]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/e1000e/netdev.c
pinctrl: sunxi: Disable strict mode for H5 driver
[linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <[email protected]>
18  * e1000-devel Mailing List <[email protected]>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61         [board_82571]           = &e1000_82571_info,
62         [board_82572]           = &e1000_82572_info,
63         [board_82573]           = &e1000_82573_info,
64         [board_82574]           = &e1000_82574_info,
65         [board_82583]           = &e1000_82583_info,
66         [board_80003es2lan]     = &e1000_es2_info,
67         [board_ich8lan]         = &e1000_ich8_info,
68         [board_ich9lan]         = &e1000_ich9_info,
69         [board_ich10lan]        = &e1000_ich10_info,
70         [board_pchlan]          = &e1000_pch_info,
71         [board_pch2lan]         = &e1000_pch2_info,
72         [board_pch_lpt]         = &e1000_pch_lpt_info,
73         [board_pch_spt]         = &e1000_pch_spt_info,
74         [board_pch_cnp]         = &e1000_pch_cnp_info,
75 };
76
77 struct e1000_reg_info {
78         u32 ofs;
79         char *name;
80 };
81
82 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
83         /* General Registers */
84         {E1000_CTRL, "CTRL"},
85         {E1000_STATUS, "STATUS"},
86         {E1000_CTRL_EXT, "CTRL_EXT"},
87
88         /* Interrupt Registers */
89         {E1000_ICR, "ICR"},
90
91         /* Rx Registers */
92         {E1000_RCTL, "RCTL"},
93         {E1000_RDLEN(0), "RDLEN"},
94         {E1000_RDH(0), "RDH"},
95         {E1000_RDT(0), "RDT"},
96         {E1000_RDTR, "RDTR"},
97         {E1000_RXDCTL(0), "RXDCTL"},
98         {E1000_ERT, "ERT"},
99         {E1000_RDBAL(0), "RDBAL"},
100         {E1000_RDBAH(0), "RDBAH"},
101         {E1000_RDFH, "RDFH"},
102         {E1000_RDFT, "RDFT"},
103         {E1000_RDFHS, "RDFHS"},
104         {E1000_RDFTS, "RDFTS"},
105         {E1000_RDFPC, "RDFPC"},
106
107         /* Tx Registers */
108         {E1000_TCTL, "TCTL"},
109         {E1000_TDBAL(0), "TDBAL"},
110         {E1000_TDBAH(0), "TDBAH"},
111         {E1000_TDLEN(0), "TDLEN"},
112         {E1000_TDH(0), "TDH"},
113         {E1000_TDT(0), "TDT"},
114         {E1000_TIDV, "TIDV"},
115         {E1000_TXDCTL(0), "TXDCTL"},
116         {E1000_TADV, "TADV"},
117         {E1000_TARC(0), "TARC"},
118         {E1000_TDFH, "TDFH"},
119         {E1000_TDFT, "TDFT"},
120         {E1000_TDFHS, "TDFHS"},
121         {E1000_TDFTS, "TDFTS"},
122         {E1000_TDFPC, "TDFPC"},
123
124         /* List Terminator */
125         {0, NULL}
126 };
127
128 /**
129  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
130  * @hw: pointer to the HW structure
131  *
132  * When updating the MAC CSR registers, the Manageability Engine (ME) could
133  * be accessing the registers at the same time.  Normally, this is handled in
134  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
135  * accesses later than it should which could result in the register to have
136  * an incorrect value.  Workaround this by checking the FWSM register which
137  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
138  * and try again a number of times.
139  **/
140 s32 __ew32_prepare(struct e1000_hw *hw)
141 {
142         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
143
144         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
145                 udelay(50);
146
147         return i;
148 }
149
150 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
151 {
152         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
153                 __ew32_prepare(hw);
154
155         writel(val, hw->hw_addr + reg);
156 }
157
158 /**
159  * e1000_regdump - register printout routine
160  * @hw: pointer to the HW structure
161  * @reginfo: pointer to the register info table
162  **/
163 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
164 {
165         int n = 0;
166         char rname[16];
167         u32 regs[8];
168
169         switch (reginfo->ofs) {
170         case E1000_RXDCTL(0):
171                 for (n = 0; n < 2; n++)
172                         regs[n] = __er32(hw, E1000_RXDCTL(n));
173                 break;
174         case E1000_TXDCTL(0):
175                 for (n = 0; n < 2; n++)
176                         regs[n] = __er32(hw, E1000_TXDCTL(n));
177                 break;
178         case E1000_TARC(0):
179                 for (n = 0; n < 2; n++)
180                         regs[n] = __er32(hw, E1000_TARC(n));
181                 break;
182         default:
183                 pr_info("%-15s %08x\n",
184                         reginfo->name, __er32(hw, reginfo->ofs));
185                 return;
186         }
187
188         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
189         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
190 }
191
192 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
193                                  struct e1000_buffer *bi)
194 {
195         int i;
196         struct e1000_ps_page *ps_page;
197
198         for (i = 0; i < adapter->rx_ps_pages; i++) {
199                 ps_page = &bi->ps_pages[i];
200
201                 if (ps_page->page) {
202                         pr_info("packet dump for ps_page %d:\n", i);
203                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
204                                        16, 1, page_address(ps_page->page),
205                                        PAGE_SIZE, true);
206                 }
207         }
208 }
209
210 /**
211  * e1000e_dump - Print registers, Tx-ring and Rx-ring
212  * @adapter: board private structure
213  **/
214 static void e1000e_dump(struct e1000_adapter *adapter)
215 {
216         struct net_device *netdev = adapter->netdev;
217         struct e1000_hw *hw = &adapter->hw;
218         struct e1000_reg_info *reginfo;
219         struct e1000_ring *tx_ring = adapter->tx_ring;
220         struct e1000_tx_desc *tx_desc;
221         struct my_u0 {
222                 __le64 a;
223                 __le64 b;
224         } *u0;
225         struct e1000_buffer *buffer_info;
226         struct e1000_ring *rx_ring = adapter->rx_ring;
227         union e1000_rx_desc_packet_split *rx_desc_ps;
228         union e1000_rx_desc_extended *rx_desc;
229         struct my_u1 {
230                 __le64 a;
231                 __le64 b;
232                 __le64 c;
233                 __le64 d;
234         } *u1;
235         u32 staterr;
236         int i = 0;
237
238         if (!netif_msg_hw(adapter))
239                 return;
240
241         /* Print netdevice Info */
242         if (netdev) {
243                 dev_info(&adapter->pdev->dev, "Net device Info\n");
244                 pr_info("Device Name     state            trans_start\n");
245                 pr_info("%-15s %016lX %016lX\n", netdev->name,
246                         netdev->state, dev_trans_start(netdev));
247         }
248
249         /* Print Registers */
250         dev_info(&adapter->pdev->dev, "Register Dump\n");
251         pr_info(" Register Name   Value\n");
252         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
253              reginfo->name; reginfo++) {
254                 e1000_regdump(hw, reginfo);
255         }
256
257         /* Print Tx Ring Summary */
258         if (!netdev || !netif_running(netdev))
259                 return;
260
261         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
262         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
263         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
264         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
265                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
266                 (unsigned long long)buffer_info->dma,
267                 buffer_info->length,
268                 buffer_info->next_to_watch,
269                 (unsigned long long)buffer_info->time_stamp);
270
271         /* Print Tx Ring */
272         if (!netif_msg_tx_done(adapter))
273                 goto rx_ring_summary;
274
275         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
276
277         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
278          *
279          * Legacy Transmit Descriptor
280          *   +--------------------------------------------------------------+
281          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
282          *   +--------------------------------------------------------------+
283          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
284          *   +--------------------------------------------------------------+
285          *   63       48 47        36 35    32 31     24 23    16 15        0
286          *
287          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
288          *   63      48 47    40 39       32 31             16 15    8 7      0
289          *   +----------------------------------------------------------------+
290          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
291          *   +----------------------------------------------------------------+
292          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
293          *   +----------------------------------------------------------------+
294          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
295          *
296          * Extended Data Descriptor (DTYP=0x1)
297          *   +----------------------------------------------------------------+
298          * 0 |                     Buffer Address [63:0]                      |
299          *   +----------------------------------------------------------------+
300          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
301          *   +----------------------------------------------------------------+
302          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
303          */
304         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
305         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
306         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
307         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
308                 const char *next_desc;
309                 tx_desc = E1000_TX_DESC(*tx_ring, i);
310                 buffer_info = &tx_ring->buffer_info[i];
311                 u0 = (struct my_u0 *)tx_desc;
312                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
313                         next_desc = " NTC/U";
314                 else if (i == tx_ring->next_to_use)
315                         next_desc = " NTU";
316                 else if (i == tx_ring->next_to_clean)
317                         next_desc = " NTC";
318                 else
319                         next_desc = "";
320                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
321                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
322                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
323                         i,
324                         (unsigned long long)le64_to_cpu(u0->a),
325                         (unsigned long long)le64_to_cpu(u0->b),
326                         (unsigned long long)buffer_info->dma,
327                         buffer_info->length, buffer_info->next_to_watch,
328                         (unsigned long long)buffer_info->time_stamp,
329                         buffer_info->skb, next_desc);
330
331                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
332                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
333                                        16, 1, buffer_info->skb->data,
334                                        buffer_info->skb->len, true);
335         }
336
337         /* Print Rx Ring Summary */
338 rx_ring_summary:
339         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
340         pr_info("Queue [NTU] [NTC]\n");
341         pr_info(" %5d %5X %5X\n",
342                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
343
344         /* Print Rx Ring */
345         if (!netif_msg_rx_status(adapter))
346                 return;
347
348         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
349         switch (adapter->rx_ps_pages) {
350         case 1:
351         case 2:
352         case 3:
353                 /* [Extended] Packet Split Receive Descriptor Format
354                  *
355                  *    +-----------------------------------------------------+
356                  *  0 |                Buffer Address 0 [63:0]              |
357                  *    +-----------------------------------------------------+
358                  *  8 |                Buffer Address 1 [63:0]              |
359                  *    +-----------------------------------------------------+
360                  * 16 |                Buffer Address 2 [63:0]              |
361                  *    +-----------------------------------------------------+
362                  * 24 |                Buffer Address 3 [63:0]              |
363                  *    +-----------------------------------------------------+
364                  */
365                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
366                 /* [Extended] Receive Descriptor (Write-Back) Format
367                  *
368                  *   63       48 47    32 31     13 12    8 7    4 3        0
369                  *   +------------------------------------------------------+
370                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
371                  *   | Checksum | Ident  |         | Queue |      |  Type   |
372                  *   +------------------------------------------------------+
373                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
374                  *   +------------------------------------------------------+
375                  *   63       48 47    32 31            20 19               0
376                  */
377                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
378                 for (i = 0; i < rx_ring->count; i++) {
379                         const char *next_desc;
380                         buffer_info = &rx_ring->buffer_info[i];
381                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
382                         u1 = (struct my_u1 *)rx_desc_ps;
383                         staterr =
384                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
385
386                         if (i == rx_ring->next_to_use)
387                                 next_desc = " NTU";
388                         else if (i == rx_ring->next_to_clean)
389                                 next_desc = " NTC";
390                         else
391                                 next_desc = "";
392
393                         if (staterr & E1000_RXD_STAT_DD) {
394                                 /* Descriptor Done */
395                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
396                                         "RWB", i,
397                                         (unsigned long long)le64_to_cpu(u1->a),
398                                         (unsigned long long)le64_to_cpu(u1->b),
399                                         (unsigned long long)le64_to_cpu(u1->c),
400                                         (unsigned long long)le64_to_cpu(u1->d),
401                                         buffer_info->skb, next_desc);
402                         } else {
403                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
404                                         "R  ", i,
405                                         (unsigned long long)le64_to_cpu(u1->a),
406                                         (unsigned long long)le64_to_cpu(u1->b),
407                                         (unsigned long long)le64_to_cpu(u1->c),
408                                         (unsigned long long)le64_to_cpu(u1->d),
409                                         (unsigned long long)buffer_info->dma,
410                                         buffer_info->skb, next_desc);
411
412                                 if (netif_msg_pktdata(adapter))
413                                         e1000e_dump_ps_pages(adapter,
414                                                              buffer_info);
415                         }
416                 }
417                 break;
418         default:
419         case 0:
420                 /* Extended Receive Descriptor (Read) Format
421                  *
422                  *   +-----------------------------------------------------+
423                  * 0 |                Buffer Address [63:0]                |
424                  *   +-----------------------------------------------------+
425                  * 8 |                      Reserved                       |
426                  *   +-----------------------------------------------------+
427                  */
428                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
429                 /* Extended Receive Descriptor (Write-Back) Format
430                  *
431                  *   63       48 47    32 31    24 23            4 3        0
432                  *   +------------------------------------------------------+
433                  *   |     RSS Hash      |        |               |         |
434                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
435                  *   | Packet   | IP     |        |               |  Type   |
436                  *   | Checksum | Ident  |        |               |         |
437                  *   +------------------------------------------------------+
438                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
439                  *   +------------------------------------------------------+
440                  *   63       48 47    32 31            20 19               0
441                  */
442                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
443
444                 for (i = 0; i < rx_ring->count; i++) {
445                         const char *next_desc;
446
447                         buffer_info = &rx_ring->buffer_info[i];
448                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
449                         u1 = (struct my_u1 *)rx_desc;
450                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
451
452                         if (i == rx_ring->next_to_use)
453                                 next_desc = " NTU";
454                         else if (i == rx_ring->next_to_clean)
455                                 next_desc = " NTC";
456                         else
457                                 next_desc = "";
458
459                         if (staterr & E1000_RXD_STAT_DD) {
460                                 /* Descriptor Done */
461                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
462                                         "RWB", i,
463                                         (unsigned long long)le64_to_cpu(u1->a),
464                                         (unsigned long long)le64_to_cpu(u1->b),
465                                         buffer_info->skb, next_desc);
466                         } else {
467                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
468                                         "R  ", i,
469                                         (unsigned long long)le64_to_cpu(u1->a),
470                                         (unsigned long long)le64_to_cpu(u1->b),
471                                         (unsigned long long)buffer_info->dma,
472                                         buffer_info->skb, next_desc);
473
474                                 if (netif_msg_pktdata(adapter) &&
475                                     buffer_info->skb)
476                                         print_hex_dump(KERN_INFO, "",
477                                                        DUMP_PREFIX_ADDRESS, 16,
478                                                        1,
479                                                        buffer_info->skb->data,
480                                                        adapter->rx_buffer_len,
481                                                        true);
482                         }
483                 }
484         }
485 }
486
487 /**
488  * e1000_desc_unused - calculate if we have unused descriptors
489  **/
490 static int e1000_desc_unused(struct e1000_ring *ring)
491 {
492         if (ring->next_to_clean > ring->next_to_use)
493                 return ring->next_to_clean - ring->next_to_use - 1;
494
495         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
496 }
497
498 /**
499  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
500  * @adapter: board private structure
501  * @hwtstamps: time stamp structure to update
502  * @systim: unsigned 64bit system time value.
503  *
504  * Convert the system time value stored in the RX/TXSTMP registers into a
505  * hwtstamp which can be used by the upper level time stamping functions.
506  *
507  * The 'systim_lock' spinlock is used to protect the consistency of the
508  * system time value. This is needed because reading the 64 bit time
509  * value involves reading two 32 bit registers. The first read latches the
510  * value.
511  **/
512 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
513                                       struct skb_shared_hwtstamps *hwtstamps,
514                                       u64 systim)
515 {
516         u64 ns;
517         unsigned long flags;
518
519         spin_lock_irqsave(&adapter->systim_lock, flags);
520         ns = timecounter_cyc2time(&adapter->tc, systim);
521         spin_unlock_irqrestore(&adapter->systim_lock, flags);
522
523         memset(hwtstamps, 0, sizeof(*hwtstamps));
524         hwtstamps->hwtstamp = ns_to_ktime(ns);
525 }
526
527 /**
528  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
529  * @adapter: board private structure
530  * @status: descriptor extended error and status field
531  * @skb: particular skb to include time stamp
532  *
533  * If the time stamp is valid, convert it into the timecounter ns value
534  * and store that result into the shhwtstamps structure which is passed
535  * up the network stack.
536  **/
537 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
538                                struct sk_buff *skb)
539 {
540         struct e1000_hw *hw = &adapter->hw;
541         u64 rxstmp;
542
543         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
544             !(status & E1000_RXDEXT_STATERR_TST) ||
545             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
546                 return;
547
548         /* The Rx time stamp registers contain the time stamp.  No other
549          * received packet will be time stamped until the Rx time stamp
550          * registers are read.  Because only one packet can be time stamped
551          * at a time, the register values must belong to this packet and
552          * therefore none of the other additional attributes need to be
553          * compared.
554          */
555         rxstmp = (u64)er32(RXSTMPL);
556         rxstmp |= (u64)er32(RXSTMPH) << 32;
557         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
558
559         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
560 }
561
562 /**
563  * e1000_receive_skb - helper function to handle Rx indications
564  * @adapter: board private structure
565  * @staterr: descriptor extended error and status field as written by hardware
566  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
567  * @skb: pointer to sk_buff to be indicated to stack
568  **/
569 static void e1000_receive_skb(struct e1000_adapter *adapter,
570                               struct net_device *netdev, struct sk_buff *skb,
571                               u32 staterr, __le16 vlan)
572 {
573         u16 tag = le16_to_cpu(vlan);
574
575         e1000e_rx_hwtstamp(adapter, staterr, skb);
576
577         skb->protocol = eth_type_trans(skb, netdev);
578
579         if (staterr & E1000_RXD_STAT_VP)
580                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
581
582         napi_gro_receive(&adapter->napi, skb);
583 }
584
585 /**
586  * e1000_rx_checksum - Receive Checksum Offload
587  * @adapter: board private structure
588  * @status_err: receive descriptor status and error fields
589  * @csum: receive descriptor csum field
590  * @sk_buff: socket buffer with received data
591  **/
592 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
593                               struct sk_buff *skb)
594 {
595         u16 status = (u16)status_err;
596         u8 errors = (u8)(status_err >> 24);
597
598         skb_checksum_none_assert(skb);
599
600         /* Rx checksum disabled */
601         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
602                 return;
603
604         /* Ignore Checksum bit is set */
605         if (status & E1000_RXD_STAT_IXSM)
606                 return;
607
608         /* TCP/UDP checksum error bit or IP checksum error bit is set */
609         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
610                 /* let the stack verify checksum errors */
611                 adapter->hw_csum_err++;
612                 return;
613         }
614
615         /* TCP/UDP Checksum has not been calculated */
616         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
617                 return;
618
619         /* It must be a TCP or UDP packet with a valid checksum */
620         skb->ip_summed = CHECKSUM_UNNECESSARY;
621         adapter->hw_csum_good++;
622 }
623
624 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
625 {
626         struct e1000_adapter *adapter = rx_ring->adapter;
627         struct e1000_hw *hw = &adapter->hw;
628         s32 ret_val = __ew32_prepare(hw);
629
630         writel(i, rx_ring->tail);
631
632         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
633                 u32 rctl = er32(RCTL);
634
635                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
636                 e_err("ME firmware caused invalid RDT - resetting\n");
637                 schedule_work(&adapter->reset_task);
638         }
639 }
640
641 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
642 {
643         struct e1000_adapter *adapter = tx_ring->adapter;
644         struct e1000_hw *hw = &adapter->hw;
645         s32 ret_val = __ew32_prepare(hw);
646
647         writel(i, tx_ring->tail);
648
649         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
650                 u32 tctl = er32(TCTL);
651
652                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
653                 e_err("ME firmware caused invalid TDT - resetting\n");
654                 schedule_work(&adapter->reset_task);
655         }
656 }
657
658 /**
659  * e1000_alloc_rx_buffers - Replace used receive buffers
660  * @rx_ring: Rx descriptor ring
661  **/
662 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
663                                    int cleaned_count, gfp_t gfp)
664 {
665         struct e1000_adapter *adapter = rx_ring->adapter;
666         struct net_device *netdev = adapter->netdev;
667         struct pci_dev *pdev = adapter->pdev;
668         union e1000_rx_desc_extended *rx_desc;
669         struct e1000_buffer *buffer_info;
670         struct sk_buff *skb;
671         unsigned int i;
672         unsigned int bufsz = adapter->rx_buffer_len;
673
674         i = rx_ring->next_to_use;
675         buffer_info = &rx_ring->buffer_info[i];
676
677         while (cleaned_count--) {
678                 skb = buffer_info->skb;
679                 if (skb) {
680                         skb_trim(skb, 0);
681                         goto map_skb;
682                 }
683
684                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
685                 if (!skb) {
686                         /* Better luck next round */
687                         adapter->alloc_rx_buff_failed++;
688                         break;
689                 }
690
691                 buffer_info->skb = skb;
692 map_skb:
693                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
694                                                   adapter->rx_buffer_len,
695                                                   DMA_FROM_DEVICE);
696                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
697                         dev_err(&pdev->dev, "Rx DMA map failed\n");
698                         adapter->rx_dma_failed++;
699                         break;
700                 }
701
702                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
703                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
704
705                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
706                         /* Force memory writes to complete before letting h/w
707                          * know there are new descriptors to fetch.  (Only
708                          * applicable for weak-ordered memory model archs,
709                          * such as IA-64).
710                          */
711                         wmb();
712                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
713                                 e1000e_update_rdt_wa(rx_ring, i);
714                         else
715                                 writel(i, rx_ring->tail);
716                 }
717                 i++;
718                 if (i == rx_ring->count)
719                         i = 0;
720                 buffer_info = &rx_ring->buffer_info[i];
721         }
722
723         rx_ring->next_to_use = i;
724 }
725
726 /**
727  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
728  * @rx_ring: Rx descriptor ring
729  **/
730 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
731                                       int cleaned_count, gfp_t gfp)
732 {
733         struct e1000_adapter *adapter = rx_ring->adapter;
734         struct net_device *netdev = adapter->netdev;
735         struct pci_dev *pdev = adapter->pdev;
736         union e1000_rx_desc_packet_split *rx_desc;
737         struct e1000_buffer *buffer_info;
738         struct e1000_ps_page *ps_page;
739         struct sk_buff *skb;
740         unsigned int i, j;
741
742         i = rx_ring->next_to_use;
743         buffer_info = &rx_ring->buffer_info[i];
744
745         while (cleaned_count--) {
746                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
747
748                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
749                         ps_page = &buffer_info->ps_pages[j];
750                         if (j >= adapter->rx_ps_pages) {
751                                 /* all unused desc entries get hw null ptr */
752                                 rx_desc->read.buffer_addr[j + 1] =
753                                     ~cpu_to_le64(0);
754                                 continue;
755                         }
756                         if (!ps_page->page) {
757                                 ps_page->page = alloc_page(gfp);
758                                 if (!ps_page->page) {
759                                         adapter->alloc_rx_buff_failed++;
760                                         goto no_buffers;
761                                 }
762                                 ps_page->dma = dma_map_page(&pdev->dev,
763                                                             ps_page->page,
764                                                             0, PAGE_SIZE,
765                                                             DMA_FROM_DEVICE);
766                                 if (dma_mapping_error(&pdev->dev,
767                                                       ps_page->dma)) {
768                                         dev_err(&adapter->pdev->dev,
769                                                 "Rx DMA page map failed\n");
770                                         adapter->rx_dma_failed++;
771                                         goto no_buffers;
772                                 }
773                         }
774                         /* Refresh the desc even if buffer_addrs
775                          * didn't change because each write-back
776                          * erases this info.
777                          */
778                         rx_desc->read.buffer_addr[j + 1] =
779                             cpu_to_le64(ps_page->dma);
780                 }
781
782                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
783                                                   gfp);
784
785                 if (!skb) {
786                         adapter->alloc_rx_buff_failed++;
787                         break;
788                 }
789
790                 buffer_info->skb = skb;
791                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
792                                                   adapter->rx_ps_bsize0,
793                                                   DMA_FROM_DEVICE);
794                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
795                         dev_err(&pdev->dev, "Rx DMA map failed\n");
796                         adapter->rx_dma_failed++;
797                         /* cleanup skb */
798                         dev_kfree_skb_any(skb);
799                         buffer_info->skb = NULL;
800                         break;
801                 }
802
803                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
804
805                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
806                         /* Force memory writes to complete before letting h/w
807                          * know there are new descriptors to fetch.  (Only
808                          * applicable for weak-ordered memory model archs,
809                          * such as IA-64).
810                          */
811                         wmb();
812                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
813                                 e1000e_update_rdt_wa(rx_ring, i << 1);
814                         else
815                                 writel(i << 1, rx_ring->tail);
816                 }
817
818                 i++;
819                 if (i == rx_ring->count)
820                         i = 0;
821                 buffer_info = &rx_ring->buffer_info[i];
822         }
823
824 no_buffers:
825         rx_ring->next_to_use = i;
826 }
827
828 /**
829  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
830  * @rx_ring: Rx descriptor ring
831  * @cleaned_count: number of buffers to allocate this pass
832  **/
833
834 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
835                                          int cleaned_count, gfp_t gfp)
836 {
837         struct e1000_adapter *adapter = rx_ring->adapter;
838         struct net_device *netdev = adapter->netdev;
839         struct pci_dev *pdev = adapter->pdev;
840         union e1000_rx_desc_extended *rx_desc;
841         struct e1000_buffer *buffer_info;
842         struct sk_buff *skb;
843         unsigned int i;
844         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
845
846         i = rx_ring->next_to_use;
847         buffer_info = &rx_ring->buffer_info[i];
848
849         while (cleaned_count--) {
850                 skb = buffer_info->skb;
851                 if (skb) {
852                         skb_trim(skb, 0);
853                         goto check_page;
854                 }
855
856                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
857                 if (unlikely(!skb)) {
858                         /* Better luck next round */
859                         adapter->alloc_rx_buff_failed++;
860                         break;
861                 }
862
863                 buffer_info->skb = skb;
864 check_page:
865                 /* allocate a new page if necessary */
866                 if (!buffer_info->page) {
867                         buffer_info->page = alloc_page(gfp);
868                         if (unlikely(!buffer_info->page)) {
869                                 adapter->alloc_rx_buff_failed++;
870                                 break;
871                         }
872                 }
873
874                 if (!buffer_info->dma) {
875                         buffer_info->dma = dma_map_page(&pdev->dev,
876                                                         buffer_info->page, 0,
877                                                         PAGE_SIZE,
878                                                         DMA_FROM_DEVICE);
879                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
880                                 adapter->alloc_rx_buff_failed++;
881                                 break;
882                         }
883                 }
884
885                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
886                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
887
888                 if (unlikely(++i == rx_ring->count))
889                         i = 0;
890                 buffer_info = &rx_ring->buffer_info[i];
891         }
892
893         if (likely(rx_ring->next_to_use != i)) {
894                 rx_ring->next_to_use = i;
895                 if (unlikely(i-- == 0))
896                         i = (rx_ring->count - 1);
897
898                 /* Force memory writes to complete before letting h/w
899                  * know there are new descriptors to fetch.  (Only
900                  * applicable for weak-ordered memory model archs,
901                  * such as IA-64).
902                  */
903                 wmb();
904                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
905                         e1000e_update_rdt_wa(rx_ring, i);
906                 else
907                         writel(i, rx_ring->tail);
908         }
909 }
910
911 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
912                                  struct sk_buff *skb)
913 {
914         if (netdev->features & NETIF_F_RXHASH)
915                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
916 }
917
918 /**
919  * e1000_clean_rx_irq - Send received data up the network stack
920  * @rx_ring: Rx descriptor ring
921  *
922  * the return value indicates whether actual cleaning was done, there
923  * is no guarantee that everything was cleaned
924  **/
925 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
926                                int work_to_do)
927 {
928         struct e1000_adapter *adapter = rx_ring->adapter;
929         struct net_device *netdev = adapter->netdev;
930         struct pci_dev *pdev = adapter->pdev;
931         struct e1000_hw *hw = &adapter->hw;
932         union e1000_rx_desc_extended *rx_desc, *next_rxd;
933         struct e1000_buffer *buffer_info, *next_buffer;
934         u32 length, staterr;
935         unsigned int i;
936         int cleaned_count = 0;
937         bool cleaned = false;
938         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
939
940         i = rx_ring->next_to_clean;
941         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
942         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
943         buffer_info = &rx_ring->buffer_info[i];
944
945         while (staterr & E1000_RXD_STAT_DD) {
946                 struct sk_buff *skb;
947
948                 if (*work_done >= work_to_do)
949                         break;
950                 (*work_done)++;
951                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
952
953                 skb = buffer_info->skb;
954                 buffer_info->skb = NULL;
955
956                 prefetch(skb->data - NET_IP_ALIGN);
957
958                 i++;
959                 if (i == rx_ring->count)
960                         i = 0;
961                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
962                 prefetch(next_rxd);
963
964                 next_buffer = &rx_ring->buffer_info[i];
965
966                 cleaned = true;
967                 cleaned_count++;
968                 dma_unmap_single(&pdev->dev, buffer_info->dma,
969                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
970                 buffer_info->dma = 0;
971
972                 length = le16_to_cpu(rx_desc->wb.upper.length);
973
974                 /* !EOP means multiple descriptors were used to store a single
975                  * packet, if that's the case we need to toss it.  In fact, we
976                  * need to toss every packet with the EOP bit clear and the
977                  * next frame that _does_ have the EOP bit set, as it is by
978                  * definition only a frame fragment
979                  */
980                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
981                         adapter->flags2 |= FLAG2_IS_DISCARDING;
982
983                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
984                         /* All receives must fit into a single buffer */
985                         e_dbg("Receive packet consumed multiple buffers\n");
986                         /* recycle */
987                         buffer_info->skb = skb;
988                         if (staterr & E1000_RXD_STAT_EOP)
989                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
990                         goto next_desc;
991                 }
992
993                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
994                              !(netdev->features & NETIF_F_RXALL))) {
995                         /* recycle */
996                         buffer_info->skb = skb;
997                         goto next_desc;
998                 }
999
1000                 /* adjust length to remove Ethernet CRC */
1001                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1002                         /* If configured to store CRC, don't subtract FCS,
1003                          * but keep the FCS bytes out of the total_rx_bytes
1004                          * counter
1005                          */
1006                         if (netdev->features & NETIF_F_RXFCS)
1007                                 total_rx_bytes -= 4;
1008                         else
1009                                 length -= 4;
1010                 }
1011
1012                 total_rx_bytes += length;
1013                 total_rx_packets++;
1014
1015                 /* code added for copybreak, this should improve
1016                  * performance for small packets with large amounts
1017                  * of reassembly being done in the stack
1018                  */
1019                 if (length < copybreak) {
1020                         struct sk_buff *new_skb =
1021                                 napi_alloc_skb(&adapter->napi, length);
1022                         if (new_skb) {
1023                                 skb_copy_to_linear_data_offset(new_skb,
1024                                                                -NET_IP_ALIGN,
1025                                                                (skb->data -
1026                                                                 NET_IP_ALIGN),
1027                                                                (length +
1028                                                                 NET_IP_ALIGN));
1029                                 /* save the skb in buffer_info as good */
1030                                 buffer_info->skb = skb;
1031                                 skb = new_skb;
1032                         }
1033                         /* else just continue with the old one */
1034                 }
1035                 /* end copybreak code */
1036                 skb_put(skb, length);
1037
1038                 /* Receive Checksum Offload */
1039                 e1000_rx_checksum(adapter, staterr, skb);
1040
1041                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1042
1043                 e1000_receive_skb(adapter, netdev, skb, staterr,
1044                                   rx_desc->wb.upper.vlan);
1045
1046 next_desc:
1047                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1048
1049                 /* return some buffers to hardware, one at a time is too slow */
1050                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1051                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1052                                               GFP_ATOMIC);
1053                         cleaned_count = 0;
1054                 }
1055
1056                 /* use prefetched values */
1057                 rx_desc = next_rxd;
1058                 buffer_info = next_buffer;
1059
1060                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1061         }
1062         rx_ring->next_to_clean = i;
1063
1064         cleaned_count = e1000_desc_unused(rx_ring);
1065         if (cleaned_count)
1066                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1067
1068         adapter->total_rx_bytes += total_rx_bytes;
1069         adapter->total_rx_packets += total_rx_packets;
1070         return cleaned;
1071 }
1072
1073 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1074                             struct e1000_buffer *buffer_info,
1075                             bool drop)
1076 {
1077         struct e1000_adapter *adapter = tx_ring->adapter;
1078
1079         if (buffer_info->dma) {
1080                 if (buffer_info->mapped_as_page)
1081                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1082                                        buffer_info->length, DMA_TO_DEVICE);
1083                 else
1084                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1085                                          buffer_info->length, DMA_TO_DEVICE);
1086                 buffer_info->dma = 0;
1087         }
1088         if (buffer_info->skb) {
1089                 if (drop)
1090                         dev_kfree_skb_any(buffer_info->skb);
1091                 else
1092                         dev_consume_skb_any(buffer_info->skb);
1093                 buffer_info->skb = NULL;
1094         }
1095         buffer_info->time_stamp = 0;
1096 }
1097
1098 static void e1000_print_hw_hang(struct work_struct *work)
1099 {
1100         struct e1000_adapter *adapter = container_of(work,
1101                                                      struct e1000_adapter,
1102                                                      print_hang_task);
1103         struct net_device *netdev = adapter->netdev;
1104         struct e1000_ring *tx_ring = adapter->tx_ring;
1105         unsigned int i = tx_ring->next_to_clean;
1106         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1107         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1108         struct e1000_hw *hw = &adapter->hw;
1109         u16 phy_status, phy_1000t_status, phy_ext_status;
1110         u16 pci_status;
1111
1112         if (test_bit(__E1000_DOWN, &adapter->state))
1113                 return;
1114
1115         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1116                 /* May be block on write-back, flush and detect again
1117                  * flush pending descriptor writebacks to memory
1118                  */
1119                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1120                 /* execute the writes immediately */
1121                 e1e_flush();
1122                 /* Due to rare timing issues, write to TIDV again to ensure
1123                  * the write is successful
1124                  */
1125                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1126                 /* execute the writes immediately */
1127                 e1e_flush();
1128                 adapter->tx_hang_recheck = true;
1129                 return;
1130         }
1131         adapter->tx_hang_recheck = false;
1132
1133         if (er32(TDH(0)) == er32(TDT(0))) {
1134                 e_dbg("false hang detected, ignoring\n");
1135                 return;
1136         }
1137
1138         /* Real hang detected */
1139         netif_stop_queue(netdev);
1140
1141         e1e_rphy(hw, MII_BMSR, &phy_status);
1142         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1143         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1144
1145         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1146
1147         /* detected Hardware unit hang */
1148         e_err("Detected Hardware Unit Hang:\n"
1149               "  TDH                  <%x>\n"
1150               "  TDT                  <%x>\n"
1151               "  next_to_use          <%x>\n"
1152               "  next_to_clean        <%x>\n"
1153               "buffer_info[next_to_clean]:\n"
1154               "  time_stamp           <%lx>\n"
1155               "  next_to_watch        <%x>\n"
1156               "  jiffies              <%lx>\n"
1157               "  next_to_watch.status <%x>\n"
1158               "MAC Status             <%x>\n"
1159               "PHY Status             <%x>\n"
1160               "PHY 1000BASE-T Status  <%x>\n"
1161               "PHY Extended Status    <%x>\n"
1162               "PCI Status             <%x>\n",
1163               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1164               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1165               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1166               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1167
1168         e1000e_dump(adapter);
1169
1170         /* Suggest workaround for known h/w issue */
1171         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1172                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1173 }
1174
1175 /**
1176  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1177  * @work: pointer to work struct
1178  *
1179  * This work function polls the TSYNCTXCTL valid bit to determine when a
1180  * timestamp has been taken for the current stored skb.  The timestamp must
1181  * be for this skb because only one such packet is allowed in the queue.
1182  */
1183 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1184 {
1185         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1186                                                      tx_hwtstamp_work);
1187         struct e1000_hw *hw = &adapter->hw;
1188
1189         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1190                 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1191                 struct skb_shared_hwtstamps shhwtstamps;
1192                 u64 txstmp;
1193
1194                 txstmp = er32(TXSTMPL);
1195                 txstmp |= (u64)er32(TXSTMPH) << 32;
1196
1197                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1198
1199                 /* Clear the global tx_hwtstamp_skb pointer and force writes
1200                  * prior to notifying the stack of a Tx timestamp.
1201                  */
1202                 adapter->tx_hwtstamp_skb = NULL;
1203                 wmb(); /* force write prior to skb_tstamp_tx */
1204
1205                 skb_tstamp_tx(skb, &shhwtstamps);
1206                 dev_consume_skb_any(skb);
1207         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1208                               + adapter->tx_timeout_factor * HZ)) {
1209                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1210                 adapter->tx_hwtstamp_skb = NULL;
1211                 adapter->tx_hwtstamp_timeouts++;
1212                 e_warn("clearing Tx timestamp hang\n");
1213         } else {
1214                 /* reschedule to check later */
1215                 schedule_work(&adapter->tx_hwtstamp_work);
1216         }
1217 }
1218
1219 /**
1220  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1221  * @tx_ring: Tx descriptor ring
1222  *
1223  * the return value indicates whether actual cleaning was done, there
1224  * is no guarantee that everything was cleaned
1225  **/
1226 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1227 {
1228         struct e1000_adapter *adapter = tx_ring->adapter;
1229         struct net_device *netdev = adapter->netdev;
1230         struct e1000_hw *hw = &adapter->hw;
1231         struct e1000_tx_desc *tx_desc, *eop_desc;
1232         struct e1000_buffer *buffer_info;
1233         unsigned int i, eop;
1234         unsigned int count = 0;
1235         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1236         unsigned int bytes_compl = 0, pkts_compl = 0;
1237
1238         i = tx_ring->next_to_clean;
1239         eop = tx_ring->buffer_info[i].next_to_watch;
1240         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1241
1242         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1243                (count < tx_ring->count)) {
1244                 bool cleaned = false;
1245
1246                 dma_rmb();              /* read buffer_info after eop_desc */
1247                 for (; !cleaned; count++) {
1248                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1249                         buffer_info = &tx_ring->buffer_info[i];
1250                         cleaned = (i == eop);
1251
1252                         if (cleaned) {
1253                                 total_tx_packets += buffer_info->segs;
1254                                 total_tx_bytes += buffer_info->bytecount;
1255                                 if (buffer_info->skb) {
1256                                         bytes_compl += buffer_info->skb->len;
1257                                         pkts_compl++;
1258                                 }
1259                         }
1260
1261                         e1000_put_txbuf(tx_ring, buffer_info, false);
1262                         tx_desc->upper.data = 0;
1263
1264                         i++;
1265                         if (i == tx_ring->count)
1266                                 i = 0;
1267                 }
1268
1269                 if (i == tx_ring->next_to_use)
1270                         break;
1271                 eop = tx_ring->buffer_info[i].next_to_watch;
1272                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1273         }
1274
1275         tx_ring->next_to_clean = i;
1276
1277         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1278
1279 #define TX_WAKE_THRESHOLD 32
1280         if (count && netif_carrier_ok(netdev) &&
1281             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1282                 /* Make sure that anybody stopping the queue after this
1283                  * sees the new next_to_clean.
1284                  */
1285                 smp_mb();
1286
1287                 if (netif_queue_stopped(netdev) &&
1288                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1289                         netif_wake_queue(netdev);
1290                         ++adapter->restart_queue;
1291                 }
1292         }
1293
1294         if (adapter->detect_tx_hung) {
1295                 /* Detect a transmit hang in hardware, this serializes the
1296                  * check with the clearing of time_stamp and movement of i
1297                  */
1298                 adapter->detect_tx_hung = false;
1299                 if (tx_ring->buffer_info[i].time_stamp &&
1300                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1301                                + (adapter->tx_timeout_factor * HZ)) &&
1302                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1303                         schedule_work(&adapter->print_hang_task);
1304                 else
1305                         adapter->tx_hang_recheck = false;
1306         }
1307         adapter->total_tx_bytes += total_tx_bytes;
1308         adapter->total_tx_packets += total_tx_packets;
1309         return count < tx_ring->count;
1310 }
1311
1312 /**
1313  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1314  * @rx_ring: Rx descriptor ring
1315  *
1316  * the return value indicates whether actual cleaning was done, there
1317  * is no guarantee that everything was cleaned
1318  **/
1319 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1320                                   int work_to_do)
1321 {
1322         struct e1000_adapter *adapter = rx_ring->adapter;
1323         struct e1000_hw *hw = &adapter->hw;
1324         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1325         struct net_device *netdev = adapter->netdev;
1326         struct pci_dev *pdev = adapter->pdev;
1327         struct e1000_buffer *buffer_info, *next_buffer;
1328         struct e1000_ps_page *ps_page;
1329         struct sk_buff *skb;
1330         unsigned int i, j;
1331         u32 length, staterr;
1332         int cleaned_count = 0;
1333         bool cleaned = false;
1334         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1335
1336         i = rx_ring->next_to_clean;
1337         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1338         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1339         buffer_info = &rx_ring->buffer_info[i];
1340
1341         while (staterr & E1000_RXD_STAT_DD) {
1342                 if (*work_done >= work_to_do)
1343                         break;
1344                 (*work_done)++;
1345                 skb = buffer_info->skb;
1346                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1347
1348                 /* in the packet split case this is header only */
1349                 prefetch(skb->data - NET_IP_ALIGN);
1350
1351                 i++;
1352                 if (i == rx_ring->count)
1353                         i = 0;
1354                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1355                 prefetch(next_rxd);
1356
1357                 next_buffer = &rx_ring->buffer_info[i];
1358
1359                 cleaned = true;
1360                 cleaned_count++;
1361                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1362                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1363                 buffer_info->dma = 0;
1364
1365                 /* see !EOP comment in other Rx routine */
1366                 if (!(staterr & E1000_RXD_STAT_EOP))
1367                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1368
1369                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1370                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1371                         dev_kfree_skb_irq(skb);
1372                         if (staterr & E1000_RXD_STAT_EOP)
1373                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1374                         goto next_desc;
1375                 }
1376
1377                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1378                              !(netdev->features & NETIF_F_RXALL))) {
1379                         dev_kfree_skb_irq(skb);
1380                         goto next_desc;
1381                 }
1382
1383                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1384
1385                 if (!length) {
1386                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1387                         dev_kfree_skb_irq(skb);
1388                         goto next_desc;
1389                 }
1390
1391                 /* Good Receive */
1392                 skb_put(skb, length);
1393
1394                 {
1395                         /* this looks ugly, but it seems compiler issues make
1396                          * it more efficient than reusing j
1397                          */
1398                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1399
1400                         /* page alloc/put takes too long and effects small
1401                          * packet throughput, so unsplit small packets and
1402                          * save the alloc/put only valid in softirq (napi)
1403                          * context to call kmap_*
1404                          */
1405                         if (l1 && (l1 <= copybreak) &&
1406                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1407                                 u8 *vaddr;
1408
1409                                 ps_page = &buffer_info->ps_pages[0];
1410
1411                                 /* there is no documentation about how to call
1412                                  * kmap_atomic, so we can't hold the mapping
1413                                  * very long
1414                                  */
1415                                 dma_sync_single_for_cpu(&pdev->dev,
1416                                                         ps_page->dma,
1417                                                         PAGE_SIZE,
1418                                                         DMA_FROM_DEVICE);
1419                                 vaddr = kmap_atomic(ps_page->page);
1420                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1421                                 kunmap_atomic(vaddr);
1422                                 dma_sync_single_for_device(&pdev->dev,
1423                                                            ps_page->dma,
1424                                                            PAGE_SIZE,
1425                                                            DMA_FROM_DEVICE);
1426
1427                                 /* remove the CRC */
1428                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1429                                         if (!(netdev->features & NETIF_F_RXFCS))
1430                                                 l1 -= 4;
1431                                 }
1432
1433                                 skb_put(skb, l1);
1434                                 goto copydone;
1435                         }       /* if */
1436                 }
1437
1438                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1439                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1440                         if (!length)
1441                                 break;
1442
1443                         ps_page = &buffer_info->ps_pages[j];
1444                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1445                                        DMA_FROM_DEVICE);
1446                         ps_page->dma = 0;
1447                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1448                         ps_page->page = NULL;
1449                         skb->len += length;
1450                         skb->data_len += length;
1451                         skb->truesize += PAGE_SIZE;
1452                 }
1453
1454                 /* strip the ethernet crc, problem is we're using pages now so
1455                  * this whole operation can get a little cpu intensive
1456                  */
1457                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1458                         if (!(netdev->features & NETIF_F_RXFCS))
1459                                 pskb_trim(skb, skb->len - 4);
1460                 }
1461
1462 copydone:
1463                 total_rx_bytes += skb->len;
1464                 total_rx_packets++;
1465
1466                 e1000_rx_checksum(adapter, staterr, skb);
1467
1468                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1469
1470                 if (rx_desc->wb.upper.header_status &
1471                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1472                         adapter->rx_hdr_split++;
1473
1474                 e1000_receive_skb(adapter, netdev, skb, staterr,
1475                                   rx_desc->wb.middle.vlan);
1476
1477 next_desc:
1478                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1479                 buffer_info->skb = NULL;
1480
1481                 /* return some buffers to hardware, one at a time is too slow */
1482                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1483                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1484                                               GFP_ATOMIC);
1485                         cleaned_count = 0;
1486                 }
1487
1488                 /* use prefetched values */
1489                 rx_desc = next_rxd;
1490                 buffer_info = next_buffer;
1491
1492                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1493         }
1494         rx_ring->next_to_clean = i;
1495
1496         cleaned_count = e1000_desc_unused(rx_ring);
1497         if (cleaned_count)
1498                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1499
1500         adapter->total_rx_bytes += total_rx_bytes;
1501         adapter->total_rx_packets += total_rx_packets;
1502         return cleaned;
1503 }
1504
1505 /**
1506  * e1000_consume_page - helper function
1507  **/
1508 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1509                                u16 length)
1510 {
1511         bi->page = NULL;
1512         skb->len += length;
1513         skb->data_len += length;
1514         skb->truesize += PAGE_SIZE;
1515 }
1516
1517 /**
1518  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1519  * @adapter: board private structure
1520  *
1521  * the return value indicates whether actual cleaning was done, there
1522  * is no guarantee that everything was cleaned
1523  **/
1524 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1525                                      int work_to_do)
1526 {
1527         struct e1000_adapter *adapter = rx_ring->adapter;
1528         struct net_device *netdev = adapter->netdev;
1529         struct pci_dev *pdev = adapter->pdev;
1530         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1531         struct e1000_buffer *buffer_info, *next_buffer;
1532         u32 length, staterr;
1533         unsigned int i;
1534         int cleaned_count = 0;
1535         bool cleaned = false;
1536         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1537         struct skb_shared_info *shinfo;
1538
1539         i = rx_ring->next_to_clean;
1540         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1541         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1542         buffer_info = &rx_ring->buffer_info[i];
1543
1544         while (staterr & E1000_RXD_STAT_DD) {
1545                 struct sk_buff *skb;
1546
1547                 if (*work_done >= work_to_do)
1548                         break;
1549                 (*work_done)++;
1550                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1551
1552                 skb = buffer_info->skb;
1553                 buffer_info->skb = NULL;
1554
1555                 ++i;
1556                 if (i == rx_ring->count)
1557                         i = 0;
1558                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1559                 prefetch(next_rxd);
1560
1561                 next_buffer = &rx_ring->buffer_info[i];
1562
1563                 cleaned = true;
1564                 cleaned_count++;
1565                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1566                                DMA_FROM_DEVICE);
1567                 buffer_info->dma = 0;
1568
1569                 length = le16_to_cpu(rx_desc->wb.upper.length);
1570
1571                 /* errors is only valid for DD + EOP descriptors */
1572                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1573                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1574                               !(netdev->features & NETIF_F_RXALL)))) {
1575                         /* recycle both page and skb */
1576                         buffer_info->skb = skb;
1577                         /* an error means any chain goes out the window too */
1578                         if (rx_ring->rx_skb_top)
1579                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1580                         rx_ring->rx_skb_top = NULL;
1581                         goto next_desc;
1582                 }
1583 #define rxtop (rx_ring->rx_skb_top)
1584                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1585                         /* this descriptor is only the beginning (or middle) */
1586                         if (!rxtop) {
1587                                 /* this is the beginning of a chain */
1588                                 rxtop = skb;
1589                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1590                                                    0, length);
1591                         } else {
1592                                 /* this is the middle of a chain */
1593                                 shinfo = skb_shinfo(rxtop);
1594                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1595                                                    buffer_info->page, 0,
1596                                                    length);
1597                                 /* re-use the skb, only consumed the page */
1598                                 buffer_info->skb = skb;
1599                         }
1600                         e1000_consume_page(buffer_info, rxtop, length);
1601                         goto next_desc;
1602                 } else {
1603                         if (rxtop) {
1604                                 /* end of the chain */
1605                                 shinfo = skb_shinfo(rxtop);
1606                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1607                                                    buffer_info->page, 0,
1608                                                    length);
1609                                 /* re-use the current skb, we only consumed the
1610                                  * page
1611                                  */
1612                                 buffer_info->skb = skb;
1613                                 skb = rxtop;
1614                                 rxtop = NULL;
1615                                 e1000_consume_page(buffer_info, skb, length);
1616                         } else {
1617                                 /* no chain, got EOP, this buf is the packet
1618                                  * copybreak to save the put_page/alloc_page
1619                                  */
1620                                 if (length <= copybreak &&
1621                                     skb_tailroom(skb) >= length) {
1622                                         u8 *vaddr;
1623                                         vaddr = kmap_atomic(buffer_info->page);
1624                                         memcpy(skb_tail_pointer(skb), vaddr,
1625                                                length);
1626                                         kunmap_atomic(vaddr);
1627                                         /* re-use the page, so don't erase
1628                                          * buffer_info->page
1629                                          */
1630                                         skb_put(skb, length);
1631                                 } else {
1632                                         skb_fill_page_desc(skb, 0,
1633                                                            buffer_info->page, 0,
1634                                                            length);
1635                                         e1000_consume_page(buffer_info, skb,
1636                                                            length);
1637                                 }
1638                         }
1639                 }
1640
1641                 /* Receive Checksum Offload */
1642                 e1000_rx_checksum(adapter, staterr, skb);
1643
1644                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1645
1646                 /* probably a little skewed due to removing CRC */
1647                 total_rx_bytes += skb->len;
1648                 total_rx_packets++;
1649
1650                 /* eth type trans needs skb->data to point to something */
1651                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1652                         e_err("pskb_may_pull failed.\n");
1653                         dev_kfree_skb_irq(skb);
1654                         goto next_desc;
1655                 }
1656
1657                 e1000_receive_skb(adapter, netdev, skb, staterr,
1658                                   rx_desc->wb.upper.vlan);
1659
1660 next_desc:
1661                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1662
1663                 /* return some buffers to hardware, one at a time is too slow */
1664                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1665                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1666                                               GFP_ATOMIC);
1667                         cleaned_count = 0;
1668                 }
1669
1670                 /* use prefetched values */
1671                 rx_desc = next_rxd;
1672                 buffer_info = next_buffer;
1673
1674                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1675         }
1676         rx_ring->next_to_clean = i;
1677
1678         cleaned_count = e1000_desc_unused(rx_ring);
1679         if (cleaned_count)
1680                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1681
1682         adapter->total_rx_bytes += total_rx_bytes;
1683         adapter->total_rx_packets += total_rx_packets;
1684         return cleaned;
1685 }
1686
1687 /**
1688  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1689  * @rx_ring: Rx descriptor ring
1690  **/
1691 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1692 {
1693         struct e1000_adapter *adapter = rx_ring->adapter;
1694         struct e1000_buffer *buffer_info;
1695         struct e1000_ps_page *ps_page;
1696         struct pci_dev *pdev = adapter->pdev;
1697         unsigned int i, j;
1698
1699         /* Free all the Rx ring sk_buffs */
1700         for (i = 0; i < rx_ring->count; i++) {
1701                 buffer_info = &rx_ring->buffer_info[i];
1702                 if (buffer_info->dma) {
1703                         if (adapter->clean_rx == e1000_clean_rx_irq)
1704                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1705                                                  adapter->rx_buffer_len,
1706                                                  DMA_FROM_DEVICE);
1707                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1708                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1709                                                PAGE_SIZE, DMA_FROM_DEVICE);
1710                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1711                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1712                                                  adapter->rx_ps_bsize0,
1713                                                  DMA_FROM_DEVICE);
1714                         buffer_info->dma = 0;
1715                 }
1716
1717                 if (buffer_info->page) {
1718                         put_page(buffer_info->page);
1719                         buffer_info->page = NULL;
1720                 }
1721
1722                 if (buffer_info->skb) {
1723                         dev_kfree_skb(buffer_info->skb);
1724                         buffer_info->skb = NULL;
1725                 }
1726
1727                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1728                         ps_page = &buffer_info->ps_pages[j];
1729                         if (!ps_page->page)
1730                                 break;
1731                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1732                                        DMA_FROM_DEVICE);
1733                         ps_page->dma = 0;
1734                         put_page(ps_page->page);
1735                         ps_page->page = NULL;
1736                 }
1737         }
1738
1739         /* there also may be some cached data from a chained receive */
1740         if (rx_ring->rx_skb_top) {
1741                 dev_kfree_skb(rx_ring->rx_skb_top);
1742                 rx_ring->rx_skb_top = NULL;
1743         }
1744
1745         /* Zero out the descriptor ring */
1746         memset(rx_ring->desc, 0, rx_ring->size);
1747
1748         rx_ring->next_to_clean = 0;
1749         rx_ring->next_to_use = 0;
1750         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1751 }
1752
1753 static void e1000e_downshift_workaround(struct work_struct *work)
1754 {
1755         struct e1000_adapter *adapter = container_of(work,
1756                                                      struct e1000_adapter,
1757                                                      downshift_task);
1758
1759         if (test_bit(__E1000_DOWN, &adapter->state))
1760                 return;
1761
1762         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1763 }
1764
1765 /**
1766  * e1000_intr_msi - Interrupt Handler
1767  * @irq: interrupt number
1768  * @data: pointer to a network interface device structure
1769  **/
1770 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1771 {
1772         struct net_device *netdev = data;
1773         struct e1000_adapter *adapter = netdev_priv(netdev);
1774         struct e1000_hw *hw = &adapter->hw;
1775         u32 icr = er32(ICR);
1776
1777         /* read ICR disables interrupts using IAM */
1778         if (icr & E1000_ICR_LSC) {
1779                 hw->mac.get_link_status = true;
1780                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1781                  * disconnect (LSC) before accessing any PHY registers
1782                  */
1783                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1784                     (!(er32(STATUS) & E1000_STATUS_LU)))
1785                         schedule_work(&adapter->downshift_task);
1786
1787                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1788                  * link down event; disable receives here in the ISR and reset
1789                  * adapter in watchdog
1790                  */
1791                 if (netif_carrier_ok(netdev) &&
1792                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1793                         /* disable receives */
1794                         u32 rctl = er32(RCTL);
1795
1796                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1797                         adapter->flags |= FLAG_RESTART_NOW;
1798                 }
1799                 /* guard against interrupt when we're going down */
1800                 if (!test_bit(__E1000_DOWN, &adapter->state))
1801                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1802         }
1803
1804         /* Reset on uncorrectable ECC error */
1805         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1806                 u32 pbeccsts = er32(PBECCSTS);
1807
1808                 adapter->corr_errors +=
1809                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1810                 adapter->uncorr_errors +=
1811                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1812                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1813
1814                 /* Do the reset outside of interrupt context */
1815                 schedule_work(&adapter->reset_task);
1816
1817                 /* return immediately since reset is imminent */
1818                 return IRQ_HANDLED;
1819         }
1820
1821         if (napi_schedule_prep(&adapter->napi)) {
1822                 adapter->total_tx_bytes = 0;
1823                 adapter->total_tx_packets = 0;
1824                 adapter->total_rx_bytes = 0;
1825                 adapter->total_rx_packets = 0;
1826                 __napi_schedule(&adapter->napi);
1827         }
1828
1829         return IRQ_HANDLED;
1830 }
1831
1832 /**
1833  * e1000_intr - Interrupt Handler
1834  * @irq: interrupt number
1835  * @data: pointer to a network interface device structure
1836  **/
1837 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1838 {
1839         struct net_device *netdev = data;
1840         struct e1000_adapter *adapter = netdev_priv(netdev);
1841         struct e1000_hw *hw = &adapter->hw;
1842         u32 rctl, icr = er32(ICR);
1843
1844         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1845                 return IRQ_NONE;        /* Not our interrupt */
1846
1847         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1848          * not set, then the adapter didn't send an interrupt
1849          */
1850         if (!(icr & E1000_ICR_INT_ASSERTED))
1851                 return IRQ_NONE;
1852
1853         /* Interrupt Auto-Mask...upon reading ICR,
1854          * interrupts are masked.  No need for the
1855          * IMC write
1856          */
1857
1858         if (icr & E1000_ICR_LSC) {
1859                 hw->mac.get_link_status = true;
1860                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1861                  * disconnect (LSC) before accessing any PHY registers
1862                  */
1863                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1864                     (!(er32(STATUS) & E1000_STATUS_LU)))
1865                         schedule_work(&adapter->downshift_task);
1866
1867                 /* 80003ES2LAN workaround--
1868                  * For packet buffer work-around on link down event;
1869                  * disable receives here in the ISR and
1870                  * reset adapter in watchdog
1871                  */
1872                 if (netif_carrier_ok(netdev) &&
1873                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1874                         /* disable receives */
1875                         rctl = er32(RCTL);
1876                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877                         adapter->flags |= FLAG_RESTART_NOW;
1878                 }
1879                 /* guard against interrupt when we're going down */
1880                 if (!test_bit(__E1000_DOWN, &adapter->state))
1881                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1882         }
1883
1884         /* Reset on uncorrectable ECC error */
1885         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1886                 u32 pbeccsts = er32(PBECCSTS);
1887
1888                 adapter->corr_errors +=
1889                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1890                 adapter->uncorr_errors +=
1891                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1892                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1893
1894                 /* Do the reset outside of interrupt context */
1895                 schedule_work(&adapter->reset_task);
1896
1897                 /* return immediately since reset is imminent */
1898                 return IRQ_HANDLED;
1899         }
1900
1901         if (napi_schedule_prep(&adapter->napi)) {
1902                 adapter->total_tx_bytes = 0;
1903                 adapter->total_tx_packets = 0;
1904                 adapter->total_rx_bytes = 0;
1905                 adapter->total_rx_packets = 0;
1906                 __napi_schedule(&adapter->napi);
1907         }
1908
1909         return IRQ_HANDLED;
1910 }
1911
1912 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1913 {
1914         struct net_device *netdev = data;
1915         struct e1000_adapter *adapter = netdev_priv(netdev);
1916         struct e1000_hw *hw = &adapter->hw;
1917         u32 icr;
1918         bool enable = true;
1919
1920         icr = er32(ICR);
1921         if (icr & E1000_ICR_RXO) {
1922                 ew32(ICR, E1000_ICR_RXO);
1923                 enable = false;
1924                 /* napi poll will re-enable Other, make sure it runs */
1925                 if (napi_schedule_prep(&adapter->napi)) {
1926                         adapter->total_rx_bytes = 0;
1927                         adapter->total_rx_packets = 0;
1928                         __napi_schedule(&adapter->napi);
1929                 }
1930         }
1931         if (icr & E1000_ICR_LSC) {
1932                 ew32(ICR, E1000_ICR_LSC);
1933                 hw->mac.get_link_status = true;
1934                 /* guard against interrupt when we're going down */
1935                 if (!test_bit(__E1000_DOWN, &adapter->state))
1936                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1937         }
1938
1939         if (enable && !test_bit(__E1000_DOWN, &adapter->state))
1940                 ew32(IMS, E1000_IMS_OTHER);
1941
1942         return IRQ_HANDLED;
1943 }
1944
1945 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1946 {
1947         struct net_device *netdev = data;
1948         struct e1000_adapter *adapter = netdev_priv(netdev);
1949         struct e1000_hw *hw = &adapter->hw;
1950         struct e1000_ring *tx_ring = adapter->tx_ring;
1951
1952         adapter->total_tx_bytes = 0;
1953         adapter->total_tx_packets = 0;
1954
1955         if (!e1000_clean_tx_irq(tx_ring))
1956                 /* Ring was not completely cleaned, so fire another interrupt */
1957                 ew32(ICS, tx_ring->ims_val);
1958
1959         if (!test_bit(__E1000_DOWN, &adapter->state))
1960                 ew32(IMS, adapter->tx_ring->ims_val);
1961
1962         return IRQ_HANDLED;
1963 }
1964
1965 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1966 {
1967         struct net_device *netdev = data;
1968         struct e1000_adapter *adapter = netdev_priv(netdev);
1969         struct e1000_ring *rx_ring = adapter->rx_ring;
1970
1971         /* Write the ITR value calculated at the end of the
1972          * previous interrupt.
1973          */
1974         if (rx_ring->set_itr) {
1975                 u32 itr = rx_ring->itr_val ?
1976                           1000000000 / (rx_ring->itr_val * 256) : 0;
1977
1978                 writel(itr, rx_ring->itr_register);
1979                 rx_ring->set_itr = 0;
1980         }
1981
1982         if (napi_schedule_prep(&adapter->napi)) {
1983                 adapter->total_rx_bytes = 0;
1984                 adapter->total_rx_packets = 0;
1985                 __napi_schedule(&adapter->napi);
1986         }
1987         return IRQ_HANDLED;
1988 }
1989
1990 /**
1991  * e1000_configure_msix - Configure MSI-X hardware
1992  *
1993  * e1000_configure_msix sets up the hardware to properly
1994  * generate MSI-X interrupts.
1995  **/
1996 static void e1000_configure_msix(struct e1000_adapter *adapter)
1997 {
1998         struct e1000_hw *hw = &adapter->hw;
1999         struct e1000_ring *rx_ring = adapter->rx_ring;
2000         struct e1000_ring *tx_ring = adapter->tx_ring;
2001         int vector = 0;
2002         u32 ctrl_ext, ivar = 0;
2003
2004         adapter->eiac_mask = 0;
2005
2006         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
2007         if (hw->mac.type == e1000_82574) {
2008                 u32 rfctl = er32(RFCTL);
2009
2010                 rfctl |= E1000_RFCTL_ACK_DIS;
2011                 ew32(RFCTL, rfctl);
2012         }
2013
2014         /* Configure Rx vector */
2015         rx_ring->ims_val = E1000_IMS_RXQ0;
2016         adapter->eiac_mask |= rx_ring->ims_val;
2017         if (rx_ring->itr_val)
2018                 writel(1000000000 / (rx_ring->itr_val * 256),
2019                        rx_ring->itr_register);
2020         else
2021                 writel(1, rx_ring->itr_register);
2022         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2023
2024         /* Configure Tx vector */
2025         tx_ring->ims_val = E1000_IMS_TXQ0;
2026         vector++;
2027         if (tx_ring->itr_val)
2028                 writel(1000000000 / (tx_ring->itr_val * 256),
2029                        tx_ring->itr_register);
2030         else
2031                 writel(1, tx_ring->itr_register);
2032         adapter->eiac_mask |= tx_ring->ims_val;
2033         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2034
2035         /* set vector for Other Causes, e.g. link changes */
2036         vector++;
2037         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2038         if (rx_ring->itr_val)
2039                 writel(1000000000 / (rx_ring->itr_val * 256),
2040                        hw->hw_addr + E1000_EITR_82574(vector));
2041         else
2042                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2043         adapter->eiac_mask |= E1000_IMS_OTHER;
2044
2045         /* Cause Tx interrupts on every write back */
2046         ivar |= BIT(31);
2047
2048         ew32(IVAR, ivar);
2049
2050         /* enable MSI-X PBA support */
2051         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2052         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2053         ew32(CTRL_EXT, ctrl_ext);
2054         e1e_flush();
2055 }
2056
2057 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2058 {
2059         if (adapter->msix_entries) {
2060                 pci_disable_msix(adapter->pdev);
2061                 kfree(adapter->msix_entries);
2062                 adapter->msix_entries = NULL;
2063         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2064                 pci_disable_msi(adapter->pdev);
2065                 adapter->flags &= ~FLAG_MSI_ENABLED;
2066         }
2067 }
2068
2069 /**
2070  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2071  *
2072  * Attempt to configure interrupts using the best available
2073  * capabilities of the hardware and kernel.
2074  **/
2075 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2076 {
2077         int err;
2078         int i;
2079
2080         switch (adapter->int_mode) {
2081         case E1000E_INT_MODE_MSIX:
2082                 if (adapter->flags & FLAG_HAS_MSIX) {
2083                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2084                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2085                                                         sizeof(struct
2086                                                                msix_entry),
2087                                                         GFP_KERNEL);
2088                         if (adapter->msix_entries) {
2089                                 struct e1000_adapter *a = adapter;
2090
2091                                 for (i = 0; i < adapter->num_vectors; i++)
2092                                         adapter->msix_entries[i].entry = i;
2093
2094                                 err = pci_enable_msix_range(a->pdev,
2095                                                             a->msix_entries,
2096                                                             a->num_vectors,
2097                                                             a->num_vectors);
2098                                 if (err > 0)
2099                                         return;
2100                         }
2101                         /* MSI-X failed, so fall through and try MSI */
2102                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2103                         e1000e_reset_interrupt_capability(adapter);
2104                 }
2105                 adapter->int_mode = E1000E_INT_MODE_MSI;
2106                 /* Fall through */
2107         case E1000E_INT_MODE_MSI:
2108                 if (!pci_enable_msi(adapter->pdev)) {
2109                         adapter->flags |= FLAG_MSI_ENABLED;
2110                 } else {
2111                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2112                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2113                 }
2114                 /* Fall through */
2115         case E1000E_INT_MODE_LEGACY:
2116                 /* Don't do anything; this is the system default */
2117                 break;
2118         }
2119
2120         /* store the number of vectors being used */
2121         adapter->num_vectors = 1;
2122 }
2123
2124 /**
2125  * e1000_request_msix - Initialize MSI-X interrupts
2126  *
2127  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2128  * kernel.
2129  **/
2130 static int e1000_request_msix(struct e1000_adapter *adapter)
2131 {
2132         struct net_device *netdev = adapter->netdev;
2133         int err = 0, vector = 0;
2134
2135         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2136                 snprintf(adapter->rx_ring->name,
2137                          sizeof(adapter->rx_ring->name) - 1,
2138                          "%s-rx-0", netdev->name);
2139         else
2140                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2141         err = request_irq(adapter->msix_entries[vector].vector,
2142                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2143                           netdev);
2144         if (err)
2145                 return err;
2146         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2147             E1000_EITR_82574(vector);
2148         adapter->rx_ring->itr_val = adapter->itr;
2149         vector++;
2150
2151         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2152                 snprintf(adapter->tx_ring->name,
2153                          sizeof(adapter->tx_ring->name) - 1,
2154                          "%s-tx-0", netdev->name);
2155         else
2156                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2157         err = request_irq(adapter->msix_entries[vector].vector,
2158                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2159                           netdev);
2160         if (err)
2161                 return err;
2162         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2163             E1000_EITR_82574(vector);
2164         adapter->tx_ring->itr_val = adapter->itr;
2165         vector++;
2166
2167         err = request_irq(adapter->msix_entries[vector].vector,
2168                           e1000_msix_other, 0, netdev->name, netdev);
2169         if (err)
2170                 return err;
2171
2172         e1000_configure_msix(adapter);
2173
2174         return 0;
2175 }
2176
2177 /**
2178  * e1000_request_irq - initialize interrupts
2179  *
2180  * Attempts to configure interrupts using the best available
2181  * capabilities of the hardware and kernel.
2182  **/
2183 static int e1000_request_irq(struct e1000_adapter *adapter)
2184 {
2185         struct net_device *netdev = adapter->netdev;
2186         int err;
2187
2188         if (adapter->msix_entries) {
2189                 err = e1000_request_msix(adapter);
2190                 if (!err)
2191                         return err;
2192                 /* fall back to MSI */
2193                 e1000e_reset_interrupt_capability(adapter);
2194                 adapter->int_mode = E1000E_INT_MODE_MSI;
2195                 e1000e_set_interrupt_capability(adapter);
2196         }
2197         if (adapter->flags & FLAG_MSI_ENABLED) {
2198                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2199                                   netdev->name, netdev);
2200                 if (!err)
2201                         return err;
2202
2203                 /* fall back to legacy interrupt */
2204                 e1000e_reset_interrupt_capability(adapter);
2205                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2206         }
2207
2208         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2209                           netdev->name, netdev);
2210         if (err)
2211                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2212
2213         return err;
2214 }
2215
2216 static void e1000_free_irq(struct e1000_adapter *adapter)
2217 {
2218         struct net_device *netdev = adapter->netdev;
2219
2220         if (adapter->msix_entries) {
2221                 int vector = 0;
2222
2223                 free_irq(adapter->msix_entries[vector].vector, netdev);
2224                 vector++;
2225
2226                 free_irq(adapter->msix_entries[vector].vector, netdev);
2227                 vector++;
2228
2229                 /* Other Causes interrupt vector */
2230                 free_irq(adapter->msix_entries[vector].vector, netdev);
2231                 return;
2232         }
2233
2234         free_irq(adapter->pdev->irq, netdev);
2235 }
2236
2237 /**
2238  * e1000_irq_disable - Mask off interrupt generation on the NIC
2239  **/
2240 static void e1000_irq_disable(struct e1000_adapter *adapter)
2241 {
2242         struct e1000_hw *hw = &adapter->hw;
2243
2244         ew32(IMC, ~0);
2245         if (adapter->msix_entries)
2246                 ew32(EIAC_82574, 0);
2247         e1e_flush();
2248
2249         if (adapter->msix_entries) {
2250                 int i;
2251
2252                 for (i = 0; i < adapter->num_vectors; i++)
2253                         synchronize_irq(adapter->msix_entries[i].vector);
2254         } else {
2255                 synchronize_irq(adapter->pdev->irq);
2256         }
2257 }
2258
2259 /**
2260  * e1000_irq_enable - Enable default interrupt generation settings
2261  **/
2262 static void e1000_irq_enable(struct e1000_adapter *adapter)
2263 {
2264         struct e1000_hw *hw = &adapter->hw;
2265
2266         if (adapter->msix_entries) {
2267                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2268                 ew32(IMS, adapter->eiac_mask | E1000_IMS_LSC);
2269         } else if (hw->mac.type >= e1000_pch_lpt) {
2270                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2271         } else {
2272                 ew32(IMS, IMS_ENABLE_MASK);
2273         }
2274         e1e_flush();
2275 }
2276
2277 /**
2278  * e1000e_get_hw_control - get control of the h/w from f/w
2279  * @adapter: address of board private structure
2280  *
2281  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2282  * For ASF and Pass Through versions of f/w this means that
2283  * the driver is loaded. For AMT version (only with 82573)
2284  * of the f/w this means that the network i/f is open.
2285  **/
2286 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2287 {
2288         struct e1000_hw *hw = &adapter->hw;
2289         u32 ctrl_ext;
2290         u32 swsm;
2291
2292         /* Let firmware know the driver has taken over */
2293         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294                 swsm = er32(SWSM);
2295                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2296         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297                 ctrl_ext = er32(CTRL_EXT);
2298                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2299         }
2300 }
2301
2302 /**
2303  * e1000e_release_hw_control - release control of the h/w to f/w
2304  * @adapter: address of board private structure
2305  *
2306  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2307  * For ASF and Pass Through versions of f/w this means that the
2308  * driver is no longer loaded. For AMT version (only with 82573) i
2309  * of the f/w this means that the network i/f is closed.
2310  *
2311  **/
2312 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2313 {
2314         struct e1000_hw *hw = &adapter->hw;
2315         u32 ctrl_ext;
2316         u32 swsm;
2317
2318         /* Let firmware taken over control of h/w */
2319         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2320                 swsm = er32(SWSM);
2321                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2322         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2323                 ctrl_ext = er32(CTRL_EXT);
2324                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2325         }
2326 }
2327
2328 /**
2329  * e1000_alloc_ring_dma - allocate memory for a ring structure
2330  **/
2331 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2332                                 struct e1000_ring *ring)
2333 {
2334         struct pci_dev *pdev = adapter->pdev;
2335
2336         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2337                                         GFP_KERNEL);
2338         if (!ring->desc)
2339                 return -ENOMEM;
2340
2341         return 0;
2342 }
2343
2344 /**
2345  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2346  * @tx_ring: Tx descriptor ring
2347  *
2348  * Return 0 on success, negative on failure
2349  **/
2350 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2351 {
2352         struct e1000_adapter *adapter = tx_ring->adapter;
2353         int err = -ENOMEM, size;
2354
2355         size = sizeof(struct e1000_buffer) * tx_ring->count;
2356         tx_ring->buffer_info = vzalloc(size);
2357         if (!tx_ring->buffer_info)
2358                 goto err;
2359
2360         /* round up to nearest 4K */
2361         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2362         tx_ring->size = ALIGN(tx_ring->size, 4096);
2363
2364         err = e1000_alloc_ring_dma(adapter, tx_ring);
2365         if (err)
2366                 goto err;
2367
2368         tx_ring->next_to_use = 0;
2369         tx_ring->next_to_clean = 0;
2370
2371         return 0;
2372 err:
2373         vfree(tx_ring->buffer_info);
2374         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2375         return err;
2376 }
2377
2378 /**
2379  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2380  * @rx_ring: Rx descriptor ring
2381  *
2382  * Returns 0 on success, negative on failure
2383  **/
2384 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2385 {
2386         struct e1000_adapter *adapter = rx_ring->adapter;
2387         struct e1000_buffer *buffer_info;
2388         int i, size, desc_len, err = -ENOMEM;
2389
2390         size = sizeof(struct e1000_buffer) * rx_ring->count;
2391         rx_ring->buffer_info = vzalloc(size);
2392         if (!rx_ring->buffer_info)
2393                 goto err;
2394
2395         for (i = 0; i < rx_ring->count; i++) {
2396                 buffer_info = &rx_ring->buffer_info[i];
2397                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2398                                                 sizeof(struct e1000_ps_page),
2399                                                 GFP_KERNEL);
2400                 if (!buffer_info->ps_pages)
2401                         goto err_pages;
2402         }
2403
2404         desc_len = sizeof(union e1000_rx_desc_packet_split);
2405
2406         /* Round up to nearest 4K */
2407         rx_ring->size = rx_ring->count * desc_len;
2408         rx_ring->size = ALIGN(rx_ring->size, 4096);
2409
2410         err = e1000_alloc_ring_dma(adapter, rx_ring);
2411         if (err)
2412                 goto err_pages;
2413
2414         rx_ring->next_to_clean = 0;
2415         rx_ring->next_to_use = 0;
2416         rx_ring->rx_skb_top = NULL;
2417
2418         return 0;
2419
2420 err_pages:
2421         for (i = 0; i < rx_ring->count; i++) {
2422                 buffer_info = &rx_ring->buffer_info[i];
2423                 kfree(buffer_info->ps_pages);
2424         }
2425 err:
2426         vfree(rx_ring->buffer_info);
2427         e_err("Unable to allocate memory for the receive descriptor ring\n");
2428         return err;
2429 }
2430
2431 /**
2432  * e1000_clean_tx_ring - Free Tx Buffers
2433  * @tx_ring: Tx descriptor ring
2434  **/
2435 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2436 {
2437         struct e1000_adapter *adapter = tx_ring->adapter;
2438         struct e1000_buffer *buffer_info;
2439         unsigned long size;
2440         unsigned int i;
2441
2442         for (i = 0; i < tx_ring->count; i++) {
2443                 buffer_info = &tx_ring->buffer_info[i];
2444                 e1000_put_txbuf(tx_ring, buffer_info, false);
2445         }
2446
2447         netdev_reset_queue(adapter->netdev);
2448         size = sizeof(struct e1000_buffer) * tx_ring->count;
2449         memset(tx_ring->buffer_info, 0, size);
2450
2451         memset(tx_ring->desc, 0, tx_ring->size);
2452
2453         tx_ring->next_to_use = 0;
2454         tx_ring->next_to_clean = 0;
2455 }
2456
2457 /**
2458  * e1000e_free_tx_resources - Free Tx Resources per Queue
2459  * @tx_ring: Tx descriptor ring
2460  *
2461  * Free all transmit software resources
2462  **/
2463 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2464 {
2465         struct e1000_adapter *adapter = tx_ring->adapter;
2466         struct pci_dev *pdev = adapter->pdev;
2467
2468         e1000_clean_tx_ring(tx_ring);
2469
2470         vfree(tx_ring->buffer_info);
2471         tx_ring->buffer_info = NULL;
2472
2473         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2474                           tx_ring->dma);
2475         tx_ring->desc = NULL;
2476 }
2477
2478 /**
2479  * e1000e_free_rx_resources - Free Rx Resources
2480  * @rx_ring: Rx descriptor ring
2481  *
2482  * Free all receive software resources
2483  **/
2484 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2485 {
2486         struct e1000_adapter *adapter = rx_ring->adapter;
2487         struct pci_dev *pdev = adapter->pdev;
2488         int i;
2489
2490         e1000_clean_rx_ring(rx_ring);
2491
2492         for (i = 0; i < rx_ring->count; i++)
2493                 kfree(rx_ring->buffer_info[i].ps_pages);
2494
2495         vfree(rx_ring->buffer_info);
2496         rx_ring->buffer_info = NULL;
2497
2498         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2499                           rx_ring->dma);
2500         rx_ring->desc = NULL;
2501 }
2502
2503 /**
2504  * e1000_update_itr - update the dynamic ITR value based on statistics
2505  * @adapter: pointer to adapter
2506  * @itr_setting: current adapter->itr
2507  * @packets: the number of packets during this measurement interval
2508  * @bytes: the number of bytes during this measurement interval
2509  *
2510  *      Stores a new ITR value based on packets and byte
2511  *      counts during the last interrupt.  The advantage of per interrupt
2512  *      computation is faster updates and more accurate ITR for the current
2513  *      traffic pattern.  Constants in this function were computed
2514  *      based on theoretical maximum wire speed and thresholds were set based
2515  *      on testing data as well as attempting to minimize response time
2516  *      while increasing bulk throughput.  This functionality is controlled
2517  *      by the InterruptThrottleRate module parameter.
2518  **/
2519 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2520 {
2521         unsigned int retval = itr_setting;
2522
2523         if (packets == 0)
2524                 return itr_setting;
2525
2526         switch (itr_setting) {
2527         case lowest_latency:
2528                 /* handle TSO and jumbo frames */
2529                 if (bytes / packets > 8000)
2530                         retval = bulk_latency;
2531                 else if ((packets < 5) && (bytes > 512))
2532                         retval = low_latency;
2533                 break;
2534         case low_latency:       /* 50 usec aka 20000 ints/s */
2535                 if (bytes > 10000) {
2536                         /* this if handles the TSO accounting */
2537                         if (bytes / packets > 8000)
2538                                 retval = bulk_latency;
2539                         else if ((packets < 10) || ((bytes / packets) > 1200))
2540                                 retval = bulk_latency;
2541                         else if ((packets > 35))
2542                                 retval = lowest_latency;
2543                 } else if (bytes / packets > 2000) {
2544                         retval = bulk_latency;
2545                 } else if (packets <= 2 && bytes < 512) {
2546                         retval = lowest_latency;
2547                 }
2548                 break;
2549         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2550                 if (bytes > 25000) {
2551                         if (packets > 35)
2552                                 retval = low_latency;
2553                 } else if (bytes < 6000) {
2554                         retval = low_latency;
2555                 }
2556                 break;
2557         }
2558
2559         return retval;
2560 }
2561
2562 static void e1000_set_itr(struct e1000_adapter *adapter)
2563 {
2564         u16 current_itr;
2565         u32 new_itr = adapter->itr;
2566
2567         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2568         if (adapter->link_speed != SPEED_1000) {
2569                 current_itr = 0;
2570                 new_itr = 4000;
2571                 goto set_itr_now;
2572         }
2573
2574         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2575                 new_itr = 0;
2576                 goto set_itr_now;
2577         }
2578
2579         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2580                                            adapter->total_tx_packets,
2581                                            adapter->total_tx_bytes);
2582         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2583         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2584                 adapter->tx_itr = low_latency;
2585
2586         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2587                                            adapter->total_rx_packets,
2588                                            adapter->total_rx_bytes);
2589         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2590         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2591                 adapter->rx_itr = low_latency;
2592
2593         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2594
2595         /* counts and packets in update_itr are dependent on these numbers */
2596         switch (current_itr) {
2597         case lowest_latency:
2598                 new_itr = 70000;
2599                 break;
2600         case low_latency:
2601                 new_itr = 20000;        /* aka hwitr = ~200 */
2602                 break;
2603         case bulk_latency:
2604                 new_itr = 4000;
2605                 break;
2606         default:
2607                 break;
2608         }
2609
2610 set_itr_now:
2611         if (new_itr != adapter->itr) {
2612                 /* this attempts to bias the interrupt rate towards Bulk
2613                  * by adding intermediate steps when interrupt rate is
2614                  * increasing
2615                  */
2616                 new_itr = new_itr > adapter->itr ?
2617                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2618                 adapter->itr = new_itr;
2619                 adapter->rx_ring->itr_val = new_itr;
2620                 if (adapter->msix_entries)
2621                         adapter->rx_ring->set_itr = 1;
2622                 else
2623                         e1000e_write_itr(adapter, new_itr);
2624         }
2625 }
2626
2627 /**
2628  * e1000e_write_itr - write the ITR value to the appropriate registers
2629  * @adapter: address of board private structure
2630  * @itr: new ITR value to program
2631  *
2632  * e1000e_write_itr determines if the adapter is in MSI-X mode
2633  * and, if so, writes the EITR registers with the ITR value.
2634  * Otherwise, it writes the ITR value into the ITR register.
2635  **/
2636 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2637 {
2638         struct e1000_hw *hw = &adapter->hw;
2639         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2640
2641         if (adapter->msix_entries) {
2642                 int vector;
2643
2644                 for (vector = 0; vector < adapter->num_vectors; vector++)
2645                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2646         } else {
2647                 ew32(ITR, new_itr);
2648         }
2649 }
2650
2651 /**
2652  * e1000_alloc_queues - Allocate memory for all rings
2653  * @adapter: board private structure to initialize
2654  **/
2655 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2656 {
2657         int size = sizeof(struct e1000_ring);
2658
2659         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2660         if (!adapter->tx_ring)
2661                 goto err;
2662         adapter->tx_ring->count = adapter->tx_ring_count;
2663         adapter->tx_ring->adapter = adapter;
2664
2665         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2666         if (!adapter->rx_ring)
2667                 goto err;
2668         adapter->rx_ring->count = adapter->rx_ring_count;
2669         adapter->rx_ring->adapter = adapter;
2670
2671         return 0;
2672 err:
2673         e_err("Unable to allocate memory for queues\n");
2674         kfree(adapter->rx_ring);
2675         kfree(adapter->tx_ring);
2676         return -ENOMEM;
2677 }
2678
2679 /**
2680  * e1000e_poll - NAPI Rx polling callback
2681  * @napi: struct associated with this polling callback
2682  * @weight: number of packets driver is allowed to process this poll
2683  **/
2684 static int e1000e_poll(struct napi_struct *napi, int weight)
2685 {
2686         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2687                                                      napi);
2688         struct e1000_hw *hw = &adapter->hw;
2689         struct net_device *poll_dev = adapter->netdev;
2690         int tx_cleaned = 1, work_done = 0;
2691
2692         adapter = netdev_priv(poll_dev);
2693
2694         if (!adapter->msix_entries ||
2695             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2696                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2697
2698         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2699
2700         if (!tx_cleaned)
2701                 work_done = weight;
2702
2703         /* If weight not fully consumed, exit the polling mode */
2704         if (work_done < weight) {
2705                 if (adapter->itr_setting & 3)
2706                         e1000_set_itr(adapter);
2707                 napi_complete_done(napi, work_done);
2708                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2709                         if (adapter->msix_entries)
2710                                 ew32(IMS, adapter->rx_ring->ims_val |
2711                                      E1000_IMS_OTHER);
2712                         else
2713                                 e1000_irq_enable(adapter);
2714                 }
2715         }
2716
2717         return work_done;
2718 }
2719
2720 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2721                                  __always_unused __be16 proto, u16 vid)
2722 {
2723         struct e1000_adapter *adapter = netdev_priv(netdev);
2724         struct e1000_hw *hw = &adapter->hw;
2725         u32 vfta, index;
2726
2727         /* don't update vlan cookie if already programmed */
2728         if ((adapter->hw.mng_cookie.status &
2729              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730             (vid == adapter->mng_vlan_id))
2731                 return 0;
2732
2733         /* add VID to filter table */
2734         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2735                 index = (vid >> 5) & 0x7F;
2736                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2737                 vfta |= BIT((vid & 0x1F));
2738                 hw->mac.ops.write_vfta(hw, index, vfta);
2739         }
2740
2741         set_bit(vid, adapter->active_vlans);
2742
2743         return 0;
2744 }
2745
2746 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2747                                   __always_unused __be16 proto, u16 vid)
2748 {
2749         struct e1000_adapter *adapter = netdev_priv(netdev);
2750         struct e1000_hw *hw = &adapter->hw;
2751         u32 vfta, index;
2752
2753         if ((adapter->hw.mng_cookie.status &
2754              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2755             (vid == adapter->mng_vlan_id)) {
2756                 /* release control to f/w */
2757                 e1000e_release_hw_control(adapter);
2758                 return 0;
2759         }
2760
2761         /* remove VID from filter table */
2762         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2763                 index = (vid >> 5) & 0x7F;
2764                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2765                 vfta &= ~BIT((vid & 0x1F));
2766                 hw->mac.ops.write_vfta(hw, index, vfta);
2767         }
2768
2769         clear_bit(vid, adapter->active_vlans);
2770
2771         return 0;
2772 }
2773
2774 /**
2775  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2776  * @adapter: board private structure to initialize
2777  **/
2778 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2779 {
2780         struct net_device *netdev = adapter->netdev;
2781         struct e1000_hw *hw = &adapter->hw;
2782         u32 rctl;
2783
2784         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2785                 /* disable VLAN receive filtering */
2786                 rctl = er32(RCTL);
2787                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2788                 ew32(RCTL, rctl);
2789
2790                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2791                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2792                                                adapter->mng_vlan_id);
2793                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2794                 }
2795         }
2796 }
2797
2798 /**
2799  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2800  * @adapter: board private structure to initialize
2801  **/
2802 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2803 {
2804         struct e1000_hw *hw = &adapter->hw;
2805         u32 rctl;
2806
2807         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2808                 /* enable VLAN receive filtering */
2809                 rctl = er32(RCTL);
2810                 rctl |= E1000_RCTL_VFE;
2811                 rctl &= ~E1000_RCTL_CFIEN;
2812                 ew32(RCTL, rctl);
2813         }
2814 }
2815
2816 /**
2817  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2818  * @adapter: board private structure to initialize
2819  **/
2820 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2821 {
2822         struct e1000_hw *hw = &adapter->hw;
2823         u32 ctrl;
2824
2825         /* disable VLAN tag insert/strip */
2826         ctrl = er32(CTRL);
2827         ctrl &= ~E1000_CTRL_VME;
2828         ew32(CTRL, ctrl);
2829 }
2830
2831 /**
2832  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2833  * @adapter: board private structure to initialize
2834  **/
2835 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2836 {
2837         struct e1000_hw *hw = &adapter->hw;
2838         u32 ctrl;
2839
2840         /* enable VLAN tag insert/strip */
2841         ctrl = er32(CTRL);
2842         ctrl |= E1000_CTRL_VME;
2843         ew32(CTRL, ctrl);
2844 }
2845
2846 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2847 {
2848         struct net_device *netdev = adapter->netdev;
2849         u16 vid = adapter->hw.mng_cookie.vlan_id;
2850         u16 old_vid = adapter->mng_vlan_id;
2851
2852         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2853                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2854                 adapter->mng_vlan_id = vid;
2855         }
2856
2857         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2858                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2859 }
2860
2861 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2862 {
2863         u16 vid;
2864
2865         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2866
2867         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2868             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2869 }
2870
2871 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2872 {
2873         struct e1000_hw *hw = &adapter->hw;
2874         u32 manc, manc2h, mdef, i, j;
2875
2876         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2877                 return;
2878
2879         manc = er32(MANC);
2880
2881         /* enable receiving management packets to the host. this will probably
2882          * generate destination unreachable messages from the host OS, but
2883          * the packets will be handled on SMBUS
2884          */
2885         manc |= E1000_MANC_EN_MNG2HOST;
2886         manc2h = er32(MANC2H);
2887
2888         switch (hw->mac.type) {
2889         default:
2890                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2891                 break;
2892         case e1000_82574:
2893         case e1000_82583:
2894                 /* Check if IPMI pass-through decision filter already exists;
2895                  * if so, enable it.
2896                  */
2897                 for (i = 0, j = 0; i < 8; i++) {
2898                         mdef = er32(MDEF(i));
2899
2900                         /* Ignore filters with anything other than IPMI ports */
2901                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902                                 continue;
2903
2904                         /* Enable this decision filter in MANC2H */
2905                         if (mdef)
2906                                 manc2h |= BIT(i);
2907
2908                         j |= mdef;
2909                 }
2910
2911                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2912                         break;
2913
2914                 /* Create new decision filter in an empty filter */
2915                 for (i = 0, j = 0; i < 8; i++)
2916                         if (er32(MDEF(i)) == 0) {
2917                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2918                                                E1000_MDEF_PORT_664));
2919                                 manc2h |= BIT(1);
2920                                 j++;
2921                                 break;
2922                         }
2923
2924                 if (!j)
2925                         e_warn("Unable to create IPMI pass-through filter\n");
2926                 break;
2927         }
2928
2929         ew32(MANC2H, manc2h);
2930         ew32(MANC, manc);
2931 }
2932
2933 /**
2934  * e1000_configure_tx - Configure Transmit Unit after Reset
2935  * @adapter: board private structure
2936  *
2937  * Configure the Tx unit of the MAC after a reset.
2938  **/
2939 static void e1000_configure_tx(struct e1000_adapter *adapter)
2940 {
2941         struct e1000_hw *hw = &adapter->hw;
2942         struct e1000_ring *tx_ring = adapter->tx_ring;
2943         u64 tdba;
2944         u32 tdlen, tctl, tarc;
2945
2946         /* Setup the HW Tx Head and Tail descriptor pointers */
2947         tdba = tx_ring->dma;
2948         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2949         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2950         ew32(TDBAH(0), (tdba >> 32));
2951         ew32(TDLEN(0), tdlen);
2952         ew32(TDH(0), 0);
2953         ew32(TDT(0), 0);
2954         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2955         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2956
2957         writel(0, tx_ring->head);
2958         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2959                 e1000e_update_tdt_wa(tx_ring, 0);
2960         else
2961                 writel(0, tx_ring->tail);
2962
2963         /* Set the Tx Interrupt Delay register */
2964         ew32(TIDV, adapter->tx_int_delay);
2965         /* Tx irq moderation */
2966         ew32(TADV, adapter->tx_abs_int_delay);
2967
2968         if (adapter->flags2 & FLAG2_DMA_BURST) {
2969                 u32 txdctl = er32(TXDCTL(0));
2970
2971                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2972                             E1000_TXDCTL_WTHRESH);
2973                 /* set up some performance related parameters to encourage the
2974                  * hardware to use the bus more efficiently in bursts, depends
2975                  * on the tx_int_delay to be enabled,
2976                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2977                  * hthresh = 1 ==> prefetch when one or more available
2978                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2979                  * BEWARE: this seems to work but should be considered first if
2980                  * there are Tx hangs or other Tx related bugs
2981                  */
2982                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2983                 ew32(TXDCTL(0), txdctl);
2984         }
2985         /* erratum work around: set txdctl the same for both queues */
2986         ew32(TXDCTL(1), er32(TXDCTL(0)));
2987
2988         /* Program the Transmit Control Register */
2989         tctl = er32(TCTL);
2990         tctl &= ~E1000_TCTL_CT;
2991         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2992                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2993
2994         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2995                 tarc = er32(TARC(0));
2996                 /* set the speed mode bit, we'll clear it if we're not at
2997                  * gigabit link later
2998                  */
2999 #define SPEED_MODE_BIT BIT(21)
3000                 tarc |= SPEED_MODE_BIT;
3001                 ew32(TARC(0), tarc);
3002         }
3003
3004         /* errata: program both queues to unweighted RR */
3005         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3006                 tarc = er32(TARC(0));
3007                 tarc |= 1;
3008                 ew32(TARC(0), tarc);
3009                 tarc = er32(TARC(1));
3010                 tarc |= 1;
3011                 ew32(TARC(1), tarc);
3012         }
3013
3014         /* Setup Transmit Descriptor Settings for eop descriptor */
3015         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3016
3017         /* only set IDE if we are delaying interrupts using the timers */
3018         if (adapter->tx_int_delay)
3019                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3020
3021         /* enable Report Status bit */
3022         adapter->txd_cmd |= E1000_TXD_CMD_RS;
3023
3024         ew32(TCTL, tctl);
3025
3026         hw->mac.ops.config_collision_dist(hw);
3027
3028         /* SPT and KBL Si errata workaround to avoid data corruption */
3029         if (hw->mac.type == e1000_pch_spt) {
3030                 u32 reg_val;
3031
3032                 reg_val = er32(IOSFPC);
3033                 reg_val |= E1000_RCTL_RDMTS_HEX;
3034                 ew32(IOSFPC, reg_val);
3035
3036                 reg_val = er32(TARC(0));
3037                 /* SPT and KBL Si errata workaround to avoid Tx hang */
3038                 reg_val &= ~BIT(28);
3039                 reg_val |= BIT(29);
3040                 ew32(TARC(0), reg_val);
3041         }
3042 }
3043
3044 /**
3045  * e1000_setup_rctl - configure the receive control registers
3046  * @adapter: Board private structure
3047  **/
3048 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3049                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3050 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3051 {
3052         struct e1000_hw *hw = &adapter->hw;
3053         u32 rctl, rfctl;
3054         u32 pages = 0;
3055
3056         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3057          * If jumbo frames not set, program related MAC/PHY registers
3058          * to h/w defaults
3059          */
3060         if (hw->mac.type >= e1000_pch2lan) {
3061                 s32 ret_val;
3062
3063                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3064                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3065                 else
3066                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3067
3068                 if (ret_val)
3069                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3070         }
3071
3072         /* Program MC offset vector base */
3073         rctl = er32(RCTL);
3074         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3075         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3076             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3077             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3078
3079         /* Do not Store bad packets */
3080         rctl &= ~E1000_RCTL_SBP;
3081
3082         /* Enable Long Packet receive */
3083         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3084                 rctl &= ~E1000_RCTL_LPE;
3085         else
3086                 rctl |= E1000_RCTL_LPE;
3087
3088         /* Some systems expect that the CRC is included in SMBUS traffic. The
3089          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3090          * host memory when this is enabled
3091          */
3092         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3093                 rctl |= E1000_RCTL_SECRC;
3094
3095         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3096         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3097                 u16 phy_data;
3098
3099                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3100                 phy_data &= 0xfff8;
3101                 phy_data |= BIT(2);
3102                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3103
3104                 e1e_rphy(hw, 22, &phy_data);
3105                 phy_data &= 0x0fff;
3106                 phy_data |= BIT(14);
3107                 e1e_wphy(hw, 0x10, 0x2823);
3108                 e1e_wphy(hw, 0x11, 0x0003);
3109                 e1e_wphy(hw, 22, phy_data);
3110         }
3111
3112         /* Setup buffer sizes */
3113         rctl &= ~E1000_RCTL_SZ_4096;
3114         rctl |= E1000_RCTL_BSEX;
3115         switch (adapter->rx_buffer_len) {
3116         case 2048:
3117         default:
3118                 rctl |= E1000_RCTL_SZ_2048;
3119                 rctl &= ~E1000_RCTL_BSEX;
3120                 break;
3121         case 4096:
3122                 rctl |= E1000_RCTL_SZ_4096;
3123                 break;
3124         case 8192:
3125                 rctl |= E1000_RCTL_SZ_8192;
3126                 break;
3127         case 16384:
3128                 rctl |= E1000_RCTL_SZ_16384;
3129                 break;
3130         }
3131
3132         /* Enable Extended Status in all Receive Descriptors */
3133         rfctl = er32(RFCTL);
3134         rfctl |= E1000_RFCTL_EXTEN;
3135         ew32(RFCTL, rfctl);
3136
3137         /* 82571 and greater support packet-split where the protocol
3138          * header is placed in skb->data and the packet data is
3139          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3140          * In the case of a non-split, skb->data is linearly filled,
3141          * followed by the page buffers.  Therefore, skb->data is
3142          * sized to hold the largest protocol header.
3143          *
3144          * allocations using alloc_page take too long for regular MTU
3145          * so only enable packet split for jumbo frames
3146          *
3147          * Using pages when the page size is greater than 16k wastes
3148          * a lot of memory, since we allocate 3 pages at all times
3149          * per packet.
3150          */
3151         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3152         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3153                 adapter->rx_ps_pages = pages;
3154         else
3155                 adapter->rx_ps_pages = 0;
3156
3157         if (adapter->rx_ps_pages) {
3158                 u32 psrctl = 0;
3159
3160                 /* Enable Packet split descriptors */
3161                 rctl |= E1000_RCTL_DTYP_PS;
3162
3163                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3164
3165                 switch (adapter->rx_ps_pages) {
3166                 case 3:
3167                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3168                         /* fall-through */
3169                 case 2:
3170                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3171                         /* fall-through */
3172                 case 1:
3173                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3174                         break;
3175                 }
3176
3177                 ew32(PSRCTL, psrctl);
3178         }
3179
3180         /* This is useful for sniffing bad packets. */
3181         if (adapter->netdev->features & NETIF_F_RXALL) {
3182                 /* UPE and MPE will be handled by normal PROMISC logic
3183                  * in e1000e_set_rx_mode
3184                  */
3185                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3186                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3187                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3188
3189                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3190                           E1000_RCTL_DPF |      /* Allow filtered pause */
3191                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3192                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3193                  * and that breaks VLANs.
3194                  */
3195         }
3196
3197         ew32(RCTL, rctl);
3198         /* just started the receive unit, no need to restart */
3199         adapter->flags &= ~FLAG_RESTART_NOW;
3200 }
3201
3202 /**
3203  * e1000_configure_rx - Configure Receive Unit after Reset
3204  * @adapter: board private structure
3205  *
3206  * Configure the Rx unit of the MAC after a reset.
3207  **/
3208 static void e1000_configure_rx(struct e1000_adapter *adapter)
3209 {
3210         struct e1000_hw *hw = &adapter->hw;
3211         struct e1000_ring *rx_ring = adapter->rx_ring;
3212         u64 rdba;
3213         u32 rdlen, rctl, rxcsum, ctrl_ext;
3214
3215         if (adapter->rx_ps_pages) {
3216                 /* this is a 32 byte descriptor */
3217                 rdlen = rx_ring->count *
3218                     sizeof(union e1000_rx_desc_packet_split);
3219                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3220                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3221         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3222                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3223                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3224                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3225         } else {
3226                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3227                 adapter->clean_rx = e1000_clean_rx_irq;
3228                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3229         }
3230
3231         /* disable receives while setting up the descriptors */
3232         rctl = er32(RCTL);
3233         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3234                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3235         e1e_flush();
3236         usleep_range(10000, 20000);
3237
3238         if (adapter->flags2 & FLAG2_DMA_BURST) {
3239                 /* set the writeback threshold (only takes effect if the RDTR
3240                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3241                  * enable prefetching of 0x20 Rx descriptors
3242                  * granularity = 01
3243                  * wthresh = 04,
3244                  * hthresh = 04,
3245                  * pthresh = 0x20
3246                  */
3247                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3248                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3249         }
3250
3251         /* set the Receive Delay Timer Register */
3252         ew32(RDTR, adapter->rx_int_delay);
3253
3254         /* irq moderation */
3255         ew32(RADV, adapter->rx_abs_int_delay);
3256         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3257                 e1000e_write_itr(adapter, adapter->itr);
3258
3259         ctrl_ext = er32(CTRL_EXT);
3260         /* Auto-Mask interrupts upon ICR access */
3261         ctrl_ext |= E1000_CTRL_EXT_IAME;
3262         ew32(IAM, 0xffffffff);
3263         ew32(CTRL_EXT, ctrl_ext);
3264         e1e_flush();
3265
3266         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3267          * the Base and Length of the Rx Descriptor Ring
3268          */
3269         rdba = rx_ring->dma;
3270         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3271         ew32(RDBAH(0), (rdba >> 32));
3272         ew32(RDLEN(0), rdlen);
3273         ew32(RDH(0), 0);
3274         ew32(RDT(0), 0);
3275         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3276         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3277
3278         writel(0, rx_ring->head);
3279         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3280                 e1000e_update_rdt_wa(rx_ring, 0);
3281         else
3282                 writel(0, rx_ring->tail);
3283
3284         /* Enable Receive Checksum Offload for TCP and UDP */
3285         rxcsum = er32(RXCSUM);
3286         if (adapter->netdev->features & NETIF_F_RXCSUM)
3287                 rxcsum |= E1000_RXCSUM_TUOFL;
3288         else
3289                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3290         ew32(RXCSUM, rxcsum);
3291
3292         /* With jumbo frames, excessive C-state transition latencies result
3293          * in dropped transactions.
3294          */
3295         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3296                 u32 lat =
3297                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3298                      adapter->max_frame_size) * 8 / 1000;
3299
3300                 if (adapter->flags & FLAG_IS_ICH) {
3301                         u32 rxdctl = er32(RXDCTL(0));
3302
3303                         ew32(RXDCTL(0), rxdctl | 0x3);
3304                 }
3305
3306                 pm_qos_update_request(&adapter->pm_qos_req, lat);
3307         } else {
3308                 pm_qos_update_request(&adapter->pm_qos_req,
3309                                       PM_QOS_DEFAULT_VALUE);
3310         }
3311
3312         /* Enable Receives */
3313         ew32(RCTL, rctl);
3314 }
3315
3316 /**
3317  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3318  * @netdev: network interface device structure
3319  *
3320  * Writes multicast address list to the MTA hash table.
3321  * Returns: -ENOMEM on failure
3322  *                0 on no addresses written
3323  *                X on writing X addresses to MTA
3324  */
3325 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3326 {
3327         struct e1000_adapter *adapter = netdev_priv(netdev);
3328         struct e1000_hw *hw = &adapter->hw;
3329         struct netdev_hw_addr *ha;
3330         u8 *mta_list;
3331         int i;
3332
3333         if (netdev_mc_empty(netdev)) {
3334                 /* nothing to program, so clear mc list */
3335                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3336                 return 0;
3337         }
3338
3339         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3340         if (!mta_list)
3341                 return -ENOMEM;
3342
3343         /* update_mc_addr_list expects a packed array of only addresses. */
3344         i = 0;
3345         netdev_for_each_mc_addr(ha, netdev)
3346             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3347
3348         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3349         kfree(mta_list);
3350
3351         return netdev_mc_count(netdev);
3352 }
3353
3354 /**
3355  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3356  * @netdev: network interface device structure
3357  *
3358  * Writes unicast address list to the RAR table.
3359  * Returns: -ENOMEM on failure/insufficient address space
3360  *                0 on no addresses written
3361  *                X on writing X addresses to the RAR table
3362  **/
3363 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3364 {
3365         struct e1000_adapter *adapter = netdev_priv(netdev);
3366         struct e1000_hw *hw = &adapter->hw;
3367         unsigned int rar_entries;
3368         int count = 0;
3369
3370         rar_entries = hw->mac.ops.rar_get_count(hw);
3371
3372         /* save a rar entry for our hardware address */
3373         rar_entries--;
3374
3375         /* save a rar entry for the LAA workaround */
3376         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3377                 rar_entries--;
3378
3379         /* return ENOMEM indicating insufficient memory for addresses */
3380         if (netdev_uc_count(netdev) > rar_entries)
3381                 return -ENOMEM;
3382
3383         if (!netdev_uc_empty(netdev) && rar_entries) {
3384                 struct netdev_hw_addr *ha;
3385
3386                 /* write the addresses in reverse order to avoid write
3387                  * combining
3388                  */
3389                 netdev_for_each_uc_addr(ha, netdev) {
3390                         int ret_val;
3391
3392                         if (!rar_entries)
3393                                 break;
3394                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3395                         if (ret_val < 0)
3396                                 return -ENOMEM;
3397                         count++;
3398                 }
3399         }
3400
3401         /* zero out the remaining RAR entries not used above */
3402         for (; rar_entries > 0; rar_entries--) {
3403                 ew32(RAH(rar_entries), 0);
3404                 ew32(RAL(rar_entries), 0);
3405         }
3406         e1e_flush();
3407
3408         return count;
3409 }
3410
3411 /**
3412  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3413  * @netdev: network interface device structure
3414  *
3415  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3416  * address list or the network interface flags are updated.  This routine is
3417  * responsible for configuring the hardware for proper unicast, multicast,
3418  * promiscuous mode, and all-multi behavior.
3419  **/
3420 static void e1000e_set_rx_mode(struct net_device *netdev)
3421 {
3422         struct e1000_adapter *adapter = netdev_priv(netdev);
3423         struct e1000_hw *hw = &adapter->hw;
3424         u32 rctl;
3425
3426         if (pm_runtime_suspended(netdev->dev.parent))
3427                 return;
3428
3429         /* Check for Promiscuous and All Multicast modes */
3430         rctl = er32(RCTL);
3431
3432         /* clear the affected bits */
3433         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3434
3435         if (netdev->flags & IFF_PROMISC) {
3436                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3437                 /* Do not hardware filter VLANs in promisc mode */
3438                 e1000e_vlan_filter_disable(adapter);
3439         } else {
3440                 int count;
3441
3442                 if (netdev->flags & IFF_ALLMULTI) {
3443                         rctl |= E1000_RCTL_MPE;
3444                 } else {
3445                         /* Write addresses to the MTA, if the attempt fails
3446                          * then we should just turn on promiscuous mode so
3447                          * that we can at least receive multicast traffic
3448                          */
3449                         count = e1000e_write_mc_addr_list(netdev);
3450                         if (count < 0)
3451                                 rctl |= E1000_RCTL_MPE;
3452                 }
3453                 e1000e_vlan_filter_enable(adapter);
3454                 /* Write addresses to available RAR registers, if there is not
3455                  * sufficient space to store all the addresses then enable
3456                  * unicast promiscuous mode
3457                  */
3458                 count = e1000e_write_uc_addr_list(netdev);
3459                 if (count < 0)
3460                         rctl |= E1000_RCTL_UPE;
3461         }
3462
3463         ew32(RCTL, rctl);
3464
3465         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3466                 e1000e_vlan_strip_enable(adapter);
3467         else
3468                 e1000e_vlan_strip_disable(adapter);
3469 }
3470
3471 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3472 {
3473         struct e1000_hw *hw = &adapter->hw;
3474         u32 mrqc, rxcsum;
3475         u32 rss_key[10];
3476         int i;
3477
3478         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3479         for (i = 0; i < 10; i++)
3480                 ew32(RSSRK(i), rss_key[i]);
3481
3482         /* Direct all traffic to queue 0 */
3483         for (i = 0; i < 32; i++)
3484                 ew32(RETA(i), 0);
3485
3486         /* Disable raw packet checksumming so that RSS hash is placed in
3487          * descriptor on writeback.
3488          */
3489         rxcsum = er32(RXCSUM);
3490         rxcsum |= E1000_RXCSUM_PCSD;
3491
3492         ew32(RXCSUM, rxcsum);
3493
3494         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3495                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3496                 E1000_MRQC_RSS_FIELD_IPV6 |
3497                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3498                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3499
3500         ew32(MRQC, mrqc);
3501 }
3502
3503 /**
3504  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3505  * @adapter: board private structure
3506  * @timinca: pointer to returned time increment attributes
3507  *
3508  * Get attributes for incrementing the System Time Register SYSTIML/H at
3509  * the default base frequency, and set the cyclecounter shift value.
3510  **/
3511 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3512 {
3513         struct e1000_hw *hw = &adapter->hw;
3514         u32 incvalue, incperiod, shift;
3515
3516         /* Make sure clock is enabled on I217/I218/I219  before checking
3517          * the frequency
3518          */
3519         if ((hw->mac.type >= e1000_pch_lpt) &&
3520             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3521             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3522                 u32 fextnvm7 = er32(FEXTNVM7);
3523
3524                 if (!(fextnvm7 & BIT(0))) {
3525                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3526                         e1e_flush();
3527                 }
3528         }
3529
3530         switch (hw->mac.type) {
3531         case e1000_pch2lan:
3532                 /* Stable 96MHz frequency */
3533                 incperiod = INCPERIOD_96MHZ;
3534                 incvalue = INCVALUE_96MHZ;
3535                 shift = INCVALUE_SHIFT_96MHZ;
3536                 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3537                 break;
3538         case e1000_pch_lpt:
3539                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3540                         /* Stable 96MHz frequency */
3541                         incperiod = INCPERIOD_96MHZ;
3542                         incvalue = INCVALUE_96MHZ;
3543                         shift = INCVALUE_SHIFT_96MHZ;
3544                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3545                 } else {
3546                         /* Stable 25MHz frequency */
3547                         incperiod = INCPERIOD_25MHZ;
3548                         incvalue = INCVALUE_25MHZ;
3549                         shift = INCVALUE_SHIFT_25MHZ;
3550                         adapter->cc.shift = shift;
3551                 }
3552                 break;
3553         case e1000_pch_spt:
3554                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3555                         /* Stable 24MHz frequency */
3556                         incperiod = INCPERIOD_24MHZ;
3557                         incvalue = INCVALUE_24MHZ;
3558                         shift = INCVALUE_SHIFT_24MHZ;
3559                         adapter->cc.shift = shift;
3560                         break;
3561                 }
3562                 return -EINVAL;
3563         case e1000_pch_cnp:
3564                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3565                         /* Stable 24MHz frequency */
3566                         incperiod = INCPERIOD_24MHZ;
3567                         incvalue = INCVALUE_24MHZ;
3568                         shift = INCVALUE_SHIFT_24MHZ;
3569                         adapter->cc.shift = shift;
3570                 } else {
3571                         /* Stable 38400KHz frequency */
3572                         incperiod = INCPERIOD_38400KHZ;
3573                         incvalue = INCVALUE_38400KHZ;
3574                         shift = INCVALUE_SHIFT_38400KHZ;
3575                         adapter->cc.shift = shift;
3576                 }
3577                 break;
3578         case e1000_82574:
3579         case e1000_82583:
3580                 /* Stable 25MHz frequency */
3581                 incperiod = INCPERIOD_25MHZ;
3582                 incvalue = INCVALUE_25MHZ;
3583                 shift = INCVALUE_SHIFT_25MHZ;
3584                 adapter->cc.shift = shift;
3585                 break;
3586         default:
3587                 return -EINVAL;
3588         }
3589
3590         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3591                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3592
3593         return 0;
3594 }
3595
3596 /**
3597  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3598  * @adapter: board private structure
3599  *
3600  * Outgoing time stamping can be enabled and disabled. Play nice and
3601  * disable it when requested, although it shouldn't cause any overhead
3602  * when no packet needs it. At most one packet in the queue may be
3603  * marked for time stamping, otherwise it would be impossible to tell
3604  * for sure to which packet the hardware time stamp belongs.
3605  *
3606  * Incoming time stamping has to be configured via the hardware filters.
3607  * Not all combinations are supported, in particular event type has to be
3608  * specified. Matching the kind of event packet is not supported, with the
3609  * exception of "all V2 events regardless of level 2 or 4".
3610  **/
3611 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3612                                   struct hwtstamp_config *config)
3613 {
3614         struct e1000_hw *hw = &adapter->hw;
3615         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3616         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3617         u32 rxmtrl = 0;
3618         u16 rxudp = 0;
3619         bool is_l4 = false;
3620         bool is_l2 = false;
3621         u32 regval;
3622
3623         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3624                 return -EINVAL;
3625
3626         /* flags reserved for future extensions - must be zero */
3627         if (config->flags)
3628                 return -EINVAL;
3629
3630         switch (config->tx_type) {
3631         case HWTSTAMP_TX_OFF:
3632                 tsync_tx_ctl = 0;
3633                 break;
3634         case HWTSTAMP_TX_ON:
3635                 break;
3636         default:
3637                 return -ERANGE;
3638         }
3639
3640         switch (config->rx_filter) {
3641         case HWTSTAMP_FILTER_NONE:
3642                 tsync_rx_ctl = 0;
3643                 break;
3644         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3645                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3646                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3647                 is_l4 = true;
3648                 break;
3649         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3650                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3651                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3652                 is_l4 = true;
3653                 break;
3654         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3655                 /* Also time stamps V2 L2 Path Delay Request/Response */
3656                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3657                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3658                 is_l2 = true;
3659                 break;
3660         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3661                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3662                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3663                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3664                 is_l2 = true;
3665                 break;
3666         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3667                 /* Hardware cannot filter just V2 L4 Sync messages;
3668                  * fall-through to V2 (both L2 and L4) Sync.
3669                  */
3670         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3671                 /* Also time stamps V2 Path Delay Request/Response. */
3672                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3673                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3674                 is_l2 = true;
3675                 is_l4 = true;
3676                 break;
3677         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3678                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3679                  * fall-through to V2 (both L2 and L4) Delay Request.
3680                  */
3681         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3682                 /* Also time stamps V2 Path Delay Request/Response. */
3683                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3684                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3685                 is_l2 = true;
3686                 is_l4 = true;
3687                 break;
3688         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3689         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3690                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3691                  * fall-through to all V2 (both L2 and L4) Events.
3692                  */
3693         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3694                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3695                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3696                 is_l2 = true;
3697                 is_l4 = true;
3698                 break;
3699         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3700                 /* For V1, the hardware can only filter Sync messages or
3701                  * Delay Request messages but not both so fall-through to
3702                  * time stamp all packets.
3703                  */
3704         case HWTSTAMP_FILTER_NTP_ALL:
3705         case HWTSTAMP_FILTER_ALL:
3706                 is_l2 = true;
3707                 is_l4 = true;
3708                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3709                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3710                 break;
3711         default:
3712                 return -ERANGE;
3713         }
3714
3715         adapter->hwtstamp_config = *config;
3716
3717         /* enable/disable Tx h/w time stamping */
3718         regval = er32(TSYNCTXCTL);
3719         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3720         regval |= tsync_tx_ctl;
3721         ew32(TSYNCTXCTL, regval);
3722         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3723             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3724                 e_err("Timesync Tx Control register not set as expected\n");
3725                 return -EAGAIN;
3726         }
3727
3728         /* enable/disable Rx h/w time stamping */
3729         regval = er32(TSYNCRXCTL);
3730         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3731         regval |= tsync_rx_ctl;
3732         ew32(TSYNCRXCTL, regval);
3733         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3734                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3735             (regval & (E1000_TSYNCRXCTL_ENABLED |
3736                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3737                 e_err("Timesync Rx Control register not set as expected\n");
3738                 return -EAGAIN;
3739         }
3740
3741         /* L2: define ethertype filter for time stamped packets */
3742         if (is_l2)
3743                 rxmtrl |= ETH_P_1588;
3744
3745         /* define which PTP packets get time stamped */
3746         ew32(RXMTRL, rxmtrl);
3747
3748         /* Filter by destination port */
3749         if (is_l4) {
3750                 rxudp = PTP_EV_PORT;
3751                 cpu_to_be16s(&rxudp);
3752         }
3753         ew32(RXUDP, rxudp);
3754
3755         e1e_flush();
3756
3757         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3758         er32(RXSTMPH);
3759         er32(TXSTMPH);
3760
3761         return 0;
3762 }
3763
3764 /**
3765  * e1000_configure - configure the hardware for Rx and Tx
3766  * @adapter: private board structure
3767  **/
3768 static void e1000_configure(struct e1000_adapter *adapter)
3769 {
3770         struct e1000_ring *rx_ring = adapter->rx_ring;
3771
3772         e1000e_set_rx_mode(adapter->netdev);
3773
3774         e1000_restore_vlan(adapter);
3775         e1000_init_manageability_pt(adapter);
3776
3777         e1000_configure_tx(adapter);
3778
3779         if (adapter->netdev->features & NETIF_F_RXHASH)
3780                 e1000e_setup_rss_hash(adapter);
3781         e1000_setup_rctl(adapter);
3782         e1000_configure_rx(adapter);
3783         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3784 }
3785
3786 /**
3787  * e1000e_power_up_phy - restore link in case the phy was powered down
3788  * @adapter: address of board private structure
3789  *
3790  * The phy may be powered down to save power and turn off link when the
3791  * driver is unloaded and wake on lan is not enabled (among others)
3792  * *** this routine MUST be followed by a call to e1000e_reset ***
3793  **/
3794 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3795 {
3796         if (adapter->hw.phy.ops.power_up)
3797                 adapter->hw.phy.ops.power_up(&adapter->hw);
3798
3799         adapter->hw.mac.ops.setup_link(&adapter->hw);
3800 }
3801
3802 /**
3803  * e1000_power_down_phy - Power down the PHY
3804  *
3805  * Power down the PHY so no link is implied when interface is down.
3806  * The PHY cannot be powered down if management or WoL is active.
3807  */
3808 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3809 {
3810         if (adapter->hw.phy.ops.power_down)
3811                 adapter->hw.phy.ops.power_down(&adapter->hw);
3812 }
3813
3814 /**
3815  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3816  *
3817  * We want to clear all pending descriptors from the TX ring.
3818  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3819  * the data of the next descriptor. We don't care about the data we are about
3820  * to reset the HW.
3821  */
3822 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3823 {
3824         struct e1000_hw *hw = &adapter->hw;
3825         struct e1000_ring *tx_ring = adapter->tx_ring;
3826         struct e1000_tx_desc *tx_desc = NULL;
3827         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3828         u16 size = 512;
3829
3830         tctl = er32(TCTL);
3831         ew32(TCTL, tctl | E1000_TCTL_EN);
3832         tdt = er32(TDT(0));
3833         BUG_ON(tdt != tx_ring->next_to_use);
3834         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3835         tx_desc->buffer_addr = tx_ring->dma;
3836
3837         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3838         tx_desc->upper.data = 0;
3839         /* flush descriptors to memory before notifying the HW */
3840         wmb();
3841         tx_ring->next_to_use++;
3842         if (tx_ring->next_to_use == tx_ring->count)
3843                 tx_ring->next_to_use = 0;
3844         ew32(TDT(0), tx_ring->next_to_use);
3845         mmiowb();
3846         usleep_range(200, 250);
3847 }
3848
3849 /**
3850  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3851  *
3852  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3853  */
3854 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3855 {
3856         u32 rctl, rxdctl;
3857         struct e1000_hw *hw = &adapter->hw;
3858
3859         rctl = er32(RCTL);
3860         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3861         e1e_flush();
3862         usleep_range(100, 150);
3863
3864         rxdctl = er32(RXDCTL(0));
3865         /* zero the lower 14 bits (prefetch and host thresholds) */
3866         rxdctl &= 0xffffc000;
3867
3868         /* update thresholds: prefetch threshold to 31, host threshold to 1
3869          * and make sure the granularity is "descriptors" and not "cache lines"
3870          */
3871         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3872
3873         ew32(RXDCTL(0), rxdctl);
3874         /* momentarily enable the RX ring for the changes to take effect */
3875         ew32(RCTL, rctl | E1000_RCTL_EN);
3876         e1e_flush();
3877         usleep_range(100, 150);
3878         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3879 }
3880
3881 /**
3882  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3883  *
3884  * In i219, the descriptor rings must be emptied before resetting the HW
3885  * or before changing the device state to D3 during runtime (runtime PM).
3886  *
3887  * Failure to do this will cause the HW to enter a unit hang state which can
3888  * only be released by PCI reset on the device
3889  *
3890  */
3891
3892 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3893 {
3894         u16 hang_state;
3895         u32 fext_nvm11, tdlen;
3896         struct e1000_hw *hw = &adapter->hw;
3897
3898         /* First, disable MULR fix in FEXTNVM11 */
3899         fext_nvm11 = er32(FEXTNVM11);
3900         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3901         ew32(FEXTNVM11, fext_nvm11);
3902         /* do nothing if we're not in faulty state, or if the queue is empty */
3903         tdlen = er32(TDLEN(0));
3904         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3905                              &hang_state);
3906         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3907                 return;
3908         e1000_flush_tx_ring(adapter);
3909         /* recheck, maybe the fault is caused by the rx ring */
3910         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3911                              &hang_state);
3912         if (hang_state & FLUSH_DESC_REQUIRED)
3913                 e1000_flush_rx_ring(adapter);
3914 }
3915
3916 /**
3917  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3918  * @adapter: board private structure
3919  *
3920  * When the MAC is reset, all hardware bits for timesync will be reset to the
3921  * default values. This function will restore the settings last in place.
3922  * Since the clock SYSTIME registers are reset, we will simply restore the
3923  * cyclecounter to the kernel real clock time.
3924  **/
3925 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3926 {
3927         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3928         struct e1000_hw *hw = &adapter->hw;
3929         unsigned long flags;
3930         u32 timinca;
3931         s32 ret_val;
3932
3933         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3934                 return;
3935
3936         if (info->adjfreq) {
3937                 /* restore the previous ptp frequency delta */
3938                 ret_val = info->adjfreq(info, adapter->ptp_delta);
3939         } else {
3940                 /* set the default base frequency if no adjustment possible */
3941                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3942                 if (!ret_val)
3943                         ew32(TIMINCA, timinca);
3944         }
3945
3946         if (ret_val) {
3947                 dev_warn(&adapter->pdev->dev,
3948                          "Failed to restore TIMINCA clock rate delta: %d\n",
3949                          ret_val);
3950                 return;
3951         }
3952
3953         /* reset the systim ns time counter */
3954         spin_lock_irqsave(&adapter->systim_lock, flags);
3955         timecounter_init(&adapter->tc, &adapter->cc,
3956                          ktime_to_ns(ktime_get_real()));
3957         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3958
3959         /* restore the previous hwtstamp configuration settings */
3960         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3961 }
3962
3963 /**
3964  * e1000e_reset - bring the hardware into a known good state
3965  *
3966  * This function boots the hardware and enables some settings that
3967  * require a configuration cycle of the hardware - those cannot be
3968  * set/changed during runtime. After reset the device needs to be
3969  * properly configured for Rx, Tx etc.
3970  */
3971 void e1000e_reset(struct e1000_adapter *adapter)
3972 {
3973         struct e1000_mac_info *mac = &adapter->hw.mac;
3974         struct e1000_fc_info *fc = &adapter->hw.fc;
3975         struct e1000_hw *hw = &adapter->hw;
3976         u32 tx_space, min_tx_space, min_rx_space;
3977         u32 pba = adapter->pba;
3978         u16 hwm;
3979
3980         /* reset Packet Buffer Allocation to default */
3981         ew32(PBA, pba);
3982
3983         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3984                 /* To maintain wire speed transmits, the Tx FIFO should be
3985                  * large enough to accommodate two full transmit packets,
3986                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3987                  * the Rx FIFO should be large enough to accommodate at least
3988                  * one full receive packet and is similarly rounded up and
3989                  * expressed in KB.
3990                  */
3991                 pba = er32(PBA);
3992                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3993                 tx_space = pba >> 16;
3994                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3995                 pba &= 0xffff;
3996                 /* the Tx fifo also stores 16 bytes of information about the Tx
3997                  * but don't include ethernet FCS because hardware appends it
3998                  */
3999                 min_tx_space = (adapter->max_frame_size +
4000                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
4001                 min_tx_space = ALIGN(min_tx_space, 1024);
4002                 min_tx_space >>= 10;
4003                 /* software strips receive CRC, so leave room for it */
4004                 min_rx_space = adapter->max_frame_size;
4005                 min_rx_space = ALIGN(min_rx_space, 1024);
4006                 min_rx_space >>= 10;
4007
4008                 /* If current Tx allocation is less than the min Tx FIFO size,
4009                  * and the min Tx FIFO size is less than the current Rx FIFO
4010                  * allocation, take space away from current Rx allocation
4011                  */
4012                 if ((tx_space < min_tx_space) &&
4013                     ((min_tx_space - tx_space) < pba)) {
4014                         pba -= min_tx_space - tx_space;
4015
4016                         /* if short on Rx space, Rx wins and must trump Tx
4017                          * adjustment
4018                          */
4019                         if (pba < min_rx_space)
4020                                 pba = min_rx_space;
4021                 }
4022
4023                 ew32(PBA, pba);
4024         }
4025
4026         /* flow control settings
4027          *
4028          * The high water mark must be low enough to fit one full frame
4029          * (or the size used for early receive) above it in the Rx FIFO.
4030          * Set it to the lower of:
4031          * - 90% of the Rx FIFO size, and
4032          * - the full Rx FIFO size minus one full frame
4033          */
4034         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4035                 fc->pause_time = 0xFFFF;
4036         else
4037                 fc->pause_time = E1000_FC_PAUSE_TIME;
4038         fc->send_xon = true;
4039         fc->current_mode = fc->requested_mode;
4040
4041         switch (hw->mac.type) {
4042         case e1000_ich9lan:
4043         case e1000_ich10lan:
4044                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4045                         pba = 14;
4046                         ew32(PBA, pba);
4047                         fc->high_water = 0x2800;
4048                         fc->low_water = fc->high_water - 8;
4049                         break;
4050                 }
4051                 /* fall-through */
4052         default:
4053                 hwm = min(((pba << 10) * 9 / 10),
4054                           ((pba << 10) - adapter->max_frame_size));
4055
4056                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4057                 fc->low_water = fc->high_water - 8;
4058                 break;
4059         case e1000_pchlan:
4060                 /* Workaround PCH LOM adapter hangs with certain network
4061                  * loads.  If hangs persist, try disabling Tx flow control.
4062                  */
4063                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4064                         fc->high_water = 0x3500;
4065                         fc->low_water = 0x1500;
4066                 } else {
4067                         fc->high_water = 0x5000;
4068                         fc->low_water = 0x3000;
4069                 }
4070                 fc->refresh_time = 0x1000;
4071                 break;
4072         case e1000_pch2lan:
4073         case e1000_pch_lpt:
4074         case e1000_pch_spt:
4075         case e1000_pch_cnp:
4076                 fc->refresh_time = 0x0400;
4077
4078                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4079                         fc->high_water = 0x05C20;
4080                         fc->low_water = 0x05048;
4081                         fc->pause_time = 0x0650;
4082                         break;
4083                 }
4084
4085                 pba = 14;
4086                 ew32(PBA, pba);
4087                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4088                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4089                 break;
4090         }
4091
4092         /* Alignment of Tx data is on an arbitrary byte boundary with the
4093          * maximum size per Tx descriptor limited only to the transmit
4094          * allocation of the packet buffer minus 96 bytes with an upper
4095          * limit of 24KB due to receive synchronization limitations.
4096          */
4097         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4098                                        24 << 10);
4099
4100         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4101          * fit in receive buffer.
4102          */
4103         if (adapter->itr_setting & 0x3) {
4104                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4105                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4106                                 dev_info(&adapter->pdev->dev,
4107                                          "Interrupt Throttle Rate off\n");
4108                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4109                                 e1000e_write_itr(adapter, 0);
4110                         }
4111                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4112                         dev_info(&adapter->pdev->dev,
4113                                  "Interrupt Throttle Rate on\n");
4114                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4115                         adapter->itr = 20000;
4116                         e1000e_write_itr(adapter, adapter->itr);
4117                 }
4118         }
4119
4120         if (hw->mac.type >= e1000_pch_spt)
4121                 e1000_flush_desc_rings(adapter);
4122         /* Allow time for pending master requests to run */
4123         mac->ops.reset_hw(hw);
4124
4125         /* For parts with AMT enabled, let the firmware know
4126          * that the network interface is in control
4127          */
4128         if (adapter->flags & FLAG_HAS_AMT)
4129                 e1000e_get_hw_control(adapter);
4130
4131         ew32(WUC, 0);
4132
4133         if (mac->ops.init_hw(hw))
4134                 e_err("Hardware Error\n");
4135
4136         e1000_update_mng_vlan(adapter);
4137
4138         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4139         ew32(VET, ETH_P_8021Q);
4140
4141         e1000e_reset_adaptive(hw);
4142
4143         /* restore systim and hwtstamp settings */
4144         e1000e_systim_reset(adapter);
4145
4146         /* Set EEE advertisement as appropriate */
4147         if (adapter->flags2 & FLAG2_HAS_EEE) {
4148                 s32 ret_val;
4149                 u16 adv_addr;
4150
4151                 switch (hw->phy.type) {
4152                 case e1000_phy_82579:
4153                         adv_addr = I82579_EEE_ADVERTISEMENT;
4154                         break;
4155                 case e1000_phy_i217:
4156                         adv_addr = I217_EEE_ADVERTISEMENT;
4157                         break;
4158                 default:
4159                         dev_err(&adapter->pdev->dev,
4160                                 "Invalid PHY type setting EEE advertisement\n");
4161                         return;
4162                 }
4163
4164                 ret_val = hw->phy.ops.acquire(hw);
4165                 if (ret_val) {
4166                         dev_err(&adapter->pdev->dev,
4167                                 "EEE advertisement - unable to acquire PHY\n");
4168                         return;
4169                 }
4170
4171                 e1000_write_emi_reg_locked(hw, adv_addr,
4172                                            hw->dev_spec.ich8lan.eee_disable ?
4173                                            0 : adapter->eee_advert);
4174
4175                 hw->phy.ops.release(hw);
4176         }
4177
4178         if (!netif_running(adapter->netdev) &&
4179             !test_bit(__E1000_TESTING, &adapter->state))
4180                 e1000_power_down_phy(adapter);
4181
4182         e1000_get_phy_info(hw);
4183
4184         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4185             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4186                 u16 phy_data = 0;
4187                 /* speed up time to link by disabling smart power down, ignore
4188                  * the return value of this function because there is nothing
4189                  * different we would do if it failed
4190                  */
4191                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4192                 phy_data &= ~IGP02E1000_PM_SPD;
4193                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4194         }
4195         if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4196                 u32 reg;
4197
4198                 /* Fextnvm7 @ 0xe4[2] = 1 */
4199                 reg = er32(FEXTNVM7);
4200                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4201                 ew32(FEXTNVM7, reg);
4202                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4203                 reg = er32(FEXTNVM9);
4204                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4205                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4206                 ew32(FEXTNVM9, reg);
4207         }
4208
4209 }
4210
4211 /**
4212  * e1000e_trigger_lsc - trigger an LSC interrupt
4213  * @adapter: 
4214  *
4215  * Fire a link status change interrupt to start the watchdog.
4216  **/
4217 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4218 {
4219         struct e1000_hw *hw = &adapter->hw;
4220
4221         if (adapter->msix_entries)
4222                 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4223         else
4224                 ew32(ICS, E1000_ICS_LSC);
4225 }
4226
4227 void e1000e_up(struct e1000_adapter *adapter)
4228 {
4229         /* hardware has been reset, we need to reload some things */
4230         e1000_configure(adapter);
4231
4232         clear_bit(__E1000_DOWN, &adapter->state);
4233
4234         if (adapter->msix_entries)
4235                 e1000_configure_msix(adapter);
4236         e1000_irq_enable(adapter);
4237
4238         netif_start_queue(adapter->netdev);
4239
4240         e1000e_trigger_lsc(adapter);
4241 }
4242
4243 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4244 {
4245         struct e1000_hw *hw = &adapter->hw;
4246
4247         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4248                 return;
4249
4250         /* flush pending descriptor writebacks to memory */
4251         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4252         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4253
4254         /* execute the writes immediately */
4255         e1e_flush();
4256
4257         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4258          * write is successful
4259          */
4260         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4261         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4262
4263         /* execute the writes immediately */
4264         e1e_flush();
4265 }
4266
4267 static void e1000e_update_stats(struct e1000_adapter *adapter);
4268
4269 /**
4270  * e1000e_down - quiesce the device and optionally reset the hardware
4271  * @adapter: board private structure
4272  * @reset: boolean flag to reset the hardware or not
4273  */
4274 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4275 {
4276         struct net_device *netdev = adapter->netdev;
4277         struct e1000_hw *hw = &adapter->hw;
4278         u32 tctl, rctl;
4279
4280         /* signal that we're down so the interrupt handler does not
4281          * reschedule our watchdog timer
4282          */
4283         set_bit(__E1000_DOWN, &adapter->state);
4284
4285         netif_carrier_off(netdev);
4286
4287         /* disable receives in the hardware */
4288         rctl = er32(RCTL);
4289         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4290                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4291         /* flush and sleep below */
4292
4293         netif_stop_queue(netdev);
4294
4295         /* disable transmits in the hardware */
4296         tctl = er32(TCTL);
4297         tctl &= ~E1000_TCTL_EN;
4298         ew32(TCTL, tctl);
4299
4300         /* flush both disables and wait for them to finish */
4301         e1e_flush();
4302         usleep_range(10000, 20000);
4303
4304         e1000_irq_disable(adapter);
4305
4306         napi_synchronize(&adapter->napi);
4307
4308         del_timer_sync(&adapter->watchdog_timer);
4309         del_timer_sync(&adapter->phy_info_timer);
4310
4311         spin_lock(&adapter->stats64_lock);
4312         e1000e_update_stats(adapter);
4313         spin_unlock(&adapter->stats64_lock);
4314
4315         e1000e_flush_descriptors(adapter);
4316
4317         adapter->link_speed = 0;
4318         adapter->link_duplex = 0;
4319
4320         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4321         if ((hw->mac.type >= e1000_pch2lan) &&
4322             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4323             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4324                 e_dbg("failed to disable jumbo frame workaround mode\n");
4325
4326         if (!pci_channel_offline(adapter->pdev)) {
4327                 if (reset)
4328                         e1000e_reset(adapter);
4329                 else if (hw->mac.type >= e1000_pch_spt)
4330                         e1000_flush_desc_rings(adapter);
4331         }
4332         e1000_clean_tx_ring(adapter->tx_ring);
4333         e1000_clean_rx_ring(adapter->rx_ring);
4334 }
4335
4336 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4337 {
4338         might_sleep();
4339         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4340                 usleep_range(1000, 2000);
4341         e1000e_down(adapter, true);
4342         e1000e_up(adapter);
4343         clear_bit(__E1000_RESETTING, &adapter->state);
4344 }
4345
4346 /**
4347  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4348  * @hw: pointer to the HW structure
4349  * @systim: time value read, sanitized and returned
4350  *
4351  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4352  * check to see that the time is incrementing at a reasonable
4353  * rate and is a multiple of incvalue.
4354  **/
4355 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
4356 {
4357         u64 time_delta, rem, temp;
4358         u64 systim_next;
4359         u32 incvalue;
4360         int i;
4361
4362         incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4363         for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4364                 /* latch SYSTIMH on read of SYSTIML */
4365                 systim_next = (u64)er32(SYSTIML);
4366                 systim_next |= (u64)er32(SYSTIMH) << 32;
4367
4368                 time_delta = systim_next - systim;
4369                 temp = time_delta;
4370                 /* VMWare users have seen incvalue of zero, don't div / 0 */
4371                 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4372
4373                 systim = systim_next;
4374
4375                 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4376                         break;
4377         }
4378
4379         return systim;
4380 }
4381
4382 /**
4383  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4384  * @cc: cyclecounter structure
4385  **/
4386 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4387 {
4388         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4389                                                      cc);
4390         struct e1000_hw *hw = &adapter->hw;
4391         u32 systimel, systimeh;
4392         u64 systim;
4393         /* SYSTIMH latching upon SYSTIML read does not work well.
4394          * This means that if SYSTIML overflows after we read it but before
4395          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4396          * will experience a huge non linear increment in the systime value
4397          * to fix that we test for overflow and if true, we re-read systime.
4398          */
4399         systimel = er32(SYSTIML);
4400         systimeh = er32(SYSTIMH);
4401         /* Is systimel is so large that overflow is possible? */
4402         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4403                 u32 systimel_2 = er32(SYSTIML);
4404                 if (systimel > systimel_2) {
4405                         /* There was an overflow, read again SYSTIMH, and use
4406                          * systimel_2
4407                          */
4408                         systimeh = er32(SYSTIMH);
4409                         systimel = systimel_2;
4410                 }
4411         }
4412         systim = (u64)systimel;
4413         systim |= (u64)systimeh << 32;
4414
4415         if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4416                 systim = e1000e_sanitize_systim(hw, systim);
4417
4418         return systim;
4419 }
4420
4421 /**
4422  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4423  * @adapter: board private structure to initialize
4424  *
4425  * e1000_sw_init initializes the Adapter private data structure.
4426  * Fields are initialized based on PCI device information and
4427  * OS network device settings (MTU size).
4428  **/
4429 static int e1000_sw_init(struct e1000_adapter *adapter)
4430 {
4431         struct net_device *netdev = adapter->netdev;
4432
4433         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4434         adapter->rx_ps_bsize0 = 128;
4435         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4436         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4437         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4438         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4439
4440         spin_lock_init(&adapter->stats64_lock);
4441
4442         e1000e_set_interrupt_capability(adapter);
4443
4444         if (e1000_alloc_queues(adapter))
4445                 return -ENOMEM;
4446
4447         /* Setup hardware time stamping cyclecounter */
4448         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4449                 adapter->cc.read = e1000e_cyclecounter_read;
4450                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4451                 adapter->cc.mult = 1;
4452                 /* cc.shift set in e1000e_get_base_tininca() */
4453
4454                 spin_lock_init(&adapter->systim_lock);
4455                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4456         }
4457
4458         /* Explicitly disable IRQ since the NIC can be in any state. */
4459         e1000_irq_disable(adapter);
4460
4461         set_bit(__E1000_DOWN, &adapter->state);
4462         return 0;
4463 }
4464
4465 /**
4466  * e1000_intr_msi_test - Interrupt Handler
4467  * @irq: interrupt number
4468  * @data: pointer to a network interface device structure
4469  **/
4470 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4471 {
4472         struct net_device *netdev = data;
4473         struct e1000_adapter *adapter = netdev_priv(netdev);
4474         struct e1000_hw *hw = &adapter->hw;
4475         u32 icr = er32(ICR);
4476
4477         e_dbg("icr is %08X\n", icr);
4478         if (icr & E1000_ICR_RXSEQ) {
4479                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4480                 /* Force memory writes to complete before acknowledging the
4481                  * interrupt is handled.
4482                  */
4483                 wmb();
4484         }
4485
4486         return IRQ_HANDLED;
4487 }
4488
4489 /**
4490  * e1000_test_msi_interrupt - Returns 0 for successful test
4491  * @adapter: board private struct
4492  *
4493  * code flow taken from tg3.c
4494  **/
4495 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4496 {
4497         struct net_device *netdev = adapter->netdev;
4498         struct e1000_hw *hw = &adapter->hw;
4499         int err;
4500
4501         /* poll_enable hasn't been called yet, so don't need disable */
4502         /* clear any pending events */
4503         er32(ICR);
4504
4505         /* free the real vector and request a test handler */
4506         e1000_free_irq(adapter);
4507         e1000e_reset_interrupt_capability(adapter);
4508
4509         /* Assume that the test fails, if it succeeds then the test
4510          * MSI irq handler will unset this flag
4511          */
4512         adapter->flags |= FLAG_MSI_TEST_FAILED;
4513
4514         err = pci_enable_msi(adapter->pdev);
4515         if (err)
4516                 goto msi_test_failed;
4517
4518         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4519                           netdev->name, netdev);
4520         if (err) {
4521                 pci_disable_msi(adapter->pdev);
4522                 goto msi_test_failed;
4523         }
4524
4525         /* Force memory writes to complete before enabling and firing an
4526          * interrupt.
4527          */
4528         wmb();
4529
4530         e1000_irq_enable(adapter);
4531
4532         /* fire an unusual interrupt on the test handler */
4533         ew32(ICS, E1000_ICS_RXSEQ);
4534         e1e_flush();
4535         msleep(100);
4536
4537         e1000_irq_disable(adapter);
4538
4539         rmb();                  /* read flags after interrupt has been fired */
4540
4541         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4542                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4543                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4544         } else {
4545                 e_dbg("MSI interrupt test succeeded!\n");
4546         }
4547
4548         free_irq(adapter->pdev->irq, netdev);
4549         pci_disable_msi(adapter->pdev);
4550
4551 msi_test_failed:
4552         e1000e_set_interrupt_capability(adapter);
4553         return e1000_request_irq(adapter);
4554 }
4555
4556 /**
4557  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4558  * @adapter: board private struct
4559  *
4560  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4561  **/
4562 static int e1000_test_msi(struct e1000_adapter *adapter)
4563 {
4564         int err;
4565         u16 pci_cmd;
4566
4567         if (!(adapter->flags & FLAG_MSI_ENABLED))
4568                 return 0;
4569
4570         /* disable SERR in case the MSI write causes a master abort */
4571         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4572         if (pci_cmd & PCI_COMMAND_SERR)
4573                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4574                                       pci_cmd & ~PCI_COMMAND_SERR);
4575
4576         err = e1000_test_msi_interrupt(adapter);
4577
4578         /* re-enable SERR */
4579         if (pci_cmd & PCI_COMMAND_SERR) {
4580                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4581                 pci_cmd |= PCI_COMMAND_SERR;
4582                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4583         }
4584
4585         return err;
4586 }
4587
4588 /**
4589  * e1000e_open - Called when a network interface is made active
4590  * @netdev: network interface device structure
4591  *
4592  * Returns 0 on success, negative value on failure
4593  *
4594  * The open entry point is called when a network interface is made
4595  * active by the system (IFF_UP).  At this point all resources needed
4596  * for transmit and receive operations are allocated, the interrupt
4597  * handler is registered with the OS, the watchdog timer is started,
4598  * and the stack is notified that the interface is ready.
4599  **/
4600 int e1000e_open(struct net_device *netdev)
4601 {
4602         struct e1000_adapter *adapter = netdev_priv(netdev);
4603         struct e1000_hw *hw = &adapter->hw;
4604         struct pci_dev *pdev = adapter->pdev;
4605         int err;
4606
4607         /* disallow open during test */
4608         if (test_bit(__E1000_TESTING, &adapter->state))
4609                 return -EBUSY;
4610
4611         pm_runtime_get_sync(&pdev->dev);
4612
4613         netif_carrier_off(netdev);
4614
4615         /* allocate transmit descriptors */
4616         err = e1000e_setup_tx_resources(adapter->tx_ring);
4617         if (err)
4618                 goto err_setup_tx;
4619
4620         /* allocate receive descriptors */
4621         err = e1000e_setup_rx_resources(adapter->rx_ring);
4622         if (err)
4623                 goto err_setup_rx;
4624
4625         /* If AMT is enabled, let the firmware know that the network
4626          * interface is now open and reset the part to a known state.
4627          */
4628         if (adapter->flags & FLAG_HAS_AMT) {
4629                 e1000e_get_hw_control(adapter);
4630                 e1000e_reset(adapter);
4631         }
4632
4633         e1000e_power_up_phy(adapter);
4634
4635         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4636         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4637                 e1000_update_mng_vlan(adapter);
4638
4639         /* DMA latency requirement to workaround jumbo issue */
4640         pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4641                            PM_QOS_DEFAULT_VALUE);
4642
4643         /* before we allocate an interrupt, we must be ready to handle it.
4644          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4645          * as soon as we call pci_request_irq, so we have to setup our
4646          * clean_rx handler before we do so.
4647          */
4648         e1000_configure(adapter);
4649
4650         err = e1000_request_irq(adapter);
4651         if (err)
4652                 goto err_req_irq;
4653
4654         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4655          * ignore e1000e MSI messages, which means we need to test our MSI
4656          * interrupt now
4657          */
4658         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4659                 err = e1000_test_msi(adapter);
4660                 if (err) {
4661                         e_err("Interrupt allocation failed\n");
4662                         goto err_req_irq;
4663                 }
4664         }
4665
4666         /* From here on the code is the same as e1000e_up() */
4667         clear_bit(__E1000_DOWN, &adapter->state);
4668
4669         napi_enable(&adapter->napi);
4670
4671         e1000_irq_enable(adapter);
4672
4673         adapter->tx_hang_recheck = false;
4674         netif_start_queue(netdev);
4675
4676         hw->mac.get_link_status = true;
4677         pm_runtime_put(&pdev->dev);
4678
4679         e1000e_trigger_lsc(adapter);
4680
4681         return 0;
4682
4683 err_req_irq:
4684         pm_qos_remove_request(&adapter->pm_qos_req);
4685         e1000e_release_hw_control(adapter);
4686         e1000_power_down_phy(adapter);
4687         e1000e_free_rx_resources(adapter->rx_ring);
4688 err_setup_rx:
4689         e1000e_free_tx_resources(adapter->tx_ring);
4690 err_setup_tx:
4691         e1000e_reset(adapter);
4692         pm_runtime_put_sync(&pdev->dev);
4693
4694         return err;
4695 }
4696
4697 /**
4698  * e1000e_close - Disables a network interface
4699  * @netdev: network interface device structure
4700  *
4701  * Returns 0, this is not allowed to fail
4702  *
4703  * The close entry point is called when an interface is de-activated
4704  * by the OS.  The hardware is still under the drivers control, but
4705  * needs to be disabled.  A global MAC reset is issued to stop the
4706  * hardware, and all transmit and receive resources are freed.
4707  **/
4708 int e1000e_close(struct net_device *netdev)
4709 {
4710         struct e1000_adapter *adapter = netdev_priv(netdev);
4711         struct pci_dev *pdev = adapter->pdev;
4712         int count = E1000_CHECK_RESET_COUNT;
4713
4714         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4715                 usleep_range(10000, 20000);
4716
4717         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4718
4719         pm_runtime_get_sync(&pdev->dev);
4720
4721         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4722                 e1000e_down(adapter, true);
4723                 e1000_free_irq(adapter);
4724
4725                 /* Link status message must follow this format */
4726                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4727         }
4728
4729         napi_disable(&adapter->napi);
4730
4731         e1000e_free_tx_resources(adapter->tx_ring);
4732         e1000e_free_rx_resources(adapter->rx_ring);
4733
4734         /* kill manageability vlan ID if supported, but not if a vlan with
4735          * the same ID is registered on the host OS (let 8021q kill it)
4736          */
4737         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4738                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4739                                        adapter->mng_vlan_id);
4740
4741         /* If AMT is enabled, let the firmware know that the network
4742          * interface is now closed
4743          */
4744         if ((adapter->flags & FLAG_HAS_AMT) &&
4745             !test_bit(__E1000_TESTING, &adapter->state))
4746                 e1000e_release_hw_control(adapter);
4747
4748         pm_qos_remove_request(&adapter->pm_qos_req);
4749
4750         pm_runtime_put_sync(&pdev->dev);
4751
4752         return 0;
4753 }
4754
4755 /**
4756  * e1000_set_mac - Change the Ethernet Address of the NIC
4757  * @netdev: network interface device structure
4758  * @p: pointer to an address structure
4759  *
4760  * Returns 0 on success, negative on failure
4761  **/
4762 static int e1000_set_mac(struct net_device *netdev, void *p)
4763 {
4764         struct e1000_adapter *adapter = netdev_priv(netdev);
4765         struct e1000_hw *hw = &adapter->hw;
4766         struct sockaddr *addr = p;
4767
4768         if (!is_valid_ether_addr(addr->sa_data))
4769                 return -EADDRNOTAVAIL;
4770
4771         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4772         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4773
4774         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4775
4776         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4777                 /* activate the work around */
4778                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4779
4780                 /* Hold a copy of the LAA in RAR[14] This is done so that
4781                  * between the time RAR[0] gets clobbered  and the time it
4782                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4783                  * of the RARs and no incoming packets directed to this port
4784                  * are dropped. Eventually the LAA will be in RAR[0] and
4785                  * RAR[14]
4786                  */
4787                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4788                                     adapter->hw.mac.rar_entry_count - 1);
4789         }
4790
4791         return 0;
4792 }
4793
4794 /**
4795  * e1000e_update_phy_task - work thread to update phy
4796  * @work: pointer to our work struct
4797  *
4798  * this worker thread exists because we must acquire a
4799  * semaphore to read the phy, which we could msleep while
4800  * waiting for it, and we can't msleep in a timer.
4801  **/
4802 static void e1000e_update_phy_task(struct work_struct *work)
4803 {
4804         struct e1000_adapter *adapter = container_of(work,
4805                                                      struct e1000_adapter,
4806                                                      update_phy_task);
4807         struct e1000_hw *hw = &adapter->hw;
4808
4809         if (test_bit(__E1000_DOWN, &adapter->state))
4810                 return;
4811
4812         e1000_get_phy_info(hw);
4813
4814         /* Enable EEE on 82579 after link up */
4815         if (hw->phy.type >= e1000_phy_82579)
4816                 e1000_set_eee_pchlan(hw);
4817 }
4818
4819 /**
4820  * e1000_update_phy_info - timre call-back to update PHY info
4821  * @data: pointer to adapter cast into an unsigned long
4822  *
4823  * Need to wait a few seconds after link up to get diagnostic information from
4824  * the phy
4825  **/
4826 static void e1000_update_phy_info(struct timer_list *t)
4827 {
4828         struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4829
4830         if (test_bit(__E1000_DOWN, &adapter->state))
4831                 return;
4832
4833         schedule_work(&adapter->update_phy_task);
4834 }
4835
4836 /**
4837  * e1000e_update_phy_stats - Update the PHY statistics counters
4838  * @adapter: board private structure
4839  *
4840  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4841  **/
4842 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4843 {
4844         struct e1000_hw *hw = &adapter->hw;
4845         s32 ret_val;
4846         u16 phy_data;
4847
4848         ret_val = hw->phy.ops.acquire(hw);
4849         if (ret_val)
4850                 return;
4851
4852         /* A page set is expensive so check if already on desired page.
4853          * If not, set to the page with the PHY status registers.
4854          */
4855         hw->phy.addr = 1;
4856         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4857                                            &phy_data);
4858         if (ret_val)
4859                 goto release;
4860         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4861                 ret_val = hw->phy.ops.set_page(hw,
4862                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4863                 if (ret_val)
4864                         goto release;
4865         }
4866
4867         /* Single Collision Count */
4868         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4869         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4870         if (!ret_val)
4871                 adapter->stats.scc += phy_data;
4872
4873         /* Excessive Collision Count */
4874         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4875         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4876         if (!ret_val)
4877                 adapter->stats.ecol += phy_data;
4878
4879         /* Multiple Collision Count */
4880         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4881         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4882         if (!ret_val)
4883                 adapter->stats.mcc += phy_data;
4884
4885         /* Late Collision Count */
4886         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4887         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4888         if (!ret_val)
4889                 adapter->stats.latecol += phy_data;
4890
4891         /* Collision Count - also used for adaptive IFS */
4892         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4893         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4894         if (!ret_val)
4895                 hw->mac.collision_delta = phy_data;
4896
4897         /* Defer Count */
4898         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4899         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4900         if (!ret_val)
4901                 adapter->stats.dc += phy_data;
4902
4903         /* Transmit with no CRS */
4904         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4905         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4906         if (!ret_val)
4907                 adapter->stats.tncrs += phy_data;
4908
4909 release:
4910         hw->phy.ops.release(hw);
4911 }
4912
4913 /**
4914  * e1000e_update_stats - Update the board statistics counters
4915  * @adapter: board private structure
4916  **/
4917 static void e1000e_update_stats(struct e1000_adapter *adapter)
4918 {
4919         struct net_device *netdev = adapter->netdev;
4920         struct e1000_hw *hw = &adapter->hw;
4921         struct pci_dev *pdev = adapter->pdev;
4922
4923         /* Prevent stats update while adapter is being reset, or if the pci
4924          * connection is down.
4925          */
4926         if (adapter->link_speed == 0)
4927                 return;
4928         if (pci_channel_offline(pdev))
4929                 return;
4930
4931         adapter->stats.crcerrs += er32(CRCERRS);
4932         adapter->stats.gprc += er32(GPRC);
4933         adapter->stats.gorc += er32(GORCL);
4934         er32(GORCH);            /* Clear gorc */
4935         adapter->stats.bprc += er32(BPRC);
4936         adapter->stats.mprc += er32(MPRC);
4937         adapter->stats.roc += er32(ROC);
4938
4939         adapter->stats.mpc += er32(MPC);
4940
4941         /* Half-duplex statistics */
4942         if (adapter->link_duplex == HALF_DUPLEX) {
4943                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4944                         e1000e_update_phy_stats(adapter);
4945                 } else {
4946                         adapter->stats.scc += er32(SCC);
4947                         adapter->stats.ecol += er32(ECOL);
4948                         adapter->stats.mcc += er32(MCC);
4949                         adapter->stats.latecol += er32(LATECOL);
4950                         adapter->stats.dc += er32(DC);
4951
4952                         hw->mac.collision_delta = er32(COLC);
4953
4954                         if ((hw->mac.type != e1000_82574) &&
4955                             (hw->mac.type != e1000_82583))
4956                                 adapter->stats.tncrs += er32(TNCRS);
4957                 }
4958                 adapter->stats.colc += hw->mac.collision_delta;
4959         }
4960
4961         adapter->stats.xonrxc += er32(XONRXC);
4962         adapter->stats.xontxc += er32(XONTXC);
4963         adapter->stats.xoffrxc += er32(XOFFRXC);
4964         adapter->stats.xofftxc += er32(XOFFTXC);
4965         adapter->stats.gptc += er32(GPTC);
4966         adapter->stats.gotc += er32(GOTCL);
4967         er32(GOTCH);            /* Clear gotc */
4968         adapter->stats.rnbc += er32(RNBC);
4969         adapter->stats.ruc += er32(RUC);
4970
4971         adapter->stats.mptc += er32(MPTC);
4972         adapter->stats.bptc += er32(BPTC);
4973
4974         /* used for adaptive IFS */
4975
4976         hw->mac.tx_packet_delta = er32(TPT);
4977         adapter->stats.tpt += hw->mac.tx_packet_delta;
4978
4979         adapter->stats.algnerrc += er32(ALGNERRC);
4980         adapter->stats.rxerrc += er32(RXERRC);
4981         adapter->stats.cexterr += er32(CEXTERR);
4982         adapter->stats.tsctc += er32(TSCTC);
4983         adapter->stats.tsctfc += er32(TSCTFC);
4984
4985         /* Fill out the OS statistics structure */
4986         netdev->stats.multicast = adapter->stats.mprc;
4987         netdev->stats.collisions = adapter->stats.colc;
4988
4989         /* Rx Errors */
4990
4991         /* RLEC on some newer hardware can be incorrect so build
4992          * our own version based on RUC and ROC
4993          */
4994         netdev->stats.rx_errors = adapter->stats.rxerrc +
4995             adapter->stats.crcerrs + adapter->stats.algnerrc +
4996             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4997         netdev->stats.rx_length_errors = adapter->stats.ruc +
4998             adapter->stats.roc;
4999         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5000         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5001         netdev->stats.rx_missed_errors = adapter->stats.mpc;
5002
5003         /* Tx Errors */
5004         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5005         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5006         netdev->stats.tx_window_errors = adapter->stats.latecol;
5007         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5008
5009         /* Tx Dropped needs to be maintained elsewhere */
5010
5011         /* Management Stats */
5012         adapter->stats.mgptc += er32(MGTPTC);
5013         adapter->stats.mgprc += er32(MGTPRC);
5014         adapter->stats.mgpdc += er32(MGTPDC);
5015
5016         /* Correctable ECC Errors */
5017         if (hw->mac.type >= e1000_pch_lpt) {
5018                 u32 pbeccsts = er32(PBECCSTS);
5019
5020                 adapter->corr_errors +=
5021                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5022                 adapter->uncorr_errors +=
5023                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5024                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5025         }
5026 }
5027
5028 /**
5029  * e1000_phy_read_status - Update the PHY register status snapshot
5030  * @adapter: board private structure
5031  **/
5032 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5033 {
5034         struct e1000_hw *hw = &adapter->hw;
5035         struct e1000_phy_regs *phy = &adapter->phy_regs;
5036
5037         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5038             (er32(STATUS) & E1000_STATUS_LU) &&
5039             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5040                 int ret_val;
5041
5042                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5043                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5044                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5045                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5046                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5047                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5048                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5049                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5050                 if (ret_val)
5051                         e_warn("Error reading PHY register\n");
5052         } else {
5053                 /* Do not read PHY registers if link is not up
5054                  * Set values to typical power-on defaults
5055                  */
5056                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5057                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5058                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5059                              BMSR_ERCAP);
5060                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5061                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5062                 phy->lpa = 0;
5063                 phy->expansion = EXPANSION_ENABLENPAGE;
5064                 phy->ctrl1000 = ADVERTISE_1000FULL;
5065                 phy->stat1000 = 0;
5066                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5067         }
5068 }
5069
5070 static void e1000_print_link_info(struct e1000_adapter *adapter)
5071 {
5072         struct e1000_hw *hw = &adapter->hw;
5073         u32 ctrl = er32(CTRL);
5074
5075         /* Link status message must follow this format for user tools */
5076         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5077                 adapter->netdev->name, adapter->link_speed,
5078                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5079                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5080                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5081                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5082 }
5083
5084 static bool e1000e_has_link(struct e1000_adapter *adapter)
5085 {
5086         struct e1000_hw *hw = &adapter->hw;
5087         bool link_active = false;
5088         s32 ret_val = 0;
5089
5090         /* get_link_status is set on LSC (link status) interrupt or
5091          * Rx sequence error interrupt.  get_link_status will stay
5092          * true until the check_for_link establishes link
5093          * for copper adapters ONLY
5094          */
5095         switch (hw->phy.media_type) {
5096         case e1000_media_type_copper:
5097                 if (hw->mac.get_link_status) {
5098                         ret_val = hw->mac.ops.check_for_link(hw);
5099                         link_active = ret_val > 0;
5100                 } else {
5101                         link_active = true;
5102                 }
5103                 break;
5104         case e1000_media_type_fiber:
5105                 ret_val = hw->mac.ops.check_for_link(hw);
5106                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5107                 break;
5108         case e1000_media_type_internal_serdes:
5109                 ret_val = hw->mac.ops.check_for_link(hw);
5110                 link_active = hw->mac.serdes_has_link;
5111                 break;
5112         default:
5113         case e1000_media_type_unknown:
5114                 break;
5115         }
5116
5117         if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5118             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5119                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5120                 e_info("Gigabit has been disabled, downgrading speed\n");
5121         }
5122
5123         return link_active;
5124 }
5125
5126 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5127 {
5128         /* make sure the receive unit is started */
5129         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5130             (adapter->flags & FLAG_RESTART_NOW)) {
5131                 struct e1000_hw *hw = &adapter->hw;
5132                 u32 rctl = er32(RCTL);
5133
5134                 ew32(RCTL, rctl | E1000_RCTL_EN);
5135                 adapter->flags &= ~FLAG_RESTART_NOW;
5136         }
5137 }
5138
5139 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5140 {
5141         struct e1000_hw *hw = &adapter->hw;
5142
5143         /* With 82574 controllers, PHY needs to be checked periodically
5144          * for hung state and reset, if two calls return true
5145          */
5146         if (e1000_check_phy_82574(hw))
5147                 adapter->phy_hang_count++;
5148         else
5149                 adapter->phy_hang_count = 0;
5150
5151         if (adapter->phy_hang_count > 1) {
5152                 adapter->phy_hang_count = 0;
5153                 e_dbg("PHY appears hung - resetting\n");
5154                 schedule_work(&adapter->reset_task);
5155         }
5156 }
5157
5158 /**
5159  * e1000_watchdog - Timer Call-back
5160  * @data: pointer to adapter cast into an unsigned long
5161  **/
5162 static void e1000_watchdog(struct timer_list *t)
5163 {
5164         struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5165
5166         /* Do the rest outside of interrupt context */
5167         schedule_work(&adapter->watchdog_task);
5168
5169         /* TODO: make this use queue_delayed_work() */
5170 }
5171
5172 static void e1000_watchdog_task(struct work_struct *work)
5173 {
5174         struct e1000_adapter *adapter = container_of(work,
5175                                                      struct e1000_adapter,
5176                                                      watchdog_task);
5177         struct net_device *netdev = adapter->netdev;
5178         struct e1000_mac_info *mac = &adapter->hw.mac;
5179         struct e1000_phy_info *phy = &adapter->hw.phy;
5180         struct e1000_ring *tx_ring = adapter->tx_ring;
5181         struct e1000_hw *hw = &adapter->hw;
5182         u32 link, tctl;
5183
5184         if (test_bit(__E1000_DOWN, &adapter->state))
5185                 return;
5186
5187         link = e1000e_has_link(adapter);
5188         if ((netif_carrier_ok(netdev)) && link) {
5189                 /* Cancel scheduled suspend requests. */
5190                 pm_runtime_resume(netdev->dev.parent);
5191
5192                 e1000e_enable_receives(adapter);
5193                 goto link_up;
5194         }
5195
5196         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5197             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5198                 e1000_update_mng_vlan(adapter);
5199
5200         if (link) {
5201                 if (!netif_carrier_ok(netdev)) {
5202                         bool txb2b = true;
5203
5204                         /* Cancel scheduled suspend requests. */
5205                         pm_runtime_resume(netdev->dev.parent);
5206
5207                         /* update snapshot of PHY registers on LSC */
5208                         e1000_phy_read_status(adapter);
5209                         mac->ops.get_link_up_info(&adapter->hw,
5210                                                   &adapter->link_speed,
5211                                                   &adapter->link_duplex);
5212                         e1000_print_link_info(adapter);
5213
5214                         /* check if SmartSpeed worked */
5215                         e1000e_check_downshift(hw);
5216                         if (phy->speed_downgraded)
5217                                 netdev_warn(netdev,
5218                                             "Link Speed was downgraded by SmartSpeed\n");
5219
5220                         /* On supported PHYs, check for duplex mismatch only
5221                          * if link has autonegotiated at 10/100 half
5222                          */
5223                         if ((hw->phy.type == e1000_phy_igp_3 ||
5224                              hw->phy.type == e1000_phy_bm) &&
5225                             hw->mac.autoneg &&
5226                             (adapter->link_speed == SPEED_10 ||
5227                              adapter->link_speed == SPEED_100) &&
5228                             (adapter->link_duplex == HALF_DUPLEX)) {
5229                                 u16 autoneg_exp;
5230
5231                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5232
5233                                 if (!(autoneg_exp & EXPANSION_NWAY))
5234                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5235                         }
5236
5237                         /* adjust timeout factor according to speed/duplex */
5238                         adapter->tx_timeout_factor = 1;
5239                         switch (adapter->link_speed) {
5240                         case SPEED_10:
5241                                 txb2b = false;
5242                                 adapter->tx_timeout_factor = 16;
5243                                 break;
5244                         case SPEED_100:
5245                                 txb2b = false;
5246                                 adapter->tx_timeout_factor = 10;
5247                                 break;
5248                         }
5249
5250                         /* workaround: re-program speed mode bit after
5251                          * link-up event
5252                          */
5253                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5254                             !txb2b) {
5255                                 u32 tarc0;
5256
5257                                 tarc0 = er32(TARC(0));
5258                                 tarc0 &= ~SPEED_MODE_BIT;
5259                                 ew32(TARC(0), tarc0);
5260                         }
5261
5262                         /* disable TSO for pcie and 10/100 speeds, to avoid
5263                          * some hardware issues
5264                          */
5265                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5266                                 switch (adapter->link_speed) {
5267                                 case SPEED_10:
5268                                 case SPEED_100:
5269                                         e_info("10/100 speed: disabling TSO\n");
5270                                         netdev->features &= ~NETIF_F_TSO;
5271                                         netdev->features &= ~NETIF_F_TSO6;
5272                                         break;
5273                                 case SPEED_1000:
5274                                         netdev->features |= NETIF_F_TSO;
5275                                         netdev->features |= NETIF_F_TSO6;
5276                                         break;
5277                                 default:
5278                                         /* oops */
5279                                         break;
5280                                 }
5281                         }
5282
5283                         /* enable transmits in the hardware, need to do this
5284                          * after setting TARC(0)
5285                          */
5286                         tctl = er32(TCTL);
5287                         tctl |= E1000_TCTL_EN;
5288                         ew32(TCTL, tctl);
5289
5290                         /* Perform any post-link-up configuration before
5291                          * reporting link up.
5292                          */
5293                         if (phy->ops.cfg_on_link_up)
5294                                 phy->ops.cfg_on_link_up(hw);
5295
5296                         netif_carrier_on(netdev);
5297
5298                         if (!test_bit(__E1000_DOWN, &adapter->state))
5299                                 mod_timer(&adapter->phy_info_timer,
5300                                           round_jiffies(jiffies + 2 * HZ));
5301                 }
5302         } else {
5303                 if (netif_carrier_ok(netdev)) {
5304                         adapter->link_speed = 0;
5305                         adapter->link_duplex = 0;
5306                         /* Link status message must follow this format */
5307                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5308                         netif_carrier_off(netdev);
5309                         if (!test_bit(__E1000_DOWN, &adapter->state))
5310                                 mod_timer(&adapter->phy_info_timer,
5311                                           round_jiffies(jiffies + 2 * HZ));
5312
5313                         /* 8000ES2LAN requires a Rx packet buffer work-around
5314                          * on link down event; reset the controller to flush
5315                          * the Rx packet buffer.
5316                          */
5317                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5318                                 adapter->flags |= FLAG_RESTART_NOW;
5319                         else
5320                                 pm_schedule_suspend(netdev->dev.parent,
5321                                                     LINK_TIMEOUT);
5322                 }
5323         }
5324
5325 link_up:
5326         spin_lock(&adapter->stats64_lock);
5327         e1000e_update_stats(adapter);
5328
5329         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5330         adapter->tpt_old = adapter->stats.tpt;
5331         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5332         adapter->colc_old = adapter->stats.colc;
5333
5334         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5335         adapter->gorc_old = adapter->stats.gorc;
5336         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5337         adapter->gotc_old = adapter->stats.gotc;
5338         spin_unlock(&adapter->stats64_lock);
5339
5340         /* If the link is lost the controller stops DMA, but
5341          * if there is queued Tx work it cannot be done.  So
5342          * reset the controller to flush the Tx packet buffers.
5343          */
5344         if (!netif_carrier_ok(netdev) &&
5345             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5346                 adapter->flags |= FLAG_RESTART_NOW;
5347
5348         /* If reset is necessary, do it outside of interrupt context. */
5349         if (adapter->flags & FLAG_RESTART_NOW) {
5350                 schedule_work(&adapter->reset_task);
5351                 /* return immediately since reset is imminent */
5352                 return;
5353         }
5354
5355         e1000e_update_adaptive(&adapter->hw);
5356
5357         /* Simple mode for Interrupt Throttle Rate (ITR) */
5358         if (adapter->itr_setting == 4) {
5359                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5360                  * Total asymmetrical Tx or Rx gets ITR=8000;
5361                  * everyone else is between 2000-8000.
5362                  */
5363                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5364                 u32 dif = (adapter->gotc > adapter->gorc ?
5365                            adapter->gotc - adapter->gorc :
5366                            adapter->gorc - adapter->gotc) / 10000;
5367                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5368
5369                 e1000e_write_itr(adapter, itr);
5370         }
5371
5372         /* Cause software interrupt to ensure Rx ring is cleaned */
5373         if (adapter->msix_entries)
5374                 ew32(ICS, adapter->rx_ring->ims_val);
5375         else
5376                 ew32(ICS, E1000_ICS_RXDMT0);
5377
5378         /* flush pending descriptors to memory before detecting Tx hang */
5379         e1000e_flush_descriptors(adapter);
5380
5381         /* Force detection of hung controller every watchdog period */
5382         adapter->detect_tx_hung = true;
5383
5384         /* With 82571 controllers, LAA may be overwritten due to controller
5385          * reset from the other port. Set the appropriate LAA in RAR[0]
5386          */
5387         if (e1000e_get_laa_state_82571(hw))
5388                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5389
5390         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5391                 e1000e_check_82574_phy_workaround(adapter);
5392
5393         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5394         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5395                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5396                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5397                         er32(RXSTMPH);
5398                         adapter->rx_hwtstamp_cleared++;
5399                 } else {
5400                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5401                 }
5402         }
5403
5404         /* Reset the timer */
5405         if (!test_bit(__E1000_DOWN, &adapter->state))
5406                 mod_timer(&adapter->watchdog_timer,
5407                           round_jiffies(jiffies + 2 * HZ));
5408 }
5409
5410 #define E1000_TX_FLAGS_CSUM             0x00000001
5411 #define E1000_TX_FLAGS_VLAN             0x00000002
5412 #define E1000_TX_FLAGS_TSO              0x00000004
5413 #define E1000_TX_FLAGS_IPV4             0x00000008
5414 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5415 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5416 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5417 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5418
5419 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5420                      __be16 protocol)
5421 {
5422         struct e1000_context_desc *context_desc;
5423         struct e1000_buffer *buffer_info;
5424         unsigned int i;
5425         u32 cmd_length = 0;
5426         u16 ipcse = 0, mss;
5427         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5428         int err;
5429
5430         if (!skb_is_gso(skb))
5431                 return 0;
5432
5433         err = skb_cow_head(skb, 0);
5434         if (err < 0)
5435                 return err;
5436
5437         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5438         mss = skb_shinfo(skb)->gso_size;
5439         if (protocol == htons(ETH_P_IP)) {
5440                 struct iphdr *iph = ip_hdr(skb);
5441                 iph->tot_len = 0;
5442                 iph->check = 0;
5443                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5444                                                          0, IPPROTO_TCP, 0);
5445                 cmd_length = E1000_TXD_CMD_IP;
5446                 ipcse = skb_transport_offset(skb) - 1;
5447         } else if (skb_is_gso_v6(skb)) {
5448                 ipv6_hdr(skb)->payload_len = 0;
5449                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5450                                                        &ipv6_hdr(skb)->daddr,
5451                                                        0, IPPROTO_TCP, 0);
5452                 ipcse = 0;
5453         }
5454         ipcss = skb_network_offset(skb);
5455         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5456         tucss = skb_transport_offset(skb);
5457         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5458
5459         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5460                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5461
5462         i = tx_ring->next_to_use;
5463         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5464         buffer_info = &tx_ring->buffer_info[i];
5465
5466         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5467         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5468         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5469         context_desc->upper_setup.tcp_fields.tucss = tucss;
5470         context_desc->upper_setup.tcp_fields.tucso = tucso;
5471         context_desc->upper_setup.tcp_fields.tucse = 0;
5472         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5473         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5474         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5475
5476         buffer_info->time_stamp = jiffies;
5477         buffer_info->next_to_watch = i;
5478
5479         i++;
5480         if (i == tx_ring->count)
5481                 i = 0;
5482         tx_ring->next_to_use = i;
5483
5484         return 1;
5485 }
5486
5487 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5488                           __be16 protocol)
5489 {
5490         struct e1000_adapter *adapter = tx_ring->adapter;
5491         struct e1000_context_desc *context_desc;
5492         struct e1000_buffer *buffer_info;
5493         unsigned int i;
5494         u8 css;
5495         u32 cmd_len = E1000_TXD_CMD_DEXT;
5496
5497         if (skb->ip_summed != CHECKSUM_PARTIAL)
5498                 return false;
5499
5500         switch (protocol) {
5501         case cpu_to_be16(ETH_P_IP):
5502                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5503                         cmd_len |= E1000_TXD_CMD_TCP;
5504                 break;
5505         case cpu_to_be16(ETH_P_IPV6):
5506                 /* XXX not handling all IPV6 headers */
5507                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5508                         cmd_len |= E1000_TXD_CMD_TCP;
5509                 break;
5510         default:
5511                 if (unlikely(net_ratelimit()))
5512                         e_warn("checksum_partial proto=%x!\n",
5513                                be16_to_cpu(protocol));
5514                 break;
5515         }
5516
5517         css = skb_checksum_start_offset(skb);
5518
5519         i = tx_ring->next_to_use;
5520         buffer_info = &tx_ring->buffer_info[i];
5521         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5522
5523         context_desc->lower_setup.ip_config = 0;
5524         context_desc->upper_setup.tcp_fields.tucss = css;
5525         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5526         context_desc->upper_setup.tcp_fields.tucse = 0;
5527         context_desc->tcp_seg_setup.data = 0;
5528         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5529
5530         buffer_info->time_stamp = jiffies;
5531         buffer_info->next_to_watch = i;
5532
5533         i++;
5534         if (i == tx_ring->count)
5535                 i = 0;
5536         tx_ring->next_to_use = i;
5537
5538         return true;
5539 }
5540
5541 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5542                         unsigned int first, unsigned int max_per_txd,
5543                         unsigned int nr_frags)
5544 {
5545         struct e1000_adapter *adapter = tx_ring->adapter;
5546         struct pci_dev *pdev = adapter->pdev;
5547         struct e1000_buffer *buffer_info;
5548         unsigned int len = skb_headlen(skb);
5549         unsigned int offset = 0, size, count = 0, i;
5550         unsigned int f, bytecount, segs;
5551
5552         i = tx_ring->next_to_use;
5553
5554         while (len) {
5555                 buffer_info = &tx_ring->buffer_info[i];
5556                 size = min(len, max_per_txd);
5557
5558                 buffer_info->length = size;
5559                 buffer_info->time_stamp = jiffies;
5560                 buffer_info->next_to_watch = i;
5561                 buffer_info->dma = dma_map_single(&pdev->dev,
5562                                                   skb->data + offset,
5563                                                   size, DMA_TO_DEVICE);
5564                 buffer_info->mapped_as_page = false;
5565                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5566                         goto dma_error;
5567
5568                 len -= size;
5569                 offset += size;
5570                 count++;
5571
5572                 if (len) {
5573                         i++;
5574                         if (i == tx_ring->count)
5575                                 i = 0;
5576                 }
5577         }
5578
5579         for (f = 0; f < nr_frags; f++) {
5580                 const struct skb_frag_struct *frag;
5581
5582                 frag = &skb_shinfo(skb)->frags[f];
5583                 len = skb_frag_size(frag);
5584                 offset = 0;
5585
5586                 while (len) {
5587                         i++;
5588                         if (i == tx_ring->count)
5589                                 i = 0;
5590
5591                         buffer_info = &tx_ring->buffer_info[i];
5592                         size = min(len, max_per_txd);
5593
5594                         buffer_info->length = size;
5595                         buffer_info->time_stamp = jiffies;
5596                         buffer_info->next_to_watch = i;
5597                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5598                                                             offset, size,
5599                                                             DMA_TO_DEVICE);
5600                         buffer_info->mapped_as_page = true;
5601                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5602                                 goto dma_error;
5603
5604                         len -= size;
5605                         offset += size;
5606                         count++;
5607                 }
5608         }
5609
5610         segs = skb_shinfo(skb)->gso_segs ? : 1;
5611         /* multiply data chunks by size of headers */
5612         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5613
5614         tx_ring->buffer_info[i].skb = skb;
5615         tx_ring->buffer_info[i].segs = segs;
5616         tx_ring->buffer_info[i].bytecount = bytecount;
5617         tx_ring->buffer_info[first].next_to_watch = i;
5618
5619         return count;
5620
5621 dma_error:
5622         dev_err(&pdev->dev, "Tx DMA map failed\n");
5623         buffer_info->dma = 0;
5624         if (count)
5625                 count--;
5626
5627         while (count--) {
5628                 if (i == 0)
5629                         i += tx_ring->count;
5630                 i--;
5631                 buffer_info = &tx_ring->buffer_info[i];
5632                 e1000_put_txbuf(tx_ring, buffer_info, true);
5633         }
5634
5635         return 0;
5636 }
5637
5638 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5639 {
5640         struct e1000_adapter *adapter = tx_ring->adapter;
5641         struct e1000_tx_desc *tx_desc = NULL;
5642         struct e1000_buffer *buffer_info;
5643         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5644         unsigned int i;
5645
5646         if (tx_flags & E1000_TX_FLAGS_TSO) {
5647                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5648                     E1000_TXD_CMD_TSE;
5649                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5650
5651                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5652                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5653         }
5654
5655         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5656                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5657                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5658         }
5659
5660         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5661                 txd_lower |= E1000_TXD_CMD_VLE;
5662                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5663         }
5664
5665         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5666                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5667
5668         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5669                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5670                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5671         }
5672
5673         i = tx_ring->next_to_use;
5674
5675         do {
5676                 buffer_info = &tx_ring->buffer_info[i];
5677                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5678                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5679                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5680                                                   buffer_info->length);
5681                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5682
5683                 i++;
5684                 if (i == tx_ring->count)
5685                         i = 0;
5686         } while (--count > 0);
5687
5688         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5689
5690         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5691         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5692                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5693
5694         /* Force memory writes to complete before letting h/w
5695          * know there are new descriptors to fetch.  (Only
5696          * applicable for weak-ordered memory model archs,
5697          * such as IA-64).
5698          */
5699         wmb();
5700
5701         tx_ring->next_to_use = i;
5702 }
5703
5704 #define MINIMUM_DHCP_PACKET_SIZE 282
5705 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5706                                     struct sk_buff *skb)
5707 {
5708         struct e1000_hw *hw = &adapter->hw;
5709         u16 length, offset;
5710
5711         if (skb_vlan_tag_present(skb) &&
5712             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5713               (adapter->hw.mng_cookie.status &
5714                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5715                 return 0;
5716
5717         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5718                 return 0;
5719
5720         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5721                 return 0;
5722
5723         {
5724                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5725                 struct udphdr *udp;
5726
5727                 if (ip->protocol != IPPROTO_UDP)
5728                         return 0;
5729
5730                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5731                 if (ntohs(udp->dest) != 67)
5732                         return 0;
5733
5734                 offset = (u8 *)udp + 8 - skb->data;
5735                 length = skb->len - offset;
5736                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5737         }
5738
5739         return 0;
5740 }
5741
5742 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5743 {
5744         struct e1000_adapter *adapter = tx_ring->adapter;
5745
5746         netif_stop_queue(adapter->netdev);
5747         /* Herbert's original patch had:
5748          *  smp_mb__after_netif_stop_queue();
5749          * but since that doesn't exist yet, just open code it.
5750          */
5751         smp_mb();
5752
5753         /* We need to check again in a case another CPU has just
5754          * made room available.
5755          */
5756         if (e1000_desc_unused(tx_ring) < size)
5757                 return -EBUSY;
5758
5759         /* A reprieve! */
5760         netif_start_queue(adapter->netdev);
5761         ++adapter->restart_queue;
5762         return 0;
5763 }
5764
5765 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5766 {
5767         BUG_ON(size > tx_ring->count);
5768
5769         if (e1000_desc_unused(tx_ring) >= size)
5770                 return 0;
5771         return __e1000_maybe_stop_tx(tx_ring, size);
5772 }
5773
5774 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5775                                     struct net_device *netdev)
5776 {
5777         struct e1000_adapter *adapter = netdev_priv(netdev);
5778         struct e1000_ring *tx_ring = adapter->tx_ring;
5779         unsigned int first;
5780         unsigned int tx_flags = 0;
5781         unsigned int len = skb_headlen(skb);
5782         unsigned int nr_frags;
5783         unsigned int mss;
5784         int count = 0;
5785         int tso;
5786         unsigned int f;
5787         __be16 protocol = vlan_get_protocol(skb);
5788
5789         if (test_bit(__E1000_DOWN, &adapter->state)) {
5790                 dev_kfree_skb_any(skb);
5791                 return NETDEV_TX_OK;
5792         }
5793
5794         if (skb->len <= 0) {
5795                 dev_kfree_skb_any(skb);
5796                 return NETDEV_TX_OK;
5797         }
5798
5799         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5800          * pad skb in order to meet this minimum size requirement
5801          */
5802         if (skb_put_padto(skb, 17))
5803                 return NETDEV_TX_OK;
5804
5805         mss = skb_shinfo(skb)->gso_size;
5806         if (mss) {
5807                 u8 hdr_len;
5808
5809                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5810                  * points to just header, pull a few bytes of payload from
5811                  * frags into skb->data
5812                  */
5813                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5814                 /* we do this workaround for ES2LAN, but it is un-necessary,
5815                  * avoiding it could save a lot of cycles
5816                  */
5817                 if (skb->data_len && (hdr_len == len)) {
5818                         unsigned int pull_size;
5819
5820                         pull_size = min_t(unsigned int, 4, skb->data_len);
5821                         if (!__pskb_pull_tail(skb, pull_size)) {
5822                                 e_err("__pskb_pull_tail failed.\n");
5823                                 dev_kfree_skb_any(skb);
5824                                 return NETDEV_TX_OK;
5825                         }
5826                         len = skb_headlen(skb);
5827                 }
5828         }
5829
5830         /* reserve a descriptor for the offload context */
5831         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5832                 count++;
5833         count++;
5834
5835         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5836
5837         nr_frags = skb_shinfo(skb)->nr_frags;
5838         for (f = 0; f < nr_frags; f++)
5839                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5840                                       adapter->tx_fifo_limit);
5841
5842         if (adapter->hw.mac.tx_pkt_filtering)
5843                 e1000_transfer_dhcp_info(adapter, skb);
5844
5845         /* need: count + 2 desc gap to keep tail from touching
5846          * head, otherwise try next time
5847          */
5848         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5849                 return NETDEV_TX_BUSY;
5850
5851         if (skb_vlan_tag_present(skb)) {
5852                 tx_flags |= E1000_TX_FLAGS_VLAN;
5853                 tx_flags |= (skb_vlan_tag_get(skb) <<
5854                              E1000_TX_FLAGS_VLAN_SHIFT);
5855         }
5856
5857         first = tx_ring->next_to_use;
5858
5859         tso = e1000_tso(tx_ring, skb, protocol);
5860         if (tso < 0) {
5861                 dev_kfree_skb_any(skb);
5862                 return NETDEV_TX_OK;
5863         }
5864
5865         if (tso)
5866                 tx_flags |= E1000_TX_FLAGS_TSO;
5867         else if (e1000_tx_csum(tx_ring, skb, protocol))
5868                 tx_flags |= E1000_TX_FLAGS_CSUM;
5869
5870         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5871          * 82571 hardware supports TSO capabilities for IPv6 as well...
5872          * no longer assume, we must.
5873          */
5874         if (protocol == htons(ETH_P_IP))
5875                 tx_flags |= E1000_TX_FLAGS_IPV4;
5876
5877         if (unlikely(skb->no_fcs))
5878                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5879
5880         /* if count is 0 then mapping error has occurred */
5881         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5882                              nr_frags);
5883         if (count) {
5884                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5885                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5886                         if (!adapter->tx_hwtstamp_skb) {
5887                                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5888                                 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5889                                 adapter->tx_hwtstamp_skb = skb_get(skb);
5890                                 adapter->tx_hwtstamp_start = jiffies;
5891                                 schedule_work(&adapter->tx_hwtstamp_work);
5892                         } else {
5893                                 adapter->tx_hwtstamp_skipped++;
5894                         }
5895                 }
5896
5897                 skb_tx_timestamp(skb);
5898
5899                 netdev_sent_queue(netdev, skb->len);
5900                 e1000_tx_queue(tx_ring, tx_flags, count);
5901                 /* Make sure there is space in the ring for the next send. */
5902                 e1000_maybe_stop_tx(tx_ring,
5903                                     (MAX_SKB_FRAGS *
5904                                      DIV_ROUND_UP(PAGE_SIZE,
5905                                                   adapter->tx_fifo_limit) + 2));
5906
5907                 if (!skb->xmit_more ||
5908                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5909                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5910                                 e1000e_update_tdt_wa(tx_ring,
5911                                                      tx_ring->next_to_use);
5912                         else
5913                                 writel(tx_ring->next_to_use, tx_ring->tail);
5914
5915                         /* we need this if more than one processor can write
5916                          * to our tail at a time, it synchronizes IO on
5917                          *IA64/Altix systems
5918                          */
5919                         mmiowb();
5920                 }
5921         } else {
5922                 dev_kfree_skb_any(skb);
5923                 tx_ring->buffer_info[first].time_stamp = 0;
5924                 tx_ring->next_to_use = first;
5925         }
5926
5927         return NETDEV_TX_OK;
5928 }
5929
5930 /**
5931  * e1000_tx_timeout - Respond to a Tx Hang
5932  * @netdev: network interface device structure
5933  **/
5934 static void e1000_tx_timeout(struct net_device *netdev)
5935 {
5936         struct e1000_adapter *adapter = netdev_priv(netdev);
5937
5938         /* Do the reset outside of interrupt context */
5939         adapter->tx_timeout_count++;
5940         schedule_work(&adapter->reset_task);
5941 }
5942
5943 static void e1000_reset_task(struct work_struct *work)
5944 {
5945         struct e1000_adapter *adapter;
5946         adapter = container_of(work, struct e1000_adapter, reset_task);
5947
5948         /* don't run the task if already down */
5949         if (test_bit(__E1000_DOWN, &adapter->state))
5950                 return;
5951
5952         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5953                 e1000e_dump(adapter);
5954                 e_err("Reset adapter unexpectedly\n");
5955         }
5956         e1000e_reinit_locked(adapter);
5957 }
5958
5959 /**
5960  * e1000_get_stats64 - Get System Network Statistics
5961  * @netdev: network interface device structure
5962  * @stats: rtnl_link_stats64 pointer
5963  *
5964  * Returns the address of the device statistics structure.
5965  **/
5966 void e1000e_get_stats64(struct net_device *netdev,
5967                         struct rtnl_link_stats64 *stats)
5968 {
5969         struct e1000_adapter *adapter = netdev_priv(netdev);
5970
5971         spin_lock(&adapter->stats64_lock);
5972         e1000e_update_stats(adapter);
5973         /* Fill out the OS statistics structure */
5974         stats->rx_bytes = adapter->stats.gorc;
5975         stats->rx_packets = adapter->stats.gprc;
5976         stats->tx_bytes = adapter->stats.gotc;
5977         stats->tx_packets = adapter->stats.gptc;
5978         stats->multicast = adapter->stats.mprc;
5979         stats->collisions = adapter->stats.colc;
5980
5981         /* Rx Errors */
5982
5983         /* RLEC on some newer hardware can be incorrect so build
5984          * our own version based on RUC and ROC
5985          */
5986         stats->rx_errors = adapter->stats.rxerrc +
5987             adapter->stats.crcerrs + adapter->stats.algnerrc +
5988             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5989         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5990         stats->rx_crc_errors = adapter->stats.crcerrs;
5991         stats->rx_frame_errors = adapter->stats.algnerrc;
5992         stats->rx_missed_errors = adapter->stats.mpc;
5993
5994         /* Tx Errors */
5995         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5996         stats->tx_aborted_errors = adapter->stats.ecol;
5997         stats->tx_window_errors = adapter->stats.latecol;
5998         stats->tx_carrier_errors = adapter->stats.tncrs;
5999
6000         /* Tx Dropped needs to be maintained elsewhere */
6001
6002         spin_unlock(&adapter->stats64_lock);
6003 }
6004
6005 /**
6006  * e1000_change_mtu - Change the Maximum Transfer Unit
6007  * @netdev: network interface device structure
6008  * @new_mtu: new value for maximum frame size
6009  *
6010  * Returns 0 on success, negative on failure
6011  **/
6012 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6013 {
6014         struct e1000_adapter *adapter = netdev_priv(netdev);
6015         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6016
6017         /* Jumbo frame support */
6018         if ((new_mtu > ETH_DATA_LEN) &&
6019             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6020                 e_err("Jumbo Frames not supported.\n");
6021                 return -EINVAL;
6022         }
6023
6024         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6025         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6026             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6027             (new_mtu > ETH_DATA_LEN)) {
6028                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6029                 return -EINVAL;
6030         }
6031
6032         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6033                 usleep_range(1000, 2000);
6034         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6035         adapter->max_frame_size = max_frame;
6036         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6037         netdev->mtu = new_mtu;
6038
6039         pm_runtime_get_sync(netdev->dev.parent);
6040
6041         if (netif_running(netdev))
6042                 e1000e_down(adapter, true);
6043
6044         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6045          * means we reserve 2 more, this pushes us to allocate from the next
6046          * larger slab size.
6047          * i.e. RXBUFFER_2048 --> size-4096 slab
6048          * However with the new *_jumbo_rx* routines, jumbo receives will use
6049          * fragmented skbs
6050          */
6051
6052         if (max_frame <= 2048)
6053                 adapter->rx_buffer_len = 2048;
6054         else
6055                 adapter->rx_buffer_len = 4096;
6056
6057         /* adjust allocation if LPE protects us, and we aren't using SBP */
6058         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6059                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6060
6061         if (netif_running(netdev))
6062                 e1000e_up(adapter);
6063         else
6064                 e1000e_reset(adapter);
6065
6066         pm_runtime_put_sync(netdev->dev.parent);
6067
6068         clear_bit(__E1000_RESETTING, &adapter->state);
6069
6070         return 0;
6071 }
6072
6073 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6074                            int cmd)
6075 {
6076         struct e1000_adapter *adapter = netdev_priv(netdev);
6077         struct mii_ioctl_data *data = if_mii(ifr);
6078
6079         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6080                 return -EOPNOTSUPP;
6081
6082         switch (cmd) {
6083         case SIOCGMIIPHY:
6084                 data->phy_id = adapter->hw.phy.addr;
6085                 break;
6086         case SIOCGMIIREG:
6087                 e1000_phy_read_status(adapter);
6088
6089                 switch (data->reg_num & 0x1F) {
6090                 case MII_BMCR:
6091                         data->val_out = adapter->phy_regs.bmcr;
6092                         break;
6093                 case MII_BMSR:
6094                         data->val_out = adapter->phy_regs.bmsr;
6095                         break;
6096                 case MII_PHYSID1:
6097                         data->val_out = (adapter->hw.phy.id >> 16);
6098                         break;
6099                 case MII_PHYSID2:
6100                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6101                         break;
6102                 case MII_ADVERTISE:
6103                         data->val_out = adapter->phy_regs.advertise;
6104                         break;
6105                 case MII_LPA:
6106                         data->val_out = adapter->phy_regs.lpa;
6107                         break;
6108                 case MII_EXPANSION:
6109                         data->val_out = adapter->phy_regs.expansion;
6110                         break;
6111                 case MII_CTRL1000:
6112                         data->val_out = adapter->phy_regs.ctrl1000;
6113                         break;
6114                 case MII_STAT1000:
6115                         data->val_out = adapter->phy_regs.stat1000;
6116                         break;
6117                 case MII_ESTATUS:
6118                         data->val_out = adapter->phy_regs.estatus;
6119                         break;
6120                 default:
6121                         return -EIO;
6122                 }
6123                 break;
6124         case SIOCSMIIREG:
6125         default:
6126                 return -EOPNOTSUPP;
6127         }
6128         return 0;
6129 }
6130
6131 /**
6132  * e1000e_hwtstamp_ioctl - control hardware time stamping
6133  * @netdev: network interface device structure
6134  * @ifreq: interface request
6135  *
6136  * Outgoing time stamping can be enabled and disabled. Play nice and
6137  * disable it when requested, although it shouldn't cause any overhead
6138  * when no packet needs it. At most one packet in the queue may be
6139  * marked for time stamping, otherwise it would be impossible to tell
6140  * for sure to which packet the hardware time stamp belongs.
6141  *
6142  * Incoming time stamping has to be configured via the hardware filters.
6143  * Not all combinations are supported, in particular event type has to be
6144  * specified. Matching the kind of event packet is not supported, with the
6145  * exception of "all V2 events regardless of level 2 or 4".
6146  **/
6147 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6148 {
6149         struct e1000_adapter *adapter = netdev_priv(netdev);
6150         struct hwtstamp_config config;
6151         int ret_val;
6152
6153         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6154                 return -EFAULT;
6155
6156         ret_val = e1000e_config_hwtstamp(adapter, &config);
6157         if (ret_val)
6158                 return ret_val;
6159
6160         switch (config.rx_filter) {
6161         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6162         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6163         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6164         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6165         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6166         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6167                 /* With V2 type filters which specify a Sync or Delay Request,
6168                  * Path Delay Request/Response messages are also time stamped
6169                  * by hardware so notify the caller the requested packets plus
6170                  * some others are time stamped.
6171                  */
6172                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6173                 break;
6174         default:
6175                 break;
6176         }
6177
6178         return copy_to_user(ifr->ifr_data, &config,
6179                             sizeof(config)) ? -EFAULT : 0;
6180 }
6181
6182 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6183 {
6184         struct e1000_adapter *adapter = netdev_priv(netdev);
6185
6186         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6187                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6188 }
6189
6190 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6191 {
6192         switch (cmd) {
6193         case SIOCGMIIPHY:
6194         case SIOCGMIIREG:
6195         case SIOCSMIIREG:
6196                 return e1000_mii_ioctl(netdev, ifr, cmd);
6197         case SIOCSHWTSTAMP:
6198                 return e1000e_hwtstamp_set(netdev, ifr);
6199         case SIOCGHWTSTAMP:
6200                 return e1000e_hwtstamp_get(netdev, ifr);
6201         default:
6202                 return -EOPNOTSUPP;
6203         }
6204 }
6205
6206 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6207 {
6208         struct e1000_hw *hw = &adapter->hw;
6209         u32 i, mac_reg, wuc;
6210         u16 phy_reg, wuc_enable;
6211         int retval;
6212
6213         /* copy MAC RARs to PHY RARs */
6214         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6215
6216         retval = hw->phy.ops.acquire(hw);
6217         if (retval) {
6218                 e_err("Could not acquire PHY\n");
6219                 return retval;
6220         }
6221
6222         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6223         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6224         if (retval)
6225                 goto release;
6226
6227         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6228         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6229                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6230                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6231                                            (u16)(mac_reg & 0xFFFF));
6232                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6233                                            (u16)((mac_reg >> 16) & 0xFFFF));
6234         }
6235
6236         /* configure PHY Rx Control register */
6237         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6238         mac_reg = er32(RCTL);
6239         if (mac_reg & E1000_RCTL_UPE)
6240                 phy_reg |= BM_RCTL_UPE;
6241         if (mac_reg & E1000_RCTL_MPE)
6242                 phy_reg |= BM_RCTL_MPE;
6243         phy_reg &= ~(BM_RCTL_MO_MASK);
6244         if (mac_reg & E1000_RCTL_MO_3)
6245                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6246                             << BM_RCTL_MO_SHIFT);
6247         if (mac_reg & E1000_RCTL_BAM)
6248                 phy_reg |= BM_RCTL_BAM;
6249         if (mac_reg & E1000_RCTL_PMCF)
6250                 phy_reg |= BM_RCTL_PMCF;
6251         mac_reg = er32(CTRL);
6252         if (mac_reg & E1000_CTRL_RFCE)
6253                 phy_reg |= BM_RCTL_RFCE;
6254         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6255
6256         wuc = E1000_WUC_PME_EN;
6257         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6258                 wuc |= E1000_WUC_APME;
6259
6260         /* enable PHY wakeup in MAC register */
6261         ew32(WUFC, wufc);
6262         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6263                    E1000_WUC_PME_STATUS | wuc));
6264
6265         /* configure and enable PHY wakeup in PHY registers */
6266         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6267         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6268
6269         /* activate PHY wakeup */
6270         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6271         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6272         if (retval)
6273                 e_err("Could not set PHY Host Wakeup bit\n");
6274 release:
6275         hw->phy.ops.release(hw);
6276
6277         return retval;
6278 }
6279
6280 static void e1000e_flush_lpic(struct pci_dev *pdev)
6281 {
6282         struct net_device *netdev = pci_get_drvdata(pdev);
6283         struct e1000_adapter *adapter = netdev_priv(netdev);
6284         struct e1000_hw *hw = &adapter->hw;
6285         u32 ret_val;
6286
6287         pm_runtime_get_sync(netdev->dev.parent);
6288
6289         ret_val = hw->phy.ops.acquire(hw);
6290         if (ret_val)
6291                 goto fl_out;
6292
6293         pr_info("EEE TX LPI TIMER: %08X\n",
6294                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6295
6296         hw->phy.ops.release(hw);
6297
6298 fl_out:
6299         pm_runtime_put_sync(netdev->dev.parent);
6300 }
6301
6302 static int e1000e_pm_freeze(struct device *dev)
6303 {
6304         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6305         struct e1000_adapter *adapter = netdev_priv(netdev);
6306
6307         netif_device_detach(netdev);
6308
6309         if (netif_running(netdev)) {
6310                 int count = E1000_CHECK_RESET_COUNT;
6311
6312                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6313                         usleep_range(10000, 20000);
6314
6315                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6316
6317                 /* Quiesce the device without resetting the hardware */
6318                 e1000e_down(adapter, false);
6319                 e1000_free_irq(adapter);
6320         }
6321         e1000e_reset_interrupt_capability(adapter);
6322
6323         /* Allow time for pending master requests to run */
6324         e1000e_disable_pcie_master(&adapter->hw);
6325
6326         return 0;
6327 }
6328
6329 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6330 {
6331         struct net_device *netdev = pci_get_drvdata(pdev);
6332         struct e1000_adapter *adapter = netdev_priv(netdev);
6333         struct e1000_hw *hw = &adapter->hw;
6334         u32 ctrl, ctrl_ext, rctl, status;
6335         /* Runtime suspend should only enable wakeup for link changes */
6336         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6337         int retval = 0;
6338
6339         status = er32(STATUS);
6340         if (status & E1000_STATUS_LU)
6341                 wufc &= ~E1000_WUFC_LNKC;
6342
6343         if (wufc) {
6344                 e1000_setup_rctl(adapter);
6345                 e1000e_set_rx_mode(netdev);
6346
6347                 /* turn on all-multi mode if wake on multicast is enabled */
6348                 if (wufc & E1000_WUFC_MC) {
6349                         rctl = er32(RCTL);
6350                         rctl |= E1000_RCTL_MPE;
6351                         ew32(RCTL, rctl);
6352                 }
6353
6354                 ctrl = er32(CTRL);
6355                 ctrl |= E1000_CTRL_ADVD3WUC;
6356                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6357                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6358                 ew32(CTRL, ctrl);
6359
6360                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6361                     adapter->hw.phy.media_type ==
6362                     e1000_media_type_internal_serdes) {
6363                         /* keep the laser running in D3 */
6364                         ctrl_ext = er32(CTRL_EXT);
6365                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6366                         ew32(CTRL_EXT, ctrl_ext);
6367                 }
6368
6369                 if (!runtime)
6370                         e1000e_power_up_phy(adapter);
6371
6372                 if (adapter->flags & FLAG_IS_ICH)
6373                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6374
6375                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6376                         /* enable wakeup by the PHY */
6377                         retval = e1000_init_phy_wakeup(adapter, wufc);
6378                         if (retval)
6379                                 return retval;
6380                 } else {
6381                         /* enable wakeup by the MAC */
6382                         ew32(WUFC, wufc);
6383                         ew32(WUC, E1000_WUC_PME_EN);
6384                 }
6385         } else {
6386                 ew32(WUC, 0);
6387                 ew32(WUFC, 0);
6388
6389                 e1000_power_down_phy(adapter);
6390         }
6391
6392         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6393                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6394         } else if (hw->mac.type >= e1000_pch_lpt) {
6395                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6396                         /* ULP does not support wake from unicast, multicast
6397                          * or broadcast.
6398                          */
6399                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6400
6401                 if (retval)
6402                         return retval;
6403         }
6404
6405         /* Ensure that the appropriate bits are set in LPI_CTRL
6406          * for EEE in Sx
6407          */
6408         if ((hw->phy.type >= e1000_phy_i217) &&
6409             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6410                 u16 lpi_ctrl = 0;
6411
6412                 retval = hw->phy.ops.acquire(hw);
6413                 if (!retval) {
6414                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6415                                                  &lpi_ctrl);
6416                         if (!retval) {
6417                                 if (adapter->eee_advert &
6418                                     hw->dev_spec.ich8lan.eee_lp_ability &
6419                                     I82579_EEE_100_SUPPORTED)
6420                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6421                                 if (adapter->eee_advert &
6422                                     hw->dev_spec.ich8lan.eee_lp_ability &
6423                                     I82579_EEE_1000_SUPPORTED)
6424                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6425
6426                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6427                                                          lpi_ctrl);
6428                         }
6429                 }
6430                 hw->phy.ops.release(hw);
6431         }
6432
6433         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6434          * would have already happened in close and is redundant.
6435          */
6436         e1000e_release_hw_control(adapter);
6437
6438         pci_clear_master(pdev);
6439
6440         /* The pci-e switch on some quad port adapters will report a
6441          * correctable error when the MAC transitions from D0 to D3.  To
6442          * prevent this we need to mask off the correctable errors on the
6443          * downstream port of the pci-e switch.
6444          *
6445          * We don't have the associated upstream bridge while assigning
6446          * the PCI device into guest. For example, the KVM on power is
6447          * one of the cases.
6448          */
6449         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6450                 struct pci_dev *us_dev = pdev->bus->self;
6451                 u16 devctl;
6452
6453                 if (!us_dev)
6454                         return 0;
6455
6456                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6457                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6458                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6459
6460                 pci_save_state(pdev);
6461                 pci_prepare_to_sleep(pdev);
6462
6463                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6464         }
6465
6466         return 0;
6467 }
6468
6469 /**
6470  * __e1000e_disable_aspm - Disable ASPM states
6471  * @pdev: pointer to PCI device struct
6472  * @state: bit-mask of ASPM states to disable
6473  * @locked: indication if this context holds pci_bus_sem locked.
6474  *
6475  * Some devices *must* have certain ASPM states disabled per hardware errata.
6476  **/
6477 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6478 {
6479         struct pci_dev *parent = pdev->bus->self;
6480         u16 aspm_dis_mask = 0;
6481         u16 pdev_aspmc, parent_aspmc;
6482
6483         switch (state) {
6484         case PCIE_LINK_STATE_L0S:
6485         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6486                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6487                 /* fall-through - can't have L1 without L0s */
6488         case PCIE_LINK_STATE_L1:
6489                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6490                 break;
6491         default:
6492                 return;
6493         }
6494
6495         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6496         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6497
6498         if (parent) {
6499                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6500                                           &parent_aspmc);
6501                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6502         }
6503
6504         /* Nothing to do if the ASPM states to be disabled already are */
6505         if (!(pdev_aspmc & aspm_dis_mask) &&
6506             (!parent || !(parent_aspmc & aspm_dis_mask)))
6507                 return;
6508
6509         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6510                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6511                  "L0s" : "",
6512                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6513                  "L1" : "");
6514
6515 #ifdef CONFIG_PCIEASPM
6516         if (locked)
6517                 pci_disable_link_state_locked(pdev, state);
6518         else
6519                 pci_disable_link_state(pdev, state);
6520
6521         /* Double-check ASPM control.  If not disabled by the above, the
6522          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6523          * not enabled); override by writing PCI config space directly.
6524          */
6525         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6526         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6527
6528         if (!(aspm_dis_mask & pdev_aspmc))
6529                 return;
6530 #endif
6531
6532         /* Both device and parent should have the same ASPM setting.
6533          * Disable ASPM in downstream component first and then upstream.
6534          */
6535         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6536
6537         if (parent)
6538                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6539                                            aspm_dis_mask);
6540 }
6541
6542 /**
6543  * e1000e_disable_aspm - Disable ASPM states.
6544  * @pdev: pointer to PCI device struct
6545  * @state: bit-mask of ASPM states to disable
6546  *
6547  * This function acquires the pci_bus_sem!
6548  * Some devices *must* have certain ASPM states disabled per hardware errata.
6549  **/
6550 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6551 {
6552         __e1000e_disable_aspm(pdev, state, 0);
6553 }
6554
6555 /**
6556  * e1000e_disable_aspm_locked   Disable ASPM states.
6557  * @pdev: pointer to PCI device struct
6558  * @state: bit-mask of ASPM states to disable
6559  *
6560  * This function must be called with pci_bus_sem acquired!
6561  * Some devices *must* have certain ASPM states disabled per hardware errata.
6562  **/
6563 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6564 {
6565         __e1000e_disable_aspm(pdev, state, 1);
6566 }
6567
6568 #ifdef CONFIG_PM
6569 static int __e1000_resume(struct pci_dev *pdev)
6570 {
6571         struct net_device *netdev = pci_get_drvdata(pdev);
6572         struct e1000_adapter *adapter = netdev_priv(netdev);
6573         struct e1000_hw *hw = &adapter->hw;
6574         u16 aspm_disable_flag = 0;
6575
6576         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6577                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6578         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6579                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6580         if (aspm_disable_flag)
6581                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6582
6583         pci_set_master(pdev);
6584
6585         if (hw->mac.type >= e1000_pch2lan)
6586                 e1000_resume_workarounds_pchlan(&adapter->hw);
6587
6588         e1000e_power_up_phy(adapter);
6589
6590         /* report the system wakeup cause from S3/S4 */
6591         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6592                 u16 phy_data;
6593
6594                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6595                 if (phy_data) {
6596                         e_info("PHY Wakeup cause - %s\n",
6597                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6598                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6599                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6600                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6601                                phy_data & E1000_WUS_LNKC ?
6602                                "Link Status Change" : "other");
6603                 }
6604                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6605         } else {
6606                 u32 wus = er32(WUS);
6607
6608                 if (wus) {
6609                         e_info("MAC Wakeup cause - %s\n",
6610                                wus & E1000_WUS_EX ? "Unicast Packet" :
6611                                wus & E1000_WUS_MC ? "Multicast Packet" :
6612                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6613                                wus & E1000_WUS_MAG ? "Magic Packet" :
6614                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6615                                "other");
6616                 }
6617                 ew32(WUS, ~0);
6618         }
6619
6620         e1000e_reset(adapter);
6621
6622         e1000_init_manageability_pt(adapter);
6623
6624         /* If the controller has AMT, do not set DRV_LOAD until the interface
6625          * is up.  For all other cases, let the f/w know that the h/w is now
6626          * under the control of the driver.
6627          */
6628         if (!(adapter->flags & FLAG_HAS_AMT))
6629                 e1000e_get_hw_control(adapter);
6630
6631         return 0;
6632 }
6633
6634 #ifdef CONFIG_PM_SLEEP
6635 static int e1000e_pm_thaw(struct device *dev)
6636 {
6637         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6638         struct e1000_adapter *adapter = netdev_priv(netdev);
6639
6640         e1000e_set_interrupt_capability(adapter);
6641         if (netif_running(netdev)) {
6642                 u32 err = e1000_request_irq(adapter);
6643
6644                 if (err)
6645                         return err;
6646
6647                 e1000e_up(adapter);
6648         }
6649
6650         netif_device_attach(netdev);
6651
6652         return 0;
6653 }
6654
6655 static int e1000e_pm_suspend(struct device *dev)
6656 {
6657         struct pci_dev *pdev = to_pci_dev(dev);
6658         int rc;
6659
6660         e1000e_flush_lpic(pdev);
6661
6662         e1000e_pm_freeze(dev);
6663
6664         rc = __e1000_shutdown(pdev, false);
6665         if (rc)
6666                 e1000e_pm_thaw(dev);
6667
6668         return rc;
6669 }
6670
6671 static int e1000e_pm_resume(struct device *dev)
6672 {
6673         struct pci_dev *pdev = to_pci_dev(dev);
6674         int rc;
6675
6676         rc = __e1000_resume(pdev);
6677         if (rc)
6678                 return rc;
6679
6680         return e1000e_pm_thaw(dev);
6681 }
6682 #endif /* CONFIG_PM_SLEEP */
6683
6684 static int e1000e_pm_runtime_idle(struct device *dev)
6685 {
6686         struct pci_dev *pdev = to_pci_dev(dev);
6687         struct net_device *netdev = pci_get_drvdata(pdev);
6688         struct e1000_adapter *adapter = netdev_priv(netdev);
6689         u16 eee_lp;
6690
6691         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6692
6693         if (!e1000e_has_link(adapter)) {
6694                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6695                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6696         }
6697
6698         return -EBUSY;
6699 }
6700
6701 static int e1000e_pm_runtime_resume(struct device *dev)
6702 {
6703         struct pci_dev *pdev = to_pci_dev(dev);
6704         struct net_device *netdev = pci_get_drvdata(pdev);
6705         struct e1000_adapter *adapter = netdev_priv(netdev);
6706         int rc;
6707
6708         rc = __e1000_resume(pdev);
6709         if (rc)
6710                 return rc;
6711
6712         if (netdev->flags & IFF_UP)
6713                 e1000e_up(adapter);
6714
6715         return rc;
6716 }
6717
6718 static int e1000e_pm_runtime_suspend(struct device *dev)
6719 {
6720         struct pci_dev *pdev = to_pci_dev(dev);
6721         struct net_device *netdev = pci_get_drvdata(pdev);
6722         struct e1000_adapter *adapter = netdev_priv(netdev);
6723
6724         if (netdev->flags & IFF_UP) {
6725                 int count = E1000_CHECK_RESET_COUNT;
6726
6727                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6728                         usleep_range(10000, 20000);
6729
6730                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6731
6732                 /* Down the device without resetting the hardware */
6733                 e1000e_down(adapter, false);
6734         }
6735
6736         if (__e1000_shutdown(pdev, true)) {
6737                 e1000e_pm_runtime_resume(dev);
6738                 return -EBUSY;
6739         }
6740
6741         return 0;
6742 }
6743 #endif /* CONFIG_PM */
6744
6745 static void e1000_shutdown(struct pci_dev *pdev)
6746 {
6747         e1000e_flush_lpic(pdev);
6748
6749         e1000e_pm_freeze(&pdev->dev);
6750
6751         __e1000_shutdown(pdev, false);
6752 }
6753
6754 #ifdef CONFIG_NET_POLL_CONTROLLER
6755
6756 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6757 {
6758         struct net_device *netdev = data;
6759         struct e1000_adapter *adapter = netdev_priv(netdev);
6760
6761         if (adapter->msix_entries) {
6762                 int vector, msix_irq;
6763
6764                 vector = 0;
6765                 msix_irq = adapter->msix_entries[vector].vector;
6766                 if (disable_hardirq(msix_irq))
6767                         e1000_intr_msix_rx(msix_irq, netdev);
6768                 enable_irq(msix_irq);
6769
6770                 vector++;
6771                 msix_irq = adapter->msix_entries[vector].vector;
6772                 if (disable_hardirq(msix_irq))
6773                         e1000_intr_msix_tx(msix_irq, netdev);
6774                 enable_irq(msix_irq);
6775
6776                 vector++;
6777                 msix_irq = adapter->msix_entries[vector].vector;
6778                 if (disable_hardirq(msix_irq))
6779                         e1000_msix_other(msix_irq, netdev);
6780                 enable_irq(msix_irq);
6781         }
6782
6783         return IRQ_HANDLED;
6784 }
6785
6786 /**
6787  * e1000_netpoll
6788  * @netdev: network interface device structure
6789  *
6790  * Polling 'interrupt' - used by things like netconsole to send skbs
6791  * without having to re-enable interrupts. It's not called while
6792  * the interrupt routine is executing.
6793  */
6794 static void e1000_netpoll(struct net_device *netdev)
6795 {
6796         struct e1000_adapter *adapter = netdev_priv(netdev);
6797
6798         switch (adapter->int_mode) {
6799         case E1000E_INT_MODE_MSIX:
6800                 e1000_intr_msix(adapter->pdev->irq, netdev);
6801                 break;
6802         case E1000E_INT_MODE_MSI:
6803                 if (disable_hardirq(adapter->pdev->irq))
6804                         e1000_intr_msi(adapter->pdev->irq, netdev);
6805                 enable_irq(adapter->pdev->irq);
6806                 break;
6807         default:                /* E1000E_INT_MODE_LEGACY */
6808                 if (disable_hardirq(adapter->pdev->irq))
6809                         e1000_intr(adapter->pdev->irq, netdev);
6810                 enable_irq(adapter->pdev->irq);
6811                 break;
6812         }
6813 }
6814 #endif
6815
6816 /**
6817  * e1000_io_error_detected - called when PCI error is detected
6818  * @pdev: Pointer to PCI device
6819  * @state: The current pci connection state
6820  *
6821  * This function is called after a PCI bus error affecting
6822  * this device has been detected.
6823  */
6824 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6825                                                 pci_channel_state_t state)
6826 {
6827         struct net_device *netdev = pci_get_drvdata(pdev);
6828         struct e1000_adapter *adapter = netdev_priv(netdev);
6829
6830         netif_device_detach(netdev);
6831
6832         if (state == pci_channel_io_perm_failure)
6833                 return PCI_ERS_RESULT_DISCONNECT;
6834
6835         if (netif_running(netdev))
6836                 e1000e_down(adapter, true);
6837         pci_disable_device(pdev);
6838
6839         /* Request a slot slot reset. */
6840         return PCI_ERS_RESULT_NEED_RESET;
6841 }
6842
6843 /**
6844  * e1000_io_slot_reset - called after the pci bus has been reset.
6845  * @pdev: Pointer to PCI device
6846  *
6847  * Restart the card from scratch, as if from a cold-boot. Implementation
6848  * resembles the first-half of the e1000e_pm_resume routine.
6849  */
6850 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6851 {
6852         struct net_device *netdev = pci_get_drvdata(pdev);
6853         struct e1000_adapter *adapter = netdev_priv(netdev);
6854         struct e1000_hw *hw = &adapter->hw;
6855         u16 aspm_disable_flag = 0;
6856         int err;
6857         pci_ers_result_t result;
6858
6859         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6860                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6861         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6862                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6863         if (aspm_disable_flag)
6864                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6865
6866         err = pci_enable_device_mem(pdev);
6867         if (err) {
6868                 dev_err(&pdev->dev,
6869                         "Cannot re-enable PCI device after reset.\n");
6870                 result = PCI_ERS_RESULT_DISCONNECT;
6871         } else {
6872                 pdev->state_saved = true;
6873                 pci_restore_state(pdev);
6874                 pci_set_master(pdev);
6875
6876                 pci_enable_wake(pdev, PCI_D3hot, 0);
6877                 pci_enable_wake(pdev, PCI_D3cold, 0);
6878
6879                 e1000e_reset(adapter);
6880                 ew32(WUS, ~0);
6881                 result = PCI_ERS_RESULT_RECOVERED;
6882         }
6883
6884         pci_cleanup_aer_uncorrect_error_status(pdev);
6885
6886         return result;
6887 }
6888
6889 /**
6890  * e1000_io_resume - called when traffic can start flowing again.
6891  * @pdev: Pointer to PCI device
6892  *
6893  * This callback is called when the error recovery driver tells us that
6894  * its OK to resume normal operation. Implementation resembles the
6895  * second-half of the e1000e_pm_resume routine.
6896  */
6897 static void e1000_io_resume(struct pci_dev *pdev)
6898 {
6899         struct net_device *netdev = pci_get_drvdata(pdev);
6900         struct e1000_adapter *adapter = netdev_priv(netdev);
6901
6902         e1000_init_manageability_pt(adapter);
6903
6904         if (netif_running(netdev))
6905                 e1000e_up(adapter);
6906
6907         netif_device_attach(netdev);
6908
6909         /* If the controller has AMT, do not set DRV_LOAD until the interface
6910          * is up.  For all other cases, let the f/w know that the h/w is now
6911          * under the control of the driver.
6912          */
6913         if (!(adapter->flags & FLAG_HAS_AMT))
6914                 e1000e_get_hw_control(adapter);
6915 }
6916
6917 static void e1000_print_device_info(struct e1000_adapter *adapter)
6918 {
6919         struct e1000_hw *hw = &adapter->hw;
6920         struct net_device *netdev = adapter->netdev;
6921         u32 ret_val;
6922         u8 pba_str[E1000_PBANUM_LENGTH];
6923
6924         /* print bus type/speed/width info */
6925         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6926                /* bus width */
6927                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6928                 "Width x1"),
6929                /* MAC address */
6930                netdev->dev_addr);
6931         e_info("Intel(R) PRO/%s Network Connection\n",
6932                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6933         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6934                                                 E1000_PBANUM_LENGTH);
6935         if (ret_val)
6936                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6937         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6938                hw->mac.type, hw->phy.type, pba_str);
6939 }
6940
6941 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6942 {
6943         struct e1000_hw *hw = &adapter->hw;
6944         int ret_val;
6945         u16 buf = 0;
6946
6947         if (hw->mac.type != e1000_82573)
6948                 return;
6949
6950         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6951         le16_to_cpus(&buf);
6952         if (!ret_val && (!(buf & BIT(0)))) {
6953                 /* Deep Smart Power Down (DSPD) */
6954                 dev_warn(&adapter->pdev->dev,
6955                          "Warning: detected DSPD enabled in EEPROM\n");
6956         }
6957 }
6958
6959 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6960                                             netdev_features_t features)
6961 {
6962         struct e1000_adapter *adapter = netdev_priv(netdev);
6963         struct e1000_hw *hw = &adapter->hw;
6964
6965         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6966         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6967                 features &= ~NETIF_F_RXFCS;
6968
6969         /* Since there is no support for separate Rx/Tx vlan accel
6970          * enable/disable make sure Tx flag is always in same state as Rx.
6971          */
6972         if (features & NETIF_F_HW_VLAN_CTAG_RX)
6973                 features |= NETIF_F_HW_VLAN_CTAG_TX;
6974         else
6975                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6976
6977         return features;
6978 }
6979
6980 static int e1000_set_features(struct net_device *netdev,
6981                               netdev_features_t features)
6982 {
6983         struct e1000_adapter *adapter = netdev_priv(netdev);
6984         netdev_features_t changed = features ^ netdev->features;
6985
6986         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6987                 adapter->flags |= FLAG_TSO_FORCE;
6988
6989         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6990                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6991                          NETIF_F_RXALL)))
6992                 return 0;
6993
6994         if (changed & NETIF_F_RXFCS) {
6995                 if (features & NETIF_F_RXFCS) {
6996                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6997                 } else {
6998                         /* We need to take it back to defaults, which might mean
6999                          * stripping is still disabled at the adapter level.
7000                          */
7001                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7002                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7003                         else
7004                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7005                 }
7006         }
7007
7008         netdev->features = features;
7009
7010         if (netif_running(netdev))
7011                 e1000e_reinit_locked(adapter);
7012         else
7013                 e1000e_reset(adapter);
7014
7015         return 0;
7016 }
7017
7018 static const struct net_device_ops e1000e_netdev_ops = {
7019         .ndo_open               = e1000e_open,
7020         .ndo_stop               = e1000e_close,
7021         .ndo_start_xmit         = e1000_xmit_frame,
7022         .ndo_get_stats64        = e1000e_get_stats64,
7023         .ndo_set_rx_mode        = e1000e_set_rx_mode,
7024         .ndo_set_mac_address    = e1000_set_mac,
7025         .ndo_change_mtu         = e1000_change_mtu,
7026         .ndo_do_ioctl           = e1000_ioctl,
7027         .ndo_tx_timeout         = e1000_tx_timeout,
7028         .ndo_validate_addr      = eth_validate_addr,
7029
7030         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
7031         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
7032 #ifdef CONFIG_NET_POLL_CONTROLLER
7033         .ndo_poll_controller    = e1000_netpoll,
7034 #endif
7035         .ndo_set_features = e1000_set_features,
7036         .ndo_fix_features = e1000_fix_features,
7037         .ndo_features_check     = passthru_features_check,
7038 };
7039
7040 /**
7041  * e1000_probe - Device Initialization Routine
7042  * @pdev: PCI device information struct
7043  * @ent: entry in e1000_pci_tbl
7044  *
7045  * Returns 0 on success, negative on failure
7046  *
7047  * e1000_probe initializes an adapter identified by a pci_dev structure.
7048  * The OS initialization, configuring of the adapter private structure,
7049  * and a hardware reset occur.
7050  **/
7051 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7052 {
7053         struct net_device *netdev;
7054         struct e1000_adapter *adapter;
7055         struct e1000_hw *hw;
7056         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7057         resource_size_t mmio_start, mmio_len;
7058         resource_size_t flash_start, flash_len;
7059         static int cards_found;
7060         u16 aspm_disable_flag = 0;
7061         int bars, i, err, pci_using_dac;
7062         u16 eeprom_data = 0;
7063         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7064         s32 ret_val = 0;
7065
7066         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7067                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7068         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7069                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7070         if (aspm_disable_flag)
7071                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7072
7073         err = pci_enable_device_mem(pdev);
7074         if (err)
7075                 return err;
7076
7077         pci_using_dac = 0;
7078         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7079         if (!err) {
7080                 pci_using_dac = 1;
7081         } else {
7082                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7083                 if (err) {
7084                         dev_err(&pdev->dev,
7085                                 "No usable DMA configuration, aborting\n");
7086                         goto err_dma;
7087                 }
7088         }
7089
7090         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7091         err = pci_request_selected_regions_exclusive(pdev, bars,
7092                                                      e1000e_driver_name);
7093         if (err)
7094                 goto err_pci_reg;
7095
7096         /* AER (Advanced Error Reporting) hooks */
7097         pci_enable_pcie_error_reporting(pdev);
7098
7099         pci_set_master(pdev);
7100         /* PCI config space info */
7101         err = pci_save_state(pdev);
7102         if (err)
7103                 goto err_alloc_etherdev;
7104
7105         err = -ENOMEM;
7106         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7107         if (!netdev)
7108                 goto err_alloc_etherdev;
7109
7110         SET_NETDEV_DEV(netdev, &pdev->dev);
7111
7112         netdev->irq = pdev->irq;
7113
7114         pci_set_drvdata(pdev, netdev);
7115         adapter = netdev_priv(netdev);
7116         hw = &adapter->hw;
7117         adapter->netdev = netdev;
7118         adapter->pdev = pdev;
7119         adapter->ei = ei;
7120         adapter->pba = ei->pba;
7121         adapter->flags = ei->flags;
7122         adapter->flags2 = ei->flags2;
7123         adapter->hw.adapter = adapter;
7124         adapter->hw.mac.type = ei->mac;
7125         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7126         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7127
7128         mmio_start = pci_resource_start(pdev, 0);
7129         mmio_len = pci_resource_len(pdev, 0);
7130
7131         err = -EIO;
7132         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7133         if (!adapter->hw.hw_addr)
7134                 goto err_ioremap;
7135
7136         if ((adapter->flags & FLAG_HAS_FLASH) &&
7137             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7138             (hw->mac.type < e1000_pch_spt)) {
7139                 flash_start = pci_resource_start(pdev, 1);
7140                 flash_len = pci_resource_len(pdev, 1);
7141                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7142                 if (!adapter->hw.flash_address)
7143                         goto err_flashmap;
7144         }
7145
7146         /* Set default EEE advertisement */
7147         if (adapter->flags2 & FLAG2_HAS_EEE)
7148                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7149
7150         /* construct the net_device struct */
7151         netdev->netdev_ops = &e1000e_netdev_ops;
7152         e1000e_set_ethtool_ops(netdev);
7153         netdev->watchdog_timeo = 5 * HZ;
7154         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7155         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7156
7157         netdev->mem_start = mmio_start;
7158         netdev->mem_end = mmio_start + mmio_len;
7159
7160         adapter->bd_number = cards_found++;
7161
7162         e1000e_check_options(adapter);
7163
7164         /* setup adapter struct */
7165         err = e1000_sw_init(adapter);
7166         if (err)
7167                 goto err_sw_init;
7168
7169         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7170         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7171         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7172
7173         err = ei->get_variants(adapter);
7174         if (err)
7175                 goto err_hw_init;
7176
7177         if ((adapter->flags & FLAG_IS_ICH) &&
7178             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7179             (hw->mac.type < e1000_pch_spt))
7180                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7181
7182         hw->mac.ops.get_bus_info(&adapter->hw);
7183
7184         adapter->hw.phy.autoneg_wait_to_complete = 0;
7185
7186         /* Copper options */
7187         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7188                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7189                 adapter->hw.phy.disable_polarity_correction = 0;
7190                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7191         }
7192
7193         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7194                 dev_info(&pdev->dev,
7195                          "PHY reset is blocked due to SOL/IDER session.\n");
7196
7197         /* Set initial default active device features */
7198         netdev->features = (NETIF_F_SG |
7199                             NETIF_F_HW_VLAN_CTAG_RX |
7200                             NETIF_F_HW_VLAN_CTAG_TX |
7201                             NETIF_F_TSO |
7202                             NETIF_F_TSO6 |
7203                             NETIF_F_RXHASH |
7204                             NETIF_F_RXCSUM |
7205                             NETIF_F_HW_CSUM);
7206
7207         /* Set user-changeable features (subset of all device features) */
7208         netdev->hw_features = netdev->features;
7209         netdev->hw_features |= NETIF_F_RXFCS;
7210         netdev->priv_flags |= IFF_SUPP_NOFCS;
7211         netdev->hw_features |= NETIF_F_RXALL;
7212
7213         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7214                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7215
7216         netdev->vlan_features |= (NETIF_F_SG |
7217                                   NETIF_F_TSO |
7218                                   NETIF_F_TSO6 |
7219                                   NETIF_F_HW_CSUM);
7220
7221         netdev->priv_flags |= IFF_UNICAST_FLT;
7222
7223         if (pci_using_dac) {
7224                 netdev->features |= NETIF_F_HIGHDMA;
7225                 netdev->vlan_features |= NETIF_F_HIGHDMA;
7226         }
7227
7228         /* MTU range: 68 - max_hw_frame_size */
7229         netdev->min_mtu = ETH_MIN_MTU;
7230         netdev->max_mtu = adapter->max_hw_frame_size -
7231                           (VLAN_ETH_HLEN + ETH_FCS_LEN);
7232
7233         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7234                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7235
7236         /* before reading the NVM, reset the controller to
7237          * put the device in a known good starting state
7238          */
7239         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7240
7241         /* systems with ASPM and others may see the checksum fail on the first
7242          * attempt. Let's give it a few tries
7243          */
7244         for (i = 0;; i++) {
7245                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7246                         break;
7247                 if (i == 2) {
7248                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7249                         err = -EIO;
7250                         goto err_eeprom;
7251                 }
7252         }
7253
7254         e1000_eeprom_checks(adapter);
7255
7256         /* copy the MAC address */
7257         if (e1000e_read_mac_addr(&adapter->hw))
7258                 dev_err(&pdev->dev,
7259                         "NVM Read Error while reading MAC address\n");
7260
7261         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7262
7263         if (!is_valid_ether_addr(netdev->dev_addr)) {
7264                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7265                         netdev->dev_addr);
7266                 err = -EIO;
7267                 goto err_eeprom;
7268         }
7269
7270         timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7271         timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7272
7273         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7274         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7275         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7276         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7277         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7278
7279         /* Initialize link parameters. User can change them with ethtool */
7280         adapter->hw.mac.autoneg = 1;
7281         adapter->fc_autoneg = true;
7282         adapter->hw.fc.requested_mode = e1000_fc_default;
7283         adapter->hw.fc.current_mode = e1000_fc_default;
7284         adapter->hw.phy.autoneg_advertised = 0x2f;
7285
7286         /* Initial Wake on LAN setting - If APM wake is enabled in
7287          * the EEPROM, enable the ACPI Magic Packet filter
7288          */
7289         if (adapter->flags & FLAG_APME_IN_WUC) {
7290                 /* APME bit in EEPROM is mapped to WUC.APME */
7291                 eeprom_data = er32(WUC);
7292                 eeprom_apme_mask = E1000_WUC_APME;
7293                 if ((hw->mac.type > e1000_ich10lan) &&
7294                     (eeprom_data & E1000_WUC_PHY_WAKE))
7295                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7296         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7297                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7298                     (adapter->hw.bus.func == 1))
7299                         ret_val = e1000_read_nvm(&adapter->hw,
7300                                               NVM_INIT_CONTROL3_PORT_B,
7301                                               1, &eeprom_data);
7302                 else
7303                         ret_val = e1000_read_nvm(&adapter->hw,
7304                                               NVM_INIT_CONTROL3_PORT_A,
7305                                               1, &eeprom_data);
7306         }
7307
7308         /* fetch WoL from EEPROM */
7309         if (ret_val)
7310                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7311         else if (eeprom_data & eeprom_apme_mask)
7312                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7313
7314         /* now that we have the eeprom settings, apply the special cases
7315          * where the eeprom may be wrong or the board simply won't support
7316          * wake on lan on a particular port
7317          */
7318         if (!(adapter->flags & FLAG_HAS_WOL))
7319                 adapter->eeprom_wol = 0;
7320
7321         /* initialize the wol settings based on the eeprom settings */
7322         adapter->wol = adapter->eeprom_wol;
7323
7324         /* make sure adapter isn't asleep if manageability is enabled */
7325         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7326             (hw->mac.ops.check_mng_mode(hw)))
7327                 device_wakeup_enable(&pdev->dev);
7328
7329         /* save off EEPROM version number */
7330         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7331
7332         if (ret_val) {
7333                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7334                 adapter->eeprom_vers = 0;
7335         }
7336
7337         /* init PTP hardware clock */
7338         e1000e_ptp_init(adapter);
7339
7340         /* reset the hardware with the new settings */
7341         e1000e_reset(adapter);
7342
7343         /* If the controller has AMT, do not set DRV_LOAD until the interface
7344          * is up.  For all other cases, let the f/w know that the h/w is now
7345          * under the control of the driver.
7346          */
7347         if (!(adapter->flags & FLAG_HAS_AMT))
7348                 e1000e_get_hw_control(adapter);
7349
7350         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7351         err = register_netdev(netdev);
7352         if (err)
7353                 goto err_register;
7354
7355         /* carrier off reporting is important to ethtool even BEFORE open */
7356         netif_carrier_off(netdev);
7357
7358         e1000_print_device_info(adapter);
7359
7360         if (pci_dev_run_wake(pdev))
7361                 pm_runtime_put_noidle(&pdev->dev);
7362
7363         return 0;
7364
7365 err_register:
7366         if (!(adapter->flags & FLAG_HAS_AMT))
7367                 e1000e_release_hw_control(adapter);
7368 err_eeprom:
7369         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7370                 e1000_phy_hw_reset(&adapter->hw);
7371 err_hw_init:
7372         kfree(adapter->tx_ring);
7373         kfree(adapter->rx_ring);
7374 err_sw_init:
7375         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7376                 iounmap(adapter->hw.flash_address);
7377         e1000e_reset_interrupt_capability(adapter);
7378 err_flashmap:
7379         iounmap(adapter->hw.hw_addr);
7380 err_ioremap:
7381         free_netdev(netdev);
7382 err_alloc_etherdev:
7383         pci_release_mem_regions(pdev);
7384 err_pci_reg:
7385 err_dma:
7386         pci_disable_device(pdev);
7387         return err;
7388 }
7389
7390 /**
7391  * e1000_remove - Device Removal Routine
7392  * @pdev: PCI device information struct
7393  *
7394  * e1000_remove is called by the PCI subsystem to alert the driver
7395  * that it should release a PCI device.  The could be caused by a
7396  * Hot-Plug event, or because the driver is going to be removed from
7397  * memory.
7398  **/
7399 static void e1000_remove(struct pci_dev *pdev)
7400 {
7401         struct net_device *netdev = pci_get_drvdata(pdev);
7402         struct e1000_adapter *adapter = netdev_priv(netdev);
7403         bool down = test_bit(__E1000_DOWN, &adapter->state);
7404
7405         e1000e_ptp_remove(adapter);
7406
7407         /* The timers may be rescheduled, so explicitly disable them
7408          * from being rescheduled.
7409          */
7410         if (!down)
7411                 set_bit(__E1000_DOWN, &adapter->state);
7412         del_timer_sync(&adapter->watchdog_timer);
7413         del_timer_sync(&adapter->phy_info_timer);
7414
7415         cancel_work_sync(&adapter->reset_task);
7416         cancel_work_sync(&adapter->watchdog_task);
7417         cancel_work_sync(&adapter->downshift_task);
7418         cancel_work_sync(&adapter->update_phy_task);
7419         cancel_work_sync(&adapter->print_hang_task);
7420
7421         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7422                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7423                 if (adapter->tx_hwtstamp_skb) {
7424                         dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7425                         adapter->tx_hwtstamp_skb = NULL;
7426                 }
7427         }
7428
7429         /* Don't lie to e1000_close() down the road. */
7430         if (!down)
7431                 clear_bit(__E1000_DOWN, &adapter->state);
7432         unregister_netdev(netdev);
7433
7434         if (pci_dev_run_wake(pdev))
7435                 pm_runtime_get_noresume(&pdev->dev);
7436
7437         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7438          * would have already happened in close and is redundant.
7439          */
7440         e1000e_release_hw_control(adapter);
7441
7442         e1000e_reset_interrupt_capability(adapter);
7443         kfree(adapter->tx_ring);
7444         kfree(adapter->rx_ring);
7445
7446         iounmap(adapter->hw.hw_addr);
7447         if ((adapter->hw.flash_address) &&
7448             (adapter->hw.mac.type < e1000_pch_spt))
7449                 iounmap(adapter->hw.flash_address);
7450         pci_release_mem_regions(pdev);
7451
7452         free_netdev(netdev);
7453
7454         /* AER disable */
7455         pci_disable_pcie_error_reporting(pdev);
7456
7457         pci_disable_device(pdev);
7458 }
7459
7460 /* PCI Error Recovery (ERS) */
7461 static const struct pci_error_handlers e1000_err_handler = {
7462         .error_detected = e1000_io_error_detected,
7463         .slot_reset = e1000_io_slot_reset,
7464         .resume = e1000_io_resume,
7465 };
7466
7467 static const struct pci_device_id e1000_pci_tbl[] = {
7468         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7469         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7470         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7471         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7472           board_82571 },
7473         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7474         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7475         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7476         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7477         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7478
7479         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7480         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7481         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7482         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7483
7484         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7485         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7486         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7487
7488         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7489         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7490         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7491
7492         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7493           board_80003es2lan },
7494         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7495           board_80003es2lan },
7496         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7497           board_80003es2lan },
7498         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7499           board_80003es2lan },
7500
7501         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7502         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7503         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7504         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7505         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7506         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7507         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7508         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7509
7510         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7511         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7512         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7513         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7514         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7515         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7516         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7517         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7518         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7519
7520         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7521         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7522         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7523
7524         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7525         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7526         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7527
7528         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7529         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7530         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7531         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7532
7533         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7534         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7535
7536         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7537         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7538         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7539         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7540         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7541         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7542         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7543         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7544         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7545         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7546         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7547         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7548         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7549         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7550         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7551         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7552         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7553         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7554         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7555         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7556         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7557         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7558         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7559         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7560         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7561
7562         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7563 };
7564 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7565
7566 static const struct dev_pm_ops e1000_pm_ops = {
7567 #ifdef CONFIG_PM_SLEEP
7568         .suspend        = e1000e_pm_suspend,
7569         .resume         = e1000e_pm_resume,
7570         .freeze         = e1000e_pm_freeze,
7571         .thaw           = e1000e_pm_thaw,
7572         .poweroff       = e1000e_pm_suspend,
7573         .restore        = e1000e_pm_resume,
7574 #endif
7575         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7576                            e1000e_pm_runtime_idle)
7577 };
7578
7579 /* PCI Device API Driver */
7580 static struct pci_driver e1000_driver = {
7581         .name     = e1000e_driver_name,
7582         .id_table = e1000_pci_tbl,
7583         .probe    = e1000_probe,
7584         .remove   = e1000_remove,
7585         .driver   = {
7586                 .pm = &e1000_pm_ops,
7587         },
7588         .shutdown = e1000_shutdown,
7589         .err_handler = &e1000_err_handler
7590 };
7591
7592 /**
7593  * e1000_init_module - Driver Registration Routine
7594  *
7595  * e1000_init_module is the first routine called when the driver is
7596  * loaded. All it does is register with the PCI subsystem.
7597  **/
7598 static int __init e1000_init_module(void)
7599 {
7600         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7601                 e1000e_driver_version);
7602         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7603
7604         return pci_register_driver(&e1000_driver);
7605 }
7606 module_init(e1000_init_module);
7607
7608 /**
7609  * e1000_exit_module - Driver Exit Cleanup Routine
7610  *
7611  * e1000_exit_module is called just before the driver is removed
7612  * from memory.
7613  **/
7614 static void __exit e1000_exit_module(void)
7615 {
7616         pci_unregister_driver(&e1000_driver);
7617 }
7618 module_exit(e1000_exit_module);
7619
7620 MODULE_AUTHOR("Intel Corporation, <[email protected]>");
7621 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7622 MODULE_LICENSE("GPL");
7623 MODULE_VERSION(DRV_VERSION);
7624
7625 /* netdev.c */
This page took 0.497907 seconds and 4 git commands to generate.