1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
28 #include <asm/tlbflush.h>
31 #define SEQ_PUT_DEC(str, val) \
32 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
33 void task_mem(struct seq_file *m, struct mm_struct *mm)
35 unsigned long text, lib, swap, anon, file, shmem;
36 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
38 anon = get_mm_counter(mm, MM_ANONPAGES);
39 file = get_mm_counter(mm, MM_FILEPAGES);
40 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
43 * Note: to minimize their overhead, mm maintains hiwater_vm and
44 * hiwater_rss only when about to *lower* total_vm or rss. Any
45 * collector of these hiwater stats must therefore get total_vm
46 * and rss too, which will usually be the higher. Barriers? not
47 * worth the effort, such snapshots can always be inconsistent.
49 hiwater_vm = total_vm = mm->total_vm;
50 if (hiwater_vm < mm->hiwater_vm)
51 hiwater_vm = mm->hiwater_vm;
52 hiwater_rss = total_rss = anon + file + shmem;
53 if (hiwater_rss < mm->hiwater_rss)
54 hiwater_rss = mm->hiwater_rss;
56 /* split executable areas between text and lib */
57 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
58 text = min(text, mm->exec_vm << PAGE_SHIFT);
59 lib = (mm->exec_vm << PAGE_SHIFT) - text;
61 swap = get_mm_counter(mm, MM_SWAPENTS);
62 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
63 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
64 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
65 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
66 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
67 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
68 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
69 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
70 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
71 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
72 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
73 seq_put_decimal_ull_width(m,
74 " kB\nVmExe:\t", text >> 10, 8);
75 seq_put_decimal_ull_width(m,
76 " kB\nVmLib:\t", lib >> 10, 8);
77 seq_put_decimal_ull_width(m,
78 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
79 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
81 hugetlb_report_usage(m, mm);
85 unsigned long task_vsize(struct mm_struct *mm)
87 return PAGE_SIZE * mm->total_vm;
90 unsigned long task_statm(struct mm_struct *mm,
91 unsigned long *shared, unsigned long *text,
92 unsigned long *data, unsigned long *resident)
94 *shared = get_mm_counter(mm, MM_FILEPAGES) +
95 get_mm_counter(mm, MM_SHMEMPAGES);
96 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 *data = mm->data_vm + mm->stack_vm;
99 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
105 * Save get_task_policy() for show_numa_map().
107 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 struct task_struct *task = priv->task;
112 priv->task_mempolicy = get_task_policy(task);
113 mpol_get(priv->task_mempolicy);
116 static void release_task_mempolicy(struct proc_maps_private *priv)
118 mpol_put(priv->task_mempolicy);
121 static void hold_task_mempolicy(struct proc_maps_private *priv)
124 static void release_task_mempolicy(struct proc_maps_private *priv)
129 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
132 struct vm_area_struct *vma = vma_next(&priv->iter);
135 *ppos = vma->vm_start;
138 vma = get_gate_vma(priv->mm);
144 static void *m_start(struct seq_file *m, loff_t *ppos)
146 struct proc_maps_private *priv = m->private;
147 unsigned long last_addr = *ppos;
148 struct mm_struct *mm;
150 /* See m_next(). Zero at the start or after lseek. */
151 if (last_addr == -1UL)
154 priv->task = get_proc_task(priv->inode);
156 return ERR_PTR(-ESRCH);
159 if (!mm || !mmget_not_zero(mm)) {
160 put_task_struct(priv->task);
165 if (mmap_read_lock_killable(mm)) {
167 put_task_struct(priv->task);
169 return ERR_PTR(-EINTR);
172 vma_iter_init(&priv->iter, mm, last_addr);
173 hold_task_mempolicy(priv);
174 if (last_addr == -2UL)
175 return get_gate_vma(mm);
177 return proc_get_vma(priv, ppos);
180 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
186 return proc_get_vma(m->private, ppos);
189 static void m_stop(struct seq_file *m, void *v)
191 struct proc_maps_private *priv = m->private;
192 struct mm_struct *mm = priv->mm;
197 release_task_mempolicy(priv);
198 mmap_read_unlock(mm);
200 put_task_struct(priv->task);
204 static int proc_maps_open(struct inode *inode, struct file *file,
205 const struct seq_operations *ops, int psize)
207 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
213 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
214 if (IS_ERR(priv->mm)) {
215 int err = PTR_ERR(priv->mm);
217 seq_release_private(inode, file);
224 static int proc_map_release(struct inode *inode, struct file *file)
226 struct seq_file *seq = file->private_data;
227 struct proc_maps_private *priv = seq->private;
232 return seq_release_private(inode, file);
235 static int do_maps_open(struct inode *inode, struct file *file,
236 const struct seq_operations *ops)
238 return proc_maps_open(inode, file, ops,
239 sizeof(struct proc_maps_private));
242 static void show_vma_header_prefix(struct seq_file *m,
243 unsigned long start, unsigned long end,
244 vm_flags_t flags, unsigned long long pgoff,
245 dev_t dev, unsigned long ino)
247 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
248 seq_put_hex_ll(m, NULL, start, 8);
249 seq_put_hex_ll(m, "-", end, 8);
251 seq_putc(m, flags & VM_READ ? 'r' : '-');
252 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
253 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
254 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
255 seq_put_hex_ll(m, " ", pgoff, 8);
256 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
257 seq_put_hex_ll(m, ":", MINOR(dev), 2);
258 seq_put_decimal_ull(m, " ", ino);
263 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
265 struct anon_vma_name *anon_name = NULL;
266 struct mm_struct *mm = vma->vm_mm;
267 struct file *file = vma->vm_file;
268 vm_flags_t flags = vma->vm_flags;
269 unsigned long ino = 0;
270 unsigned long long pgoff = 0;
271 unsigned long start, end;
273 const char *name = NULL;
276 struct inode *inode = file_inode(vma->vm_file);
277 dev = inode->i_sb->s_dev;
279 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
282 start = vma->vm_start;
284 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
286 anon_name = anon_vma_name(vma);
289 * Print the dentry name for named mappings, and a
290 * special [heap] marker for the heap:
295 * If user named this anon shared memory via
296 * prctl(PR_SET_VMA ..., use the provided name.
299 seq_printf(m, "[anon_shmem:%s]", anon_name->name);
301 seq_path(m, file_user_path(file), "\n");
305 if (vma->vm_ops && vma->vm_ops->name) {
306 name = vma->vm_ops->name(vma);
311 name = arch_vma_name(vma);
318 if (vma_is_initial_heap(vma)) {
323 if (vma_is_initial_stack(vma)) {
330 seq_printf(m, "[anon:%s]", anon_name->name);
342 static int show_map(struct seq_file *m, void *v)
348 static const struct seq_operations proc_pid_maps_op = {
355 static int pid_maps_open(struct inode *inode, struct file *file)
357 return do_maps_open(inode, file, &proc_pid_maps_op);
360 const struct file_operations proc_pid_maps_operations = {
361 .open = pid_maps_open,
364 .release = proc_map_release,
368 * Proportional Set Size(PSS): my share of RSS.
370 * PSS of a process is the count of pages it has in memory, where each
371 * page is divided by the number of processes sharing it. So if a
372 * process has 1000 pages all to itself, and 1000 shared with one other
373 * process, its PSS will be 1500.
375 * To keep (accumulated) division errors low, we adopt a 64bit
376 * fixed-point pss counter to minimize division errors. So (pss >>
377 * PSS_SHIFT) would be the real byte count.
379 * A shift of 12 before division means (assuming 4K page size):
380 * - 1M 3-user-pages add up to 8KB errors;
381 * - supports mapcount up to 2^24, or 16M;
382 * - supports PSS up to 2^52 bytes, or 4PB.
386 #ifdef CONFIG_PROC_PAGE_MONITOR
387 struct mem_size_stats {
388 unsigned long resident;
389 unsigned long shared_clean;
390 unsigned long shared_dirty;
391 unsigned long private_clean;
392 unsigned long private_dirty;
393 unsigned long referenced;
394 unsigned long anonymous;
395 unsigned long lazyfree;
396 unsigned long anonymous_thp;
397 unsigned long shmem_thp;
398 unsigned long file_thp;
400 unsigned long shared_hugetlb;
401 unsigned long private_hugetlb;
412 static void smaps_page_accumulate(struct mem_size_stats *mss,
413 struct page *page, unsigned long size, unsigned long pss,
414 bool dirty, bool locked, bool private)
419 mss->pss_anon += pss;
420 else if (PageSwapBacked(page))
421 mss->pss_shmem += pss;
423 mss->pss_file += pss;
426 mss->pss_locked += pss;
428 if (dirty || PageDirty(page)) {
429 mss->pss_dirty += pss;
431 mss->private_dirty += size;
433 mss->shared_dirty += size;
436 mss->private_clean += size;
438 mss->shared_clean += size;
442 static void smaps_account(struct mem_size_stats *mss, struct page *page,
443 bool compound, bool young, bool dirty, bool locked,
446 int i, nr = compound ? compound_nr(page) : 1;
447 unsigned long size = nr * PAGE_SIZE;
450 * First accumulate quantities that depend only on |size| and the type
451 * of the compound page.
453 if (PageAnon(page)) {
454 mss->anonymous += size;
455 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
456 mss->lazyfree += size;
462 mss->resident += size;
463 /* Accumulate the size in pages that have been accessed. */
464 if (young || page_is_young(page) || PageReferenced(page))
465 mss->referenced += size;
468 * Then accumulate quantities that may depend on sharing, or that may
469 * differ page-by-page.
471 * page_count(page) == 1 guarantees the page is mapped exactly once.
472 * If any subpage of the compound page mapped with PTE it would elevate
475 * The page_mapcount() is called to get a snapshot of the mapcount.
476 * Without holding the page lock this snapshot can be slightly wrong as
477 * we cannot always read the mapcount atomically. It is not safe to
478 * call page_mapcount() even with PTL held if the page is not mapped,
479 * especially for migration entries. Treat regular migration entries
482 if ((page_count(page) == 1) || migration) {
483 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
487 for (i = 0; i < nr; i++, page++) {
488 int mapcount = page_mapcount(page);
489 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
492 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
498 static int smaps_pte_hole(unsigned long addr, unsigned long end,
499 __always_unused int depth, struct mm_walk *walk)
501 struct mem_size_stats *mss = walk->private;
502 struct vm_area_struct *vma = walk->vma;
504 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
505 linear_page_index(vma, addr),
506 linear_page_index(vma, end));
511 #define smaps_pte_hole NULL
512 #endif /* CONFIG_SHMEM */
514 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
517 if (walk->ops->pte_hole) {
518 /* depth is not used */
519 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
524 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
525 struct mm_walk *walk)
527 struct mem_size_stats *mss = walk->private;
528 struct vm_area_struct *vma = walk->vma;
529 bool locked = !!(vma->vm_flags & VM_LOCKED);
530 struct page *page = NULL;
531 bool migration = false, young = false, dirty = false;
532 pte_t ptent = ptep_get(pte);
534 if (pte_present(ptent)) {
535 page = vm_normal_page(vma, addr, ptent);
536 young = pte_young(ptent);
537 dirty = pte_dirty(ptent);
538 } else if (is_swap_pte(ptent)) {
539 swp_entry_t swpent = pte_to_swp_entry(ptent);
541 if (!non_swap_entry(swpent)) {
544 mss->swap += PAGE_SIZE;
545 mapcount = swp_swapcount(swpent);
547 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
549 do_div(pss_delta, mapcount);
550 mss->swap_pss += pss_delta;
552 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
554 } else if (is_pfn_swap_entry(swpent)) {
555 if (is_migration_entry(swpent))
557 page = pfn_swap_entry_to_page(swpent);
560 smaps_pte_hole_lookup(addr, walk);
567 smaps_account(mss, page, false, young, dirty, locked, migration);
570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
571 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
572 struct mm_walk *walk)
574 struct mem_size_stats *mss = walk->private;
575 struct vm_area_struct *vma = walk->vma;
576 bool locked = !!(vma->vm_flags & VM_LOCKED);
577 struct page *page = NULL;
578 bool migration = false;
580 if (pmd_present(*pmd)) {
581 page = vm_normal_page_pmd(vma, addr, *pmd);
582 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
583 swp_entry_t entry = pmd_to_swp_entry(*pmd);
585 if (is_migration_entry(entry)) {
587 page = pfn_swap_entry_to_page(entry);
590 if (IS_ERR_OR_NULL(page))
593 mss->anonymous_thp += HPAGE_PMD_SIZE;
594 else if (PageSwapBacked(page))
595 mss->shmem_thp += HPAGE_PMD_SIZE;
596 else if (is_zone_device_page(page))
599 mss->file_thp += HPAGE_PMD_SIZE;
601 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
605 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
606 struct mm_walk *walk)
611 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
612 struct mm_walk *walk)
614 struct vm_area_struct *vma = walk->vma;
618 ptl = pmd_trans_huge_lock(pmd, vma);
620 smaps_pmd_entry(pmd, addr, walk);
625 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
627 walk->action = ACTION_AGAIN;
630 for (; addr != end; pte++, addr += PAGE_SIZE)
631 smaps_pte_entry(pte, addr, walk);
632 pte_unmap_unlock(pte - 1, ptl);
638 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
641 * Don't forget to update Documentation/ on changes.
643 static const char mnemonics[BITS_PER_LONG][2] = {
645 * In case if we meet a flag we don't know about.
647 [0 ... (BITS_PER_LONG-1)] = "??",
649 [ilog2(VM_READ)] = "rd",
650 [ilog2(VM_WRITE)] = "wr",
651 [ilog2(VM_EXEC)] = "ex",
652 [ilog2(VM_SHARED)] = "sh",
653 [ilog2(VM_MAYREAD)] = "mr",
654 [ilog2(VM_MAYWRITE)] = "mw",
655 [ilog2(VM_MAYEXEC)] = "me",
656 [ilog2(VM_MAYSHARE)] = "ms",
657 [ilog2(VM_GROWSDOWN)] = "gd",
658 [ilog2(VM_PFNMAP)] = "pf",
659 [ilog2(VM_LOCKED)] = "lo",
660 [ilog2(VM_IO)] = "io",
661 [ilog2(VM_SEQ_READ)] = "sr",
662 [ilog2(VM_RAND_READ)] = "rr",
663 [ilog2(VM_DONTCOPY)] = "dc",
664 [ilog2(VM_DONTEXPAND)] = "de",
665 [ilog2(VM_LOCKONFAULT)] = "lf",
666 [ilog2(VM_ACCOUNT)] = "ac",
667 [ilog2(VM_NORESERVE)] = "nr",
668 [ilog2(VM_HUGETLB)] = "ht",
669 [ilog2(VM_SYNC)] = "sf",
670 [ilog2(VM_ARCH_1)] = "ar",
671 [ilog2(VM_WIPEONFORK)] = "wf",
672 [ilog2(VM_DONTDUMP)] = "dd",
673 #ifdef CONFIG_ARM64_BTI
674 [ilog2(VM_ARM64_BTI)] = "bt",
676 #ifdef CONFIG_MEM_SOFT_DIRTY
677 [ilog2(VM_SOFTDIRTY)] = "sd",
679 [ilog2(VM_MIXEDMAP)] = "mm",
680 [ilog2(VM_HUGEPAGE)] = "hg",
681 [ilog2(VM_NOHUGEPAGE)] = "nh",
682 [ilog2(VM_MERGEABLE)] = "mg",
683 [ilog2(VM_UFFD_MISSING)]= "um",
684 [ilog2(VM_UFFD_WP)] = "uw",
685 #ifdef CONFIG_ARM64_MTE
686 [ilog2(VM_MTE)] = "mt",
687 [ilog2(VM_MTE_ALLOWED)] = "",
689 #ifdef CONFIG_ARCH_HAS_PKEYS
690 /* These come out via ProtectionKey: */
691 [ilog2(VM_PKEY_BIT0)] = "",
692 [ilog2(VM_PKEY_BIT1)] = "",
693 [ilog2(VM_PKEY_BIT2)] = "",
694 [ilog2(VM_PKEY_BIT3)] = "",
696 [ilog2(VM_PKEY_BIT4)] = "",
698 #endif /* CONFIG_ARCH_HAS_PKEYS */
699 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
700 [ilog2(VM_UFFD_MINOR)] = "ui",
701 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
702 #ifdef CONFIG_X86_USER_SHADOW_STACK
703 [ilog2(VM_SHADOW_STACK)] = "ss",
708 seq_puts(m, "VmFlags: ");
709 for (i = 0; i < BITS_PER_LONG; i++) {
710 if (!mnemonics[i][0])
712 if (vma->vm_flags & (1UL << i)) {
713 seq_putc(m, mnemonics[i][0]);
714 seq_putc(m, mnemonics[i][1]);
721 #ifdef CONFIG_HUGETLB_PAGE
722 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
723 unsigned long addr, unsigned long end,
724 struct mm_walk *walk)
726 struct mem_size_stats *mss = walk->private;
727 struct vm_area_struct *vma = walk->vma;
728 struct page *page = NULL;
729 pte_t ptent = ptep_get(pte);
731 if (pte_present(ptent)) {
732 page = vm_normal_page(vma, addr, ptent);
733 } else if (is_swap_pte(ptent)) {
734 swp_entry_t swpent = pte_to_swp_entry(ptent);
736 if (is_pfn_swap_entry(swpent))
737 page = pfn_swap_entry_to_page(swpent);
740 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
741 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
743 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
748 #define smaps_hugetlb_range NULL
749 #endif /* HUGETLB_PAGE */
751 static const struct mm_walk_ops smaps_walk_ops = {
752 .pmd_entry = smaps_pte_range,
753 .hugetlb_entry = smaps_hugetlb_range,
754 .walk_lock = PGWALK_RDLOCK,
757 static const struct mm_walk_ops smaps_shmem_walk_ops = {
758 .pmd_entry = smaps_pte_range,
759 .hugetlb_entry = smaps_hugetlb_range,
760 .pte_hole = smaps_pte_hole,
761 .walk_lock = PGWALK_RDLOCK,
765 * Gather mem stats from @vma with the indicated beginning
766 * address @start, and keep them in @mss.
768 * Use vm_start of @vma as the beginning address if @start is 0.
770 static void smap_gather_stats(struct vm_area_struct *vma,
771 struct mem_size_stats *mss, unsigned long start)
773 const struct mm_walk_ops *ops = &smaps_walk_ops;
776 if (start >= vma->vm_end)
779 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
781 * For shared or readonly shmem mappings we know that all
782 * swapped out pages belong to the shmem object, and we can
783 * obtain the swap value much more efficiently. For private
784 * writable mappings, we might have COW pages that are
785 * not affected by the parent swapped out pages of the shmem
786 * object, so we have to distinguish them during the page walk.
787 * Unless we know that the shmem object (or the part mapped by
788 * our VMA) has no swapped out pages at all.
790 unsigned long shmem_swapped = shmem_swap_usage(vma);
792 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
793 !(vma->vm_flags & VM_WRITE))) {
794 mss->swap += shmem_swapped;
796 ops = &smaps_shmem_walk_ops;
800 /* mmap_lock is held in m_start */
802 walk_page_vma(vma, ops, mss);
804 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
807 #define SEQ_PUT_DEC(str, val) \
808 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
810 /* Show the contents common for smaps and smaps_rollup */
811 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
814 SEQ_PUT_DEC("Rss: ", mss->resident);
815 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
816 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT);
819 * These are meaningful only for smaps_rollup, otherwise two of
820 * them are zero, and the other one is the same as Pss.
822 SEQ_PUT_DEC(" kB\nPss_Anon: ",
823 mss->pss_anon >> PSS_SHIFT);
824 SEQ_PUT_DEC(" kB\nPss_File: ",
825 mss->pss_file >> PSS_SHIFT);
826 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
827 mss->pss_shmem >> PSS_SHIFT);
829 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
830 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
831 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
832 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
833 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
834 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
835 SEQ_PUT_DEC(" kB\nKSM: ", mss->ksm);
836 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
837 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
838 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
839 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
840 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
841 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
842 mss->private_hugetlb >> 10, 7);
843 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
844 SEQ_PUT_DEC(" kB\nSwapPss: ",
845 mss->swap_pss >> PSS_SHIFT);
846 SEQ_PUT_DEC(" kB\nLocked: ",
847 mss->pss_locked >> PSS_SHIFT);
848 seq_puts(m, " kB\n");
851 static int show_smap(struct seq_file *m, void *v)
853 struct vm_area_struct *vma = v;
854 struct mem_size_stats mss = {};
856 smap_gather_stats(vma, &mss, 0);
858 show_map_vma(m, vma);
860 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
861 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
862 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
863 seq_puts(m, " kB\n");
865 __show_smap(m, &mss, false);
867 seq_printf(m, "THPeligible: %8u\n",
868 hugepage_vma_check(vma, vma->vm_flags, true, false, true));
870 if (arch_pkeys_enabled())
871 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
872 show_smap_vma_flags(m, vma);
877 static int show_smaps_rollup(struct seq_file *m, void *v)
879 struct proc_maps_private *priv = m->private;
880 struct mem_size_stats mss = {};
881 struct mm_struct *mm = priv->mm;
882 struct vm_area_struct *vma;
883 unsigned long vma_start = 0, last_vma_end = 0;
885 VMA_ITERATOR(vmi, mm, 0);
887 priv->task = get_proc_task(priv->inode);
891 if (!mm || !mmget_not_zero(mm)) {
896 ret = mmap_read_lock_killable(mm);
900 hold_task_mempolicy(priv);
901 vma = vma_next(&vmi);
906 vma_start = vma->vm_start;
908 smap_gather_stats(vma, &mss, 0);
909 last_vma_end = vma->vm_end;
912 * Release mmap_lock temporarily if someone wants to
913 * access it for write request.
915 if (mmap_lock_is_contended(mm)) {
916 vma_iter_invalidate(&vmi);
917 mmap_read_unlock(mm);
918 ret = mmap_read_lock_killable(mm);
920 release_task_mempolicy(priv);
925 * After dropping the lock, there are four cases to
926 * consider. See the following example for explanation.
928 * +------+------+-----------+
929 * | VMA1 | VMA2 | VMA3 |
930 * +------+------+-----------+
934 * Suppose we drop the lock after reading VMA2 due to
935 * contention, then we get:
939 * 1) VMA2 is freed, but VMA3 exists:
941 * vma_next(vmi) will return VMA3.
942 * In this case, just continue from VMA3.
944 * 2) VMA2 still exists:
946 * vma_next(vmi) will return VMA3.
947 * In this case, just continue from VMA3.
949 * 3) No more VMAs can be found:
951 * vma_next(vmi) will return NULL.
952 * No more things to do, just break.
954 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
956 * vma_next(vmi) will return VMA' whose range
957 * contains last_vma_end.
958 * Iterate VMA' from last_vma_end.
960 vma = vma_next(&vmi);
965 /* Case 1 and 2 above */
966 if (vma->vm_start >= last_vma_end)
970 if (vma->vm_end > last_vma_end)
971 smap_gather_stats(vma, &mss, last_vma_end);
973 } for_each_vma(vmi, vma);
976 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
978 seq_puts(m, "[rollup]\n");
980 __show_smap(m, &mss, true);
982 release_task_mempolicy(priv);
983 mmap_read_unlock(mm);
988 put_task_struct(priv->task);
995 static const struct seq_operations proc_pid_smaps_op = {
1002 static int pid_smaps_open(struct inode *inode, struct file *file)
1004 return do_maps_open(inode, file, &proc_pid_smaps_op);
1007 static int smaps_rollup_open(struct inode *inode, struct file *file)
1010 struct proc_maps_private *priv;
1012 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1016 ret = single_open(file, show_smaps_rollup, priv);
1020 priv->inode = inode;
1021 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1022 if (IS_ERR(priv->mm)) {
1023 ret = PTR_ERR(priv->mm);
1025 single_release(inode, file);
1036 static int smaps_rollup_release(struct inode *inode, struct file *file)
1038 struct seq_file *seq = file->private_data;
1039 struct proc_maps_private *priv = seq->private;
1045 return single_release(inode, file);
1048 const struct file_operations proc_pid_smaps_operations = {
1049 .open = pid_smaps_open,
1051 .llseek = seq_lseek,
1052 .release = proc_map_release,
1055 const struct file_operations proc_pid_smaps_rollup_operations = {
1056 .open = smaps_rollup_open,
1058 .llseek = seq_lseek,
1059 .release = smaps_rollup_release,
1062 enum clear_refs_types {
1066 CLEAR_REFS_SOFT_DIRTY,
1067 CLEAR_REFS_MM_HIWATER_RSS,
1071 struct clear_refs_private {
1072 enum clear_refs_types type;
1075 #ifdef CONFIG_MEM_SOFT_DIRTY
1077 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1081 if (!pte_write(pte))
1083 if (!is_cow_mapping(vma->vm_flags))
1085 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1087 page = vm_normal_page(vma, addr, pte);
1090 return page_maybe_dma_pinned(page);
1093 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1094 unsigned long addr, pte_t *pte)
1097 * The soft-dirty tracker uses #PF-s to catch writes
1098 * to pages, so write-protect the pte as well. See the
1099 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1100 * of how soft-dirty works.
1102 pte_t ptent = ptep_get(pte);
1104 if (pte_present(ptent)) {
1107 if (pte_is_pinned(vma, addr, ptent))
1109 old_pte = ptep_modify_prot_start(vma, addr, pte);
1110 ptent = pte_wrprotect(old_pte);
1111 ptent = pte_clear_soft_dirty(ptent);
1112 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1113 } else if (is_swap_pte(ptent)) {
1114 ptent = pte_swp_clear_soft_dirty(ptent);
1115 set_pte_at(vma->vm_mm, addr, pte, ptent);
1119 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1120 unsigned long addr, pte_t *pte)
1125 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1126 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1127 unsigned long addr, pmd_t *pmdp)
1129 pmd_t old, pmd = *pmdp;
1131 if (pmd_present(pmd)) {
1132 /* See comment in change_huge_pmd() */
1133 old = pmdp_invalidate(vma, addr, pmdp);
1135 pmd = pmd_mkdirty(pmd);
1137 pmd = pmd_mkyoung(pmd);
1139 pmd = pmd_wrprotect(pmd);
1140 pmd = pmd_clear_soft_dirty(pmd);
1142 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1143 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1144 pmd = pmd_swp_clear_soft_dirty(pmd);
1145 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1149 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1150 unsigned long addr, pmd_t *pmdp)
1155 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1156 unsigned long end, struct mm_walk *walk)
1158 struct clear_refs_private *cp = walk->private;
1159 struct vm_area_struct *vma = walk->vma;
1164 ptl = pmd_trans_huge_lock(pmd, vma);
1166 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1167 clear_soft_dirty_pmd(vma, addr, pmd);
1171 if (!pmd_present(*pmd))
1174 page = pmd_page(*pmd);
1176 /* Clear accessed and referenced bits. */
1177 pmdp_test_and_clear_young(vma, addr, pmd);
1178 test_and_clear_page_young(page);
1179 ClearPageReferenced(page);
1185 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1187 walk->action = ACTION_AGAIN;
1190 for (; addr != end; pte++, addr += PAGE_SIZE) {
1191 ptent = ptep_get(pte);
1193 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1194 clear_soft_dirty(vma, addr, pte);
1198 if (!pte_present(ptent))
1201 page = vm_normal_page(vma, addr, ptent);
1205 /* Clear accessed and referenced bits. */
1206 ptep_test_and_clear_young(vma, addr, pte);
1207 test_and_clear_page_young(page);
1208 ClearPageReferenced(page);
1210 pte_unmap_unlock(pte - 1, ptl);
1215 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1216 struct mm_walk *walk)
1218 struct clear_refs_private *cp = walk->private;
1219 struct vm_area_struct *vma = walk->vma;
1221 if (vma->vm_flags & VM_PFNMAP)
1225 * Writing 1 to /proc/pid/clear_refs affects all pages.
1226 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1227 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1228 * Writing 4 to /proc/pid/clear_refs affects all pages.
1230 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1232 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1237 static const struct mm_walk_ops clear_refs_walk_ops = {
1238 .pmd_entry = clear_refs_pte_range,
1239 .test_walk = clear_refs_test_walk,
1240 .walk_lock = PGWALK_WRLOCK,
1243 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1244 size_t count, loff_t *ppos)
1246 struct task_struct *task;
1247 char buffer[PROC_NUMBUF] = {};
1248 struct mm_struct *mm;
1249 struct vm_area_struct *vma;
1250 enum clear_refs_types type;
1254 if (count > sizeof(buffer) - 1)
1255 count = sizeof(buffer) - 1;
1256 if (copy_from_user(buffer, buf, count))
1258 rv = kstrtoint(strstrip(buffer), 10, &itype);
1261 type = (enum clear_refs_types)itype;
1262 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1265 task = get_proc_task(file_inode(file));
1268 mm = get_task_mm(task);
1270 VMA_ITERATOR(vmi, mm, 0);
1271 struct mmu_notifier_range range;
1272 struct clear_refs_private cp = {
1276 if (mmap_write_lock_killable(mm)) {
1280 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1282 * Writing 5 to /proc/pid/clear_refs resets the peak
1283 * resident set size to this mm's current rss value.
1285 reset_mm_hiwater_rss(mm);
1289 if (type == CLEAR_REFS_SOFT_DIRTY) {
1290 for_each_vma(vmi, vma) {
1291 if (!(vma->vm_flags & VM_SOFTDIRTY))
1293 vm_flags_clear(vma, VM_SOFTDIRTY);
1294 vma_set_page_prot(vma);
1297 inc_tlb_flush_pending(mm);
1298 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1300 mmu_notifier_invalidate_range_start(&range);
1302 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1303 if (type == CLEAR_REFS_SOFT_DIRTY) {
1304 mmu_notifier_invalidate_range_end(&range);
1306 dec_tlb_flush_pending(mm);
1309 mmap_write_unlock(mm);
1313 put_task_struct(task);
1318 const struct file_operations proc_clear_refs_operations = {
1319 .write = clear_refs_write,
1320 .llseek = noop_llseek,
1327 struct pagemapread {
1328 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1329 pagemap_entry_t *buffer;
1333 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1334 #define PAGEMAP_WALK_MASK (PMD_MASK)
1336 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1337 #define PM_PFRAME_BITS 55
1338 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1339 #define PM_SOFT_DIRTY BIT_ULL(55)
1340 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1341 #define PM_UFFD_WP BIT_ULL(57)
1342 #define PM_FILE BIT_ULL(61)
1343 #define PM_SWAP BIT_ULL(62)
1344 #define PM_PRESENT BIT_ULL(63)
1346 #define PM_END_OF_BUFFER 1
1348 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1350 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1353 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1354 struct pagemapread *pm)
1356 pm->buffer[pm->pos++] = *pme;
1357 if (pm->pos >= pm->len)
1358 return PM_END_OF_BUFFER;
1362 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1363 __always_unused int depth, struct mm_walk *walk)
1365 struct pagemapread *pm = walk->private;
1366 unsigned long addr = start;
1369 while (addr < end) {
1370 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1371 pagemap_entry_t pme = make_pme(0, 0);
1372 /* End of address space hole, which we mark as non-present. */
1373 unsigned long hole_end;
1376 hole_end = min(end, vma->vm_start);
1380 for (; addr < hole_end; addr += PAGE_SIZE) {
1381 err = add_to_pagemap(addr, &pme, pm);
1389 /* Addresses in the VMA. */
1390 if (vma->vm_flags & VM_SOFTDIRTY)
1391 pme = make_pme(0, PM_SOFT_DIRTY);
1392 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1393 err = add_to_pagemap(addr, &pme, pm);
1402 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1403 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1405 u64 frame = 0, flags = 0;
1406 struct page *page = NULL;
1407 bool migration = false;
1409 if (pte_present(pte)) {
1411 frame = pte_pfn(pte);
1412 flags |= PM_PRESENT;
1413 page = vm_normal_page(vma, addr, pte);
1414 if (pte_soft_dirty(pte))
1415 flags |= PM_SOFT_DIRTY;
1416 if (pte_uffd_wp(pte))
1417 flags |= PM_UFFD_WP;
1418 } else if (is_swap_pte(pte)) {
1420 if (pte_swp_soft_dirty(pte))
1421 flags |= PM_SOFT_DIRTY;
1422 if (pte_swp_uffd_wp(pte))
1423 flags |= PM_UFFD_WP;
1424 entry = pte_to_swp_entry(pte);
1428 * For PFN swap offsets, keeping the offset field
1429 * to be PFN only to be compatible with old smaps.
1431 if (is_pfn_swap_entry(entry))
1432 offset = swp_offset_pfn(entry);
1434 offset = swp_offset(entry);
1435 frame = swp_type(entry) |
1436 (offset << MAX_SWAPFILES_SHIFT);
1439 migration = is_migration_entry(entry);
1440 if (is_pfn_swap_entry(entry))
1441 page = pfn_swap_entry_to_page(entry);
1442 if (pte_marker_entry_uffd_wp(entry))
1443 flags |= PM_UFFD_WP;
1446 if (page && !PageAnon(page))
1448 if (page && !migration && page_mapcount(page) == 1)
1449 flags |= PM_MMAP_EXCLUSIVE;
1450 if (vma->vm_flags & VM_SOFTDIRTY)
1451 flags |= PM_SOFT_DIRTY;
1453 return make_pme(frame, flags);
1456 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1457 struct mm_walk *walk)
1459 struct vm_area_struct *vma = walk->vma;
1460 struct pagemapread *pm = walk->private;
1462 pte_t *pte, *orig_pte;
1464 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1465 bool migration = false;
1467 ptl = pmd_trans_huge_lock(pmdp, vma);
1469 u64 flags = 0, frame = 0;
1471 struct page *page = NULL;
1473 if (vma->vm_flags & VM_SOFTDIRTY)
1474 flags |= PM_SOFT_DIRTY;
1476 if (pmd_present(pmd)) {
1477 page = pmd_page(pmd);
1479 flags |= PM_PRESENT;
1480 if (pmd_soft_dirty(pmd))
1481 flags |= PM_SOFT_DIRTY;
1482 if (pmd_uffd_wp(pmd))
1483 flags |= PM_UFFD_WP;
1485 frame = pmd_pfn(pmd) +
1486 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1488 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1489 else if (is_swap_pmd(pmd)) {
1490 swp_entry_t entry = pmd_to_swp_entry(pmd);
1491 unsigned long offset;
1494 if (is_pfn_swap_entry(entry))
1495 offset = swp_offset_pfn(entry);
1497 offset = swp_offset(entry);
1499 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1500 frame = swp_type(entry) |
1501 (offset << MAX_SWAPFILES_SHIFT);
1504 if (pmd_swp_soft_dirty(pmd))
1505 flags |= PM_SOFT_DIRTY;
1506 if (pmd_swp_uffd_wp(pmd))
1507 flags |= PM_UFFD_WP;
1508 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1509 migration = is_migration_entry(entry);
1510 page = pfn_swap_entry_to_page(entry);
1514 if (page && !migration && page_mapcount(page) == 1)
1515 flags |= PM_MMAP_EXCLUSIVE;
1517 for (; addr != end; addr += PAGE_SIZE) {
1518 pagemap_entry_t pme = make_pme(frame, flags);
1520 err = add_to_pagemap(addr, &pme, pm);
1524 if (flags & PM_PRESENT)
1526 else if (flags & PM_SWAP)
1527 frame += (1 << MAX_SWAPFILES_SHIFT);
1533 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1536 * We can assume that @vma always points to a valid one and @end never
1537 * goes beyond vma->vm_end.
1539 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1541 walk->action = ACTION_AGAIN;
1544 for (; addr < end; pte++, addr += PAGE_SIZE) {
1545 pagemap_entry_t pme;
1547 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1548 err = add_to_pagemap(addr, &pme, pm);
1552 pte_unmap_unlock(orig_pte, ptl);
1559 #ifdef CONFIG_HUGETLB_PAGE
1560 /* This function walks within one hugetlb entry in the single call */
1561 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1562 unsigned long addr, unsigned long end,
1563 struct mm_walk *walk)
1565 struct pagemapread *pm = walk->private;
1566 struct vm_area_struct *vma = walk->vma;
1567 u64 flags = 0, frame = 0;
1571 if (vma->vm_flags & VM_SOFTDIRTY)
1572 flags |= PM_SOFT_DIRTY;
1574 pte = huge_ptep_get(ptep);
1575 if (pte_present(pte)) {
1576 struct page *page = pte_page(pte);
1578 if (!PageAnon(page))
1581 if (page_mapcount(page) == 1)
1582 flags |= PM_MMAP_EXCLUSIVE;
1584 if (huge_pte_uffd_wp(pte))
1585 flags |= PM_UFFD_WP;
1587 flags |= PM_PRESENT;
1589 frame = pte_pfn(pte) +
1590 ((addr & ~hmask) >> PAGE_SHIFT);
1591 } else if (pte_swp_uffd_wp_any(pte)) {
1592 flags |= PM_UFFD_WP;
1595 for (; addr != end; addr += PAGE_SIZE) {
1596 pagemap_entry_t pme = make_pme(frame, flags);
1598 err = add_to_pagemap(addr, &pme, pm);
1601 if (pm->show_pfn && (flags & PM_PRESENT))
1610 #define pagemap_hugetlb_range NULL
1611 #endif /* HUGETLB_PAGE */
1613 static const struct mm_walk_ops pagemap_ops = {
1614 .pmd_entry = pagemap_pmd_range,
1615 .pte_hole = pagemap_pte_hole,
1616 .hugetlb_entry = pagemap_hugetlb_range,
1617 .walk_lock = PGWALK_RDLOCK,
1621 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1623 * For each page in the address space, this file contains one 64-bit entry
1624 * consisting of the following:
1626 * Bits 0-54 page frame number (PFN) if present
1627 * Bits 0-4 swap type if swapped
1628 * Bits 5-54 swap offset if swapped
1629 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1630 * Bit 56 page exclusively mapped
1631 * Bit 57 pte is uffd-wp write-protected
1633 * Bit 61 page is file-page or shared-anon
1634 * Bit 62 page swapped
1635 * Bit 63 page present
1637 * If the page is not present but in swap, then the PFN contains an
1638 * encoding of the swap file number and the page's offset into the
1639 * swap. Unmapped pages return a null PFN. This allows determining
1640 * precisely which pages are mapped (or in swap) and comparing mapped
1641 * pages between processes.
1643 * Efficient users of this interface will use /proc/pid/maps to
1644 * determine which areas of memory are actually mapped and llseek to
1645 * skip over unmapped regions.
1647 static ssize_t pagemap_read(struct file *file, char __user *buf,
1648 size_t count, loff_t *ppos)
1650 struct mm_struct *mm = file->private_data;
1651 struct pagemapread pm;
1653 unsigned long svpfn;
1654 unsigned long start_vaddr;
1655 unsigned long end_vaddr;
1656 int ret = 0, copied = 0;
1658 if (!mm || !mmget_not_zero(mm))
1662 /* file position must be aligned */
1663 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1670 /* do not disclose physical addresses: attack vector */
1671 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1673 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1674 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1680 svpfn = src / PM_ENTRY_BYTES;
1681 end_vaddr = mm->task_size;
1683 /* watch out for wraparound */
1684 start_vaddr = end_vaddr;
1685 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1688 ret = mmap_read_lock_killable(mm);
1691 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1692 mmap_read_unlock(mm);
1694 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1695 if (end >= start_vaddr && end < mm->task_size)
1699 /* Ensure the address is inside the task */
1700 if (start_vaddr > mm->task_size)
1701 start_vaddr = end_vaddr;
1704 while (count && (start_vaddr < end_vaddr)) {
1709 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1711 if (end < start_vaddr || end > end_vaddr)
1713 ret = mmap_read_lock_killable(mm);
1716 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1717 mmap_read_unlock(mm);
1720 len = min(count, PM_ENTRY_BYTES * pm.pos);
1721 if (copy_to_user(buf, pm.buffer, len)) {
1730 if (!ret || ret == PM_END_OF_BUFFER)
1741 static int pagemap_open(struct inode *inode, struct file *file)
1743 struct mm_struct *mm;
1745 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1748 file->private_data = mm;
1752 static int pagemap_release(struct inode *inode, struct file *file)
1754 struct mm_struct *mm = file->private_data;
1761 #define PM_SCAN_CATEGORIES (PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN | \
1762 PAGE_IS_FILE | PAGE_IS_PRESENT | \
1763 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO | \
1765 #define PM_SCAN_FLAGS (PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
1767 struct pagemap_scan_private {
1768 struct pm_scan_arg arg;
1769 unsigned long masks_of_interest, cur_vma_category;
1770 struct page_region *vec_buf;
1771 unsigned long vec_buf_len, vec_buf_index, found_pages;
1772 struct page_region __user *vec_out;
1775 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
1776 struct vm_area_struct *vma,
1777 unsigned long addr, pte_t pte)
1779 unsigned long categories = 0;
1781 if (pte_present(pte)) {
1784 categories |= PAGE_IS_PRESENT;
1785 if (!pte_uffd_wp(pte))
1786 categories |= PAGE_IS_WRITTEN;
1788 if (p->masks_of_interest & PAGE_IS_FILE) {
1789 page = vm_normal_page(vma, addr, pte);
1790 if (page && !PageAnon(page))
1791 categories |= PAGE_IS_FILE;
1794 if (is_zero_pfn(pte_pfn(pte)))
1795 categories |= PAGE_IS_PFNZERO;
1796 } else if (is_swap_pte(pte)) {
1799 categories |= PAGE_IS_SWAPPED;
1800 if (!pte_swp_uffd_wp_any(pte))
1801 categories |= PAGE_IS_WRITTEN;
1803 if (p->masks_of_interest & PAGE_IS_FILE) {
1804 swp = pte_to_swp_entry(pte);
1805 if (is_pfn_swap_entry(swp) &&
1806 !PageAnon(pfn_swap_entry_to_page(swp)))
1807 categories |= PAGE_IS_FILE;
1814 static void make_uffd_wp_pte(struct vm_area_struct *vma,
1815 unsigned long addr, pte_t *pte)
1817 pte_t ptent = ptep_get(pte);
1819 if (pte_present(ptent)) {
1822 old_pte = ptep_modify_prot_start(vma, addr, pte);
1823 ptent = pte_mkuffd_wp(ptent);
1824 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1825 } else if (is_swap_pte(ptent)) {
1826 ptent = pte_swp_mkuffd_wp(ptent);
1827 set_pte_at(vma->vm_mm, addr, pte, ptent);
1829 set_pte_at(vma->vm_mm, addr, pte,
1830 make_pte_marker(PTE_MARKER_UFFD_WP));
1834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1835 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
1836 struct vm_area_struct *vma,
1837 unsigned long addr, pmd_t pmd)
1839 unsigned long categories = PAGE_IS_HUGE;
1841 if (pmd_present(pmd)) {
1844 categories |= PAGE_IS_PRESENT;
1845 if (!pmd_uffd_wp(pmd))
1846 categories |= PAGE_IS_WRITTEN;
1848 if (p->masks_of_interest & PAGE_IS_FILE) {
1849 page = vm_normal_page_pmd(vma, addr, pmd);
1850 if (page && !PageAnon(page))
1851 categories |= PAGE_IS_FILE;
1854 if (is_zero_pfn(pmd_pfn(pmd)))
1855 categories |= PAGE_IS_PFNZERO;
1856 } else if (is_swap_pmd(pmd)) {
1859 categories |= PAGE_IS_SWAPPED;
1860 if (!pmd_swp_uffd_wp(pmd))
1861 categories |= PAGE_IS_WRITTEN;
1863 if (p->masks_of_interest & PAGE_IS_FILE) {
1864 swp = pmd_to_swp_entry(pmd);
1865 if (is_pfn_swap_entry(swp) &&
1866 !PageAnon(pfn_swap_entry_to_page(swp)))
1867 categories |= PAGE_IS_FILE;
1874 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
1875 unsigned long addr, pmd_t *pmdp)
1877 pmd_t old, pmd = *pmdp;
1879 if (pmd_present(pmd)) {
1880 old = pmdp_invalidate_ad(vma, addr, pmdp);
1881 pmd = pmd_mkuffd_wp(old);
1882 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1883 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1884 pmd = pmd_swp_mkuffd_wp(pmd);
1885 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1888 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1890 #ifdef CONFIG_HUGETLB_PAGE
1891 static unsigned long pagemap_hugetlb_category(pte_t pte)
1893 unsigned long categories = PAGE_IS_HUGE;
1896 * According to pagemap_hugetlb_range(), file-backed HugeTLB
1897 * page cannot be swapped. So PAGE_IS_FILE is not checked for
1900 if (pte_present(pte)) {
1901 categories |= PAGE_IS_PRESENT;
1902 if (!huge_pte_uffd_wp(pte))
1903 categories |= PAGE_IS_WRITTEN;
1904 if (!PageAnon(pte_page(pte)))
1905 categories |= PAGE_IS_FILE;
1906 if (is_zero_pfn(pte_pfn(pte)))
1907 categories |= PAGE_IS_PFNZERO;
1908 } else if (is_swap_pte(pte)) {
1909 categories |= PAGE_IS_SWAPPED;
1910 if (!pte_swp_uffd_wp_any(pte))
1911 categories |= PAGE_IS_WRITTEN;
1917 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
1918 unsigned long addr, pte_t *ptep,
1921 unsigned long psize;
1923 if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
1926 psize = huge_page_size(hstate_vma(vma));
1928 if (is_hugetlb_entry_migration(ptent))
1929 set_huge_pte_at(vma->vm_mm, addr, ptep,
1930 pte_swp_mkuffd_wp(ptent), psize);
1931 else if (!huge_pte_none(ptent))
1932 huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
1933 huge_pte_mkuffd_wp(ptent));
1935 set_huge_pte_at(vma->vm_mm, addr, ptep,
1936 make_pte_marker(PTE_MARKER_UFFD_WP), psize);
1938 #endif /* CONFIG_HUGETLB_PAGE */
1940 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1941 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
1942 unsigned long addr, unsigned long end)
1944 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
1946 if (cur_buf->start != addr)
1947 cur_buf->end = addr;
1949 cur_buf->start = cur_buf->end = 0;
1951 p->found_pages -= (end - addr) / PAGE_SIZE;
1955 static bool pagemap_scan_is_interesting_page(unsigned long categories,
1956 const struct pagemap_scan_private *p)
1958 categories ^= p->arg.category_inverted;
1959 if ((categories & p->arg.category_mask) != p->arg.category_mask)
1961 if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
1967 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
1968 const struct pagemap_scan_private *p)
1970 unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
1972 categories ^= p->arg.category_inverted;
1973 if ((categories & required) != required)
1979 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
1980 struct mm_walk *walk)
1982 struct pagemap_scan_private *p = walk->private;
1983 struct vm_area_struct *vma = walk->vma;
1984 unsigned long vma_category = 0;
1986 if (userfaultfd_wp_async(vma) && userfaultfd_wp_use_markers(vma))
1987 vma_category |= PAGE_IS_WPALLOWED;
1988 else if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
1991 if (vma->vm_flags & VM_PFNMAP)
1994 if (!pagemap_scan_is_interesting_vma(vma_category, p))
1997 p->cur_vma_category = vma_category;
2002 static bool pagemap_scan_push_range(unsigned long categories,
2003 struct pagemap_scan_private *p,
2004 unsigned long addr, unsigned long end)
2006 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2009 * When there is no output buffer provided at all, the sentinel values
2010 * won't match here. There is no other way for `cur_buf->end` to be
2011 * non-zero other than it being non-empty.
2013 if (addr == cur_buf->end && categories == cur_buf->categories) {
2019 if (p->vec_buf_index >= p->vec_buf_len - 1)
2022 cur_buf = &p->vec_buf[++p->vec_buf_index];
2025 cur_buf->start = addr;
2027 cur_buf->categories = categories;
2032 static int pagemap_scan_output(unsigned long categories,
2033 struct pagemap_scan_private *p,
2034 unsigned long addr, unsigned long *end)
2036 unsigned long n_pages, total_pages;
2042 categories &= p->arg.return_mask;
2044 n_pages = (*end - addr) / PAGE_SIZE;
2045 if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2046 total_pages > p->arg.max_pages) {
2047 size_t n_too_much = total_pages - p->arg.max_pages;
2048 *end -= n_too_much * PAGE_SIZE;
2049 n_pages -= n_too_much;
2053 if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2059 p->found_pages += n_pages;
2061 p->arg.walk_end = *end;
2066 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2067 unsigned long end, struct mm_walk *walk)
2069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2070 struct pagemap_scan_private *p = walk->private;
2071 struct vm_area_struct *vma = walk->vma;
2072 unsigned long categories;
2076 ptl = pmd_trans_huge_lock(pmd, vma);
2080 categories = p->cur_vma_category |
2081 pagemap_thp_category(p, vma, start, *pmd);
2083 if (!pagemap_scan_is_interesting_page(categories, p))
2086 ret = pagemap_scan_output(categories, p, start, &end);
2090 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2092 if (~categories & PAGE_IS_WRITTEN)
2096 * Break huge page into small pages if the WP operation
2097 * needs to be performed on a portion of the huge page.
2099 if (end != start + HPAGE_SIZE) {
2101 split_huge_pmd(vma, pmd, start);
2102 pagemap_scan_backout_range(p, start, end);
2103 /* Report as if there was no THP */
2107 make_uffd_wp_pmd(vma, start, pmd);
2108 flush_tlb_range(vma, start, end);
2112 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2117 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2118 unsigned long end, struct mm_walk *walk)
2120 struct pagemap_scan_private *p = walk->private;
2121 struct vm_area_struct *vma = walk->vma;
2122 unsigned long addr, flush_end = 0;
2123 pte_t *pte, *start_pte;
2127 arch_enter_lazy_mmu_mode();
2129 ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2130 if (ret != -ENOENT) {
2131 arch_leave_lazy_mmu_mode();
2136 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2138 arch_leave_lazy_mmu_mode();
2139 walk->action = ACTION_AGAIN;
2144 /* Fast path for performing exclusive WP */
2145 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2146 if (pte_uffd_wp(ptep_get(pte)))
2148 make_uffd_wp_pte(vma, addr, pte);
2151 flush_end = addr + PAGE_SIZE;
2153 goto flush_and_return;
2156 if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2157 p->arg.category_mask == PAGE_IS_WRITTEN &&
2158 p->arg.return_mask == PAGE_IS_WRITTEN) {
2159 for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2160 unsigned long next = addr + PAGE_SIZE;
2162 if (pte_uffd_wp(ptep_get(pte)))
2164 ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2168 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2170 make_uffd_wp_pte(vma, addr, pte);
2175 goto flush_and_return;
2178 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2179 unsigned long categories = p->cur_vma_category |
2180 pagemap_page_category(p, vma, addr, ptep_get(pte));
2181 unsigned long next = addr + PAGE_SIZE;
2183 if (!pagemap_scan_is_interesting_page(categories, p))
2186 ret = pagemap_scan_output(categories, p, addr, &next);
2190 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2192 if (~categories & PAGE_IS_WRITTEN)
2195 make_uffd_wp_pte(vma, addr, pte);
2203 flush_tlb_range(vma, start, addr);
2205 pte_unmap_unlock(start_pte, ptl);
2206 arch_leave_lazy_mmu_mode();
2212 #ifdef CONFIG_HUGETLB_PAGE
2213 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2214 unsigned long start, unsigned long end,
2215 struct mm_walk *walk)
2217 struct pagemap_scan_private *p = walk->private;
2218 struct vm_area_struct *vma = walk->vma;
2219 unsigned long categories;
2224 if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2225 /* Go the short route when not write-protecting pages. */
2227 pte = huge_ptep_get(ptep);
2228 categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2230 if (!pagemap_scan_is_interesting_page(categories, p))
2233 return pagemap_scan_output(categories, p, start, &end);
2236 i_mmap_lock_write(vma->vm_file->f_mapping);
2237 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2239 pte = huge_ptep_get(ptep);
2240 categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2242 if (!pagemap_scan_is_interesting_page(categories, p))
2245 ret = pagemap_scan_output(categories, p, start, &end);
2249 if (~categories & PAGE_IS_WRITTEN)
2252 if (end != start + HPAGE_SIZE) {
2253 /* Partial HugeTLB page WP isn't possible. */
2254 pagemap_scan_backout_range(p, start, end);
2255 p->arg.walk_end = start;
2260 make_uffd_wp_huge_pte(vma, start, ptep, pte);
2261 flush_hugetlb_tlb_range(vma, start, end);
2265 i_mmap_unlock_write(vma->vm_file->f_mapping);
2270 #define pagemap_scan_hugetlb_entry NULL
2273 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2274 int depth, struct mm_walk *walk)
2276 struct pagemap_scan_private *p = walk->private;
2277 struct vm_area_struct *vma = walk->vma;
2280 if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2283 ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2287 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2290 err = uffd_wp_range(vma, addr, end - addr, true);
2297 static const struct mm_walk_ops pagemap_scan_ops = {
2298 .test_walk = pagemap_scan_test_walk,
2299 .pmd_entry = pagemap_scan_pmd_entry,
2300 .pte_hole = pagemap_scan_pte_hole,
2301 .hugetlb_entry = pagemap_scan_hugetlb_entry,
2304 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2307 if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2310 if (arg->size != sizeof(struct pm_scan_arg))
2313 /* Validate requested features */
2314 if (arg->flags & ~PM_SCAN_FLAGS)
2316 if ((arg->category_inverted | arg->category_mask |
2317 arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2320 arg->start = untagged_addr((unsigned long)arg->start);
2321 arg->end = untagged_addr((unsigned long)arg->end);
2322 arg->vec = untagged_addr((unsigned long)arg->vec);
2324 /* Validate memory pointers */
2325 if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2327 if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2329 if (!arg->vec && arg->vec_len)
2331 if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2332 arg->vec_len * sizeof(struct page_region)))
2335 /* Fixup default values */
2336 arg->end = ALIGN(arg->end, PAGE_SIZE);
2338 if (!arg->max_pages)
2339 arg->max_pages = ULONG_MAX;
2344 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2345 unsigned long uargl)
2347 struct pm_scan_arg __user *uarg = (void __user *)uargl;
2349 if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2355 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2357 if (!p->arg.vec_len)
2360 p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2362 p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2367 p->vec_buf->start = p->vec_buf->end = 0;
2368 p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2373 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2375 const struct page_region *buf = p->vec_buf;
2376 long n = p->vec_buf_index;
2381 if (buf[n].end != buf[n].start)
2387 if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2390 p->arg.vec_len -= n;
2393 p->vec_buf_index = 0;
2394 p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2395 p->vec_buf->start = p->vec_buf->end = 0;
2400 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2402 struct mmu_notifier_range range;
2403 struct pagemap_scan_private p = {0};
2404 unsigned long walk_start;
2405 size_t n_ranges_out = 0;
2408 ret = pagemap_scan_get_args(&p.arg, uarg);
2412 p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2414 ret = pagemap_scan_init_bounce_buffer(&p);
2418 /* Protection change for the range is going to happen. */
2419 if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2420 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2421 mm, p.arg.start, p.arg.end);
2422 mmu_notifier_invalidate_range_start(&range);
2425 for (walk_start = p.arg.start; walk_start < p.arg.end;
2426 walk_start = p.arg.walk_end) {
2429 if (fatal_signal_pending(current)) {
2434 ret = mmap_read_lock_killable(mm);
2437 ret = walk_page_range(mm, walk_start, p.arg.end,
2438 &pagemap_scan_ops, &p);
2439 mmap_read_unlock(mm);
2441 n_out = pagemap_scan_flush_buffer(&p);
2445 n_ranges_out += n_out;
2450 if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2454 /* ENOSPC signifies early stop (buffer full) from the walk. */
2455 if (!ret || ret == -ENOSPC)
2458 /* The walk_end isn't set when ret is zero */
2459 if (!p.arg.walk_end)
2460 p.arg.walk_end = p.arg.end;
2461 if (pagemap_scan_writeback_args(&p.arg, uarg))
2464 if (p.arg.flags & PM_SCAN_WP_MATCHING)
2465 mmu_notifier_invalidate_range_end(&range);
2471 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2474 struct mm_struct *mm = file->private_data;
2478 return do_pagemap_scan(mm, arg);
2485 const struct file_operations proc_pagemap_operations = {
2486 .llseek = mem_lseek, /* borrow this */
2487 .read = pagemap_read,
2488 .open = pagemap_open,
2489 .release = pagemap_release,
2490 .unlocked_ioctl = do_pagemap_cmd,
2491 .compat_ioctl = do_pagemap_cmd,
2493 #endif /* CONFIG_PROC_PAGE_MONITOR */
2498 unsigned long pages;
2500 unsigned long active;
2501 unsigned long writeback;
2502 unsigned long mapcount_max;
2503 unsigned long dirty;
2504 unsigned long swapcache;
2505 unsigned long node[MAX_NUMNODES];
2508 struct numa_maps_private {
2509 struct proc_maps_private proc_maps;
2510 struct numa_maps md;
2513 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2514 unsigned long nr_pages)
2516 int count = page_mapcount(page);
2518 md->pages += nr_pages;
2519 if (pte_dirty || PageDirty(page))
2520 md->dirty += nr_pages;
2522 if (PageSwapCache(page))
2523 md->swapcache += nr_pages;
2525 if (PageActive(page) || PageUnevictable(page))
2526 md->active += nr_pages;
2528 if (PageWriteback(page))
2529 md->writeback += nr_pages;
2532 md->anon += nr_pages;
2534 if (count > md->mapcount_max)
2535 md->mapcount_max = count;
2537 md->node[page_to_nid(page)] += nr_pages;
2540 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2546 if (!pte_present(pte))
2549 page = vm_normal_page(vma, addr, pte);
2550 if (!page || is_zone_device_page(page))
2553 if (PageReserved(page))
2556 nid = page_to_nid(page);
2557 if (!node_isset(nid, node_states[N_MEMORY]))
2563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2564 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2565 struct vm_area_struct *vma,
2571 if (!pmd_present(pmd))
2574 page = vm_normal_page_pmd(vma, addr, pmd);
2578 if (PageReserved(page))
2581 nid = page_to_nid(page);
2582 if (!node_isset(nid, node_states[N_MEMORY]))
2589 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2590 unsigned long end, struct mm_walk *walk)
2592 struct numa_maps *md = walk->private;
2593 struct vm_area_struct *vma = walk->vma;
2598 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2599 ptl = pmd_trans_huge_lock(pmd, vma);
2603 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2605 gather_stats(page, md, pmd_dirty(*pmd),
2606 HPAGE_PMD_SIZE/PAGE_SIZE);
2611 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2613 walk->action = ACTION_AGAIN;
2617 pte_t ptent = ptep_get(pte);
2618 struct page *page = can_gather_numa_stats(ptent, vma, addr);
2621 gather_stats(page, md, pte_dirty(ptent), 1);
2623 } while (pte++, addr += PAGE_SIZE, addr != end);
2624 pte_unmap_unlock(orig_pte, ptl);
2628 #ifdef CONFIG_HUGETLB_PAGE
2629 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2630 unsigned long addr, unsigned long end, struct mm_walk *walk)
2632 pte_t huge_pte = huge_ptep_get(pte);
2633 struct numa_maps *md;
2636 if (!pte_present(huge_pte))
2639 page = pte_page(huge_pte);
2642 gather_stats(page, md, pte_dirty(huge_pte), 1);
2647 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2648 unsigned long addr, unsigned long end, struct mm_walk *walk)
2654 static const struct mm_walk_ops show_numa_ops = {
2655 .hugetlb_entry = gather_hugetlb_stats,
2656 .pmd_entry = gather_pte_stats,
2657 .walk_lock = PGWALK_RDLOCK,
2661 * Display pages allocated per node and memory policy via /proc.
2663 static int show_numa_map(struct seq_file *m, void *v)
2665 struct numa_maps_private *numa_priv = m->private;
2666 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
2667 struct vm_area_struct *vma = v;
2668 struct numa_maps *md = &numa_priv->md;
2669 struct file *file = vma->vm_file;
2670 struct mm_struct *mm = vma->vm_mm;
2672 struct mempolicy *pol;
2679 /* Ensure we start with an empty set of numa_maps statistics. */
2680 memset(md, 0, sizeof(*md));
2682 pol = __get_vma_policy(vma, vma->vm_start, &ilx);
2684 mpol_to_str(buffer, sizeof(buffer), pol);
2687 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
2690 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2693 seq_puts(m, " file=");
2694 seq_path(m, file_user_path(file), "\n\t= ");
2695 } else if (vma_is_initial_heap(vma)) {
2696 seq_puts(m, " heap");
2697 } else if (vma_is_initial_stack(vma)) {
2698 seq_puts(m, " stack");
2701 if (is_vm_hugetlb_page(vma))
2702 seq_puts(m, " huge");
2704 /* mmap_lock is held by m_start */
2705 walk_page_vma(vma, &show_numa_ops, md);
2711 seq_printf(m, " anon=%lu", md->anon);
2714 seq_printf(m, " dirty=%lu", md->dirty);
2716 if (md->pages != md->anon && md->pages != md->dirty)
2717 seq_printf(m, " mapped=%lu", md->pages);
2719 if (md->mapcount_max > 1)
2720 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2723 seq_printf(m, " swapcache=%lu", md->swapcache);
2725 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2726 seq_printf(m, " active=%lu", md->active);
2729 seq_printf(m, " writeback=%lu", md->writeback);
2731 for_each_node_state(nid, N_MEMORY)
2733 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2735 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2741 static const struct seq_operations proc_pid_numa_maps_op = {
2745 .show = show_numa_map,
2748 static int pid_numa_maps_open(struct inode *inode, struct file *file)
2750 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2751 sizeof(struct numa_maps_private));
2754 const struct file_operations proc_pid_numa_maps_operations = {
2755 .open = pid_numa_maps_open,
2757 .llseek = seq_lseek,
2758 .release = proc_map_release,
2761 #endif /* CONFIG_NUMA */