1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
39 #include <asm/pgalloc.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
48 #include "hugetlb_vmemmap.h"
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
68 static unsigned long hugetlb_cma_size __initdata;
70 __initdata LIST_HEAD(huge_boot_pages);
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
83 DEFINE_SPINLOCK(hugetlb_lock);
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 unsigned long start, unsigned long end);
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
115 spin_unlock_irqrestore(&spool->lock, irq_flags);
117 /* If no pages are used, and no other handles to the subpool
118 * remain, give up any reservations based on minimum size and
119 * free the subpool */
120 if (subpool_is_free(spool)) {
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 struct hugepage_subpool *spool;
133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137 spin_lock_init(&spool->lock);
139 spool->max_hpages = max_hpages;
141 spool->min_hpages = min_hpages;
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147 spool->rsv_hpages = min_hpages;
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 spin_lock_irqsave(&spool->lock, flags);
157 BUG_ON(!spool->count);
159 unlock_or_release_subpool(spool, flags);
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
165 * request. Otherwise, return the number of pages by which the
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
168 * a subpool minimum size must be maintained.
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
178 spin_lock_irq(&spool->lock);
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 if (delta > spool->rsv_hpages) {
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
205 spin_unlock_irq(&spool->lock);
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
224 spin_lock_irqsave(&spool->lock, flags);
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
245 unlock_or_release_subpool(spool, flags);
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
252 return HUGETLBFS_SB(inode->i_sb)->spool;
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
257 return subpool_inode(file_inode(vma->vm_file));
261 * hugetlb vma_lock helper routines
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
265 if (__vma_shareable_lock(vma)) {
266 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
268 down_read(&vma_lock->rw_sema);
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
274 if (__vma_shareable_lock(vma)) {
275 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
277 up_read(&vma_lock->rw_sema);
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
283 if (__vma_shareable_lock(vma)) {
284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
286 down_write(&vma_lock->rw_sema);
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
292 if (__vma_shareable_lock(vma)) {
293 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295 up_write(&vma_lock->rw_sema);
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
301 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303 if (!__vma_shareable_lock(vma))
306 return down_write_trylock(&vma_lock->rw_sema);
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
311 if (__vma_shareable_lock(vma)) {
312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
314 lockdep_assert_held(&vma_lock->rw_sema);
318 void hugetlb_vma_lock_release(struct kref *kref)
320 struct hugetlb_vma_lock *vma_lock = container_of(kref,
321 struct hugetlb_vma_lock, refs);
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
328 struct vm_area_struct *vma = vma_lock->vma;
331 * vma_lock structure may or not be released as a result of put,
332 * it certainly will no longer be attached to vma so clear pointer.
333 * Semaphore synchronizes access to vma_lock->vma field.
335 vma_lock->vma = NULL;
336 vma->vm_private_data = NULL;
337 up_write(&vma_lock->rw_sema);
338 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
343 if (__vma_shareable_lock(vma)) {
344 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
346 __hugetlb_vma_unlock_write_put(vma_lock);
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
353 * Only present in sharable vmas.
355 if (!vma || !__vma_shareable_lock(vma))
358 if (vma->vm_private_data) {
359 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
361 down_write(&vma_lock->rw_sema);
362 __hugetlb_vma_unlock_write_put(vma_lock);
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
368 struct hugetlb_vma_lock *vma_lock;
370 /* Only establish in (flags) sharable vmas */
371 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
374 /* Should never get here with non-NULL vm_private_data */
375 if (vma->vm_private_data)
378 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
381 * If we can not allocate structure, then vma can not
382 * participate in pmd sharing. This is only a possible
383 * performance enhancement and memory saving issue.
384 * However, the lock is also used to synchronize page
385 * faults with truncation. If the lock is not present,
386 * unlikely races could leave pages in a file past i_size
387 * until the file is removed. Warn in the unlikely case of
388 * allocation failure.
390 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
394 kref_init(&vma_lock->refs);
395 init_rwsem(&vma_lock->rw_sema);
397 vma->vm_private_data = vma_lock;
400 /* Helper that removes a struct file_region from the resv_map cache and returns
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
406 struct file_region *nrg;
408 VM_BUG_ON(resv->region_cache_count <= 0);
410 resv->region_cache_count--;
411 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412 list_del(&nrg->link);
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421 struct file_region *rg)
423 #ifdef CONFIG_CGROUP_HUGETLB
424 nrg->reservation_counter = rg->reservation_counter;
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
434 struct resv_map *resv,
435 struct file_region *nrg)
437 #ifdef CONFIG_CGROUP_HUGETLB
439 nrg->reservation_counter =
440 &h_cg->rsvd_hugepage[hstate_index(h)];
441 nrg->css = &h_cg->css;
443 * The caller will hold exactly one h_cg->css reference for the
444 * whole contiguous reservation region. But this area might be
445 * scattered when there are already some file_regions reside in
446 * it. As a result, many file_regions may share only one css
447 * reference. In order to ensure that one file_region must hold
448 * exactly one h_cg->css reference, we should do css_get for
449 * each file_region and leave the reference held by caller
453 if (!resv->pages_per_hpage)
454 resv->pages_per_hpage = pages_per_huge_page(h);
455 /* pages_per_hpage should be the same for all entries in
458 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
460 nrg->reservation_counter = NULL;
466 static void put_uncharge_info(struct file_region *rg)
468 #ifdef CONFIG_CGROUP_HUGETLB
474 static bool has_same_uncharge_info(struct file_region *rg,
475 struct file_region *org)
477 #ifdef CONFIG_CGROUP_HUGETLB
478 return rg->reservation_counter == org->reservation_counter &&
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
488 struct file_region *nrg, *prg;
490 prg = list_prev_entry(rg, link);
491 if (&prg->link != &resv->regions && prg->to == rg->from &&
492 has_same_uncharge_info(prg, rg)) {
496 put_uncharge_info(rg);
502 nrg = list_next_entry(rg, link);
503 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504 has_same_uncharge_info(nrg, rg)) {
505 nrg->from = rg->from;
508 put_uncharge_info(rg);
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515 long to, struct hstate *h, struct hugetlb_cgroup *cg,
516 long *regions_needed)
518 struct file_region *nrg;
520 if (!regions_needed) {
521 nrg = get_file_region_entry_from_cache(map, from, to);
522 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523 list_add(&nrg->link, rg);
524 coalesce_file_region(map, nrg);
526 *regions_needed += 1;
532 * Must be called with resv->lock held.
534 * Calling this with regions_needed != NULL will count the number of pages
535 * to be added but will not modify the linked list. And regions_needed will
536 * indicate the number of file_regions needed in the cache to carry out to add
537 * the regions for this range.
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540 struct hugetlb_cgroup *h_cg,
541 struct hstate *h, long *regions_needed)
544 struct list_head *head = &resv->regions;
545 long last_accounted_offset = f;
546 struct file_region *iter, *trg = NULL;
547 struct list_head *rg = NULL;
552 /* In this loop, we essentially handle an entry for the range
553 * [last_accounted_offset, iter->from), at every iteration, with some
556 list_for_each_entry_safe(iter, trg, head, link) {
557 /* Skip irrelevant regions that start before our range. */
558 if (iter->from < f) {
559 /* If this region ends after the last accounted offset,
560 * then we need to update last_accounted_offset.
562 if (iter->to > last_accounted_offset)
563 last_accounted_offset = iter->to;
567 /* When we find a region that starts beyond our range, we've
570 if (iter->from >= t) {
571 rg = iter->link.prev;
575 /* Add an entry for last_accounted_offset -> iter->from, and
576 * update last_accounted_offset.
578 if (iter->from > last_accounted_offset)
579 add += hugetlb_resv_map_add(resv, iter->link.prev,
580 last_accounted_offset,
584 last_accounted_offset = iter->to;
587 /* Handle the case where our range extends beyond
588 * last_accounted_offset.
592 if (last_accounted_offset < t)
593 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594 t, h, h_cg, regions_needed);
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
601 static int allocate_file_region_entries(struct resv_map *resv,
603 __must_hold(&resv->lock)
605 LIST_HEAD(allocated_regions);
606 int to_allocate = 0, i = 0;
607 struct file_region *trg = NULL, *rg = NULL;
609 VM_BUG_ON(regions_needed < 0);
612 * Check for sufficient descriptors in the cache to accommodate
613 * the number of in progress add operations plus regions_needed.
615 * This is a while loop because when we drop the lock, some other call
616 * to region_add or region_del may have consumed some region_entries,
617 * so we keep looping here until we finally have enough entries for
618 * (adds_in_progress + regions_needed).
620 while (resv->region_cache_count <
621 (resv->adds_in_progress + regions_needed)) {
622 to_allocate = resv->adds_in_progress + regions_needed -
623 resv->region_cache_count;
625 /* At this point, we should have enough entries in the cache
626 * for all the existing adds_in_progress. We should only be
627 * needing to allocate for regions_needed.
629 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
631 spin_unlock(&resv->lock);
632 for (i = 0; i < to_allocate; i++) {
633 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
636 list_add(&trg->link, &allocated_regions);
639 spin_lock(&resv->lock);
641 list_splice(&allocated_regions, &resv->region_cache);
642 resv->region_cache_count += to_allocate;
648 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
656 * Add the huge page range represented by [f, t) to the reserve
657 * map. Regions will be taken from the cache to fill in this range.
658 * Sufficient regions should exist in the cache due to the previous
659 * call to region_chg with the same range, but in some cases the cache will not
660 * have sufficient entries due to races with other code doing region_add or
661 * region_del. The extra needed entries will be allocated.
663 * regions_needed is the out value provided by a previous call to region_chg.
665 * Return the number of new huge pages added to the map. This number is greater
666 * than or equal to zero. If file_region entries needed to be allocated for
667 * this operation and we were not able to allocate, it returns -ENOMEM.
668 * region_add of regions of length 1 never allocate file_regions and cannot
669 * fail; region_chg will always allocate at least 1 entry and a region_add for
670 * 1 page will only require at most 1 entry.
672 static long region_add(struct resv_map *resv, long f, long t,
673 long in_regions_needed, struct hstate *h,
674 struct hugetlb_cgroup *h_cg)
676 long add = 0, actual_regions_needed = 0;
678 spin_lock(&resv->lock);
681 /* Count how many regions are actually needed to execute this add. */
682 add_reservation_in_range(resv, f, t, NULL, NULL,
683 &actual_regions_needed);
686 * Check for sufficient descriptors in the cache to accommodate
687 * this add operation. Note that actual_regions_needed may be greater
688 * than in_regions_needed, as the resv_map may have been modified since
689 * the region_chg call. In this case, we need to make sure that we
690 * allocate extra entries, such that we have enough for all the
691 * existing adds_in_progress, plus the excess needed for this
694 if (actual_regions_needed > in_regions_needed &&
695 resv->region_cache_count <
696 resv->adds_in_progress +
697 (actual_regions_needed - in_regions_needed)) {
698 /* region_add operation of range 1 should never need to
699 * allocate file_region entries.
701 VM_BUG_ON(t - f <= 1);
703 if (allocate_file_region_entries(
704 resv, actual_regions_needed - in_regions_needed)) {
711 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
713 resv->adds_in_progress -= in_regions_needed;
715 spin_unlock(&resv->lock);
720 * Examine the existing reserve map and determine how many
721 * huge pages in the specified range [f, t) are NOT currently
722 * represented. This routine is called before a subsequent
723 * call to region_add that will actually modify the reserve
724 * map to add the specified range [f, t). region_chg does
725 * not change the number of huge pages represented by the
726 * map. A number of new file_region structures is added to the cache as a
727 * placeholder, for the subsequent region_add call to use. At least 1
728 * file_region structure is added.
730 * out_regions_needed is the number of regions added to the
731 * resv->adds_in_progress. This value needs to be provided to a follow up call
732 * to region_add or region_abort for proper accounting.
734 * Returns the number of huge pages that need to be added to the existing
735 * reservation map for the range [f, t). This number is greater or equal to
736 * zero. -ENOMEM is returned if a new file_region structure or cache entry
737 * is needed and can not be allocated.
739 static long region_chg(struct resv_map *resv, long f, long t,
740 long *out_regions_needed)
744 spin_lock(&resv->lock);
746 /* Count how many hugepages in this range are NOT represented. */
747 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
750 if (*out_regions_needed == 0)
751 *out_regions_needed = 1;
753 if (allocate_file_region_entries(resv, *out_regions_needed))
756 resv->adds_in_progress += *out_regions_needed;
758 spin_unlock(&resv->lock);
763 * Abort the in progress add operation. The adds_in_progress field
764 * of the resv_map keeps track of the operations in progress between
765 * calls to region_chg and region_add. Operations are sometimes
766 * aborted after the call to region_chg. In such cases, region_abort
767 * is called to decrement the adds_in_progress counter. regions_needed
768 * is the value returned by the region_chg call, it is used to decrement
769 * the adds_in_progress counter.
771 * NOTE: The range arguments [f, t) are not needed or used in this
772 * routine. They are kept to make reading the calling code easier as
773 * arguments will match the associated region_chg call.
775 static void region_abort(struct resv_map *resv, long f, long t,
778 spin_lock(&resv->lock);
779 VM_BUG_ON(!resv->region_cache_count);
780 resv->adds_in_progress -= regions_needed;
781 spin_unlock(&resv->lock);
785 * Delete the specified range [f, t) from the reserve map. If the
786 * t parameter is LONG_MAX, this indicates that ALL regions after f
787 * should be deleted. Locate the regions which intersect [f, t)
788 * and either trim, delete or split the existing regions.
790 * Returns the number of huge pages deleted from the reserve map.
791 * In the normal case, the return value is zero or more. In the
792 * case where a region must be split, a new region descriptor must
793 * be allocated. If the allocation fails, -ENOMEM will be returned.
794 * NOTE: If the parameter t == LONG_MAX, then we will never split
795 * a region and possibly return -ENOMEM. Callers specifying
796 * t == LONG_MAX do not need to check for -ENOMEM error.
798 static long region_del(struct resv_map *resv, long f, long t)
800 struct list_head *head = &resv->regions;
801 struct file_region *rg, *trg;
802 struct file_region *nrg = NULL;
806 spin_lock(&resv->lock);
807 list_for_each_entry_safe(rg, trg, head, link) {
809 * Skip regions before the range to be deleted. file_region
810 * ranges are normally of the form [from, to). However, there
811 * may be a "placeholder" entry in the map which is of the form
812 * (from, to) with from == to. Check for placeholder entries
813 * at the beginning of the range to be deleted.
815 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
821 if (f > rg->from && t < rg->to) { /* Must split region */
823 * Check for an entry in the cache before dropping
824 * lock and attempting allocation.
827 resv->region_cache_count > resv->adds_in_progress) {
828 nrg = list_first_entry(&resv->region_cache,
831 list_del(&nrg->link);
832 resv->region_cache_count--;
836 spin_unlock(&resv->lock);
837 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
844 hugetlb_cgroup_uncharge_file_region(
845 resv, rg, t - f, false);
847 /* New entry for end of split region */
851 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
853 INIT_LIST_HEAD(&nrg->link);
855 /* Original entry is trimmed */
858 list_add(&nrg->link, &rg->link);
863 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864 del += rg->to - rg->from;
865 hugetlb_cgroup_uncharge_file_region(resv, rg,
866 rg->to - rg->from, true);
872 if (f <= rg->from) { /* Trim beginning of region */
873 hugetlb_cgroup_uncharge_file_region(resv, rg,
874 t - rg->from, false);
878 } else { /* Trim end of region */
879 hugetlb_cgroup_uncharge_file_region(resv, rg,
887 spin_unlock(&resv->lock);
893 * A rare out of memory error was encountered which prevented removal of
894 * the reserve map region for a page. The huge page itself was free'ed
895 * and removed from the page cache. This routine will adjust the subpool
896 * usage count, and the global reserve count if needed. By incrementing
897 * these counts, the reserve map entry which could not be deleted will
898 * appear as a "reserved" entry instead of simply dangling with incorrect
901 void hugetlb_fix_reserve_counts(struct inode *inode)
903 struct hugepage_subpool *spool = subpool_inode(inode);
905 bool reserved = false;
907 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908 if (rsv_adjust > 0) {
909 struct hstate *h = hstate_inode(inode);
911 if (!hugetlb_acct_memory(h, 1))
913 } else if (!rsv_adjust) {
918 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
922 * Count and return the number of huge pages in the reserve map
923 * that intersect with the range [f, t).
925 static long region_count(struct resv_map *resv, long f, long t)
927 struct list_head *head = &resv->regions;
928 struct file_region *rg;
931 spin_lock(&resv->lock);
932 /* Locate each segment we overlap with, and count that overlap. */
933 list_for_each_entry(rg, head, link) {
942 seg_from = max(rg->from, f);
943 seg_to = min(rg->to, t);
945 chg += seg_to - seg_from;
947 spin_unlock(&resv->lock);
953 * Convert the address within this vma to the page offset within
954 * the mapping, in pagecache page units; huge pages here.
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957 struct vm_area_struct *vma, unsigned long address)
959 return ((address - vma->vm_start) >> huge_page_shift(h)) +
960 (vma->vm_pgoff >> huge_page_order(h));
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964 unsigned long address)
966 return vma_hugecache_offset(hstate_vma(vma), vma, address);
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
971 * Return the size of the pages allocated when backing a VMA. In the majority
972 * cases this will be same size as used by the page table entries.
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
976 if (vma->vm_ops && vma->vm_ops->pagesize)
977 return vma->vm_ops->pagesize(vma);
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
983 * Return the page size being used by the MMU to back a VMA. In the majority
984 * of cases, the page size used by the kernel matches the MMU size. On
985 * architectures where it differs, an architecture-specific 'strong'
986 * version of this symbol is required.
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
990 return vma_kernel_pagesize(vma);
994 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
995 * bits of the reservation map pointer, which are always clear due to
998 #define HPAGE_RESV_OWNER (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1003 * These helpers are used to track how many pages are reserved for
1004 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005 * is guaranteed to have their future faults succeed.
1007 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008 * the reserve counters are updated with the hugetlb_lock held. It is safe
1009 * to reset the VMA at fork() time as it is not in use yet and there is no
1010 * chance of the global counters getting corrupted as a result of the values.
1012 * The private mapping reservation is represented in a subtly different
1013 * manner to a shared mapping. A shared mapping has a region map associated
1014 * with the underlying file, this region map represents the backing file
1015 * pages which have ever had a reservation assigned which this persists even
1016 * after the page is instantiated. A private mapping has a region map
1017 * associated with the original mmap which is attached to all VMAs which
1018 * reference it, this region map represents those offsets which have consumed
1019 * reservation ie. where pages have been instantiated.
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1023 return (unsigned long)vma->vm_private_data;
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027 unsigned long value)
1029 vma->vm_private_data = (void *)value;
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034 struct hugetlb_cgroup *h_cg,
1037 #ifdef CONFIG_CGROUP_HUGETLB
1039 resv_map->reservation_counter = NULL;
1040 resv_map->pages_per_hpage = 0;
1041 resv_map->css = NULL;
1043 resv_map->reservation_counter =
1044 &h_cg->rsvd_hugepage[hstate_index(h)];
1045 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046 resv_map->css = &h_cg->css;
1051 struct resv_map *resv_map_alloc(void)
1053 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1056 if (!resv_map || !rg) {
1062 kref_init(&resv_map->refs);
1063 spin_lock_init(&resv_map->lock);
1064 INIT_LIST_HEAD(&resv_map->regions);
1066 resv_map->adds_in_progress = 0;
1068 * Initialize these to 0. On shared mappings, 0's here indicate these
1069 * fields don't do cgroup accounting. On private mappings, these will be
1070 * re-initialized to the proper values, to indicate that hugetlb cgroup
1071 * reservations are to be un-charged from here.
1073 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1075 INIT_LIST_HEAD(&resv_map->region_cache);
1076 list_add(&rg->link, &resv_map->region_cache);
1077 resv_map->region_cache_count = 1;
1082 void resv_map_release(struct kref *ref)
1084 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085 struct list_head *head = &resv_map->region_cache;
1086 struct file_region *rg, *trg;
1088 /* Clear out any active regions before we release the map. */
1089 region_del(resv_map, 0, LONG_MAX);
1091 /* ... and any entries left in the cache */
1092 list_for_each_entry_safe(rg, trg, head, link) {
1093 list_del(&rg->link);
1097 VM_BUG_ON(resv_map->adds_in_progress);
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1105 * At inode evict time, i_mapping may not point to the original
1106 * address space within the inode. This original address space
1107 * contains the pointer to the resv_map. So, always use the
1108 * address space embedded within the inode.
1109 * The VERY common case is inode->mapping == &inode->i_data but,
1110 * this may not be true for device special inodes.
1112 return (struct resv_map *)(&inode->i_data)->private_data;
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1117 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118 if (vma->vm_flags & VM_MAYSHARE) {
1119 struct address_space *mapping = vma->vm_file->f_mapping;
1120 struct inode *inode = mapping->host;
1122 return inode_resv_map(inode);
1125 return (struct resv_map *)(get_vma_private_data(vma) &
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1132 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1135 set_vma_private_data(vma, (get_vma_private_data(vma) &
1136 HPAGE_RESV_MASK) | (unsigned long)map);
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1141 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1144 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 return (get_vma_private_data(vma) & flag) != 0;
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1158 * Clear vm_private_data
1159 * - For shared mappings this is a per-vma semaphore that may be
1160 * allocated in a subsequent call to hugetlb_vm_op_open.
1161 * Before clearing, make sure pointer is not associated with vma
1162 * as this will leak the structure. This is the case when called
1163 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164 * been called to allocate a new structure.
1165 * - For MAP_PRIVATE mappings, this is the reserve map which does
1166 * not apply to children. Faults generated by the children are
1167 * not guaranteed to succeed, even if read-only.
1169 if (vma->vm_flags & VM_MAYSHARE) {
1170 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1172 if (vma_lock && vma_lock->vma != vma)
1173 vma->vm_private_data = NULL;
1175 vma->vm_private_data = NULL;
1179 * Reset and decrement one ref on hugepage private reservation.
1180 * Called with mm->mmap_lock writer semaphore held.
1181 * This function should be only used by move_vma() and operate on
1182 * same sized vma. It should never come here with last ref on the
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1188 * Clear the old hugetlb private page reservation.
1189 * It has already been transferred to new_vma.
1191 * During a mremap() operation of a hugetlb vma we call move_vma()
1192 * which copies vma into new_vma and unmaps vma. After the copy
1193 * operation both new_vma and vma share a reference to the resv_map
1194 * struct, and at that point vma is about to be unmapped. We don't
1195 * want to return the reservation to the pool at unmap of vma because
1196 * the reservation still lives on in new_vma, so simply decrement the
1197 * ref here and remove the resv_map reference from this vma.
1199 struct resv_map *reservations = vma_resv_map(vma);
1201 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203 kref_put(&reservations->refs, resv_map_release);
1206 hugetlb_dup_vma_private(vma);
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1212 if (vma->vm_flags & VM_NORESERVE) {
1214 * This address is already reserved by other process(chg == 0),
1215 * so, we should decrement reserved count. Without decrementing,
1216 * reserve count remains after releasing inode, because this
1217 * allocated page will go into page cache and is regarded as
1218 * coming from reserved pool in releasing step. Currently, we
1219 * don't have any other solution to deal with this situation
1220 * properly, so add work-around here.
1222 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1228 /* Shared mappings always use reserves */
1229 if (vma->vm_flags & VM_MAYSHARE) {
1231 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1232 * be a region map for all pages. The only situation where
1233 * there is no region map is if a hole was punched via
1234 * fallocate. In this case, there really are no reserves to
1235 * use. This situation is indicated if chg != 0.
1244 * Only the process that called mmap() has reserves for
1247 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1249 * Like the shared case above, a hole punch or truncate
1250 * could have been performed on the private mapping.
1251 * Examine the value of chg to determine if reserves
1252 * actually exist or were previously consumed.
1253 * Very Subtle - The value of chg comes from a previous
1254 * call to vma_needs_reserves(). The reserve map for
1255 * private mappings has different (opposite) semantics
1256 * than that of shared mappings. vma_needs_reserves()
1257 * has already taken this difference in semantics into
1258 * account. Therefore, the meaning of chg is the same
1259 * as in the shared case above. Code could easily be
1260 * combined, but keeping it separate draws attention to
1261 * subtle differences.
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1274 int nid = folio_nid(folio);
1276 lockdep_assert_held(&hugetlb_lock);
1277 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1279 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280 h->free_huge_pages++;
1281 h->free_huge_pages_node[nid]++;
1282 folio_set_hugetlb_freed(folio);
1285 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1288 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1290 lockdep_assert_held(&hugetlb_lock);
1291 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1292 if (pin && !is_longterm_pinnable_page(page))
1295 if (PageHWPoison(page))
1298 list_move(&page->lru, &h->hugepage_activelist);
1299 set_page_refcounted(page);
1300 ClearHPageFreed(page);
1301 h->free_huge_pages--;
1302 h->free_huge_pages_node[nid]--;
1309 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1312 unsigned int cpuset_mems_cookie;
1313 struct zonelist *zonelist;
1316 int node = NUMA_NO_NODE;
1318 zonelist = node_zonelist(nid, gfp_mask);
1321 cpuset_mems_cookie = read_mems_allowed_begin();
1322 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1325 if (!cpuset_zone_allowed(zone, gfp_mask))
1328 * no need to ask again on the same node. Pool is node rather than
1331 if (zone_to_nid(zone) == node)
1333 node = zone_to_nid(zone);
1335 page = dequeue_huge_page_node_exact(h, node);
1339 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1345 static unsigned long available_huge_pages(struct hstate *h)
1347 return h->free_huge_pages - h->resv_huge_pages;
1350 static struct page *dequeue_huge_page_vma(struct hstate *h,
1351 struct vm_area_struct *vma,
1352 unsigned long address, int avoid_reserve,
1355 struct page *page = NULL;
1356 struct mempolicy *mpol;
1358 nodemask_t *nodemask;
1362 * A child process with MAP_PRIVATE mappings created by their parent
1363 * have no page reserves. This check ensures that reservations are
1364 * not "stolen". The child may still get SIGKILLed
1366 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1369 /* If reserves cannot be used, ensure enough pages are in the pool */
1370 if (avoid_reserve && !available_huge_pages(h))
1373 gfp_mask = htlb_alloc_mask(h);
1374 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1376 if (mpol_is_preferred_many(mpol)) {
1377 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1379 /* Fallback to all nodes if page==NULL */
1384 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1386 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1387 SetHPageRestoreReserve(page);
1388 h->resv_huge_pages--;
1391 mpol_cond_put(mpol);
1399 * common helper functions for hstate_next_node_to_{alloc|free}.
1400 * We may have allocated or freed a huge page based on a different
1401 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1402 * be outside of *nodes_allowed. Ensure that we use an allowed
1403 * node for alloc or free.
1405 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1407 nid = next_node_in(nid, *nodes_allowed);
1408 VM_BUG_ON(nid >= MAX_NUMNODES);
1413 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1415 if (!node_isset(nid, *nodes_allowed))
1416 nid = next_node_allowed(nid, nodes_allowed);
1421 * returns the previously saved node ["this node"] from which to
1422 * allocate a persistent huge page for the pool and advance the
1423 * next node from which to allocate, handling wrap at end of node
1426 static int hstate_next_node_to_alloc(struct hstate *h,
1427 nodemask_t *nodes_allowed)
1431 VM_BUG_ON(!nodes_allowed);
1433 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1434 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1440 * helper for remove_pool_huge_page() - return the previously saved
1441 * node ["this node"] from which to free a huge page. Advance the
1442 * next node id whether or not we find a free huge page to free so
1443 * that the next attempt to free addresses the next node.
1445 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1449 VM_BUG_ON(!nodes_allowed);
1451 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1452 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1457 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1458 for (nr_nodes = nodes_weight(*mask); \
1460 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1463 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1464 for (nr_nodes = nodes_weight(*mask); \
1466 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1469 /* used to demote non-gigantic_huge pages as well */
1470 static void __destroy_compound_gigantic_folio(struct folio *folio,
1471 unsigned int order, bool demote)
1474 int nr_pages = 1 << order;
1477 atomic_set(&folio->_entire_mapcount, 0);
1478 atomic_set(&folio->_nr_pages_mapped, 0);
1479 atomic_set(&folio->_pincount, 0);
1481 for (i = 1; i < nr_pages; i++) {
1482 p = folio_page(folio, i);
1484 clear_compound_head(p);
1486 set_page_refcounted(p);
1489 folio_set_order(folio, 0);
1490 __folio_clear_head(folio);
1493 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1496 __destroy_compound_gigantic_folio(folio, order, true);
1499 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1500 static void destroy_compound_gigantic_folio(struct folio *folio,
1503 __destroy_compound_gigantic_folio(folio, order, false);
1506 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1509 * If the page isn't allocated using the cma allocator,
1510 * cma_release() returns false.
1513 int nid = folio_nid(folio);
1515 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1519 free_contig_range(folio_pfn(folio), 1 << order);
1522 #ifdef CONFIG_CONTIG_ALLOC
1523 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1524 int nid, nodemask_t *nodemask)
1527 unsigned long nr_pages = pages_per_huge_page(h);
1528 if (nid == NUMA_NO_NODE)
1529 nid = numa_mem_id();
1535 if (hugetlb_cma[nid]) {
1536 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1537 huge_page_order(h), true);
1539 return page_folio(page);
1542 if (!(gfp_mask & __GFP_THISNODE)) {
1543 for_each_node_mask(node, *nodemask) {
1544 if (node == nid || !hugetlb_cma[node])
1547 page = cma_alloc(hugetlb_cma[node], nr_pages,
1548 huge_page_order(h), true);
1550 return page_folio(page);
1556 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1557 return page ? page_folio(page) : NULL;
1560 #else /* !CONFIG_CONTIG_ALLOC */
1561 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1562 int nid, nodemask_t *nodemask)
1566 #endif /* CONFIG_CONTIG_ALLOC */
1568 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1569 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1570 int nid, nodemask_t *nodemask)
1574 static inline void free_gigantic_folio(struct folio *folio,
1575 unsigned int order) { }
1576 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1577 unsigned int order) { }
1581 * Remove hugetlb folio from lists, and update dtor so that the folio appears
1582 * as just a compound page.
1584 * A reference is held on the folio, except in the case of demote.
1586 * Must be called with hugetlb lock held.
1588 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1589 bool adjust_surplus,
1592 int nid = folio_nid(folio);
1594 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1595 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1597 lockdep_assert_held(&hugetlb_lock);
1598 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1601 list_del(&folio->lru);
1603 if (folio_test_hugetlb_freed(folio)) {
1604 h->free_huge_pages--;
1605 h->free_huge_pages_node[nid]--;
1607 if (adjust_surplus) {
1608 h->surplus_huge_pages--;
1609 h->surplus_huge_pages_node[nid]--;
1615 * For non-gigantic pages set the destructor to the normal compound
1616 * page dtor. This is needed in case someone takes an additional
1617 * temporary ref to the page, and freeing is delayed until they drop
1620 * For gigantic pages set the destructor to the null dtor. This
1621 * destructor will never be called. Before freeing the gigantic
1622 * page destroy_compound_gigantic_folio will turn the folio into a
1623 * simple group of pages. After this the destructor does not
1626 * This handles the case where more than one ref is held when and
1627 * after update_and_free_hugetlb_folio is called.
1629 * In the case of demote we do not ref count the page as it will soon
1630 * be turned into a page of smaller size.
1633 folio_ref_unfreeze(folio, 1);
1634 if (hstate_is_gigantic(h))
1635 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1637 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1640 h->nr_huge_pages_node[nid]--;
1643 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1644 bool adjust_surplus)
1646 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1649 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1650 bool adjust_surplus)
1652 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1655 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1656 bool adjust_surplus)
1659 int nid = folio_nid(folio);
1661 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1663 lockdep_assert_held(&hugetlb_lock);
1665 INIT_LIST_HEAD(&folio->lru);
1667 h->nr_huge_pages_node[nid]++;
1669 if (adjust_surplus) {
1670 h->surplus_huge_pages++;
1671 h->surplus_huge_pages_node[nid]++;
1674 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1675 folio_change_private(folio, NULL);
1677 * We have to set hugetlb_vmemmap_optimized again as above
1678 * folio_change_private(folio, NULL) cleared it.
1680 folio_set_hugetlb_vmemmap_optimized(folio);
1683 * This folio is about to be managed by the hugetlb allocator and
1684 * should have no users. Drop our reference, and check for others
1687 zeroed = folio_put_testzero(folio);
1688 if (unlikely(!zeroed))
1690 * It is VERY unlikely soneone else has taken a ref on
1691 * the page. In this case, we simply return as the
1692 * hugetlb destructor (free_huge_page) will be called
1693 * when this other ref is dropped.
1697 arch_clear_hugepage_flags(&folio->page);
1698 enqueue_hugetlb_folio(h, folio);
1701 static void __update_and_free_page(struct hstate *h, struct page *page)
1704 struct folio *folio = page_folio(page);
1705 struct page *subpage;
1707 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1711 * If we don't know which subpages are hwpoisoned, we can't free
1712 * the hugepage, so it's leaked intentionally.
1714 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1717 if (hugetlb_vmemmap_restore(h, page)) {
1718 spin_lock_irq(&hugetlb_lock);
1720 * If we cannot allocate vmemmap pages, just refuse to free the
1721 * page and put the page back on the hugetlb free list and treat
1722 * as a surplus page.
1724 add_hugetlb_folio(h, folio, true);
1725 spin_unlock_irq(&hugetlb_lock);
1730 * Move PageHWPoison flag from head page to the raw error pages,
1731 * which makes any healthy subpages reusable.
1733 if (unlikely(folio_test_hwpoison(folio)))
1734 folio_clear_hugetlb_hwpoison(folio);
1736 for (i = 0; i < pages_per_huge_page(h); i++) {
1737 subpage = folio_page(folio, i);
1738 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1739 1 << PG_referenced | 1 << PG_dirty |
1740 1 << PG_active | 1 << PG_private |
1745 * Non-gigantic pages demoted from CMA allocated gigantic pages
1746 * need to be given back to CMA in free_gigantic_folio.
1748 if (hstate_is_gigantic(h) ||
1749 hugetlb_cma_folio(folio, huge_page_order(h))) {
1750 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1751 free_gigantic_folio(folio, huge_page_order(h));
1753 __free_pages(page, huge_page_order(h));
1758 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1759 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1760 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1761 * the vmemmap pages.
1763 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1764 * freed and frees them one-by-one. As the page->mapping pointer is going
1765 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1766 * structure of a lockless linked list of huge pages to be freed.
1768 static LLIST_HEAD(hpage_freelist);
1770 static void free_hpage_workfn(struct work_struct *work)
1772 struct llist_node *node;
1774 node = llist_del_all(&hpage_freelist);
1780 page = container_of((struct address_space **)node,
1781 struct page, mapping);
1783 page->mapping = NULL;
1785 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1786 * is going to trigger because a previous call to
1787 * remove_hugetlb_folio() will call folio_set_compound_dtor
1788 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1791 h = size_to_hstate(page_size(page));
1793 __update_and_free_page(h, page);
1798 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1800 static inline void flush_free_hpage_work(struct hstate *h)
1802 if (hugetlb_vmemmap_optimizable(h))
1803 flush_work(&free_hpage_work);
1806 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1809 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1810 __update_and_free_page(h, &folio->page);
1815 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1817 * Only call schedule_work() if hpage_freelist is previously
1818 * empty. Otherwise, schedule_work() had been called but the workfn
1819 * hasn't retrieved the list yet.
1821 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1822 schedule_work(&free_hpage_work);
1825 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1827 struct page *page, *t_page;
1828 struct folio *folio;
1830 list_for_each_entry_safe(page, t_page, list, lru) {
1831 folio = page_folio(page);
1832 update_and_free_hugetlb_folio(h, folio, false);
1837 struct hstate *size_to_hstate(unsigned long size)
1841 for_each_hstate(h) {
1842 if (huge_page_size(h) == size)
1848 void free_huge_page(struct page *page)
1851 * Can't pass hstate in here because it is called from the
1852 * compound page destructor.
1854 struct folio *folio = page_folio(page);
1855 struct hstate *h = folio_hstate(folio);
1856 int nid = folio_nid(folio);
1857 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1858 bool restore_reserve;
1859 unsigned long flags;
1861 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1862 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1864 hugetlb_set_folio_subpool(folio, NULL);
1865 if (folio_test_anon(folio))
1866 __ClearPageAnonExclusive(&folio->page);
1867 folio->mapping = NULL;
1868 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1869 folio_clear_hugetlb_restore_reserve(folio);
1872 * If HPageRestoreReserve was set on page, page allocation consumed a
1873 * reservation. If the page was associated with a subpool, there
1874 * would have been a page reserved in the subpool before allocation
1875 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1876 * reservation, do not call hugepage_subpool_put_pages() as this will
1877 * remove the reserved page from the subpool.
1879 if (!restore_reserve) {
1881 * A return code of zero implies that the subpool will be
1882 * under its minimum size if the reservation is not restored
1883 * after page is free. Therefore, force restore_reserve
1886 if (hugepage_subpool_put_pages(spool, 1) == 0)
1887 restore_reserve = true;
1890 spin_lock_irqsave(&hugetlb_lock, flags);
1891 folio_clear_hugetlb_migratable(folio);
1892 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1893 pages_per_huge_page(h), folio);
1894 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1895 pages_per_huge_page(h), folio);
1896 if (restore_reserve)
1897 h->resv_huge_pages++;
1899 if (folio_test_hugetlb_temporary(folio)) {
1900 remove_hugetlb_folio(h, folio, false);
1901 spin_unlock_irqrestore(&hugetlb_lock, flags);
1902 update_and_free_hugetlb_folio(h, folio, true);
1903 } else if (h->surplus_huge_pages_node[nid]) {
1904 /* remove the page from active list */
1905 remove_hugetlb_folio(h, folio, true);
1906 spin_unlock_irqrestore(&hugetlb_lock, flags);
1907 update_and_free_hugetlb_folio(h, folio, true);
1909 arch_clear_hugepage_flags(page);
1910 enqueue_hugetlb_folio(h, folio);
1911 spin_unlock_irqrestore(&hugetlb_lock, flags);
1916 * Must be called with the hugetlb lock held
1918 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1920 lockdep_assert_held(&hugetlb_lock);
1922 h->nr_huge_pages_node[nid]++;
1925 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1927 hugetlb_vmemmap_optimize(h, &folio->page);
1928 INIT_LIST_HEAD(&folio->lru);
1929 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1930 hugetlb_set_folio_subpool(folio, NULL);
1931 set_hugetlb_cgroup(folio, NULL);
1932 set_hugetlb_cgroup_rsvd(folio, NULL);
1935 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1937 __prep_new_hugetlb_folio(h, folio);
1938 spin_lock_irq(&hugetlb_lock);
1939 __prep_account_new_huge_page(h, nid);
1940 spin_unlock_irq(&hugetlb_lock);
1943 static bool __prep_compound_gigantic_folio(struct folio *folio,
1944 unsigned int order, bool demote)
1947 int nr_pages = 1 << order;
1950 __folio_clear_reserved(folio);
1951 __folio_set_head(folio);
1952 /* we rely on prep_new_hugetlb_folio to set the destructor */
1953 folio_set_order(folio, order);
1954 for (i = 0; i < nr_pages; i++) {
1955 p = folio_page(folio, i);
1958 * For gigantic hugepages allocated through bootmem at
1959 * boot, it's safer to be consistent with the not-gigantic
1960 * hugepages and clear the PG_reserved bit from all tail pages
1961 * too. Otherwise drivers using get_user_pages() to access tail
1962 * pages may get the reference counting wrong if they see
1963 * PG_reserved set on a tail page (despite the head page not
1964 * having PG_reserved set). Enforcing this consistency between
1965 * head and tail pages allows drivers to optimize away a check
1966 * on the head page when they need know if put_page() is needed
1967 * after get_user_pages().
1969 if (i != 0) /* head page cleared above */
1970 __ClearPageReserved(p);
1972 * Subtle and very unlikely
1974 * Gigantic 'page allocators' such as memblock or cma will
1975 * return a set of pages with each page ref counted. We need
1976 * to turn this set of pages into a compound page with tail
1977 * page ref counts set to zero. Code such as speculative page
1978 * cache adding could take a ref on a 'to be' tail page.
1979 * We need to respect any increased ref count, and only set
1980 * the ref count to zero if count is currently 1. If count
1981 * is not 1, we return an error. An error return indicates
1982 * the set of pages can not be converted to a gigantic page.
1983 * The caller who allocated the pages should then discard the
1984 * pages using the appropriate free interface.
1986 * In the case of demote, the ref count will be zero.
1989 if (!page_ref_freeze(p, 1)) {
1990 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1994 VM_BUG_ON_PAGE(page_count(p), p);
1997 set_compound_head(p, &folio->page);
1999 atomic_set(&folio->_entire_mapcount, -1);
2000 atomic_set(&folio->_nr_pages_mapped, 0);
2001 atomic_set(&folio->_pincount, 0);
2005 /* undo page modifications made above */
2006 for (j = 0; j < i; j++) {
2007 p = folio_page(folio, j);
2009 clear_compound_head(p);
2010 set_page_refcounted(p);
2012 /* need to clear PG_reserved on remaining tail pages */
2013 for (; j < nr_pages; j++) {
2014 p = folio_page(folio, j);
2015 __ClearPageReserved(p);
2017 folio_set_order(folio, 0);
2018 __folio_clear_head(folio);
2022 static bool prep_compound_gigantic_folio(struct folio *folio,
2025 return __prep_compound_gigantic_folio(folio, order, false);
2028 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2031 return __prep_compound_gigantic_folio(folio, order, true);
2035 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2036 * transparent huge pages. See the PageTransHuge() documentation for more
2039 int PageHuge(struct page *page)
2041 struct folio *folio;
2043 if (!PageCompound(page))
2045 folio = page_folio(page);
2046 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2048 EXPORT_SYMBOL_GPL(PageHuge);
2051 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2052 * normal or transparent huge pages.
2054 int PageHeadHuge(struct page *page_head)
2056 struct folio *folio = (struct folio *)page_head;
2057 if (!folio_test_large(folio))
2060 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2062 EXPORT_SYMBOL_GPL(PageHeadHuge);
2065 * Find and lock address space (mapping) in write mode.
2067 * Upon entry, the page is locked which means that page_mapping() is
2068 * stable. Due to locking order, we can only trylock_write. If we can
2069 * not get the lock, simply return NULL to caller.
2071 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2073 struct address_space *mapping = page_mapping(hpage);
2078 if (i_mmap_trylock_write(mapping))
2084 pgoff_t hugetlb_basepage_index(struct page *page)
2086 struct page *page_head = compound_head(page);
2087 pgoff_t index = page_index(page_head);
2088 unsigned long compound_idx;
2090 if (compound_order(page_head) >= MAX_ORDER)
2091 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2093 compound_idx = page - page_head;
2095 return (index << compound_order(page_head)) + compound_idx;
2098 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2099 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2100 nodemask_t *node_alloc_noretry)
2102 int order = huge_page_order(h);
2104 bool alloc_try_hard = true;
2108 * By default we always try hard to allocate the page with
2109 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2110 * a loop (to adjust global huge page counts) and previous allocation
2111 * failed, do not continue to try hard on the same node. Use the
2112 * node_alloc_noretry bitmap to manage this state information.
2114 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2115 alloc_try_hard = false;
2116 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2118 gfp_mask |= __GFP_RETRY_MAYFAIL;
2119 if (nid == NUMA_NO_NODE)
2120 nid = numa_mem_id();
2122 page = __alloc_pages(gfp_mask, order, nid, nmask);
2124 /* Freeze head page */
2125 if (page && !page_ref_freeze(page, 1)) {
2126 __free_pages(page, order);
2127 if (retry) { /* retry once */
2131 /* WOW! twice in a row. */
2132 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2137 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2138 * indicates an overall state change. Clear bit so that we resume
2139 * normal 'try hard' allocations.
2141 if (node_alloc_noretry && page && !alloc_try_hard)
2142 node_clear(nid, *node_alloc_noretry);
2145 * If we tried hard to get a page but failed, set bit so that
2146 * subsequent attempts will not try as hard until there is an
2147 * overall state change.
2149 if (node_alloc_noretry && !page && alloc_try_hard)
2150 node_set(nid, *node_alloc_noretry);
2153 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2157 __count_vm_event(HTLB_BUDDY_PGALLOC);
2158 return page_folio(page);
2162 * Common helper to allocate a fresh hugetlb page. All specific allocators
2163 * should use this function to get new hugetlb pages
2165 * Note that returned page is 'frozen': ref count of head page and all tail
2168 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2169 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2170 nodemask_t *node_alloc_noretry)
2172 struct folio *folio;
2176 if (hstate_is_gigantic(h))
2177 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2179 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2180 nid, nmask, node_alloc_noretry);
2183 if (hstate_is_gigantic(h)) {
2184 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2186 * Rare failure to convert pages to compound page.
2187 * Free pages and try again - ONCE!
2189 free_gigantic_folio(folio, huge_page_order(h));
2197 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2203 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2206 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2207 nodemask_t *node_alloc_noretry)
2209 struct folio *folio;
2211 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2213 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2214 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2215 nodes_allowed, node_alloc_noretry);
2217 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2226 * Remove huge page from pool from next node to free. Attempt to keep
2227 * persistent huge pages more or less balanced over allowed nodes.
2228 * This routine only 'removes' the hugetlb page. The caller must make
2229 * an additional call to free the page to low level allocators.
2230 * Called with hugetlb_lock locked.
2232 static struct page *remove_pool_huge_page(struct hstate *h,
2233 nodemask_t *nodes_allowed,
2237 struct page *page = NULL;
2238 struct folio *folio;
2240 lockdep_assert_held(&hugetlb_lock);
2241 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2243 * If we're returning unused surplus pages, only examine
2244 * nodes with surplus pages.
2246 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2247 !list_empty(&h->hugepage_freelists[node])) {
2248 page = list_entry(h->hugepage_freelists[node].next,
2250 folio = page_folio(page);
2251 remove_hugetlb_folio(h, folio, acct_surplus);
2260 * Dissolve a given free hugepage into free buddy pages. This function does
2261 * nothing for in-use hugepages and non-hugepages.
2262 * This function returns values like below:
2264 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2265 * when the system is under memory pressure and the feature of
2266 * freeing unused vmemmap pages associated with each hugetlb page
2268 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2269 * (allocated or reserved.)
2270 * 0: successfully dissolved free hugepages or the page is not a
2271 * hugepage (considered as already dissolved)
2273 int dissolve_free_huge_page(struct page *page)
2276 struct folio *folio = page_folio(page);
2279 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2280 if (!folio_test_hugetlb(folio))
2283 spin_lock_irq(&hugetlb_lock);
2284 if (!folio_test_hugetlb(folio)) {
2289 if (!folio_ref_count(folio)) {
2290 struct hstate *h = folio_hstate(folio);
2291 if (!available_huge_pages(h))
2295 * We should make sure that the page is already on the free list
2296 * when it is dissolved.
2298 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2299 spin_unlock_irq(&hugetlb_lock);
2303 * Theoretically, we should return -EBUSY when we
2304 * encounter this race. In fact, we have a chance
2305 * to successfully dissolve the page if we do a
2306 * retry. Because the race window is quite small.
2307 * If we seize this opportunity, it is an optimization
2308 * for increasing the success rate of dissolving page.
2313 remove_hugetlb_folio(h, folio, false);
2314 h->max_huge_pages--;
2315 spin_unlock_irq(&hugetlb_lock);
2318 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2319 * before freeing the page. update_and_free_hugtlb_folio will fail to
2320 * free the page if it can not allocate required vmemmap. We
2321 * need to adjust max_huge_pages if the page is not freed.
2322 * Attempt to allocate vmemmmap here so that we can take
2323 * appropriate action on failure.
2325 rc = hugetlb_vmemmap_restore(h, &folio->page);
2327 update_and_free_hugetlb_folio(h, folio, false);
2329 spin_lock_irq(&hugetlb_lock);
2330 add_hugetlb_folio(h, folio, false);
2331 h->max_huge_pages++;
2332 spin_unlock_irq(&hugetlb_lock);
2338 spin_unlock_irq(&hugetlb_lock);
2343 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2344 * make specified memory blocks removable from the system.
2345 * Note that this will dissolve a free gigantic hugepage completely, if any
2346 * part of it lies within the given range.
2347 * Also note that if dissolve_free_huge_page() returns with an error, all
2348 * free hugepages that were dissolved before that error are lost.
2350 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2358 if (!hugepages_supported())
2361 order = huge_page_order(&default_hstate);
2363 order = min(order, huge_page_order(h));
2365 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2366 page = pfn_to_page(pfn);
2367 rc = dissolve_free_huge_page(page);
2376 * Allocates a fresh surplus page from the page allocator.
2378 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2379 int nid, nodemask_t *nmask)
2381 struct folio *folio = NULL;
2383 if (hstate_is_gigantic(h))
2386 spin_lock_irq(&hugetlb_lock);
2387 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2389 spin_unlock_irq(&hugetlb_lock);
2391 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2395 spin_lock_irq(&hugetlb_lock);
2397 * We could have raced with the pool size change.
2398 * Double check that and simply deallocate the new page
2399 * if we would end up overcommiting the surpluses. Abuse
2400 * temporary page to workaround the nasty free_huge_page
2403 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2404 folio_set_hugetlb_temporary(folio);
2405 spin_unlock_irq(&hugetlb_lock);
2406 free_huge_page(&folio->page);
2410 h->surplus_huge_pages++;
2411 h->surplus_huge_pages_node[folio_nid(folio)]++;
2414 spin_unlock_irq(&hugetlb_lock);
2416 return &folio->page;
2419 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2420 int nid, nodemask_t *nmask)
2422 struct folio *folio;
2424 if (hstate_is_gigantic(h))
2427 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2431 /* fresh huge pages are frozen */
2432 folio_ref_unfreeze(folio, 1);
2434 * We do not account these pages as surplus because they are only
2435 * temporary and will be released properly on the last reference
2437 folio_set_hugetlb_temporary(folio);
2439 return &folio->page;
2443 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2446 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2447 struct vm_area_struct *vma, unsigned long addr)
2449 struct page *page = NULL;
2450 struct mempolicy *mpol;
2451 gfp_t gfp_mask = htlb_alloc_mask(h);
2453 nodemask_t *nodemask;
2455 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2456 if (mpol_is_preferred_many(mpol)) {
2457 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2459 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2460 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2462 /* Fallback to all nodes if page==NULL */
2467 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2468 mpol_cond_put(mpol);
2472 /* page migration callback function */
2473 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2474 nodemask_t *nmask, gfp_t gfp_mask)
2476 spin_lock_irq(&hugetlb_lock);
2477 if (available_huge_pages(h)) {
2480 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2482 spin_unlock_irq(&hugetlb_lock);
2486 spin_unlock_irq(&hugetlb_lock);
2488 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2491 /* mempolicy aware migration callback */
2492 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2493 unsigned long address)
2495 struct mempolicy *mpol;
2496 nodemask_t *nodemask;
2501 gfp_mask = htlb_alloc_mask(h);
2502 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2503 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2504 mpol_cond_put(mpol);
2510 * Increase the hugetlb pool such that it can accommodate a reservation
2513 static int gather_surplus_pages(struct hstate *h, long delta)
2514 __must_hold(&hugetlb_lock)
2516 LIST_HEAD(surplus_list);
2517 struct page *page, *tmp;
2520 long needed, allocated;
2521 bool alloc_ok = true;
2523 lockdep_assert_held(&hugetlb_lock);
2524 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2526 h->resv_huge_pages += delta;
2534 spin_unlock_irq(&hugetlb_lock);
2535 for (i = 0; i < needed; i++) {
2536 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2537 NUMA_NO_NODE, NULL);
2542 list_add(&page->lru, &surplus_list);
2548 * After retaking hugetlb_lock, we need to recalculate 'needed'
2549 * because either resv_huge_pages or free_huge_pages may have changed.
2551 spin_lock_irq(&hugetlb_lock);
2552 needed = (h->resv_huge_pages + delta) -
2553 (h->free_huge_pages + allocated);
2558 * We were not able to allocate enough pages to
2559 * satisfy the entire reservation so we free what
2560 * we've allocated so far.
2565 * The surplus_list now contains _at_least_ the number of extra pages
2566 * needed to accommodate the reservation. Add the appropriate number
2567 * of pages to the hugetlb pool and free the extras back to the buddy
2568 * allocator. Commit the entire reservation here to prevent another
2569 * process from stealing the pages as they are added to the pool but
2570 * before they are reserved.
2572 needed += allocated;
2573 h->resv_huge_pages += delta;
2576 /* Free the needed pages to the hugetlb pool */
2577 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2580 /* Add the page to the hugetlb allocator */
2581 enqueue_hugetlb_folio(h, page_folio(page));
2584 spin_unlock_irq(&hugetlb_lock);
2587 * Free unnecessary surplus pages to the buddy allocator.
2588 * Pages have no ref count, call free_huge_page directly.
2590 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2591 free_huge_page(page);
2592 spin_lock_irq(&hugetlb_lock);
2598 * This routine has two main purposes:
2599 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2600 * in unused_resv_pages. This corresponds to the prior adjustments made
2601 * to the associated reservation map.
2602 * 2) Free any unused surplus pages that may have been allocated to satisfy
2603 * the reservation. As many as unused_resv_pages may be freed.
2605 static void return_unused_surplus_pages(struct hstate *h,
2606 unsigned long unused_resv_pages)
2608 unsigned long nr_pages;
2610 LIST_HEAD(page_list);
2612 lockdep_assert_held(&hugetlb_lock);
2613 /* Uncommit the reservation */
2614 h->resv_huge_pages -= unused_resv_pages;
2616 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2620 * Part (or even all) of the reservation could have been backed
2621 * by pre-allocated pages. Only free surplus pages.
2623 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2626 * We want to release as many surplus pages as possible, spread
2627 * evenly across all nodes with memory. Iterate across these nodes
2628 * until we can no longer free unreserved surplus pages. This occurs
2629 * when the nodes with surplus pages have no free pages.
2630 * remove_pool_huge_page() will balance the freed pages across the
2631 * on-line nodes with memory and will handle the hstate accounting.
2633 while (nr_pages--) {
2634 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2638 list_add(&page->lru, &page_list);
2642 spin_unlock_irq(&hugetlb_lock);
2643 update_and_free_pages_bulk(h, &page_list);
2644 spin_lock_irq(&hugetlb_lock);
2649 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2650 * are used by the huge page allocation routines to manage reservations.
2652 * vma_needs_reservation is called to determine if the huge page at addr
2653 * within the vma has an associated reservation. If a reservation is
2654 * needed, the value 1 is returned. The caller is then responsible for
2655 * managing the global reservation and subpool usage counts. After
2656 * the huge page has been allocated, vma_commit_reservation is called
2657 * to add the page to the reservation map. If the page allocation fails,
2658 * the reservation must be ended instead of committed. vma_end_reservation
2659 * is called in such cases.
2661 * In the normal case, vma_commit_reservation returns the same value
2662 * as the preceding vma_needs_reservation call. The only time this
2663 * is not the case is if a reserve map was changed between calls. It
2664 * is the responsibility of the caller to notice the difference and
2665 * take appropriate action.
2667 * vma_add_reservation is used in error paths where a reservation must
2668 * be restored when a newly allocated huge page must be freed. It is
2669 * to be called after calling vma_needs_reservation to determine if a
2670 * reservation exists.
2672 * vma_del_reservation is used in error paths where an entry in the reserve
2673 * map was created during huge page allocation and must be removed. It is to
2674 * be called after calling vma_needs_reservation to determine if a reservation
2677 enum vma_resv_mode {
2684 static long __vma_reservation_common(struct hstate *h,
2685 struct vm_area_struct *vma, unsigned long addr,
2686 enum vma_resv_mode mode)
2688 struct resv_map *resv;
2691 long dummy_out_regions_needed;
2693 resv = vma_resv_map(vma);
2697 idx = vma_hugecache_offset(h, vma, addr);
2699 case VMA_NEEDS_RESV:
2700 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2701 /* We assume that vma_reservation_* routines always operate on
2702 * 1 page, and that adding to resv map a 1 page entry can only
2703 * ever require 1 region.
2705 VM_BUG_ON(dummy_out_regions_needed != 1);
2707 case VMA_COMMIT_RESV:
2708 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2709 /* region_add calls of range 1 should never fail. */
2713 region_abort(resv, idx, idx + 1, 1);
2717 if (vma->vm_flags & VM_MAYSHARE) {
2718 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2719 /* region_add calls of range 1 should never fail. */
2722 region_abort(resv, idx, idx + 1, 1);
2723 ret = region_del(resv, idx, idx + 1);
2727 if (vma->vm_flags & VM_MAYSHARE) {
2728 region_abort(resv, idx, idx + 1, 1);
2729 ret = region_del(resv, idx, idx + 1);
2731 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2732 /* region_add calls of range 1 should never fail. */
2740 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2743 * We know private mapping must have HPAGE_RESV_OWNER set.
2745 * In most cases, reserves always exist for private mappings.
2746 * However, a file associated with mapping could have been
2747 * hole punched or truncated after reserves were consumed.
2748 * As subsequent fault on such a range will not use reserves.
2749 * Subtle - The reserve map for private mappings has the
2750 * opposite meaning than that of shared mappings. If NO
2751 * entry is in the reserve map, it means a reservation exists.
2752 * If an entry exists in the reserve map, it means the
2753 * reservation has already been consumed. As a result, the
2754 * return value of this routine is the opposite of the
2755 * value returned from reserve map manipulation routines above.
2764 static long vma_needs_reservation(struct hstate *h,
2765 struct vm_area_struct *vma, unsigned long addr)
2767 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2770 static long vma_commit_reservation(struct hstate *h,
2771 struct vm_area_struct *vma, unsigned long addr)
2773 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2776 static void vma_end_reservation(struct hstate *h,
2777 struct vm_area_struct *vma, unsigned long addr)
2779 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2782 static long vma_add_reservation(struct hstate *h,
2783 struct vm_area_struct *vma, unsigned long addr)
2785 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2788 static long vma_del_reservation(struct hstate *h,
2789 struct vm_area_struct *vma, unsigned long addr)
2791 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2795 * This routine is called to restore reservation information on error paths.
2796 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2797 * the hugetlb mutex should remain held when calling this routine.
2799 * It handles two specific cases:
2800 * 1) A reservation was in place and the page consumed the reservation.
2801 * HPageRestoreReserve is set in the page.
2802 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2803 * not set. However, alloc_huge_page always updates the reserve map.
2805 * In case 1, free_huge_page later in the error path will increment the
2806 * global reserve count. But, free_huge_page does not have enough context
2807 * to adjust the reservation map. This case deals primarily with private
2808 * mappings. Adjust the reserve map here to be consistent with global
2809 * reserve count adjustments to be made by free_huge_page. Make sure the
2810 * reserve map indicates there is a reservation present.
2812 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2814 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2815 unsigned long address, struct page *page)
2817 long rc = vma_needs_reservation(h, vma, address);
2819 if (HPageRestoreReserve(page)) {
2820 if (unlikely(rc < 0))
2822 * Rare out of memory condition in reserve map
2823 * manipulation. Clear HPageRestoreReserve so that
2824 * global reserve count will not be incremented
2825 * by free_huge_page. This will make it appear
2826 * as though the reservation for this page was
2827 * consumed. This may prevent the task from
2828 * faulting in the page at a later time. This
2829 * is better than inconsistent global huge page
2830 * accounting of reserve counts.
2832 ClearHPageRestoreReserve(page);
2834 (void)vma_add_reservation(h, vma, address);
2836 vma_end_reservation(h, vma, address);
2840 * This indicates there is an entry in the reserve map
2841 * not added by alloc_huge_page. We know it was added
2842 * before the alloc_huge_page call, otherwise
2843 * HPageRestoreReserve would be set on the page.
2844 * Remove the entry so that a subsequent allocation
2845 * does not consume a reservation.
2847 rc = vma_del_reservation(h, vma, address);
2850 * VERY rare out of memory condition. Since
2851 * we can not delete the entry, set
2852 * HPageRestoreReserve so that the reserve
2853 * count will be incremented when the page
2854 * is freed. This reserve will be consumed
2855 * on a subsequent allocation.
2857 SetHPageRestoreReserve(page);
2858 } else if (rc < 0) {
2860 * Rare out of memory condition from
2861 * vma_needs_reservation call. Memory allocation is
2862 * only attempted if a new entry is needed. Therefore,
2863 * this implies there is not an entry in the
2866 * For shared mappings, no entry in the map indicates
2867 * no reservation. We are done.
2869 if (!(vma->vm_flags & VM_MAYSHARE))
2871 * For private mappings, no entry indicates
2872 * a reservation is present. Since we can
2873 * not add an entry, set SetHPageRestoreReserve
2874 * on the page so reserve count will be
2875 * incremented when freed. This reserve will
2876 * be consumed on a subsequent allocation.
2878 SetHPageRestoreReserve(page);
2881 * No reservation present, do nothing
2883 vma_end_reservation(h, vma, address);
2888 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2890 * @h: struct hstate old page belongs to
2891 * @old_folio: Old folio to dissolve
2892 * @list: List to isolate the page in case we need to
2893 * Returns 0 on success, otherwise negated error.
2895 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2896 struct folio *old_folio, struct list_head *list)
2898 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2899 int nid = folio_nid(old_folio);
2900 struct folio *new_folio;
2904 * Before dissolving the folio, we need to allocate a new one for the
2905 * pool to remain stable. Here, we allocate the folio and 'prep' it
2906 * by doing everything but actually updating counters and adding to
2907 * the pool. This simplifies and let us do most of the processing
2910 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2913 __prep_new_hugetlb_folio(h, new_folio);
2916 spin_lock_irq(&hugetlb_lock);
2917 if (!folio_test_hugetlb(old_folio)) {
2919 * Freed from under us. Drop new_folio too.
2922 } else if (folio_ref_count(old_folio)) {
2924 * Someone has grabbed the folio, try to isolate it here.
2925 * Fail with -EBUSY if not possible.
2927 spin_unlock_irq(&hugetlb_lock);
2928 ret = isolate_hugetlb(&old_folio->page, list);
2929 spin_lock_irq(&hugetlb_lock);
2931 } else if (!folio_test_hugetlb_freed(old_folio)) {
2933 * Folio's refcount is 0 but it has not been enqueued in the
2934 * freelist yet. Race window is small, so we can succeed here if
2937 spin_unlock_irq(&hugetlb_lock);
2942 * Ok, old_folio is still a genuine free hugepage. Remove it from
2943 * the freelist and decrease the counters. These will be
2944 * incremented again when calling __prep_account_new_huge_page()
2945 * and enqueue_hugetlb_folio() for new_folio. The counters will
2946 * remain stable since this happens under the lock.
2948 remove_hugetlb_folio(h, old_folio, false);
2951 * Ref count on new_folio is already zero as it was dropped
2952 * earlier. It can be directly added to the pool free list.
2954 __prep_account_new_huge_page(h, nid);
2955 enqueue_hugetlb_folio(h, new_folio);
2958 * Folio has been replaced, we can safely free the old one.
2960 spin_unlock_irq(&hugetlb_lock);
2961 update_and_free_hugetlb_folio(h, old_folio, false);
2967 spin_unlock_irq(&hugetlb_lock);
2968 /* Folio has a zero ref count, but needs a ref to be freed */
2969 folio_ref_unfreeze(new_folio, 1);
2970 update_and_free_hugetlb_folio(h, new_folio, false);
2975 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2978 struct folio *folio = page_folio(page);
2982 * The page might have been dissolved from under our feet, so make sure
2983 * to carefully check the state under the lock.
2984 * Return success when racing as if we dissolved the page ourselves.
2986 spin_lock_irq(&hugetlb_lock);
2987 if (folio_test_hugetlb(folio)) {
2988 h = folio_hstate(folio);
2990 spin_unlock_irq(&hugetlb_lock);
2993 spin_unlock_irq(&hugetlb_lock);
2996 * Fence off gigantic pages as there is a cyclic dependency between
2997 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2998 * of bailing out right away without further retrying.
3000 if (hstate_is_gigantic(h))
3003 if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
3005 else if (!folio_ref_count(folio))
3006 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3011 struct page *alloc_huge_page(struct vm_area_struct *vma,
3012 unsigned long addr, int avoid_reserve)
3014 struct hugepage_subpool *spool = subpool_vma(vma);
3015 struct hstate *h = hstate_vma(vma);
3017 struct folio *folio;
3018 long map_chg, map_commit;
3021 struct hugetlb_cgroup *h_cg;
3022 bool deferred_reserve;
3024 idx = hstate_index(h);
3026 * Examine the region/reserve map to determine if the process
3027 * has a reservation for the page to be allocated. A return
3028 * code of zero indicates a reservation exists (no change).
3030 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3032 return ERR_PTR(-ENOMEM);
3035 * Processes that did not create the mapping will have no
3036 * reserves as indicated by the region/reserve map. Check
3037 * that the allocation will not exceed the subpool limit.
3038 * Allocations for MAP_NORESERVE mappings also need to be
3039 * checked against any subpool limit.
3041 if (map_chg || avoid_reserve) {
3042 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3044 vma_end_reservation(h, vma, addr);
3045 return ERR_PTR(-ENOSPC);
3049 * Even though there was no reservation in the region/reserve
3050 * map, there could be reservations associated with the
3051 * subpool that can be used. This would be indicated if the
3052 * return value of hugepage_subpool_get_pages() is zero.
3053 * However, if avoid_reserve is specified we still avoid even
3054 * the subpool reservations.
3060 /* If this allocation is not consuming a reservation, charge it now.
3062 deferred_reserve = map_chg || avoid_reserve;
3063 if (deferred_reserve) {
3064 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3065 idx, pages_per_huge_page(h), &h_cg);
3067 goto out_subpool_put;
3070 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3072 goto out_uncharge_cgroup_reservation;
3074 spin_lock_irq(&hugetlb_lock);
3076 * glb_chg is passed to indicate whether or not a page must be taken
3077 * from the global free pool (global change). gbl_chg == 0 indicates
3078 * a reservation exists for the allocation.
3080 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3082 spin_unlock_irq(&hugetlb_lock);
3083 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3085 goto out_uncharge_cgroup;
3086 spin_lock_irq(&hugetlb_lock);
3087 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3088 SetHPageRestoreReserve(page);
3089 h->resv_huge_pages--;
3091 list_add(&page->lru, &h->hugepage_activelist);
3092 set_page_refcounted(page);
3095 folio = page_folio(page);
3096 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3097 /* If allocation is not consuming a reservation, also store the
3098 * hugetlb_cgroup pointer on the page.
3100 if (deferred_reserve) {
3101 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3105 spin_unlock_irq(&hugetlb_lock);
3107 hugetlb_set_page_subpool(page, spool);
3109 map_commit = vma_commit_reservation(h, vma, addr);
3110 if (unlikely(map_chg > map_commit)) {
3112 * The page was added to the reservation map between
3113 * vma_needs_reservation and vma_commit_reservation.
3114 * This indicates a race with hugetlb_reserve_pages.
3115 * Adjust for the subpool count incremented above AND
3116 * in hugetlb_reserve_pages for the same page. Also,
3117 * the reservation count added in hugetlb_reserve_pages
3118 * no longer applies.
3122 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3123 hugetlb_acct_memory(h, -rsv_adjust);
3124 if (deferred_reserve)
3125 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3126 pages_per_huge_page(h), folio);
3130 out_uncharge_cgroup:
3131 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3132 out_uncharge_cgroup_reservation:
3133 if (deferred_reserve)
3134 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3137 if (map_chg || avoid_reserve)
3138 hugepage_subpool_put_pages(spool, 1);
3139 vma_end_reservation(h, vma, addr);
3140 return ERR_PTR(-ENOSPC);
3143 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3144 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3145 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3147 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3150 /* do node specific alloc */
3151 if (nid != NUMA_NO_NODE) {
3152 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3153 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3158 /* allocate from next node when distributing huge pages */
3159 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3160 m = memblock_alloc_try_nid_raw(
3161 huge_page_size(h), huge_page_size(h),
3162 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3164 * Use the beginning of the huge page to store the
3165 * huge_bootmem_page struct (until gather_bootmem
3166 * puts them into the mem_map).
3174 /* Put them into a private list first because mem_map is not up yet */
3175 INIT_LIST_HEAD(&m->list);
3176 list_add(&m->list, &huge_boot_pages);
3182 * Put bootmem huge pages into the standard lists after mem_map is up.
3183 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3185 static void __init gather_bootmem_prealloc(void)
3187 struct huge_bootmem_page *m;
3189 list_for_each_entry(m, &huge_boot_pages, list) {
3190 struct page *page = virt_to_page(m);
3191 struct folio *folio = page_folio(page);
3192 struct hstate *h = m->hstate;
3194 VM_BUG_ON(!hstate_is_gigantic(h));
3195 WARN_ON(folio_ref_count(folio) != 1);
3196 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3197 WARN_ON(folio_test_reserved(folio));
3198 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3199 free_huge_page(page); /* add to the hugepage allocator */
3201 /* VERY unlikely inflated ref count on a tail page */
3202 free_gigantic_folio(folio, huge_page_order(h));
3206 * We need to restore the 'stolen' pages to totalram_pages
3207 * in order to fix confusing memory reports from free(1) and
3208 * other side-effects, like CommitLimit going negative.
3210 adjust_managed_page_count(page, pages_per_huge_page(h));
3214 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3219 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3220 if (hstate_is_gigantic(h)) {
3221 if (!alloc_bootmem_huge_page(h, nid))
3224 struct folio *folio;
3225 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3227 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3228 &node_states[N_MEMORY], NULL);
3231 free_huge_page(&folio->page); /* free it into the hugepage allocator */
3235 if (i == h->max_huge_pages_node[nid])
3238 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3239 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3240 h->max_huge_pages_node[nid], buf, nid, i);
3241 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3242 h->max_huge_pages_node[nid] = i;
3245 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3248 nodemask_t *node_alloc_noretry;
3249 bool node_specific_alloc = false;
3251 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3252 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3253 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3257 /* do node specific alloc */
3258 for_each_online_node(i) {
3259 if (h->max_huge_pages_node[i] > 0) {
3260 hugetlb_hstate_alloc_pages_onenode(h, i);
3261 node_specific_alloc = true;
3265 if (node_specific_alloc)
3268 /* below will do all node balanced alloc */
3269 if (!hstate_is_gigantic(h)) {
3271 * Bit mask controlling how hard we retry per-node allocations.
3272 * Ignore errors as lower level routines can deal with
3273 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3274 * time, we are likely in bigger trouble.
3276 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3279 /* allocations done at boot time */
3280 node_alloc_noretry = NULL;
3283 /* bit mask controlling how hard we retry per-node allocations */
3284 if (node_alloc_noretry)
3285 nodes_clear(*node_alloc_noretry);
3287 for (i = 0; i < h->max_huge_pages; ++i) {
3288 if (hstate_is_gigantic(h)) {
3289 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3291 } else if (!alloc_pool_huge_page(h,
3292 &node_states[N_MEMORY],
3293 node_alloc_noretry))
3297 if (i < h->max_huge_pages) {
3300 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3301 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3302 h->max_huge_pages, buf, i);
3303 h->max_huge_pages = i;
3305 kfree(node_alloc_noretry);
3308 static void __init hugetlb_init_hstates(void)
3310 struct hstate *h, *h2;
3312 for_each_hstate(h) {
3313 /* oversize hugepages were init'ed in early boot */
3314 if (!hstate_is_gigantic(h))
3315 hugetlb_hstate_alloc_pages(h);
3318 * Set demote order for each hstate. Note that
3319 * h->demote_order is initially 0.
3320 * - We can not demote gigantic pages if runtime freeing
3321 * is not supported, so skip this.
3322 * - If CMA allocation is possible, we can not demote
3323 * HUGETLB_PAGE_ORDER or smaller size pages.
3325 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3327 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3329 for_each_hstate(h2) {
3332 if (h2->order < h->order &&
3333 h2->order > h->demote_order)
3334 h->demote_order = h2->order;
3339 static void __init report_hugepages(void)
3343 for_each_hstate(h) {
3346 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3347 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3348 buf, h->free_huge_pages);
3349 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3350 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3354 #ifdef CONFIG_HIGHMEM
3355 static void try_to_free_low(struct hstate *h, unsigned long count,
3356 nodemask_t *nodes_allowed)
3359 LIST_HEAD(page_list);
3361 lockdep_assert_held(&hugetlb_lock);
3362 if (hstate_is_gigantic(h))
3366 * Collect pages to be freed on a list, and free after dropping lock
3368 for_each_node_mask(i, *nodes_allowed) {
3369 struct page *page, *next;
3370 struct list_head *freel = &h->hugepage_freelists[i];
3371 list_for_each_entry_safe(page, next, freel, lru) {
3372 if (count >= h->nr_huge_pages)
3374 if (PageHighMem(page))
3376 remove_hugetlb_folio(h, page_folio(page), false);
3377 list_add(&page->lru, &page_list);
3382 spin_unlock_irq(&hugetlb_lock);
3383 update_and_free_pages_bulk(h, &page_list);
3384 spin_lock_irq(&hugetlb_lock);
3387 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3388 nodemask_t *nodes_allowed)
3394 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3395 * balanced by operating on them in a round-robin fashion.
3396 * Returns 1 if an adjustment was made.
3398 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3403 lockdep_assert_held(&hugetlb_lock);
3404 VM_BUG_ON(delta != -1 && delta != 1);
3407 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3408 if (h->surplus_huge_pages_node[node])
3412 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3413 if (h->surplus_huge_pages_node[node] <
3414 h->nr_huge_pages_node[node])
3421 h->surplus_huge_pages += delta;
3422 h->surplus_huge_pages_node[node] += delta;
3426 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3427 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3428 nodemask_t *nodes_allowed)
3430 unsigned long min_count, ret;
3432 LIST_HEAD(page_list);
3433 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3436 * Bit mask controlling how hard we retry per-node allocations.
3437 * If we can not allocate the bit mask, do not attempt to allocate
3438 * the requested huge pages.
3440 if (node_alloc_noretry)
3441 nodes_clear(*node_alloc_noretry);
3446 * resize_lock mutex prevents concurrent adjustments to number of
3447 * pages in hstate via the proc/sysfs interfaces.
3449 mutex_lock(&h->resize_lock);
3450 flush_free_hpage_work(h);
3451 spin_lock_irq(&hugetlb_lock);
3454 * Check for a node specific request.
3455 * Changing node specific huge page count may require a corresponding
3456 * change to the global count. In any case, the passed node mask
3457 * (nodes_allowed) will restrict alloc/free to the specified node.
3459 if (nid != NUMA_NO_NODE) {
3460 unsigned long old_count = count;
3462 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3464 * User may have specified a large count value which caused the
3465 * above calculation to overflow. In this case, they wanted
3466 * to allocate as many huge pages as possible. Set count to
3467 * largest possible value to align with their intention.
3469 if (count < old_count)
3474 * Gigantic pages runtime allocation depend on the capability for large
3475 * page range allocation.
3476 * If the system does not provide this feature, return an error when
3477 * the user tries to allocate gigantic pages but let the user free the
3478 * boottime allocated gigantic pages.
3480 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3481 if (count > persistent_huge_pages(h)) {
3482 spin_unlock_irq(&hugetlb_lock);
3483 mutex_unlock(&h->resize_lock);
3484 NODEMASK_FREE(node_alloc_noretry);
3487 /* Fall through to decrease pool */
3491 * Increase the pool size
3492 * First take pages out of surplus state. Then make up the
3493 * remaining difference by allocating fresh huge pages.
3495 * We might race with alloc_surplus_huge_page() here and be unable
3496 * to convert a surplus huge page to a normal huge page. That is
3497 * not critical, though, it just means the overall size of the
3498 * pool might be one hugepage larger than it needs to be, but
3499 * within all the constraints specified by the sysctls.
3501 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3502 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3506 while (count > persistent_huge_pages(h)) {
3508 * If this allocation races such that we no longer need the
3509 * page, free_huge_page will handle it by freeing the page
3510 * and reducing the surplus.
3512 spin_unlock_irq(&hugetlb_lock);
3514 /* yield cpu to avoid soft lockup */
3517 ret = alloc_pool_huge_page(h, nodes_allowed,
3518 node_alloc_noretry);
3519 spin_lock_irq(&hugetlb_lock);
3523 /* Bail for signals. Probably ctrl-c from user */
3524 if (signal_pending(current))
3529 * Decrease the pool size
3530 * First return free pages to the buddy allocator (being careful
3531 * to keep enough around to satisfy reservations). Then place
3532 * pages into surplus state as needed so the pool will shrink
3533 * to the desired size as pages become free.
3535 * By placing pages into the surplus state independent of the
3536 * overcommit value, we are allowing the surplus pool size to
3537 * exceed overcommit. There are few sane options here. Since
3538 * alloc_surplus_huge_page() is checking the global counter,
3539 * though, we'll note that we're not allowed to exceed surplus
3540 * and won't grow the pool anywhere else. Not until one of the
3541 * sysctls are changed, or the surplus pages go out of use.
3543 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3544 min_count = max(count, min_count);
3545 try_to_free_low(h, min_count, nodes_allowed);
3548 * Collect pages to be removed on list without dropping lock
3550 while (min_count < persistent_huge_pages(h)) {
3551 page = remove_pool_huge_page(h, nodes_allowed, 0);
3555 list_add(&page->lru, &page_list);
3557 /* free the pages after dropping lock */
3558 spin_unlock_irq(&hugetlb_lock);
3559 update_and_free_pages_bulk(h, &page_list);
3560 flush_free_hpage_work(h);
3561 spin_lock_irq(&hugetlb_lock);
3563 while (count < persistent_huge_pages(h)) {
3564 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3568 h->max_huge_pages = persistent_huge_pages(h);
3569 spin_unlock_irq(&hugetlb_lock);
3570 mutex_unlock(&h->resize_lock);
3572 NODEMASK_FREE(node_alloc_noretry);
3577 static int demote_free_huge_page(struct hstate *h, struct page *page)
3579 int i, nid = page_to_nid(page);
3580 struct hstate *target_hstate;
3581 struct folio *folio = page_folio(page);
3582 struct page *subpage;
3585 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3587 remove_hugetlb_folio_for_demote(h, folio, false);
3588 spin_unlock_irq(&hugetlb_lock);
3590 rc = hugetlb_vmemmap_restore(h, page);
3592 /* Allocation of vmemmmap failed, we can not demote page */
3593 spin_lock_irq(&hugetlb_lock);
3594 set_page_refcounted(page);
3595 add_hugetlb_folio(h, page_folio(page), false);
3600 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3601 * sizes as it will not ref count pages.
3603 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3606 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3607 * Without the mutex, pages added to target hstate could be marked
3610 * Note that we already hold h->resize_lock. To prevent deadlock,
3611 * use the convention of always taking larger size hstate mutex first.
3613 mutex_lock(&target_hstate->resize_lock);
3614 for (i = 0; i < pages_per_huge_page(h);
3615 i += pages_per_huge_page(target_hstate)) {
3616 subpage = nth_page(page, i);
3617 folio = page_folio(subpage);
3618 if (hstate_is_gigantic(target_hstate))
3619 prep_compound_gigantic_folio_for_demote(folio,
3620 target_hstate->order);
3622 prep_compound_page(subpage, target_hstate->order);
3623 set_page_private(subpage, 0);
3624 prep_new_hugetlb_folio(target_hstate, folio, nid);
3625 free_huge_page(subpage);
3627 mutex_unlock(&target_hstate->resize_lock);
3629 spin_lock_irq(&hugetlb_lock);
3632 * Not absolutely necessary, but for consistency update max_huge_pages
3633 * based on pool changes for the demoted page.
3635 h->max_huge_pages--;
3636 target_hstate->max_huge_pages +=
3637 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3642 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3643 __must_hold(&hugetlb_lock)
3648 lockdep_assert_held(&hugetlb_lock);
3650 /* We should never get here if no demote order */
3651 if (!h->demote_order) {
3652 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3653 return -EINVAL; /* internal error */
3656 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3657 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3658 if (PageHWPoison(page))
3661 return demote_free_huge_page(h, page);
3666 * Only way to get here is if all pages on free lists are poisoned.
3667 * Return -EBUSY so that caller will not retry.
3672 #define HSTATE_ATTR_RO(_name) \
3673 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3675 #define HSTATE_ATTR_WO(_name) \
3676 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3678 #define HSTATE_ATTR(_name) \
3679 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3681 static struct kobject *hugepages_kobj;
3682 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3684 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3686 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3690 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3691 if (hstate_kobjs[i] == kobj) {
3693 *nidp = NUMA_NO_NODE;
3697 return kobj_to_node_hstate(kobj, nidp);
3700 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3701 struct kobj_attribute *attr, char *buf)
3704 unsigned long nr_huge_pages;
3707 h = kobj_to_hstate(kobj, &nid);
3708 if (nid == NUMA_NO_NODE)
3709 nr_huge_pages = h->nr_huge_pages;
3711 nr_huge_pages = h->nr_huge_pages_node[nid];
3713 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3716 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3717 struct hstate *h, int nid,
3718 unsigned long count, size_t len)
3721 nodemask_t nodes_allowed, *n_mask;
3723 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3726 if (nid == NUMA_NO_NODE) {
3728 * global hstate attribute
3730 if (!(obey_mempolicy &&
3731 init_nodemask_of_mempolicy(&nodes_allowed)))
3732 n_mask = &node_states[N_MEMORY];
3734 n_mask = &nodes_allowed;
3737 * Node specific request. count adjustment happens in
3738 * set_max_huge_pages() after acquiring hugetlb_lock.
3740 init_nodemask_of_node(&nodes_allowed, nid);
3741 n_mask = &nodes_allowed;
3744 err = set_max_huge_pages(h, count, nid, n_mask);
3746 return err ? err : len;
3749 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3750 struct kobject *kobj, const char *buf,
3754 unsigned long count;
3758 err = kstrtoul(buf, 10, &count);
3762 h = kobj_to_hstate(kobj, &nid);
3763 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3766 static ssize_t nr_hugepages_show(struct kobject *kobj,
3767 struct kobj_attribute *attr, char *buf)
3769 return nr_hugepages_show_common(kobj, attr, buf);
3772 static ssize_t nr_hugepages_store(struct kobject *kobj,
3773 struct kobj_attribute *attr, const char *buf, size_t len)
3775 return nr_hugepages_store_common(false, kobj, buf, len);
3777 HSTATE_ATTR(nr_hugepages);
3782 * hstate attribute for optionally mempolicy-based constraint on persistent
3783 * huge page alloc/free.
3785 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3786 struct kobj_attribute *attr,
3789 return nr_hugepages_show_common(kobj, attr, buf);
3792 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3793 struct kobj_attribute *attr, const char *buf, size_t len)
3795 return nr_hugepages_store_common(true, kobj, buf, len);
3797 HSTATE_ATTR(nr_hugepages_mempolicy);
3801 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3802 struct kobj_attribute *attr, char *buf)
3804 struct hstate *h = kobj_to_hstate(kobj, NULL);
3805 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3808 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3809 struct kobj_attribute *attr, const char *buf, size_t count)
3812 unsigned long input;
3813 struct hstate *h = kobj_to_hstate(kobj, NULL);
3815 if (hstate_is_gigantic(h))
3818 err = kstrtoul(buf, 10, &input);
3822 spin_lock_irq(&hugetlb_lock);
3823 h->nr_overcommit_huge_pages = input;
3824 spin_unlock_irq(&hugetlb_lock);
3828 HSTATE_ATTR(nr_overcommit_hugepages);
3830 static ssize_t free_hugepages_show(struct kobject *kobj,
3831 struct kobj_attribute *attr, char *buf)
3834 unsigned long free_huge_pages;
3837 h = kobj_to_hstate(kobj, &nid);
3838 if (nid == NUMA_NO_NODE)
3839 free_huge_pages = h->free_huge_pages;
3841 free_huge_pages = h->free_huge_pages_node[nid];
3843 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3845 HSTATE_ATTR_RO(free_hugepages);
3847 static ssize_t resv_hugepages_show(struct kobject *kobj,
3848 struct kobj_attribute *attr, char *buf)
3850 struct hstate *h = kobj_to_hstate(kobj, NULL);
3851 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3853 HSTATE_ATTR_RO(resv_hugepages);
3855 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3856 struct kobj_attribute *attr, char *buf)
3859 unsigned long surplus_huge_pages;
3862 h = kobj_to_hstate(kobj, &nid);
3863 if (nid == NUMA_NO_NODE)
3864 surplus_huge_pages = h->surplus_huge_pages;
3866 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3868 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3870 HSTATE_ATTR_RO(surplus_hugepages);
3872 static ssize_t demote_store(struct kobject *kobj,
3873 struct kobj_attribute *attr, const char *buf, size_t len)
3875 unsigned long nr_demote;
3876 unsigned long nr_available;
3877 nodemask_t nodes_allowed, *n_mask;
3882 err = kstrtoul(buf, 10, &nr_demote);
3885 h = kobj_to_hstate(kobj, &nid);
3887 if (nid != NUMA_NO_NODE) {
3888 init_nodemask_of_node(&nodes_allowed, nid);
3889 n_mask = &nodes_allowed;
3891 n_mask = &node_states[N_MEMORY];
3894 /* Synchronize with other sysfs operations modifying huge pages */
3895 mutex_lock(&h->resize_lock);
3896 spin_lock_irq(&hugetlb_lock);
3900 * Check for available pages to demote each time thorough the
3901 * loop as demote_pool_huge_page will drop hugetlb_lock.
3903 if (nid != NUMA_NO_NODE)
3904 nr_available = h->free_huge_pages_node[nid];
3906 nr_available = h->free_huge_pages;
3907 nr_available -= h->resv_huge_pages;
3911 err = demote_pool_huge_page(h, n_mask);
3918 spin_unlock_irq(&hugetlb_lock);
3919 mutex_unlock(&h->resize_lock);
3925 HSTATE_ATTR_WO(demote);
3927 static ssize_t demote_size_show(struct kobject *kobj,
3928 struct kobj_attribute *attr, char *buf)
3930 struct hstate *h = kobj_to_hstate(kobj, NULL);
3931 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3933 return sysfs_emit(buf, "%lukB\n", demote_size);
3936 static ssize_t demote_size_store(struct kobject *kobj,
3937 struct kobj_attribute *attr,
3938 const char *buf, size_t count)
3940 struct hstate *h, *demote_hstate;
3941 unsigned long demote_size;
3942 unsigned int demote_order;
3944 demote_size = (unsigned long)memparse(buf, NULL);
3946 demote_hstate = size_to_hstate(demote_size);
3949 demote_order = demote_hstate->order;
3950 if (demote_order < HUGETLB_PAGE_ORDER)
3953 /* demote order must be smaller than hstate order */
3954 h = kobj_to_hstate(kobj, NULL);
3955 if (demote_order >= h->order)
3958 /* resize_lock synchronizes access to demote size and writes */
3959 mutex_lock(&h->resize_lock);
3960 h->demote_order = demote_order;
3961 mutex_unlock(&h->resize_lock);
3965 HSTATE_ATTR(demote_size);
3967 static struct attribute *hstate_attrs[] = {
3968 &nr_hugepages_attr.attr,
3969 &nr_overcommit_hugepages_attr.attr,
3970 &free_hugepages_attr.attr,
3971 &resv_hugepages_attr.attr,
3972 &surplus_hugepages_attr.attr,
3974 &nr_hugepages_mempolicy_attr.attr,
3979 static const struct attribute_group hstate_attr_group = {
3980 .attrs = hstate_attrs,
3983 static struct attribute *hstate_demote_attrs[] = {
3984 &demote_size_attr.attr,
3989 static const struct attribute_group hstate_demote_attr_group = {
3990 .attrs = hstate_demote_attrs,
3993 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3994 struct kobject **hstate_kobjs,
3995 const struct attribute_group *hstate_attr_group)
3998 int hi = hstate_index(h);
4000 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4001 if (!hstate_kobjs[hi])
4004 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4006 kobject_put(hstate_kobjs[hi]);
4007 hstate_kobjs[hi] = NULL;
4011 if (h->demote_order) {
4012 retval = sysfs_create_group(hstate_kobjs[hi],
4013 &hstate_demote_attr_group);
4015 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4016 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4017 kobject_put(hstate_kobjs[hi]);
4018 hstate_kobjs[hi] = NULL;
4027 static bool hugetlb_sysfs_initialized __ro_after_init;
4030 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4031 * with node devices in node_devices[] using a parallel array. The array
4032 * index of a node device or _hstate == node id.
4033 * This is here to avoid any static dependency of the node device driver, in
4034 * the base kernel, on the hugetlb module.
4036 struct node_hstate {
4037 struct kobject *hugepages_kobj;
4038 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4040 static struct node_hstate node_hstates[MAX_NUMNODES];
4043 * A subset of global hstate attributes for node devices
4045 static struct attribute *per_node_hstate_attrs[] = {
4046 &nr_hugepages_attr.attr,
4047 &free_hugepages_attr.attr,
4048 &surplus_hugepages_attr.attr,
4052 static const struct attribute_group per_node_hstate_attr_group = {
4053 .attrs = per_node_hstate_attrs,
4057 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4058 * Returns node id via non-NULL nidp.
4060 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4064 for (nid = 0; nid < nr_node_ids; nid++) {
4065 struct node_hstate *nhs = &node_hstates[nid];
4067 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4068 if (nhs->hstate_kobjs[i] == kobj) {
4080 * Unregister hstate attributes from a single node device.
4081 * No-op if no hstate attributes attached.
4083 void hugetlb_unregister_node(struct node *node)
4086 struct node_hstate *nhs = &node_hstates[node->dev.id];
4088 if (!nhs->hugepages_kobj)
4089 return; /* no hstate attributes */
4091 for_each_hstate(h) {
4092 int idx = hstate_index(h);
4093 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4097 if (h->demote_order)
4098 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4099 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4100 kobject_put(hstate_kobj);
4101 nhs->hstate_kobjs[idx] = NULL;
4104 kobject_put(nhs->hugepages_kobj);
4105 nhs->hugepages_kobj = NULL;
4110 * Register hstate attributes for a single node device.
4111 * No-op if attributes already registered.
4113 void hugetlb_register_node(struct node *node)
4116 struct node_hstate *nhs = &node_hstates[node->dev.id];
4119 if (!hugetlb_sysfs_initialized)
4122 if (nhs->hugepages_kobj)
4123 return; /* already allocated */
4125 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4127 if (!nhs->hugepages_kobj)
4130 for_each_hstate(h) {
4131 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4133 &per_node_hstate_attr_group);
4135 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4136 h->name, node->dev.id);
4137 hugetlb_unregister_node(node);
4144 * hugetlb init time: register hstate attributes for all registered node
4145 * devices of nodes that have memory. All on-line nodes should have
4146 * registered their associated device by this time.
4148 static void __init hugetlb_register_all_nodes(void)
4152 for_each_online_node(nid)
4153 hugetlb_register_node(node_devices[nid]);
4155 #else /* !CONFIG_NUMA */
4157 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4165 static void hugetlb_register_all_nodes(void) { }
4170 static void __init hugetlb_cma_check(void);
4172 static inline __init void hugetlb_cma_check(void)
4177 static void __init hugetlb_sysfs_init(void)
4182 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4183 if (!hugepages_kobj)
4186 for_each_hstate(h) {
4187 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4188 hstate_kobjs, &hstate_attr_group);
4190 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4194 hugetlb_sysfs_initialized = true;
4196 hugetlb_register_all_nodes();
4199 static int __init hugetlb_init(void)
4203 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4206 if (!hugepages_supported()) {
4207 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4208 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4213 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4214 * architectures depend on setup being done here.
4216 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4217 if (!parsed_default_hugepagesz) {
4219 * If we did not parse a default huge page size, set
4220 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4221 * number of huge pages for this default size was implicitly
4222 * specified, set that here as well.
4223 * Note that the implicit setting will overwrite an explicit
4224 * setting. A warning will be printed in this case.
4226 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4227 if (default_hstate_max_huge_pages) {
4228 if (default_hstate.max_huge_pages) {
4231 string_get_size(huge_page_size(&default_hstate),
4232 1, STRING_UNITS_2, buf, 32);
4233 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4234 default_hstate.max_huge_pages, buf);
4235 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4236 default_hstate_max_huge_pages);
4238 default_hstate.max_huge_pages =
4239 default_hstate_max_huge_pages;
4241 for_each_online_node(i)
4242 default_hstate.max_huge_pages_node[i] =
4243 default_hugepages_in_node[i];
4247 hugetlb_cma_check();
4248 hugetlb_init_hstates();
4249 gather_bootmem_prealloc();
4252 hugetlb_sysfs_init();
4253 hugetlb_cgroup_file_init();
4256 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4258 num_fault_mutexes = 1;
4260 hugetlb_fault_mutex_table =
4261 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4263 BUG_ON(!hugetlb_fault_mutex_table);
4265 for (i = 0; i < num_fault_mutexes; i++)
4266 mutex_init(&hugetlb_fault_mutex_table[i]);
4269 subsys_initcall(hugetlb_init);
4271 /* Overwritten by architectures with more huge page sizes */
4272 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4274 return size == HPAGE_SIZE;
4277 void __init hugetlb_add_hstate(unsigned int order)
4282 if (size_to_hstate(PAGE_SIZE << order)) {
4285 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4287 h = &hstates[hugetlb_max_hstate++];
4288 mutex_init(&h->resize_lock);
4290 h->mask = ~(huge_page_size(h) - 1);
4291 for (i = 0; i < MAX_NUMNODES; ++i)
4292 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4293 INIT_LIST_HEAD(&h->hugepage_activelist);
4294 h->next_nid_to_alloc = first_memory_node;
4295 h->next_nid_to_free = first_memory_node;
4296 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4297 huge_page_size(h)/SZ_1K);
4302 bool __init __weak hugetlb_node_alloc_supported(void)
4307 static void __init hugepages_clear_pages_in_node(void)
4309 if (!hugetlb_max_hstate) {
4310 default_hstate_max_huge_pages = 0;
4311 memset(default_hugepages_in_node, 0,
4312 sizeof(default_hugepages_in_node));
4314 parsed_hstate->max_huge_pages = 0;
4315 memset(parsed_hstate->max_huge_pages_node, 0,
4316 sizeof(parsed_hstate->max_huge_pages_node));
4321 * hugepages command line processing
4322 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4323 * specification. If not, ignore the hugepages value. hugepages can also
4324 * be the first huge page command line option in which case it implicitly
4325 * specifies the number of huge pages for the default size.
4327 static int __init hugepages_setup(char *s)
4330 static unsigned long *last_mhp;
4331 int node = NUMA_NO_NODE;
4336 if (!parsed_valid_hugepagesz) {
4337 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4338 parsed_valid_hugepagesz = true;
4343 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4344 * yet, so this hugepages= parameter goes to the "default hstate".
4345 * Otherwise, it goes with the previously parsed hugepagesz or
4346 * default_hugepagesz.
4348 else if (!hugetlb_max_hstate)
4349 mhp = &default_hstate_max_huge_pages;
4351 mhp = &parsed_hstate->max_huge_pages;
4353 if (mhp == last_mhp) {
4354 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4360 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4362 /* Parameter is node format */
4363 if (p[count] == ':') {
4364 if (!hugetlb_node_alloc_supported()) {
4365 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4368 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4370 node = array_index_nospec(tmp, MAX_NUMNODES);
4372 /* Parse hugepages */
4373 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4375 if (!hugetlb_max_hstate)
4376 default_hugepages_in_node[node] = tmp;
4378 parsed_hstate->max_huge_pages_node[node] = tmp;
4380 /* Go to parse next node*/
4381 if (p[count] == ',')
4394 * Global state is always initialized later in hugetlb_init.
4395 * But we need to allocate gigantic hstates here early to still
4396 * use the bootmem allocator.
4398 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4399 hugetlb_hstate_alloc_pages(parsed_hstate);
4406 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4407 hugepages_clear_pages_in_node();
4410 __setup("hugepages=", hugepages_setup);
4413 * hugepagesz command line processing
4414 * A specific huge page size can only be specified once with hugepagesz.
4415 * hugepagesz is followed by hugepages on the command line. The global
4416 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4417 * hugepagesz argument was valid.
4419 static int __init hugepagesz_setup(char *s)
4424 parsed_valid_hugepagesz = false;
4425 size = (unsigned long)memparse(s, NULL);
4427 if (!arch_hugetlb_valid_size(size)) {
4428 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4432 h = size_to_hstate(size);
4435 * hstate for this size already exists. This is normally
4436 * an error, but is allowed if the existing hstate is the
4437 * default hstate. More specifically, it is only allowed if
4438 * the number of huge pages for the default hstate was not
4439 * previously specified.
4441 if (!parsed_default_hugepagesz || h != &default_hstate ||
4442 default_hstate.max_huge_pages) {
4443 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4448 * No need to call hugetlb_add_hstate() as hstate already
4449 * exists. But, do set parsed_hstate so that a following
4450 * hugepages= parameter will be applied to this hstate.
4453 parsed_valid_hugepagesz = true;
4457 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4458 parsed_valid_hugepagesz = true;
4461 __setup("hugepagesz=", hugepagesz_setup);
4464 * default_hugepagesz command line input
4465 * Only one instance of default_hugepagesz allowed on command line.
4467 static int __init default_hugepagesz_setup(char *s)
4472 parsed_valid_hugepagesz = false;
4473 if (parsed_default_hugepagesz) {
4474 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4478 size = (unsigned long)memparse(s, NULL);
4480 if (!arch_hugetlb_valid_size(size)) {
4481 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4485 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4486 parsed_valid_hugepagesz = true;
4487 parsed_default_hugepagesz = true;
4488 default_hstate_idx = hstate_index(size_to_hstate(size));
4491 * The number of default huge pages (for this size) could have been
4492 * specified as the first hugetlb parameter: hugepages=X. If so,
4493 * then default_hstate_max_huge_pages is set. If the default huge
4494 * page size is gigantic (>= MAX_ORDER), then the pages must be
4495 * allocated here from bootmem allocator.
4497 if (default_hstate_max_huge_pages) {
4498 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4499 for_each_online_node(i)
4500 default_hstate.max_huge_pages_node[i] =
4501 default_hugepages_in_node[i];
4502 if (hstate_is_gigantic(&default_hstate))
4503 hugetlb_hstate_alloc_pages(&default_hstate);
4504 default_hstate_max_huge_pages = 0;
4509 __setup("default_hugepagesz=", default_hugepagesz_setup);
4511 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4514 struct mempolicy *mpol = get_task_policy(current);
4517 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4518 * (from policy_nodemask) specifically for hugetlb case
4520 if (mpol->mode == MPOL_BIND &&
4521 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4522 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4523 return &mpol->nodes;
4528 static unsigned int allowed_mems_nr(struct hstate *h)
4531 unsigned int nr = 0;
4532 nodemask_t *mbind_nodemask;
4533 unsigned int *array = h->free_huge_pages_node;
4534 gfp_t gfp_mask = htlb_alloc_mask(h);
4536 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4537 for_each_node_mask(node, cpuset_current_mems_allowed) {
4538 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4545 #ifdef CONFIG_SYSCTL
4546 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4547 void *buffer, size_t *length,
4548 loff_t *ppos, unsigned long *out)
4550 struct ctl_table dup_table;
4553 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4554 * can duplicate the @table and alter the duplicate of it.
4557 dup_table.data = out;
4559 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4562 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4563 struct ctl_table *table, int write,
4564 void *buffer, size_t *length, loff_t *ppos)
4566 struct hstate *h = &default_hstate;
4567 unsigned long tmp = h->max_huge_pages;
4570 if (!hugepages_supported())
4573 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4579 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4580 NUMA_NO_NODE, tmp, *length);
4585 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4586 void *buffer, size_t *length, loff_t *ppos)
4589 return hugetlb_sysctl_handler_common(false, table, write,
4590 buffer, length, ppos);
4594 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4595 void *buffer, size_t *length, loff_t *ppos)
4597 return hugetlb_sysctl_handler_common(true, table, write,
4598 buffer, length, ppos);
4600 #endif /* CONFIG_NUMA */
4602 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4603 void *buffer, size_t *length, loff_t *ppos)
4605 struct hstate *h = &default_hstate;
4609 if (!hugepages_supported())
4612 tmp = h->nr_overcommit_huge_pages;
4614 if (write && hstate_is_gigantic(h))
4617 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4623 spin_lock_irq(&hugetlb_lock);
4624 h->nr_overcommit_huge_pages = tmp;
4625 spin_unlock_irq(&hugetlb_lock);
4631 #endif /* CONFIG_SYSCTL */
4633 void hugetlb_report_meminfo(struct seq_file *m)
4636 unsigned long total = 0;
4638 if (!hugepages_supported())
4641 for_each_hstate(h) {
4642 unsigned long count = h->nr_huge_pages;
4644 total += huge_page_size(h) * count;
4646 if (h == &default_hstate)
4648 "HugePages_Total: %5lu\n"
4649 "HugePages_Free: %5lu\n"
4650 "HugePages_Rsvd: %5lu\n"
4651 "HugePages_Surp: %5lu\n"
4652 "Hugepagesize: %8lu kB\n",
4656 h->surplus_huge_pages,
4657 huge_page_size(h) / SZ_1K);
4660 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4663 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4665 struct hstate *h = &default_hstate;
4667 if (!hugepages_supported())
4670 return sysfs_emit_at(buf, len,
4671 "Node %d HugePages_Total: %5u\n"
4672 "Node %d HugePages_Free: %5u\n"
4673 "Node %d HugePages_Surp: %5u\n",
4674 nid, h->nr_huge_pages_node[nid],
4675 nid, h->free_huge_pages_node[nid],
4676 nid, h->surplus_huge_pages_node[nid]);
4679 void hugetlb_show_meminfo_node(int nid)
4683 if (!hugepages_supported())
4687 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4689 h->nr_huge_pages_node[nid],
4690 h->free_huge_pages_node[nid],
4691 h->surplus_huge_pages_node[nid],
4692 huge_page_size(h) / SZ_1K);
4695 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4697 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4698 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4701 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4702 unsigned long hugetlb_total_pages(void)
4705 unsigned long nr_total_pages = 0;
4708 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4709 return nr_total_pages;
4712 static int hugetlb_acct_memory(struct hstate *h, long delta)
4719 spin_lock_irq(&hugetlb_lock);
4721 * When cpuset is configured, it breaks the strict hugetlb page
4722 * reservation as the accounting is done on a global variable. Such
4723 * reservation is completely rubbish in the presence of cpuset because
4724 * the reservation is not checked against page availability for the
4725 * current cpuset. Application can still potentially OOM'ed by kernel
4726 * with lack of free htlb page in cpuset that the task is in.
4727 * Attempt to enforce strict accounting with cpuset is almost
4728 * impossible (or too ugly) because cpuset is too fluid that
4729 * task or memory node can be dynamically moved between cpusets.
4731 * The change of semantics for shared hugetlb mapping with cpuset is
4732 * undesirable. However, in order to preserve some of the semantics,
4733 * we fall back to check against current free page availability as
4734 * a best attempt and hopefully to minimize the impact of changing
4735 * semantics that cpuset has.
4737 * Apart from cpuset, we also have memory policy mechanism that
4738 * also determines from which node the kernel will allocate memory
4739 * in a NUMA system. So similar to cpuset, we also should consider
4740 * the memory policy of the current task. Similar to the description
4744 if (gather_surplus_pages(h, delta) < 0)
4747 if (delta > allowed_mems_nr(h)) {
4748 return_unused_surplus_pages(h, delta);
4755 return_unused_surplus_pages(h, (unsigned long) -delta);
4758 spin_unlock_irq(&hugetlb_lock);
4762 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4764 struct resv_map *resv = vma_resv_map(vma);
4767 * HPAGE_RESV_OWNER indicates a private mapping.
4768 * This new VMA should share its siblings reservation map if present.
4769 * The VMA will only ever have a valid reservation map pointer where
4770 * it is being copied for another still existing VMA. As that VMA
4771 * has a reference to the reservation map it cannot disappear until
4772 * after this open call completes. It is therefore safe to take a
4773 * new reference here without additional locking.
4775 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4776 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4777 kref_get(&resv->refs);
4781 * vma_lock structure for sharable mappings is vma specific.
4782 * Clear old pointer (if copied via vm_area_dup) and allocate
4783 * new structure. Before clearing, make sure vma_lock is not
4786 if (vma->vm_flags & VM_MAYSHARE) {
4787 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4790 if (vma_lock->vma != vma) {
4791 vma->vm_private_data = NULL;
4792 hugetlb_vma_lock_alloc(vma);
4794 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4796 hugetlb_vma_lock_alloc(vma);
4800 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4802 struct hstate *h = hstate_vma(vma);
4803 struct resv_map *resv;
4804 struct hugepage_subpool *spool = subpool_vma(vma);
4805 unsigned long reserve, start, end;
4808 hugetlb_vma_lock_free(vma);
4810 resv = vma_resv_map(vma);
4811 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4814 start = vma_hugecache_offset(h, vma, vma->vm_start);
4815 end = vma_hugecache_offset(h, vma, vma->vm_end);
4817 reserve = (end - start) - region_count(resv, start, end);
4818 hugetlb_cgroup_uncharge_counter(resv, start, end);
4821 * Decrement reserve counts. The global reserve count may be
4822 * adjusted if the subpool has a minimum size.
4824 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4825 hugetlb_acct_memory(h, -gbl_reserve);
4828 kref_put(&resv->refs, resv_map_release);
4831 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4833 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4837 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4838 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4839 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4841 if (addr & ~PUD_MASK) {
4843 * hugetlb_vm_op_split is called right before we attempt to
4844 * split the VMA. We will need to unshare PMDs in the old and
4845 * new VMAs, so let's unshare before we split.
4847 unsigned long floor = addr & PUD_MASK;
4848 unsigned long ceil = floor + PUD_SIZE;
4850 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4851 hugetlb_unshare_pmds(vma, floor, ceil);
4857 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4859 return huge_page_size(hstate_vma(vma));
4863 * We cannot handle pagefaults against hugetlb pages at all. They cause
4864 * handle_mm_fault() to try to instantiate regular-sized pages in the
4865 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4868 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4875 * When a new function is introduced to vm_operations_struct and added
4876 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4877 * This is because under System V memory model, mappings created via
4878 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4879 * their original vm_ops are overwritten with shm_vm_ops.
4881 const struct vm_operations_struct hugetlb_vm_ops = {
4882 .fault = hugetlb_vm_op_fault,
4883 .open = hugetlb_vm_op_open,
4884 .close = hugetlb_vm_op_close,
4885 .may_split = hugetlb_vm_op_split,
4886 .pagesize = hugetlb_vm_op_pagesize,
4889 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4893 unsigned int shift = huge_page_shift(hstate_vma(vma));
4896 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4897 vma->vm_page_prot)));
4899 entry = huge_pte_wrprotect(mk_huge_pte(page,
4900 vma->vm_page_prot));
4902 entry = pte_mkyoung(entry);
4903 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4908 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4909 unsigned long address, pte_t *ptep)
4913 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4914 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4915 update_mmu_cache(vma, address, ptep);
4918 bool is_hugetlb_entry_migration(pte_t pte)
4922 if (huge_pte_none(pte) || pte_present(pte))
4924 swp = pte_to_swp_entry(pte);
4925 if (is_migration_entry(swp))
4931 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4935 if (huge_pte_none(pte) || pte_present(pte))
4937 swp = pte_to_swp_entry(pte);
4938 if (is_hwpoison_entry(swp))
4945 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4946 struct page *new_page)
4948 __SetPageUptodate(new_page);
4949 hugepage_add_new_anon_rmap(new_page, vma, addr);
4950 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4951 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4952 SetHPageMigratable(new_page);
4955 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4956 struct vm_area_struct *dst_vma,
4957 struct vm_area_struct *src_vma)
4959 pte_t *src_pte, *dst_pte, entry;
4960 struct page *ptepage;
4962 bool cow = is_cow_mapping(src_vma->vm_flags);
4963 struct hstate *h = hstate_vma(src_vma);
4964 unsigned long sz = huge_page_size(h);
4965 unsigned long npages = pages_per_huge_page(h);
4966 struct mmu_notifier_range range;
4967 unsigned long last_addr_mask;
4971 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
4974 mmu_notifier_invalidate_range_start(&range);
4975 mmap_assert_write_locked(src);
4976 raw_write_seqcount_begin(&src->write_protect_seq);
4979 * For shared mappings the vma lock must be held before
4980 * calling hugetlb_walk() in the src vma. Otherwise, the
4981 * returned ptep could go away if part of a shared pmd and
4982 * another thread calls huge_pmd_unshare.
4984 hugetlb_vma_lock_read(src_vma);
4987 last_addr_mask = hugetlb_mask_last_page(h);
4988 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4989 spinlock_t *src_ptl, *dst_ptl;
4990 src_pte = hugetlb_walk(src_vma, addr, sz);
4992 addr |= last_addr_mask;
4995 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5002 * If the pagetables are shared don't copy or take references.
5004 * dst_pte == src_pte is the common case of src/dest sharing.
5005 * However, src could have 'unshared' and dst shares with
5006 * another vma. So page_count of ptep page is checked instead
5007 * to reliably determine whether pte is shared.
5009 if (page_count(virt_to_page(dst_pte)) > 1) {
5010 addr |= last_addr_mask;
5014 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5015 src_ptl = huge_pte_lockptr(h, src, src_pte);
5016 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5017 entry = huge_ptep_get(src_pte);
5019 if (huge_pte_none(entry)) {
5021 * Skip if src entry none.
5024 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5025 bool uffd_wp = huge_pte_uffd_wp(entry);
5027 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5028 entry = huge_pte_clear_uffd_wp(entry);
5029 set_huge_pte_at(dst, addr, dst_pte, entry);
5030 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5031 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5032 bool uffd_wp = huge_pte_uffd_wp(entry);
5034 if (!is_readable_migration_entry(swp_entry) && cow) {
5036 * COW mappings require pages in both
5037 * parent and child to be set to read.
5039 swp_entry = make_readable_migration_entry(
5040 swp_offset(swp_entry));
5041 entry = swp_entry_to_pte(swp_entry);
5042 if (userfaultfd_wp(src_vma) && uffd_wp)
5043 entry = huge_pte_mkuffd_wp(entry);
5044 set_huge_pte_at(src, addr, src_pte, entry);
5046 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5047 entry = huge_pte_clear_uffd_wp(entry);
5048 set_huge_pte_at(dst, addr, dst_pte, entry);
5049 } else if (unlikely(is_pte_marker(entry))) {
5050 /* No swap on hugetlb */
5052 is_swapin_error_entry(pte_to_swp_entry(entry)));
5054 * We copy the pte marker only if the dst vma has
5057 if (userfaultfd_wp(dst_vma))
5058 set_huge_pte_at(dst, addr, dst_pte, entry);
5060 entry = huge_ptep_get(src_pte);
5061 ptepage = pte_page(entry);
5065 * Failing to duplicate the anon rmap is a rare case
5066 * where we see pinned hugetlb pages while they're
5067 * prone to COW. We need to do the COW earlier during
5070 * When pre-allocating the page or copying data, we
5071 * need to be without the pgtable locks since we could
5072 * sleep during the process.
5074 if (!PageAnon(ptepage)) {
5075 page_dup_file_rmap(ptepage, true);
5076 } else if (page_try_dup_anon_rmap(ptepage, true,
5078 pte_t src_pte_old = entry;
5081 spin_unlock(src_ptl);
5082 spin_unlock(dst_ptl);
5083 /* Do not use reserve as it's private owned */
5084 new = alloc_huge_page(dst_vma, addr, 1);
5090 copy_user_huge_page(new, ptepage, addr, dst_vma,
5094 /* Install the new huge page if src pte stable */
5095 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5096 src_ptl = huge_pte_lockptr(h, src, src_pte);
5097 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5098 entry = huge_ptep_get(src_pte);
5099 if (!pte_same(src_pte_old, entry)) {
5100 restore_reserve_on_error(h, dst_vma, addr,
5103 /* huge_ptep of dst_pte won't change as in child */
5106 hugetlb_install_page(dst_vma, dst_pte, addr, new);
5107 spin_unlock(src_ptl);
5108 spin_unlock(dst_ptl);
5114 * No need to notify as we are downgrading page
5115 * table protection not changing it to point
5118 * See Documentation/mm/mmu_notifier.rst
5120 huge_ptep_set_wrprotect(src, addr, src_pte);
5121 entry = huge_pte_wrprotect(entry);
5124 set_huge_pte_at(dst, addr, dst_pte, entry);
5125 hugetlb_count_add(npages, dst);
5127 spin_unlock(src_ptl);
5128 spin_unlock(dst_ptl);
5132 raw_write_seqcount_end(&src->write_protect_seq);
5133 mmu_notifier_invalidate_range_end(&range);
5135 hugetlb_vma_unlock_read(src_vma);
5141 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5142 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5144 struct hstate *h = hstate_vma(vma);
5145 struct mm_struct *mm = vma->vm_mm;
5146 spinlock_t *src_ptl, *dst_ptl;
5149 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5150 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5153 * We don't have to worry about the ordering of src and dst ptlocks
5154 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5156 if (src_ptl != dst_ptl)
5157 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5159 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5160 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5162 if (src_ptl != dst_ptl)
5163 spin_unlock(src_ptl);
5164 spin_unlock(dst_ptl);
5167 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5168 struct vm_area_struct *new_vma,
5169 unsigned long old_addr, unsigned long new_addr,
5172 struct hstate *h = hstate_vma(vma);
5173 struct address_space *mapping = vma->vm_file->f_mapping;
5174 unsigned long sz = huge_page_size(h);
5175 struct mm_struct *mm = vma->vm_mm;
5176 unsigned long old_end = old_addr + len;
5177 unsigned long last_addr_mask;
5178 pte_t *src_pte, *dst_pte;
5179 struct mmu_notifier_range range;
5180 bool shared_pmd = false;
5182 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5184 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5186 * In case of shared PMDs, we should cover the maximum possible
5189 flush_cache_range(vma, range.start, range.end);
5191 mmu_notifier_invalidate_range_start(&range);
5192 last_addr_mask = hugetlb_mask_last_page(h);
5193 /* Prevent race with file truncation */
5194 hugetlb_vma_lock_write(vma);
5195 i_mmap_lock_write(mapping);
5196 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5197 src_pte = hugetlb_walk(vma, old_addr, sz);
5199 old_addr |= last_addr_mask;
5200 new_addr |= last_addr_mask;
5203 if (huge_pte_none(huge_ptep_get(src_pte)))
5206 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5208 old_addr |= last_addr_mask;
5209 new_addr |= last_addr_mask;
5213 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5217 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5221 flush_tlb_range(vma, range.start, range.end);
5223 flush_tlb_range(vma, old_end - len, old_end);
5224 mmu_notifier_invalidate_range_end(&range);
5225 i_mmap_unlock_write(mapping);
5226 hugetlb_vma_unlock_write(vma);
5228 return len + old_addr - old_end;
5231 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5232 unsigned long start, unsigned long end,
5233 struct page *ref_page, zap_flags_t zap_flags)
5235 struct mm_struct *mm = vma->vm_mm;
5236 unsigned long address;
5241 struct hstate *h = hstate_vma(vma);
5242 unsigned long sz = huge_page_size(h);
5243 unsigned long last_addr_mask;
5244 bool force_flush = false;
5246 WARN_ON(!is_vm_hugetlb_page(vma));
5247 BUG_ON(start & ~huge_page_mask(h));
5248 BUG_ON(end & ~huge_page_mask(h));
5251 * This is a hugetlb vma, all the pte entries should point
5254 tlb_change_page_size(tlb, sz);
5255 tlb_start_vma(tlb, vma);
5257 last_addr_mask = hugetlb_mask_last_page(h);
5259 for (; address < end; address += sz) {
5260 ptep = hugetlb_walk(vma, address, sz);
5262 address |= last_addr_mask;
5266 ptl = huge_pte_lock(h, mm, ptep);
5267 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5269 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5271 address |= last_addr_mask;
5275 pte = huge_ptep_get(ptep);
5276 if (huge_pte_none(pte)) {
5282 * Migrating hugepage or HWPoisoned hugepage is already
5283 * unmapped and its refcount is dropped, so just clear pte here.
5285 if (unlikely(!pte_present(pte))) {
5287 * If the pte was wr-protected by uffd-wp in any of the
5288 * swap forms, meanwhile the caller does not want to
5289 * drop the uffd-wp bit in this zap, then replace the
5290 * pte with a marker.
5292 if (pte_swp_uffd_wp_any(pte) &&
5293 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5294 set_huge_pte_at(mm, address, ptep,
5295 make_pte_marker(PTE_MARKER_UFFD_WP));
5297 huge_pte_clear(mm, address, ptep, sz);
5302 page = pte_page(pte);
5304 * If a reference page is supplied, it is because a specific
5305 * page is being unmapped, not a range. Ensure the page we
5306 * are about to unmap is the actual page of interest.
5309 if (page != ref_page) {
5314 * Mark the VMA as having unmapped its page so that
5315 * future faults in this VMA will fail rather than
5316 * looking like data was lost
5318 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5321 pte = huge_ptep_get_and_clear(mm, address, ptep);
5322 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5323 if (huge_pte_dirty(pte))
5324 set_page_dirty(page);
5325 /* Leave a uffd-wp pte marker if needed */
5326 if (huge_pte_uffd_wp(pte) &&
5327 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5328 set_huge_pte_at(mm, address, ptep,
5329 make_pte_marker(PTE_MARKER_UFFD_WP));
5330 hugetlb_count_sub(pages_per_huge_page(h), mm);
5331 page_remove_rmap(page, vma, true);
5334 tlb_remove_page_size(tlb, page, huge_page_size(h));
5336 * Bail out after unmapping reference page if supplied
5341 tlb_end_vma(tlb, vma);
5344 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5345 * could defer the flush until now, since by holding i_mmap_rwsem we
5346 * guaranteed that the last refernece would not be dropped. But we must
5347 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5348 * dropped and the last reference to the shared PMDs page might be
5351 * In theory we could defer the freeing of the PMD pages as well, but
5352 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5353 * detect sharing, so we cannot defer the release of the page either.
5354 * Instead, do flush now.
5357 tlb_flush_mmu_tlbonly(tlb);
5360 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5361 struct vm_area_struct *vma, unsigned long start,
5362 unsigned long end, struct page *ref_page,
5363 zap_flags_t zap_flags)
5365 hugetlb_vma_lock_write(vma);
5366 i_mmap_lock_write(vma->vm_file->f_mapping);
5368 /* mmu notification performed in caller */
5369 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5371 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5373 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5374 * When the vma_lock is freed, this makes the vma ineligible
5375 * for pmd sharing. And, i_mmap_rwsem is required to set up
5376 * pmd sharing. This is important as page tables for this
5377 * unmapped range will be asynchrously deleted. If the page
5378 * tables are shared, there will be issues when accessed by
5381 __hugetlb_vma_unlock_write_free(vma);
5382 i_mmap_unlock_write(vma->vm_file->f_mapping);
5384 i_mmap_unlock_write(vma->vm_file->f_mapping);
5385 hugetlb_vma_unlock_write(vma);
5389 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5390 unsigned long end, struct page *ref_page,
5391 zap_flags_t zap_flags)
5393 struct mmu_notifier_range range;
5394 struct mmu_gather tlb;
5396 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5398 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5399 mmu_notifier_invalidate_range_start(&range);
5400 tlb_gather_mmu(&tlb, vma->vm_mm);
5402 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5404 mmu_notifier_invalidate_range_end(&range);
5405 tlb_finish_mmu(&tlb);
5409 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5410 * mapping it owns the reserve page for. The intention is to unmap the page
5411 * from other VMAs and let the children be SIGKILLed if they are faulting the
5414 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5415 struct page *page, unsigned long address)
5417 struct hstate *h = hstate_vma(vma);
5418 struct vm_area_struct *iter_vma;
5419 struct address_space *mapping;
5423 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5424 * from page cache lookup which is in HPAGE_SIZE units.
5426 address = address & huge_page_mask(h);
5427 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5429 mapping = vma->vm_file->f_mapping;
5432 * Take the mapping lock for the duration of the table walk. As
5433 * this mapping should be shared between all the VMAs,
5434 * __unmap_hugepage_range() is called as the lock is already held
5436 i_mmap_lock_write(mapping);
5437 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5438 /* Do not unmap the current VMA */
5439 if (iter_vma == vma)
5443 * Shared VMAs have their own reserves and do not affect
5444 * MAP_PRIVATE accounting but it is possible that a shared
5445 * VMA is using the same page so check and skip such VMAs.
5447 if (iter_vma->vm_flags & VM_MAYSHARE)
5451 * Unmap the page from other VMAs without their own reserves.
5452 * They get marked to be SIGKILLed if they fault in these
5453 * areas. This is because a future no-page fault on this VMA
5454 * could insert a zeroed page instead of the data existing
5455 * from the time of fork. This would look like data corruption
5457 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5458 unmap_hugepage_range(iter_vma, address,
5459 address + huge_page_size(h), page, 0);
5461 i_mmap_unlock_write(mapping);
5465 * hugetlb_wp() should be called with page lock of the original hugepage held.
5466 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5467 * cannot race with other handlers or page migration.
5468 * Keep the pte_same checks anyway to make transition from the mutex easier.
5470 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5471 unsigned long address, pte_t *ptep, unsigned int flags,
5472 struct page *pagecache_page, spinlock_t *ptl)
5474 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5476 struct hstate *h = hstate_vma(vma);
5477 struct page *old_page, *new_page;
5478 int outside_reserve = 0;
5480 unsigned long haddr = address & huge_page_mask(h);
5481 struct mmu_notifier_range range;
5484 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5485 * PTE mapped R/O such as maybe_mkwrite() would do.
5487 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5488 return VM_FAULT_SIGSEGV;
5490 /* Let's take out MAP_SHARED mappings first. */
5491 if (vma->vm_flags & VM_MAYSHARE) {
5492 set_huge_ptep_writable(vma, haddr, ptep);
5496 pte = huge_ptep_get(ptep);
5497 old_page = pte_page(pte);
5499 delayacct_wpcopy_start();
5503 * If no-one else is actually using this page, we're the exclusive
5504 * owner and can reuse this page.
5506 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5507 if (!PageAnonExclusive(old_page))
5508 page_move_anon_rmap(old_page, vma);
5509 if (likely(!unshare))
5510 set_huge_ptep_writable(vma, haddr, ptep);
5512 delayacct_wpcopy_end();
5515 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5519 * If the process that created a MAP_PRIVATE mapping is about to
5520 * perform a COW due to a shared page count, attempt to satisfy
5521 * the allocation without using the existing reserves. The pagecache
5522 * page is used to determine if the reserve at this address was
5523 * consumed or not. If reserves were used, a partial faulted mapping
5524 * at the time of fork() could consume its reserves on COW instead
5525 * of the full address range.
5527 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5528 old_page != pagecache_page)
5529 outside_reserve = 1;
5534 * Drop page table lock as buddy allocator may be called. It will
5535 * be acquired again before returning to the caller, as expected.
5538 new_page = alloc_huge_page(vma, haddr, outside_reserve);
5540 if (IS_ERR(new_page)) {
5542 * If a process owning a MAP_PRIVATE mapping fails to COW,
5543 * it is due to references held by a child and an insufficient
5544 * huge page pool. To guarantee the original mappers
5545 * reliability, unmap the page from child processes. The child
5546 * may get SIGKILLed if it later faults.
5548 if (outside_reserve) {
5549 struct address_space *mapping = vma->vm_file->f_mapping;
5555 * Drop hugetlb_fault_mutex and vma_lock before
5556 * unmapping. unmapping needs to hold vma_lock
5557 * in write mode. Dropping vma_lock in read mode
5558 * here is OK as COW mappings do not interact with
5561 * Reacquire both after unmap operation.
5563 idx = vma_hugecache_offset(h, vma, haddr);
5564 hash = hugetlb_fault_mutex_hash(mapping, idx);
5565 hugetlb_vma_unlock_read(vma);
5566 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5568 unmap_ref_private(mm, vma, old_page, haddr);
5570 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5571 hugetlb_vma_lock_read(vma);
5573 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5575 pte_same(huge_ptep_get(ptep), pte)))
5576 goto retry_avoidcopy;
5578 * race occurs while re-acquiring page table
5579 * lock, and our job is done.
5581 delayacct_wpcopy_end();
5585 ret = vmf_error(PTR_ERR(new_page));
5586 goto out_release_old;
5590 * When the original hugepage is shared one, it does not have
5591 * anon_vma prepared.
5593 if (unlikely(anon_vma_prepare(vma))) {
5595 goto out_release_all;
5598 copy_user_huge_page(new_page, old_page, address, vma,
5599 pages_per_huge_page(h));
5600 __SetPageUptodate(new_page);
5602 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5603 haddr + huge_page_size(h));
5604 mmu_notifier_invalidate_range_start(&range);
5607 * Retake the page table lock to check for racing updates
5608 * before the page tables are altered
5611 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5612 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5613 /* Break COW or unshare */
5614 huge_ptep_clear_flush(vma, haddr, ptep);
5615 mmu_notifier_invalidate_range(mm, range.start, range.end);
5616 page_remove_rmap(old_page, vma, true);
5617 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5618 set_huge_pte_at(mm, haddr, ptep,
5619 make_huge_pte(vma, new_page, !unshare));
5620 SetHPageMigratable(new_page);
5621 /* Make the old page be freed below */
5622 new_page = old_page;
5625 mmu_notifier_invalidate_range_end(&range);
5628 * No restore in case of successful pagetable update (Break COW or
5631 if (new_page != old_page)
5632 restore_reserve_on_error(h, vma, haddr, new_page);
5637 spin_lock(ptl); /* Caller expects lock to be held */
5639 delayacct_wpcopy_end();
5644 * Return whether there is a pagecache page to back given address within VMA.
5645 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5647 static bool hugetlbfs_pagecache_present(struct hstate *h,
5648 struct vm_area_struct *vma, unsigned long address)
5650 struct address_space *mapping;
5654 mapping = vma->vm_file->f_mapping;
5655 idx = vma_hugecache_offset(h, vma, address);
5657 page = find_get_page(mapping, idx);
5660 return page != NULL;
5663 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5666 struct folio *folio = page_folio(page);
5667 struct inode *inode = mapping->host;
5668 struct hstate *h = hstate_inode(inode);
5671 __folio_set_locked(folio);
5672 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5674 if (unlikely(err)) {
5675 __folio_clear_locked(folio);
5678 ClearHPageRestoreReserve(page);
5681 * mark folio dirty so that it will not be removed from cache/file
5682 * by non-hugetlbfs specific code paths.
5684 folio_mark_dirty(folio);
5686 spin_lock(&inode->i_lock);
5687 inode->i_blocks += blocks_per_huge_page(h);
5688 spin_unlock(&inode->i_lock);
5692 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5693 struct address_space *mapping,
5696 unsigned long haddr,
5698 unsigned long reason)
5701 struct vm_fault vmf = {
5704 .real_address = addr,
5708 * Hard to debug if it ends up being
5709 * used by a callee that assumes
5710 * something about the other
5711 * uninitialized fields... same as in
5717 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5718 * userfault. Also mmap_lock could be dropped due to handling
5719 * userfault, any vma operation should be careful from here.
5721 hugetlb_vma_unlock_read(vma);
5722 hash = hugetlb_fault_mutex_hash(mapping, idx);
5723 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5724 return handle_userfault(&vmf, reason);
5728 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5729 * false if pte changed or is changing.
5731 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5732 pte_t *ptep, pte_t old_pte)
5737 ptl = huge_pte_lock(h, mm, ptep);
5738 same = pte_same(huge_ptep_get(ptep), old_pte);
5744 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5745 struct vm_area_struct *vma,
5746 struct address_space *mapping, pgoff_t idx,
5747 unsigned long address, pte_t *ptep,
5748 pte_t old_pte, unsigned int flags)
5750 struct hstate *h = hstate_vma(vma);
5751 vm_fault_t ret = VM_FAULT_SIGBUS;
5757 unsigned long haddr = address & huge_page_mask(h);
5758 bool new_page, new_pagecache_page = false;
5759 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5762 * Currently, we are forced to kill the process in the event the
5763 * original mapper has unmapped pages from the child due to a failed
5764 * COW/unsharing. Warn that such a situation has occurred as it may not
5767 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5768 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5774 * Use page lock to guard against racing truncation
5775 * before we get page_table_lock.
5778 page = find_lock_page(mapping, idx);
5780 size = i_size_read(mapping->host) >> huge_page_shift(h);
5783 /* Check for page in userfault range */
5784 if (userfaultfd_missing(vma)) {
5786 * Since hugetlb_no_page() was examining pte
5787 * without pgtable lock, we need to re-test under
5788 * lock because the pte may not be stable and could
5789 * have changed from under us. Try to detect
5790 * either changed or during-changing ptes and retry
5791 * properly when needed.
5793 * Note that userfaultfd is actually fine with
5794 * false positives (e.g. caused by pte changed),
5795 * but not wrong logical events (e.g. caused by
5796 * reading a pte during changing). The latter can
5797 * confuse the userspace, so the strictness is very
5798 * much preferred. E.g., MISSING event should
5799 * never happen on the page after UFFDIO_COPY has
5800 * correctly installed the page and returned.
5802 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5807 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5812 page = alloc_huge_page(vma, haddr, 0);
5815 * Returning error will result in faulting task being
5816 * sent SIGBUS. The hugetlb fault mutex prevents two
5817 * tasks from racing to fault in the same page which
5818 * could result in false unable to allocate errors.
5819 * Page migration does not take the fault mutex, but
5820 * does a clear then write of pte's under page table
5821 * lock. Page fault code could race with migration,
5822 * notice the clear pte and try to allocate a page
5823 * here. Before returning error, get ptl and make
5824 * sure there really is no pte entry.
5826 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5827 ret = vmf_error(PTR_ERR(page));
5832 clear_huge_page(page, address, pages_per_huge_page(h));
5833 __SetPageUptodate(page);
5836 if (vma->vm_flags & VM_MAYSHARE) {
5837 int err = hugetlb_add_to_page_cache(page, mapping, idx);
5840 * err can't be -EEXIST which implies someone
5841 * else consumed the reservation since hugetlb
5842 * fault mutex is held when add a hugetlb page
5843 * to the page cache. So it's safe to call
5844 * restore_reserve_on_error() here.
5846 restore_reserve_on_error(h, vma, haddr, page);
5850 new_pagecache_page = true;
5853 if (unlikely(anon_vma_prepare(vma))) {
5855 goto backout_unlocked;
5861 * If memory error occurs between mmap() and fault, some process
5862 * don't have hwpoisoned swap entry for errored virtual address.
5863 * So we need to block hugepage fault by PG_hwpoison bit check.
5865 if (unlikely(PageHWPoison(page))) {
5866 ret = VM_FAULT_HWPOISON_LARGE |
5867 VM_FAULT_SET_HINDEX(hstate_index(h));
5868 goto backout_unlocked;
5871 /* Check for page in userfault range. */
5872 if (userfaultfd_minor(vma)) {
5875 /* See comment in userfaultfd_missing() block above */
5876 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5880 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5887 * If we are going to COW a private mapping later, we examine the
5888 * pending reservations for this page now. This will ensure that
5889 * any allocations necessary to record that reservation occur outside
5892 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5893 if (vma_needs_reservation(h, vma, haddr) < 0) {
5895 goto backout_unlocked;
5897 /* Just decrements count, does not deallocate */
5898 vma_end_reservation(h, vma, haddr);
5901 ptl = huge_pte_lock(h, mm, ptep);
5903 /* If pte changed from under us, retry */
5904 if (!pte_same(huge_ptep_get(ptep), old_pte))
5908 hugepage_add_new_anon_rmap(page, vma, haddr);
5910 page_dup_file_rmap(page, true);
5911 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5912 && (vma->vm_flags & VM_SHARED)));
5914 * If this pte was previously wr-protected, keep it wr-protected even
5917 if (unlikely(pte_marker_uffd_wp(old_pte)))
5918 new_pte = huge_pte_mkuffd_wp(new_pte);
5919 set_huge_pte_at(mm, haddr, ptep, new_pte);
5921 hugetlb_count_add(pages_per_huge_page(h), mm);
5922 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5923 /* Optimization, do the COW without a second fault */
5924 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5930 * Only set HPageMigratable in newly allocated pages. Existing pages
5931 * found in the pagecache may not have HPageMigratableset if they have
5932 * been isolated for migration.
5935 SetHPageMigratable(page);
5939 hugetlb_vma_unlock_read(vma);
5940 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5946 if (new_page && !new_pagecache_page)
5947 restore_reserve_on_error(h, vma, haddr, page);
5955 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5957 unsigned long key[2];
5960 key[0] = (unsigned long) mapping;
5963 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5965 return hash & (num_fault_mutexes - 1);
5969 * For uniprocessor systems we always use a single mutex, so just
5970 * return 0 and avoid the hashing overhead.
5972 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5978 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5979 unsigned long address, unsigned int flags)
5986 struct page *page = NULL;
5987 struct page *pagecache_page = NULL;
5988 struct hstate *h = hstate_vma(vma);
5989 struct address_space *mapping;
5990 int need_wait_lock = 0;
5991 unsigned long haddr = address & huge_page_mask(h);
5994 * Serialize hugepage allocation and instantiation, so that we don't
5995 * get spurious allocation failures if two CPUs race to instantiate
5996 * the same page in the page cache.
5998 mapping = vma->vm_file->f_mapping;
5999 idx = vma_hugecache_offset(h, vma, haddr);
6000 hash = hugetlb_fault_mutex_hash(mapping, idx);
6001 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6004 * Acquire vma lock before calling huge_pte_alloc and hold
6005 * until finished with ptep. This prevents huge_pmd_unshare from
6006 * being called elsewhere and making the ptep no longer valid.
6008 hugetlb_vma_lock_read(vma);
6009 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6011 hugetlb_vma_unlock_read(vma);
6012 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6013 return VM_FAULT_OOM;
6016 entry = huge_ptep_get(ptep);
6017 /* PTE markers should be handled the same way as none pte */
6018 if (huge_pte_none_mostly(entry))
6020 * hugetlb_no_page will drop vma lock and hugetlb fault
6021 * mutex internally, which make us return immediately.
6023 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6029 * entry could be a migration/hwpoison entry at this point, so this
6030 * check prevents the kernel from going below assuming that we have
6031 * an active hugepage in pagecache. This goto expects the 2nd page
6032 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6033 * properly handle it.
6035 if (!pte_present(entry)) {
6036 if (unlikely(is_hugetlb_entry_migration(entry))) {
6038 * Release the hugetlb fault lock now, but retain
6039 * the vma lock, because it is needed to guard the
6040 * huge_pte_lockptr() later in
6041 * migration_entry_wait_huge(). The vma lock will
6042 * be released there.
6044 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6045 migration_entry_wait_huge(vma, ptep);
6047 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6048 ret = VM_FAULT_HWPOISON_LARGE |
6049 VM_FAULT_SET_HINDEX(hstate_index(h));
6054 * If we are going to COW/unshare the mapping later, we examine the
6055 * pending reservations for this page now. This will ensure that any
6056 * allocations necessary to record that reservation occur outside the
6057 * spinlock. Also lookup the pagecache page now as it is used to
6058 * determine if a reservation has been consumed.
6060 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6061 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6062 if (vma_needs_reservation(h, vma, haddr) < 0) {
6066 /* Just decrements count, does not deallocate */
6067 vma_end_reservation(h, vma, haddr);
6069 pagecache_page = find_lock_page(mapping, idx);
6072 ptl = huge_pte_lock(h, mm, ptep);
6074 /* Check for a racing update before calling hugetlb_wp() */
6075 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6078 /* Handle userfault-wp first, before trying to lock more pages */
6079 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6080 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6081 struct vm_fault vmf = {
6084 .real_address = address,
6089 if (pagecache_page) {
6090 unlock_page(pagecache_page);
6091 put_page(pagecache_page);
6093 hugetlb_vma_unlock_read(vma);
6094 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6095 return handle_userfault(&vmf, VM_UFFD_WP);
6099 * hugetlb_wp() requires page locks of pte_page(entry) and
6100 * pagecache_page, so here we need take the former one
6101 * when page != pagecache_page or !pagecache_page.
6103 page = pte_page(entry);
6104 if (page != pagecache_page)
6105 if (!trylock_page(page)) {
6112 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6113 if (!huge_pte_write(entry)) {
6114 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6115 pagecache_page, ptl);
6117 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6118 entry = huge_pte_mkdirty(entry);
6121 entry = pte_mkyoung(entry);
6122 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6123 flags & FAULT_FLAG_WRITE))
6124 update_mmu_cache(vma, haddr, ptep);
6126 if (page != pagecache_page)
6132 if (pagecache_page) {
6133 unlock_page(pagecache_page);
6134 put_page(pagecache_page);
6137 hugetlb_vma_unlock_read(vma);
6138 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6140 * Generally it's safe to hold refcount during waiting page lock. But
6141 * here we just wait to defer the next page fault to avoid busy loop and
6142 * the page is not used after unlocked before returning from the current
6143 * page fault. So we are safe from accessing freed page, even if we wait
6144 * here without taking refcount.
6147 wait_on_page_locked(page);
6151 #ifdef CONFIG_USERFAULTFD
6153 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
6154 * modifications for huge pages.
6156 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6158 struct vm_area_struct *dst_vma,
6159 unsigned long dst_addr,
6160 unsigned long src_addr,
6161 enum mcopy_atomic_mode mode,
6162 struct page **pagep,
6165 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6166 struct hstate *h = hstate_vma(dst_vma);
6167 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6168 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6170 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6176 bool page_in_pagecache = false;
6180 page = find_lock_page(mapping, idx);
6183 page_in_pagecache = true;
6184 } else if (!*pagep) {
6185 /* If a page already exists, then it's UFFDIO_COPY for
6186 * a non-missing case. Return -EEXIST.
6189 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6194 page = alloc_huge_page(dst_vma, dst_addr, 0);
6200 ret = copy_huge_page_from_user(page,
6201 (const void __user *) src_addr,
6202 pages_per_huge_page(h), false);
6204 /* fallback to copy_from_user outside mmap_lock */
6205 if (unlikely(ret)) {
6207 /* Free the allocated page which may have
6208 * consumed a reservation.
6210 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6213 /* Allocate a temporary page to hold the copied
6216 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6222 /* Set the outparam pagep and return to the caller to
6223 * copy the contents outside the lock. Don't free the
6230 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6237 page = alloc_huge_page(dst_vma, dst_addr, 0);
6244 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6245 pages_per_huge_page(h));
6251 * The memory barrier inside __SetPageUptodate makes sure that
6252 * preceding stores to the page contents become visible before
6253 * the set_pte_at() write.
6255 __SetPageUptodate(page);
6257 /* Add shared, newly allocated pages to the page cache. */
6258 if (vm_shared && !is_continue) {
6259 size = i_size_read(mapping->host) >> huge_page_shift(h);
6262 goto out_release_nounlock;
6265 * Serialization between remove_inode_hugepages() and
6266 * hugetlb_add_to_page_cache() below happens through the
6267 * hugetlb_fault_mutex_table that here must be hold by
6270 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6272 goto out_release_nounlock;
6273 page_in_pagecache = true;
6276 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6279 if (PageHWPoison(page))
6280 goto out_release_unlock;
6283 * We allow to overwrite a pte marker: consider when both MISSING|WP
6284 * registered, we firstly wr-protect a none pte which has no page cache
6285 * page backing it, then access the page.
6288 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6289 goto out_release_unlock;
6291 if (page_in_pagecache)
6292 page_dup_file_rmap(page, true);
6294 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6297 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6298 * with wp flag set, don't set pte write bit.
6300 if (wp_copy || (is_continue && !vm_shared))
6303 writable = dst_vma->vm_flags & VM_WRITE;
6305 _dst_pte = make_huge_pte(dst_vma, page, writable);
6307 * Always mark UFFDIO_COPY page dirty; note that this may not be
6308 * extremely important for hugetlbfs for now since swapping is not
6309 * supported, but we should still be clear in that this page cannot be
6310 * thrown away at will, even if write bit not set.
6312 _dst_pte = huge_pte_mkdirty(_dst_pte);
6313 _dst_pte = pte_mkyoung(_dst_pte);
6316 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6318 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6320 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6322 /* No need to invalidate - it was non-present before */
6323 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6327 SetHPageMigratable(page);
6328 if (vm_shared || is_continue)
6335 if (vm_shared || is_continue)
6337 out_release_nounlock:
6338 if (!page_in_pagecache)
6339 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6343 #endif /* CONFIG_USERFAULTFD */
6345 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6346 int refs, struct page **pages,
6347 struct vm_area_struct **vmas)
6351 for (nr = 0; nr < refs; nr++) {
6353 pages[nr] = nth_page(page, nr);
6359 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6360 unsigned int flags, pte_t *pte,
6363 pte_t pteval = huge_ptep_get(pte);
6366 if (is_swap_pte(pteval))
6368 if (huge_pte_write(pteval))
6370 if (flags & FOLL_WRITE)
6372 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6379 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6380 unsigned long address, unsigned int flags)
6382 struct hstate *h = hstate_vma(vma);
6383 struct mm_struct *mm = vma->vm_mm;
6384 unsigned long haddr = address & huge_page_mask(h);
6385 struct page *page = NULL;
6390 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6391 * follow_hugetlb_page().
6393 if (WARN_ON_ONCE(flags & FOLL_PIN))
6396 hugetlb_vma_lock_read(vma);
6397 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6401 ptl = huge_pte_lock(h, mm, pte);
6402 entry = huge_ptep_get(pte);
6403 if (pte_present(entry)) {
6404 page = pte_page(entry) +
6405 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6407 * Note that page may be a sub-page, and with vmemmap
6408 * optimizations the page struct may be read only.
6409 * try_grab_page() will increase the ref count on the
6410 * head page, so this will be OK.
6412 * try_grab_page() should always be able to get the page here,
6413 * because we hold the ptl lock and have verified pte_present().
6415 if (try_grab_page(page, flags)) {
6423 hugetlb_vma_unlock_read(vma);
6427 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6428 struct page **pages, struct vm_area_struct **vmas,
6429 unsigned long *position, unsigned long *nr_pages,
6430 long i, unsigned int flags, int *locked)
6432 unsigned long pfn_offset;
6433 unsigned long vaddr = *position;
6434 unsigned long remainder = *nr_pages;
6435 struct hstate *h = hstate_vma(vma);
6436 int err = -EFAULT, refs;
6438 while (vaddr < vma->vm_end && remainder) {
6440 spinlock_t *ptl = NULL;
6441 bool unshare = false;
6446 * If we have a pending SIGKILL, don't keep faulting pages and
6447 * potentially allocating memory.
6449 if (fatal_signal_pending(current)) {
6454 hugetlb_vma_lock_read(vma);
6456 * Some archs (sparc64, sh*) have multiple pte_ts to
6457 * each hugepage. We have to make sure we get the
6458 * first, for the page indexing below to work.
6460 * Note that page table lock is not held when pte is null.
6462 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6465 ptl = huge_pte_lock(h, mm, pte);
6466 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6469 * When coredumping, it suits get_dump_page if we just return
6470 * an error where there's an empty slot with no huge pagecache
6471 * to back it. This way, we avoid allocating a hugepage, and
6472 * the sparse dumpfile avoids allocating disk blocks, but its
6473 * huge holes still show up with zeroes where they need to be.
6475 if (absent && (flags & FOLL_DUMP) &&
6476 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6479 hugetlb_vma_unlock_read(vma);
6485 * We need call hugetlb_fault for both hugepages under migration
6486 * (in which case hugetlb_fault waits for the migration,) and
6487 * hwpoisoned hugepages (in which case we need to prevent the
6488 * caller from accessing to them.) In order to do this, we use
6489 * here is_swap_pte instead of is_hugetlb_entry_migration and
6490 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6491 * both cases, and because we can't follow correct pages
6492 * directly from any kind of swap entries.
6495 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6497 unsigned int fault_flags = 0;
6501 hugetlb_vma_unlock_read(vma);
6503 if (flags & FOLL_WRITE)
6504 fault_flags |= FAULT_FLAG_WRITE;
6506 fault_flags |= FAULT_FLAG_UNSHARE;
6508 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6509 FAULT_FLAG_KILLABLE;
6510 if (flags & FOLL_INTERRUPTIBLE)
6511 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6513 if (flags & FOLL_NOWAIT)
6514 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6515 FAULT_FLAG_RETRY_NOWAIT;
6516 if (flags & FOLL_TRIED) {
6518 * Note: FAULT_FLAG_ALLOW_RETRY and
6519 * FAULT_FLAG_TRIED can co-exist
6521 fault_flags |= FAULT_FLAG_TRIED;
6523 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6524 if (ret & VM_FAULT_ERROR) {
6525 err = vm_fault_to_errno(ret, flags);
6529 if (ret & VM_FAULT_RETRY) {
6531 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6535 * VM_FAULT_RETRY must not return an
6536 * error, it will return zero
6539 * No need to update "position" as the
6540 * caller will not check it after
6541 * *nr_pages is set to 0.
6548 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6549 page = pte_page(huge_ptep_get(pte));
6551 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6552 !PageAnonExclusive(page), page);
6555 * If subpage information not requested, update counters
6556 * and skip the same_page loop below.
6558 if (!pages && !vmas && !pfn_offset &&
6559 (vaddr + huge_page_size(h) < vma->vm_end) &&
6560 (remainder >= pages_per_huge_page(h))) {
6561 vaddr += huge_page_size(h);
6562 remainder -= pages_per_huge_page(h);
6563 i += pages_per_huge_page(h);
6565 hugetlb_vma_unlock_read(vma);
6569 /* vaddr may not be aligned to PAGE_SIZE */
6570 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6571 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6574 record_subpages_vmas(nth_page(page, pfn_offset),
6576 likely(pages) ? pages + i : NULL,
6577 vmas ? vmas + i : NULL);
6581 * try_grab_folio() should always succeed here,
6582 * because: a) we hold the ptl lock, and b) we've just
6583 * checked that the huge page is present in the page
6584 * tables. If the huge page is present, then the tail
6585 * pages must also be present. The ptl prevents the
6586 * head page and tail pages from being rearranged in
6587 * any way. As this is hugetlb, the pages will never
6588 * be p2pdma or not longterm pinable. So this page
6589 * must be available at this point, unless the page
6590 * refcount overflowed:
6592 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6595 hugetlb_vma_unlock_read(vma);
6602 vaddr += (refs << PAGE_SHIFT);
6607 hugetlb_vma_unlock_read(vma);
6609 *nr_pages = remainder;
6611 * setting position is actually required only if remainder is
6612 * not zero but it's faster not to add a "if (remainder)"
6620 long hugetlb_change_protection(struct vm_area_struct *vma,
6621 unsigned long address, unsigned long end,
6622 pgprot_t newprot, unsigned long cp_flags)
6624 struct mm_struct *mm = vma->vm_mm;
6625 unsigned long start = address;
6628 struct hstate *h = hstate_vma(vma);
6629 long pages = 0, psize = huge_page_size(h);
6630 bool shared_pmd = false;
6631 struct mmu_notifier_range range;
6632 unsigned long last_addr_mask;
6633 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6634 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6637 * In the case of shared PMDs, the area to flush could be beyond
6638 * start/end. Set range.start/range.end to cover the maximum possible
6639 * range if PMD sharing is possible.
6641 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6643 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6645 BUG_ON(address >= end);
6646 flush_cache_range(vma, range.start, range.end);
6648 mmu_notifier_invalidate_range_start(&range);
6649 hugetlb_vma_lock_write(vma);
6650 i_mmap_lock_write(vma->vm_file->f_mapping);
6651 last_addr_mask = hugetlb_mask_last_page(h);
6652 for (; address < end; address += psize) {
6654 ptep = hugetlb_walk(vma, address, psize);
6657 address |= last_addr_mask;
6661 * Userfaultfd wr-protect requires pgtable
6662 * pre-allocations to install pte markers.
6664 ptep = huge_pte_alloc(mm, vma, address, psize);
6670 ptl = huge_pte_lock(h, mm, ptep);
6671 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6673 * When uffd-wp is enabled on the vma, unshare
6674 * shouldn't happen at all. Warn about it if it
6675 * happened due to some reason.
6677 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6681 address |= last_addr_mask;
6684 pte = huge_ptep_get(ptep);
6685 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6686 /* Nothing to do. */
6687 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6688 swp_entry_t entry = pte_to_swp_entry(pte);
6689 struct page *page = pfn_swap_entry_to_page(entry);
6692 if (is_writable_migration_entry(entry)) {
6694 entry = make_readable_exclusive_migration_entry(
6697 entry = make_readable_migration_entry(
6699 newpte = swp_entry_to_pte(entry);
6704 newpte = pte_swp_mkuffd_wp(newpte);
6705 else if (uffd_wp_resolve)
6706 newpte = pte_swp_clear_uffd_wp(newpte);
6707 if (!pte_same(pte, newpte))
6708 set_huge_pte_at(mm, address, ptep, newpte);
6709 } else if (unlikely(is_pte_marker(pte))) {
6710 /* No other markers apply for now. */
6711 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6712 if (uffd_wp_resolve)
6713 /* Safe to modify directly (non-present->none). */
6714 huge_pte_clear(mm, address, ptep, psize);
6715 } else if (!huge_pte_none(pte)) {
6717 unsigned int shift = huge_page_shift(hstate_vma(vma));
6719 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6720 pte = huge_pte_modify(old_pte, newprot);
6721 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6723 pte = huge_pte_mkuffd_wp(pte);
6724 else if (uffd_wp_resolve)
6725 pte = huge_pte_clear_uffd_wp(pte);
6726 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6730 if (unlikely(uffd_wp))
6731 /* Safe to modify directly (none->non-present). */
6732 set_huge_pte_at(mm, address, ptep,
6733 make_pte_marker(PTE_MARKER_UFFD_WP));
6738 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6739 * may have cleared our pud entry and done put_page on the page table:
6740 * once we release i_mmap_rwsem, another task can do the final put_page
6741 * and that page table be reused and filled with junk. If we actually
6742 * did unshare a page of pmds, flush the range corresponding to the pud.
6745 flush_hugetlb_tlb_range(vma, range.start, range.end);
6747 flush_hugetlb_tlb_range(vma, start, end);
6749 * No need to call mmu_notifier_invalidate_range() we are downgrading
6750 * page table protection not changing it to point to a new page.
6752 * See Documentation/mm/mmu_notifier.rst
6754 i_mmap_unlock_write(vma->vm_file->f_mapping);
6755 hugetlb_vma_unlock_write(vma);
6756 mmu_notifier_invalidate_range_end(&range);
6758 return pages > 0 ? (pages << h->order) : pages;
6761 /* Return true if reservation was successful, false otherwise. */
6762 bool hugetlb_reserve_pages(struct inode *inode,
6764 struct vm_area_struct *vma,
6765 vm_flags_t vm_flags)
6767 long chg = -1, add = -1;
6768 struct hstate *h = hstate_inode(inode);
6769 struct hugepage_subpool *spool = subpool_inode(inode);
6770 struct resv_map *resv_map;
6771 struct hugetlb_cgroup *h_cg = NULL;
6772 long gbl_reserve, regions_needed = 0;
6774 /* This should never happen */
6776 VM_WARN(1, "%s called with a negative range\n", __func__);
6781 * vma specific semaphore used for pmd sharing and fault/truncation
6784 hugetlb_vma_lock_alloc(vma);
6787 * Only apply hugepage reservation if asked. At fault time, an
6788 * attempt will be made for VM_NORESERVE to allocate a page
6789 * without using reserves
6791 if (vm_flags & VM_NORESERVE)
6795 * Shared mappings base their reservation on the number of pages that
6796 * are already allocated on behalf of the file. Private mappings need
6797 * to reserve the full area even if read-only as mprotect() may be
6798 * called to make the mapping read-write. Assume !vma is a shm mapping
6800 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6802 * resv_map can not be NULL as hugetlb_reserve_pages is only
6803 * called for inodes for which resv_maps were created (see
6804 * hugetlbfs_get_inode).
6806 resv_map = inode_resv_map(inode);
6808 chg = region_chg(resv_map, from, to, ®ions_needed);
6810 /* Private mapping. */
6811 resv_map = resv_map_alloc();
6817 set_vma_resv_map(vma, resv_map);
6818 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6824 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6825 chg * pages_per_huge_page(h), &h_cg) < 0)
6828 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6829 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6832 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6836 * There must be enough pages in the subpool for the mapping. If
6837 * the subpool has a minimum size, there may be some global
6838 * reservations already in place (gbl_reserve).
6840 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6841 if (gbl_reserve < 0)
6842 goto out_uncharge_cgroup;
6845 * Check enough hugepages are available for the reservation.
6846 * Hand the pages back to the subpool if there are not
6848 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6852 * Account for the reservations made. Shared mappings record regions
6853 * that have reservations as they are shared by multiple VMAs.
6854 * When the last VMA disappears, the region map says how much
6855 * the reservation was and the page cache tells how much of
6856 * the reservation was consumed. Private mappings are per-VMA and
6857 * only the consumed reservations are tracked. When the VMA
6858 * disappears, the original reservation is the VMA size and the
6859 * consumed reservations are stored in the map. Hence, nothing
6860 * else has to be done for private mappings here
6862 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6863 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6865 if (unlikely(add < 0)) {
6866 hugetlb_acct_memory(h, -gbl_reserve);
6868 } else if (unlikely(chg > add)) {
6870 * pages in this range were added to the reserve
6871 * map between region_chg and region_add. This
6872 * indicates a race with alloc_huge_page. Adjust
6873 * the subpool and reserve counts modified above
6874 * based on the difference.
6879 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6880 * reference to h_cg->css. See comment below for detail.
6882 hugetlb_cgroup_uncharge_cgroup_rsvd(
6884 (chg - add) * pages_per_huge_page(h), h_cg);
6886 rsv_adjust = hugepage_subpool_put_pages(spool,
6888 hugetlb_acct_memory(h, -rsv_adjust);
6891 * The file_regions will hold their own reference to
6892 * h_cg->css. So we should release the reference held
6893 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6896 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6902 /* put back original number of pages, chg */
6903 (void)hugepage_subpool_put_pages(spool, chg);
6904 out_uncharge_cgroup:
6905 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6906 chg * pages_per_huge_page(h), h_cg);
6908 hugetlb_vma_lock_free(vma);
6909 if (!vma || vma->vm_flags & VM_MAYSHARE)
6910 /* Only call region_abort if the region_chg succeeded but the
6911 * region_add failed or didn't run.
6913 if (chg >= 0 && add < 0)
6914 region_abort(resv_map, from, to, regions_needed);
6915 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6916 kref_put(&resv_map->refs, resv_map_release);
6920 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6923 struct hstate *h = hstate_inode(inode);
6924 struct resv_map *resv_map = inode_resv_map(inode);
6926 struct hugepage_subpool *spool = subpool_inode(inode);
6930 * Since this routine can be called in the evict inode path for all
6931 * hugetlbfs inodes, resv_map could be NULL.
6934 chg = region_del(resv_map, start, end);
6936 * region_del() can fail in the rare case where a region
6937 * must be split and another region descriptor can not be
6938 * allocated. If end == LONG_MAX, it will not fail.
6944 spin_lock(&inode->i_lock);
6945 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6946 spin_unlock(&inode->i_lock);
6949 * If the subpool has a minimum size, the number of global
6950 * reservations to be released may be adjusted.
6952 * Note that !resv_map implies freed == 0. So (chg - freed)
6953 * won't go negative.
6955 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6956 hugetlb_acct_memory(h, -gbl_reserve);
6961 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6962 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6963 struct vm_area_struct *vma,
6964 unsigned long addr, pgoff_t idx)
6966 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6968 unsigned long sbase = saddr & PUD_MASK;
6969 unsigned long s_end = sbase + PUD_SIZE;
6971 /* Allow segments to share if only one is marked locked */
6972 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6973 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6976 * match the virtual addresses, permission and the alignment of the
6979 * Also, vma_lock (vm_private_data) is required for sharing.
6981 if (pmd_index(addr) != pmd_index(saddr) ||
6982 vm_flags != svm_flags ||
6983 !range_in_vma(svma, sbase, s_end) ||
6984 !svma->vm_private_data)
6990 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6992 unsigned long start = addr & PUD_MASK;
6993 unsigned long end = start + PUD_SIZE;
6995 #ifdef CONFIG_USERFAULTFD
6996 if (uffd_disable_huge_pmd_share(vma))
7000 * check on proper vm_flags and page table alignment
7002 if (!(vma->vm_flags & VM_MAYSHARE))
7004 if (!vma->vm_private_data) /* vma lock required for sharing */
7006 if (!range_in_vma(vma, start, end))
7012 * Determine if start,end range within vma could be mapped by shared pmd.
7013 * If yes, adjust start and end to cover range associated with possible
7014 * shared pmd mappings.
7016 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7017 unsigned long *start, unsigned long *end)
7019 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7020 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7023 * vma needs to span at least one aligned PUD size, and the range
7024 * must be at least partially within in.
7026 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7027 (*end <= v_start) || (*start >= v_end))
7030 /* Extend the range to be PUD aligned for a worst case scenario */
7031 if (*start > v_start)
7032 *start = ALIGN_DOWN(*start, PUD_SIZE);
7035 *end = ALIGN(*end, PUD_SIZE);
7039 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7040 * and returns the corresponding pte. While this is not necessary for the
7041 * !shared pmd case because we can allocate the pmd later as well, it makes the
7042 * code much cleaner. pmd allocation is essential for the shared case because
7043 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7044 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7045 * bad pmd for sharing.
7047 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7048 unsigned long addr, pud_t *pud)
7050 struct address_space *mapping = vma->vm_file->f_mapping;
7051 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7053 struct vm_area_struct *svma;
7054 unsigned long saddr;
7059 i_mmap_lock_read(mapping);
7060 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7064 saddr = page_table_shareable(svma, vma, addr, idx);
7066 spte = hugetlb_walk(svma, saddr,
7067 vma_mmu_pagesize(svma));
7069 get_page(virt_to_page(spte));
7078 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7079 if (pud_none(*pud)) {
7080 pud_populate(mm, pud,
7081 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7084 put_page(virt_to_page(spte));
7088 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7089 i_mmap_unlock_read(mapping);
7094 * unmap huge page backed by shared pte.
7096 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7097 * indicated by page_count > 1, unmap is achieved by clearing pud and
7098 * decrementing the ref count. If count == 1, the pte page is not shared.
7100 * Called with page table lock held.
7102 * returns: 1 successfully unmapped a shared pte page
7103 * 0 the underlying pte page is not shared, or it is the last user
7105 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7106 unsigned long addr, pte_t *ptep)
7108 pgd_t *pgd = pgd_offset(mm, addr);
7109 p4d_t *p4d = p4d_offset(pgd, addr);
7110 pud_t *pud = pud_offset(p4d, addr);
7112 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7113 hugetlb_vma_assert_locked(vma);
7114 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7115 if (page_count(virt_to_page(ptep)) == 1)
7119 put_page(virt_to_page(ptep));
7124 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7126 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7127 unsigned long addr, pud_t *pud)
7132 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7133 unsigned long addr, pte_t *ptep)
7138 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7139 unsigned long *start, unsigned long *end)
7143 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7147 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7149 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7150 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7151 unsigned long addr, unsigned long sz)
7158 pgd = pgd_offset(mm, addr);
7159 p4d = p4d_alloc(mm, pgd, addr);
7162 pud = pud_alloc(mm, p4d, addr);
7164 if (sz == PUD_SIZE) {
7167 BUG_ON(sz != PMD_SIZE);
7168 if (want_pmd_share(vma, addr) && pud_none(*pud))
7169 pte = huge_pmd_share(mm, vma, addr, pud);
7171 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7174 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7180 * huge_pte_offset() - Walk the page table to resolve the hugepage
7181 * entry at address @addr
7183 * Return: Pointer to page table entry (PUD or PMD) for
7184 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7185 * size @sz doesn't match the hugepage size at this level of the page
7188 pte_t *huge_pte_offset(struct mm_struct *mm,
7189 unsigned long addr, unsigned long sz)
7196 pgd = pgd_offset(mm, addr);
7197 if (!pgd_present(*pgd))
7199 p4d = p4d_offset(pgd, addr);
7200 if (!p4d_present(*p4d))
7203 pud = pud_offset(p4d, addr);
7205 /* must be pud huge, non-present or none */
7206 return (pte_t *)pud;
7207 if (!pud_present(*pud))
7209 /* must have a valid entry and size to go further */
7211 pmd = pmd_offset(pud, addr);
7212 /* must be pmd huge, non-present or none */
7213 return (pte_t *)pmd;
7217 * Return a mask that can be used to update an address to the last huge
7218 * page in a page table page mapping size. Used to skip non-present
7219 * page table entries when linearly scanning address ranges. Architectures
7220 * with unique huge page to page table relationships can define their own
7221 * version of this routine.
7223 unsigned long hugetlb_mask_last_page(struct hstate *h)
7225 unsigned long hp_size = huge_page_size(h);
7227 if (hp_size == PUD_SIZE)
7228 return P4D_SIZE - PUD_SIZE;
7229 else if (hp_size == PMD_SIZE)
7230 return PUD_SIZE - PMD_SIZE;
7237 /* See description above. Architectures can provide their own version. */
7238 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7240 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7241 if (huge_page_size(h) == PMD_SIZE)
7242 return PUD_SIZE - PMD_SIZE;
7247 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7250 * These functions are overwritable if your architecture needs its own
7253 int isolate_hugetlb(struct page *page, struct list_head *list)
7257 spin_lock_irq(&hugetlb_lock);
7258 if (!PageHeadHuge(page) ||
7259 !HPageMigratable(page) ||
7260 !get_page_unless_zero(page)) {
7264 ClearHPageMigratable(page);
7265 list_move_tail(&page->lru, list);
7267 spin_unlock_irq(&hugetlb_lock);
7271 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7276 spin_lock_irq(&hugetlb_lock);
7277 if (folio_test_hugetlb(folio)) {
7279 if (folio_test_hugetlb_freed(folio))
7281 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7282 ret = folio_try_get(folio);
7286 spin_unlock_irq(&hugetlb_lock);
7290 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7291 bool *migratable_cleared)
7295 spin_lock_irq(&hugetlb_lock);
7296 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7297 spin_unlock_irq(&hugetlb_lock);
7301 void putback_active_hugepage(struct page *page)
7303 spin_lock_irq(&hugetlb_lock);
7304 SetHPageMigratable(page);
7305 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7306 spin_unlock_irq(&hugetlb_lock);
7310 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7312 struct hstate *h = folio_hstate(old_folio);
7314 hugetlb_cgroup_migrate(old_folio, new_folio);
7315 set_page_owner_migrate_reason(&new_folio->page, reason);
7318 * transfer temporary state of the new hugetlb folio. This is
7319 * reverse to other transitions because the newpage is going to
7320 * be final while the old one will be freed so it takes over
7321 * the temporary status.
7323 * Also note that we have to transfer the per-node surplus state
7324 * here as well otherwise the global surplus count will not match
7327 if (folio_test_hugetlb_temporary(new_folio)) {
7328 int old_nid = folio_nid(old_folio);
7329 int new_nid = folio_nid(new_folio);
7331 folio_set_hugetlb_temporary(old_folio);
7332 folio_clear_hugetlb_temporary(new_folio);
7336 * There is no need to transfer the per-node surplus state
7337 * when we do not cross the node.
7339 if (new_nid == old_nid)
7341 spin_lock_irq(&hugetlb_lock);
7342 if (h->surplus_huge_pages_node[old_nid]) {
7343 h->surplus_huge_pages_node[old_nid]--;
7344 h->surplus_huge_pages_node[new_nid]++;
7346 spin_unlock_irq(&hugetlb_lock);
7350 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7351 unsigned long start,
7354 struct hstate *h = hstate_vma(vma);
7355 unsigned long sz = huge_page_size(h);
7356 struct mm_struct *mm = vma->vm_mm;
7357 struct mmu_notifier_range range;
7358 unsigned long address;
7362 if (!(vma->vm_flags & VM_MAYSHARE))
7368 flush_cache_range(vma, start, end);
7370 * No need to call adjust_range_if_pmd_sharing_possible(), because
7371 * we have already done the PUD_SIZE alignment.
7373 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7375 mmu_notifier_invalidate_range_start(&range);
7376 hugetlb_vma_lock_write(vma);
7377 i_mmap_lock_write(vma->vm_file->f_mapping);
7378 for (address = start; address < end; address += PUD_SIZE) {
7379 ptep = hugetlb_walk(vma, address, sz);
7382 ptl = huge_pte_lock(h, mm, ptep);
7383 huge_pmd_unshare(mm, vma, address, ptep);
7386 flush_hugetlb_tlb_range(vma, start, end);
7387 i_mmap_unlock_write(vma->vm_file->f_mapping);
7388 hugetlb_vma_unlock_write(vma);
7390 * No need to call mmu_notifier_invalidate_range(), see
7391 * Documentation/mm/mmu_notifier.rst.
7393 mmu_notifier_invalidate_range_end(&range);
7397 * This function will unconditionally remove all the shared pmd pgtable entries
7398 * within the specific vma for a hugetlbfs memory range.
7400 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7402 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7403 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7407 static bool cma_reserve_called __initdata;
7409 static int __init cmdline_parse_hugetlb_cma(char *p)
7416 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7419 if (s[count] == ':') {
7420 if (tmp >= MAX_NUMNODES)
7422 nid = array_index_nospec(tmp, MAX_NUMNODES);
7425 tmp = memparse(s, &s);
7426 hugetlb_cma_size_in_node[nid] = tmp;
7427 hugetlb_cma_size += tmp;
7430 * Skip the separator if have one, otherwise
7431 * break the parsing.
7438 hugetlb_cma_size = memparse(p, &p);
7446 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7448 void __init hugetlb_cma_reserve(int order)
7450 unsigned long size, reserved, per_node;
7451 bool node_specific_cma_alloc = false;
7454 cma_reserve_called = true;
7456 if (!hugetlb_cma_size)
7459 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7460 if (hugetlb_cma_size_in_node[nid] == 0)
7463 if (!node_online(nid)) {
7464 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7465 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7466 hugetlb_cma_size_in_node[nid] = 0;
7470 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7471 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7472 nid, (PAGE_SIZE << order) / SZ_1M);
7473 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7474 hugetlb_cma_size_in_node[nid] = 0;
7476 node_specific_cma_alloc = true;
7480 /* Validate the CMA size again in case some invalid nodes specified. */
7481 if (!hugetlb_cma_size)
7484 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7485 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7486 (PAGE_SIZE << order) / SZ_1M);
7487 hugetlb_cma_size = 0;
7491 if (!node_specific_cma_alloc) {
7493 * If 3 GB area is requested on a machine with 4 numa nodes,
7494 * let's allocate 1 GB on first three nodes and ignore the last one.
7496 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7497 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7498 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7502 for_each_online_node(nid) {
7504 char name[CMA_MAX_NAME];
7506 if (node_specific_cma_alloc) {
7507 if (hugetlb_cma_size_in_node[nid] == 0)
7510 size = hugetlb_cma_size_in_node[nid];
7512 size = min(per_node, hugetlb_cma_size - reserved);
7515 size = round_up(size, PAGE_SIZE << order);
7517 snprintf(name, sizeof(name), "hugetlb%d", nid);
7519 * Note that 'order per bit' is based on smallest size that
7520 * may be returned to CMA allocator in the case of
7521 * huge page demotion.
7523 res = cma_declare_contiguous_nid(0, size, 0,
7524 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7526 &hugetlb_cma[nid], nid);
7528 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7534 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7537 if (reserved >= hugetlb_cma_size)
7543 * hugetlb_cma_size is used to determine if allocations from
7544 * cma are possible. Set to zero if no cma regions are set up.
7546 hugetlb_cma_size = 0;
7549 static void __init hugetlb_cma_check(void)
7551 if (!hugetlb_cma_size || cma_reserve_called)
7554 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7557 #endif /* CONFIG_CMA */