]> Git Repo - linux.git/blob - fs/proc/task_mmu.c
bnxt_en: Make PTP TX timestamp HWRM query silent
[linux.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
25
26 #include <asm/elf.h>
27 #include <asm/tlb.h>
28 #include <asm/tlbflush.h>
29 #include "internal.h"
30
31 #define SEQ_PUT_DEC(str, val) \
32                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
33 void task_mem(struct seq_file *m, struct mm_struct *mm)
34 {
35         unsigned long text, lib, swap, anon, file, shmem;
36         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
37
38         anon = get_mm_counter(mm, MM_ANONPAGES);
39         file = get_mm_counter(mm, MM_FILEPAGES);
40         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
41
42         /*
43          * Note: to minimize their overhead, mm maintains hiwater_vm and
44          * hiwater_rss only when about to *lower* total_vm or rss.  Any
45          * collector of these hiwater stats must therefore get total_vm
46          * and rss too, which will usually be the higher.  Barriers? not
47          * worth the effort, such snapshots can always be inconsistent.
48          */
49         hiwater_vm = total_vm = mm->total_vm;
50         if (hiwater_vm < mm->hiwater_vm)
51                 hiwater_vm = mm->hiwater_vm;
52         hiwater_rss = total_rss = anon + file + shmem;
53         if (hiwater_rss < mm->hiwater_rss)
54                 hiwater_rss = mm->hiwater_rss;
55
56         /* split executable areas between text and lib */
57         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
58         text = min(text, mm->exec_vm << PAGE_SHIFT);
59         lib = (mm->exec_vm << PAGE_SHIFT) - text;
60
61         swap = get_mm_counter(mm, MM_SWAPENTS);
62         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
63         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
64         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
65         SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
66         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
67         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
68         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
69         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
70         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
71         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
72         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
73         seq_put_decimal_ull_width(m,
74                     " kB\nVmExe:\t", text >> 10, 8);
75         seq_put_decimal_ull_width(m,
76                     " kB\nVmLib:\t", lib >> 10, 8);
77         seq_put_decimal_ull_width(m,
78                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
79         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
80         seq_puts(m, " kB\n");
81         hugetlb_report_usage(m, mm);
82 }
83 #undef SEQ_PUT_DEC
84
85 unsigned long task_vsize(struct mm_struct *mm)
86 {
87         return PAGE_SIZE * mm->total_vm;
88 }
89
90 unsigned long task_statm(struct mm_struct *mm,
91                          unsigned long *shared, unsigned long *text,
92                          unsigned long *data, unsigned long *resident)
93 {
94         *shared = get_mm_counter(mm, MM_FILEPAGES) +
95                         get_mm_counter(mm, MM_SHMEMPAGES);
96         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
97                                                                 >> PAGE_SHIFT;
98         *data = mm->data_vm + mm->stack_vm;
99         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
100         return mm->total_vm;
101 }
102
103 #ifdef CONFIG_NUMA
104 /*
105  * Save get_task_policy() for show_numa_map().
106  */
107 static void hold_task_mempolicy(struct proc_maps_private *priv)
108 {
109         struct task_struct *task = priv->task;
110
111         task_lock(task);
112         priv->task_mempolicy = get_task_policy(task);
113         mpol_get(priv->task_mempolicy);
114         task_unlock(task);
115 }
116 static void release_task_mempolicy(struct proc_maps_private *priv)
117 {
118         mpol_put(priv->task_mempolicy);
119 }
120 #else
121 static void hold_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 static void release_task_mempolicy(struct proc_maps_private *priv)
125 {
126 }
127 #endif
128
129 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
130                                                 loff_t *ppos)
131 {
132         struct vm_area_struct *vma = vma_next(&priv->iter);
133
134         if (vma) {
135                 *ppos = vma->vm_start;
136         } else {
137                 *ppos = -2UL;
138                 vma = get_gate_vma(priv->mm);
139         }
140
141         return vma;
142 }
143
144 static void *m_start(struct seq_file *m, loff_t *ppos)
145 {
146         struct proc_maps_private *priv = m->private;
147         unsigned long last_addr = *ppos;
148         struct mm_struct *mm;
149
150         /* See m_next(). Zero at the start or after lseek. */
151         if (last_addr == -1UL)
152                 return NULL;
153
154         priv->task = get_proc_task(priv->inode);
155         if (!priv->task)
156                 return ERR_PTR(-ESRCH);
157
158         mm = priv->mm;
159         if (!mm || !mmget_not_zero(mm)) {
160                 put_task_struct(priv->task);
161                 priv->task = NULL;
162                 return NULL;
163         }
164
165         if (mmap_read_lock_killable(mm)) {
166                 mmput(mm);
167                 put_task_struct(priv->task);
168                 priv->task = NULL;
169                 return ERR_PTR(-EINTR);
170         }
171
172         vma_iter_init(&priv->iter, mm, last_addr);
173         hold_task_mempolicy(priv);
174         if (last_addr == -2UL)
175                 return get_gate_vma(mm);
176
177         return proc_get_vma(priv, ppos);
178 }
179
180 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
181 {
182         if (*ppos == -2UL) {
183                 *ppos = -1UL;
184                 return NULL;
185         }
186         return proc_get_vma(m->private, ppos);
187 }
188
189 static void m_stop(struct seq_file *m, void *v)
190 {
191         struct proc_maps_private *priv = m->private;
192         struct mm_struct *mm = priv->mm;
193
194         if (!priv->task)
195                 return;
196
197         release_task_mempolicy(priv);
198         mmap_read_unlock(mm);
199         mmput(mm);
200         put_task_struct(priv->task);
201         priv->task = NULL;
202 }
203
204 static int proc_maps_open(struct inode *inode, struct file *file,
205                         const struct seq_operations *ops, int psize)
206 {
207         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
208
209         if (!priv)
210                 return -ENOMEM;
211
212         priv->inode = inode;
213         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
214         if (IS_ERR(priv->mm)) {
215                 int err = PTR_ERR(priv->mm);
216
217                 seq_release_private(inode, file);
218                 return err;
219         }
220
221         return 0;
222 }
223
224 static int proc_map_release(struct inode *inode, struct file *file)
225 {
226         struct seq_file *seq = file->private_data;
227         struct proc_maps_private *priv = seq->private;
228
229         if (priv->mm)
230                 mmdrop(priv->mm);
231
232         return seq_release_private(inode, file);
233 }
234
235 static int do_maps_open(struct inode *inode, struct file *file,
236                         const struct seq_operations *ops)
237 {
238         return proc_maps_open(inode, file, ops,
239                                 sizeof(struct proc_maps_private));
240 }
241
242 static void show_vma_header_prefix(struct seq_file *m,
243                                    unsigned long start, unsigned long end,
244                                    vm_flags_t flags, unsigned long long pgoff,
245                                    dev_t dev, unsigned long ino)
246 {
247         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
248         seq_put_hex_ll(m, NULL, start, 8);
249         seq_put_hex_ll(m, "-", end, 8);
250         seq_putc(m, ' ');
251         seq_putc(m, flags & VM_READ ? 'r' : '-');
252         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
253         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
254         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
255         seq_put_hex_ll(m, " ", pgoff, 8);
256         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
257         seq_put_hex_ll(m, ":", MINOR(dev), 2);
258         seq_put_decimal_ull(m, " ", ino);
259         seq_putc(m, ' ');
260 }
261
262 static void
263 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
264 {
265         struct anon_vma_name *anon_name = NULL;
266         struct mm_struct *mm = vma->vm_mm;
267         struct file *file = vma->vm_file;
268         vm_flags_t flags = vma->vm_flags;
269         unsigned long ino = 0;
270         unsigned long long pgoff = 0;
271         unsigned long start, end;
272         dev_t dev = 0;
273         const char *name = NULL;
274
275         if (file) {
276                 struct inode *inode = file_inode(vma->vm_file);
277                 dev = inode->i_sb->s_dev;
278                 ino = inode->i_ino;
279                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
280         }
281
282         start = vma->vm_start;
283         end = vma->vm_end;
284         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
285         if (mm)
286                 anon_name = anon_vma_name(vma);
287
288         /*
289          * Print the dentry name for named mappings, and a
290          * special [heap] marker for the heap:
291          */
292         if (file) {
293                 seq_pad(m, ' ');
294                 /*
295                  * If user named this anon shared memory via
296                  * prctl(PR_SET_VMA ..., use the provided name.
297                  */
298                 if (anon_name)
299                         seq_printf(m, "[anon_shmem:%s]", anon_name->name);
300                 else
301                         seq_path(m, file_user_path(file), "\n");
302                 goto done;
303         }
304
305         if (vma->vm_ops && vma->vm_ops->name) {
306                 name = vma->vm_ops->name(vma);
307                 if (name)
308                         goto done;
309         }
310
311         name = arch_vma_name(vma);
312         if (!name) {
313                 if (!mm) {
314                         name = "[vdso]";
315                         goto done;
316                 }
317
318                 if (vma_is_initial_heap(vma)) {
319                         name = "[heap]";
320                         goto done;
321                 }
322
323                 if (vma_is_initial_stack(vma)) {
324                         name = "[stack]";
325                         goto done;
326                 }
327
328                 if (anon_name) {
329                         seq_pad(m, ' ');
330                         seq_printf(m, "[anon:%s]", anon_name->name);
331                 }
332         }
333
334 done:
335         if (name) {
336                 seq_pad(m, ' ');
337                 seq_puts(m, name);
338         }
339         seq_putc(m, '\n');
340 }
341
342 static int show_map(struct seq_file *m, void *v)
343 {
344         show_map_vma(m, v);
345         return 0;
346 }
347
348 static const struct seq_operations proc_pid_maps_op = {
349         .start  = m_start,
350         .next   = m_next,
351         .stop   = m_stop,
352         .show   = show_map
353 };
354
355 static int pid_maps_open(struct inode *inode, struct file *file)
356 {
357         return do_maps_open(inode, file, &proc_pid_maps_op);
358 }
359
360 const struct file_operations proc_pid_maps_operations = {
361         .open           = pid_maps_open,
362         .read           = seq_read,
363         .llseek         = seq_lseek,
364         .release        = proc_map_release,
365 };
366
367 /*
368  * Proportional Set Size(PSS): my share of RSS.
369  *
370  * PSS of a process is the count of pages it has in memory, where each
371  * page is divided by the number of processes sharing it.  So if a
372  * process has 1000 pages all to itself, and 1000 shared with one other
373  * process, its PSS will be 1500.
374  *
375  * To keep (accumulated) division errors low, we adopt a 64bit
376  * fixed-point pss counter to minimize division errors. So (pss >>
377  * PSS_SHIFT) would be the real byte count.
378  *
379  * A shift of 12 before division means (assuming 4K page size):
380  *      - 1M 3-user-pages add up to 8KB errors;
381  *      - supports mapcount up to 2^24, or 16M;
382  *      - supports PSS up to 2^52 bytes, or 4PB.
383  */
384 #define PSS_SHIFT 12
385
386 #ifdef CONFIG_PROC_PAGE_MONITOR
387 struct mem_size_stats {
388         unsigned long resident;
389         unsigned long shared_clean;
390         unsigned long shared_dirty;
391         unsigned long private_clean;
392         unsigned long private_dirty;
393         unsigned long referenced;
394         unsigned long anonymous;
395         unsigned long lazyfree;
396         unsigned long anonymous_thp;
397         unsigned long shmem_thp;
398         unsigned long file_thp;
399         unsigned long swap;
400         unsigned long shared_hugetlb;
401         unsigned long private_hugetlb;
402         unsigned long ksm;
403         u64 pss;
404         u64 pss_anon;
405         u64 pss_file;
406         u64 pss_shmem;
407         u64 pss_dirty;
408         u64 pss_locked;
409         u64 swap_pss;
410 };
411
412 static void smaps_page_accumulate(struct mem_size_stats *mss,
413                 struct page *page, unsigned long size, unsigned long pss,
414                 bool dirty, bool locked, bool private)
415 {
416         mss->pss += pss;
417
418         if (PageAnon(page))
419                 mss->pss_anon += pss;
420         else if (PageSwapBacked(page))
421                 mss->pss_shmem += pss;
422         else
423                 mss->pss_file += pss;
424
425         if (locked)
426                 mss->pss_locked += pss;
427
428         if (dirty || PageDirty(page)) {
429                 mss->pss_dirty += pss;
430                 if (private)
431                         mss->private_dirty += size;
432                 else
433                         mss->shared_dirty += size;
434         } else {
435                 if (private)
436                         mss->private_clean += size;
437                 else
438                         mss->shared_clean += size;
439         }
440 }
441
442 static void smaps_account(struct mem_size_stats *mss, struct page *page,
443                 bool compound, bool young, bool dirty, bool locked,
444                 bool migration)
445 {
446         int i, nr = compound ? compound_nr(page) : 1;
447         unsigned long size = nr * PAGE_SIZE;
448
449         /*
450          * First accumulate quantities that depend only on |size| and the type
451          * of the compound page.
452          */
453         if (PageAnon(page)) {
454                 mss->anonymous += size;
455                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
456                         mss->lazyfree += size;
457         }
458
459         if (PageKsm(page))
460                 mss->ksm += size;
461
462         mss->resident += size;
463         /* Accumulate the size in pages that have been accessed. */
464         if (young || page_is_young(page) || PageReferenced(page))
465                 mss->referenced += size;
466
467         /*
468          * Then accumulate quantities that may depend on sharing, or that may
469          * differ page-by-page.
470          *
471          * page_count(page) == 1 guarantees the page is mapped exactly once.
472          * If any subpage of the compound page mapped with PTE it would elevate
473          * page_count().
474          *
475          * The page_mapcount() is called to get a snapshot of the mapcount.
476          * Without holding the page lock this snapshot can be slightly wrong as
477          * we cannot always read the mapcount atomically.  It is not safe to
478          * call page_mapcount() even with PTL held if the page is not mapped,
479          * especially for migration entries.  Treat regular migration entries
480          * as mapcount == 1.
481          */
482         if ((page_count(page) == 1) || migration) {
483                 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
484                         locked, true);
485                 return;
486         }
487         for (i = 0; i < nr; i++, page++) {
488                 int mapcount = page_mapcount(page);
489                 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
490                 if (mapcount >= 2)
491                         pss /= mapcount;
492                 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
493                                       mapcount < 2);
494         }
495 }
496
497 #ifdef CONFIG_SHMEM
498 static int smaps_pte_hole(unsigned long addr, unsigned long end,
499                           __always_unused int depth, struct mm_walk *walk)
500 {
501         struct mem_size_stats *mss = walk->private;
502         struct vm_area_struct *vma = walk->vma;
503
504         mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
505                                               linear_page_index(vma, addr),
506                                               linear_page_index(vma, end));
507
508         return 0;
509 }
510 #else
511 #define smaps_pte_hole          NULL
512 #endif /* CONFIG_SHMEM */
513
514 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
515 {
516 #ifdef CONFIG_SHMEM
517         if (walk->ops->pte_hole) {
518                 /* depth is not used */
519                 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
520         }
521 #endif
522 }
523
524 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
525                 struct mm_walk *walk)
526 {
527         struct mem_size_stats *mss = walk->private;
528         struct vm_area_struct *vma = walk->vma;
529         bool locked = !!(vma->vm_flags & VM_LOCKED);
530         struct page *page = NULL;
531         bool migration = false, young = false, dirty = false;
532         pte_t ptent = ptep_get(pte);
533
534         if (pte_present(ptent)) {
535                 page = vm_normal_page(vma, addr, ptent);
536                 young = pte_young(ptent);
537                 dirty = pte_dirty(ptent);
538         } else if (is_swap_pte(ptent)) {
539                 swp_entry_t swpent = pte_to_swp_entry(ptent);
540
541                 if (!non_swap_entry(swpent)) {
542                         int mapcount;
543
544                         mss->swap += PAGE_SIZE;
545                         mapcount = swp_swapcount(swpent);
546                         if (mapcount >= 2) {
547                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
548
549                                 do_div(pss_delta, mapcount);
550                                 mss->swap_pss += pss_delta;
551                         } else {
552                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
553                         }
554                 } else if (is_pfn_swap_entry(swpent)) {
555                         if (is_migration_entry(swpent))
556                                 migration = true;
557                         page = pfn_swap_entry_to_page(swpent);
558                 }
559         } else {
560                 smaps_pte_hole_lookup(addr, walk);
561                 return;
562         }
563
564         if (!page)
565                 return;
566
567         smaps_account(mss, page, false, young, dirty, locked, migration);
568 }
569
570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
571 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
572                 struct mm_walk *walk)
573 {
574         struct mem_size_stats *mss = walk->private;
575         struct vm_area_struct *vma = walk->vma;
576         bool locked = !!(vma->vm_flags & VM_LOCKED);
577         struct page *page = NULL;
578         bool migration = false;
579
580         if (pmd_present(*pmd)) {
581                 page = vm_normal_page_pmd(vma, addr, *pmd);
582         } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
583                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
584
585                 if (is_migration_entry(entry)) {
586                         migration = true;
587                         page = pfn_swap_entry_to_page(entry);
588                 }
589         }
590         if (IS_ERR_OR_NULL(page))
591                 return;
592         if (PageAnon(page))
593                 mss->anonymous_thp += HPAGE_PMD_SIZE;
594         else if (PageSwapBacked(page))
595                 mss->shmem_thp += HPAGE_PMD_SIZE;
596         else if (is_zone_device_page(page))
597                 /* pass */;
598         else
599                 mss->file_thp += HPAGE_PMD_SIZE;
600
601         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
602                       locked, migration);
603 }
604 #else
605 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
606                 struct mm_walk *walk)
607 {
608 }
609 #endif
610
611 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
612                            struct mm_walk *walk)
613 {
614         struct vm_area_struct *vma = walk->vma;
615         pte_t *pte;
616         spinlock_t *ptl;
617
618         ptl = pmd_trans_huge_lock(pmd, vma);
619         if (ptl) {
620                 smaps_pmd_entry(pmd, addr, walk);
621                 spin_unlock(ptl);
622                 goto out;
623         }
624
625         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
626         if (!pte) {
627                 walk->action = ACTION_AGAIN;
628                 return 0;
629         }
630         for (; addr != end; pte++, addr += PAGE_SIZE)
631                 smaps_pte_entry(pte, addr, walk);
632         pte_unmap_unlock(pte - 1, ptl);
633 out:
634         cond_resched();
635         return 0;
636 }
637
638 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
639 {
640         /*
641          * Don't forget to update Documentation/ on changes.
642          */
643         static const char mnemonics[BITS_PER_LONG][2] = {
644                 /*
645                  * In case if we meet a flag we don't know about.
646                  */
647                 [0 ... (BITS_PER_LONG-1)] = "??",
648
649                 [ilog2(VM_READ)]        = "rd",
650                 [ilog2(VM_WRITE)]       = "wr",
651                 [ilog2(VM_EXEC)]        = "ex",
652                 [ilog2(VM_SHARED)]      = "sh",
653                 [ilog2(VM_MAYREAD)]     = "mr",
654                 [ilog2(VM_MAYWRITE)]    = "mw",
655                 [ilog2(VM_MAYEXEC)]     = "me",
656                 [ilog2(VM_MAYSHARE)]    = "ms",
657                 [ilog2(VM_GROWSDOWN)]   = "gd",
658                 [ilog2(VM_PFNMAP)]      = "pf",
659                 [ilog2(VM_LOCKED)]      = "lo",
660                 [ilog2(VM_IO)]          = "io",
661                 [ilog2(VM_SEQ_READ)]    = "sr",
662                 [ilog2(VM_RAND_READ)]   = "rr",
663                 [ilog2(VM_DONTCOPY)]    = "dc",
664                 [ilog2(VM_DONTEXPAND)]  = "de",
665                 [ilog2(VM_LOCKONFAULT)] = "lf",
666                 [ilog2(VM_ACCOUNT)]     = "ac",
667                 [ilog2(VM_NORESERVE)]   = "nr",
668                 [ilog2(VM_HUGETLB)]     = "ht",
669                 [ilog2(VM_SYNC)]        = "sf",
670                 [ilog2(VM_ARCH_1)]      = "ar",
671                 [ilog2(VM_WIPEONFORK)]  = "wf",
672                 [ilog2(VM_DONTDUMP)]    = "dd",
673 #ifdef CONFIG_ARM64_BTI
674                 [ilog2(VM_ARM64_BTI)]   = "bt",
675 #endif
676 #ifdef CONFIG_MEM_SOFT_DIRTY
677                 [ilog2(VM_SOFTDIRTY)]   = "sd",
678 #endif
679                 [ilog2(VM_MIXEDMAP)]    = "mm",
680                 [ilog2(VM_HUGEPAGE)]    = "hg",
681                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
682                 [ilog2(VM_MERGEABLE)]   = "mg",
683                 [ilog2(VM_UFFD_MISSING)]= "um",
684                 [ilog2(VM_UFFD_WP)]     = "uw",
685 #ifdef CONFIG_ARM64_MTE
686                 [ilog2(VM_MTE)]         = "mt",
687                 [ilog2(VM_MTE_ALLOWED)] = "",
688 #endif
689 #ifdef CONFIG_ARCH_HAS_PKEYS
690                 /* These come out via ProtectionKey: */
691                 [ilog2(VM_PKEY_BIT0)]   = "",
692                 [ilog2(VM_PKEY_BIT1)]   = "",
693                 [ilog2(VM_PKEY_BIT2)]   = "",
694                 [ilog2(VM_PKEY_BIT3)]   = "",
695 #if VM_PKEY_BIT4
696                 [ilog2(VM_PKEY_BIT4)]   = "",
697 #endif
698 #endif /* CONFIG_ARCH_HAS_PKEYS */
699 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
700                 [ilog2(VM_UFFD_MINOR)]  = "ui",
701 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
702 #ifdef CONFIG_X86_USER_SHADOW_STACK
703                 [ilog2(VM_SHADOW_STACK)] = "ss",
704 #endif
705         };
706         size_t i;
707
708         seq_puts(m, "VmFlags: ");
709         for (i = 0; i < BITS_PER_LONG; i++) {
710                 if (!mnemonics[i][0])
711                         continue;
712                 if (vma->vm_flags & (1UL << i)) {
713                         seq_putc(m, mnemonics[i][0]);
714                         seq_putc(m, mnemonics[i][1]);
715                         seq_putc(m, ' ');
716                 }
717         }
718         seq_putc(m, '\n');
719 }
720
721 #ifdef CONFIG_HUGETLB_PAGE
722 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
723                                  unsigned long addr, unsigned long end,
724                                  struct mm_walk *walk)
725 {
726         struct mem_size_stats *mss = walk->private;
727         struct vm_area_struct *vma = walk->vma;
728         struct page *page = NULL;
729         pte_t ptent = ptep_get(pte);
730
731         if (pte_present(ptent)) {
732                 page = vm_normal_page(vma, addr, ptent);
733         } else if (is_swap_pte(ptent)) {
734                 swp_entry_t swpent = pte_to_swp_entry(ptent);
735
736                 if (is_pfn_swap_entry(swpent))
737                         page = pfn_swap_entry_to_page(swpent);
738         }
739         if (page) {
740                 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
741                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
742                 else
743                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
744         }
745         return 0;
746 }
747 #else
748 #define smaps_hugetlb_range     NULL
749 #endif /* HUGETLB_PAGE */
750
751 static const struct mm_walk_ops smaps_walk_ops = {
752         .pmd_entry              = smaps_pte_range,
753         .hugetlb_entry          = smaps_hugetlb_range,
754         .walk_lock              = PGWALK_RDLOCK,
755 };
756
757 static const struct mm_walk_ops smaps_shmem_walk_ops = {
758         .pmd_entry              = smaps_pte_range,
759         .hugetlb_entry          = smaps_hugetlb_range,
760         .pte_hole               = smaps_pte_hole,
761         .walk_lock              = PGWALK_RDLOCK,
762 };
763
764 /*
765  * Gather mem stats from @vma with the indicated beginning
766  * address @start, and keep them in @mss.
767  *
768  * Use vm_start of @vma as the beginning address if @start is 0.
769  */
770 static void smap_gather_stats(struct vm_area_struct *vma,
771                 struct mem_size_stats *mss, unsigned long start)
772 {
773         const struct mm_walk_ops *ops = &smaps_walk_ops;
774
775         /* Invalid start */
776         if (start >= vma->vm_end)
777                 return;
778
779         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
780                 /*
781                  * For shared or readonly shmem mappings we know that all
782                  * swapped out pages belong to the shmem object, and we can
783                  * obtain the swap value much more efficiently. For private
784                  * writable mappings, we might have COW pages that are
785                  * not affected by the parent swapped out pages of the shmem
786                  * object, so we have to distinguish them during the page walk.
787                  * Unless we know that the shmem object (or the part mapped by
788                  * our VMA) has no swapped out pages at all.
789                  */
790                 unsigned long shmem_swapped = shmem_swap_usage(vma);
791
792                 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
793                                         !(vma->vm_flags & VM_WRITE))) {
794                         mss->swap += shmem_swapped;
795                 } else {
796                         ops = &smaps_shmem_walk_ops;
797                 }
798         }
799
800         /* mmap_lock is held in m_start */
801         if (!start)
802                 walk_page_vma(vma, ops, mss);
803         else
804                 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
805 }
806
807 #define SEQ_PUT_DEC(str, val) \
808                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
809
810 /* Show the contents common for smaps and smaps_rollup */
811 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
812         bool rollup_mode)
813 {
814         SEQ_PUT_DEC("Rss:            ", mss->resident);
815         SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
816         SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
817         if (rollup_mode) {
818                 /*
819                  * These are meaningful only for smaps_rollup, otherwise two of
820                  * them are zero, and the other one is the same as Pss.
821                  */
822                 SEQ_PUT_DEC(" kB\nPss_Anon:       ",
823                         mss->pss_anon >> PSS_SHIFT);
824                 SEQ_PUT_DEC(" kB\nPss_File:       ",
825                         mss->pss_file >> PSS_SHIFT);
826                 SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
827                         mss->pss_shmem >> PSS_SHIFT);
828         }
829         SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
830         SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
831         SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
832         SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
833         SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
834         SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
835         SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
836         SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
837         SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
838         SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
839         SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
840         SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
841         seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
842                                   mss->private_hugetlb >> 10, 7);
843         SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
844         SEQ_PUT_DEC(" kB\nSwapPss:        ",
845                                         mss->swap_pss >> PSS_SHIFT);
846         SEQ_PUT_DEC(" kB\nLocked:         ",
847                                         mss->pss_locked >> PSS_SHIFT);
848         seq_puts(m, " kB\n");
849 }
850
851 static int show_smap(struct seq_file *m, void *v)
852 {
853         struct vm_area_struct *vma = v;
854         struct mem_size_stats mss = {};
855
856         smap_gather_stats(vma, &mss, 0);
857
858         show_map_vma(m, vma);
859
860         SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
861         SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
862         SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
863         seq_puts(m, " kB\n");
864
865         __show_smap(m, &mss, false);
866
867         seq_printf(m, "THPeligible:    %8u\n",
868                    hugepage_vma_check(vma, vma->vm_flags, true, false, true));
869
870         if (arch_pkeys_enabled())
871                 seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
872         show_smap_vma_flags(m, vma);
873
874         return 0;
875 }
876
877 static int show_smaps_rollup(struct seq_file *m, void *v)
878 {
879         struct proc_maps_private *priv = m->private;
880         struct mem_size_stats mss = {};
881         struct mm_struct *mm = priv->mm;
882         struct vm_area_struct *vma;
883         unsigned long vma_start = 0, last_vma_end = 0;
884         int ret = 0;
885         VMA_ITERATOR(vmi, mm, 0);
886
887         priv->task = get_proc_task(priv->inode);
888         if (!priv->task)
889                 return -ESRCH;
890
891         if (!mm || !mmget_not_zero(mm)) {
892                 ret = -ESRCH;
893                 goto out_put_task;
894         }
895
896         ret = mmap_read_lock_killable(mm);
897         if (ret)
898                 goto out_put_mm;
899
900         hold_task_mempolicy(priv);
901         vma = vma_next(&vmi);
902
903         if (unlikely(!vma))
904                 goto empty_set;
905
906         vma_start = vma->vm_start;
907         do {
908                 smap_gather_stats(vma, &mss, 0);
909                 last_vma_end = vma->vm_end;
910
911                 /*
912                  * Release mmap_lock temporarily if someone wants to
913                  * access it for write request.
914                  */
915                 if (mmap_lock_is_contended(mm)) {
916                         vma_iter_invalidate(&vmi);
917                         mmap_read_unlock(mm);
918                         ret = mmap_read_lock_killable(mm);
919                         if (ret) {
920                                 release_task_mempolicy(priv);
921                                 goto out_put_mm;
922                         }
923
924                         /*
925                          * After dropping the lock, there are four cases to
926                          * consider. See the following example for explanation.
927                          *
928                          *   +------+------+-----------+
929                          *   | VMA1 | VMA2 | VMA3      |
930                          *   +------+------+-----------+
931                          *   |      |      |           |
932                          *  4k     8k     16k         400k
933                          *
934                          * Suppose we drop the lock after reading VMA2 due to
935                          * contention, then we get:
936                          *
937                          *      last_vma_end = 16k
938                          *
939                          * 1) VMA2 is freed, but VMA3 exists:
940                          *
941                          *    vma_next(vmi) will return VMA3.
942                          *    In this case, just continue from VMA3.
943                          *
944                          * 2) VMA2 still exists:
945                          *
946                          *    vma_next(vmi) will return VMA3.
947                          *    In this case, just continue from VMA3.
948                          *
949                          * 3) No more VMAs can be found:
950                          *
951                          *    vma_next(vmi) will return NULL.
952                          *    No more things to do, just break.
953                          *
954                          * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
955                          *
956                          *    vma_next(vmi) will return VMA' whose range
957                          *    contains last_vma_end.
958                          *    Iterate VMA' from last_vma_end.
959                          */
960                         vma = vma_next(&vmi);
961                         /* Case 3 above */
962                         if (!vma)
963                                 break;
964
965                         /* Case 1 and 2 above */
966                         if (vma->vm_start >= last_vma_end)
967                                 continue;
968
969                         /* Case 4 above */
970                         if (vma->vm_end > last_vma_end)
971                                 smap_gather_stats(vma, &mss, last_vma_end);
972                 }
973         } for_each_vma(vmi, vma);
974
975 empty_set:
976         show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
977         seq_pad(m, ' ');
978         seq_puts(m, "[rollup]\n");
979
980         __show_smap(m, &mss, true);
981
982         release_task_mempolicy(priv);
983         mmap_read_unlock(mm);
984
985 out_put_mm:
986         mmput(mm);
987 out_put_task:
988         put_task_struct(priv->task);
989         priv->task = NULL;
990
991         return ret;
992 }
993 #undef SEQ_PUT_DEC
994
995 static const struct seq_operations proc_pid_smaps_op = {
996         .start  = m_start,
997         .next   = m_next,
998         .stop   = m_stop,
999         .show   = show_smap
1000 };
1001
1002 static int pid_smaps_open(struct inode *inode, struct file *file)
1003 {
1004         return do_maps_open(inode, file, &proc_pid_smaps_op);
1005 }
1006
1007 static int smaps_rollup_open(struct inode *inode, struct file *file)
1008 {
1009         int ret;
1010         struct proc_maps_private *priv;
1011
1012         priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1013         if (!priv)
1014                 return -ENOMEM;
1015
1016         ret = single_open(file, show_smaps_rollup, priv);
1017         if (ret)
1018                 goto out_free;
1019
1020         priv->inode = inode;
1021         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1022         if (IS_ERR(priv->mm)) {
1023                 ret = PTR_ERR(priv->mm);
1024
1025                 single_release(inode, file);
1026                 goto out_free;
1027         }
1028
1029         return 0;
1030
1031 out_free:
1032         kfree(priv);
1033         return ret;
1034 }
1035
1036 static int smaps_rollup_release(struct inode *inode, struct file *file)
1037 {
1038         struct seq_file *seq = file->private_data;
1039         struct proc_maps_private *priv = seq->private;
1040
1041         if (priv->mm)
1042                 mmdrop(priv->mm);
1043
1044         kfree(priv);
1045         return single_release(inode, file);
1046 }
1047
1048 const struct file_operations proc_pid_smaps_operations = {
1049         .open           = pid_smaps_open,
1050         .read           = seq_read,
1051         .llseek         = seq_lseek,
1052         .release        = proc_map_release,
1053 };
1054
1055 const struct file_operations proc_pid_smaps_rollup_operations = {
1056         .open           = smaps_rollup_open,
1057         .read           = seq_read,
1058         .llseek         = seq_lseek,
1059         .release        = smaps_rollup_release,
1060 };
1061
1062 enum clear_refs_types {
1063         CLEAR_REFS_ALL = 1,
1064         CLEAR_REFS_ANON,
1065         CLEAR_REFS_MAPPED,
1066         CLEAR_REFS_SOFT_DIRTY,
1067         CLEAR_REFS_MM_HIWATER_RSS,
1068         CLEAR_REFS_LAST,
1069 };
1070
1071 struct clear_refs_private {
1072         enum clear_refs_types type;
1073 };
1074
1075 #ifdef CONFIG_MEM_SOFT_DIRTY
1076
1077 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1078 {
1079         struct page *page;
1080
1081         if (!pte_write(pte))
1082                 return false;
1083         if (!is_cow_mapping(vma->vm_flags))
1084                 return false;
1085         if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1086                 return false;
1087         page = vm_normal_page(vma, addr, pte);
1088         if (!page)
1089                 return false;
1090         return page_maybe_dma_pinned(page);
1091 }
1092
1093 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1094                 unsigned long addr, pte_t *pte)
1095 {
1096         /*
1097          * The soft-dirty tracker uses #PF-s to catch writes
1098          * to pages, so write-protect the pte as well. See the
1099          * Documentation/admin-guide/mm/soft-dirty.rst for full description
1100          * of how soft-dirty works.
1101          */
1102         pte_t ptent = ptep_get(pte);
1103
1104         if (pte_present(ptent)) {
1105                 pte_t old_pte;
1106
1107                 if (pte_is_pinned(vma, addr, ptent))
1108                         return;
1109                 old_pte = ptep_modify_prot_start(vma, addr, pte);
1110                 ptent = pte_wrprotect(old_pte);
1111                 ptent = pte_clear_soft_dirty(ptent);
1112                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1113         } else if (is_swap_pte(ptent)) {
1114                 ptent = pte_swp_clear_soft_dirty(ptent);
1115                 set_pte_at(vma->vm_mm, addr, pte, ptent);
1116         }
1117 }
1118 #else
1119 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1120                 unsigned long addr, pte_t *pte)
1121 {
1122 }
1123 #endif
1124
1125 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1126 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1127                 unsigned long addr, pmd_t *pmdp)
1128 {
1129         pmd_t old, pmd = *pmdp;
1130
1131         if (pmd_present(pmd)) {
1132                 /* See comment in change_huge_pmd() */
1133                 old = pmdp_invalidate(vma, addr, pmdp);
1134                 if (pmd_dirty(old))
1135                         pmd = pmd_mkdirty(pmd);
1136                 if (pmd_young(old))
1137                         pmd = pmd_mkyoung(pmd);
1138
1139                 pmd = pmd_wrprotect(pmd);
1140                 pmd = pmd_clear_soft_dirty(pmd);
1141
1142                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1143         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1144                 pmd = pmd_swp_clear_soft_dirty(pmd);
1145                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1146         }
1147 }
1148 #else
1149 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1150                 unsigned long addr, pmd_t *pmdp)
1151 {
1152 }
1153 #endif
1154
1155 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1156                                 unsigned long end, struct mm_walk *walk)
1157 {
1158         struct clear_refs_private *cp = walk->private;
1159         struct vm_area_struct *vma = walk->vma;
1160         pte_t *pte, ptent;
1161         spinlock_t *ptl;
1162         struct page *page;
1163
1164         ptl = pmd_trans_huge_lock(pmd, vma);
1165         if (ptl) {
1166                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1167                         clear_soft_dirty_pmd(vma, addr, pmd);
1168                         goto out;
1169                 }
1170
1171                 if (!pmd_present(*pmd))
1172                         goto out;
1173
1174                 page = pmd_page(*pmd);
1175
1176                 /* Clear accessed and referenced bits. */
1177                 pmdp_test_and_clear_young(vma, addr, pmd);
1178                 test_and_clear_page_young(page);
1179                 ClearPageReferenced(page);
1180 out:
1181                 spin_unlock(ptl);
1182                 return 0;
1183         }
1184
1185         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1186         if (!pte) {
1187                 walk->action = ACTION_AGAIN;
1188                 return 0;
1189         }
1190         for (; addr != end; pte++, addr += PAGE_SIZE) {
1191                 ptent = ptep_get(pte);
1192
1193                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1194                         clear_soft_dirty(vma, addr, pte);
1195                         continue;
1196                 }
1197
1198                 if (!pte_present(ptent))
1199                         continue;
1200
1201                 page = vm_normal_page(vma, addr, ptent);
1202                 if (!page)
1203                         continue;
1204
1205                 /* Clear accessed and referenced bits. */
1206                 ptep_test_and_clear_young(vma, addr, pte);
1207                 test_and_clear_page_young(page);
1208                 ClearPageReferenced(page);
1209         }
1210         pte_unmap_unlock(pte - 1, ptl);
1211         cond_resched();
1212         return 0;
1213 }
1214
1215 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1216                                 struct mm_walk *walk)
1217 {
1218         struct clear_refs_private *cp = walk->private;
1219         struct vm_area_struct *vma = walk->vma;
1220
1221         if (vma->vm_flags & VM_PFNMAP)
1222                 return 1;
1223
1224         /*
1225          * Writing 1 to /proc/pid/clear_refs affects all pages.
1226          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1227          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1228          * Writing 4 to /proc/pid/clear_refs affects all pages.
1229          */
1230         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1231                 return 1;
1232         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1233                 return 1;
1234         return 0;
1235 }
1236
1237 static const struct mm_walk_ops clear_refs_walk_ops = {
1238         .pmd_entry              = clear_refs_pte_range,
1239         .test_walk              = clear_refs_test_walk,
1240         .walk_lock              = PGWALK_WRLOCK,
1241 };
1242
1243 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1244                                 size_t count, loff_t *ppos)
1245 {
1246         struct task_struct *task;
1247         char buffer[PROC_NUMBUF] = {};
1248         struct mm_struct *mm;
1249         struct vm_area_struct *vma;
1250         enum clear_refs_types type;
1251         int itype;
1252         int rv;
1253
1254         if (count > sizeof(buffer) - 1)
1255                 count = sizeof(buffer) - 1;
1256         if (copy_from_user(buffer, buf, count))
1257                 return -EFAULT;
1258         rv = kstrtoint(strstrip(buffer), 10, &itype);
1259         if (rv < 0)
1260                 return rv;
1261         type = (enum clear_refs_types)itype;
1262         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1263                 return -EINVAL;
1264
1265         task = get_proc_task(file_inode(file));
1266         if (!task)
1267                 return -ESRCH;
1268         mm = get_task_mm(task);
1269         if (mm) {
1270                 VMA_ITERATOR(vmi, mm, 0);
1271                 struct mmu_notifier_range range;
1272                 struct clear_refs_private cp = {
1273                         .type = type,
1274                 };
1275
1276                 if (mmap_write_lock_killable(mm)) {
1277                         count = -EINTR;
1278                         goto out_mm;
1279                 }
1280                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1281                         /*
1282                          * Writing 5 to /proc/pid/clear_refs resets the peak
1283                          * resident set size to this mm's current rss value.
1284                          */
1285                         reset_mm_hiwater_rss(mm);
1286                         goto out_unlock;
1287                 }
1288
1289                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1290                         for_each_vma(vmi, vma) {
1291                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1292                                         continue;
1293                                 vm_flags_clear(vma, VM_SOFTDIRTY);
1294                                 vma_set_page_prot(vma);
1295                         }
1296
1297                         inc_tlb_flush_pending(mm);
1298                         mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1299                                                 0, mm, 0, -1UL);
1300                         mmu_notifier_invalidate_range_start(&range);
1301                 }
1302                 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1303                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1304                         mmu_notifier_invalidate_range_end(&range);
1305                         flush_tlb_mm(mm);
1306                         dec_tlb_flush_pending(mm);
1307                 }
1308 out_unlock:
1309                 mmap_write_unlock(mm);
1310 out_mm:
1311                 mmput(mm);
1312         }
1313         put_task_struct(task);
1314
1315         return count;
1316 }
1317
1318 const struct file_operations proc_clear_refs_operations = {
1319         .write          = clear_refs_write,
1320         .llseek         = noop_llseek,
1321 };
1322
1323 typedef struct {
1324         u64 pme;
1325 } pagemap_entry_t;
1326
1327 struct pagemapread {
1328         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1329         pagemap_entry_t *buffer;
1330         bool show_pfn;
1331 };
1332
1333 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1334 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1335
1336 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1337 #define PM_PFRAME_BITS          55
1338 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1339 #define PM_SOFT_DIRTY           BIT_ULL(55)
1340 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1341 #define PM_UFFD_WP              BIT_ULL(57)
1342 #define PM_FILE                 BIT_ULL(61)
1343 #define PM_SWAP                 BIT_ULL(62)
1344 #define PM_PRESENT              BIT_ULL(63)
1345
1346 #define PM_END_OF_BUFFER    1
1347
1348 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1349 {
1350         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1351 }
1352
1353 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1354                           struct pagemapread *pm)
1355 {
1356         pm->buffer[pm->pos++] = *pme;
1357         if (pm->pos >= pm->len)
1358                 return PM_END_OF_BUFFER;
1359         return 0;
1360 }
1361
1362 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1363                             __always_unused int depth, struct mm_walk *walk)
1364 {
1365         struct pagemapread *pm = walk->private;
1366         unsigned long addr = start;
1367         int err = 0;
1368
1369         while (addr < end) {
1370                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1371                 pagemap_entry_t pme = make_pme(0, 0);
1372                 /* End of address space hole, which we mark as non-present. */
1373                 unsigned long hole_end;
1374
1375                 if (vma)
1376                         hole_end = min(end, vma->vm_start);
1377                 else
1378                         hole_end = end;
1379
1380                 for (; addr < hole_end; addr += PAGE_SIZE) {
1381                         err = add_to_pagemap(addr, &pme, pm);
1382                         if (err)
1383                                 goto out;
1384                 }
1385
1386                 if (!vma)
1387                         break;
1388
1389                 /* Addresses in the VMA. */
1390                 if (vma->vm_flags & VM_SOFTDIRTY)
1391                         pme = make_pme(0, PM_SOFT_DIRTY);
1392                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1393                         err = add_to_pagemap(addr, &pme, pm);
1394                         if (err)
1395                                 goto out;
1396                 }
1397         }
1398 out:
1399         return err;
1400 }
1401
1402 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1403                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1404 {
1405         u64 frame = 0, flags = 0;
1406         struct page *page = NULL;
1407         bool migration = false;
1408
1409         if (pte_present(pte)) {
1410                 if (pm->show_pfn)
1411                         frame = pte_pfn(pte);
1412                 flags |= PM_PRESENT;
1413                 page = vm_normal_page(vma, addr, pte);
1414                 if (pte_soft_dirty(pte))
1415                         flags |= PM_SOFT_DIRTY;
1416                 if (pte_uffd_wp(pte))
1417                         flags |= PM_UFFD_WP;
1418         } else if (is_swap_pte(pte)) {
1419                 swp_entry_t entry;
1420                 if (pte_swp_soft_dirty(pte))
1421                         flags |= PM_SOFT_DIRTY;
1422                 if (pte_swp_uffd_wp(pte))
1423                         flags |= PM_UFFD_WP;
1424                 entry = pte_to_swp_entry(pte);
1425                 if (pm->show_pfn) {
1426                         pgoff_t offset;
1427                         /*
1428                          * For PFN swap offsets, keeping the offset field
1429                          * to be PFN only to be compatible with old smaps.
1430                          */
1431                         if (is_pfn_swap_entry(entry))
1432                                 offset = swp_offset_pfn(entry);
1433                         else
1434                                 offset = swp_offset(entry);
1435                         frame = swp_type(entry) |
1436                             (offset << MAX_SWAPFILES_SHIFT);
1437                 }
1438                 flags |= PM_SWAP;
1439                 migration = is_migration_entry(entry);
1440                 if (is_pfn_swap_entry(entry))
1441                         page = pfn_swap_entry_to_page(entry);
1442                 if (pte_marker_entry_uffd_wp(entry))
1443                         flags |= PM_UFFD_WP;
1444         }
1445
1446         if (page && !PageAnon(page))
1447                 flags |= PM_FILE;
1448         if (page && !migration && page_mapcount(page) == 1)
1449                 flags |= PM_MMAP_EXCLUSIVE;
1450         if (vma->vm_flags & VM_SOFTDIRTY)
1451                 flags |= PM_SOFT_DIRTY;
1452
1453         return make_pme(frame, flags);
1454 }
1455
1456 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1457                              struct mm_walk *walk)
1458 {
1459         struct vm_area_struct *vma = walk->vma;
1460         struct pagemapread *pm = walk->private;
1461         spinlock_t *ptl;
1462         pte_t *pte, *orig_pte;
1463         int err = 0;
1464 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1465         bool migration = false;
1466
1467         ptl = pmd_trans_huge_lock(pmdp, vma);
1468         if (ptl) {
1469                 u64 flags = 0, frame = 0;
1470                 pmd_t pmd = *pmdp;
1471                 struct page *page = NULL;
1472
1473                 if (vma->vm_flags & VM_SOFTDIRTY)
1474                         flags |= PM_SOFT_DIRTY;
1475
1476                 if (pmd_present(pmd)) {
1477                         page = pmd_page(pmd);
1478
1479                         flags |= PM_PRESENT;
1480                         if (pmd_soft_dirty(pmd))
1481                                 flags |= PM_SOFT_DIRTY;
1482                         if (pmd_uffd_wp(pmd))
1483                                 flags |= PM_UFFD_WP;
1484                         if (pm->show_pfn)
1485                                 frame = pmd_pfn(pmd) +
1486                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1487                 }
1488 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1489                 else if (is_swap_pmd(pmd)) {
1490                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1491                         unsigned long offset;
1492
1493                         if (pm->show_pfn) {
1494                                 if (is_pfn_swap_entry(entry))
1495                                         offset = swp_offset_pfn(entry);
1496                                 else
1497                                         offset = swp_offset(entry);
1498                                 offset = offset +
1499                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1500                                 frame = swp_type(entry) |
1501                                         (offset << MAX_SWAPFILES_SHIFT);
1502                         }
1503                         flags |= PM_SWAP;
1504                         if (pmd_swp_soft_dirty(pmd))
1505                                 flags |= PM_SOFT_DIRTY;
1506                         if (pmd_swp_uffd_wp(pmd))
1507                                 flags |= PM_UFFD_WP;
1508                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1509                         migration = is_migration_entry(entry);
1510                         page = pfn_swap_entry_to_page(entry);
1511                 }
1512 #endif
1513
1514                 if (page && !migration && page_mapcount(page) == 1)
1515                         flags |= PM_MMAP_EXCLUSIVE;
1516
1517                 for (; addr != end; addr += PAGE_SIZE) {
1518                         pagemap_entry_t pme = make_pme(frame, flags);
1519
1520                         err = add_to_pagemap(addr, &pme, pm);
1521                         if (err)
1522                                 break;
1523                         if (pm->show_pfn) {
1524                                 if (flags & PM_PRESENT)
1525                                         frame++;
1526                                 else if (flags & PM_SWAP)
1527                                         frame += (1 << MAX_SWAPFILES_SHIFT);
1528                         }
1529                 }
1530                 spin_unlock(ptl);
1531                 return err;
1532         }
1533 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1534
1535         /*
1536          * We can assume that @vma always points to a valid one and @end never
1537          * goes beyond vma->vm_end.
1538          */
1539         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1540         if (!pte) {
1541                 walk->action = ACTION_AGAIN;
1542                 return err;
1543         }
1544         for (; addr < end; pte++, addr += PAGE_SIZE) {
1545                 pagemap_entry_t pme;
1546
1547                 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1548                 err = add_to_pagemap(addr, &pme, pm);
1549                 if (err)
1550                         break;
1551         }
1552         pte_unmap_unlock(orig_pte, ptl);
1553
1554         cond_resched();
1555
1556         return err;
1557 }
1558
1559 #ifdef CONFIG_HUGETLB_PAGE
1560 /* This function walks within one hugetlb entry in the single call */
1561 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1562                                  unsigned long addr, unsigned long end,
1563                                  struct mm_walk *walk)
1564 {
1565         struct pagemapread *pm = walk->private;
1566         struct vm_area_struct *vma = walk->vma;
1567         u64 flags = 0, frame = 0;
1568         int err = 0;
1569         pte_t pte;
1570
1571         if (vma->vm_flags & VM_SOFTDIRTY)
1572                 flags |= PM_SOFT_DIRTY;
1573
1574         pte = huge_ptep_get(ptep);
1575         if (pte_present(pte)) {
1576                 struct page *page = pte_page(pte);
1577
1578                 if (!PageAnon(page))
1579                         flags |= PM_FILE;
1580
1581                 if (page_mapcount(page) == 1)
1582                         flags |= PM_MMAP_EXCLUSIVE;
1583
1584                 if (huge_pte_uffd_wp(pte))
1585                         flags |= PM_UFFD_WP;
1586
1587                 flags |= PM_PRESENT;
1588                 if (pm->show_pfn)
1589                         frame = pte_pfn(pte) +
1590                                 ((addr & ~hmask) >> PAGE_SHIFT);
1591         } else if (pte_swp_uffd_wp_any(pte)) {
1592                 flags |= PM_UFFD_WP;
1593         }
1594
1595         for (; addr != end; addr += PAGE_SIZE) {
1596                 pagemap_entry_t pme = make_pme(frame, flags);
1597
1598                 err = add_to_pagemap(addr, &pme, pm);
1599                 if (err)
1600                         return err;
1601                 if (pm->show_pfn && (flags & PM_PRESENT))
1602                         frame++;
1603         }
1604
1605         cond_resched();
1606
1607         return err;
1608 }
1609 #else
1610 #define pagemap_hugetlb_range   NULL
1611 #endif /* HUGETLB_PAGE */
1612
1613 static const struct mm_walk_ops pagemap_ops = {
1614         .pmd_entry      = pagemap_pmd_range,
1615         .pte_hole       = pagemap_pte_hole,
1616         .hugetlb_entry  = pagemap_hugetlb_range,
1617         .walk_lock      = PGWALK_RDLOCK,
1618 };
1619
1620 /*
1621  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1622  *
1623  * For each page in the address space, this file contains one 64-bit entry
1624  * consisting of the following:
1625  *
1626  * Bits 0-54  page frame number (PFN) if present
1627  * Bits 0-4   swap type if swapped
1628  * Bits 5-54  swap offset if swapped
1629  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1630  * Bit  56    page exclusively mapped
1631  * Bit  57    pte is uffd-wp write-protected
1632  * Bits 58-60 zero
1633  * Bit  61    page is file-page or shared-anon
1634  * Bit  62    page swapped
1635  * Bit  63    page present
1636  *
1637  * If the page is not present but in swap, then the PFN contains an
1638  * encoding of the swap file number and the page's offset into the
1639  * swap. Unmapped pages return a null PFN. This allows determining
1640  * precisely which pages are mapped (or in swap) and comparing mapped
1641  * pages between processes.
1642  *
1643  * Efficient users of this interface will use /proc/pid/maps to
1644  * determine which areas of memory are actually mapped and llseek to
1645  * skip over unmapped regions.
1646  */
1647 static ssize_t pagemap_read(struct file *file, char __user *buf,
1648                             size_t count, loff_t *ppos)
1649 {
1650         struct mm_struct *mm = file->private_data;
1651         struct pagemapread pm;
1652         unsigned long src;
1653         unsigned long svpfn;
1654         unsigned long start_vaddr;
1655         unsigned long end_vaddr;
1656         int ret = 0, copied = 0;
1657
1658         if (!mm || !mmget_not_zero(mm))
1659                 goto out;
1660
1661         ret = -EINVAL;
1662         /* file position must be aligned */
1663         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1664                 goto out_mm;
1665
1666         ret = 0;
1667         if (!count)
1668                 goto out_mm;
1669
1670         /* do not disclose physical addresses: attack vector */
1671         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1672
1673         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1674         pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1675         ret = -ENOMEM;
1676         if (!pm.buffer)
1677                 goto out_mm;
1678
1679         src = *ppos;
1680         svpfn = src / PM_ENTRY_BYTES;
1681         end_vaddr = mm->task_size;
1682
1683         /* watch out for wraparound */
1684         start_vaddr = end_vaddr;
1685         if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1686                 unsigned long end;
1687
1688                 ret = mmap_read_lock_killable(mm);
1689                 if (ret)
1690                         goto out_free;
1691                 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1692                 mmap_read_unlock(mm);
1693
1694                 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1695                 if (end >= start_vaddr && end < mm->task_size)
1696                         end_vaddr = end;
1697         }
1698
1699         /* Ensure the address is inside the task */
1700         if (start_vaddr > mm->task_size)
1701                 start_vaddr = end_vaddr;
1702
1703         ret = 0;
1704         while (count && (start_vaddr < end_vaddr)) {
1705                 int len;
1706                 unsigned long end;
1707
1708                 pm.pos = 0;
1709                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1710                 /* overflow ? */
1711                 if (end < start_vaddr || end > end_vaddr)
1712                         end = end_vaddr;
1713                 ret = mmap_read_lock_killable(mm);
1714                 if (ret)
1715                         goto out_free;
1716                 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1717                 mmap_read_unlock(mm);
1718                 start_vaddr = end;
1719
1720                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1721                 if (copy_to_user(buf, pm.buffer, len)) {
1722                         ret = -EFAULT;
1723                         goto out_free;
1724                 }
1725                 copied += len;
1726                 buf += len;
1727                 count -= len;
1728         }
1729         *ppos += copied;
1730         if (!ret || ret == PM_END_OF_BUFFER)
1731                 ret = copied;
1732
1733 out_free:
1734         kfree(pm.buffer);
1735 out_mm:
1736         mmput(mm);
1737 out:
1738         return ret;
1739 }
1740
1741 static int pagemap_open(struct inode *inode, struct file *file)
1742 {
1743         struct mm_struct *mm;
1744
1745         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1746         if (IS_ERR(mm))
1747                 return PTR_ERR(mm);
1748         file->private_data = mm;
1749         return 0;
1750 }
1751
1752 static int pagemap_release(struct inode *inode, struct file *file)
1753 {
1754         struct mm_struct *mm = file->private_data;
1755
1756         if (mm)
1757                 mmdrop(mm);
1758         return 0;
1759 }
1760
1761 #define PM_SCAN_CATEGORIES      (PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |  \
1762                                  PAGE_IS_FILE | PAGE_IS_PRESENT |       \
1763                                  PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |    \
1764                                  PAGE_IS_HUGE)
1765 #define PM_SCAN_FLAGS           (PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
1766
1767 struct pagemap_scan_private {
1768         struct pm_scan_arg arg;
1769         unsigned long masks_of_interest, cur_vma_category;
1770         struct page_region *vec_buf;
1771         unsigned long vec_buf_len, vec_buf_index, found_pages;
1772         struct page_region __user *vec_out;
1773 };
1774
1775 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
1776                                            struct vm_area_struct *vma,
1777                                            unsigned long addr, pte_t pte)
1778 {
1779         unsigned long categories = 0;
1780
1781         if (pte_present(pte)) {
1782                 struct page *page;
1783
1784                 categories |= PAGE_IS_PRESENT;
1785                 if (!pte_uffd_wp(pte))
1786                         categories |= PAGE_IS_WRITTEN;
1787
1788                 if (p->masks_of_interest & PAGE_IS_FILE) {
1789                         page = vm_normal_page(vma, addr, pte);
1790                         if (page && !PageAnon(page))
1791                                 categories |= PAGE_IS_FILE;
1792                 }
1793
1794                 if (is_zero_pfn(pte_pfn(pte)))
1795                         categories |= PAGE_IS_PFNZERO;
1796         } else if (is_swap_pte(pte)) {
1797                 swp_entry_t swp;
1798
1799                 categories |= PAGE_IS_SWAPPED;
1800                 if (!pte_swp_uffd_wp_any(pte))
1801                         categories |= PAGE_IS_WRITTEN;
1802
1803                 if (p->masks_of_interest & PAGE_IS_FILE) {
1804                         swp = pte_to_swp_entry(pte);
1805                         if (is_pfn_swap_entry(swp) &&
1806                             !PageAnon(pfn_swap_entry_to_page(swp)))
1807                                 categories |= PAGE_IS_FILE;
1808                 }
1809         }
1810
1811         return categories;
1812 }
1813
1814 static void make_uffd_wp_pte(struct vm_area_struct *vma,
1815                              unsigned long addr, pte_t *pte)
1816 {
1817         pte_t ptent = ptep_get(pte);
1818
1819         if (pte_present(ptent)) {
1820                 pte_t old_pte;
1821
1822                 old_pte = ptep_modify_prot_start(vma, addr, pte);
1823                 ptent = pte_mkuffd_wp(ptent);
1824                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1825         } else if (is_swap_pte(ptent)) {
1826                 ptent = pte_swp_mkuffd_wp(ptent);
1827                 set_pte_at(vma->vm_mm, addr, pte, ptent);
1828         } else {
1829                 set_pte_at(vma->vm_mm, addr, pte,
1830                            make_pte_marker(PTE_MARKER_UFFD_WP));
1831         }
1832 }
1833
1834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1835 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
1836                                           struct vm_area_struct *vma,
1837                                           unsigned long addr, pmd_t pmd)
1838 {
1839         unsigned long categories = PAGE_IS_HUGE;
1840
1841         if (pmd_present(pmd)) {
1842                 struct page *page;
1843
1844                 categories |= PAGE_IS_PRESENT;
1845                 if (!pmd_uffd_wp(pmd))
1846                         categories |= PAGE_IS_WRITTEN;
1847
1848                 if (p->masks_of_interest & PAGE_IS_FILE) {
1849                         page = vm_normal_page_pmd(vma, addr, pmd);
1850                         if (page && !PageAnon(page))
1851                                 categories |= PAGE_IS_FILE;
1852                 }
1853
1854                 if (is_zero_pfn(pmd_pfn(pmd)))
1855                         categories |= PAGE_IS_PFNZERO;
1856         } else if (is_swap_pmd(pmd)) {
1857                 swp_entry_t swp;
1858
1859                 categories |= PAGE_IS_SWAPPED;
1860                 if (!pmd_swp_uffd_wp(pmd))
1861                         categories |= PAGE_IS_WRITTEN;
1862
1863                 if (p->masks_of_interest & PAGE_IS_FILE) {
1864                         swp = pmd_to_swp_entry(pmd);
1865                         if (is_pfn_swap_entry(swp) &&
1866                             !PageAnon(pfn_swap_entry_to_page(swp)))
1867                                 categories |= PAGE_IS_FILE;
1868                 }
1869         }
1870
1871         return categories;
1872 }
1873
1874 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
1875                              unsigned long addr, pmd_t *pmdp)
1876 {
1877         pmd_t old, pmd = *pmdp;
1878
1879         if (pmd_present(pmd)) {
1880                 old = pmdp_invalidate_ad(vma, addr, pmdp);
1881                 pmd = pmd_mkuffd_wp(old);
1882                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1883         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1884                 pmd = pmd_swp_mkuffd_wp(pmd);
1885                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1886         }
1887 }
1888 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1889
1890 #ifdef CONFIG_HUGETLB_PAGE
1891 static unsigned long pagemap_hugetlb_category(pte_t pte)
1892 {
1893         unsigned long categories = PAGE_IS_HUGE;
1894
1895         /*
1896          * According to pagemap_hugetlb_range(), file-backed HugeTLB
1897          * page cannot be swapped. So PAGE_IS_FILE is not checked for
1898          * swapped pages.
1899          */
1900         if (pte_present(pte)) {
1901                 categories |= PAGE_IS_PRESENT;
1902                 if (!huge_pte_uffd_wp(pte))
1903                         categories |= PAGE_IS_WRITTEN;
1904                 if (!PageAnon(pte_page(pte)))
1905                         categories |= PAGE_IS_FILE;
1906                 if (is_zero_pfn(pte_pfn(pte)))
1907                         categories |= PAGE_IS_PFNZERO;
1908         } else if (is_swap_pte(pte)) {
1909                 categories |= PAGE_IS_SWAPPED;
1910                 if (!pte_swp_uffd_wp_any(pte))
1911                         categories |= PAGE_IS_WRITTEN;
1912         }
1913
1914         return categories;
1915 }
1916
1917 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
1918                                   unsigned long addr, pte_t *ptep,
1919                                   pte_t ptent)
1920 {
1921         unsigned long psize;
1922
1923         if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
1924                 return;
1925
1926         psize = huge_page_size(hstate_vma(vma));
1927
1928         if (is_hugetlb_entry_migration(ptent))
1929                 set_huge_pte_at(vma->vm_mm, addr, ptep,
1930                                 pte_swp_mkuffd_wp(ptent), psize);
1931         else if (!huge_pte_none(ptent))
1932                 huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
1933                                              huge_pte_mkuffd_wp(ptent));
1934         else
1935                 set_huge_pte_at(vma->vm_mm, addr, ptep,
1936                                 make_pte_marker(PTE_MARKER_UFFD_WP), psize);
1937 }
1938 #endif /* CONFIG_HUGETLB_PAGE */
1939
1940 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1941 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
1942                                        unsigned long addr, unsigned long end)
1943 {
1944         struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
1945
1946         if (cur_buf->start != addr)
1947                 cur_buf->end = addr;
1948         else
1949                 cur_buf->start = cur_buf->end = 0;
1950
1951         p->found_pages -= (end - addr) / PAGE_SIZE;
1952 }
1953 #endif
1954
1955 static bool pagemap_scan_is_interesting_page(unsigned long categories,
1956                                              const struct pagemap_scan_private *p)
1957 {
1958         categories ^= p->arg.category_inverted;
1959         if ((categories & p->arg.category_mask) != p->arg.category_mask)
1960                 return false;
1961         if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
1962                 return false;
1963
1964         return true;
1965 }
1966
1967 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
1968                                             const struct pagemap_scan_private *p)
1969 {
1970         unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
1971
1972         categories ^= p->arg.category_inverted;
1973         if ((categories & required) != required)
1974                 return false;
1975
1976         return true;
1977 }
1978
1979 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
1980                                   struct mm_walk *walk)
1981 {
1982         struct pagemap_scan_private *p = walk->private;
1983         struct vm_area_struct *vma = walk->vma;
1984         unsigned long vma_category = 0;
1985
1986         if (userfaultfd_wp_async(vma) && userfaultfd_wp_use_markers(vma))
1987                 vma_category |= PAGE_IS_WPALLOWED;
1988         else if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
1989                 return -EPERM;
1990
1991         if (vma->vm_flags & VM_PFNMAP)
1992                 return 1;
1993
1994         if (!pagemap_scan_is_interesting_vma(vma_category, p))
1995                 return 1;
1996
1997         p->cur_vma_category = vma_category;
1998
1999         return 0;
2000 }
2001
2002 static bool pagemap_scan_push_range(unsigned long categories,
2003                                     struct pagemap_scan_private *p,
2004                                     unsigned long addr, unsigned long end)
2005 {
2006         struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2007
2008         /*
2009          * When there is no output buffer provided at all, the sentinel values
2010          * won't match here. There is no other way for `cur_buf->end` to be
2011          * non-zero other than it being non-empty.
2012          */
2013         if (addr == cur_buf->end && categories == cur_buf->categories) {
2014                 cur_buf->end = end;
2015                 return true;
2016         }
2017
2018         if (cur_buf->end) {
2019                 if (p->vec_buf_index >= p->vec_buf_len - 1)
2020                         return false;
2021
2022                 cur_buf = &p->vec_buf[++p->vec_buf_index];
2023         }
2024
2025         cur_buf->start = addr;
2026         cur_buf->end = end;
2027         cur_buf->categories = categories;
2028
2029         return true;
2030 }
2031
2032 static int pagemap_scan_output(unsigned long categories,
2033                                struct pagemap_scan_private *p,
2034                                unsigned long addr, unsigned long *end)
2035 {
2036         unsigned long n_pages, total_pages;
2037         int ret = 0;
2038
2039         if (!p->vec_buf)
2040                 return 0;
2041
2042         categories &= p->arg.return_mask;
2043
2044         n_pages = (*end - addr) / PAGE_SIZE;
2045         if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2046             total_pages > p->arg.max_pages) {
2047                 size_t n_too_much = total_pages - p->arg.max_pages;
2048                 *end -= n_too_much * PAGE_SIZE;
2049                 n_pages -= n_too_much;
2050                 ret = -ENOSPC;
2051         }
2052
2053         if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2054                 *end = addr;
2055                 n_pages = 0;
2056                 ret = -ENOSPC;
2057         }
2058
2059         p->found_pages += n_pages;
2060         if (ret)
2061                 p->arg.walk_end = *end;
2062
2063         return ret;
2064 }
2065
2066 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2067                                   unsigned long end, struct mm_walk *walk)
2068 {
2069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2070         struct pagemap_scan_private *p = walk->private;
2071         struct vm_area_struct *vma = walk->vma;
2072         unsigned long categories;
2073         spinlock_t *ptl;
2074         int ret = 0;
2075
2076         ptl = pmd_trans_huge_lock(pmd, vma);
2077         if (!ptl)
2078                 return -ENOENT;
2079
2080         categories = p->cur_vma_category |
2081                      pagemap_thp_category(p, vma, start, *pmd);
2082
2083         if (!pagemap_scan_is_interesting_page(categories, p))
2084                 goto out_unlock;
2085
2086         ret = pagemap_scan_output(categories, p, start, &end);
2087         if (start == end)
2088                 goto out_unlock;
2089
2090         if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2091                 goto out_unlock;
2092         if (~categories & PAGE_IS_WRITTEN)
2093                 goto out_unlock;
2094
2095         /*
2096          * Break huge page into small pages if the WP operation
2097          * needs to be performed on a portion of the huge page.
2098          */
2099         if (end != start + HPAGE_SIZE) {
2100                 spin_unlock(ptl);
2101                 split_huge_pmd(vma, pmd, start);
2102                 pagemap_scan_backout_range(p, start, end);
2103                 /* Report as if there was no THP */
2104                 return -ENOENT;
2105         }
2106
2107         make_uffd_wp_pmd(vma, start, pmd);
2108         flush_tlb_range(vma, start, end);
2109 out_unlock:
2110         spin_unlock(ptl);
2111         return ret;
2112 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2113         return -ENOENT;
2114 #endif
2115 }
2116
2117 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2118                                   unsigned long end, struct mm_walk *walk)
2119 {
2120         struct pagemap_scan_private *p = walk->private;
2121         struct vm_area_struct *vma = walk->vma;
2122         unsigned long addr, flush_end = 0;
2123         pte_t *pte, *start_pte;
2124         spinlock_t *ptl;
2125         int ret;
2126
2127         arch_enter_lazy_mmu_mode();
2128
2129         ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2130         if (ret != -ENOENT) {
2131                 arch_leave_lazy_mmu_mode();
2132                 return ret;
2133         }
2134
2135         ret = 0;
2136         start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2137         if (!pte) {
2138                 arch_leave_lazy_mmu_mode();
2139                 walk->action = ACTION_AGAIN;
2140                 return 0;
2141         }
2142
2143         if (!p->vec_out) {
2144                 /* Fast path for performing exclusive WP */
2145                 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2146                         if (pte_uffd_wp(ptep_get(pte)))
2147                                 continue;
2148                         make_uffd_wp_pte(vma, addr, pte);
2149                         if (!flush_end)
2150                                 start = addr;
2151                         flush_end = addr + PAGE_SIZE;
2152                 }
2153                 goto flush_and_return;
2154         }
2155
2156         if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2157             p->arg.category_mask == PAGE_IS_WRITTEN &&
2158             p->arg.return_mask == PAGE_IS_WRITTEN) {
2159                 for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2160                         unsigned long next = addr + PAGE_SIZE;
2161
2162                         if (pte_uffd_wp(ptep_get(pte)))
2163                                 continue;
2164                         ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2165                                                   p, addr, &next);
2166                         if (next == addr)
2167                                 break;
2168                         if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2169                                 continue;
2170                         make_uffd_wp_pte(vma, addr, pte);
2171                         if (!flush_end)
2172                                 start = addr;
2173                         flush_end = next;
2174                 }
2175                 goto flush_and_return;
2176         }
2177
2178         for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2179                 unsigned long categories = p->cur_vma_category |
2180                                            pagemap_page_category(p, vma, addr, ptep_get(pte));
2181                 unsigned long next = addr + PAGE_SIZE;
2182
2183                 if (!pagemap_scan_is_interesting_page(categories, p))
2184                         continue;
2185
2186                 ret = pagemap_scan_output(categories, p, addr, &next);
2187                 if (next == addr)
2188                         break;
2189
2190                 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2191                         continue;
2192                 if (~categories & PAGE_IS_WRITTEN)
2193                         continue;
2194
2195                 make_uffd_wp_pte(vma, addr, pte);
2196                 if (!flush_end)
2197                         start = addr;
2198                 flush_end = next;
2199         }
2200
2201 flush_and_return:
2202         if (flush_end)
2203                 flush_tlb_range(vma, start, addr);
2204
2205         pte_unmap_unlock(start_pte, ptl);
2206         arch_leave_lazy_mmu_mode();
2207
2208         cond_resched();
2209         return ret;
2210 }
2211
2212 #ifdef CONFIG_HUGETLB_PAGE
2213 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2214                                       unsigned long start, unsigned long end,
2215                                       struct mm_walk *walk)
2216 {
2217         struct pagemap_scan_private *p = walk->private;
2218         struct vm_area_struct *vma = walk->vma;
2219         unsigned long categories;
2220         spinlock_t *ptl;
2221         int ret = 0;
2222         pte_t pte;
2223
2224         if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2225                 /* Go the short route when not write-protecting pages. */
2226
2227                 pte = huge_ptep_get(ptep);
2228                 categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2229
2230                 if (!pagemap_scan_is_interesting_page(categories, p))
2231                         return 0;
2232
2233                 return pagemap_scan_output(categories, p, start, &end);
2234         }
2235
2236         i_mmap_lock_write(vma->vm_file->f_mapping);
2237         ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2238
2239         pte = huge_ptep_get(ptep);
2240         categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2241
2242         if (!pagemap_scan_is_interesting_page(categories, p))
2243                 goto out_unlock;
2244
2245         ret = pagemap_scan_output(categories, p, start, &end);
2246         if (start == end)
2247                 goto out_unlock;
2248
2249         if (~categories & PAGE_IS_WRITTEN)
2250                 goto out_unlock;
2251
2252         if (end != start + HPAGE_SIZE) {
2253                 /* Partial HugeTLB page WP isn't possible. */
2254                 pagemap_scan_backout_range(p, start, end);
2255                 p->arg.walk_end = start;
2256                 ret = 0;
2257                 goto out_unlock;
2258         }
2259
2260         make_uffd_wp_huge_pte(vma, start, ptep, pte);
2261         flush_hugetlb_tlb_range(vma, start, end);
2262
2263 out_unlock:
2264         spin_unlock(ptl);
2265         i_mmap_unlock_write(vma->vm_file->f_mapping);
2266
2267         return ret;
2268 }
2269 #else
2270 #define pagemap_scan_hugetlb_entry NULL
2271 #endif
2272
2273 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2274                                  int depth, struct mm_walk *walk)
2275 {
2276         struct pagemap_scan_private *p = walk->private;
2277         struct vm_area_struct *vma = walk->vma;
2278         int ret, err;
2279
2280         if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2281                 return 0;
2282
2283         ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2284         if (addr == end)
2285                 return ret;
2286
2287         if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2288                 return ret;
2289
2290         err = uffd_wp_range(vma, addr, end - addr, true);
2291         if (err < 0)
2292                 ret = err;
2293
2294         return ret;
2295 }
2296
2297 static const struct mm_walk_ops pagemap_scan_ops = {
2298         .test_walk = pagemap_scan_test_walk,
2299         .pmd_entry = pagemap_scan_pmd_entry,
2300         .pte_hole = pagemap_scan_pte_hole,
2301         .hugetlb_entry = pagemap_scan_hugetlb_entry,
2302 };
2303
2304 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2305                                  unsigned long uarg)
2306 {
2307         if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2308                 return -EFAULT;
2309
2310         if (arg->size != sizeof(struct pm_scan_arg))
2311                 return -EINVAL;
2312
2313         /* Validate requested features */
2314         if (arg->flags & ~PM_SCAN_FLAGS)
2315                 return -EINVAL;
2316         if ((arg->category_inverted | arg->category_mask |
2317              arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2318                 return -EINVAL;
2319
2320         arg->start = untagged_addr((unsigned long)arg->start);
2321         arg->end = untagged_addr((unsigned long)arg->end);
2322         arg->vec = untagged_addr((unsigned long)arg->vec);
2323
2324         /* Validate memory pointers */
2325         if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2326                 return -EINVAL;
2327         if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2328                 return -EFAULT;
2329         if (!arg->vec && arg->vec_len)
2330                 return -EINVAL;
2331         if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2332                               arg->vec_len * sizeof(struct page_region)))
2333                 return -EFAULT;
2334
2335         /* Fixup default values */
2336         arg->end = ALIGN(arg->end, PAGE_SIZE);
2337         arg->walk_end = 0;
2338         if (!arg->max_pages)
2339                 arg->max_pages = ULONG_MAX;
2340
2341         return 0;
2342 }
2343
2344 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2345                                        unsigned long uargl)
2346 {
2347         struct pm_scan_arg __user *uarg = (void __user *)uargl;
2348
2349         if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2350                 return -EFAULT;
2351
2352         return 0;
2353 }
2354
2355 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2356 {
2357         if (!p->arg.vec_len)
2358                 return 0;
2359
2360         p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2361                                p->arg.vec_len);
2362         p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2363                                    GFP_KERNEL);
2364         if (!p->vec_buf)
2365                 return -ENOMEM;
2366
2367         p->vec_buf->start = p->vec_buf->end = 0;
2368         p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2369
2370         return 0;
2371 }
2372
2373 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2374 {
2375         const struct page_region *buf = p->vec_buf;
2376         long n = p->vec_buf_index;
2377
2378         if (!p->vec_buf)
2379                 return 0;
2380
2381         if (buf[n].end != buf[n].start)
2382                 n++;
2383
2384         if (!n)
2385                 return 0;
2386
2387         if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2388                 return -EFAULT;
2389
2390         p->arg.vec_len -= n;
2391         p->vec_out += n;
2392
2393         p->vec_buf_index = 0;
2394         p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2395         p->vec_buf->start = p->vec_buf->end = 0;
2396
2397         return n;
2398 }
2399
2400 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2401 {
2402         struct mmu_notifier_range range;
2403         struct pagemap_scan_private p = {0};
2404         unsigned long walk_start;
2405         size_t n_ranges_out = 0;
2406         int ret;
2407
2408         ret = pagemap_scan_get_args(&p.arg, uarg);
2409         if (ret)
2410                 return ret;
2411
2412         p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2413                               p.arg.return_mask;
2414         ret = pagemap_scan_init_bounce_buffer(&p);
2415         if (ret)
2416                 return ret;
2417
2418         /* Protection change for the range is going to happen. */
2419         if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2420                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2421                                         mm, p.arg.start, p.arg.end);
2422                 mmu_notifier_invalidate_range_start(&range);
2423         }
2424
2425         for (walk_start = p.arg.start; walk_start < p.arg.end;
2426                         walk_start = p.arg.walk_end) {
2427                 long n_out;
2428
2429                 if (fatal_signal_pending(current)) {
2430                         ret = -EINTR;
2431                         break;
2432                 }
2433
2434                 ret = mmap_read_lock_killable(mm);
2435                 if (ret)
2436                         break;
2437                 ret = walk_page_range(mm, walk_start, p.arg.end,
2438                                       &pagemap_scan_ops, &p);
2439                 mmap_read_unlock(mm);
2440
2441                 n_out = pagemap_scan_flush_buffer(&p);
2442                 if (n_out < 0)
2443                         ret = n_out;
2444                 else
2445                         n_ranges_out += n_out;
2446
2447                 if (ret != -ENOSPC)
2448                         break;
2449
2450                 if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2451                         break;
2452         }
2453
2454         /* ENOSPC signifies early stop (buffer full) from the walk. */
2455         if (!ret || ret == -ENOSPC)
2456                 ret = n_ranges_out;
2457
2458         /* The walk_end isn't set when ret is zero */
2459         if (!p.arg.walk_end)
2460                 p.arg.walk_end = p.arg.end;
2461         if (pagemap_scan_writeback_args(&p.arg, uarg))
2462                 ret = -EFAULT;
2463
2464         if (p.arg.flags & PM_SCAN_WP_MATCHING)
2465                 mmu_notifier_invalidate_range_end(&range);
2466
2467         kfree(p.vec_buf);
2468         return ret;
2469 }
2470
2471 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2472                            unsigned long arg)
2473 {
2474         struct mm_struct *mm = file->private_data;
2475
2476         switch (cmd) {
2477         case PAGEMAP_SCAN:
2478                 return do_pagemap_scan(mm, arg);
2479
2480         default:
2481                 return -EINVAL;
2482         }
2483 }
2484
2485 const struct file_operations proc_pagemap_operations = {
2486         .llseek         = mem_lseek, /* borrow this */
2487         .read           = pagemap_read,
2488         .open           = pagemap_open,
2489         .release        = pagemap_release,
2490         .unlocked_ioctl = do_pagemap_cmd,
2491         .compat_ioctl   = do_pagemap_cmd,
2492 };
2493 #endif /* CONFIG_PROC_PAGE_MONITOR */
2494
2495 #ifdef CONFIG_NUMA
2496
2497 struct numa_maps {
2498         unsigned long pages;
2499         unsigned long anon;
2500         unsigned long active;
2501         unsigned long writeback;
2502         unsigned long mapcount_max;
2503         unsigned long dirty;
2504         unsigned long swapcache;
2505         unsigned long node[MAX_NUMNODES];
2506 };
2507
2508 struct numa_maps_private {
2509         struct proc_maps_private proc_maps;
2510         struct numa_maps md;
2511 };
2512
2513 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2514                         unsigned long nr_pages)
2515 {
2516         int count = page_mapcount(page);
2517
2518         md->pages += nr_pages;
2519         if (pte_dirty || PageDirty(page))
2520                 md->dirty += nr_pages;
2521
2522         if (PageSwapCache(page))
2523                 md->swapcache += nr_pages;
2524
2525         if (PageActive(page) || PageUnevictable(page))
2526                 md->active += nr_pages;
2527
2528         if (PageWriteback(page))
2529                 md->writeback += nr_pages;
2530
2531         if (PageAnon(page))
2532                 md->anon += nr_pages;
2533
2534         if (count > md->mapcount_max)
2535                 md->mapcount_max = count;
2536
2537         md->node[page_to_nid(page)] += nr_pages;
2538 }
2539
2540 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2541                 unsigned long addr)
2542 {
2543         struct page *page;
2544         int nid;
2545
2546         if (!pte_present(pte))
2547                 return NULL;
2548
2549         page = vm_normal_page(vma, addr, pte);
2550         if (!page || is_zone_device_page(page))
2551                 return NULL;
2552
2553         if (PageReserved(page))
2554                 return NULL;
2555
2556         nid = page_to_nid(page);
2557         if (!node_isset(nid, node_states[N_MEMORY]))
2558                 return NULL;
2559
2560         return page;
2561 }
2562
2563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2564 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2565                                               struct vm_area_struct *vma,
2566                                               unsigned long addr)
2567 {
2568         struct page *page;
2569         int nid;
2570
2571         if (!pmd_present(pmd))
2572                 return NULL;
2573
2574         page = vm_normal_page_pmd(vma, addr, pmd);
2575         if (!page)
2576                 return NULL;
2577
2578         if (PageReserved(page))
2579                 return NULL;
2580
2581         nid = page_to_nid(page);
2582         if (!node_isset(nid, node_states[N_MEMORY]))
2583                 return NULL;
2584
2585         return page;
2586 }
2587 #endif
2588
2589 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2590                 unsigned long end, struct mm_walk *walk)
2591 {
2592         struct numa_maps *md = walk->private;
2593         struct vm_area_struct *vma = walk->vma;
2594         spinlock_t *ptl;
2595         pte_t *orig_pte;
2596         pte_t *pte;
2597
2598 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2599         ptl = pmd_trans_huge_lock(pmd, vma);
2600         if (ptl) {
2601                 struct page *page;
2602
2603                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2604                 if (page)
2605                         gather_stats(page, md, pmd_dirty(*pmd),
2606                                      HPAGE_PMD_SIZE/PAGE_SIZE);
2607                 spin_unlock(ptl);
2608                 return 0;
2609         }
2610 #endif
2611         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2612         if (!pte) {
2613                 walk->action = ACTION_AGAIN;
2614                 return 0;
2615         }
2616         do {
2617                 pte_t ptent = ptep_get(pte);
2618                 struct page *page = can_gather_numa_stats(ptent, vma, addr);
2619                 if (!page)
2620                         continue;
2621                 gather_stats(page, md, pte_dirty(ptent), 1);
2622
2623         } while (pte++, addr += PAGE_SIZE, addr != end);
2624         pte_unmap_unlock(orig_pte, ptl);
2625         cond_resched();
2626         return 0;
2627 }
2628 #ifdef CONFIG_HUGETLB_PAGE
2629 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2630                 unsigned long addr, unsigned long end, struct mm_walk *walk)
2631 {
2632         pte_t huge_pte = huge_ptep_get(pte);
2633         struct numa_maps *md;
2634         struct page *page;
2635
2636         if (!pte_present(huge_pte))
2637                 return 0;
2638
2639         page = pte_page(huge_pte);
2640
2641         md = walk->private;
2642         gather_stats(page, md, pte_dirty(huge_pte), 1);
2643         return 0;
2644 }
2645
2646 #else
2647 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2648                 unsigned long addr, unsigned long end, struct mm_walk *walk)
2649 {
2650         return 0;
2651 }
2652 #endif
2653
2654 static const struct mm_walk_ops show_numa_ops = {
2655         .hugetlb_entry = gather_hugetlb_stats,
2656         .pmd_entry = gather_pte_stats,
2657         .walk_lock = PGWALK_RDLOCK,
2658 };
2659
2660 /*
2661  * Display pages allocated per node and memory policy via /proc.
2662  */
2663 static int show_numa_map(struct seq_file *m, void *v)
2664 {
2665         struct numa_maps_private *numa_priv = m->private;
2666         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
2667         struct vm_area_struct *vma = v;
2668         struct numa_maps *md = &numa_priv->md;
2669         struct file *file = vma->vm_file;
2670         struct mm_struct *mm = vma->vm_mm;
2671         char buffer[64];
2672         struct mempolicy *pol;
2673         pgoff_t ilx;
2674         int nid;
2675
2676         if (!mm)
2677                 return 0;
2678
2679         /* Ensure we start with an empty set of numa_maps statistics. */
2680         memset(md, 0, sizeof(*md));
2681
2682         pol = __get_vma_policy(vma, vma->vm_start, &ilx);
2683         if (pol) {
2684                 mpol_to_str(buffer, sizeof(buffer), pol);
2685                 mpol_cond_put(pol);
2686         } else {
2687                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
2688         }
2689
2690         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2691
2692         if (file) {
2693                 seq_puts(m, " file=");
2694                 seq_path(m, file_user_path(file), "\n\t= ");
2695         } else if (vma_is_initial_heap(vma)) {
2696                 seq_puts(m, " heap");
2697         } else if (vma_is_initial_stack(vma)) {
2698                 seq_puts(m, " stack");
2699         }
2700
2701         if (is_vm_hugetlb_page(vma))
2702                 seq_puts(m, " huge");
2703
2704         /* mmap_lock is held by m_start */
2705         walk_page_vma(vma, &show_numa_ops, md);
2706
2707         if (!md->pages)
2708                 goto out;
2709
2710         if (md->anon)
2711                 seq_printf(m, " anon=%lu", md->anon);
2712
2713         if (md->dirty)
2714                 seq_printf(m, " dirty=%lu", md->dirty);
2715
2716         if (md->pages != md->anon && md->pages != md->dirty)
2717                 seq_printf(m, " mapped=%lu", md->pages);
2718
2719         if (md->mapcount_max > 1)
2720                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2721
2722         if (md->swapcache)
2723                 seq_printf(m, " swapcache=%lu", md->swapcache);
2724
2725         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2726                 seq_printf(m, " active=%lu", md->active);
2727
2728         if (md->writeback)
2729                 seq_printf(m, " writeback=%lu", md->writeback);
2730
2731         for_each_node_state(nid, N_MEMORY)
2732                 if (md->node[nid])
2733                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2734
2735         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2736 out:
2737         seq_putc(m, '\n');
2738         return 0;
2739 }
2740
2741 static const struct seq_operations proc_pid_numa_maps_op = {
2742         .start  = m_start,
2743         .next   = m_next,
2744         .stop   = m_stop,
2745         .show   = show_numa_map,
2746 };
2747
2748 static int pid_numa_maps_open(struct inode *inode, struct file *file)
2749 {
2750         return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2751                                 sizeof(struct numa_maps_private));
2752 }
2753
2754 const struct file_operations proc_pid_numa_maps_operations = {
2755         .open           = pid_numa_maps_open,
2756         .read           = seq_read,
2757         .llseek         = seq_lseek,
2758         .release        = proc_map_release,
2759 };
2760
2761 #endif /* CONFIG_NUMA */
This page took 0.17722 seconds and 4 git commands to generate.