned long size;
3680         struct page *page;
3681         pte_t new_pte;
3682         spinlock_t *ptl;
3683
3684         /*
3685          * Currently, we are forced to kill the process in the event the
3686          * original mapper has unmapped pages from the child due to a failed
3687          * COW. Warn that such a situation has occurred as it may not be obvious
3688          */
3689         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3690                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3691                            current->pid);
3692                 return ret;
3693         }
3694
3695         /*
3696          * Use page lock to guard against racing truncation
3697          * before we get page_table_lock.
3698          */
3699 retry:
3700         page = find_lock_page(mapping, idx);
3701         if (!page) {
3702                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3703                 if (idx >= size)
3704                         goto out;
3705
3706                 /*
3707                  * Check for page in userfault range
3708                  */
3709                 if (userfaultfd_missing(vma)) {
3710                         u32 hash;
3711                         struct vm_fault vmf = {
3712                                 .vma = vma,
3713                                 .address = address,
3714                                 .flags = flags,
3715                                 /*
3716                                  * Hard to debug if it ends up being
3717                                  * used by a callee that assumes
3718                                  * something about the other
3719                                  * uninitialized fields... same as in
3720                                  * memory.c
3721                                  */
3722                         };
3723
3724                         /*
3725                          * hugetlb_fault_mutex must be dropped before
3726                          * handling userfault.  Reacquire after handling
3727                          * fault to make calling code simpler.
3728                          */
3729                         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3730                                                         idx, address);
3731                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3732                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3733                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3734                         goto out;
3735                 }
3736
3737                 page = alloc_huge_page(vma, address, 0);
3738                 if (IS_ERR(page)) {
3739                         ret = PTR_ERR(page);
3740                         if (ret == -ENOMEM)
3741                                 ret = VM_FAULT_OOM;
3742                         else
3743                                 ret = VM_FAULT_SIGBUS;
3744                         goto out;
3745                 }
3746                 clear_huge_page(page, address, pages_per_huge_page(h));
3747                 __SetPageUptodate(page);
3748                 set_page_huge_active(page);
3749
3750                 if (vma->vm_flags & VM_MAYSHARE) {
3751                         int err = huge_add_to_page_cache(page, mapping, idx);
3752                         if (err) {
3753                                 put_page(page);
3754                                 if (err == -EEXIST)
3755                                         goto retry;
3756                                 goto out;
3757                         }
3758                 } else {
3759                         lock_page(page);
3760                         if (unlikely(anon_vma_prepare(vma))) {
3761                                 ret = VM_FAULT_OOM;
3762                                 goto backout_unlocked;
3763                         }
3764                         anon_rmap = 1;
3765                 }
3766         } else {
3767                 /*
3768                  * If memory error occurs between mmap() and fault, some process
3769                  * don't have hwpoisoned swap entry for errored virtual address.
3770                  * So we need to block hugepage fault by PG_hwpoison bit check.
3771                  */
3772                 if (unlikely(PageHWPoison(page))) {
3773                         ret = VM_FAULT_HWPOISON |
3774                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3775                         goto backout_unlocked;
3776                 }
3777         }
3778
3779         /*
3780          * If we are going to COW a private mapping later, we examine the
3781          * pending reservations for this page now. This will ensure that
3782          * any allocations necessary to record that reservation occur outside
3783          * the spinlock.
3784          */
3785         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3786                 if (vma_needs_reservation(h, vma, address) < 0) {
3787                         ret = VM_FAULT_OOM;
3788                         goto backout_unlocked;
3789                 }
3790                 /* Just decrements count, does not deallocate */
3791                 vma_end_reservation(h, vma, address);
3792         }
3793
3794         ptl = huge_pte_lock(h, mm, ptep);
3795         size = i_size_read(mapping->host) >> huge_page_shift(h);
3796         if (idx >= size)
3797                 goto backout;
3798
3799         ret = 0;
3800         if (!huge_pte_none(huge_ptep_get(ptep)))
3801                 goto backout;
3802
3803         if (anon_rmap) {
3804                 ClearPagePrivate(page);
3805                 hugepage_add_new_anon_rmap(page, vma, address);
3806         } else
3807                 page_dup_rmap(page, true);
3808         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3809                                 && (vma->vm_flags & VM_SHARED)));
3810         set_huge_pte_at(mm, address, ptep, new_pte);
3811
3812         hugetlb_count_add(pages_per_huge_page(h), mm);
3813         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3814                 /* Optimization, do the COW without a second fault */
3815                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3816         }
3817
3818         spin_unlock(ptl);
3819         unlock_page(page);
3820 out:
3821         return ret;
3822
3823 backout:
3824         spin_unlock(ptl);
3825 backout_unlocked:
3826         unlock_page(page);
3827         restore_reserve_on_error(h, vma, address, page);
3828         put_page(page);
3829         goto out;
3830 }
3831
3832 #ifdef CONFIG_SMP
3833 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3834                             struct vm_area_struct *vma,
3835                             struct address_space *mapping,
3836                             pgoff_t idx, unsigned long address)
3837 {
3838         unsigned long key[2];
3839         u32 hash;
3840
3841         if (vma->vm_flags & VM_SHARED) {
3842                 key[0] = (unsigned long) mapping;
3843                 key[1] = idx;
3844         } else {
3845                 key[0] = (unsigned long) mm;
3846                 key[1] = address >> huge_page_shift(h);
3847         }
3848
3849         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3850
3851         return hash & (num_fault_mutexes - 1);
3852 }
3853 #else
3854 /*
3855  * For uniprocesor systems we always use a single mutex, so just
3856  * return 0 and avoid the hashing overhead.
3857  */
3858 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3859                             struct vm_area_struct *vma,
3860                             struct address_space *mapping,
3861                             pgoff_t idx, unsigned long address)
3862 {
3863         return 0;
3864 }
3865 #endif
3866
3867 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3868                         unsigned long address, unsigned int flags)
3869 {
3870         pte_t *ptep, entry;
3871         spinlock_t *ptl;
3872         int ret;
3873         u32 hash;
3874         pgoff_t idx;
3875         struct page *page = NULL;
3876         struct page *pagecache_page = NULL;
3877         struct hstate *h = hstate_vma(vma);
3878         struct address_space *mapping;
3879         int need_wait_lock = 0;
3880
3881         address &= huge_page_mask(h);
3882
3883         ptep = huge_pte_offset(mm, address, huge_page_size(h));
3884         if (ptep) {
3885                 entry = huge_ptep_get(ptep);
3886                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3887                         migration_entry_wait_huge(vma, mm, ptep);
3888                         return 0;
3889                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3890                         return VM_FAULT_HWPOISON_LARGE |
3891                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3892         } else {
3893                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3894                 if (!ptep)
3895                         return VM_FAULT_OOM;
3896         }
3897
3898         mapping = vma->vm_file->f_mapping;
3899         idx = vma_hugecache_offset(h, vma, address);
3900
3901         /*
3902          * Serialize hugepage allocation and instantiation, so that we don't
3903          * get spurious allocation failures if two CPUs race to instantiate
3904          * the same page in the page cache.
3905          */
3906         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3907         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3908
3909         entry = huge_ptep_get(ptep);
3910         if (huge_pte_none(entry)) {
3911                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3912                 goto out_mutex;
3913         }
3914
3915         ret = 0;
3916
3917         /*
3918          * entry could be a migration/hwpoison entry at this point, so this
3919          * check prevents the kernel from going below assuming that we have
3920          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3921          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3922          * handle it.
3923          */
3924         if (!pte_present(entry))
3925                 goto out_mutex;
3926
3927         /*
3928          * If we are going to COW the mapping later, we examine the pending
3929          * reservations for this page now. This will ensure that any
3930          * allocations necessary to record that reservation occur outside the
3931          * spinlock. For private mappings, we also lookup the pagecache
3932          * page now as it is used to determine if a reservation has been
3933          * consumed.
3934          */
3935         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3936                 if (vma_needs_reservation(h, vma, address) < 0) {
3937                         ret = VM_FAULT_OOM;
3938                         goto out_mutex;
3939                 }
3940                 /* Just decrements count, does not deallocate */
3941                 vma_end_reservation(h, vma, address);
3942
3943                 if (!(vma->vm_flags & VM_MAYSHARE))
3944                         pagecache_page = hugetlbfs_pagecache_page(h,
3945                                                                 vma, address);
3946         }
3947
3948         ptl = huge_pte_lock(h, mm, ptep);
3949
3950         /* Check for a racing update before calling hugetlb_cow */
3951         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3952                 goto out_ptl;
3953
3954         /*
3955          * hugetlb_cow() requires page locks of pte_page(entry) and
3956          * pagecache_page, so here we need take the former one
3957          * when page != pagecache_page or !pagecache_page.
3958          */
3959         page = pte_page(entry);
3960         if (page != pagecache_page)
3961                 if (!trylock_page(page)) {
3962                         need_wait_lock = 1;
3963                         goto out_ptl;
3964                 }
3965
3966         get_page(page);
3967
3968         if (flags & FAULT_FLAG_WRITE) {
3969                 if (!huge_pte_write(entry)) {
3970                         ret = hugetlb_cow(mm, vma, address, ptep,
3971                                           pagecache_page, ptl);
3972                         goto out_put_page;
3973                 }
3974                 entry = huge_pte_mkdirty(entry);
3975         }
3976         entry = pte_mkyoung(entry);
3977         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3978                                                 flags & FAULT_FLAG_WRITE))
3979                 update_mmu_cache(vma, address, ptep);
3980 out_put_page:
3981         if (page != pagecache_page)
3982                 unlock_page(page);
3983         put_page(page);
3984 out_ptl:
3985         spin_unlock(ptl);
3986
3987         if (pagecache_page) {
3988                 unlock_page(pagecache_page);
3989                 put_page(pagecache_page);
3990         }
3991 out_mutex:
3992         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3993         /*
3994          * Generally it's safe to hold refcount during waiting page lock. But
3995          * here we just wait to defer the next page fault to avoid busy loop and
3996          * the page is not used after unlocked before returning from the current
3997          * page fault. So we are safe from accessing freed page, even if we wait
3998          * here without taking refcount.
3999          */
4000         if (need_wait_lock)
4001                 wait_on_page_locked(page);
4002         return ret;
4003 }
4004
4005 /*
4006  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4007  * modifications for huge pages.
4008  */
4009 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4010                             pte_t *dst_pte,
4011                             struct vm_area_struct *dst_vma,
4012                             unsigned long dst_addr,
4013                             unsigned long src_addr,
4014                             struct page **pagep)
4015 {
4016         struct address_space *mapping;
4017         pgoff_t idx;
4018         unsigned long size;
4019         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4020         struct hstate *h = hstate_vma(dst_vma);
4021         pte_t _dst_pte;
4022         spinlock_t *ptl;
4023         int ret;
4024         struct page *page;
4025
4026         if (!*pagep) {
4027                 ret = -ENOMEM;
4028                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4029                 if (IS_ERR(page))
4030                         goto out;
4031
4032                 ret = copy_huge_page_from_user(page,
4033                                                 (const void __user *) src_addr,
4034                                                 pages_per_huge_page(h), false);
4035
4036                 /* fallback to copy_from_user outside mmap_sem */
4037                 if (unlikely(ret)) {
4038                         ret = -EFAULT;
4039                         *pagep = page;
4040                         /* don't free the page */
4041                         goto out;
4042                 }
4043         } else {
4044                 page = *pagep;
4045                 *pagep = NULL;
4046         }
4047
4048         /*
4049          * The memory barrier inside __SetPageUptodate makes sure that
4050          * preceding stores to the page contents become visible before
4051          * the set_pte_at() write.
4052          */
4053         __SetPageUptodate(page);
4054         set_page_huge_active(page);
4055
4056         mapping = dst_vma->vm_file->f_mapping;
4057         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4058
4059         /*
4060          * If shared, add to page cache
4061          */
4062         if (vm_shared) {
4063                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4064                 ret = -EFAULT;
4065                 if (idx >= size)
4066                         goto out_release_nounlock;
4067
4068                 /*
4069                  * Serialization between remove_inode_hugepages() and
4070                  * huge_add_to_page_cache() below happens through the
4071                  * hugetlb_fault_mutex_table that here must be hold by
4072                  * the caller.
4073                  */
4074                 ret = huge_add_to_page_cache(page, mapping, idx);
4075                 if (ret)
4076                         goto out_release_nounlock;
4077         }
4078
4079         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4080         spin_lock(ptl);
4081
4082         /*
4083          * Recheck the i_size after holding PT lock to make sure not
4084          * to leave any page mapped (as page_mapped()) beyond the end
4085          * of the i_size (remove_inode_hugepages() is strict about
4086          * enforcing that). If we bail out here, we'll also leave a
4087          * page in the radix tree in the vm_shared case beyond the end
4088          * of the i_size, but remove_inode_hugepages() will take care
4089          * of it as soon as we drop the hugetlb_fault_mutex_table.
4090          */
4091         size = i_size_read(mapping->host) >> huge_page_shift(h);
4092         ret = -EFAULT;
4093         if (idx >= size)
4094                 goto out_release_unlock;
4095
4096         ret = -EEXIST;
4097         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4098                 goto out_release_unlock;
4099
4100         if (vm_shared) {
4101                 page_dup_rmap(page, true);
4102         } else {
4103                 ClearPagePrivate(page);
4104                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4105         }
4106
4107         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4108         if (dst_vma->vm_flags & VM_WRITE)
4109                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4110         _dst_pte = pte_mkyoung(_dst_pte);
4111
4112         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4113
4114         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4115                                         dst_vma->vm_flags & VM_WRITE);
4116         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4117
4118         /* No need to invalidate - it was non-present before */
4119         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4120
4121         spin_unlock(ptl);
4122         if (vm_shared)
4123                 unlock_page(page);
4124         ret = 0;
4125 out:
4126         return ret;
4127 out_release_unlock:
4128         spin_unlock(ptl);
4129         if (vm_shared)
4130                 unlock_page(page);
4131 out_release_nounlock:
4132         put_page(page);
4133         goto out;
4134 }
4135
4136 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4137                          struct page **pages, struct vm_area_struct **vmas,
4138                          unsigned long *position, unsigned long *nr_pages,
4139                          long i, unsigned int flags, int *nonblocking)
4140 {
4141         unsigned long pfn_offset;
4142         unsigned long vaddr = *position;
4143         unsigned long remainder = *nr_pages;
4144         struct hstate *h = hstate_vma(vma);
4145         int err = -EFAULT;
4146
4147         while (vaddr < vma->vm_end && remainder) {
4148                 pte_t *pte;
4149                 spinlock_t *ptl = NULL;
4150                 int absent;
4151                 struct page *page;
4152
4153                 /*
4154                  * If we have a pending SIGKILL, don't keep faulting pages and
4155                  * potentially allocating memory.
4156                  */
4157                 if (unlikely(fatal_signal_pending(current))) {
4158                         remainder = 0;
4159                         break;
4160                 }
4161
4162                 /*
4163                  * Some archs (sparc64, sh*) have multiple pte_ts to
4164                  * each hugepage.  We have to make sure we get the
4165                  * first, for the page indexing below to work.
4166                  *
4167                  * Note that page table lock is not held when pte is null.
4168                  */
4169                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4170                                       huge_page_size(h));
4171                 if (pte)
4172                         ptl = huge_pte_lock(h, mm, pte);
4173                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4174
4175                 /*
4176                  * When coredumping, it suits get_dump_page if we just return
4177                  * an error where there's an empty slot with no huge pagecache
4178                  * to back it.  This way, we avoid allocating a hugepage, and
4179                  * the sparse dumpfile avoids allocating disk blocks, but its
4180                  * huge holes still show up with zeroes where they need to be.
4181                  */
4182                 if (absent && (flags & FOLL_DUMP) &&
4183                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4184                         if (pte)
4185                                 spin_unlock(ptl);
4186                         remainder = 0;
4187                         break;
4188                 }
4189
4190                 /*
4191                  * We need call hugetlb_fault for both hugepages under migration
4192                  * (in which case hugetlb_fault waits for the migration,) and
4193                  * hwpoisoned hugepages (in which case we need to prevent the
4194                  * caller from accessing to them.) In order to do this, we use
4195                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4196                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4197                  * both cases, and because we can't follow correct pages
4198                  * directly from any kind of swap entries.
4199                  */
4200                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4201                     ((flags & FOLL_WRITE) &&
4202                       !huge_pte_write(huge_ptep_get(pte)))) {
4203                         int ret;
4204                         unsigned int fault_flags = 0;
4205
4206                         if (pte)
4207                                 spin_unlock(ptl);
4208                         if (flags & FOLL_WRITE)
4209                                 fault_flags |= FAULT_FLAG_WRITE;
4210                         if (nonblocking)
4211                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4212                         if (flags & FOLL_NOWAIT)
4213                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4214                                         FAULT_FLAG_RETRY_NOWAIT;
4215                         if (flags & FOLL_TRIED) {
4216                                 VM_WARN_ON_ONCE(fault_flags &
4217                                                 FAULT_FLAG_ALLOW_RETRY);
4218                                 fault_flags |= FAULT_FLAG_TRIED;
4219                         }
4220                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4221                         if (ret & VM_FAULT_ERROR) {
4222                                 err = vm_fault_to_errno(ret, flags);
4223                                 remainder = 0;
4224                                 break;
4225                         }
4226                         if (ret & VM_FAULT_RETRY) {
4227                                 if (nonblocking)
4228                                         *nonblocking = 0;
4229                                 *nr_pages = 0;
4230                                 /*
4231                                  * VM_FAULT_RETRY must not return an
4232                                  * error, it will return zero
4233                                  * instead.
4234                                  *
4235                                  * No need to update "position" as the
4236                                  * caller will not check it after
4237                                  * *nr_pages is set to 0.
4238                                  */
4239                                 return i;
4240                         }
4241                         continue;
4242                 }
4243
4244                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4245                 page = pte_page(huge_ptep_get(pte));
4246 same_page:
4247                 if (pages) {
4248                         pages[i] = mem_map_offset(page, pfn_offset);
4249                         get_page(pages[i]);
4250                 }
4251
4252                 if (vmas)
4253                         vmas[i] = vma;
4254
4255                 vaddr += PAGE_SIZE;
4256                 ++pfn_offset;
4257                 --remainder;
4258                 ++i;
4259                 if (vaddr < vma->vm_end && remainder &&
4260                                 pfn_offset < pages_per_huge_page(h)) {
4261                         /*
4262                          * We use pfn_offset to avoid touching the pageframes
4263                          * of this compound page.
4264                          */
4265                         goto same_page;
4266                 }
4267                 spin_unlock(ptl);
4268         }
4269         *nr_pages = remainder;
4270         /*
4271          * setting position is actually required only if remainder is
4272          * not zero but it's faster not to add a "if (remainder)"
4273          * branch.
4274          */
4275         *position = vaddr;
4276
4277         return i ? i : err;
4278 }
4279
4280 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4281 /*
4282  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4283  * implement this.
4284  */
4285 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4286 #endif
4287
4288 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4289                 unsigned long address, unsigned long end, pgprot_t newprot)
4290 {
4291         struct mm_struct *mm = vma->vm_mm;
4292         unsigned long start = address;
4293         pte_t *ptep;
4294         pte_t pte;
4295         struct hstate *h = hstate_vma(vma);
4296         unsigned long pages = 0;
4297
4298         BUG_ON(address >= end);
4299         flush_cache_range(vma, address, end);
4300
4301         mmu_notifier_invalidate_range_start(mm, start, end);
4302         i_mmap_lock_write(vma->vm_file->f_mapping);
4303         for (; address < end; address += huge_page_size(h)) {
4304                 spinlock_t *ptl;
4305                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4306                 if (!ptep)
4307                         continue;
4308                 ptl = huge_pte_lock(h, mm, ptep);
4309                 if (huge_pmd_unshare(mm, &address, ptep)) {
4310                         pages++;
4311                         spin_unlock(ptl);
4312                         continue;
4313                 }
4314                 pte = huge_ptep_get(ptep);
4315                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4316                         spin_unlock(ptl);
4317                         continue;
4318                 }
4319                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4320                         swp_entry_t entry = pte_to_swp_entry(pte);
4321
4322                         if (is_write_migration_entry(entry)) {
4323                                 pte_t newpte;
4324
4325                                 make_migration_entry_read(&entry);
4326                                 newpte = swp_entry_to_pte(entry);
4327                                 set_huge_swap_pte_at(mm, address, ptep,
4328                                                      newpte, huge_page_size(h));
4329                                 pages++;
4330                         }
4331                         spin_unlock(ptl);
4332                         continue;
4333                 }
4334                 if (!huge_pte_none(pte)) {
4335                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4336                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4337                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4338                         set_huge_pte_at(mm, address, ptep, pte);
4339                         pages++;
4340                 }
4341                 spin_unlock(ptl);
4342         }
4343         /*
4344          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4345          * may have cleared our pud entry and done put_page on the page table:
4346          * once we release i_mmap_rwsem, another task can do the final put_page
4347          * and that page table be reused and filled with junk.
4348          */
4349         flush_hugetlb_tlb_range(vma, start, end);
4350         /*
4351          * No need to call mmu_notifier_invalidate_range() we are downgrading
4352          * page table protection not changing it to point to a new page.
4353          *
4354          * See Documentation/vm/mmu_notifier.txt
4355          */
4356         i_mmap_unlock_write(vma->vm_file->f_mapping);
4357         mmu_notifier_invalidate_range_end(mm, start, end);
4358
4359         return pages << h->order;
4360 }
4361
4362 int hugetlb_reserve_pages(struct inode *inode,
4363                                         long from, long to,
4364                                         struct vm_area_struct *vma,
4365                                         vm_flags_t vm_flags)
4366 {
4367         long ret, chg;
4368         struct hstate *h = hstate_inode(inode);
4369         struct hugepage_subpool *spool = subpool_inode(inode);
4370         struct resv_map *resv_map;
4371         long gbl_reserve;
4372
4373         /*
4374          * Only apply hugepage reservation if asked. At fault time, an
4375          * attempt will be made for VM_NORESERVE to allocate a page
4376          * without using reserves
4377          */
4378         if (vm_flags & VM_NORESERVE)
4379                 return 0;
4380
4381         /*
4382          * Shared mappings base their reservation on the number of pages that
4383          * are already allocated on behalf of the file. Private mappings need
4384          * to reserve the full area even if read-only as mprotect() may be
4385          * called to make the mapping read-write. Assume !vma is a shm mapping
4386          */
4387         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4388                 resv_map = inode_resv_map(inode);
4389
4390                 chg = region_chg(resv_map, from, to);
4391
4392         } else {
4393                 resv_map = resv_map_alloc();
4394                 if (!resv_map)
4395                         return -ENOMEM;
4396
4397                 chg = to - from;
4398
4399                 set_vma_resv_map(vma, resv_map);
4400                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4401         }
4402
4403         if (chg < 0) {
4404                 ret = chg;
4405                 goto out_err;
4406         }
4407
4408         /*
4409          * There must be enough pages in the subpool for the mapping. If
4410          * the subpool has a minimum size, there may be some global
4411          * reservations already in place (gbl_reserve).
4412          */
4413         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4414         if (gbl_reserve < 0) {
4415                 ret = -ENOSPC;
4416                 goto out_err;
4417         }
4418
4419         /*
4420          * Check enough hugepages are available for the reservation.
4421          * Hand the pages back to the subpool if there are not
4422          */
4423         ret = hugetlb_acct_memory(h, gbl_reserve);
4424         if (ret < 0) {
4425                 /* put back original number of pages, chg */
4426                 (void)hugepage_subpool_put_pages(spool, chg);
4427                 goto out_err;
4428         }
4429
4430         /*
4431          * Account for the reservations made. Shared mappings record regions
4432          * that have reservations as they are shared by multiple VMAs.
4433          * When the last VMA disappears, the region map says how much
4434          * the reservation was and the page cache tells how much of
4435          * the reservation was consumed. Private mappings are per-VMA and
4436          * only the consumed reservations are tracked. When the VMA
4437          * disappears, the original reservation is the VMA size and the
4438          * consumed reservations are stored in the map. Hence, nothing
4439          * else has to be done for private mappings here
4440          */
4441         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4442                 long add = region_add(resv_map, from, to);
4443
4444                 if (unlikely(chg > add)) {
4445                         /*
4446                          * pages in this range were added to the reserve
4447                          * map between region_chg and region_add.  This
4448                          * indicates a race with alloc_huge_page.  Adjust
4449                          * the subpool and reserve counts modified above
4450                          * based on the difference.
4451                          */
4452                         long rsv_adjust;
4453
4454                         rsv_adjust = hugepage_subpool_put_pages(spool,
4455                                                                 chg - add);
4456                         hugetlb_acct_memory(h, -rsv_adjust);
4457                 }
4458         }
4459         return 0;
4460 out_err:
4461         if (!vma || vma->vm_flags & VM_MAYSHARE)
4462                 /* Don't call region_abort if region_chg failed */
4463                 if (chg >= 0)
4464                         region_abort(resv_map, from, to);
4465         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4466                 kref_put(&resv_map->refs, resv_map_release);
4467         return ret;
4468 }
4469
4470 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4471                                                                 long freed)
4472 {
4473         struct hstate *h = hstate_inode(inode);
4474         struct resv_map *resv_map = inode_resv_map(inode);
4475         long chg = 0;
4476         struct hugepage_subpool *spool = subpool_inode(inode);
4477         long gbl_reserve;
4478
4479         if (resv_map) {
4480                 chg = region_del(resv_map, start, end);
4481                 /*
4482                  * region_del() can fail in the rare case where a region
4483                  * must be split and another region descriptor can not be
4484                  * allocated.  If end == LONG_MAX, it will not fail.
4485                  */
4486                 if (chg < 0)
4487                         return chg;
4488         }
4489
4490         spin_lock(&inode->i_lock);
4491         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4492         spin_unlock(&inode->i_lock);
4493
4494         /*
4495          * If the subpool has a minimum size, the number of global
4496          * reservations to be released may be adjusted.
4497          */
4498         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4499         hugetlb_acct_memory(h, -gbl_reserve);
4500
4501         return 0;
4502 }
4503
4504 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4505 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4506                                 struct vm_area_struct *vma,
4507                                 unsigned long addr, pgoff_t idx)
4508 {
4509         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4510                                 svma->vm_start;
4511         unsigned long sbase = saddr & PUD_MASK;
4512         unsigned long s_end = sbase + PUD_SIZE;
4513
4514         /* Allow segments to share if only one is marked locked */
4515         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4516         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4517
4518         /*
4519          * match the virtual addresses, permission and the alignment of the
4520          * page table page.
4521          */
4522         if (pmd_index(addr) != pmd_index(saddr) ||
4523             vm_flags != svm_flags ||
4524             sbase < svma->vm_start || svma->vm_end < s_end)
4525                 return 0;
4526
4527         return saddr;
4528 }
4529
4530 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4531 {
4532         unsigned long base = addr & PUD_MASK;
4533         unsigned long end = base + PUD_SIZE;
4534
4535         /*
4536          * check on proper vm_flags and page table alignment
4537          */
4538         if (vma->vm_flags & VM_MAYSHARE &&
4539             vma->vm_start <= base && end <= vma->vm_end)
4540                 return true;
4541         return false;
4542 }
4543
4544 /*
4545  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4546  * and returns the corresponding pte. While this is not necessary for the
4547  * !shared pmd case because we can allocate the pmd later as well, it makes the
4548  * code much cleaner. pmd allocation is essential for the shared case because
4549  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4550  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4551  * bad pmd for sharing.
4552  */
4553 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4554 {
4555         struct vm_area_struct *vma = find_vma(mm, addr);
4556         struct address_space *mapping = vma->vm_file->f_mapping;
4557         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4558                         vma->vm_pgoff;
4559         struct vm_area_struct *svma;
4560         unsigned long saddr;
4561         pte_t *spte = NULL;
4562         pte_t *pte;
4563         spinlock_t *ptl;
4564
4565         if (!vma_shareable(vma, addr))
4566                 return (pte_t *)pmd_alloc(mm, pud, addr);
4567
4568         i_mmap_lock_write(mapping);
4569         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4570                 if (svma == vma)
4571                         continue;
4572
4573                 saddr = page_table_shareable(svma, vma, addr, idx);
4574                 if (saddr) {
4575                         spte = huge_pte_offset(svma->vm_mm, saddr,
4576                                                vma_mmu_pagesize(svma));
4577                         if (spte) {
4578                                 get_page(virt_to_page(spte));
4579                                 break;
4580                         }
4581                 }
4582         }
4583
4584         if (!spte)
4585                 goto out;
4586
4587         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4588         if (pud_none(*pud)) {
4589                 pud_populate(mm, pud,
4590                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4591                 mm_inc_nr_pmds(mm);
4592         } else {
4593                 put_page(virt_to_page(spte));
4594         }
4595         spin_unlock(ptl);
4596 out:
4597         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4598         i_mmap_unlock_write(mapping);
4599         return pte;
4600 }
4601
4602 /*
4603  * unmap huge page backed by shared pte.
4604  *
4605  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4606  * indicated by page_count > 1, unmap is achieved by clearing pud and
4607  * decrementing the ref count. If count == 1, the pte page is not shared.
4608  *
4609  * called with page table lock held.
4610  *
4611  * returns: 1 successfully unmapped a shared pte page
4612  *          0 the underlying pte page is not shared, or it is the last user
4613  */
4614 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4615 {
4616         pgd_t *pgd = pgd_offset(mm, *addr);
4617         p4d_t *p4d = p4d_offset(pgd, *addr);
4618         pud_t *pud = pud_offset(p4d, *addr);
4619
4620         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4621         if (page_count(virt_to_page(ptep)) == 1)
4622                 return 0;
4623
4624         pud_clear(pud);
4625         put_page(virt_to_page(ptep));
4626         mm_dec_nr_pmds(mm);
4627         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4628         return 1;
4629 }
4630 #define want_pmd_share()        (1)
4631 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4632 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4633 {
4634         return NULL;
4635 }
4636
4637 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4638 {
4639         return 0;
4640 }
4641 #define want_pmd_share()        (0)
4642 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4643
4644 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4645 pte_t *huge_pte_alloc(struct mm_struct *mm,
4646                         unsigned long addr, unsigned long sz)
4647 {
4648         pgd_t *pgd;
4649         p4d_t *p4d;
4650         pud_t *pud;
4651         pte_t *pte = NULL;
4652
4653         pgd = pgd_offset(mm, addr);
4654         p4d = p4d_alloc(mm, pgd, addr);
4655         if (!p4d)
4656                 return NULL;
4657         pud = pud_alloc(mm, p4d, addr);
4658         if (pud) {
4659                 if (sz == PUD_SIZE) {
4660                         pte = (pte_t *)pud;
4661                 } else {
4662                         BUG_ON(sz != PMD_SIZE);
4663                         if (want_pmd_share() && pud_none(*pud))
4664                                 pte = huge_pmd_share(mm, addr, pud);
4665                         else
4666                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4667                 }
4668         }
4669         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4670
4671         return pte;
4672 }
4673
4674 /*
4675  * huge_pte_offset() - Walk the page table to resolve the hugepage
4676  * entry at address @addr
4677  *
4678  * Return: Pointer to page table or swap entry (PUD or PMD) for
4679  * address @addr, or NULL if a p*d_none() entry is encountered and the
4680  * size @sz doesn't match the hugepage size at this level of the page
4681  * table.
4682  */
4683 pte_t *huge_pte_offset(struct mm_struct *mm,
4684                        unsigned long addr, unsigned long sz)
4685 {
4686         pgd_t *pgd;
4687         p4d_t *p4d;
4688         pud_t *pud;
4689         pmd_t *pmd;
4690
4691         pgd = pgd_offset(mm, addr);
4692         if (!pgd_present(*pgd))
4693                 return NULL;
4694         p4d = p4d_offset(pgd, addr);
4695         if (!p4d_present(*p4d))
4696                 return NULL;
4697
4698         pud = pud_offset(p4d, addr);
4699         if (sz != PUD_SIZE && pud_none(*pud))
4700                 return NULL;
4701         /* hugepage or swap? */
4702         if (pud_huge(*pud) || !pud_present(*pud))
4703                 return (pte_t *)pud;
4704
4705         pmd = pmd_offset(pud, addr);
4706         if (sz != PMD_SIZE && pmd_none(*pmd))
4707                 return NULL;
4708         /* hugepage or swap? */
4709         if (pmd_huge(*pmd) || !pmd_present(*pmd))
4710                 return (pte_t *)pmd;
4711
4712         return NULL;
4713 }
4714
4715 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4716
4717 /*
4718  * These functions are overwritable if your architecture needs its own
4719  * behavior.
4720  */
4721 struct page * __weak
4722 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4723                               int write)
4724 {
4725         return ERR_PTR(-EINVAL);
4726 }
4727
4728 struct page * __weak
4729 follow_huge_pd(struct vm_area_struct *vma,
4730                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4731 {
4732         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4733         return NULL;
4734 }
4735
4736 struct page * __weak
4737 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4738                 pmd_t *pmd, int flags)
4739 {
4740         struct page *page = NULL;
4741         spinlock_t *ptl;
4742         pte_t pte;
4743 retry:
4744         ptl = pmd_lockptr(mm, pmd);
4745         spin_lock(ptl);
4746         /*
4747          * make sure that the address range covered by this pmd is not
4748          * unmapped from other threads.
4749          */
4750         if (!pmd_huge(*pmd))
4751                 goto out;
4752         pte = huge_ptep_get((pte_t *)pmd);
4753         if (pte_present(pte)) {
4754                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4755                 if (flags & FOLL_GET)
4756                         get_page(page);
4757         } else {
4758                 if (is_hugetlb_entry_migration(pte)) {
4759                         spin_unlock(ptl);
4760                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4761                         goto retry;
4762                 }
4763                 /*
4764                  * hwpoisoned entry is treated as no_page_table in
4765                  * follow_page_mask().
4766                  */
4767         }
4768 out:
4769         spin_unlock(ptl);
4770         return page;
4771 }
4772
4773 struct page * __weak
4774 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4775                 pud_t *pud, int flags)
4776 {
4777         if (flags & FOLL_GET)
4778                 return NULL;
4779
4780         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4781 }
4782
4783 struct page * __weak
4784 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4785 {
4786         if (flags & FOLL_GET)
4787                 return NULL;
4788
4789         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4790 }
4791
4792 bool isolate_huge_page(struct page *page, struct list_head *list)
4793 {
4794         bool ret = true;
4795
4796         VM_BUG_ON_PAGE(!PageHead(page), page);
4797         spin_lock(&hugetlb_lock);
4798         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4799                 ret = false;
4800                 goto unlock;
4801         }
4802         clear_page_huge_active(page);
4803         list_move_tail(&page->lru, list);
4804 unlock:
4805         spin_unlock(&hugetlb_lock);
4806         return ret;
4807 }
4808
4809 void putback_active_hugepage(struct page *page)
4810 {
4811         VM_BUG_ON_PAGE(!PageHead(page), page);
4812         spin_lock(&hugetlb_lock);
4813         set_page_huge_active(page);
4814         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4815         spin_unlock(&hugetlb_lock);
4816         put_page(page);
4817 }
4818
4819 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4820 {
4821         struct hstate *h = page_hstate(oldpage);
4822
4823         hugetlb_cgroup_migrate(oldpage, newpage);
4824         set_page_owner_migrate_reason(newpage, reason);
4825
4826         /*
4827          * transfer temporary state of the new huge page. This is
4828          * reverse to other transitions because the newpage is going to
4829          * be final while the old one will be freed so it takes over
4830          * the temporary status.
4831          *
4832          * Also note that we have to transfer the per-node surplus state
4833          * here as well otherwise the global surplus count will not match
4834          * the per-node's.
4835          */
4836         if (PageHugeTemporary(newpage)) {
4837                 int old_nid = page_to_nid(oldpage);
4838                 int new_nid = page_to_nid(newpage);
4839
4840                 SetPageHugeTemporary(oldpage);
4841                 ClearPageHugeTemporary(newpage);
4842
4843                 spin_lock(&hugetlb_lock);
4844                 if (h->surplus_huge_pages_node[old_nid]) {
4845                         h->surplus_huge_pages_node[old_nid]--;
4846                         h->surplus_huge_pages_node[new_nid]++;
4847                 }
4848                 spin_unlock(&hugetlb_lock);
4849         }
4850 }
This page took 0.293977 seconds and 4 git commands to generate.