]> Git Repo - linux.git/blob - mm/hugetlb.c
mm/mmap: remove __vma_adjust()
[linux.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98                 unsigned long start, unsigned long end);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113                                                 unsigned long irq_flags)
114 {
115         spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117         /* If no pages are used, and no other handles to the subpool
118          * remain, give up any reservations based on minimum size and
119          * free the subpool */
120         if (subpool_is_free(spool)) {
121                 if (spool->min_hpages != -1)
122                         hugetlb_acct_memory(spool->hstate,
123                                                 -spool->min_hpages);
124                 kfree(spool);
125         }
126 }
127
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129                                                 long min_hpages)
130 {
131         struct hugepage_subpool *spool;
132
133         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134         if (!spool)
135                 return NULL;
136
137         spin_lock_init(&spool->lock);
138         spool->count = 1;
139         spool->max_hpages = max_hpages;
140         spool->hstate = h;
141         spool->min_hpages = min_hpages;
142
143         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144                 kfree(spool);
145                 return NULL;
146         }
147         spool->rsv_hpages = min_hpages;
148
149         return spool;
150 }
151
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154         unsigned long flags;
155
156         spin_lock_irqsave(&spool->lock, flags);
157         BUG_ON(!spool->count);
158         spool->count--;
159         unlock_or_release_subpool(spool, flags);
160 }
161
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171                                       long delta)
172 {
173         long ret = delta;
174
175         if (!spool)
176                 return ret;
177
178         spin_lock_irq(&spool->lock);
179
180         if (spool->max_hpages != -1) {          /* maximum size accounting */
181                 if ((spool->used_hpages + delta) <= spool->max_hpages)
182                         spool->used_hpages += delta;
183                 else {
184                         ret = -ENOMEM;
185                         goto unlock_ret;
186                 }
187         }
188
189         /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->rsv_hpages) {
191                 if (delta > spool->rsv_hpages) {
192                         /*
193                          * Asking for more reserves than those already taken on
194                          * behalf of subpool.  Return difference.
195                          */
196                         ret = delta - spool->rsv_hpages;
197                         spool->rsv_hpages = 0;
198                 } else {
199                         ret = 0;        /* reserves already accounted for */
200                         spool->rsv_hpages -= delta;
201                 }
202         }
203
204 unlock_ret:
205         spin_unlock_irq(&spool->lock);
206         return ret;
207 }
208
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216                                        long delta)
217 {
218         long ret = delta;
219         unsigned long flags;
220
221         if (!spool)
222                 return delta;
223
224         spin_lock_irqsave(&spool->lock, flags);
225
226         if (spool->max_hpages != -1)            /* maximum size accounting */
227                 spool->used_hpages -= delta;
228
229          /* minimum size accounting */
230         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231                 if (spool->rsv_hpages + delta <= spool->min_hpages)
232                         ret = 0;
233                 else
234                         ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236                 spool->rsv_hpages += delta;
237                 if (spool->rsv_hpages > spool->min_hpages)
238                         spool->rsv_hpages = spool->min_hpages;
239         }
240
241         /*
242          * If hugetlbfs_put_super couldn't free spool due to an outstanding
243          * quota reference, free it now.
244          */
245         unlock_or_release_subpool(spool, flags);
246
247         return ret;
248 }
249
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252         return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257         return subpool_inode(file_inode(vma->vm_file));
258 }
259
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264 {
265         if (__vma_shareable_lock(vma)) {
266                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267
268                 down_read(&vma_lock->rw_sema);
269         }
270 }
271
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273 {
274         if (__vma_shareable_lock(vma)) {
275                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276
277                 up_read(&vma_lock->rw_sema);
278         }
279 }
280
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282 {
283         if (__vma_shareable_lock(vma)) {
284                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285
286                 down_write(&vma_lock->rw_sema);
287         }
288 }
289
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291 {
292         if (__vma_shareable_lock(vma)) {
293                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294
295                 up_write(&vma_lock->rw_sema);
296         }
297 }
298
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300 {
301         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302
303         if (!__vma_shareable_lock(vma))
304                 return 1;
305
306         return down_write_trylock(&vma_lock->rw_sema);
307 }
308
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310 {
311         if (__vma_shareable_lock(vma)) {
312                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313
314                 lockdep_assert_held(&vma_lock->rw_sema);
315         }
316 }
317
318 void hugetlb_vma_lock_release(struct kref *kref)
319 {
320         struct hugetlb_vma_lock *vma_lock = container_of(kref,
321                         struct hugetlb_vma_lock, refs);
322
323         kfree(vma_lock);
324 }
325
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327 {
328         struct vm_area_struct *vma = vma_lock->vma;
329
330         /*
331          * vma_lock structure may or not be released as a result of put,
332          * it certainly will no longer be attached to vma so clear pointer.
333          * Semaphore synchronizes access to vma_lock->vma field.
334          */
335         vma_lock->vma = NULL;
336         vma->vm_private_data = NULL;
337         up_write(&vma_lock->rw_sema);
338         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339 }
340
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342 {
343         if (__vma_shareable_lock(vma)) {
344                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345
346                 __hugetlb_vma_unlock_write_put(vma_lock);
347         }
348 }
349
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351 {
352         /*
353          * Only present in sharable vmas.
354          */
355         if (!vma || !__vma_shareable_lock(vma))
356                 return;
357
358         if (vma->vm_private_data) {
359                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360
361                 down_write(&vma_lock->rw_sema);
362                 __hugetlb_vma_unlock_write_put(vma_lock);
363         }
364 }
365
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367 {
368         struct hugetlb_vma_lock *vma_lock;
369
370         /* Only establish in (flags) sharable vmas */
371         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372                 return;
373
374         /* Should never get here with non-NULL vm_private_data */
375         if (vma->vm_private_data)
376                 return;
377
378         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379         if (!vma_lock) {
380                 /*
381                  * If we can not allocate structure, then vma can not
382                  * participate in pmd sharing.  This is only a possible
383                  * performance enhancement and memory saving issue.
384                  * However, the lock is also used to synchronize page
385                  * faults with truncation.  If the lock is not present,
386                  * unlikely races could leave pages in a file past i_size
387                  * until the file is removed.  Warn in the unlikely case of
388                  * allocation failure.
389                  */
390                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391                 return;
392         }
393
394         kref_init(&vma_lock->refs);
395         init_rwsem(&vma_lock->rw_sema);
396         vma_lock->vma = vma;
397         vma->vm_private_data = vma_lock;
398 }
399
400 /* Helper that removes a struct file_region from the resv_map cache and returns
401  * it for use.
402  */
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405 {
406         struct file_region *nrg;
407
408         VM_BUG_ON(resv->region_cache_count <= 0);
409
410         resv->region_cache_count--;
411         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412         list_del(&nrg->link);
413
414         nrg->from = from;
415         nrg->to = to;
416
417         return nrg;
418 }
419
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421                                               struct file_region *rg)
422 {
423 #ifdef CONFIG_CGROUP_HUGETLB
424         nrg->reservation_counter = rg->reservation_counter;
425         nrg->css = rg->css;
426         if (rg->css)
427                 css_get(rg->css);
428 #endif
429 }
430
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433                                                 struct hstate *h,
434                                                 struct resv_map *resv,
435                                                 struct file_region *nrg)
436 {
437 #ifdef CONFIG_CGROUP_HUGETLB
438         if (h_cg) {
439                 nrg->reservation_counter =
440                         &h_cg->rsvd_hugepage[hstate_index(h)];
441                 nrg->css = &h_cg->css;
442                 /*
443                  * The caller will hold exactly one h_cg->css reference for the
444                  * whole contiguous reservation region. But this area might be
445                  * scattered when there are already some file_regions reside in
446                  * it. As a result, many file_regions may share only one css
447                  * reference. In order to ensure that one file_region must hold
448                  * exactly one h_cg->css reference, we should do css_get for
449                  * each file_region and leave the reference held by caller
450                  * untouched.
451                  */
452                 css_get(&h_cg->css);
453                 if (!resv->pages_per_hpage)
454                         resv->pages_per_hpage = pages_per_huge_page(h);
455                 /* pages_per_hpage should be the same for all entries in
456                  * a resv_map.
457                  */
458                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459         } else {
460                 nrg->reservation_counter = NULL;
461                 nrg->css = NULL;
462         }
463 #endif
464 }
465
466 static void put_uncharge_info(struct file_region *rg)
467 {
468 #ifdef CONFIG_CGROUP_HUGETLB
469         if (rg->css)
470                 css_put(rg->css);
471 #endif
472 }
473
474 static bool has_same_uncharge_info(struct file_region *rg,
475                                    struct file_region *org)
476 {
477 #ifdef CONFIG_CGROUP_HUGETLB
478         return rg->reservation_counter == org->reservation_counter &&
479                rg->css == org->css;
480
481 #else
482         return true;
483 #endif
484 }
485
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487 {
488         struct file_region *nrg, *prg;
489
490         prg = list_prev_entry(rg, link);
491         if (&prg->link != &resv->regions && prg->to == rg->from &&
492             has_same_uncharge_info(prg, rg)) {
493                 prg->to = rg->to;
494
495                 list_del(&rg->link);
496                 put_uncharge_info(rg);
497                 kfree(rg);
498
499                 rg = prg;
500         }
501
502         nrg = list_next_entry(rg, link);
503         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504             has_same_uncharge_info(nrg, rg)) {
505                 nrg->from = rg->from;
506
507                 list_del(&rg->link);
508                 put_uncharge_info(rg);
509                 kfree(rg);
510         }
511 }
512
513 static inline long
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
516                      long *regions_needed)
517 {
518         struct file_region *nrg;
519
520         if (!regions_needed) {
521                 nrg = get_file_region_entry_from_cache(map, from, to);
522                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523                 list_add(&nrg->link, rg);
524                 coalesce_file_region(map, nrg);
525         } else
526                 *regions_needed += 1;
527
528         return to - from;
529 }
530
531 /*
532  * Must be called with resv->lock held.
533  *
534  * Calling this with regions_needed != NULL will count the number of pages
535  * to be added but will not modify the linked list. And regions_needed will
536  * indicate the number of file_regions needed in the cache to carry out to add
537  * the regions for this range.
538  */
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540                                      struct hugetlb_cgroup *h_cg,
541                                      struct hstate *h, long *regions_needed)
542 {
543         long add = 0;
544         struct list_head *head = &resv->regions;
545         long last_accounted_offset = f;
546         struct file_region *iter, *trg = NULL;
547         struct list_head *rg = NULL;
548
549         if (regions_needed)
550                 *regions_needed = 0;
551
552         /* In this loop, we essentially handle an entry for the range
553          * [last_accounted_offset, iter->from), at every iteration, with some
554          * bounds checking.
555          */
556         list_for_each_entry_safe(iter, trg, head, link) {
557                 /* Skip irrelevant regions that start before our range. */
558                 if (iter->from < f) {
559                         /* If this region ends after the last accounted offset,
560                          * then we need to update last_accounted_offset.
561                          */
562                         if (iter->to > last_accounted_offset)
563                                 last_accounted_offset = iter->to;
564                         continue;
565                 }
566
567                 /* When we find a region that starts beyond our range, we've
568                  * finished.
569                  */
570                 if (iter->from >= t) {
571                         rg = iter->link.prev;
572                         break;
573                 }
574
575                 /* Add an entry for last_accounted_offset -> iter->from, and
576                  * update last_accounted_offset.
577                  */
578                 if (iter->from > last_accounted_offset)
579                         add += hugetlb_resv_map_add(resv, iter->link.prev,
580                                                     last_accounted_offset,
581                                                     iter->from, h, h_cg,
582                                                     regions_needed);
583
584                 last_accounted_offset = iter->to;
585         }
586
587         /* Handle the case where our range extends beyond
588          * last_accounted_offset.
589          */
590         if (!rg)
591                 rg = head->prev;
592         if (last_accounted_offset < t)
593                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594                                             t, h, h_cg, regions_needed);
595
596         return add;
597 }
598
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600  */
601 static int allocate_file_region_entries(struct resv_map *resv,
602                                         int regions_needed)
603         __must_hold(&resv->lock)
604 {
605         LIST_HEAD(allocated_regions);
606         int to_allocate = 0, i = 0;
607         struct file_region *trg = NULL, *rg = NULL;
608
609         VM_BUG_ON(regions_needed < 0);
610
611         /*
612          * Check for sufficient descriptors in the cache to accommodate
613          * the number of in progress add operations plus regions_needed.
614          *
615          * This is a while loop because when we drop the lock, some other call
616          * to region_add or region_del may have consumed some region_entries,
617          * so we keep looping here until we finally have enough entries for
618          * (adds_in_progress + regions_needed).
619          */
620         while (resv->region_cache_count <
621                (resv->adds_in_progress + regions_needed)) {
622                 to_allocate = resv->adds_in_progress + regions_needed -
623                               resv->region_cache_count;
624
625                 /* At this point, we should have enough entries in the cache
626                  * for all the existing adds_in_progress. We should only be
627                  * needing to allocate for regions_needed.
628                  */
629                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630
631                 spin_unlock(&resv->lock);
632                 for (i = 0; i < to_allocate; i++) {
633                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634                         if (!trg)
635                                 goto out_of_memory;
636                         list_add(&trg->link, &allocated_regions);
637                 }
638
639                 spin_lock(&resv->lock);
640
641                 list_splice(&allocated_regions, &resv->region_cache);
642                 resv->region_cache_count += to_allocate;
643         }
644
645         return 0;
646
647 out_of_memory:
648         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649                 list_del(&rg->link);
650                 kfree(rg);
651         }
652         return -ENOMEM;
653 }
654
655 /*
656  * Add the huge page range represented by [f, t) to the reserve
657  * map.  Regions will be taken from the cache to fill in this range.
658  * Sufficient regions should exist in the cache due to the previous
659  * call to region_chg with the same range, but in some cases the cache will not
660  * have sufficient entries due to races with other code doing region_add or
661  * region_del.  The extra needed entries will be allocated.
662  *
663  * regions_needed is the out value provided by a previous call to region_chg.
664  *
665  * Return the number of new huge pages added to the map.  This number is greater
666  * than or equal to zero.  If file_region entries needed to be allocated for
667  * this operation and we were not able to allocate, it returns -ENOMEM.
668  * region_add of regions of length 1 never allocate file_regions and cannot
669  * fail; region_chg will always allocate at least 1 entry and a region_add for
670  * 1 page will only require at most 1 entry.
671  */
672 static long region_add(struct resv_map *resv, long f, long t,
673                        long in_regions_needed, struct hstate *h,
674                        struct hugetlb_cgroup *h_cg)
675 {
676         long add = 0, actual_regions_needed = 0;
677
678         spin_lock(&resv->lock);
679 retry:
680
681         /* Count how many regions are actually needed to execute this add. */
682         add_reservation_in_range(resv, f, t, NULL, NULL,
683                                  &actual_regions_needed);
684
685         /*
686          * Check for sufficient descriptors in the cache to accommodate
687          * this add operation. Note that actual_regions_needed may be greater
688          * than in_regions_needed, as the resv_map may have been modified since
689          * the region_chg call. In this case, we need to make sure that we
690          * allocate extra entries, such that we have enough for all the
691          * existing adds_in_progress, plus the excess needed for this
692          * operation.
693          */
694         if (actual_regions_needed > in_regions_needed &&
695             resv->region_cache_count <
696                     resv->adds_in_progress +
697                             (actual_regions_needed - in_regions_needed)) {
698                 /* region_add operation of range 1 should never need to
699                  * allocate file_region entries.
700                  */
701                 VM_BUG_ON(t - f <= 1);
702
703                 if (allocate_file_region_entries(
704                             resv, actual_regions_needed - in_regions_needed)) {
705                         return -ENOMEM;
706                 }
707
708                 goto retry;
709         }
710
711         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
712
713         resv->adds_in_progress -= in_regions_needed;
714
715         spin_unlock(&resv->lock);
716         return add;
717 }
718
719 /*
720  * Examine the existing reserve map and determine how many
721  * huge pages in the specified range [f, t) are NOT currently
722  * represented.  This routine is called before a subsequent
723  * call to region_add that will actually modify the reserve
724  * map to add the specified range [f, t).  region_chg does
725  * not change the number of huge pages represented by the
726  * map.  A number of new file_region structures is added to the cache as a
727  * placeholder, for the subsequent region_add call to use. At least 1
728  * file_region structure is added.
729  *
730  * out_regions_needed is the number of regions added to the
731  * resv->adds_in_progress.  This value needs to be provided to a follow up call
732  * to region_add or region_abort for proper accounting.
733  *
734  * Returns the number of huge pages that need to be added to the existing
735  * reservation map for the range [f, t).  This number is greater or equal to
736  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
737  * is needed and can not be allocated.
738  */
739 static long region_chg(struct resv_map *resv, long f, long t,
740                        long *out_regions_needed)
741 {
742         long chg = 0;
743
744         spin_lock(&resv->lock);
745
746         /* Count how many hugepages in this range are NOT represented. */
747         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
748                                        out_regions_needed);
749
750         if (*out_regions_needed == 0)
751                 *out_regions_needed = 1;
752
753         if (allocate_file_region_entries(resv, *out_regions_needed))
754                 return -ENOMEM;
755
756         resv->adds_in_progress += *out_regions_needed;
757
758         spin_unlock(&resv->lock);
759         return chg;
760 }
761
762 /*
763  * Abort the in progress add operation.  The adds_in_progress field
764  * of the resv_map keeps track of the operations in progress between
765  * calls to region_chg and region_add.  Operations are sometimes
766  * aborted after the call to region_chg.  In such cases, region_abort
767  * is called to decrement the adds_in_progress counter. regions_needed
768  * is the value returned by the region_chg call, it is used to decrement
769  * the adds_in_progress counter.
770  *
771  * NOTE: The range arguments [f, t) are not needed or used in this
772  * routine.  They are kept to make reading the calling code easier as
773  * arguments will match the associated region_chg call.
774  */
775 static void region_abort(struct resv_map *resv, long f, long t,
776                          long regions_needed)
777 {
778         spin_lock(&resv->lock);
779         VM_BUG_ON(!resv->region_cache_count);
780         resv->adds_in_progress -= regions_needed;
781         spin_unlock(&resv->lock);
782 }
783
784 /*
785  * Delete the specified range [f, t) from the reserve map.  If the
786  * t parameter is LONG_MAX, this indicates that ALL regions after f
787  * should be deleted.  Locate the regions which intersect [f, t)
788  * and either trim, delete or split the existing regions.
789  *
790  * Returns the number of huge pages deleted from the reserve map.
791  * In the normal case, the return value is zero or more.  In the
792  * case where a region must be split, a new region descriptor must
793  * be allocated.  If the allocation fails, -ENOMEM will be returned.
794  * NOTE: If the parameter t == LONG_MAX, then we will never split
795  * a region and possibly return -ENOMEM.  Callers specifying
796  * t == LONG_MAX do not need to check for -ENOMEM error.
797  */
798 static long region_del(struct resv_map *resv, long f, long t)
799 {
800         struct list_head *head = &resv->regions;
801         struct file_region *rg, *trg;
802         struct file_region *nrg = NULL;
803         long del = 0;
804
805 retry:
806         spin_lock(&resv->lock);
807         list_for_each_entry_safe(rg, trg, head, link) {
808                 /*
809                  * Skip regions before the range to be deleted.  file_region
810                  * ranges are normally of the form [from, to).  However, there
811                  * may be a "placeholder" entry in the map which is of the form
812                  * (from, to) with from == to.  Check for placeholder entries
813                  * at the beginning of the range to be deleted.
814                  */
815                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
816                         continue;
817
818                 if (rg->from >= t)
819                         break;
820
821                 if (f > rg->from && t < rg->to) { /* Must split region */
822                         /*
823                          * Check for an entry in the cache before dropping
824                          * lock and attempting allocation.
825                          */
826                         if (!nrg &&
827                             resv->region_cache_count > resv->adds_in_progress) {
828                                 nrg = list_first_entry(&resv->region_cache,
829                                                         struct file_region,
830                                                         link);
831                                 list_del(&nrg->link);
832                                 resv->region_cache_count--;
833                         }
834
835                         if (!nrg) {
836                                 spin_unlock(&resv->lock);
837                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838                                 if (!nrg)
839                                         return -ENOMEM;
840                                 goto retry;
841                         }
842
843                         del += t - f;
844                         hugetlb_cgroup_uncharge_file_region(
845                                 resv, rg, t - f, false);
846
847                         /* New entry for end of split region */
848                         nrg->from = t;
849                         nrg->to = rg->to;
850
851                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852
853                         INIT_LIST_HEAD(&nrg->link);
854
855                         /* Original entry is trimmed */
856                         rg->to = f;
857
858                         list_add(&nrg->link, &rg->link);
859                         nrg = NULL;
860                         break;
861                 }
862
863                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864                         del += rg->to - rg->from;
865                         hugetlb_cgroup_uncharge_file_region(resv, rg,
866                                                             rg->to - rg->from, true);
867                         list_del(&rg->link);
868                         kfree(rg);
869                         continue;
870                 }
871
872                 if (f <= rg->from) {    /* Trim beginning of region */
873                         hugetlb_cgroup_uncharge_file_region(resv, rg,
874                                                             t - rg->from, false);
875
876                         del += t - rg->from;
877                         rg->from = t;
878                 } else {                /* Trim end of region */
879                         hugetlb_cgroup_uncharge_file_region(resv, rg,
880                                                             rg->to - f, false);
881
882                         del += rg->to - f;
883                         rg->to = f;
884                 }
885         }
886
887         spin_unlock(&resv->lock);
888         kfree(nrg);
889         return del;
890 }
891
892 /*
893  * A rare out of memory error was encountered which prevented removal of
894  * the reserve map region for a page.  The huge page itself was free'ed
895  * and removed from the page cache.  This routine will adjust the subpool
896  * usage count, and the global reserve count if needed.  By incrementing
897  * these counts, the reserve map entry which could not be deleted will
898  * appear as a "reserved" entry instead of simply dangling with incorrect
899  * counts.
900  */
901 void hugetlb_fix_reserve_counts(struct inode *inode)
902 {
903         struct hugepage_subpool *spool = subpool_inode(inode);
904         long rsv_adjust;
905         bool reserved = false;
906
907         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908         if (rsv_adjust > 0) {
909                 struct hstate *h = hstate_inode(inode);
910
911                 if (!hugetlb_acct_memory(h, 1))
912                         reserved = true;
913         } else if (!rsv_adjust) {
914                 reserved = true;
915         }
916
917         if (!reserved)
918                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
919 }
920
921 /*
922  * Count and return the number of huge pages in the reserve map
923  * that intersect with the range [f, t).
924  */
925 static long region_count(struct resv_map *resv, long f, long t)
926 {
927         struct list_head *head = &resv->regions;
928         struct file_region *rg;
929         long chg = 0;
930
931         spin_lock(&resv->lock);
932         /* Locate each segment we overlap with, and count that overlap. */
933         list_for_each_entry(rg, head, link) {
934                 long seg_from;
935                 long seg_to;
936
937                 if (rg->to <= f)
938                         continue;
939                 if (rg->from >= t)
940                         break;
941
942                 seg_from = max(rg->from, f);
943                 seg_to = min(rg->to, t);
944
945                 chg += seg_to - seg_from;
946         }
947         spin_unlock(&resv->lock);
948
949         return chg;
950 }
951
952 /*
953  * Convert the address within this vma to the page offset within
954  * the mapping, in pagecache page units; huge pages here.
955  */
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957                         struct vm_area_struct *vma, unsigned long address)
958 {
959         return ((address - vma->vm_start) >> huge_page_shift(h)) +
960                         (vma->vm_pgoff >> huge_page_order(h));
961 }
962
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964                                      unsigned long address)
965 {
966         return vma_hugecache_offset(hstate_vma(vma), vma, address);
967 }
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
969
970 /*
971  * Return the size of the pages allocated when backing a VMA. In the majority
972  * cases this will be same size as used by the page table entries.
973  */
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975 {
976         if (vma->vm_ops && vma->vm_ops->pagesize)
977                 return vma->vm_ops->pagesize(vma);
978         return PAGE_SIZE;
979 }
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
981
982 /*
983  * Return the page size being used by the MMU to back a VMA. In the majority
984  * of cases, the page size used by the kernel matches the MMU size. On
985  * architectures where it differs, an architecture-specific 'strong'
986  * version of this symbol is required.
987  */
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
989 {
990         return vma_kernel_pagesize(vma);
991 }
992
993 /*
994  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
995  * bits of the reservation map pointer, which are always clear due to
996  * alignment.
997  */
998 #define HPAGE_RESV_OWNER    (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1001
1002 /*
1003  * These helpers are used to track how many pages are reserved for
1004  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005  * is guaranteed to have their future faults succeed.
1006  *
1007  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008  * the reserve counters are updated with the hugetlb_lock held. It is safe
1009  * to reset the VMA at fork() time as it is not in use yet and there is no
1010  * chance of the global counters getting corrupted as a result of the values.
1011  *
1012  * The private mapping reservation is represented in a subtly different
1013  * manner to a shared mapping.  A shared mapping has a region map associated
1014  * with the underlying file, this region map represents the backing file
1015  * pages which have ever had a reservation assigned which this persists even
1016  * after the page is instantiated.  A private mapping has a region map
1017  * associated with the original mmap which is attached to all VMAs which
1018  * reference it, this region map represents those offsets which have consumed
1019  * reservation ie. where pages have been instantiated.
1020  */
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022 {
1023         return (unsigned long)vma->vm_private_data;
1024 }
1025
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027                                                         unsigned long value)
1028 {
1029         vma->vm_private_data = (void *)value;
1030 }
1031
1032 static void
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034                                           struct hugetlb_cgroup *h_cg,
1035                                           struct hstate *h)
1036 {
1037 #ifdef CONFIG_CGROUP_HUGETLB
1038         if (!h_cg || !h) {
1039                 resv_map->reservation_counter = NULL;
1040                 resv_map->pages_per_hpage = 0;
1041                 resv_map->css = NULL;
1042         } else {
1043                 resv_map->reservation_counter =
1044                         &h_cg->rsvd_hugepage[hstate_index(h)];
1045                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046                 resv_map->css = &h_cg->css;
1047         }
1048 #endif
1049 }
1050
1051 struct resv_map *resv_map_alloc(void)
1052 {
1053         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055
1056         if (!resv_map || !rg) {
1057                 kfree(resv_map);
1058                 kfree(rg);
1059                 return NULL;
1060         }
1061
1062         kref_init(&resv_map->refs);
1063         spin_lock_init(&resv_map->lock);
1064         INIT_LIST_HEAD(&resv_map->regions);
1065
1066         resv_map->adds_in_progress = 0;
1067         /*
1068          * Initialize these to 0. On shared mappings, 0's here indicate these
1069          * fields don't do cgroup accounting. On private mappings, these will be
1070          * re-initialized to the proper values, to indicate that hugetlb cgroup
1071          * reservations are to be un-charged from here.
1072          */
1073         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1074
1075         INIT_LIST_HEAD(&resv_map->region_cache);
1076         list_add(&rg->link, &resv_map->region_cache);
1077         resv_map->region_cache_count = 1;
1078
1079         return resv_map;
1080 }
1081
1082 void resv_map_release(struct kref *ref)
1083 {
1084         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085         struct list_head *head = &resv_map->region_cache;
1086         struct file_region *rg, *trg;
1087
1088         /* Clear out any active regions before we release the map. */
1089         region_del(resv_map, 0, LONG_MAX);
1090
1091         /* ... and any entries left in the cache */
1092         list_for_each_entry_safe(rg, trg, head, link) {
1093                 list_del(&rg->link);
1094                 kfree(rg);
1095         }
1096
1097         VM_BUG_ON(resv_map->adds_in_progress);
1098
1099         kfree(resv_map);
1100 }
1101
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1103 {
1104         /*
1105          * At inode evict time, i_mapping may not point to the original
1106          * address space within the inode.  This original address space
1107          * contains the pointer to the resv_map.  So, always use the
1108          * address space embedded within the inode.
1109          * The VERY common case is inode->mapping == &inode->i_data but,
1110          * this may not be true for device special inodes.
1111          */
1112         return (struct resv_map *)(&inode->i_data)->private_data;
1113 }
1114
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1116 {
1117         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118         if (vma->vm_flags & VM_MAYSHARE) {
1119                 struct address_space *mapping = vma->vm_file->f_mapping;
1120                 struct inode *inode = mapping->host;
1121
1122                 return inode_resv_map(inode);
1123
1124         } else {
1125                 return (struct resv_map *)(get_vma_private_data(vma) &
1126                                                         ~HPAGE_RESV_MASK);
1127         }
1128 }
1129
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1131 {
1132         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1134
1135         set_vma_private_data(vma, (get_vma_private_data(vma) &
1136                                 HPAGE_RESV_MASK) | (unsigned long)map);
1137 }
1138
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140 {
1141         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1143
1144         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1145 }
1146
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148 {
1149         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150
1151         return (get_vma_private_data(vma) & flag) != 0;
1152 }
1153
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1155 {
1156         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157         /*
1158          * Clear vm_private_data
1159          * - For shared mappings this is a per-vma semaphore that may be
1160          *   allocated in a subsequent call to hugetlb_vm_op_open.
1161          *   Before clearing, make sure pointer is not associated with vma
1162          *   as this will leak the structure.  This is the case when called
1163          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164          *   been called to allocate a new structure.
1165          * - For MAP_PRIVATE mappings, this is the reserve map which does
1166          *   not apply to children.  Faults generated by the children are
1167          *   not guaranteed to succeed, even if read-only.
1168          */
1169         if (vma->vm_flags & VM_MAYSHARE) {
1170                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171
1172                 if (vma_lock && vma_lock->vma != vma)
1173                         vma->vm_private_data = NULL;
1174         } else
1175                 vma->vm_private_data = NULL;
1176 }
1177
1178 /*
1179  * Reset and decrement one ref on hugepage private reservation.
1180  * Called with mm->mmap_lock writer semaphore held.
1181  * This function should be only used by move_vma() and operate on
1182  * same sized vma. It should never come here with last ref on the
1183  * reservation.
1184  */
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186 {
1187         /*
1188          * Clear the old hugetlb private page reservation.
1189          * It has already been transferred to new_vma.
1190          *
1191          * During a mremap() operation of a hugetlb vma we call move_vma()
1192          * which copies vma into new_vma and unmaps vma. After the copy
1193          * operation both new_vma and vma share a reference to the resv_map
1194          * struct, and at that point vma is about to be unmapped. We don't
1195          * want to return the reservation to the pool at unmap of vma because
1196          * the reservation still lives on in new_vma, so simply decrement the
1197          * ref here and remove the resv_map reference from this vma.
1198          */
1199         struct resv_map *reservations = vma_resv_map(vma);
1200
1201         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203                 kref_put(&reservations->refs, resv_map_release);
1204         }
1205
1206         hugetlb_dup_vma_private(vma);
1207 }
1208
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1211 {
1212         if (vma->vm_flags & VM_NORESERVE) {
1213                 /*
1214                  * This address is already reserved by other process(chg == 0),
1215                  * so, we should decrement reserved count. Without decrementing,
1216                  * reserve count remains after releasing inode, because this
1217                  * allocated page will go into page cache and is regarded as
1218                  * coming from reserved pool in releasing step.  Currently, we
1219                  * don't have any other solution to deal with this situation
1220                  * properly, so add work-around here.
1221                  */
1222                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1223                         return true;
1224                 else
1225                         return false;
1226         }
1227
1228         /* Shared mappings always use reserves */
1229         if (vma->vm_flags & VM_MAYSHARE) {
1230                 /*
1231                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1232                  * be a region map for all pages.  The only situation where
1233                  * there is no region map is if a hole was punched via
1234                  * fallocate.  In this case, there really are no reserves to
1235                  * use.  This situation is indicated if chg != 0.
1236                  */
1237                 if (chg)
1238                         return false;
1239                 else
1240                         return true;
1241         }
1242
1243         /*
1244          * Only the process that called mmap() has reserves for
1245          * private mappings.
1246          */
1247         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248                 /*
1249                  * Like the shared case above, a hole punch or truncate
1250                  * could have been performed on the private mapping.
1251                  * Examine the value of chg to determine if reserves
1252                  * actually exist or were previously consumed.
1253                  * Very Subtle - The value of chg comes from a previous
1254                  * call to vma_needs_reserves().  The reserve map for
1255                  * private mappings has different (opposite) semantics
1256                  * than that of shared mappings.  vma_needs_reserves()
1257                  * has already taken this difference in semantics into
1258                  * account.  Therefore, the meaning of chg is the same
1259                  * as in the shared case above.  Code could easily be
1260                  * combined, but keeping it separate draws attention to
1261                  * subtle differences.
1262                  */
1263                 if (chg)
1264                         return false;
1265                 else
1266                         return true;
1267         }
1268
1269         return false;
1270 }
1271
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1273 {
1274         int nid = folio_nid(folio);
1275
1276         lockdep_assert_held(&hugetlb_lock);
1277         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1278
1279         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280         h->free_huge_pages++;
1281         h->free_huge_pages_node[nid]++;
1282         folio_set_hugetlb_freed(folio);
1283 }
1284
1285 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1286 {
1287         struct page *page;
1288         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1289
1290         lockdep_assert_held(&hugetlb_lock);
1291         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1292                 if (pin && !is_longterm_pinnable_page(page))
1293                         continue;
1294
1295                 if (PageHWPoison(page))
1296                         continue;
1297
1298                 list_move(&page->lru, &h->hugepage_activelist);
1299                 set_page_refcounted(page);
1300                 ClearHPageFreed(page);
1301                 h->free_huge_pages--;
1302                 h->free_huge_pages_node[nid]--;
1303                 return page;
1304         }
1305
1306         return NULL;
1307 }
1308
1309 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1310                 nodemask_t *nmask)
1311 {
1312         unsigned int cpuset_mems_cookie;
1313         struct zonelist *zonelist;
1314         struct zone *zone;
1315         struct zoneref *z;
1316         int node = NUMA_NO_NODE;
1317
1318         zonelist = node_zonelist(nid, gfp_mask);
1319
1320 retry_cpuset:
1321         cpuset_mems_cookie = read_mems_allowed_begin();
1322         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1323                 struct page *page;
1324
1325                 if (!cpuset_zone_allowed(zone, gfp_mask))
1326                         continue;
1327                 /*
1328                  * no need to ask again on the same node. Pool is node rather than
1329                  * zone aware
1330                  */
1331                 if (zone_to_nid(zone) == node)
1332                         continue;
1333                 node = zone_to_nid(zone);
1334
1335                 page = dequeue_huge_page_node_exact(h, node);
1336                 if (page)
1337                         return page;
1338         }
1339         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1340                 goto retry_cpuset;
1341
1342         return NULL;
1343 }
1344
1345 static unsigned long available_huge_pages(struct hstate *h)
1346 {
1347         return h->free_huge_pages - h->resv_huge_pages;
1348 }
1349
1350 static struct page *dequeue_huge_page_vma(struct hstate *h,
1351                                 struct vm_area_struct *vma,
1352                                 unsigned long address, int avoid_reserve,
1353                                 long chg)
1354 {
1355         struct page *page = NULL;
1356         struct mempolicy *mpol;
1357         gfp_t gfp_mask;
1358         nodemask_t *nodemask;
1359         int nid;
1360
1361         /*
1362          * A child process with MAP_PRIVATE mappings created by their parent
1363          * have no page reserves. This check ensures that reservations are
1364          * not "stolen". The child may still get SIGKILLed
1365          */
1366         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1367                 goto err;
1368
1369         /* If reserves cannot be used, ensure enough pages are in the pool */
1370         if (avoid_reserve && !available_huge_pages(h))
1371                 goto err;
1372
1373         gfp_mask = htlb_alloc_mask(h);
1374         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1375
1376         if (mpol_is_preferred_many(mpol)) {
1377                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1378
1379                 /* Fallback to all nodes if page==NULL */
1380                 nodemask = NULL;
1381         }
1382
1383         if (!page)
1384                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1385
1386         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1387                 SetHPageRestoreReserve(page);
1388                 h->resv_huge_pages--;
1389         }
1390
1391         mpol_cond_put(mpol);
1392         return page;
1393
1394 err:
1395         return NULL;
1396 }
1397
1398 /*
1399  * common helper functions for hstate_next_node_to_{alloc|free}.
1400  * We may have allocated or freed a huge page based on a different
1401  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1402  * be outside of *nodes_allowed.  Ensure that we use an allowed
1403  * node for alloc or free.
1404  */
1405 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1406 {
1407         nid = next_node_in(nid, *nodes_allowed);
1408         VM_BUG_ON(nid >= MAX_NUMNODES);
1409
1410         return nid;
1411 }
1412
1413 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1414 {
1415         if (!node_isset(nid, *nodes_allowed))
1416                 nid = next_node_allowed(nid, nodes_allowed);
1417         return nid;
1418 }
1419
1420 /*
1421  * returns the previously saved node ["this node"] from which to
1422  * allocate a persistent huge page for the pool and advance the
1423  * next node from which to allocate, handling wrap at end of node
1424  * mask.
1425  */
1426 static int hstate_next_node_to_alloc(struct hstate *h,
1427                                         nodemask_t *nodes_allowed)
1428 {
1429         int nid;
1430
1431         VM_BUG_ON(!nodes_allowed);
1432
1433         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1434         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1435
1436         return nid;
1437 }
1438
1439 /*
1440  * helper for remove_pool_huge_page() - return the previously saved
1441  * node ["this node"] from which to free a huge page.  Advance the
1442  * next node id whether or not we find a free huge page to free so
1443  * that the next attempt to free addresses the next node.
1444  */
1445 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1446 {
1447         int nid;
1448
1449         VM_BUG_ON(!nodes_allowed);
1450
1451         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1452         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1453
1454         return nid;
1455 }
1456
1457 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1458         for (nr_nodes = nodes_weight(*mask);                            \
1459                 nr_nodes > 0 &&                                         \
1460                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1461                 nr_nodes--)
1462
1463 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1464         for (nr_nodes = nodes_weight(*mask);                            \
1465                 nr_nodes > 0 &&                                         \
1466                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1467                 nr_nodes--)
1468
1469 /* used to demote non-gigantic_huge pages as well */
1470 static void __destroy_compound_gigantic_folio(struct folio *folio,
1471                                         unsigned int order, bool demote)
1472 {
1473         int i;
1474         int nr_pages = 1 << order;
1475         struct page *p;
1476
1477         atomic_set(&folio->_entire_mapcount, 0);
1478         atomic_set(&folio->_nr_pages_mapped, 0);
1479         atomic_set(&folio->_pincount, 0);
1480
1481         for (i = 1; i < nr_pages; i++) {
1482                 p = folio_page(folio, i);
1483                 p->mapping = NULL;
1484                 clear_compound_head(p);
1485                 if (!demote)
1486                         set_page_refcounted(p);
1487         }
1488
1489         folio_set_order(folio, 0);
1490         __folio_clear_head(folio);
1491 }
1492
1493 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1494                                         unsigned int order)
1495 {
1496         __destroy_compound_gigantic_folio(folio, order, true);
1497 }
1498
1499 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1500 static void destroy_compound_gigantic_folio(struct folio *folio,
1501                                         unsigned int order)
1502 {
1503         __destroy_compound_gigantic_folio(folio, order, false);
1504 }
1505
1506 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1507 {
1508         /*
1509          * If the page isn't allocated using the cma allocator,
1510          * cma_release() returns false.
1511          */
1512 #ifdef CONFIG_CMA
1513         int nid = folio_nid(folio);
1514
1515         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1516                 return;
1517 #endif
1518
1519         free_contig_range(folio_pfn(folio), 1 << order);
1520 }
1521
1522 #ifdef CONFIG_CONTIG_ALLOC
1523 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1524                 int nid, nodemask_t *nodemask)
1525 {
1526         struct page *page;
1527         unsigned long nr_pages = pages_per_huge_page(h);
1528         if (nid == NUMA_NO_NODE)
1529                 nid = numa_mem_id();
1530
1531 #ifdef CONFIG_CMA
1532         {
1533                 int node;
1534
1535                 if (hugetlb_cma[nid]) {
1536                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1537                                         huge_page_order(h), true);
1538                         if (page)
1539                                 return page_folio(page);
1540                 }
1541
1542                 if (!(gfp_mask & __GFP_THISNODE)) {
1543                         for_each_node_mask(node, *nodemask) {
1544                                 if (node == nid || !hugetlb_cma[node])
1545                                         continue;
1546
1547                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1548                                                 huge_page_order(h), true);
1549                                 if (page)
1550                                         return page_folio(page);
1551                         }
1552                 }
1553         }
1554 #endif
1555
1556         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1557         return page ? page_folio(page) : NULL;
1558 }
1559
1560 #else /* !CONFIG_CONTIG_ALLOC */
1561 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1562                                         int nid, nodemask_t *nodemask)
1563 {
1564         return NULL;
1565 }
1566 #endif /* CONFIG_CONTIG_ALLOC */
1567
1568 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1569 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1570                                         int nid, nodemask_t *nodemask)
1571 {
1572         return NULL;
1573 }
1574 static inline void free_gigantic_folio(struct folio *folio,
1575                                                 unsigned int order) { }
1576 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1577                                                 unsigned int order) { }
1578 #endif
1579
1580 /*
1581  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1582  * as just a compound page.
1583  *
1584  * A reference is held on the folio, except in the case of demote.
1585  *
1586  * Must be called with hugetlb lock held.
1587  */
1588 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1589                                                         bool adjust_surplus,
1590                                                         bool demote)
1591 {
1592         int nid = folio_nid(folio);
1593
1594         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1595         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1596
1597         lockdep_assert_held(&hugetlb_lock);
1598         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1599                 return;
1600
1601         list_del(&folio->lru);
1602
1603         if (folio_test_hugetlb_freed(folio)) {
1604                 h->free_huge_pages--;
1605                 h->free_huge_pages_node[nid]--;
1606         }
1607         if (adjust_surplus) {
1608                 h->surplus_huge_pages--;
1609                 h->surplus_huge_pages_node[nid]--;
1610         }
1611
1612         /*
1613          * Very subtle
1614          *
1615          * For non-gigantic pages set the destructor to the normal compound
1616          * page dtor.  This is needed in case someone takes an additional
1617          * temporary ref to the page, and freeing is delayed until they drop
1618          * their reference.
1619          *
1620          * For gigantic pages set the destructor to the null dtor.  This
1621          * destructor will never be called.  Before freeing the gigantic
1622          * page destroy_compound_gigantic_folio will turn the folio into a
1623          * simple group of pages.  After this the destructor does not
1624          * apply.
1625          *
1626          * This handles the case where more than one ref is held when and
1627          * after update_and_free_hugetlb_folio is called.
1628          *
1629          * In the case of demote we do not ref count the page as it will soon
1630          * be turned into a page of smaller size.
1631          */
1632         if (!demote)
1633                 folio_ref_unfreeze(folio, 1);
1634         if (hstate_is_gigantic(h))
1635                 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1636         else
1637                 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1638
1639         h->nr_huge_pages--;
1640         h->nr_huge_pages_node[nid]--;
1641 }
1642
1643 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1644                                                         bool adjust_surplus)
1645 {
1646         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1647 }
1648
1649 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1650                                                         bool adjust_surplus)
1651 {
1652         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1653 }
1654
1655 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1656                              bool adjust_surplus)
1657 {
1658         int zeroed;
1659         int nid = folio_nid(folio);
1660
1661         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1662
1663         lockdep_assert_held(&hugetlb_lock);
1664
1665         INIT_LIST_HEAD(&folio->lru);
1666         h->nr_huge_pages++;
1667         h->nr_huge_pages_node[nid]++;
1668
1669         if (adjust_surplus) {
1670                 h->surplus_huge_pages++;
1671                 h->surplus_huge_pages_node[nid]++;
1672         }
1673
1674         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1675         folio_change_private(folio, NULL);
1676         /*
1677          * We have to set hugetlb_vmemmap_optimized again as above
1678          * folio_change_private(folio, NULL) cleared it.
1679          */
1680         folio_set_hugetlb_vmemmap_optimized(folio);
1681
1682         /*
1683          * This folio is about to be managed by the hugetlb allocator and
1684          * should have no users.  Drop our reference, and check for others
1685          * just in case.
1686          */
1687         zeroed = folio_put_testzero(folio);
1688         if (unlikely(!zeroed))
1689                 /*
1690                  * It is VERY unlikely soneone else has taken a ref on
1691                  * the page.  In this case, we simply return as the
1692                  * hugetlb destructor (free_huge_page) will be called
1693                  * when this other ref is dropped.
1694                  */
1695                 return;
1696
1697         arch_clear_hugepage_flags(&folio->page);
1698         enqueue_hugetlb_folio(h, folio);
1699 }
1700
1701 static void __update_and_free_page(struct hstate *h, struct page *page)
1702 {
1703         int i;
1704         struct folio *folio = page_folio(page);
1705         struct page *subpage;
1706
1707         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1708                 return;
1709
1710         /*
1711          * If we don't know which subpages are hwpoisoned, we can't free
1712          * the hugepage, so it's leaked intentionally.
1713          */
1714         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1715                 return;
1716
1717         if (hugetlb_vmemmap_restore(h, page)) {
1718                 spin_lock_irq(&hugetlb_lock);
1719                 /*
1720                  * If we cannot allocate vmemmap pages, just refuse to free the
1721                  * page and put the page back on the hugetlb free list and treat
1722                  * as a surplus page.
1723                  */
1724                 add_hugetlb_folio(h, folio, true);
1725                 spin_unlock_irq(&hugetlb_lock);
1726                 return;
1727         }
1728
1729         /*
1730          * Move PageHWPoison flag from head page to the raw error pages,
1731          * which makes any healthy subpages reusable.
1732          */
1733         if (unlikely(folio_test_hwpoison(folio)))
1734                 folio_clear_hugetlb_hwpoison(folio);
1735
1736         for (i = 0; i < pages_per_huge_page(h); i++) {
1737                 subpage = folio_page(folio, i);
1738                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1739                                 1 << PG_referenced | 1 << PG_dirty |
1740                                 1 << PG_active | 1 << PG_private |
1741                                 1 << PG_writeback);
1742         }
1743
1744         /*
1745          * Non-gigantic pages demoted from CMA allocated gigantic pages
1746          * need to be given back to CMA in free_gigantic_folio.
1747          */
1748         if (hstate_is_gigantic(h) ||
1749             hugetlb_cma_folio(folio, huge_page_order(h))) {
1750                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1751                 free_gigantic_folio(folio, huge_page_order(h));
1752         } else {
1753                 __free_pages(page, huge_page_order(h));
1754         }
1755 }
1756
1757 /*
1758  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1759  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1760  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1761  * the vmemmap pages.
1762  *
1763  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1764  * freed and frees them one-by-one. As the page->mapping pointer is going
1765  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1766  * structure of a lockless linked list of huge pages to be freed.
1767  */
1768 static LLIST_HEAD(hpage_freelist);
1769
1770 static void free_hpage_workfn(struct work_struct *work)
1771 {
1772         struct llist_node *node;
1773
1774         node = llist_del_all(&hpage_freelist);
1775
1776         while (node) {
1777                 struct page *page;
1778                 struct hstate *h;
1779
1780                 page = container_of((struct address_space **)node,
1781                                      struct page, mapping);
1782                 node = node->next;
1783                 page->mapping = NULL;
1784                 /*
1785                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1786                  * is going to trigger because a previous call to
1787                  * remove_hugetlb_folio() will call folio_set_compound_dtor
1788                  * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1789                  * directly.
1790                  */
1791                 h = size_to_hstate(page_size(page));
1792
1793                 __update_and_free_page(h, page);
1794
1795                 cond_resched();
1796         }
1797 }
1798 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1799
1800 static inline void flush_free_hpage_work(struct hstate *h)
1801 {
1802         if (hugetlb_vmemmap_optimizable(h))
1803                 flush_work(&free_hpage_work);
1804 }
1805
1806 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1807                                  bool atomic)
1808 {
1809         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1810                 __update_and_free_page(h, &folio->page);
1811                 return;
1812         }
1813
1814         /*
1815          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1816          *
1817          * Only call schedule_work() if hpage_freelist is previously
1818          * empty. Otherwise, schedule_work() had been called but the workfn
1819          * hasn't retrieved the list yet.
1820          */
1821         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1822                 schedule_work(&free_hpage_work);
1823 }
1824
1825 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1826 {
1827         struct page *page, *t_page;
1828         struct folio *folio;
1829
1830         list_for_each_entry_safe(page, t_page, list, lru) {
1831                 folio = page_folio(page);
1832                 update_and_free_hugetlb_folio(h, folio, false);
1833                 cond_resched();
1834         }
1835 }
1836
1837 struct hstate *size_to_hstate(unsigned long size)
1838 {
1839         struct hstate *h;
1840
1841         for_each_hstate(h) {
1842                 if (huge_page_size(h) == size)
1843                         return h;
1844         }
1845         return NULL;
1846 }
1847
1848 void free_huge_page(struct page *page)
1849 {
1850         /*
1851          * Can't pass hstate in here because it is called from the
1852          * compound page destructor.
1853          */
1854         struct folio *folio = page_folio(page);
1855         struct hstate *h = folio_hstate(folio);
1856         int nid = folio_nid(folio);
1857         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1858         bool restore_reserve;
1859         unsigned long flags;
1860
1861         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1862         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1863
1864         hugetlb_set_folio_subpool(folio, NULL);
1865         if (folio_test_anon(folio))
1866                 __ClearPageAnonExclusive(&folio->page);
1867         folio->mapping = NULL;
1868         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1869         folio_clear_hugetlb_restore_reserve(folio);
1870
1871         /*
1872          * If HPageRestoreReserve was set on page, page allocation consumed a
1873          * reservation.  If the page was associated with a subpool, there
1874          * would have been a page reserved in the subpool before allocation
1875          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1876          * reservation, do not call hugepage_subpool_put_pages() as this will
1877          * remove the reserved page from the subpool.
1878          */
1879         if (!restore_reserve) {
1880                 /*
1881                  * A return code of zero implies that the subpool will be
1882                  * under its minimum size if the reservation is not restored
1883                  * after page is free.  Therefore, force restore_reserve
1884                  * operation.
1885                  */
1886                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1887                         restore_reserve = true;
1888         }
1889
1890         spin_lock_irqsave(&hugetlb_lock, flags);
1891         folio_clear_hugetlb_migratable(folio);
1892         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1893                                      pages_per_huge_page(h), folio);
1894         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1895                                           pages_per_huge_page(h), folio);
1896         if (restore_reserve)
1897                 h->resv_huge_pages++;
1898
1899         if (folio_test_hugetlb_temporary(folio)) {
1900                 remove_hugetlb_folio(h, folio, false);
1901                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1902                 update_and_free_hugetlb_folio(h, folio, true);
1903         } else if (h->surplus_huge_pages_node[nid]) {
1904                 /* remove the page from active list */
1905                 remove_hugetlb_folio(h, folio, true);
1906                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1907                 update_and_free_hugetlb_folio(h, folio, true);
1908         } else {
1909                 arch_clear_hugepage_flags(page);
1910                 enqueue_hugetlb_folio(h, folio);
1911                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1912         }
1913 }
1914
1915 /*
1916  * Must be called with the hugetlb lock held
1917  */
1918 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1919 {
1920         lockdep_assert_held(&hugetlb_lock);
1921         h->nr_huge_pages++;
1922         h->nr_huge_pages_node[nid]++;
1923 }
1924
1925 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1926 {
1927         hugetlb_vmemmap_optimize(h, &folio->page);
1928         INIT_LIST_HEAD(&folio->lru);
1929         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1930         hugetlb_set_folio_subpool(folio, NULL);
1931         set_hugetlb_cgroup(folio, NULL);
1932         set_hugetlb_cgroup_rsvd(folio, NULL);
1933 }
1934
1935 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1936 {
1937         __prep_new_hugetlb_folio(h, folio);
1938         spin_lock_irq(&hugetlb_lock);
1939         __prep_account_new_huge_page(h, nid);
1940         spin_unlock_irq(&hugetlb_lock);
1941 }
1942
1943 static bool __prep_compound_gigantic_folio(struct folio *folio,
1944                                         unsigned int order, bool demote)
1945 {
1946         int i, j;
1947         int nr_pages = 1 << order;
1948         struct page *p;
1949
1950         __folio_clear_reserved(folio);
1951         __folio_set_head(folio);
1952         /* we rely on prep_new_hugetlb_folio to set the destructor */
1953         folio_set_order(folio, order);
1954         for (i = 0; i < nr_pages; i++) {
1955                 p = folio_page(folio, i);
1956
1957                 /*
1958                  * For gigantic hugepages allocated through bootmem at
1959                  * boot, it's safer to be consistent with the not-gigantic
1960                  * hugepages and clear the PG_reserved bit from all tail pages
1961                  * too.  Otherwise drivers using get_user_pages() to access tail
1962                  * pages may get the reference counting wrong if they see
1963                  * PG_reserved set on a tail page (despite the head page not
1964                  * having PG_reserved set).  Enforcing this consistency between
1965                  * head and tail pages allows drivers to optimize away a check
1966                  * on the head page when they need know if put_page() is needed
1967                  * after get_user_pages().
1968                  */
1969                 if (i != 0)     /* head page cleared above */
1970                         __ClearPageReserved(p);
1971                 /*
1972                  * Subtle and very unlikely
1973                  *
1974                  * Gigantic 'page allocators' such as memblock or cma will
1975                  * return a set of pages with each page ref counted.  We need
1976                  * to turn this set of pages into a compound page with tail
1977                  * page ref counts set to zero.  Code such as speculative page
1978                  * cache adding could take a ref on a 'to be' tail page.
1979                  * We need to respect any increased ref count, and only set
1980                  * the ref count to zero if count is currently 1.  If count
1981                  * is not 1, we return an error.  An error return indicates
1982                  * the set of pages can not be converted to a gigantic page.
1983                  * The caller who allocated the pages should then discard the
1984                  * pages using the appropriate free interface.
1985                  *
1986                  * In the case of demote, the ref count will be zero.
1987                  */
1988                 if (!demote) {
1989                         if (!page_ref_freeze(p, 1)) {
1990                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1991                                 goto out_error;
1992                         }
1993                 } else {
1994                         VM_BUG_ON_PAGE(page_count(p), p);
1995                 }
1996                 if (i != 0)
1997                         set_compound_head(p, &folio->page);
1998         }
1999         atomic_set(&folio->_entire_mapcount, -1);
2000         atomic_set(&folio->_nr_pages_mapped, 0);
2001         atomic_set(&folio->_pincount, 0);
2002         return true;
2003
2004 out_error:
2005         /* undo page modifications made above */
2006         for (j = 0; j < i; j++) {
2007                 p = folio_page(folio, j);
2008                 if (j != 0)
2009                         clear_compound_head(p);
2010                 set_page_refcounted(p);
2011         }
2012         /* need to clear PG_reserved on remaining tail pages  */
2013         for (; j < nr_pages; j++) {
2014                 p = folio_page(folio, j);
2015                 __ClearPageReserved(p);
2016         }
2017         folio_set_order(folio, 0);
2018         __folio_clear_head(folio);
2019         return false;
2020 }
2021
2022 static bool prep_compound_gigantic_folio(struct folio *folio,
2023                                                         unsigned int order)
2024 {
2025         return __prep_compound_gigantic_folio(folio, order, false);
2026 }
2027
2028 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2029                                                         unsigned int order)
2030 {
2031         return __prep_compound_gigantic_folio(folio, order, true);
2032 }
2033
2034 /*
2035  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2036  * transparent huge pages.  See the PageTransHuge() documentation for more
2037  * details.
2038  */
2039 int PageHuge(struct page *page)
2040 {
2041         struct folio *folio;
2042
2043         if (!PageCompound(page))
2044                 return 0;
2045         folio = page_folio(page);
2046         return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2047 }
2048 EXPORT_SYMBOL_GPL(PageHuge);
2049
2050 /*
2051  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2052  * normal or transparent huge pages.
2053  */
2054 int PageHeadHuge(struct page *page_head)
2055 {
2056         struct folio *folio = (struct folio *)page_head;
2057         if (!folio_test_large(folio))
2058                 return 0;
2059
2060         return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2061 }
2062 EXPORT_SYMBOL_GPL(PageHeadHuge);
2063
2064 /*
2065  * Find and lock address space (mapping) in write mode.
2066  *
2067  * Upon entry, the page is locked which means that page_mapping() is
2068  * stable.  Due to locking order, we can only trylock_write.  If we can
2069  * not get the lock, simply return NULL to caller.
2070  */
2071 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2072 {
2073         struct address_space *mapping = page_mapping(hpage);
2074
2075         if (!mapping)
2076                 return mapping;
2077
2078         if (i_mmap_trylock_write(mapping))
2079                 return mapping;
2080
2081         return NULL;
2082 }
2083
2084 pgoff_t hugetlb_basepage_index(struct page *page)
2085 {
2086         struct page *page_head = compound_head(page);
2087         pgoff_t index = page_index(page_head);
2088         unsigned long compound_idx;
2089
2090         if (compound_order(page_head) >= MAX_ORDER)
2091                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2092         else
2093                 compound_idx = page - page_head;
2094
2095         return (index << compound_order(page_head)) + compound_idx;
2096 }
2097
2098 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2099                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2100                 nodemask_t *node_alloc_noretry)
2101 {
2102         int order = huge_page_order(h);
2103         struct page *page;
2104         bool alloc_try_hard = true;
2105         bool retry = true;
2106
2107         /*
2108          * By default we always try hard to allocate the page with
2109          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2110          * a loop (to adjust global huge page counts) and previous allocation
2111          * failed, do not continue to try hard on the same node.  Use the
2112          * node_alloc_noretry bitmap to manage this state information.
2113          */
2114         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2115                 alloc_try_hard = false;
2116         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2117         if (alloc_try_hard)
2118                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2119         if (nid == NUMA_NO_NODE)
2120                 nid = numa_mem_id();
2121 retry:
2122         page = __alloc_pages(gfp_mask, order, nid, nmask);
2123
2124         /* Freeze head page */
2125         if (page && !page_ref_freeze(page, 1)) {
2126                 __free_pages(page, order);
2127                 if (retry) {    /* retry once */
2128                         retry = false;
2129                         goto retry;
2130                 }
2131                 /* WOW!  twice in a row. */
2132                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2133                 page = NULL;
2134         }
2135
2136         /*
2137          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2138          * indicates an overall state change.  Clear bit so that we resume
2139          * normal 'try hard' allocations.
2140          */
2141         if (node_alloc_noretry && page && !alloc_try_hard)
2142                 node_clear(nid, *node_alloc_noretry);
2143
2144         /*
2145          * If we tried hard to get a page but failed, set bit so that
2146          * subsequent attempts will not try as hard until there is an
2147          * overall state change.
2148          */
2149         if (node_alloc_noretry && !page && alloc_try_hard)
2150                 node_set(nid, *node_alloc_noretry);
2151
2152         if (!page) {
2153                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2154                 return NULL;
2155         }
2156
2157         __count_vm_event(HTLB_BUDDY_PGALLOC);
2158         return page_folio(page);
2159 }
2160
2161 /*
2162  * Common helper to allocate a fresh hugetlb page. All specific allocators
2163  * should use this function to get new hugetlb pages
2164  *
2165  * Note that returned page is 'frozen':  ref count of head page and all tail
2166  * pages is zero.
2167  */
2168 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2169                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2170                 nodemask_t *node_alloc_noretry)
2171 {
2172         struct folio *folio;
2173         bool retry = false;
2174
2175 retry:
2176         if (hstate_is_gigantic(h))
2177                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2178         else
2179                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2180                                 nid, nmask, node_alloc_noretry);
2181         if (!folio)
2182                 return NULL;
2183         if (hstate_is_gigantic(h)) {
2184                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2185                         /*
2186                          * Rare failure to convert pages to compound page.
2187                          * Free pages and try again - ONCE!
2188                          */
2189                         free_gigantic_folio(folio, huge_page_order(h));
2190                         if (!retry) {
2191                                 retry = true;
2192                                 goto retry;
2193                         }
2194                         return NULL;
2195                 }
2196         }
2197         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2198
2199         return folio;
2200 }
2201
2202 /*
2203  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2204  * manner.
2205  */
2206 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2207                                 nodemask_t *node_alloc_noretry)
2208 {
2209         struct folio *folio;
2210         int nr_nodes, node;
2211         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2212
2213         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2214                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2215                                         nodes_allowed, node_alloc_noretry);
2216                 if (folio) {
2217                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
2218                         return 1;
2219                 }
2220         }
2221
2222         return 0;
2223 }
2224
2225 /*
2226  * Remove huge page from pool from next node to free.  Attempt to keep
2227  * persistent huge pages more or less balanced over allowed nodes.
2228  * This routine only 'removes' the hugetlb page.  The caller must make
2229  * an additional call to free the page to low level allocators.
2230  * Called with hugetlb_lock locked.
2231  */
2232 static struct page *remove_pool_huge_page(struct hstate *h,
2233                                                 nodemask_t *nodes_allowed,
2234                                                  bool acct_surplus)
2235 {
2236         int nr_nodes, node;
2237         struct page *page = NULL;
2238         struct folio *folio;
2239
2240         lockdep_assert_held(&hugetlb_lock);
2241         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2242                 /*
2243                  * If we're returning unused surplus pages, only examine
2244                  * nodes with surplus pages.
2245                  */
2246                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2247                     !list_empty(&h->hugepage_freelists[node])) {
2248                         page = list_entry(h->hugepage_freelists[node].next,
2249                                           struct page, lru);
2250                         folio = page_folio(page);
2251                         remove_hugetlb_folio(h, folio, acct_surplus);
2252                         break;
2253                 }
2254         }
2255
2256         return page;
2257 }
2258
2259 /*
2260  * Dissolve a given free hugepage into free buddy pages. This function does
2261  * nothing for in-use hugepages and non-hugepages.
2262  * This function returns values like below:
2263  *
2264  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2265  *           when the system is under memory pressure and the feature of
2266  *           freeing unused vmemmap pages associated with each hugetlb page
2267  *           is enabled.
2268  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2269  *           (allocated or reserved.)
2270  *       0:  successfully dissolved free hugepages or the page is not a
2271  *           hugepage (considered as already dissolved)
2272  */
2273 int dissolve_free_huge_page(struct page *page)
2274 {
2275         int rc = -EBUSY;
2276         struct folio *folio = page_folio(page);
2277
2278 retry:
2279         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2280         if (!folio_test_hugetlb(folio))
2281                 return 0;
2282
2283         spin_lock_irq(&hugetlb_lock);
2284         if (!folio_test_hugetlb(folio)) {
2285                 rc = 0;
2286                 goto out;
2287         }
2288
2289         if (!folio_ref_count(folio)) {
2290                 struct hstate *h = folio_hstate(folio);
2291                 if (!available_huge_pages(h))
2292                         goto out;
2293
2294                 /*
2295                  * We should make sure that the page is already on the free list
2296                  * when it is dissolved.
2297                  */
2298                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2299                         spin_unlock_irq(&hugetlb_lock);
2300                         cond_resched();
2301
2302                         /*
2303                          * Theoretically, we should return -EBUSY when we
2304                          * encounter this race. In fact, we have a chance
2305                          * to successfully dissolve the page if we do a
2306                          * retry. Because the race window is quite small.
2307                          * If we seize this opportunity, it is an optimization
2308                          * for increasing the success rate of dissolving page.
2309                          */
2310                         goto retry;
2311                 }
2312
2313                 remove_hugetlb_folio(h, folio, false);
2314                 h->max_huge_pages--;
2315                 spin_unlock_irq(&hugetlb_lock);
2316
2317                 /*
2318                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2319                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2320                  * free the page if it can not allocate required vmemmap.  We
2321                  * need to adjust max_huge_pages if the page is not freed.
2322                  * Attempt to allocate vmemmmap here so that we can take
2323                  * appropriate action on failure.
2324                  */
2325                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2326                 if (!rc) {
2327                         update_and_free_hugetlb_folio(h, folio, false);
2328                 } else {
2329                         spin_lock_irq(&hugetlb_lock);
2330                         add_hugetlb_folio(h, folio, false);
2331                         h->max_huge_pages++;
2332                         spin_unlock_irq(&hugetlb_lock);
2333                 }
2334
2335                 return rc;
2336         }
2337 out:
2338         spin_unlock_irq(&hugetlb_lock);
2339         return rc;
2340 }
2341
2342 /*
2343  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2344  * make specified memory blocks removable from the system.
2345  * Note that this will dissolve a free gigantic hugepage completely, if any
2346  * part of it lies within the given range.
2347  * Also note that if dissolve_free_huge_page() returns with an error, all
2348  * free hugepages that were dissolved before that error are lost.
2349  */
2350 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2351 {
2352         unsigned long pfn;
2353         struct page *page;
2354         int rc = 0;
2355         unsigned int order;
2356         struct hstate *h;
2357
2358         if (!hugepages_supported())
2359                 return rc;
2360
2361         order = huge_page_order(&default_hstate);
2362         for_each_hstate(h)
2363                 order = min(order, huge_page_order(h));
2364
2365         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2366                 page = pfn_to_page(pfn);
2367                 rc = dissolve_free_huge_page(page);
2368                 if (rc)
2369                         break;
2370         }
2371
2372         return rc;
2373 }
2374
2375 /*
2376  * Allocates a fresh surplus page from the page allocator.
2377  */
2378 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2379                                                 int nid, nodemask_t *nmask)
2380 {
2381         struct folio *folio = NULL;
2382
2383         if (hstate_is_gigantic(h))
2384                 return NULL;
2385
2386         spin_lock_irq(&hugetlb_lock);
2387         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2388                 goto out_unlock;
2389         spin_unlock_irq(&hugetlb_lock);
2390
2391         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2392         if (!folio)
2393                 return NULL;
2394
2395         spin_lock_irq(&hugetlb_lock);
2396         /*
2397          * We could have raced with the pool size change.
2398          * Double check that and simply deallocate the new page
2399          * if we would end up overcommiting the surpluses. Abuse
2400          * temporary page to workaround the nasty free_huge_page
2401          * codeflow
2402          */
2403         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2404                 folio_set_hugetlb_temporary(folio);
2405                 spin_unlock_irq(&hugetlb_lock);
2406                 free_huge_page(&folio->page);
2407                 return NULL;
2408         }
2409
2410         h->surplus_huge_pages++;
2411         h->surplus_huge_pages_node[folio_nid(folio)]++;
2412
2413 out_unlock:
2414         spin_unlock_irq(&hugetlb_lock);
2415
2416         return &folio->page;
2417 }
2418
2419 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2420                                      int nid, nodemask_t *nmask)
2421 {
2422         struct folio *folio;
2423
2424         if (hstate_is_gigantic(h))
2425                 return NULL;
2426
2427         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2428         if (!folio)
2429                 return NULL;
2430
2431         /* fresh huge pages are frozen */
2432         folio_ref_unfreeze(folio, 1);
2433         /*
2434          * We do not account these pages as surplus because they are only
2435          * temporary and will be released properly on the last reference
2436          */
2437         folio_set_hugetlb_temporary(folio);
2438
2439         return &folio->page;
2440 }
2441
2442 /*
2443  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2444  */
2445 static
2446 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2447                 struct vm_area_struct *vma, unsigned long addr)
2448 {
2449         struct page *page = NULL;
2450         struct mempolicy *mpol;
2451         gfp_t gfp_mask = htlb_alloc_mask(h);
2452         int nid;
2453         nodemask_t *nodemask;
2454
2455         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2456         if (mpol_is_preferred_many(mpol)) {
2457                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2458
2459                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2460                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2461
2462                 /* Fallback to all nodes if page==NULL */
2463                 nodemask = NULL;
2464         }
2465
2466         if (!page)
2467                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2468         mpol_cond_put(mpol);
2469         return page;
2470 }
2471
2472 /* page migration callback function */
2473 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2474                 nodemask_t *nmask, gfp_t gfp_mask)
2475 {
2476         spin_lock_irq(&hugetlb_lock);
2477         if (available_huge_pages(h)) {
2478                 struct page *page;
2479
2480                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2481                 if (page) {
2482                         spin_unlock_irq(&hugetlb_lock);
2483                         return page;
2484                 }
2485         }
2486         spin_unlock_irq(&hugetlb_lock);
2487
2488         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2489 }
2490
2491 /* mempolicy aware migration callback */
2492 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2493                 unsigned long address)
2494 {
2495         struct mempolicy *mpol;
2496         nodemask_t *nodemask;
2497         struct page *page;
2498         gfp_t gfp_mask;
2499         int node;
2500
2501         gfp_mask = htlb_alloc_mask(h);
2502         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2503         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2504         mpol_cond_put(mpol);
2505
2506         return page;
2507 }
2508
2509 /*
2510  * Increase the hugetlb pool such that it can accommodate a reservation
2511  * of size 'delta'.
2512  */
2513 static int gather_surplus_pages(struct hstate *h, long delta)
2514         __must_hold(&hugetlb_lock)
2515 {
2516         LIST_HEAD(surplus_list);
2517         struct page *page, *tmp;
2518         int ret;
2519         long i;
2520         long needed, allocated;
2521         bool alloc_ok = true;
2522
2523         lockdep_assert_held(&hugetlb_lock);
2524         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2525         if (needed <= 0) {
2526                 h->resv_huge_pages += delta;
2527                 return 0;
2528         }
2529
2530         allocated = 0;
2531
2532         ret = -ENOMEM;
2533 retry:
2534         spin_unlock_irq(&hugetlb_lock);
2535         for (i = 0; i < needed; i++) {
2536                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2537                                 NUMA_NO_NODE, NULL);
2538                 if (!page) {
2539                         alloc_ok = false;
2540                         break;
2541                 }
2542                 list_add(&page->lru, &surplus_list);
2543                 cond_resched();
2544         }
2545         allocated += i;
2546
2547         /*
2548          * After retaking hugetlb_lock, we need to recalculate 'needed'
2549          * because either resv_huge_pages or free_huge_pages may have changed.
2550          */
2551         spin_lock_irq(&hugetlb_lock);
2552         needed = (h->resv_huge_pages + delta) -
2553                         (h->free_huge_pages + allocated);
2554         if (needed > 0) {
2555                 if (alloc_ok)
2556                         goto retry;
2557                 /*
2558                  * We were not able to allocate enough pages to
2559                  * satisfy the entire reservation so we free what
2560                  * we've allocated so far.
2561                  */
2562                 goto free;
2563         }
2564         /*
2565          * The surplus_list now contains _at_least_ the number of extra pages
2566          * needed to accommodate the reservation.  Add the appropriate number
2567          * of pages to the hugetlb pool and free the extras back to the buddy
2568          * allocator.  Commit the entire reservation here to prevent another
2569          * process from stealing the pages as they are added to the pool but
2570          * before they are reserved.
2571          */
2572         needed += allocated;
2573         h->resv_huge_pages += delta;
2574         ret = 0;
2575
2576         /* Free the needed pages to the hugetlb pool */
2577         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2578                 if ((--needed) < 0)
2579                         break;
2580                 /* Add the page to the hugetlb allocator */
2581                 enqueue_hugetlb_folio(h, page_folio(page));
2582         }
2583 free:
2584         spin_unlock_irq(&hugetlb_lock);
2585
2586         /*
2587          * Free unnecessary surplus pages to the buddy allocator.
2588          * Pages have no ref count, call free_huge_page directly.
2589          */
2590         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2591                 free_huge_page(page);
2592         spin_lock_irq(&hugetlb_lock);
2593
2594         return ret;
2595 }
2596
2597 /*
2598  * This routine has two main purposes:
2599  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2600  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2601  *    to the associated reservation map.
2602  * 2) Free any unused surplus pages that may have been allocated to satisfy
2603  *    the reservation.  As many as unused_resv_pages may be freed.
2604  */
2605 static void return_unused_surplus_pages(struct hstate *h,
2606                                         unsigned long unused_resv_pages)
2607 {
2608         unsigned long nr_pages;
2609         struct page *page;
2610         LIST_HEAD(page_list);
2611
2612         lockdep_assert_held(&hugetlb_lock);
2613         /* Uncommit the reservation */
2614         h->resv_huge_pages -= unused_resv_pages;
2615
2616         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2617                 goto out;
2618
2619         /*
2620          * Part (or even all) of the reservation could have been backed
2621          * by pre-allocated pages. Only free surplus pages.
2622          */
2623         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2624
2625         /*
2626          * We want to release as many surplus pages as possible, spread
2627          * evenly across all nodes with memory. Iterate across these nodes
2628          * until we can no longer free unreserved surplus pages. This occurs
2629          * when the nodes with surplus pages have no free pages.
2630          * remove_pool_huge_page() will balance the freed pages across the
2631          * on-line nodes with memory and will handle the hstate accounting.
2632          */
2633         while (nr_pages--) {
2634                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2635                 if (!page)
2636                         goto out;
2637
2638                 list_add(&page->lru, &page_list);
2639         }
2640
2641 out:
2642         spin_unlock_irq(&hugetlb_lock);
2643         update_and_free_pages_bulk(h, &page_list);
2644         spin_lock_irq(&hugetlb_lock);
2645 }
2646
2647
2648 /*
2649  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2650  * are used by the huge page allocation routines to manage reservations.
2651  *
2652  * vma_needs_reservation is called to determine if the huge page at addr
2653  * within the vma has an associated reservation.  If a reservation is
2654  * needed, the value 1 is returned.  The caller is then responsible for
2655  * managing the global reservation and subpool usage counts.  After
2656  * the huge page has been allocated, vma_commit_reservation is called
2657  * to add the page to the reservation map.  If the page allocation fails,
2658  * the reservation must be ended instead of committed.  vma_end_reservation
2659  * is called in such cases.
2660  *
2661  * In the normal case, vma_commit_reservation returns the same value
2662  * as the preceding vma_needs_reservation call.  The only time this
2663  * is not the case is if a reserve map was changed between calls.  It
2664  * is the responsibility of the caller to notice the difference and
2665  * take appropriate action.
2666  *
2667  * vma_add_reservation is used in error paths where a reservation must
2668  * be restored when a newly allocated huge page must be freed.  It is
2669  * to be called after calling vma_needs_reservation to determine if a
2670  * reservation exists.
2671  *
2672  * vma_del_reservation is used in error paths where an entry in the reserve
2673  * map was created during huge page allocation and must be removed.  It is to
2674  * be called after calling vma_needs_reservation to determine if a reservation
2675  * exists.
2676  */
2677 enum vma_resv_mode {
2678         VMA_NEEDS_RESV,
2679         VMA_COMMIT_RESV,
2680         VMA_END_RESV,
2681         VMA_ADD_RESV,
2682         VMA_DEL_RESV,
2683 };
2684 static long __vma_reservation_common(struct hstate *h,
2685                                 struct vm_area_struct *vma, unsigned long addr,
2686                                 enum vma_resv_mode mode)
2687 {
2688         struct resv_map *resv;
2689         pgoff_t idx;
2690         long ret;
2691         long dummy_out_regions_needed;
2692
2693         resv = vma_resv_map(vma);
2694         if (!resv)
2695                 return 1;
2696
2697         idx = vma_hugecache_offset(h, vma, addr);
2698         switch (mode) {
2699         case VMA_NEEDS_RESV:
2700                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2701                 /* We assume that vma_reservation_* routines always operate on
2702                  * 1 page, and that adding to resv map a 1 page entry can only
2703                  * ever require 1 region.
2704                  */
2705                 VM_BUG_ON(dummy_out_regions_needed != 1);
2706                 break;
2707         case VMA_COMMIT_RESV:
2708                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2709                 /* region_add calls of range 1 should never fail. */
2710                 VM_BUG_ON(ret < 0);
2711                 break;
2712         case VMA_END_RESV:
2713                 region_abort(resv, idx, idx + 1, 1);
2714                 ret = 0;
2715                 break;
2716         case VMA_ADD_RESV:
2717                 if (vma->vm_flags & VM_MAYSHARE) {
2718                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2719                         /* region_add calls of range 1 should never fail. */
2720                         VM_BUG_ON(ret < 0);
2721                 } else {
2722                         region_abort(resv, idx, idx + 1, 1);
2723                         ret = region_del(resv, idx, idx + 1);
2724                 }
2725                 break;
2726         case VMA_DEL_RESV:
2727                 if (vma->vm_flags & VM_MAYSHARE) {
2728                         region_abort(resv, idx, idx + 1, 1);
2729                         ret = region_del(resv, idx, idx + 1);
2730                 } else {
2731                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2732                         /* region_add calls of range 1 should never fail. */
2733                         VM_BUG_ON(ret < 0);
2734                 }
2735                 break;
2736         default:
2737                 BUG();
2738         }
2739
2740         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2741                 return ret;
2742         /*
2743          * We know private mapping must have HPAGE_RESV_OWNER set.
2744          *
2745          * In most cases, reserves always exist for private mappings.
2746          * However, a file associated with mapping could have been
2747          * hole punched or truncated after reserves were consumed.
2748          * As subsequent fault on such a range will not use reserves.
2749          * Subtle - The reserve map for private mappings has the
2750          * opposite meaning than that of shared mappings.  If NO
2751          * entry is in the reserve map, it means a reservation exists.
2752          * If an entry exists in the reserve map, it means the
2753          * reservation has already been consumed.  As a result, the
2754          * return value of this routine is the opposite of the
2755          * value returned from reserve map manipulation routines above.
2756          */
2757         if (ret > 0)
2758                 return 0;
2759         if (ret == 0)
2760                 return 1;
2761         return ret;
2762 }
2763
2764 static long vma_needs_reservation(struct hstate *h,
2765                         struct vm_area_struct *vma, unsigned long addr)
2766 {
2767         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2768 }
2769
2770 static long vma_commit_reservation(struct hstate *h,
2771                         struct vm_area_struct *vma, unsigned long addr)
2772 {
2773         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2774 }
2775
2776 static void vma_end_reservation(struct hstate *h,
2777                         struct vm_area_struct *vma, unsigned long addr)
2778 {
2779         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2780 }
2781
2782 static long vma_add_reservation(struct hstate *h,
2783                         struct vm_area_struct *vma, unsigned long addr)
2784 {
2785         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2786 }
2787
2788 static long vma_del_reservation(struct hstate *h,
2789                         struct vm_area_struct *vma, unsigned long addr)
2790 {
2791         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2792 }
2793
2794 /*
2795  * This routine is called to restore reservation information on error paths.
2796  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2797  * the hugetlb mutex should remain held when calling this routine.
2798  *
2799  * It handles two specific cases:
2800  * 1) A reservation was in place and the page consumed the reservation.
2801  *    HPageRestoreReserve is set in the page.
2802  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2803  *    not set.  However, alloc_huge_page always updates the reserve map.
2804  *
2805  * In case 1, free_huge_page later in the error path will increment the
2806  * global reserve count.  But, free_huge_page does not have enough context
2807  * to adjust the reservation map.  This case deals primarily with private
2808  * mappings.  Adjust the reserve map here to be consistent with global
2809  * reserve count adjustments to be made by free_huge_page.  Make sure the
2810  * reserve map indicates there is a reservation present.
2811  *
2812  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2813  */
2814 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2815                         unsigned long address, struct page *page)
2816 {
2817         long rc = vma_needs_reservation(h, vma, address);
2818
2819         if (HPageRestoreReserve(page)) {
2820                 if (unlikely(rc < 0))
2821                         /*
2822                          * Rare out of memory condition in reserve map
2823                          * manipulation.  Clear HPageRestoreReserve so that
2824                          * global reserve count will not be incremented
2825                          * by free_huge_page.  This will make it appear
2826                          * as though the reservation for this page was
2827                          * consumed.  This may prevent the task from
2828                          * faulting in the page at a later time.  This
2829                          * is better than inconsistent global huge page
2830                          * accounting of reserve counts.
2831                          */
2832                         ClearHPageRestoreReserve(page);
2833                 else if (rc)
2834                         (void)vma_add_reservation(h, vma, address);
2835                 else
2836                         vma_end_reservation(h, vma, address);
2837         } else {
2838                 if (!rc) {
2839                         /*
2840                          * This indicates there is an entry in the reserve map
2841                          * not added by alloc_huge_page.  We know it was added
2842                          * before the alloc_huge_page call, otherwise
2843                          * HPageRestoreReserve would be set on the page.
2844                          * Remove the entry so that a subsequent allocation
2845                          * does not consume a reservation.
2846                          */
2847                         rc = vma_del_reservation(h, vma, address);
2848                         if (rc < 0)
2849                                 /*
2850                                  * VERY rare out of memory condition.  Since
2851                                  * we can not delete the entry, set
2852                                  * HPageRestoreReserve so that the reserve
2853                                  * count will be incremented when the page
2854                                  * is freed.  This reserve will be consumed
2855                                  * on a subsequent allocation.
2856                                  */
2857                                 SetHPageRestoreReserve(page);
2858                 } else if (rc < 0) {
2859                         /*
2860                          * Rare out of memory condition from
2861                          * vma_needs_reservation call.  Memory allocation is
2862                          * only attempted if a new entry is needed.  Therefore,
2863                          * this implies there is not an entry in the
2864                          * reserve map.
2865                          *
2866                          * For shared mappings, no entry in the map indicates
2867                          * no reservation.  We are done.
2868                          */
2869                         if (!(vma->vm_flags & VM_MAYSHARE))
2870                                 /*
2871                                  * For private mappings, no entry indicates
2872                                  * a reservation is present.  Since we can
2873                                  * not add an entry, set SetHPageRestoreReserve
2874                                  * on the page so reserve count will be
2875                                  * incremented when freed.  This reserve will
2876                                  * be consumed on a subsequent allocation.
2877                                  */
2878                                 SetHPageRestoreReserve(page);
2879                 } else
2880                         /*
2881                          * No reservation present, do nothing
2882                          */
2883                          vma_end_reservation(h, vma, address);
2884         }
2885 }
2886
2887 /*
2888  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2889  * the old one
2890  * @h: struct hstate old page belongs to
2891  * @old_folio: Old folio to dissolve
2892  * @list: List to isolate the page in case we need to
2893  * Returns 0 on success, otherwise negated error.
2894  */
2895 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2896                         struct folio *old_folio, struct list_head *list)
2897 {
2898         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2899         int nid = folio_nid(old_folio);
2900         struct folio *new_folio;
2901         int ret = 0;
2902
2903         /*
2904          * Before dissolving the folio, we need to allocate a new one for the
2905          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2906          * by doing everything but actually updating counters and adding to
2907          * the pool.  This simplifies and let us do most of the processing
2908          * under the lock.
2909          */
2910         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2911         if (!new_folio)
2912                 return -ENOMEM;
2913         __prep_new_hugetlb_folio(h, new_folio);
2914
2915 retry:
2916         spin_lock_irq(&hugetlb_lock);
2917         if (!folio_test_hugetlb(old_folio)) {
2918                 /*
2919                  * Freed from under us. Drop new_folio too.
2920                  */
2921                 goto free_new;
2922         } else if (folio_ref_count(old_folio)) {
2923                 /*
2924                  * Someone has grabbed the folio, try to isolate it here.
2925                  * Fail with -EBUSY if not possible.
2926                  */
2927                 spin_unlock_irq(&hugetlb_lock);
2928                 ret = isolate_hugetlb(&old_folio->page, list);
2929                 spin_lock_irq(&hugetlb_lock);
2930                 goto free_new;
2931         } else if (!folio_test_hugetlb_freed(old_folio)) {
2932                 /*
2933                  * Folio's refcount is 0 but it has not been enqueued in the
2934                  * freelist yet. Race window is small, so we can succeed here if
2935                  * we retry.
2936                  */
2937                 spin_unlock_irq(&hugetlb_lock);
2938                 cond_resched();
2939                 goto retry;
2940         } else {
2941                 /*
2942                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2943                  * the freelist and decrease the counters. These will be
2944                  * incremented again when calling __prep_account_new_huge_page()
2945                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2946                  * remain stable since this happens under the lock.
2947                  */
2948                 remove_hugetlb_folio(h, old_folio, false);
2949
2950                 /*
2951                  * Ref count on new_folio is already zero as it was dropped
2952                  * earlier.  It can be directly added to the pool free list.
2953                  */
2954                 __prep_account_new_huge_page(h, nid);
2955                 enqueue_hugetlb_folio(h, new_folio);
2956
2957                 /*
2958                  * Folio has been replaced, we can safely free the old one.
2959                  */
2960                 spin_unlock_irq(&hugetlb_lock);
2961                 update_and_free_hugetlb_folio(h, old_folio, false);
2962         }
2963
2964         return ret;
2965
2966 free_new:
2967         spin_unlock_irq(&hugetlb_lock);
2968         /* Folio has a zero ref count, but needs a ref to be freed */
2969         folio_ref_unfreeze(new_folio, 1);
2970         update_and_free_hugetlb_folio(h, new_folio, false);
2971
2972         return ret;
2973 }
2974
2975 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2976 {
2977         struct hstate *h;
2978         struct folio *folio = page_folio(page);
2979         int ret = -EBUSY;
2980
2981         /*
2982          * The page might have been dissolved from under our feet, so make sure
2983          * to carefully check the state under the lock.
2984          * Return success when racing as if we dissolved the page ourselves.
2985          */
2986         spin_lock_irq(&hugetlb_lock);
2987         if (folio_test_hugetlb(folio)) {
2988                 h = folio_hstate(folio);
2989         } else {
2990                 spin_unlock_irq(&hugetlb_lock);
2991                 return 0;
2992         }
2993         spin_unlock_irq(&hugetlb_lock);
2994
2995         /*
2996          * Fence off gigantic pages as there is a cyclic dependency between
2997          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2998          * of bailing out right away without further retrying.
2999          */
3000         if (hstate_is_gigantic(h))
3001                 return -ENOMEM;
3002
3003         if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
3004                 ret = 0;
3005         else if (!folio_ref_count(folio))
3006                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3007
3008         return ret;
3009 }
3010
3011 struct page *alloc_huge_page(struct vm_area_struct *vma,
3012                                     unsigned long addr, int avoid_reserve)
3013 {
3014         struct hugepage_subpool *spool = subpool_vma(vma);
3015         struct hstate *h = hstate_vma(vma);
3016         struct page *page;
3017         struct folio *folio;
3018         long map_chg, map_commit;
3019         long gbl_chg;
3020         int ret, idx;
3021         struct hugetlb_cgroup *h_cg;
3022         bool deferred_reserve;
3023
3024         idx = hstate_index(h);
3025         /*
3026          * Examine the region/reserve map to determine if the process
3027          * has a reservation for the page to be allocated.  A return
3028          * code of zero indicates a reservation exists (no change).
3029          */
3030         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3031         if (map_chg < 0)
3032                 return ERR_PTR(-ENOMEM);
3033
3034         /*
3035          * Processes that did not create the mapping will have no
3036          * reserves as indicated by the region/reserve map. Check
3037          * that the allocation will not exceed the subpool limit.
3038          * Allocations for MAP_NORESERVE mappings also need to be
3039          * checked against any subpool limit.
3040          */
3041         if (map_chg || avoid_reserve) {
3042                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3043                 if (gbl_chg < 0) {
3044                         vma_end_reservation(h, vma, addr);
3045                         return ERR_PTR(-ENOSPC);
3046                 }
3047
3048                 /*
3049                  * Even though there was no reservation in the region/reserve
3050                  * map, there could be reservations associated with the
3051                  * subpool that can be used.  This would be indicated if the
3052                  * return value of hugepage_subpool_get_pages() is zero.
3053                  * However, if avoid_reserve is specified we still avoid even
3054                  * the subpool reservations.
3055                  */
3056                 if (avoid_reserve)
3057                         gbl_chg = 1;
3058         }
3059
3060         /* If this allocation is not consuming a reservation, charge it now.
3061          */
3062         deferred_reserve = map_chg || avoid_reserve;
3063         if (deferred_reserve) {
3064                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3065                         idx, pages_per_huge_page(h), &h_cg);
3066                 if (ret)
3067                         goto out_subpool_put;
3068         }
3069
3070         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3071         if (ret)
3072                 goto out_uncharge_cgroup_reservation;
3073
3074         spin_lock_irq(&hugetlb_lock);
3075         /*
3076          * glb_chg is passed to indicate whether or not a page must be taken
3077          * from the global free pool (global change).  gbl_chg == 0 indicates
3078          * a reservation exists for the allocation.
3079          */
3080         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3081         if (!page) {
3082                 spin_unlock_irq(&hugetlb_lock);
3083                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3084                 if (!page)
3085                         goto out_uncharge_cgroup;
3086                 spin_lock_irq(&hugetlb_lock);
3087                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3088                         SetHPageRestoreReserve(page);
3089                         h->resv_huge_pages--;
3090                 }
3091                 list_add(&page->lru, &h->hugepage_activelist);
3092                 set_page_refcounted(page);
3093                 /* Fall through */
3094         }
3095         folio = page_folio(page);
3096         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3097         /* If allocation is not consuming a reservation, also store the
3098          * hugetlb_cgroup pointer on the page.
3099          */
3100         if (deferred_reserve) {
3101                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3102                                                   h_cg, page);
3103         }
3104
3105         spin_unlock_irq(&hugetlb_lock);
3106
3107         hugetlb_set_page_subpool(page, spool);
3108
3109         map_commit = vma_commit_reservation(h, vma, addr);
3110         if (unlikely(map_chg > map_commit)) {
3111                 /*
3112                  * The page was added to the reservation map between
3113                  * vma_needs_reservation and vma_commit_reservation.
3114                  * This indicates a race with hugetlb_reserve_pages.
3115                  * Adjust for the subpool count incremented above AND
3116                  * in hugetlb_reserve_pages for the same page.  Also,
3117                  * the reservation count added in hugetlb_reserve_pages
3118                  * no longer applies.
3119                  */
3120                 long rsv_adjust;
3121
3122                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3123                 hugetlb_acct_memory(h, -rsv_adjust);
3124                 if (deferred_reserve)
3125                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3126                                         pages_per_huge_page(h), folio);
3127         }
3128         return page;
3129
3130 out_uncharge_cgroup:
3131         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3132 out_uncharge_cgroup_reservation:
3133         if (deferred_reserve)
3134                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3135                                                     h_cg);
3136 out_subpool_put:
3137         if (map_chg || avoid_reserve)
3138                 hugepage_subpool_put_pages(spool, 1);
3139         vma_end_reservation(h, vma, addr);
3140         return ERR_PTR(-ENOSPC);
3141 }
3142
3143 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3144         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3145 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3146 {
3147         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3148         int nr_nodes, node;
3149
3150         /* do node specific alloc */
3151         if (nid != NUMA_NO_NODE) {
3152                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3153                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3154                 if (!m)
3155                         return 0;
3156                 goto found;
3157         }
3158         /* allocate from next node when distributing huge pages */
3159         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3160                 m = memblock_alloc_try_nid_raw(
3161                                 huge_page_size(h), huge_page_size(h),
3162                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3163                 /*
3164                  * Use the beginning of the huge page to store the
3165                  * huge_bootmem_page struct (until gather_bootmem
3166                  * puts them into the mem_map).
3167                  */
3168                 if (!m)
3169                         return 0;
3170                 goto found;
3171         }
3172
3173 found:
3174         /* Put them into a private list first because mem_map is not up yet */
3175         INIT_LIST_HEAD(&m->list);
3176         list_add(&m->list, &huge_boot_pages);
3177         m->hstate = h;
3178         return 1;
3179 }
3180
3181 /*
3182  * Put bootmem huge pages into the standard lists after mem_map is up.
3183  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3184  */
3185 static void __init gather_bootmem_prealloc(void)
3186 {
3187         struct huge_bootmem_page *m;
3188
3189         list_for_each_entry(m, &huge_boot_pages, list) {
3190                 struct page *page = virt_to_page(m);
3191                 struct folio *folio = page_folio(page);
3192                 struct hstate *h = m->hstate;
3193
3194                 VM_BUG_ON(!hstate_is_gigantic(h));
3195                 WARN_ON(folio_ref_count(folio) != 1);
3196                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3197                         WARN_ON(folio_test_reserved(folio));
3198                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3199                         free_huge_page(page); /* add to the hugepage allocator */
3200                 } else {
3201                         /* VERY unlikely inflated ref count on a tail page */
3202                         free_gigantic_folio(folio, huge_page_order(h));
3203                 }
3204
3205                 /*
3206                  * We need to restore the 'stolen' pages to totalram_pages
3207                  * in order to fix confusing memory reports from free(1) and
3208                  * other side-effects, like CommitLimit going negative.
3209                  */
3210                 adjust_managed_page_count(page, pages_per_huge_page(h));
3211                 cond_resched();
3212         }
3213 }
3214 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3215 {
3216         unsigned long i;
3217         char buf[32];
3218
3219         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3220                 if (hstate_is_gigantic(h)) {
3221                         if (!alloc_bootmem_huge_page(h, nid))
3222                                 break;
3223                 } else {
3224                         struct folio *folio;
3225                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3226
3227                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3228                                         &node_states[N_MEMORY], NULL);
3229                         if (!folio)
3230                                 break;
3231                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
3232                 }
3233                 cond_resched();
3234         }
3235         if (i == h->max_huge_pages_node[nid])
3236                 return;
3237
3238         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3239         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3240                 h->max_huge_pages_node[nid], buf, nid, i);
3241         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3242         h->max_huge_pages_node[nid] = i;
3243 }
3244
3245 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3246 {
3247         unsigned long i;
3248         nodemask_t *node_alloc_noretry;
3249         bool node_specific_alloc = false;
3250
3251         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3252         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3253                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3254                 return;
3255         }
3256
3257         /* do node specific alloc */
3258         for_each_online_node(i) {
3259                 if (h->max_huge_pages_node[i] > 0) {
3260                         hugetlb_hstate_alloc_pages_onenode(h, i);
3261                         node_specific_alloc = true;
3262                 }
3263         }
3264
3265         if (node_specific_alloc)
3266                 return;
3267
3268         /* below will do all node balanced alloc */
3269         if (!hstate_is_gigantic(h)) {
3270                 /*
3271                  * Bit mask controlling how hard we retry per-node allocations.
3272                  * Ignore errors as lower level routines can deal with
3273                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3274                  * time, we are likely in bigger trouble.
3275                  */
3276                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3277                                                 GFP_KERNEL);
3278         } else {
3279                 /* allocations done at boot time */
3280                 node_alloc_noretry = NULL;
3281         }
3282
3283         /* bit mask controlling how hard we retry per-node allocations */
3284         if (node_alloc_noretry)
3285                 nodes_clear(*node_alloc_noretry);
3286
3287         for (i = 0; i < h->max_huge_pages; ++i) {
3288                 if (hstate_is_gigantic(h)) {
3289                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3290                                 break;
3291                 } else if (!alloc_pool_huge_page(h,
3292                                          &node_states[N_MEMORY],
3293                                          node_alloc_noretry))
3294                         break;
3295                 cond_resched();
3296         }
3297         if (i < h->max_huge_pages) {
3298                 char buf[32];
3299
3300                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3301                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3302                         h->max_huge_pages, buf, i);
3303                 h->max_huge_pages = i;
3304         }
3305         kfree(node_alloc_noretry);
3306 }
3307
3308 static void __init hugetlb_init_hstates(void)
3309 {
3310         struct hstate *h, *h2;
3311
3312         for_each_hstate(h) {
3313                 /* oversize hugepages were init'ed in early boot */
3314                 if (!hstate_is_gigantic(h))
3315                         hugetlb_hstate_alloc_pages(h);
3316
3317                 /*
3318                  * Set demote order for each hstate.  Note that
3319                  * h->demote_order is initially 0.
3320                  * - We can not demote gigantic pages if runtime freeing
3321                  *   is not supported, so skip this.
3322                  * - If CMA allocation is possible, we can not demote
3323                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3324                  */
3325                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3326                         continue;
3327                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3328                         continue;
3329                 for_each_hstate(h2) {
3330                         if (h2 == h)
3331                                 continue;
3332                         if (h2->order < h->order &&
3333                             h2->order > h->demote_order)
3334                                 h->demote_order = h2->order;
3335                 }
3336         }
3337 }
3338
3339 static void __init report_hugepages(void)
3340 {
3341         struct hstate *h;
3342
3343         for_each_hstate(h) {
3344                 char buf[32];
3345
3346                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3347                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3348                         buf, h->free_huge_pages);
3349                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3350                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3351         }
3352 }
3353
3354 #ifdef CONFIG_HIGHMEM
3355 static void try_to_free_low(struct hstate *h, unsigned long count,
3356                                                 nodemask_t *nodes_allowed)
3357 {
3358         int i;
3359         LIST_HEAD(page_list);
3360
3361         lockdep_assert_held(&hugetlb_lock);
3362         if (hstate_is_gigantic(h))
3363                 return;
3364
3365         /*
3366          * Collect pages to be freed on a list, and free after dropping lock
3367          */
3368         for_each_node_mask(i, *nodes_allowed) {
3369                 struct page *page, *next;
3370                 struct list_head *freel = &h->hugepage_freelists[i];
3371                 list_for_each_entry_safe(page, next, freel, lru) {
3372                         if (count >= h->nr_huge_pages)
3373                                 goto out;
3374                         if (PageHighMem(page))
3375                                 continue;
3376                         remove_hugetlb_folio(h, page_folio(page), false);
3377                         list_add(&page->lru, &page_list);
3378                 }
3379         }
3380
3381 out:
3382         spin_unlock_irq(&hugetlb_lock);
3383         update_and_free_pages_bulk(h, &page_list);
3384         spin_lock_irq(&hugetlb_lock);
3385 }
3386 #else
3387 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3388                                                 nodemask_t *nodes_allowed)
3389 {
3390 }
3391 #endif
3392
3393 /*
3394  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3395  * balanced by operating on them in a round-robin fashion.
3396  * Returns 1 if an adjustment was made.
3397  */
3398 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3399                                 int delta)
3400 {
3401         int nr_nodes, node;
3402
3403         lockdep_assert_held(&hugetlb_lock);
3404         VM_BUG_ON(delta != -1 && delta != 1);
3405
3406         if (delta < 0) {
3407                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3408                         if (h->surplus_huge_pages_node[node])
3409                                 goto found;
3410                 }
3411         } else {
3412                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3413                         if (h->surplus_huge_pages_node[node] <
3414                                         h->nr_huge_pages_node[node])
3415                                 goto found;
3416                 }
3417         }
3418         return 0;
3419
3420 found:
3421         h->surplus_huge_pages += delta;
3422         h->surplus_huge_pages_node[node] += delta;
3423         return 1;
3424 }
3425
3426 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3427 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3428                               nodemask_t *nodes_allowed)
3429 {
3430         unsigned long min_count, ret;
3431         struct page *page;
3432         LIST_HEAD(page_list);
3433         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3434
3435         /*
3436          * Bit mask controlling how hard we retry per-node allocations.
3437          * If we can not allocate the bit mask, do not attempt to allocate
3438          * the requested huge pages.
3439          */
3440         if (node_alloc_noretry)
3441                 nodes_clear(*node_alloc_noretry);
3442         else
3443                 return -ENOMEM;
3444
3445         /*
3446          * resize_lock mutex prevents concurrent adjustments to number of
3447          * pages in hstate via the proc/sysfs interfaces.
3448          */
3449         mutex_lock(&h->resize_lock);
3450         flush_free_hpage_work(h);
3451         spin_lock_irq(&hugetlb_lock);
3452
3453         /*
3454          * Check for a node specific request.
3455          * Changing node specific huge page count may require a corresponding
3456          * change to the global count.  In any case, the passed node mask
3457          * (nodes_allowed) will restrict alloc/free to the specified node.
3458          */
3459         if (nid != NUMA_NO_NODE) {
3460                 unsigned long old_count = count;
3461
3462                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3463                 /*
3464                  * User may have specified a large count value which caused the
3465                  * above calculation to overflow.  In this case, they wanted
3466                  * to allocate as many huge pages as possible.  Set count to
3467                  * largest possible value to align with their intention.
3468                  */
3469                 if (count < old_count)
3470                         count = ULONG_MAX;
3471         }
3472
3473         /*
3474          * Gigantic pages runtime allocation depend on the capability for large
3475          * page range allocation.
3476          * If the system does not provide this feature, return an error when
3477          * the user tries to allocate gigantic pages but let the user free the
3478          * boottime allocated gigantic pages.
3479          */
3480         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3481                 if (count > persistent_huge_pages(h)) {
3482                         spin_unlock_irq(&hugetlb_lock);
3483                         mutex_unlock(&h->resize_lock);
3484                         NODEMASK_FREE(node_alloc_noretry);
3485                         return -EINVAL;
3486                 }
3487                 /* Fall through to decrease pool */
3488         }
3489
3490         /*
3491          * Increase the pool size
3492          * First take pages out of surplus state.  Then make up the
3493          * remaining difference by allocating fresh huge pages.
3494          *
3495          * We might race with alloc_surplus_huge_page() here and be unable
3496          * to convert a surplus huge page to a normal huge page. That is
3497          * not critical, though, it just means the overall size of the
3498          * pool might be one hugepage larger than it needs to be, but
3499          * within all the constraints specified by the sysctls.
3500          */
3501         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3502                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3503                         break;
3504         }
3505
3506         while (count > persistent_huge_pages(h)) {
3507                 /*
3508                  * If this allocation races such that we no longer need the
3509                  * page, free_huge_page will handle it by freeing the page
3510                  * and reducing the surplus.
3511                  */
3512                 spin_unlock_irq(&hugetlb_lock);
3513
3514                 /* yield cpu to avoid soft lockup */
3515                 cond_resched();
3516
3517                 ret = alloc_pool_huge_page(h, nodes_allowed,
3518                                                 node_alloc_noretry);
3519                 spin_lock_irq(&hugetlb_lock);
3520                 if (!ret)
3521                         goto out;
3522
3523                 /* Bail for signals. Probably ctrl-c from user */
3524                 if (signal_pending(current))
3525                         goto out;
3526         }
3527
3528         /*
3529          * Decrease the pool size
3530          * First return free pages to the buddy allocator (being careful
3531          * to keep enough around to satisfy reservations).  Then place
3532          * pages into surplus state as needed so the pool will shrink
3533          * to the desired size as pages become free.
3534          *
3535          * By placing pages into the surplus state independent of the
3536          * overcommit value, we are allowing the surplus pool size to
3537          * exceed overcommit. There are few sane options here. Since
3538          * alloc_surplus_huge_page() is checking the global counter,
3539          * though, we'll note that we're not allowed to exceed surplus
3540          * and won't grow the pool anywhere else. Not until one of the
3541          * sysctls are changed, or the surplus pages go out of use.
3542          */
3543         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3544         min_count = max(count, min_count);
3545         try_to_free_low(h, min_count, nodes_allowed);
3546
3547         /*
3548          * Collect pages to be removed on list without dropping lock
3549          */
3550         while (min_count < persistent_huge_pages(h)) {
3551                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3552                 if (!page)
3553                         break;
3554
3555                 list_add(&page->lru, &page_list);
3556         }
3557         /* free the pages after dropping lock */
3558         spin_unlock_irq(&hugetlb_lock);
3559         update_and_free_pages_bulk(h, &page_list);
3560         flush_free_hpage_work(h);
3561         spin_lock_irq(&hugetlb_lock);
3562
3563         while (count < persistent_huge_pages(h)) {
3564                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3565                         break;
3566         }
3567 out:
3568         h->max_huge_pages = persistent_huge_pages(h);
3569         spin_unlock_irq(&hugetlb_lock);
3570         mutex_unlock(&h->resize_lock);
3571
3572         NODEMASK_FREE(node_alloc_noretry);
3573
3574         return 0;
3575 }
3576
3577 static int demote_free_huge_page(struct hstate *h, struct page *page)
3578 {
3579         int i, nid = page_to_nid(page);
3580         struct hstate *target_hstate;
3581         struct folio *folio = page_folio(page);
3582         struct page *subpage;
3583         int rc = 0;
3584
3585         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3586
3587         remove_hugetlb_folio_for_demote(h, folio, false);
3588         spin_unlock_irq(&hugetlb_lock);
3589
3590         rc = hugetlb_vmemmap_restore(h, page);
3591         if (rc) {
3592                 /* Allocation of vmemmmap failed, we can not demote page */
3593                 spin_lock_irq(&hugetlb_lock);
3594                 set_page_refcounted(page);
3595                 add_hugetlb_folio(h, page_folio(page), false);
3596                 return rc;
3597         }
3598
3599         /*
3600          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3601          * sizes as it will not ref count pages.
3602          */
3603         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3604
3605         /*
3606          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3607          * Without the mutex, pages added to target hstate could be marked
3608          * as surplus.
3609          *
3610          * Note that we already hold h->resize_lock.  To prevent deadlock,
3611          * use the convention of always taking larger size hstate mutex first.
3612          */
3613         mutex_lock(&target_hstate->resize_lock);
3614         for (i = 0; i < pages_per_huge_page(h);
3615                                 i += pages_per_huge_page(target_hstate)) {
3616                 subpage = nth_page(page, i);
3617                 folio = page_folio(subpage);
3618                 if (hstate_is_gigantic(target_hstate))
3619                         prep_compound_gigantic_folio_for_demote(folio,
3620                                                         target_hstate->order);
3621                 else
3622                         prep_compound_page(subpage, target_hstate->order);
3623                 set_page_private(subpage, 0);
3624                 prep_new_hugetlb_folio(target_hstate, folio, nid);
3625                 free_huge_page(subpage);
3626         }
3627         mutex_unlock(&target_hstate->resize_lock);
3628
3629         spin_lock_irq(&hugetlb_lock);
3630
3631         /*
3632          * Not absolutely necessary, but for consistency update max_huge_pages
3633          * based on pool changes for the demoted page.
3634          */
3635         h->max_huge_pages--;
3636         target_hstate->max_huge_pages +=
3637                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3638
3639         return rc;
3640 }
3641
3642 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3643         __must_hold(&hugetlb_lock)
3644 {
3645         int nr_nodes, node;
3646         struct page *page;
3647
3648         lockdep_assert_held(&hugetlb_lock);
3649
3650         /* We should never get here if no demote order */
3651         if (!h->demote_order) {
3652                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3653                 return -EINVAL;         /* internal error */
3654         }
3655
3656         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3657                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3658                         if (PageHWPoison(page))
3659                                 continue;
3660
3661                         return demote_free_huge_page(h, page);
3662                 }
3663         }
3664
3665         /*
3666          * Only way to get here is if all pages on free lists are poisoned.
3667          * Return -EBUSY so that caller will not retry.
3668          */
3669         return -EBUSY;
3670 }
3671
3672 #define HSTATE_ATTR_RO(_name) \
3673         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3674
3675 #define HSTATE_ATTR_WO(_name) \
3676         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3677
3678 #define HSTATE_ATTR(_name) \
3679         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3680
3681 static struct kobject *hugepages_kobj;
3682 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3683
3684 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3685
3686 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3687 {
3688         int i;
3689
3690         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3691                 if (hstate_kobjs[i] == kobj) {
3692                         if (nidp)
3693                                 *nidp = NUMA_NO_NODE;
3694                         return &hstates[i];
3695                 }
3696
3697         return kobj_to_node_hstate(kobj, nidp);
3698 }
3699
3700 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3701                                         struct kobj_attribute *attr, char *buf)
3702 {
3703         struct hstate *h;
3704         unsigned long nr_huge_pages;
3705         int nid;
3706
3707         h = kobj_to_hstate(kobj, &nid);
3708         if (nid == NUMA_NO_NODE)
3709                 nr_huge_pages = h->nr_huge_pages;
3710         else
3711                 nr_huge_pages = h->nr_huge_pages_node[nid];
3712
3713         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3714 }
3715
3716 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3717                                            struct hstate *h, int nid,
3718                                            unsigned long count, size_t len)
3719 {
3720         int err;
3721         nodemask_t nodes_allowed, *n_mask;
3722
3723         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3724                 return -EINVAL;
3725
3726         if (nid == NUMA_NO_NODE) {
3727                 /*
3728                  * global hstate attribute
3729                  */
3730                 if (!(obey_mempolicy &&
3731                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3732                         n_mask = &node_states[N_MEMORY];
3733                 else
3734                         n_mask = &nodes_allowed;
3735         } else {
3736                 /*
3737                  * Node specific request.  count adjustment happens in
3738                  * set_max_huge_pages() after acquiring hugetlb_lock.
3739                  */
3740                 init_nodemask_of_node(&nodes_allowed, nid);
3741                 n_mask = &nodes_allowed;
3742         }
3743
3744         err = set_max_huge_pages(h, count, nid, n_mask);
3745
3746         return err ? err : len;
3747 }
3748
3749 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3750                                          struct kobject *kobj, const char *buf,
3751                                          size_t len)
3752 {
3753         struct hstate *h;
3754         unsigned long count;
3755         int nid;
3756         int err;
3757
3758         err = kstrtoul(buf, 10, &count);
3759         if (err)
3760                 return err;
3761
3762         h = kobj_to_hstate(kobj, &nid);
3763         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3764 }
3765
3766 static ssize_t nr_hugepages_show(struct kobject *kobj,
3767                                        struct kobj_attribute *attr, char *buf)
3768 {
3769         return nr_hugepages_show_common(kobj, attr, buf);
3770 }
3771
3772 static ssize_t nr_hugepages_store(struct kobject *kobj,
3773                struct kobj_attribute *attr, const char *buf, size_t len)
3774 {
3775         return nr_hugepages_store_common(false, kobj, buf, len);
3776 }
3777 HSTATE_ATTR(nr_hugepages);
3778
3779 #ifdef CONFIG_NUMA
3780
3781 /*
3782  * hstate attribute for optionally mempolicy-based constraint on persistent
3783  * huge page alloc/free.
3784  */
3785 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3786                                            struct kobj_attribute *attr,
3787                                            char *buf)
3788 {
3789         return nr_hugepages_show_common(kobj, attr, buf);
3790 }
3791
3792 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3793                struct kobj_attribute *attr, const char *buf, size_t len)
3794 {
3795         return nr_hugepages_store_common(true, kobj, buf, len);
3796 }
3797 HSTATE_ATTR(nr_hugepages_mempolicy);
3798 #endif
3799
3800
3801 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3802                                         struct kobj_attribute *attr, char *buf)
3803 {
3804         struct hstate *h = kobj_to_hstate(kobj, NULL);
3805         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3806 }
3807
3808 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3809                 struct kobj_attribute *attr, const char *buf, size_t count)
3810 {
3811         int err;
3812         unsigned long input;
3813         struct hstate *h = kobj_to_hstate(kobj, NULL);
3814
3815         if (hstate_is_gigantic(h))
3816                 return -EINVAL;
3817
3818         err = kstrtoul(buf, 10, &input);
3819         if (err)
3820                 return err;
3821
3822         spin_lock_irq(&hugetlb_lock);
3823         h->nr_overcommit_huge_pages = input;
3824         spin_unlock_irq(&hugetlb_lock);
3825
3826         return count;
3827 }
3828 HSTATE_ATTR(nr_overcommit_hugepages);
3829
3830 static ssize_t free_hugepages_show(struct kobject *kobj,
3831                                         struct kobj_attribute *attr, char *buf)
3832 {
3833         struct hstate *h;
3834         unsigned long free_huge_pages;
3835         int nid;
3836
3837         h = kobj_to_hstate(kobj, &nid);
3838         if (nid == NUMA_NO_NODE)
3839                 free_huge_pages = h->free_huge_pages;
3840         else
3841                 free_huge_pages = h->free_huge_pages_node[nid];
3842
3843         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3844 }
3845 HSTATE_ATTR_RO(free_hugepages);
3846
3847 static ssize_t resv_hugepages_show(struct kobject *kobj,
3848                                         struct kobj_attribute *attr, char *buf)
3849 {
3850         struct hstate *h = kobj_to_hstate(kobj, NULL);
3851         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3852 }
3853 HSTATE_ATTR_RO(resv_hugepages);
3854
3855 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3856                                         struct kobj_attribute *attr, char *buf)
3857 {
3858         struct hstate *h;
3859         unsigned long surplus_huge_pages;
3860         int nid;
3861
3862         h = kobj_to_hstate(kobj, &nid);
3863         if (nid == NUMA_NO_NODE)
3864                 surplus_huge_pages = h->surplus_huge_pages;
3865         else
3866                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3867
3868         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3869 }
3870 HSTATE_ATTR_RO(surplus_hugepages);
3871
3872 static ssize_t demote_store(struct kobject *kobj,
3873                struct kobj_attribute *attr, const char *buf, size_t len)
3874 {
3875         unsigned long nr_demote;
3876         unsigned long nr_available;
3877         nodemask_t nodes_allowed, *n_mask;
3878         struct hstate *h;
3879         int err;
3880         int nid;
3881
3882         err = kstrtoul(buf, 10, &nr_demote);
3883         if (err)
3884                 return err;
3885         h = kobj_to_hstate(kobj, &nid);
3886
3887         if (nid != NUMA_NO_NODE) {
3888                 init_nodemask_of_node(&nodes_allowed, nid);
3889                 n_mask = &nodes_allowed;
3890         } else {
3891                 n_mask = &node_states[N_MEMORY];
3892         }
3893
3894         /* Synchronize with other sysfs operations modifying huge pages */
3895         mutex_lock(&h->resize_lock);
3896         spin_lock_irq(&hugetlb_lock);
3897
3898         while (nr_demote) {
3899                 /*
3900                  * Check for available pages to demote each time thorough the
3901                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3902                  */
3903                 if (nid != NUMA_NO_NODE)
3904                         nr_available = h->free_huge_pages_node[nid];
3905                 else
3906                         nr_available = h->free_huge_pages;
3907                 nr_available -= h->resv_huge_pages;
3908                 if (!nr_available)
3909                         break;
3910
3911                 err = demote_pool_huge_page(h, n_mask);
3912                 if (err)
3913                         break;
3914
3915                 nr_demote--;
3916         }
3917
3918         spin_unlock_irq(&hugetlb_lock);
3919         mutex_unlock(&h->resize_lock);
3920
3921         if (err)
3922                 return err;
3923         return len;
3924 }
3925 HSTATE_ATTR_WO(demote);
3926
3927 static ssize_t demote_size_show(struct kobject *kobj,
3928                                         struct kobj_attribute *attr, char *buf)
3929 {
3930         struct hstate *h = kobj_to_hstate(kobj, NULL);
3931         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3932
3933         return sysfs_emit(buf, "%lukB\n", demote_size);
3934 }
3935
3936 static ssize_t demote_size_store(struct kobject *kobj,
3937                                         struct kobj_attribute *attr,
3938                                         const char *buf, size_t count)
3939 {
3940         struct hstate *h, *demote_hstate;
3941         unsigned long demote_size;
3942         unsigned int demote_order;
3943
3944         demote_size = (unsigned long)memparse(buf, NULL);
3945
3946         demote_hstate = size_to_hstate(demote_size);
3947         if (!demote_hstate)
3948                 return -EINVAL;
3949         demote_order = demote_hstate->order;
3950         if (demote_order < HUGETLB_PAGE_ORDER)
3951                 return -EINVAL;
3952
3953         /* demote order must be smaller than hstate order */
3954         h = kobj_to_hstate(kobj, NULL);
3955         if (demote_order >= h->order)
3956                 return -EINVAL;
3957
3958         /* resize_lock synchronizes access to demote size and writes */
3959         mutex_lock(&h->resize_lock);
3960         h->demote_order = demote_order;
3961         mutex_unlock(&h->resize_lock);
3962
3963         return count;
3964 }
3965 HSTATE_ATTR(demote_size);
3966
3967 static struct attribute *hstate_attrs[] = {
3968         &nr_hugepages_attr.attr,
3969         &nr_overcommit_hugepages_attr.attr,
3970         &free_hugepages_attr.attr,
3971         &resv_hugepages_attr.attr,
3972         &surplus_hugepages_attr.attr,
3973 #ifdef CONFIG_NUMA
3974         &nr_hugepages_mempolicy_attr.attr,
3975 #endif
3976         NULL,
3977 };
3978
3979 static const struct attribute_group hstate_attr_group = {
3980         .attrs = hstate_attrs,
3981 };
3982
3983 static struct attribute *hstate_demote_attrs[] = {
3984         &demote_size_attr.attr,
3985         &demote_attr.attr,
3986         NULL,
3987 };
3988
3989 static const struct attribute_group hstate_demote_attr_group = {
3990         .attrs = hstate_demote_attrs,
3991 };
3992
3993 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3994                                     struct kobject **hstate_kobjs,
3995                                     const struct attribute_group *hstate_attr_group)
3996 {
3997         int retval;
3998         int hi = hstate_index(h);
3999
4000         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4001         if (!hstate_kobjs[hi])
4002                 return -ENOMEM;
4003
4004         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4005         if (retval) {
4006                 kobject_put(hstate_kobjs[hi]);
4007                 hstate_kobjs[hi] = NULL;
4008                 return retval;
4009         }
4010
4011         if (h->demote_order) {
4012                 retval = sysfs_create_group(hstate_kobjs[hi],
4013                                             &hstate_demote_attr_group);
4014                 if (retval) {
4015                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4016                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4017                         kobject_put(hstate_kobjs[hi]);
4018                         hstate_kobjs[hi] = NULL;
4019                         return retval;
4020                 }
4021         }
4022
4023         return 0;
4024 }
4025
4026 #ifdef CONFIG_NUMA
4027 static bool hugetlb_sysfs_initialized __ro_after_init;
4028
4029 /*
4030  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4031  * with node devices in node_devices[] using a parallel array.  The array
4032  * index of a node device or _hstate == node id.
4033  * This is here to avoid any static dependency of the node device driver, in
4034  * the base kernel, on the hugetlb module.
4035  */
4036 struct node_hstate {
4037         struct kobject          *hugepages_kobj;
4038         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4039 };
4040 static struct node_hstate node_hstates[MAX_NUMNODES];
4041
4042 /*
4043  * A subset of global hstate attributes for node devices
4044  */
4045 static struct attribute *per_node_hstate_attrs[] = {
4046         &nr_hugepages_attr.attr,
4047         &free_hugepages_attr.attr,
4048         &surplus_hugepages_attr.attr,
4049         NULL,
4050 };
4051
4052 static const struct attribute_group per_node_hstate_attr_group = {
4053         .attrs = per_node_hstate_attrs,
4054 };
4055
4056 /*
4057  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4058  * Returns node id via non-NULL nidp.
4059  */
4060 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4061 {
4062         int nid;
4063
4064         for (nid = 0; nid < nr_node_ids; nid++) {
4065                 struct node_hstate *nhs = &node_hstates[nid];
4066                 int i;
4067                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4068                         if (nhs->hstate_kobjs[i] == kobj) {
4069                                 if (nidp)
4070                                         *nidp = nid;
4071                                 return &hstates[i];
4072                         }
4073         }
4074
4075         BUG();
4076         return NULL;
4077 }
4078
4079 /*
4080  * Unregister hstate attributes from a single node device.
4081  * No-op if no hstate attributes attached.
4082  */
4083 void hugetlb_unregister_node(struct node *node)
4084 {
4085         struct hstate *h;
4086         struct node_hstate *nhs = &node_hstates[node->dev.id];
4087
4088         if (!nhs->hugepages_kobj)
4089                 return;         /* no hstate attributes */
4090
4091         for_each_hstate(h) {
4092                 int idx = hstate_index(h);
4093                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4094
4095                 if (!hstate_kobj)
4096                         continue;
4097                 if (h->demote_order)
4098                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4099                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4100                 kobject_put(hstate_kobj);
4101                 nhs->hstate_kobjs[idx] = NULL;
4102         }
4103
4104         kobject_put(nhs->hugepages_kobj);
4105         nhs->hugepages_kobj = NULL;
4106 }
4107
4108
4109 /*
4110  * Register hstate attributes for a single node device.
4111  * No-op if attributes already registered.
4112  */
4113 void hugetlb_register_node(struct node *node)
4114 {
4115         struct hstate *h;
4116         struct node_hstate *nhs = &node_hstates[node->dev.id];
4117         int err;
4118
4119         if (!hugetlb_sysfs_initialized)
4120                 return;
4121
4122         if (nhs->hugepages_kobj)
4123                 return;         /* already allocated */
4124
4125         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4126                                                         &node->dev.kobj);
4127         if (!nhs->hugepages_kobj)
4128                 return;
4129
4130         for_each_hstate(h) {
4131                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4132                                                 nhs->hstate_kobjs,
4133                                                 &per_node_hstate_attr_group);
4134                 if (err) {
4135                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4136                                 h->name, node->dev.id);
4137                         hugetlb_unregister_node(node);
4138                         break;
4139                 }
4140         }
4141 }
4142
4143 /*
4144  * hugetlb init time:  register hstate attributes for all registered node
4145  * devices of nodes that have memory.  All on-line nodes should have
4146  * registered their associated device by this time.
4147  */
4148 static void __init hugetlb_register_all_nodes(void)
4149 {
4150         int nid;
4151
4152         for_each_online_node(nid)
4153                 hugetlb_register_node(node_devices[nid]);
4154 }
4155 #else   /* !CONFIG_NUMA */
4156
4157 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4158 {
4159         BUG();
4160         if (nidp)
4161                 *nidp = -1;
4162         return NULL;
4163 }
4164
4165 static void hugetlb_register_all_nodes(void) { }
4166
4167 #endif
4168
4169 #ifdef CONFIG_CMA
4170 static void __init hugetlb_cma_check(void);
4171 #else
4172 static inline __init void hugetlb_cma_check(void)
4173 {
4174 }
4175 #endif
4176
4177 static void __init hugetlb_sysfs_init(void)
4178 {
4179         struct hstate *h;
4180         int err;
4181
4182         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4183         if (!hugepages_kobj)
4184                 return;
4185
4186         for_each_hstate(h) {
4187                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4188                                          hstate_kobjs, &hstate_attr_group);
4189                 if (err)
4190                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4191         }
4192
4193 #ifdef CONFIG_NUMA
4194         hugetlb_sysfs_initialized = true;
4195 #endif
4196         hugetlb_register_all_nodes();
4197 }
4198
4199 static int __init hugetlb_init(void)
4200 {
4201         int i;
4202
4203         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4204                         __NR_HPAGEFLAGS);
4205
4206         if (!hugepages_supported()) {
4207                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4208                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4209                 return 0;
4210         }
4211
4212         /*
4213          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4214          * architectures depend on setup being done here.
4215          */
4216         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4217         if (!parsed_default_hugepagesz) {
4218                 /*
4219                  * If we did not parse a default huge page size, set
4220                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4221                  * number of huge pages for this default size was implicitly
4222                  * specified, set that here as well.
4223                  * Note that the implicit setting will overwrite an explicit
4224                  * setting.  A warning will be printed in this case.
4225                  */
4226                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4227                 if (default_hstate_max_huge_pages) {
4228                         if (default_hstate.max_huge_pages) {
4229                                 char buf[32];
4230
4231                                 string_get_size(huge_page_size(&default_hstate),
4232                                         1, STRING_UNITS_2, buf, 32);
4233                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4234                                         default_hstate.max_huge_pages, buf);
4235                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4236                                         default_hstate_max_huge_pages);
4237                         }
4238                         default_hstate.max_huge_pages =
4239                                 default_hstate_max_huge_pages;
4240
4241                         for_each_online_node(i)
4242                                 default_hstate.max_huge_pages_node[i] =
4243                                         default_hugepages_in_node[i];
4244                 }
4245         }
4246
4247         hugetlb_cma_check();
4248         hugetlb_init_hstates();
4249         gather_bootmem_prealloc();
4250         report_hugepages();
4251
4252         hugetlb_sysfs_init();
4253         hugetlb_cgroup_file_init();
4254
4255 #ifdef CONFIG_SMP
4256         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4257 #else
4258         num_fault_mutexes = 1;
4259 #endif
4260         hugetlb_fault_mutex_table =
4261                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4262                               GFP_KERNEL);
4263         BUG_ON(!hugetlb_fault_mutex_table);
4264
4265         for (i = 0; i < num_fault_mutexes; i++)
4266                 mutex_init(&hugetlb_fault_mutex_table[i]);
4267         return 0;
4268 }
4269 subsys_initcall(hugetlb_init);
4270
4271 /* Overwritten by architectures with more huge page sizes */
4272 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4273 {
4274         return size == HPAGE_SIZE;
4275 }
4276
4277 void __init hugetlb_add_hstate(unsigned int order)
4278 {
4279         struct hstate *h;
4280         unsigned long i;
4281
4282         if (size_to_hstate(PAGE_SIZE << order)) {
4283                 return;
4284         }
4285         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4286         BUG_ON(order == 0);
4287         h = &hstates[hugetlb_max_hstate++];
4288         mutex_init(&h->resize_lock);
4289         h->order = order;
4290         h->mask = ~(huge_page_size(h) - 1);
4291         for (i = 0; i < MAX_NUMNODES; ++i)
4292                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4293         INIT_LIST_HEAD(&h->hugepage_activelist);
4294         h->next_nid_to_alloc = first_memory_node;
4295         h->next_nid_to_free = first_memory_node;
4296         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4297                                         huge_page_size(h)/SZ_1K);
4298
4299         parsed_hstate = h;
4300 }
4301
4302 bool __init __weak hugetlb_node_alloc_supported(void)
4303 {
4304         return true;
4305 }
4306
4307 static void __init hugepages_clear_pages_in_node(void)
4308 {
4309         if (!hugetlb_max_hstate) {
4310                 default_hstate_max_huge_pages = 0;
4311                 memset(default_hugepages_in_node, 0,
4312                         sizeof(default_hugepages_in_node));
4313         } else {
4314                 parsed_hstate->max_huge_pages = 0;
4315                 memset(parsed_hstate->max_huge_pages_node, 0,
4316                         sizeof(parsed_hstate->max_huge_pages_node));
4317         }
4318 }
4319
4320 /*
4321  * hugepages command line processing
4322  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4323  * specification.  If not, ignore the hugepages value.  hugepages can also
4324  * be the first huge page command line  option in which case it implicitly
4325  * specifies the number of huge pages for the default size.
4326  */
4327 static int __init hugepages_setup(char *s)
4328 {
4329         unsigned long *mhp;
4330         static unsigned long *last_mhp;
4331         int node = NUMA_NO_NODE;
4332         int count;
4333         unsigned long tmp;
4334         char *p = s;
4335
4336         if (!parsed_valid_hugepagesz) {
4337                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4338                 parsed_valid_hugepagesz = true;
4339                 return 1;
4340         }
4341
4342         /*
4343          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4344          * yet, so this hugepages= parameter goes to the "default hstate".
4345          * Otherwise, it goes with the previously parsed hugepagesz or
4346          * default_hugepagesz.
4347          */
4348         else if (!hugetlb_max_hstate)
4349                 mhp = &default_hstate_max_huge_pages;
4350         else
4351                 mhp = &parsed_hstate->max_huge_pages;
4352
4353         if (mhp == last_mhp) {
4354                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4355                 return 1;
4356         }
4357
4358         while (*p) {
4359                 count = 0;
4360                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4361                         goto invalid;
4362                 /* Parameter is node format */
4363                 if (p[count] == ':') {
4364                         if (!hugetlb_node_alloc_supported()) {
4365                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4366                                 return 1;
4367                         }
4368                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4369                                 goto invalid;
4370                         node = array_index_nospec(tmp, MAX_NUMNODES);
4371                         p += count + 1;
4372                         /* Parse hugepages */
4373                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4374                                 goto invalid;
4375                         if (!hugetlb_max_hstate)
4376                                 default_hugepages_in_node[node] = tmp;
4377                         else
4378                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4379                         *mhp += tmp;
4380                         /* Go to parse next node*/
4381                         if (p[count] == ',')
4382                                 p += count + 1;
4383                         else
4384                                 break;
4385                 } else {
4386                         if (p != s)
4387                                 goto invalid;
4388                         *mhp = tmp;
4389                         break;
4390                 }
4391         }
4392
4393         /*
4394          * Global state is always initialized later in hugetlb_init.
4395          * But we need to allocate gigantic hstates here early to still
4396          * use the bootmem allocator.
4397          */
4398         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4399                 hugetlb_hstate_alloc_pages(parsed_hstate);
4400
4401         last_mhp = mhp;
4402
4403         return 1;
4404
4405 invalid:
4406         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4407         hugepages_clear_pages_in_node();
4408         return 1;
4409 }
4410 __setup("hugepages=", hugepages_setup);
4411
4412 /*
4413  * hugepagesz command line processing
4414  * A specific huge page size can only be specified once with hugepagesz.
4415  * hugepagesz is followed by hugepages on the command line.  The global
4416  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4417  * hugepagesz argument was valid.
4418  */
4419 static int __init hugepagesz_setup(char *s)
4420 {
4421         unsigned long size;
4422         struct hstate *h;
4423
4424         parsed_valid_hugepagesz = false;
4425         size = (unsigned long)memparse(s, NULL);
4426
4427         if (!arch_hugetlb_valid_size(size)) {
4428                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4429                 return 1;
4430         }
4431
4432         h = size_to_hstate(size);
4433         if (h) {
4434                 /*
4435                  * hstate for this size already exists.  This is normally
4436                  * an error, but is allowed if the existing hstate is the
4437                  * default hstate.  More specifically, it is only allowed if
4438                  * the number of huge pages for the default hstate was not
4439                  * previously specified.
4440                  */
4441                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4442                     default_hstate.max_huge_pages) {
4443                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4444                         return 1;
4445                 }
4446
4447                 /*
4448                  * No need to call hugetlb_add_hstate() as hstate already
4449                  * exists.  But, do set parsed_hstate so that a following
4450                  * hugepages= parameter will be applied to this hstate.
4451                  */
4452                 parsed_hstate = h;
4453                 parsed_valid_hugepagesz = true;
4454                 return 1;
4455         }
4456
4457         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4458         parsed_valid_hugepagesz = true;
4459         return 1;
4460 }
4461 __setup("hugepagesz=", hugepagesz_setup);
4462
4463 /*
4464  * default_hugepagesz command line input
4465  * Only one instance of default_hugepagesz allowed on command line.
4466  */
4467 static int __init default_hugepagesz_setup(char *s)
4468 {
4469         unsigned long size;
4470         int i;
4471
4472         parsed_valid_hugepagesz = false;
4473         if (parsed_default_hugepagesz) {
4474                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4475                 return 1;
4476         }
4477
4478         size = (unsigned long)memparse(s, NULL);
4479
4480         if (!arch_hugetlb_valid_size(size)) {
4481                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4482                 return 1;
4483         }
4484
4485         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4486         parsed_valid_hugepagesz = true;
4487         parsed_default_hugepagesz = true;
4488         default_hstate_idx = hstate_index(size_to_hstate(size));
4489
4490         /*
4491          * The number of default huge pages (for this size) could have been
4492          * specified as the first hugetlb parameter: hugepages=X.  If so,
4493          * then default_hstate_max_huge_pages is set.  If the default huge
4494          * page size is gigantic (>= MAX_ORDER), then the pages must be
4495          * allocated here from bootmem allocator.
4496          */
4497         if (default_hstate_max_huge_pages) {
4498                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4499                 for_each_online_node(i)
4500                         default_hstate.max_huge_pages_node[i] =
4501                                 default_hugepages_in_node[i];
4502                 if (hstate_is_gigantic(&default_hstate))
4503                         hugetlb_hstate_alloc_pages(&default_hstate);
4504                 default_hstate_max_huge_pages = 0;
4505         }
4506
4507         return 1;
4508 }
4509 __setup("default_hugepagesz=", default_hugepagesz_setup);
4510
4511 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4512 {
4513 #ifdef CONFIG_NUMA
4514         struct mempolicy *mpol = get_task_policy(current);
4515
4516         /*
4517          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4518          * (from policy_nodemask) specifically for hugetlb case
4519          */
4520         if (mpol->mode == MPOL_BIND &&
4521                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4522                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4523                 return &mpol->nodes;
4524 #endif
4525         return NULL;
4526 }
4527
4528 static unsigned int allowed_mems_nr(struct hstate *h)
4529 {
4530         int node;
4531         unsigned int nr = 0;
4532         nodemask_t *mbind_nodemask;
4533         unsigned int *array = h->free_huge_pages_node;
4534         gfp_t gfp_mask = htlb_alloc_mask(h);
4535
4536         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4537         for_each_node_mask(node, cpuset_current_mems_allowed) {
4538                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4539                         nr += array[node];
4540         }
4541
4542         return nr;
4543 }
4544
4545 #ifdef CONFIG_SYSCTL
4546 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4547                                           void *buffer, size_t *length,
4548                                           loff_t *ppos, unsigned long *out)
4549 {
4550         struct ctl_table dup_table;
4551
4552         /*
4553          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4554          * can duplicate the @table and alter the duplicate of it.
4555          */
4556         dup_table = *table;
4557         dup_table.data = out;
4558
4559         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4560 }
4561
4562 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4563                          struct ctl_table *table, int write,
4564                          void *buffer, size_t *length, loff_t *ppos)
4565 {
4566         struct hstate *h = &default_hstate;
4567         unsigned long tmp = h->max_huge_pages;
4568         int ret;
4569
4570         if (!hugepages_supported())
4571                 return -EOPNOTSUPP;
4572
4573         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4574                                              &tmp);
4575         if (ret)
4576                 goto out;
4577
4578         if (write)
4579                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4580                                                   NUMA_NO_NODE, tmp, *length);
4581 out:
4582         return ret;
4583 }
4584
4585 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4586                           void *buffer, size_t *length, loff_t *ppos)
4587 {
4588
4589         return hugetlb_sysctl_handler_common(false, table, write,
4590                                                         buffer, length, ppos);
4591 }
4592
4593 #ifdef CONFIG_NUMA
4594 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4595                           void *buffer, size_t *length, loff_t *ppos)
4596 {
4597         return hugetlb_sysctl_handler_common(true, table, write,
4598                                                         buffer, length, ppos);
4599 }
4600 #endif /* CONFIG_NUMA */
4601
4602 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4603                 void *buffer, size_t *length, loff_t *ppos)
4604 {
4605         struct hstate *h = &default_hstate;
4606         unsigned long tmp;
4607         int ret;
4608
4609         if (!hugepages_supported())
4610                 return -EOPNOTSUPP;
4611
4612         tmp = h->nr_overcommit_huge_pages;
4613
4614         if (write && hstate_is_gigantic(h))
4615                 return -EINVAL;
4616
4617         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4618                                              &tmp);
4619         if (ret)
4620                 goto out;
4621
4622         if (write) {
4623                 spin_lock_irq(&hugetlb_lock);
4624                 h->nr_overcommit_huge_pages = tmp;
4625                 spin_unlock_irq(&hugetlb_lock);
4626         }
4627 out:
4628         return ret;
4629 }
4630
4631 #endif /* CONFIG_SYSCTL */
4632
4633 void hugetlb_report_meminfo(struct seq_file *m)
4634 {
4635         struct hstate *h;
4636         unsigned long total = 0;
4637
4638         if (!hugepages_supported())
4639                 return;
4640
4641         for_each_hstate(h) {
4642                 unsigned long count = h->nr_huge_pages;
4643
4644                 total += huge_page_size(h) * count;
4645
4646                 if (h == &default_hstate)
4647                         seq_printf(m,
4648                                    "HugePages_Total:   %5lu\n"
4649                                    "HugePages_Free:    %5lu\n"
4650                                    "HugePages_Rsvd:    %5lu\n"
4651                                    "HugePages_Surp:    %5lu\n"
4652                                    "Hugepagesize:   %8lu kB\n",
4653                                    count,
4654                                    h->free_huge_pages,
4655                                    h->resv_huge_pages,
4656                                    h->surplus_huge_pages,
4657                                    huge_page_size(h) / SZ_1K);
4658         }
4659
4660         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4661 }
4662
4663 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4664 {
4665         struct hstate *h = &default_hstate;
4666
4667         if (!hugepages_supported())
4668                 return 0;
4669
4670         return sysfs_emit_at(buf, len,
4671                              "Node %d HugePages_Total: %5u\n"
4672                              "Node %d HugePages_Free:  %5u\n"
4673                              "Node %d HugePages_Surp:  %5u\n",
4674                              nid, h->nr_huge_pages_node[nid],
4675                              nid, h->free_huge_pages_node[nid],
4676                              nid, h->surplus_huge_pages_node[nid]);
4677 }
4678
4679 void hugetlb_show_meminfo_node(int nid)
4680 {
4681         struct hstate *h;
4682
4683         if (!hugepages_supported())
4684                 return;
4685
4686         for_each_hstate(h)
4687                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4688                         nid,
4689                         h->nr_huge_pages_node[nid],
4690                         h->free_huge_pages_node[nid],
4691                         h->surplus_huge_pages_node[nid],
4692                         huge_page_size(h) / SZ_1K);
4693 }
4694
4695 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4696 {
4697         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4698                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4699 }
4700
4701 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4702 unsigned long hugetlb_total_pages(void)
4703 {
4704         struct hstate *h;
4705         unsigned long nr_total_pages = 0;
4706
4707         for_each_hstate(h)
4708                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4709         return nr_total_pages;
4710 }
4711
4712 static int hugetlb_acct_memory(struct hstate *h, long delta)
4713 {
4714         int ret = -ENOMEM;
4715
4716         if (!delta)
4717                 return 0;
4718
4719         spin_lock_irq(&hugetlb_lock);
4720         /*
4721          * When cpuset is configured, it breaks the strict hugetlb page
4722          * reservation as the accounting is done on a global variable. Such
4723          * reservation is completely rubbish in the presence of cpuset because
4724          * the reservation is not checked against page availability for the
4725          * current cpuset. Application can still potentially OOM'ed by kernel
4726          * with lack of free htlb page in cpuset that the task is in.
4727          * Attempt to enforce strict accounting with cpuset is almost
4728          * impossible (or too ugly) because cpuset is too fluid that
4729          * task or memory node can be dynamically moved between cpusets.
4730          *
4731          * The change of semantics for shared hugetlb mapping with cpuset is
4732          * undesirable. However, in order to preserve some of the semantics,
4733          * we fall back to check against current free page availability as
4734          * a best attempt and hopefully to minimize the impact of changing
4735          * semantics that cpuset has.
4736          *
4737          * Apart from cpuset, we also have memory policy mechanism that
4738          * also determines from which node the kernel will allocate memory
4739          * in a NUMA system. So similar to cpuset, we also should consider
4740          * the memory policy of the current task. Similar to the description
4741          * above.
4742          */
4743         if (delta > 0) {
4744                 if (gather_surplus_pages(h, delta) < 0)
4745                         goto out;
4746
4747                 if (delta > allowed_mems_nr(h)) {
4748                         return_unused_surplus_pages(h, delta);
4749                         goto out;
4750                 }
4751         }
4752
4753         ret = 0;
4754         if (delta < 0)
4755                 return_unused_surplus_pages(h, (unsigned long) -delta);
4756
4757 out:
4758         spin_unlock_irq(&hugetlb_lock);
4759         return ret;
4760 }
4761
4762 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4763 {
4764         struct resv_map *resv = vma_resv_map(vma);
4765
4766         /*
4767          * HPAGE_RESV_OWNER indicates a private mapping.
4768          * This new VMA should share its siblings reservation map if present.
4769          * The VMA will only ever have a valid reservation map pointer where
4770          * it is being copied for another still existing VMA.  As that VMA
4771          * has a reference to the reservation map it cannot disappear until
4772          * after this open call completes.  It is therefore safe to take a
4773          * new reference here without additional locking.
4774          */
4775         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4776                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4777                 kref_get(&resv->refs);
4778         }
4779
4780         /*
4781          * vma_lock structure for sharable mappings is vma specific.
4782          * Clear old pointer (if copied via vm_area_dup) and allocate
4783          * new structure.  Before clearing, make sure vma_lock is not
4784          * for this vma.
4785          */
4786         if (vma->vm_flags & VM_MAYSHARE) {
4787                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4788
4789                 if (vma_lock) {
4790                         if (vma_lock->vma != vma) {
4791                                 vma->vm_private_data = NULL;
4792                                 hugetlb_vma_lock_alloc(vma);
4793                         } else
4794                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4795                 } else
4796                         hugetlb_vma_lock_alloc(vma);
4797         }
4798 }
4799
4800 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4801 {
4802         struct hstate *h = hstate_vma(vma);
4803         struct resv_map *resv;
4804         struct hugepage_subpool *spool = subpool_vma(vma);
4805         unsigned long reserve, start, end;
4806         long gbl_reserve;
4807
4808         hugetlb_vma_lock_free(vma);
4809
4810         resv = vma_resv_map(vma);
4811         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4812                 return;
4813
4814         start = vma_hugecache_offset(h, vma, vma->vm_start);
4815         end = vma_hugecache_offset(h, vma, vma->vm_end);
4816
4817         reserve = (end - start) - region_count(resv, start, end);
4818         hugetlb_cgroup_uncharge_counter(resv, start, end);
4819         if (reserve) {
4820                 /*
4821                  * Decrement reserve counts.  The global reserve count may be
4822                  * adjusted if the subpool has a minimum size.
4823                  */
4824                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4825                 hugetlb_acct_memory(h, -gbl_reserve);
4826         }
4827
4828         kref_put(&resv->refs, resv_map_release);
4829 }
4830
4831 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4832 {
4833         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4834                 return -EINVAL;
4835
4836         /*
4837          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4838          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4839          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4840          */
4841         if (addr & ~PUD_MASK) {
4842                 /*
4843                  * hugetlb_vm_op_split is called right before we attempt to
4844                  * split the VMA. We will need to unshare PMDs in the old and
4845                  * new VMAs, so let's unshare before we split.
4846                  */
4847                 unsigned long floor = addr & PUD_MASK;
4848                 unsigned long ceil = floor + PUD_SIZE;
4849
4850                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4851                         hugetlb_unshare_pmds(vma, floor, ceil);
4852         }
4853
4854         return 0;
4855 }
4856
4857 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4858 {
4859         return huge_page_size(hstate_vma(vma));
4860 }
4861
4862 /*
4863  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4864  * handle_mm_fault() to try to instantiate regular-sized pages in the
4865  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4866  * this far.
4867  */
4868 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4869 {
4870         BUG();
4871         return 0;
4872 }
4873
4874 /*
4875  * When a new function is introduced to vm_operations_struct and added
4876  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4877  * This is because under System V memory model, mappings created via
4878  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4879  * their original vm_ops are overwritten with shm_vm_ops.
4880  */
4881 const struct vm_operations_struct hugetlb_vm_ops = {
4882         .fault = hugetlb_vm_op_fault,
4883         .open = hugetlb_vm_op_open,
4884         .close = hugetlb_vm_op_close,
4885         .may_split = hugetlb_vm_op_split,
4886         .pagesize = hugetlb_vm_op_pagesize,
4887 };
4888
4889 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4890                                 int writable)
4891 {
4892         pte_t entry;
4893         unsigned int shift = huge_page_shift(hstate_vma(vma));
4894
4895         if (writable) {
4896                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4897                                          vma->vm_page_prot)));
4898         } else {
4899                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4900                                            vma->vm_page_prot));
4901         }
4902         entry = pte_mkyoung(entry);
4903         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4904
4905         return entry;
4906 }
4907
4908 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4909                                    unsigned long address, pte_t *ptep)
4910 {
4911         pte_t entry;
4912
4913         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4914         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4915                 update_mmu_cache(vma, address, ptep);
4916 }
4917
4918 bool is_hugetlb_entry_migration(pte_t pte)
4919 {
4920         swp_entry_t swp;
4921
4922         if (huge_pte_none(pte) || pte_present(pte))
4923                 return false;
4924         swp = pte_to_swp_entry(pte);
4925         if (is_migration_entry(swp))
4926                 return true;
4927         else
4928                 return false;
4929 }
4930
4931 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4932 {
4933         swp_entry_t swp;
4934
4935         if (huge_pte_none(pte) || pte_present(pte))
4936                 return false;
4937         swp = pte_to_swp_entry(pte);
4938         if (is_hwpoison_entry(swp))
4939                 return true;
4940         else
4941                 return false;
4942 }
4943
4944 static void
4945 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4946                      struct page *new_page)
4947 {
4948         __SetPageUptodate(new_page);
4949         hugepage_add_new_anon_rmap(new_page, vma, addr);
4950         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4951         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4952         SetHPageMigratable(new_page);
4953 }
4954
4955 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4956                             struct vm_area_struct *dst_vma,
4957                             struct vm_area_struct *src_vma)
4958 {
4959         pte_t *src_pte, *dst_pte, entry;
4960         struct page *ptepage;
4961         unsigned long addr;
4962         bool cow = is_cow_mapping(src_vma->vm_flags);
4963         struct hstate *h = hstate_vma(src_vma);
4964         unsigned long sz = huge_page_size(h);
4965         unsigned long npages = pages_per_huge_page(h);
4966         struct mmu_notifier_range range;
4967         unsigned long last_addr_mask;
4968         int ret = 0;
4969
4970         if (cow) {
4971                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
4972                                         src_vma->vm_start,
4973                                         src_vma->vm_end);
4974                 mmu_notifier_invalidate_range_start(&range);
4975                 mmap_assert_write_locked(src);
4976                 raw_write_seqcount_begin(&src->write_protect_seq);
4977         } else {
4978                 /*
4979                  * For shared mappings the vma lock must be held before
4980                  * calling hugetlb_walk() in the src vma. Otherwise, the
4981                  * returned ptep could go away if part of a shared pmd and
4982                  * another thread calls huge_pmd_unshare.
4983                  */
4984                 hugetlb_vma_lock_read(src_vma);
4985         }
4986
4987         last_addr_mask = hugetlb_mask_last_page(h);
4988         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4989                 spinlock_t *src_ptl, *dst_ptl;
4990                 src_pte = hugetlb_walk(src_vma, addr, sz);
4991                 if (!src_pte) {
4992                         addr |= last_addr_mask;
4993                         continue;
4994                 }
4995                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4996                 if (!dst_pte) {
4997                         ret = -ENOMEM;
4998                         break;
4999                 }
5000
5001                 /*
5002                  * If the pagetables are shared don't copy or take references.
5003                  *
5004                  * dst_pte == src_pte is the common case of src/dest sharing.
5005                  * However, src could have 'unshared' and dst shares with
5006                  * another vma. So page_count of ptep page is checked instead
5007                  * to reliably determine whether pte is shared.
5008                  */
5009                 if (page_count(virt_to_page(dst_pte)) > 1) {
5010                         addr |= last_addr_mask;
5011                         continue;
5012                 }
5013
5014                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5015                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5016                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5017                 entry = huge_ptep_get(src_pte);
5018 again:
5019                 if (huge_pte_none(entry)) {
5020                         /*
5021                          * Skip if src entry none.
5022                          */
5023                         ;
5024                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5025                         bool uffd_wp = huge_pte_uffd_wp(entry);
5026
5027                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5028                                 entry = huge_pte_clear_uffd_wp(entry);
5029                         set_huge_pte_at(dst, addr, dst_pte, entry);
5030                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5031                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5032                         bool uffd_wp = huge_pte_uffd_wp(entry);
5033
5034                         if (!is_readable_migration_entry(swp_entry) && cow) {
5035                                 /*
5036                                  * COW mappings require pages in both
5037                                  * parent and child to be set to read.
5038                                  */
5039                                 swp_entry = make_readable_migration_entry(
5040                                                         swp_offset(swp_entry));
5041                                 entry = swp_entry_to_pte(swp_entry);
5042                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5043                                         entry = huge_pte_mkuffd_wp(entry);
5044                                 set_huge_pte_at(src, addr, src_pte, entry);
5045                         }
5046                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5047                                 entry = huge_pte_clear_uffd_wp(entry);
5048                         set_huge_pte_at(dst, addr, dst_pte, entry);
5049                 } else if (unlikely(is_pte_marker(entry))) {
5050                         /* No swap on hugetlb */
5051                         WARN_ON_ONCE(
5052                             is_swapin_error_entry(pte_to_swp_entry(entry)));
5053                         /*
5054                          * We copy the pte marker only if the dst vma has
5055                          * uffd-wp enabled.
5056                          */
5057                         if (userfaultfd_wp(dst_vma))
5058                                 set_huge_pte_at(dst, addr, dst_pte, entry);
5059                 } else {
5060                         entry = huge_ptep_get(src_pte);
5061                         ptepage = pte_page(entry);
5062                         get_page(ptepage);
5063
5064                         /*
5065                          * Failing to duplicate the anon rmap is a rare case
5066                          * where we see pinned hugetlb pages while they're
5067                          * prone to COW. We need to do the COW earlier during
5068                          * fork.
5069                          *
5070                          * When pre-allocating the page or copying data, we
5071                          * need to be without the pgtable locks since we could
5072                          * sleep during the process.
5073                          */
5074                         if (!PageAnon(ptepage)) {
5075                                 page_dup_file_rmap(ptepage, true);
5076                         } else if (page_try_dup_anon_rmap(ptepage, true,
5077                                                           src_vma)) {
5078                                 pte_t src_pte_old = entry;
5079                                 struct page *new;
5080
5081                                 spin_unlock(src_ptl);
5082                                 spin_unlock(dst_ptl);
5083                                 /* Do not use reserve as it's private owned */
5084                                 new = alloc_huge_page(dst_vma, addr, 1);
5085                                 if (IS_ERR(new)) {
5086                                         put_page(ptepage);
5087                                         ret = PTR_ERR(new);
5088                                         break;
5089                                 }
5090                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
5091                                                     npages);
5092                                 put_page(ptepage);
5093
5094                                 /* Install the new huge page if src pte stable */
5095                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5096                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5097                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5098                                 entry = huge_ptep_get(src_pte);
5099                                 if (!pte_same(src_pte_old, entry)) {
5100                                         restore_reserve_on_error(h, dst_vma, addr,
5101                                                                 new);
5102                                         put_page(new);
5103                                         /* huge_ptep of dst_pte won't change as in child */
5104                                         goto again;
5105                                 }
5106                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
5107                                 spin_unlock(src_ptl);
5108                                 spin_unlock(dst_ptl);
5109                                 continue;
5110                         }
5111
5112                         if (cow) {
5113                                 /*
5114                                  * No need to notify as we are downgrading page
5115                                  * table protection not changing it to point
5116                                  * to a new page.
5117                                  *
5118                                  * See Documentation/mm/mmu_notifier.rst
5119                                  */
5120                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5121                                 entry = huge_pte_wrprotect(entry);
5122                         }
5123
5124                         set_huge_pte_at(dst, addr, dst_pte, entry);
5125                         hugetlb_count_add(npages, dst);
5126                 }
5127                 spin_unlock(src_ptl);
5128                 spin_unlock(dst_ptl);
5129         }
5130
5131         if (cow) {
5132                 raw_write_seqcount_end(&src->write_protect_seq);
5133                 mmu_notifier_invalidate_range_end(&range);
5134         } else {
5135                 hugetlb_vma_unlock_read(src_vma);
5136         }
5137
5138         return ret;
5139 }
5140
5141 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5142                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5143 {
5144         struct hstate *h = hstate_vma(vma);
5145         struct mm_struct *mm = vma->vm_mm;
5146         spinlock_t *src_ptl, *dst_ptl;
5147         pte_t pte;
5148
5149         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5150         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5151
5152         /*
5153          * We don't have to worry about the ordering of src and dst ptlocks
5154          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5155          */
5156         if (src_ptl != dst_ptl)
5157                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5158
5159         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5160         set_huge_pte_at(mm, new_addr, dst_pte, pte);
5161
5162         if (src_ptl != dst_ptl)
5163                 spin_unlock(src_ptl);
5164         spin_unlock(dst_ptl);
5165 }
5166
5167 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5168                              struct vm_area_struct *new_vma,
5169                              unsigned long old_addr, unsigned long new_addr,
5170                              unsigned long len)
5171 {
5172         struct hstate *h = hstate_vma(vma);
5173         struct address_space *mapping = vma->vm_file->f_mapping;
5174         unsigned long sz = huge_page_size(h);
5175         struct mm_struct *mm = vma->vm_mm;
5176         unsigned long old_end = old_addr + len;
5177         unsigned long last_addr_mask;
5178         pte_t *src_pte, *dst_pte;
5179         struct mmu_notifier_range range;
5180         bool shared_pmd = false;
5181
5182         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5183                                 old_end);
5184         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5185         /*
5186          * In case of shared PMDs, we should cover the maximum possible
5187          * range.
5188          */
5189         flush_cache_range(vma, range.start, range.end);
5190
5191         mmu_notifier_invalidate_range_start(&range);
5192         last_addr_mask = hugetlb_mask_last_page(h);
5193         /* Prevent race with file truncation */
5194         hugetlb_vma_lock_write(vma);
5195         i_mmap_lock_write(mapping);
5196         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5197                 src_pte = hugetlb_walk(vma, old_addr, sz);
5198                 if (!src_pte) {
5199                         old_addr |= last_addr_mask;
5200                         new_addr |= last_addr_mask;
5201                         continue;
5202                 }
5203                 if (huge_pte_none(huge_ptep_get(src_pte)))
5204                         continue;
5205
5206                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5207                         shared_pmd = true;
5208                         old_addr |= last_addr_mask;
5209                         new_addr |= last_addr_mask;
5210                         continue;
5211                 }
5212
5213                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5214                 if (!dst_pte)
5215                         break;
5216
5217                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5218         }
5219
5220         if (shared_pmd)
5221                 flush_tlb_range(vma, range.start, range.end);
5222         else
5223                 flush_tlb_range(vma, old_end - len, old_end);
5224         mmu_notifier_invalidate_range_end(&range);
5225         i_mmap_unlock_write(mapping);
5226         hugetlb_vma_unlock_write(vma);
5227
5228         return len + old_addr - old_end;
5229 }
5230
5231 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5232                                    unsigned long start, unsigned long end,
5233                                    struct page *ref_page, zap_flags_t zap_flags)
5234 {
5235         struct mm_struct *mm = vma->vm_mm;
5236         unsigned long address;
5237         pte_t *ptep;
5238         pte_t pte;
5239         spinlock_t *ptl;
5240         struct page *page;
5241         struct hstate *h = hstate_vma(vma);
5242         unsigned long sz = huge_page_size(h);
5243         unsigned long last_addr_mask;
5244         bool force_flush = false;
5245
5246         WARN_ON(!is_vm_hugetlb_page(vma));
5247         BUG_ON(start & ~huge_page_mask(h));
5248         BUG_ON(end & ~huge_page_mask(h));
5249
5250         /*
5251          * This is a hugetlb vma, all the pte entries should point
5252          * to huge page.
5253          */
5254         tlb_change_page_size(tlb, sz);
5255         tlb_start_vma(tlb, vma);
5256
5257         last_addr_mask = hugetlb_mask_last_page(h);
5258         address = start;
5259         for (; address < end; address += sz) {
5260                 ptep = hugetlb_walk(vma, address, sz);
5261                 if (!ptep) {
5262                         address |= last_addr_mask;
5263                         continue;
5264                 }
5265
5266                 ptl = huge_pte_lock(h, mm, ptep);
5267                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5268                         spin_unlock(ptl);
5269                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5270                         force_flush = true;
5271                         address |= last_addr_mask;
5272                         continue;
5273                 }
5274
5275                 pte = huge_ptep_get(ptep);
5276                 if (huge_pte_none(pte)) {
5277                         spin_unlock(ptl);
5278                         continue;
5279                 }
5280
5281                 /*
5282                  * Migrating hugepage or HWPoisoned hugepage is already
5283                  * unmapped and its refcount is dropped, so just clear pte here.
5284                  */
5285                 if (unlikely(!pte_present(pte))) {
5286                         /*
5287                          * If the pte was wr-protected by uffd-wp in any of the
5288                          * swap forms, meanwhile the caller does not want to
5289                          * drop the uffd-wp bit in this zap, then replace the
5290                          * pte with a marker.
5291                          */
5292                         if (pte_swp_uffd_wp_any(pte) &&
5293                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5294                                 set_huge_pte_at(mm, address, ptep,
5295                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5296                         else
5297                                 huge_pte_clear(mm, address, ptep, sz);
5298                         spin_unlock(ptl);
5299                         continue;
5300                 }
5301
5302                 page = pte_page(pte);
5303                 /*
5304                  * If a reference page is supplied, it is because a specific
5305                  * page is being unmapped, not a range. Ensure the page we
5306                  * are about to unmap is the actual page of interest.
5307                  */
5308                 if (ref_page) {
5309                         if (page != ref_page) {
5310                                 spin_unlock(ptl);
5311                                 continue;
5312                         }
5313                         /*
5314                          * Mark the VMA as having unmapped its page so that
5315                          * future faults in this VMA will fail rather than
5316                          * looking like data was lost
5317                          */
5318                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5319                 }
5320
5321                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5322                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5323                 if (huge_pte_dirty(pte))
5324                         set_page_dirty(page);
5325                 /* Leave a uffd-wp pte marker if needed */
5326                 if (huge_pte_uffd_wp(pte) &&
5327                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5328                         set_huge_pte_at(mm, address, ptep,
5329                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5330                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5331                 page_remove_rmap(page, vma, true);
5332
5333                 spin_unlock(ptl);
5334                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5335                 /*
5336                  * Bail out after unmapping reference page if supplied
5337                  */
5338                 if (ref_page)
5339                         break;
5340         }
5341         tlb_end_vma(tlb, vma);
5342
5343         /*
5344          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5345          * could defer the flush until now, since by holding i_mmap_rwsem we
5346          * guaranteed that the last refernece would not be dropped. But we must
5347          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5348          * dropped and the last reference to the shared PMDs page might be
5349          * dropped as well.
5350          *
5351          * In theory we could defer the freeing of the PMD pages as well, but
5352          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5353          * detect sharing, so we cannot defer the release of the page either.
5354          * Instead, do flush now.
5355          */
5356         if (force_flush)
5357                 tlb_flush_mmu_tlbonly(tlb);
5358 }
5359
5360 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5361                           struct vm_area_struct *vma, unsigned long start,
5362                           unsigned long end, struct page *ref_page,
5363                           zap_flags_t zap_flags)
5364 {
5365         hugetlb_vma_lock_write(vma);
5366         i_mmap_lock_write(vma->vm_file->f_mapping);
5367
5368         /* mmu notification performed in caller */
5369         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5370
5371         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5372                 /*
5373                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5374                  * When the vma_lock is freed, this makes the vma ineligible
5375                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5376                  * pmd sharing.  This is important as page tables for this
5377                  * unmapped range will be asynchrously deleted.  If the page
5378                  * tables are shared, there will be issues when accessed by
5379                  * someone else.
5380                  */
5381                 __hugetlb_vma_unlock_write_free(vma);
5382                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5383         } else {
5384                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5385                 hugetlb_vma_unlock_write(vma);
5386         }
5387 }
5388
5389 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5390                           unsigned long end, struct page *ref_page,
5391                           zap_flags_t zap_flags)
5392 {
5393         struct mmu_notifier_range range;
5394         struct mmu_gather tlb;
5395
5396         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5397                                 start, end);
5398         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5399         mmu_notifier_invalidate_range_start(&range);
5400         tlb_gather_mmu(&tlb, vma->vm_mm);
5401
5402         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5403
5404         mmu_notifier_invalidate_range_end(&range);
5405         tlb_finish_mmu(&tlb);
5406 }
5407
5408 /*
5409  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5410  * mapping it owns the reserve page for. The intention is to unmap the page
5411  * from other VMAs and let the children be SIGKILLed if they are faulting the
5412  * same region.
5413  */
5414 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5415                               struct page *page, unsigned long address)
5416 {
5417         struct hstate *h = hstate_vma(vma);
5418         struct vm_area_struct *iter_vma;
5419         struct address_space *mapping;
5420         pgoff_t pgoff;
5421
5422         /*
5423          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5424          * from page cache lookup which is in HPAGE_SIZE units.
5425          */
5426         address = address & huge_page_mask(h);
5427         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5428                         vma->vm_pgoff;
5429         mapping = vma->vm_file->f_mapping;
5430
5431         /*
5432          * Take the mapping lock for the duration of the table walk. As
5433          * this mapping should be shared between all the VMAs,
5434          * __unmap_hugepage_range() is called as the lock is already held
5435          */
5436         i_mmap_lock_write(mapping);
5437         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5438                 /* Do not unmap the current VMA */
5439                 if (iter_vma == vma)
5440                         continue;
5441
5442                 /*
5443                  * Shared VMAs have their own reserves and do not affect
5444                  * MAP_PRIVATE accounting but it is possible that a shared
5445                  * VMA is using the same page so check and skip such VMAs.
5446                  */
5447                 if (iter_vma->vm_flags & VM_MAYSHARE)
5448                         continue;
5449
5450                 /*
5451                  * Unmap the page from other VMAs without their own reserves.
5452                  * They get marked to be SIGKILLed if they fault in these
5453                  * areas. This is because a future no-page fault on this VMA
5454                  * could insert a zeroed page instead of the data existing
5455                  * from the time of fork. This would look like data corruption
5456                  */
5457                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5458                         unmap_hugepage_range(iter_vma, address,
5459                                              address + huge_page_size(h), page, 0);
5460         }
5461         i_mmap_unlock_write(mapping);
5462 }
5463
5464 /*
5465  * hugetlb_wp() should be called with page lock of the original hugepage held.
5466  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5467  * cannot race with other handlers or page migration.
5468  * Keep the pte_same checks anyway to make transition from the mutex easier.
5469  */
5470 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5471                        unsigned long address, pte_t *ptep, unsigned int flags,
5472                        struct page *pagecache_page, spinlock_t *ptl)
5473 {
5474         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5475         pte_t pte;
5476         struct hstate *h = hstate_vma(vma);
5477         struct page *old_page, *new_page;
5478         int outside_reserve = 0;
5479         vm_fault_t ret = 0;
5480         unsigned long haddr = address & huge_page_mask(h);
5481         struct mmu_notifier_range range;
5482
5483         /*
5484          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5485          * PTE mapped R/O such as maybe_mkwrite() would do.
5486          */
5487         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5488                 return VM_FAULT_SIGSEGV;
5489
5490         /* Let's take out MAP_SHARED mappings first. */
5491         if (vma->vm_flags & VM_MAYSHARE) {
5492                 set_huge_ptep_writable(vma, haddr, ptep);
5493                 return 0;
5494         }
5495
5496         pte = huge_ptep_get(ptep);
5497         old_page = pte_page(pte);
5498
5499         delayacct_wpcopy_start();
5500
5501 retry_avoidcopy:
5502         /*
5503          * If no-one else is actually using this page, we're the exclusive
5504          * owner and can reuse this page.
5505          */
5506         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5507                 if (!PageAnonExclusive(old_page))
5508                         page_move_anon_rmap(old_page, vma);
5509                 if (likely(!unshare))
5510                         set_huge_ptep_writable(vma, haddr, ptep);
5511
5512                 delayacct_wpcopy_end();
5513                 return 0;
5514         }
5515         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5516                        old_page);
5517
5518         /*
5519          * If the process that created a MAP_PRIVATE mapping is about to
5520          * perform a COW due to a shared page count, attempt to satisfy
5521          * the allocation without using the existing reserves. The pagecache
5522          * page is used to determine if the reserve at this address was
5523          * consumed or not. If reserves were used, a partial faulted mapping
5524          * at the time of fork() could consume its reserves on COW instead
5525          * of the full address range.
5526          */
5527         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5528                         old_page != pagecache_page)
5529                 outside_reserve = 1;
5530
5531         get_page(old_page);
5532
5533         /*
5534          * Drop page table lock as buddy allocator may be called. It will
5535          * be acquired again before returning to the caller, as expected.
5536          */
5537         spin_unlock(ptl);
5538         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5539
5540         if (IS_ERR(new_page)) {
5541                 /*
5542                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5543                  * it is due to references held by a child and an insufficient
5544                  * huge page pool. To guarantee the original mappers
5545                  * reliability, unmap the page from child processes. The child
5546                  * may get SIGKILLed if it later faults.
5547                  */
5548                 if (outside_reserve) {
5549                         struct address_space *mapping = vma->vm_file->f_mapping;
5550                         pgoff_t idx;
5551                         u32 hash;
5552
5553                         put_page(old_page);
5554                         /*
5555                          * Drop hugetlb_fault_mutex and vma_lock before
5556                          * unmapping.  unmapping needs to hold vma_lock
5557                          * in write mode.  Dropping vma_lock in read mode
5558                          * here is OK as COW mappings do not interact with
5559                          * PMD sharing.
5560                          *
5561                          * Reacquire both after unmap operation.
5562                          */
5563                         idx = vma_hugecache_offset(h, vma, haddr);
5564                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5565                         hugetlb_vma_unlock_read(vma);
5566                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5567
5568                         unmap_ref_private(mm, vma, old_page, haddr);
5569
5570                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5571                         hugetlb_vma_lock_read(vma);
5572                         spin_lock(ptl);
5573                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5574                         if (likely(ptep &&
5575                                    pte_same(huge_ptep_get(ptep), pte)))
5576                                 goto retry_avoidcopy;
5577                         /*
5578                          * race occurs while re-acquiring page table
5579                          * lock, and our job is done.
5580                          */
5581                         delayacct_wpcopy_end();
5582                         return 0;
5583                 }
5584
5585                 ret = vmf_error(PTR_ERR(new_page));
5586                 goto out_release_old;
5587         }
5588
5589         /*
5590          * When the original hugepage is shared one, it does not have
5591          * anon_vma prepared.
5592          */
5593         if (unlikely(anon_vma_prepare(vma))) {
5594                 ret = VM_FAULT_OOM;
5595                 goto out_release_all;
5596         }
5597
5598         copy_user_huge_page(new_page, old_page, address, vma,
5599                             pages_per_huge_page(h));
5600         __SetPageUptodate(new_page);
5601
5602         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5603                                 haddr + huge_page_size(h));
5604         mmu_notifier_invalidate_range_start(&range);
5605
5606         /*
5607          * Retake the page table lock to check for racing updates
5608          * before the page tables are altered
5609          */
5610         spin_lock(ptl);
5611         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5612         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5613                 /* Break COW or unshare */
5614                 huge_ptep_clear_flush(vma, haddr, ptep);
5615                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5616                 page_remove_rmap(old_page, vma, true);
5617                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5618                 set_huge_pte_at(mm, haddr, ptep,
5619                                 make_huge_pte(vma, new_page, !unshare));
5620                 SetHPageMigratable(new_page);
5621                 /* Make the old page be freed below */
5622                 new_page = old_page;
5623         }
5624         spin_unlock(ptl);
5625         mmu_notifier_invalidate_range_end(&range);
5626 out_release_all:
5627         /*
5628          * No restore in case of successful pagetable update (Break COW or
5629          * unshare)
5630          */
5631         if (new_page != old_page)
5632                 restore_reserve_on_error(h, vma, haddr, new_page);
5633         put_page(new_page);
5634 out_release_old:
5635         put_page(old_page);
5636
5637         spin_lock(ptl); /* Caller expects lock to be held */
5638
5639         delayacct_wpcopy_end();
5640         return ret;
5641 }
5642
5643 /*
5644  * Return whether there is a pagecache page to back given address within VMA.
5645  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5646  */
5647 static bool hugetlbfs_pagecache_present(struct hstate *h,
5648                         struct vm_area_struct *vma, unsigned long address)
5649 {
5650         struct address_space *mapping;
5651         pgoff_t idx;
5652         struct page *page;
5653
5654         mapping = vma->vm_file->f_mapping;
5655         idx = vma_hugecache_offset(h, vma, address);
5656
5657         page = find_get_page(mapping, idx);
5658         if (page)
5659                 put_page(page);
5660         return page != NULL;
5661 }
5662
5663 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5664                            pgoff_t idx)
5665 {
5666         struct folio *folio = page_folio(page);
5667         struct inode *inode = mapping->host;
5668         struct hstate *h = hstate_inode(inode);
5669         int err;
5670
5671         __folio_set_locked(folio);
5672         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5673
5674         if (unlikely(err)) {
5675                 __folio_clear_locked(folio);
5676                 return err;
5677         }
5678         ClearHPageRestoreReserve(page);
5679
5680         /*
5681          * mark folio dirty so that it will not be removed from cache/file
5682          * by non-hugetlbfs specific code paths.
5683          */
5684         folio_mark_dirty(folio);
5685
5686         spin_lock(&inode->i_lock);
5687         inode->i_blocks += blocks_per_huge_page(h);
5688         spin_unlock(&inode->i_lock);
5689         return 0;
5690 }
5691
5692 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5693                                                   struct address_space *mapping,
5694                                                   pgoff_t idx,
5695                                                   unsigned int flags,
5696                                                   unsigned long haddr,
5697                                                   unsigned long addr,
5698                                                   unsigned long reason)
5699 {
5700         u32 hash;
5701         struct vm_fault vmf = {
5702                 .vma = vma,
5703                 .address = haddr,
5704                 .real_address = addr,
5705                 .flags = flags,
5706
5707                 /*
5708                  * Hard to debug if it ends up being
5709                  * used by a callee that assumes
5710                  * something about the other
5711                  * uninitialized fields... same as in
5712                  * memory.c
5713                  */
5714         };
5715
5716         /*
5717          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5718          * userfault. Also mmap_lock could be dropped due to handling
5719          * userfault, any vma operation should be careful from here.
5720          */
5721         hugetlb_vma_unlock_read(vma);
5722         hash = hugetlb_fault_mutex_hash(mapping, idx);
5723         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5724         return handle_userfault(&vmf, reason);
5725 }
5726
5727 /*
5728  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5729  * false if pte changed or is changing.
5730  */
5731 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5732                                pte_t *ptep, pte_t old_pte)
5733 {
5734         spinlock_t *ptl;
5735         bool same;
5736
5737         ptl = huge_pte_lock(h, mm, ptep);
5738         same = pte_same(huge_ptep_get(ptep), old_pte);
5739         spin_unlock(ptl);
5740
5741         return same;
5742 }
5743
5744 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5745                         struct vm_area_struct *vma,
5746                         struct address_space *mapping, pgoff_t idx,
5747                         unsigned long address, pte_t *ptep,
5748                         pte_t old_pte, unsigned int flags)
5749 {
5750         struct hstate *h = hstate_vma(vma);
5751         vm_fault_t ret = VM_FAULT_SIGBUS;
5752         int anon_rmap = 0;
5753         unsigned long size;
5754         struct page *page;
5755         pte_t new_pte;
5756         spinlock_t *ptl;
5757         unsigned long haddr = address & huge_page_mask(h);
5758         bool new_page, new_pagecache_page = false;
5759         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5760
5761         /*
5762          * Currently, we are forced to kill the process in the event the
5763          * original mapper has unmapped pages from the child due to a failed
5764          * COW/unsharing. Warn that such a situation has occurred as it may not
5765          * be obvious.
5766          */
5767         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5768                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5769                            current->pid);
5770                 goto out;
5771         }
5772
5773         /*
5774          * Use page lock to guard against racing truncation
5775          * before we get page_table_lock.
5776          */
5777         new_page = false;
5778         page = find_lock_page(mapping, idx);
5779         if (!page) {
5780                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5781                 if (idx >= size)
5782                         goto out;
5783                 /* Check for page in userfault range */
5784                 if (userfaultfd_missing(vma)) {
5785                         /*
5786                          * Since hugetlb_no_page() was examining pte
5787                          * without pgtable lock, we need to re-test under
5788                          * lock because the pte may not be stable and could
5789                          * have changed from under us.  Try to detect
5790                          * either changed or during-changing ptes and retry
5791                          * properly when needed.
5792                          *
5793                          * Note that userfaultfd is actually fine with
5794                          * false positives (e.g. caused by pte changed),
5795                          * but not wrong logical events (e.g. caused by
5796                          * reading a pte during changing).  The latter can
5797                          * confuse the userspace, so the strictness is very
5798                          * much preferred.  E.g., MISSING event should
5799                          * never happen on the page after UFFDIO_COPY has
5800                          * correctly installed the page and returned.
5801                          */
5802                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5803                                 ret = 0;
5804                                 goto out;
5805                         }
5806
5807                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5808                                                         haddr, address,
5809                                                         VM_UFFD_MISSING);
5810                 }
5811
5812                 page = alloc_huge_page(vma, haddr, 0);
5813                 if (IS_ERR(page)) {
5814                         /*
5815                          * Returning error will result in faulting task being
5816                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5817                          * tasks from racing to fault in the same page which
5818                          * could result in false unable to allocate errors.
5819                          * Page migration does not take the fault mutex, but
5820                          * does a clear then write of pte's under page table
5821                          * lock.  Page fault code could race with migration,
5822                          * notice the clear pte and try to allocate a page
5823                          * here.  Before returning error, get ptl and make
5824                          * sure there really is no pte entry.
5825                          */
5826                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5827                                 ret = vmf_error(PTR_ERR(page));
5828                         else
5829                                 ret = 0;
5830                         goto out;
5831                 }
5832                 clear_huge_page(page, address, pages_per_huge_page(h));
5833                 __SetPageUptodate(page);
5834                 new_page = true;
5835
5836                 if (vma->vm_flags & VM_MAYSHARE) {
5837                         int err = hugetlb_add_to_page_cache(page, mapping, idx);
5838                         if (err) {
5839                                 /*
5840                                  * err can't be -EEXIST which implies someone
5841                                  * else consumed the reservation since hugetlb
5842                                  * fault mutex is held when add a hugetlb page
5843                                  * to the page cache. So it's safe to call
5844                                  * restore_reserve_on_error() here.
5845                                  */
5846                                 restore_reserve_on_error(h, vma, haddr, page);
5847                                 put_page(page);
5848                                 goto out;
5849                         }
5850                         new_pagecache_page = true;
5851                 } else {
5852                         lock_page(page);
5853                         if (unlikely(anon_vma_prepare(vma))) {
5854                                 ret = VM_FAULT_OOM;
5855                                 goto backout_unlocked;
5856                         }
5857                         anon_rmap = 1;
5858                 }
5859         } else {
5860                 /*
5861                  * If memory error occurs between mmap() and fault, some process
5862                  * don't have hwpoisoned swap entry for errored virtual address.
5863                  * So we need to block hugepage fault by PG_hwpoison bit check.
5864                  */
5865                 if (unlikely(PageHWPoison(page))) {
5866                         ret = VM_FAULT_HWPOISON_LARGE |
5867                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5868                         goto backout_unlocked;
5869                 }
5870
5871                 /* Check for page in userfault range. */
5872                 if (userfaultfd_minor(vma)) {
5873                         unlock_page(page);
5874                         put_page(page);
5875                         /* See comment in userfaultfd_missing() block above */
5876                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5877                                 ret = 0;
5878                                 goto out;
5879                         }
5880                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5881                                                         haddr, address,
5882                                                         VM_UFFD_MINOR);
5883                 }
5884         }
5885
5886         /*
5887          * If we are going to COW a private mapping later, we examine the
5888          * pending reservations for this page now. This will ensure that
5889          * any allocations necessary to record that reservation occur outside
5890          * the spinlock.
5891          */
5892         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5893                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5894                         ret = VM_FAULT_OOM;
5895                         goto backout_unlocked;
5896                 }
5897                 /* Just decrements count, does not deallocate */
5898                 vma_end_reservation(h, vma, haddr);
5899         }
5900
5901         ptl = huge_pte_lock(h, mm, ptep);
5902         ret = 0;
5903         /* If pte changed from under us, retry */
5904         if (!pte_same(huge_ptep_get(ptep), old_pte))
5905                 goto backout;
5906
5907         if (anon_rmap)
5908                 hugepage_add_new_anon_rmap(page, vma, haddr);
5909         else
5910                 page_dup_file_rmap(page, true);
5911         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5912                                 && (vma->vm_flags & VM_SHARED)));
5913         /*
5914          * If this pte was previously wr-protected, keep it wr-protected even
5915          * if populated.
5916          */
5917         if (unlikely(pte_marker_uffd_wp(old_pte)))
5918                 new_pte = huge_pte_mkuffd_wp(new_pte);
5919         set_huge_pte_at(mm, haddr, ptep, new_pte);
5920
5921         hugetlb_count_add(pages_per_huge_page(h), mm);
5922         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5923                 /* Optimization, do the COW without a second fault */
5924                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5925         }
5926
5927         spin_unlock(ptl);
5928
5929         /*
5930          * Only set HPageMigratable in newly allocated pages.  Existing pages
5931          * found in the pagecache may not have HPageMigratableset if they have
5932          * been isolated for migration.
5933          */
5934         if (new_page)
5935                 SetHPageMigratable(page);
5936
5937         unlock_page(page);
5938 out:
5939         hugetlb_vma_unlock_read(vma);
5940         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5941         return ret;
5942
5943 backout:
5944         spin_unlock(ptl);
5945 backout_unlocked:
5946         if (new_page && !new_pagecache_page)
5947                 restore_reserve_on_error(h, vma, haddr, page);
5948
5949         unlock_page(page);
5950         put_page(page);
5951         goto out;
5952 }
5953
5954 #ifdef CONFIG_SMP
5955 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5956 {
5957         unsigned long key[2];
5958         u32 hash;
5959
5960         key[0] = (unsigned long) mapping;
5961         key[1] = idx;
5962
5963         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5964
5965         return hash & (num_fault_mutexes - 1);
5966 }
5967 #else
5968 /*
5969  * For uniprocessor systems we always use a single mutex, so just
5970  * return 0 and avoid the hashing overhead.
5971  */
5972 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5973 {
5974         return 0;
5975 }
5976 #endif
5977
5978 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5979                         unsigned long address, unsigned int flags)
5980 {
5981         pte_t *ptep, entry;
5982         spinlock_t *ptl;
5983         vm_fault_t ret;
5984         u32 hash;
5985         pgoff_t idx;
5986         struct page *page = NULL;
5987         struct page *pagecache_page = NULL;
5988         struct hstate *h = hstate_vma(vma);
5989         struct address_space *mapping;
5990         int need_wait_lock = 0;
5991         unsigned long haddr = address & huge_page_mask(h);
5992
5993         /*
5994          * Serialize hugepage allocation and instantiation, so that we don't
5995          * get spurious allocation failures if two CPUs race to instantiate
5996          * the same page in the page cache.
5997          */
5998         mapping = vma->vm_file->f_mapping;
5999         idx = vma_hugecache_offset(h, vma, haddr);
6000         hash = hugetlb_fault_mutex_hash(mapping, idx);
6001         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6002
6003         /*
6004          * Acquire vma lock before calling huge_pte_alloc and hold
6005          * until finished with ptep.  This prevents huge_pmd_unshare from
6006          * being called elsewhere and making the ptep no longer valid.
6007          */
6008         hugetlb_vma_lock_read(vma);
6009         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6010         if (!ptep) {
6011                 hugetlb_vma_unlock_read(vma);
6012                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6013                 return VM_FAULT_OOM;
6014         }
6015
6016         entry = huge_ptep_get(ptep);
6017         /* PTE markers should be handled the same way as none pte */
6018         if (huge_pte_none_mostly(entry))
6019                 /*
6020                  * hugetlb_no_page will drop vma lock and hugetlb fault
6021                  * mutex internally, which make us return immediately.
6022                  */
6023                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6024                                       entry, flags);
6025
6026         ret = 0;
6027
6028         /*
6029          * entry could be a migration/hwpoison entry at this point, so this
6030          * check prevents the kernel from going below assuming that we have
6031          * an active hugepage in pagecache. This goto expects the 2nd page
6032          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6033          * properly handle it.
6034          */
6035         if (!pte_present(entry)) {
6036                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6037                         /*
6038                          * Release the hugetlb fault lock now, but retain
6039                          * the vma lock, because it is needed to guard the
6040                          * huge_pte_lockptr() later in
6041                          * migration_entry_wait_huge(). The vma lock will
6042                          * be released there.
6043                          */
6044                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6045                         migration_entry_wait_huge(vma, ptep);
6046                         return 0;
6047                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6048                         ret = VM_FAULT_HWPOISON_LARGE |
6049                             VM_FAULT_SET_HINDEX(hstate_index(h));
6050                 goto out_mutex;
6051         }
6052
6053         /*
6054          * If we are going to COW/unshare the mapping later, we examine the
6055          * pending reservations for this page now. This will ensure that any
6056          * allocations necessary to record that reservation occur outside the
6057          * spinlock. Also lookup the pagecache page now as it is used to
6058          * determine if a reservation has been consumed.
6059          */
6060         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6061             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6062                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6063                         ret = VM_FAULT_OOM;
6064                         goto out_mutex;
6065                 }
6066                 /* Just decrements count, does not deallocate */
6067                 vma_end_reservation(h, vma, haddr);
6068
6069                 pagecache_page = find_lock_page(mapping, idx);
6070         }
6071
6072         ptl = huge_pte_lock(h, mm, ptep);
6073
6074         /* Check for a racing update before calling hugetlb_wp() */
6075         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6076                 goto out_ptl;
6077
6078         /* Handle userfault-wp first, before trying to lock more pages */
6079         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6080             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6081                 struct vm_fault vmf = {
6082                         .vma = vma,
6083                         .address = haddr,
6084                         .real_address = address,
6085                         .flags = flags,
6086                 };
6087
6088                 spin_unlock(ptl);
6089                 if (pagecache_page) {
6090                         unlock_page(pagecache_page);
6091                         put_page(pagecache_page);
6092                 }
6093                 hugetlb_vma_unlock_read(vma);
6094                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6095                 return handle_userfault(&vmf, VM_UFFD_WP);
6096         }
6097
6098         /*
6099          * hugetlb_wp() requires page locks of pte_page(entry) and
6100          * pagecache_page, so here we need take the former one
6101          * when page != pagecache_page or !pagecache_page.
6102          */
6103         page = pte_page(entry);
6104         if (page != pagecache_page)
6105                 if (!trylock_page(page)) {
6106                         need_wait_lock = 1;
6107                         goto out_ptl;
6108                 }
6109
6110         get_page(page);
6111
6112         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6113                 if (!huge_pte_write(entry)) {
6114                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6115                                          pagecache_page, ptl);
6116                         goto out_put_page;
6117                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6118                         entry = huge_pte_mkdirty(entry);
6119                 }
6120         }
6121         entry = pte_mkyoung(entry);
6122         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6123                                                 flags & FAULT_FLAG_WRITE))
6124                 update_mmu_cache(vma, haddr, ptep);
6125 out_put_page:
6126         if (page != pagecache_page)
6127                 unlock_page(page);
6128         put_page(page);
6129 out_ptl:
6130         spin_unlock(ptl);
6131
6132         if (pagecache_page) {
6133                 unlock_page(pagecache_page);
6134                 put_page(pagecache_page);
6135         }
6136 out_mutex:
6137         hugetlb_vma_unlock_read(vma);
6138         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6139         /*
6140          * Generally it's safe to hold refcount during waiting page lock. But
6141          * here we just wait to defer the next page fault to avoid busy loop and
6142          * the page is not used after unlocked before returning from the current
6143          * page fault. So we are safe from accessing freed page, even if we wait
6144          * here without taking refcount.
6145          */
6146         if (need_wait_lock)
6147                 wait_on_page_locked(page);
6148         return ret;
6149 }
6150
6151 #ifdef CONFIG_USERFAULTFD
6152 /*
6153  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
6154  * modifications for huge pages.
6155  */
6156 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6157                             pte_t *dst_pte,
6158                             struct vm_area_struct *dst_vma,
6159                             unsigned long dst_addr,
6160                             unsigned long src_addr,
6161                             enum mcopy_atomic_mode mode,
6162                             struct page **pagep,
6163                             bool wp_copy)
6164 {
6165         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6166         struct hstate *h = hstate_vma(dst_vma);
6167         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6168         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6169         unsigned long size;
6170         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6171         pte_t _dst_pte;
6172         spinlock_t *ptl;
6173         int ret = -ENOMEM;
6174         struct page *page;
6175         int writable;
6176         bool page_in_pagecache = false;
6177
6178         if (is_continue) {
6179                 ret = -EFAULT;
6180                 page = find_lock_page(mapping, idx);
6181                 if (!page)
6182                         goto out;
6183                 page_in_pagecache = true;
6184         } else if (!*pagep) {
6185                 /* If a page already exists, then it's UFFDIO_COPY for
6186                  * a non-missing case. Return -EEXIST.
6187                  */
6188                 if (vm_shared &&
6189                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6190                         ret = -EEXIST;
6191                         goto out;
6192                 }
6193
6194                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6195                 if (IS_ERR(page)) {
6196                         ret = -ENOMEM;
6197                         goto out;
6198                 }
6199
6200                 ret = copy_huge_page_from_user(page,
6201                                                 (const void __user *) src_addr,
6202                                                 pages_per_huge_page(h), false);
6203
6204                 /* fallback to copy_from_user outside mmap_lock */
6205                 if (unlikely(ret)) {
6206                         ret = -ENOENT;
6207                         /* Free the allocated page which may have
6208                          * consumed a reservation.
6209                          */
6210                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
6211                         put_page(page);
6212
6213                         /* Allocate a temporary page to hold the copied
6214                          * contents.
6215                          */
6216                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6217                         if (!page) {
6218                                 ret = -ENOMEM;
6219                                 goto out;
6220                         }
6221                         *pagep = page;
6222                         /* Set the outparam pagep and return to the caller to
6223                          * copy the contents outside the lock. Don't free the
6224                          * page.
6225                          */
6226                         goto out;
6227                 }
6228         } else {
6229                 if (vm_shared &&
6230                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6231                         put_page(*pagep);
6232                         ret = -EEXIST;
6233                         *pagep = NULL;
6234                         goto out;
6235                 }
6236
6237                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6238                 if (IS_ERR(page)) {
6239                         put_page(*pagep);
6240                         ret = -ENOMEM;
6241                         *pagep = NULL;
6242                         goto out;
6243                 }
6244                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6245                                     pages_per_huge_page(h));
6246                 put_page(*pagep);
6247                 *pagep = NULL;
6248         }
6249
6250         /*
6251          * The memory barrier inside __SetPageUptodate makes sure that
6252          * preceding stores to the page contents become visible before
6253          * the set_pte_at() write.
6254          */
6255         __SetPageUptodate(page);
6256
6257         /* Add shared, newly allocated pages to the page cache. */
6258         if (vm_shared && !is_continue) {
6259                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6260                 ret = -EFAULT;
6261                 if (idx >= size)
6262                         goto out_release_nounlock;
6263
6264                 /*
6265                  * Serialization between remove_inode_hugepages() and
6266                  * hugetlb_add_to_page_cache() below happens through the
6267                  * hugetlb_fault_mutex_table that here must be hold by
6268                  * the caller.
6269                  */
6270                 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6271                 if (ret)
6272                         goto out_release_nounlock;
6273                 page_in_pagecache = true;
6274         }
6275
6276         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6277
6278         ret = -EIO;
6279         if (PageHWPoison(page))
6280                 goto out_release_unlock;
6281
6282         /*
6283          * We allow to overwrite a pte marker: consider when both MISSING|WP
6284          * registered, we firstly wr-protect a none pte which has no page cache
6285          * page backing it, then access the page.
6286          */
6287         ret = -EEXIST;
6288         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6289                 goto out_release_unlock;
6290
6291         if (page_in_pagecache)
6292                 page_dup_file_rmap(page, true);
6293         else
6294                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6295
6296         /*
6297          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6298          * with wp flag set, don't set pte write bit.
6299          */
6300         if (wp_copy || (is_continue && !vm_shared))
6301                 writable = 0;
6302         else
6303                 writable = dst_vma->vm_flags & VM_WRITE;
6304
6305         _dst_pte = make_huge_pte(dst_vma, page, writable);
6306         /*
6307          * Always mark UFFDIO_COPY page dirty; note that this may not be
6308          * extremely important for hugetlbfs for now since swapping is not
6309          * supported, but we should still be clear in that this page cannot be
6310          * thrown away at will, even if write bit not set.
6311          */
6312         _dst_pte = huge_pte_mkdirty(_dst_pte);
6313         _dst_pte = pte_mkyoung(_dst_pte);
6314
6315         if (wp_copy)
6316                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6317
6318         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6319
6320         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6321
6322         /* No need to invalidate - it was non-present before */
6323         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6324
6325         spin_unlock(ptl);
6326         if (!is_continue)
6327                 SetHPageMigratable(page);
6328         if (vm_shared || is_continue)
6329                 unlock_page(page);
6330         ret = 0;
6331 out:
6332         return ret;
6333 out_release_unlock:
6334         spin_unlock(ptl);
6335         if (vm_shared || is_continue)
6336                 unlock_page(page);
6337 out_release_nounlock:
6338         if (!page_in_pagecache)
6339                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6340         put_page(page);
6341         goto out;
6342 }
6343 #endif /* CONFIG_USERFAULTFD */
6344
6345 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6346                                  int refs, struct page **pages,
6347                                  struct vm_area_struct **vmas)
6348 {
6349         int nr;
6350
6351         for (nr = 0; nr < refs; nr++) {
6352                 if (likely(pages))
6353                         pages[nr] = nth_page(page, nr);
6354                 if (vmas)
6355                         vmas[nr] = vma;
6356         }
6357 }
6358
6359 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6360                                                unsigned int flags, pte_t *pte,
6361                                                bool *unshare)
6362 {
6363         pte_t pteval = huge_ptep_get(pte);
6364
6365         *unshare = false;
6366         if (is_swap_pte(pteval))
6367                 return true;
6368         if (huge_pte_write(pteval))
6369                 return false;
6370         if (flags & FOLL_WRITE)
6371                 return true;
6372         if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6373                 *unshare = true;
6374                 return true;
6375         }
6376         return false;
6377 }
6378
6379 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6380                                 unsigned long address, unsigned int flags)
6381 {
6382         struct hstate *h = hstate_vma(vma);
6383         struct mm_struct *mm = vma->vm_mm;
6384         unsigned long haddr = address & huge_page_mask(h);
6385         struct page *page = NULL;
6386         spinlock_t *ptl;
6387         pte_t *pte, entry;
6388
6389         /*
6390          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6391          * follow_hugetlb_page().
6392          */
6393         if (WARN_ON_ONCE(flags & FOLL_PIN))
6394                 return NULL;
6395
6396         hugetlb_vma_lock_read(vma);
6397         pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6398         if (!pte)
6399                 goto out_unlock;
6400
6401         ptl = huge_pte_lock(h, mm, pte);
6402         entry = huge_ptep_get(pte);
6403         if (pte_present(entry)) {
6404                 page = pte_page(entry) +
6405                                 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6406                 /*
6407                  * Note that page may be a sub-page, and with vmemmap
6408                  * optimizations the page struct may be read only.
6409                  * try_grab_page() will increase the ref count on the
6410                  * head page, so this will be OK.
6411                  *
6412                  * try_grab_page() should always be able to get the page here,
6413                  * because we hold the ptl lock and have verified pte_present().
6414                  */
6415                 if (try_grab_page(page, flags)) {
6416                         page = NULL;
6417                         goto out;
6418                 }
6419         }
6420 out:
6421         spin_unlock(ptl);
6422 out_unlock:
6423         hugetlb_vma_unlock_read(vma);
6424         return page;
6425 }
6426
6427 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6428                          struct page **pages, struct vm_area_struct **vmas,
6429                          unsigned long *position, unsigned long *nr_pages,
6430                          long i, unsigned int flags, int *locked)
6431 {
6432         unsigned long pfn_offset;
6433         unsigned long vaddr = *position;
6434         unsigned long remainder = *nr_pages;
6435         struct hstate *h = hstate_vma(vma);
6436         int err = -EFAULT, refs;
6437
6438         while (vaddr < vma->vm_end && remainder) {
6439                 pte_t *pte;
6440                 spinlock_t *ptl = NULL;
6441                 bool unshare = false;
6442                 int absent;
6443                 struct page *page;
6444
6445                 /*
6446                  * If we have a pending SIGKILL, don't keep faulting pages and
6447                  * potentially allocating memory.
6448                  */
6449                 if (fatal_signal_pending(current)) {
6450                         remainder = 0;
6451                         break;
6452                 }
6453
6454                 hugetlb_vma_lock_read(vma);
6455                 /*
6456                  * Some archs (sparc64, sh*) have multiple pte_ts to
6457                  * each hugepage.  We have to make sure we get the
6458                  * first, for the page indexing below to work.
6459                  *
6460                  * Note that page table lock is not held when pte is null.
6461                  */
6462                 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6463                                    huge_page_size(h));
6464                 if (pte)
6465                         ptl = huge_pte_lock(h, mm, pte);
6466                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6467
6468                 /*
6469                  * When coredumping, it suits get_dump_page if we just return
6470                  * an error where there's an empty slot with no huge pagecache
6471                  * to back it.  This way, we avoid allocating a hugepage, and
6472                  * the sparse dumpfile avoids allocating disk blocks, but its
6473                  * huge holes still show up with zeroes where they need to be.
6474                  */
6475                 if (absent && (flags & FOLL_DUMP) &&
6476                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6477                         if (pte)
6478                                 spin_unlock(ptl);
6479                         hugetlb_vma_unlock_read(vma);
6480                         remainder = 0;
6481                         break;
6482                 }
6483
6484                 /*
6485                  * We need call hugetlb_fault for both hugepages under migration
6486                  * (in which case hugetlb_fault waits for the migration,) and
6487                  * hwpoisoned hugepages (in which case we need to prevent the
6488                  * caller from accessing to them.) In order to do this, we use
6489                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6490                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6491                  * both cases, and because we can't follow correct pages
6492                  * directly from any kind of swap entries.
6493                  */
6494                 if (absent ||
6495                     __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6496                         vm_fault_t ret;
6497                         unsigned int fault_flags = 0;
6498
6499                         if (pte)
6500                                 spin_unlock(ptl);
6501                         hugetlb_vma_unlock_read(vma);
6502
6503                         if (flags & FOLL_WRITE)
6504                                 fault_flags |= FAULT_FLAG_WRITE;
6505                         else if (unshare)
6506                                 fault_flags |= FAULT_FLAG_UNSHARE;
6507                         if (locked) {
6508                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6509                                         FAULT_FLAG_KILLABLE;
6510                                 if (flags & FOLL_INTERRUPTIBLE)
6511                                         fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6512                         }
6513                         if (flags & FOLL_NOWAIT)
6514                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6515                                         FAULT_FLAG_RETRY_NOWAIT;
6516                         if (flags & FOLL_TRIED) {
6517                                 /*
6518                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6519                                  * FAULT_FLAG_TRIED can co-exist
6520                                  */
6521                                 fault_flags |= FAULT_FLAG_TRIED;
6522                         }
6523                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6524                         if (ret & VM_FAULT_ERROR) {
6525                                 err = vm_fault_to_errno(ret, flags);
6526                                 remainder = 0;
6527                                 break;
6528                         }
6529                         if (ret & VM_FAULT_RETRY) {
6530                                 if (locked &&
6531                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6532                                         *locked = 0;
6533                                 *nr_pages = 0;
6534                                 /*
6535                                  * VM_FAULT_RETRY must not return an
6536                                  * error, it will return zero
6537                                  * instead.
6538                                  *
6539                                  * No need to update "position" as the
6540                                  * caller will not check it after
6541                                  * *nr_pages is set to 0.
6542                                  */
6543                                 return i;
6544                         }
6545                         continue;
6546                 }
6547
6548                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6549                 page = pte_page(huge_ptep_get(pte));
6550
6551                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6552                                !PageAnonExclusive(page), page);
6553
6554                 /*
6555                  * If subpage information not requested, update counters
6556                  * and skip the same_page loop below.
6557                  */
6558                 if (!pages && !vmas && !pfn_offset &&
6559                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6560                     (remainder >= pages_per_huge_page(h))) {
6561                         vaddr += huge_page_size(h);
6562                         remainder -= pages_per_huge_page(h);
6563                         i += pages_per_huge_page(h);
6564                         spin_unlock(ptl);
6565                         hugetlb_vma_unlock_read(vma);
6566                         continue;
6567                 }
6568
6569                 /* vaddr may not be aligned to PAGE_SIZE */
6570                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6571                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6572
6573                 if (pages || vmas)
6574                         record_subpages_vmas(nth_page(page, pfn_offset),
6575                                              vma, refs,
6576                                              likely(pages) ? pages + i : NULL,
6577                                              vmas ? vmas + i : NULL);
6578
6579                 if (pages) {
6580                         /*
6581                          * try_grab_folio() should always succeed here,
6582                          * because: a) we hold the ptl lock, and b) we've just
6583                          * checked that the huge page is present in the page
6584                          * tables. If the huge page is present, then the tail
6585                          * pages must also be present. The ptl prevents the
6586                          * head page and tail pages from being rearranged in
6587                          * any way. As this is hugetlb, the pages will never
6588                          * be p2pdma or not longterm pinable. So this page
6589                          * must be available at this point, unless the page
6590                          * refcount overflowed:
6591                          */
6592                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6593                                                          flags))) {
6594                                 spin_unlock(ptl);
6595                                 hugetlb_vma_unlock_read(vma);
6596                                 remainder = 0;
6597                                 err = -ENOMEM;
6598                                 break;
6599                         }
6600                 }
6601
6602                 vaddr += (refs << PAGE_SHIFT);
6603                 remainder -= refs;
6604                 i += refs;
6605
6606                 spin_unlock(ptl);
6607                 hugetlb_vma_unlock_read(vma);
6608         }
6609         *nr_pages = remainder;
6610         /*
6611          * setting position is actually required only if remainder is
6612          * not zero but it's faster not to add a "if (remainder)"
6613          * branch.
6614          */
6615         *position = vaddr;
6616
6617         return i ? i : err;
6618 }
6619
6620 long hugetlb_change_protection(struct vm_area_struct *vma,
6621                 unsigned long address, unsigned long end,
6622                 pgprot_t newprot, unsigned long cp_flags)
6623 {
6624         struct mm_struct *mm = vma->vm_mm;
6625         unsigned long start = address;
6626         pte_t *ptep;
6627         pte_t pte;
6628         struct hstate *h = hstate_vma(vma);
6629         long pages = 0, psize = huge_page_size(h);
6630         bool shared_pmd = false;
6631         struct mmu_notifier_range range;
6632         unsigned long last_addr_mask;
6633         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6634         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6635
6636         /*
6637          * In the case of shared PMDs, the area to flush could be beyond
6638          * start/end.  Set range.start/range.end to cover the maximum possible
6639          * range if PMD sharing is possible.
6640          */
6641         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6642                                 0, mm, start, end);
6643         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6644
6645         BUG_ON(address >= end);
6646         flush_cache_range(vma, range.start, range.end);
6647
6648         mmu_notifier_invalidate_range_start(&range);
6649         hugetlb_vma_lock_write(vma);
6650         i_mmap_lock_write(vma->vm_file->f_mapping);
6651         last_addr_mask = hugetlb_mask_last_page(h);
6652         for (; address < end; address += psize) {
6653                 spinlock_t *ptl;
6654                 ptep = hugetlb_walk(vma, address, psize);
6655                 if (!ptep) {
6656                         if (!uffd_wp) {
6657                                 address |= last_addr_mask;
6658                                 continue;
6659                         }
6660                         /*
6661                          * Userfaultfd wr-protect requires pgtable
6662                          * pre-allocations to install pte markers.
6663                          */
6664                         ptep = huge_pte_alloc(mm, vma, address, psize);
6665                         if (!ptep) {
6666                                 pages = -ENOMEM;
6667                                 break;
6668                         }
6669                 }
6670                 ptl = huge_pte_lock(h, mm, ptep);
6671                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6672                         /*
6673                          * When uffd-wp is enabled on the vma, unshare
6674                          * shouldn't happen at all.  Warn about it if it
6675                          * happened due to some reason.
6676                          */
6677                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6678                         pages++;
6679                         spin_unlock(ptl);
6680                         shared_pmd = true;
6681                         address |= last_addr_mask;
6682                         continue;
6683                 }
6684                 pte = huge_ptep_get(ptep);
6685                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6686                         /* Nothing to do. */
6687                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6688                         swp_entry_t entry = pte_to_swp_entry(pte);
6689                         struct page *page = pfn_swap_entry_to_page(entry);
6690                         pte_t newpte = pte;
6691
6692                         if (is_writable_migration_entry(entry)) {
6693                                 if (PageAnon(page))
6694                                         entry = make_readable_exclusive_migration_entry(
6695                                                                 swp_offset(entry));
6696                                 else
6697                                         entry = make_readable_migration_entry(
6698                                                                 swp_offset(entry));
6699                                 newpte = swp_entry_to_pte(entry);
6700                                 pages++;
6701                         }
6702
6703                         if (uffd_wp)
6704                                 newpte = pte_swp_mkuffd_wp(newpte);
6705                         else if (uffd_wp_resolve)
6706                                 newpte = pte_swp_clear_uffd_wp(newpte);
6707                         if (!pte_same(pte, newpte))
6708                                 set_huge_pte_at(mm, address, ptep, newpte);
6709                 } else if (unlikely(is_pte_marker(pte))) {
6710                         /* No other markers apply for now. */
6711                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6712                         if (uffd_wp_resolve)
6713                                 /* Safe to modify directly (non-present->none). */
6714                                 huge_pte_clear(mm, address, ptep, psize);
6715                 } else if (!huge_pte_none(pte)) {
6716                         pte_t old_pte;
6717                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6718
6719                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6720                         pte = huge_pte_modify(old_pte, newprot);
6721                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6722                         if (uffd_wp)
6723                                 pte = huge_pte_mkuffd_wp(pte);
6724                         else if (uffd_wp_resolve)
6725                                 pte = huge_pte_clear_uffd_wp(pte);
6726                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6727                         pages++;
6728                 } else {
6729                         /* None pte */
6730                         if (unlikely(uffd_wp))
6731                                 /* Safe to modify directly (none->non-present). */
6732                                 set_huge_pte_at(mm, address, ptep,
6733                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6734                 }
6735                 spin_unlock(ptl);
6736         }
6737         /*
6738          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6739          * may have cleared our pud entry and done put_page on the page table:
6740          * once we release i_mmap_rwsem, another task can do the final put_page
6741          * and that page table be reused and filled with junk.  If we actually
6742          * did unshare a page of pmds, flush the range corresponding to the pud.
6743          */
6744         if (shared_pmd)
6745                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6746         else
6747                 flush_hugetlb_tlb_range(vma, start, end);
6748         /*
6749          * No need to call mmu_notifier_invalidate_range() we are downgrading
6750          * page table protection not changing it to point to a new page.
6751          *
6752          * See Documentation/mm/mmu_notifier.rst
6753          */
6754         i_mmap_unlock_write(vma->vm_file->f_mapping);
6755         hugetlb_vma_unlock_write(vma);
6756         mmu_notifier_invalidate_range_end(&range);
6757
6758         return pages > 0 ? (pages << h->order) : pages;
6759 }
6760
6761 /* Return true if reservation was successful, false otherwise.  */
6762 bool hugetlb_reserve_pages(struct inode *inode,
6763                                         long from, long to,
6764                                         struct vm_area_struct *vma,
6765                                         vm_flags_t vm_flags)
6766 {
6767         long chg = -1, add = -1;
6768         struct hstate *h = hstate_inode(inode);
6769         struct hugepage_subpool *spool = subpool_inode(inode);
6770         struct resv_map *resv_map;
6771         struct hugetlb_cgroup *h_cg = NULL;
6772         long gbl_reserve, regions_needed = 0;
6773
6774         /* This should never happen */
6775         if (from > to) {
6776                 VM_WARN(1, "%s called with a negative range\n", __func__);
6777                 return false;
6778         }
6779
6780         /*
6781          * vma specific semaphore used for pmd sharing and fault/truncation
6782          * synchronization
6783          */
6784         hugetlb_vma_lock_alloc(vma);
6785
6786         /*
6787          * Only apply hugepage reservation if asked. At fault time, an
6788          * attempt will be made for VM_NORESERVE to allocate a page
6789          * without using reserves
6790          */
6791         if (vm_flags & VM_NORESERVE)
6792                 return true;
6793
6794         /*
6795          * Shared mappings base their reservation on the number of pages that
6796          * are already allocated on behalf of the file. Private mappings need
6797          * to reserve the full area even if read-only as mprotect() may be
6798          * called to make the mapping read-write. Assume !vma is a shm mapping
6799          */
6800         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6801                 /*
6802                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6803                  * called for inodes for which resv_maps were created (see
6804                  * hugetlbfs_get_inode).
6805                  */
6806                 resv_map = inode_resv_map(inode);
6807
6808                 chg = region_chg(resv_map, from, to, &regions_needed);
6809         } else {
6810                 /* Private mapping. */
6811                 resv_map = resv_map_alloc();
6812                 if (!resv_map)
6813                         goto out_err;
6814
6815                 chg = to - from;
6816
6817                 set_vma_resv_map(vma, resv_map);
6818                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6819         }
6820
6821         if (chg < 0)
6822                 goto out_err;
6823
6824         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6825                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6826                 goto out_err;
6827
6828         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6829                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6830                  * of the resv_map.
6831                  */
6832                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6833         }
6834
6835         /*
6836          * There must be enough pages in the subpool for the mapping. If
6837          * the subpool has a minimum size, there may be some global
6838          * reservations already in place (gbl_reserve).
6839          */
6840         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6841         if (gbl_reserve < 0)
6842                 goto out_uncharge_cgroup;
6843
6844         /*
6845          * Check enough hugepages are available for the reservation.
6846          * Hand the pages back to the subpool if there are not
6847          */
6848         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6849                 goto out_put_pages;
6850
6851         /*
6852          * Account for the reservations made. Shared mappings record regions
6853          * that have reservations as they are shared by multiple VMAs.
6854          * When the last VMA disappears, the region map says how much
6855          * the reservation was and the page cache tells how much of
6856          * the reservation was consumed. Private mappings are per-VMA and
6857          * only the consumed reservations are tracked. When the VMA
6858          * disappears, the original reservation is the VMA size and the
6859          * consumed reservations are stored in the map. Hence, nothing
6860          * else has to be done for private mappings here
6861          */
6862         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6863                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6864
6865                 if (unlikely(add < 0)) {
6866                         hugetlb_acct_memory(h, -gbl_reserve);
6867                         goto out_put_pages;
6868                 } else if (unlikely(chg > add)) {
6869                         /*
6870                          * pages in this range were added to the reserve
6871                          * map between region_chg and region_add.  This
6872                          * indicates a race with alloc_huge_page.  Adjust
6873                          * the subpool and reserve counts modified above
6874                          * based on the difference.
6875                          */
6876                         long rsv_adjust;
6877
6878                         /*
6879                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6880                          * reference to h_cg->css. See comment below for detail.
6881                          */
6882                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6883                                 hstate_index(h),
6884                                 (chg - add) * pages_per_huge_page(h), h_cg);
6885
6886                         rsv_adjust = hugepage_subpool_put_pages(spool,
6887                                                                 chg - add);
6888                         hugetlb_acct_memory(h, -rsv_adjust);
6889                 } else if (h_cg) {
6890                         /*
6891                          * The file_regions will hold their own reference to
6892                          * h_cg->css. So we should release the reference held
6893                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6894                          * done.
6895                          */
6896                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6897                 }
6898         }
6899         return true;
6900
6901 out_put_pages:
6902         /* put back original number of pages, chg */
6903         (void)hugepage_subpool_put_pages(spool, chg);
6904 out_uncharge_cgroup:
6905         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6906                                             chg * pages_per_huge_page(h), h_cg);
6907 out_err:
6908         hugetlb_vma_lock_free(vma);
6909         if (!vma || vma->vm_flags & VM_MAYSHARE)
6910                 /* Only call region_abort if the region_chg succeeded but the
6911                  * region_add failed or didn't run.
6912                  */
6913                 if (chg >= 0 && add < 0)
6914                         region_abort(resv_map, from, to, regions_needed);
6915         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6916                 kref_put(&resv_map->refs, resv_map_release);
6917         return false;
6918 }
6919
6920 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6921                                                                 long freed)
6922 {
6923         struct hstate *h = hstate_inode(inode);
6924         struct resv_map *resv_map = inode_resv_map(inode);
6925         long chg = 0;
6926         struct hugepage_subpool *spool = subpool_inode(inode);
6927         long gbl_reserve;
6928
6929         /*
6930          * Since this routine can be called in the evict inode path for all
6931          * hugetlbfs inodes, resv_map could be NULL.
6932          */
6933         if (resv_map) {
6934                 chg = region_del(resv_map, start, end);
6935                 /*
6936                  * region_del() can fail in the rare case where a region
6937                  * must be split and another region descriptor can not be
6938                  * allocated.  If end == LONG_MAX, it will not fail.
6939                  */
6940                 if (chg < 0)
6941                         return chg;
6942         }
6943
6944         spin_lock(&inode->i_lock);
6945         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6946         spin_unlock(&inode->i_lock);
6947
6948         /*
6949          * If the subpool has a minimum size, the number of global
6950          * reservations to be released may be adjusted.
6951          *
6952          * Note that !resv_map implies freed == 0. So (chg - freed)
6953          * won't go negative.
6954          */
6955         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6956         hugetlb_acct_memory(h, -gbl_reserve);
6957
6958         return 0;
6959 }
6960
6961 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6962 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6963                                 struct vm_area_struct *vma,
6964                                 unsigned long addr, pgoff_t idx)
6965 {
6966         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6967                                 svma->vm_start;
6968         unsigned long sbase = saddr & PUD_MASK;
6969         unsigned long s_end = sbase + PUD_SIZE;
6970
6971         /* Allow segments to share if only one is marked locked */
6972         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6973         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6974
6975         /*
6976          * match the virtual addresses, permission and the alignment of the
6977          * page table page.
6978          *
6979          * Also, vma_lock (vm_private_data) is required for sharing.
6980          */
6981         if (pmd_index(addr) != pmd_index(saddr) ||
6982             vm_flags != svm_flags ||
6983             !range_in_vma(svma, sbase, s_end) ||
6984             !svma->vm_private_data)
6985                 return 0;
6986
6987         return saddr;
6988 }
6989
6990 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6991 {
6992         unsigned long start = addr & PUD_MASK;
6993         unsigned long end = start + PUD_SIZE;
6994
6995 #ifdef CONFIG_USERFAULTFD
6996         if (uffd_disable_huge_pmd_share(vma))
6997                 return false;
6998 #endif
6999         /*
7000          * check on proper vm_flags and page table alignment
7001          */
7002         if (!(vma->vm_flags & VM_MAYSHARE))
7003                 return false;
7004         if (!vma->vm_private_data)      /* vma lock required for sharing */
7005                 return false;
7006         if (!range_in_vma(vma, start, end))
7007                 return false;
7008         return true;
7009 }
7010
7011 /*
7012  * Determine if start,end range within vma could be mapped by shared pmd.
7013  * If yes, adjust start and end to cover range associated with possible
7014  * shared pmd mappings.
7015  */
7016 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7017                                 unsigned long *start, unsigned long *end)
7018 {
7019         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7020                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7021
7022         /*
7023          * vma needs to span at least one aligned PUD size, and the range
7024          * must be at least partially within in.
7025          */
7026         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7027                 (*end <= v_start) || (*start >= v_end))
7028                 return;
7029
7030         /* Extend the range to be PUD aligned for a worst case scenario */
7031         if (*start > v_start)
7032                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7033
7034         if (*end < v_end)
7035                 *end = ALIGN(*end, PUD_SIZE);
7036 }
7037
7038 /*
7039  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7040  * and returns the corresponding pte. While this is not necessary for the
7041  * !shared pmd case because we can allocate the pmd later as well, it makes the
7042  * code much cleaner. pmd allocation is essential for the shared case because
7043  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7044  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7045  * bad pmd for sharing.
7046  */
7047 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7048                       unsigned long addr, pud_t *pud)
7049 {
7050         struct address_space *mapping = vma->vm_file->f_mapping;
7051         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7052                         vma->vm_pgoff;
7053         struct vm_area_struct *svma;
7054         unsigned long saddr;
7055         pte_t *spte = NULL;
7056         pte_t *pte;
7057         spinlock_t *ptl;
7058
7059         i_mmap_lock_read(mapping);
7060         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7061                 if (svma == vma)
7062                         continue;
7063
7064                 saddr = page_table_shareable(svma, vma, addr, idx);
7065                 if (saddr) {
7066                         spte = hugetlb_walk(svma, saddr,
7067                                             vma_mmu_pagesize(svma));
7068                         if (spte) {
7069                                 get_page(virt_to_page(spte));
7070                                 break;
7071                         }
7072                 }
7073         }
7074
7075         if (!spte)
7076                 goto out;
7077
7078         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7079         if (pud_none(*pud)) {
7080                 pud_populate(mm, pud,
7081                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7082                 mm_inc_nr_pmds(mm);
7083         } else {
7084                 put_page(virt_to_page(spte));
7085         }
7086         spin_unlock(ptl);
7087 out:
7088         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7089         i_mmap_unlock_read(mapping);
7090         return pte;
7091 }
7092
7093 /*
7094  * unmap huge page backed by shared pte.
7095  *
7096  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7097  * indicated by page_count > 1, unmap is achieved by clearing pud and
7098  * decrementing the ref count. If count == 1, the pte page is not shared.
7099  *
7100  * Called with page table lock held.
7101  *
7102  * returns: 1 successfully unmapped a shared pte page
7103  *          0 the underlying pte page is not shared, or it is the last user
7104  */
7105 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7106                                         unsigned long addr, pte_t *ptep)
7107 {
7108         pgd_t *pgd = pgd_offset(mm, addr);
7109         p4d_t *p4d = p4d_offset(pgd, addr);
7110         pud_t *pud = pud_offset(p4d, addr);
7111
7112         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7113         hugetlb_vma_assert_locked(vma);
7114         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7115         if (page_count(virt_to_page(ptep)) == 1)
7116                 return 0;
7117
7118         pud_clear(pud);
7119         put_page(virt_to_page(ptep));
7120         mm_dec_nr_pmds(mm);
7121         return 1;
7122 }
7123
7124 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7125
7126 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7127                       unsigned long addr, pud_t *pud)
7128 {
7129         return NULL;
7130 }
7131
7132 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7133                                 unsigned long addr, pte_t *ptep)
7134 {
7135         return 0;
7136 }
7137
7138 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7139                                 unsigned long *start, unsigned long *end)
7140 {
7141 }
7142
7143 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7144 {
7145         return false;
7146 }
7147 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7148
7149 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7150 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7151                         unsigned long addr, unsigned long sz)
7152 {
7153         pgd_t *pgd;
7154         p4d_t *p4d;
7155         pud_t *pud;
7156         pte_t *pte = NULL;
7157
7158         pgd = pgd_offset(mm, addr);
7159         p4d = p4d_alloc(mm, pgd, addr);
7160         if (!p4d)
7161                 return NULL;
7162         pud = pud_alloc(mm, p4d, addr);
7163         if (pud) {
7164                 if (sz == PUD_SIZE) {
7165                         pte = (pte_t *)pud;
7166                 } else {
7167                         BUG_ON(sz != PMD_SIZE);
7168                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7169                                 pte = huge_pmd_share(mm, vma, addr, pud);
7170                         else
7171                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7172                 }
7173         }
7174         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7175
7176         return pte;
7177 }
7178
7179 /*
7180  * huge_pte_offset() - Walk the page table to resolve the hugepage
7181  * entry at address @addr
7182  *
7183  * Return: Pointer to page table entry (PUD or PMD) for
7184  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7185  * size @sz doesn't match the hugepage size at this level of the page
7186  * table.
7187  */
7188 pte_t *huge_pte_offset(struct mm_struct *mm,
7189                        unsigned long addr, unsigned long sz)
7190 {
7191         pgd_t *pgd;
7192         p4d_t *p4d;
7193         pud_t *pud;
7194         pmd_t *pmd;
7195
7196         pgd = pgd_offset(mm, addr);
7197         if (!pgd_present(*pgd))
7198                 return NULL;
7199         p4d = p4d_offset(pgd, addr);
7200         if (!p4d_present(*p4d))
7201                 return NULL;
7202
7203         pud = pud_offset(p4d, addr);
7204         if (sz == PUD_SIZE)
7205                 /* must be pud huge, non-present or none */
7206                 return (pte_t *)pud;
7207         if (!pud_present(*pud))
7208                 return NULL;
7209         /* must have a valid entry and size to go further */
7210
7211         pmd = pmd_offset(pud, addr);
7212         /* must be pmd huge, non-present or none */
7213         return (pte_t *)pmd;
7214 }
7215
7216 /*
7217  * Return a mask that can be used to update an address to the last huge
7218  * page in a page table page mapping size.  Used to skip non-present
7219  * page table entries when linearly scanning address ranges.  Architectures
7220  * with unique huge page to page table relationships can define their own
7221  * version of this routine.
7222  */
7223 unsigned long hugetlb_mask_last_page(struct hstate *h)
7224 {
7225         unsigned long hp_size = huge_page_size(h);
7226
7227         if (hp_size == PUD_SIZE)
7228                 return P4D_SIZE - PUD_SIZE;
7229         else if (hp_size == PMD_SIZE)
7230                 return PUD_SIZE - PMD_SIZE;
7231         else
7232                 return 0UL;
7233 }
7234
7235 #else
7236
7237 /* See description above.  Architectures can provide their own version. */
7238 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7239 {
7240 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7241         if (huge_page_size(h) == PMD_SIZE)
7242                 return PUD_SIZE - PMD_SIZE;
7243 #endif
7244         return 0UL;
7245 }
7246
7247 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7248
7249 /*
7250  * These functions are overwritable if your architecture needs its own
7251  * behavior.
7252  */
7253 int isolate_hugetlb(struct page *page, struct list_head *list)
7254 {
7255         int ret = 0;
7256
7257         spin_lock_irq(&hugetlb_lock);
7258         if (!PageHeadHuge(page) ||
7259             !HPageMigratable(page) ||
7260             !get_page_unless_zero(page)) {
7261                 ret = -EBUSY;
7262                 goto unlock;
7263         }
7264         ClearHPageMigratable(page);
7265         list_move_tail(&page->lru, list);
7266 unlock:
7267         spin_unlock_irq(&hugetlb_lock);
7268         return ret;
7269 }
7270
7271 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7272 {
7273         int ret = 0;
7274
7275         *hugetlb = false;
7276         spin_lock_irq(&hugetlb_lock);
7277         if (folio_test_hugetlb(folio)) {
7278                 *hugetlb = true;
7279                 if (folio_test_hugetlb_freed(folio))
7280                         ret = 0;
7281                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7282                         ret = folio_try_get(folio);
7283                 else
7284                         ret = -EBUSY;
7285         }
7286         spin_unlock_irq(&hugetlb_lock);
7287         return ret;
7288 }
7289
7290 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7291                                 bool *migratable_cleared)
7292 {
7293         int ret;
7294
7295         spin_lock_irq(&hugetlb_lock);
7296         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7297         spin_unlock_irq(&hugetlb_lock);
7298         return ret;
7299 }
7300
7301 void putback_active_hugepage(struct page *page)
7302 {
7303         spin_lock_irq(&hugetlb_lock);
7304         SetHPageMigratable(page);
7305         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7306         spin_unlock_irq(&hugetlb_lock);
7307         put_page(page);
7308 }
7309
7310 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7311 {
7312         struct hstate *h = folio_hstate(old_folio);
7313
7314         hugetlb_cgroup_migrate(old_folio, new_folio);
7315         set_page_owner_migrate_reason(&new_folio->page, reason);
7316
7317         /*
7318          * transfer temporary state of the new hugetlb folio. This is
7319          * reverse to other transitions because the newpage is going to
7320          * be final while the old one will be freed so it takes over
7321          * the temporary status.
7322          *
7323          * Also note that we have to transfer the per-node surplus state
7324          * here as well otherwise the global surplus count will not match
7325          * the per-node's.
7326          */
7327         if (folio_test_hugetlb_temporary(new_folio)) {
7328                 int old_nid = folio_nid(old_folio);
7329                 int new_nid = folio_nid(new_folio);
7330
7331                 folio_set_hugetlb_temporary(old_folio);
7332                 folio_clear_hugetlb_temporary(new_folio);
7333
7334
7335                 /*
7336                  * There is no need to transfer the per-node surplus state
7337                  * when we do not cross the node.
7338                  */
7339                 if (new_nid == old_nid)
7340                         return;
7341                 spin_lock_irq(&hugetlb_lock);
7342                 if (h->surplus_huge_pages_node[old_nid]) {
7343                         h->surplus_huge_pages_node[old_nid]--;
7344                         h->surplus_huge_pages_node[new_nid]++;
7345                 }
7346                 spin_unlock_irq(&hugetlb_lock);
7347         }
7348 }
7349
7350 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7351                                    unsigned long start,
7352                                    unsigned long end)
7353 {
7354         struct hstate *h = hstate_vma(vma);
7355         unsigned long sz = huge_page_size(h);
7356         struct mm_struct *mm = vma->vm_mm;
7357         struct mmu_notifier_range range;
7358         unsigned long address;
7359         spinlock_t *ptl;
7360         pte_t *ptep;
7361
7362         if (!(vma->vm_flags & VM_MAYSHARE))
7363                 return;
7364
7365         if (start >= end)
7366                 return;
7367
7368         flush_cache_range(vma, start, end);
7369         /*
7370          * No need to call adjust_range_if_pmd_sharing_possible(), because
7371          * we have already done the PUD_SIZE alignment.
7372          */
7373         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7374                                 start, end);
7375         mmu_notifier_invalidate_range_start(&range);
7376         hugetlb_vma_lock_write(vma);
7377         i_mmap_lock_write(vma->vm_file->f_mapping);
7378         for (address = start; address < end; address += PUD_SIZE) {
7379                 ptep = hugetlb_walk(vma, address, sz);
7380                 if (!ptep)
7381                         continue;
7382                 ptl = huge_pte_lock(h, mm, ptep);
7383                 huge_pmd_unshare(mm, vma, address, ptep);
7384                 spin_unlock(ptl);
7385         }
7386         flush_hugetlb_tlb_range(vma, start, end);
7387         i_mmap_unlock_write(vma->vm_file->f_mapping);
7388         hugetlb_vma_unlock_write(vma);
7389         /*
7390          * No need to call mmu_notifier_invalidate_range(), see
7391          * Documentation/mm/mmu_notifier.rst.
7392          */
7393         mmu_notifier_invalidate_range_end(&range);
7394 }
7395
7396 /*
7397  * This function will unconditionally remove all the shared pmd pgtable entries
7398  * within the specific vma for a hugetlbfs memory range.
7399  */
7400 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7401 {
7402         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7403                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7404 }
7405
7406 #ifdef CONFIG_CMA
7407 static bool cma_reserve_called __initdata;
7408
7409 static int __init cmdline_parse_hugetlb_cma(char *p)
7410 {
7411         int nid, count = 0;
7412         unsigned long tmp;
7413         char *s = p;
7414
7415         while (*s) {
7416                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7417                         break;
7418
7419                 if (s[count] == ':') {
7420                         if (tmp >= MAX_NUMNODES)
7421                                 break;
7422                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7423
7424                         s += count + 1;
7425                         tmp = memparse(s, &s);
7426                         hugetlb_cma_size_in_node[nid] = tmp;
7427                         hugetlb_cma_size += tmp;
7428
7429                         /*
7430                          * Skip the separator if have one, otherwise
7431                          * break the parsing.
7432                          */
7433                         if (*s == ',')
7434                                 s++;
7435                         else
7436                                 break;
7437                 } else {
7438                         hugetlb_cma_size = memparse(p, &p);
7439                         break;
7440                 }
7441         }
7442
7443         return 0;
7444 }
7445
7446 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7447
7448 void __init hugetlb_cma_reserve(int order)
7449 {
7450         unsigned long size, reserved, per_node;
7451         bool node_specific_cma_alloc = false;
7452         int nid;
7453
7454         cma_reserve_called = true;
7455
7456         if (!hugetlb_cma_size)
7457                 return;
7458
7459         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7460                 if (hugetlb_cma_size_in_node[nid] == 0)
7461                         continue;
7462
7463                 if (!node_online(nid)) {
7464                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7465                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7466                         hugetlb_cma_size_in_node[nid] = 0;
7467                         continue;
7468                 }
7469
7470                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7471                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7472                                 nid, (PAGE_SIZE << order) / SZ_1M);
7473                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7474                         hugetlb_cma_size_in_node[nid] = 0;
7475                 } else {
7476                         node_specific_cma_alloc = true;
7477                 }
7478         }
7479
7480         /* Validate the CMA size again in case some invalid nodes specified. */
7481         if (!hugetlb_cma_size)
7482                 return;
7483
7484         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7485                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7486                         (PAGE_SIZE << order) / SZ_1M);
7487                 hugetlb_cma_size = 0;
7488                 return;
7489         }
7490
7491         if (!node_specific_cma_alloc) {
7492                 /*
7493                  * If 3 GB area is requested on a machine with 4 numa nodes,
7494                  * let's allocate 1 GB on first three nodes and ignore the last one.
7495                  */
7496                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7497                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7498                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7499         }
7500
7501         reserved = 0;
7502         for_each_online_node(nid) {
7503                 int res;
7504                 char name[CMA_MAX_NAME];
7505
7506                 if (node_specific_cma_alloc) {
7507                         if (hugetlb_cma_size_in_node[nid] == 0)
7508                                 continue;
7509
7510                         size = hugetlb_cma_size_in_node[nid];
7511                 } else {
7512                         size = min(per_node, hugetlb_cma_size - reserved);
7513                 }
7514
7515                 size = round_up(size, PAGE_SIZE << order);
7516
7517                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7518                 /*
7519                  * Note that 'order per bit' is based on smallest size that
7520                  * may be returned to CMA allocator in the case of
7521                  * huge page demotion.
7522                  */
7523                 res = cma_declare_contiguous_nid(0, size, 0,
7524                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7525                                                  0, false, name,
7526                                                  &hugetlb_cma[nid], nid);
7527                 if (res) {
7528                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7529                                 res, nid);
7530                         continue;
7531                 }
7532
7533                 reserved += size;
7534                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7535                         size / SZ_1M, nid);
7536
7537                 if (reserved >= hugetlb_cma_size)
7538                         break;
7539         }
7540
7541         if (!reserved)
7542                 /*
7543                  * hugetlb_cma_size is used to determine if allocations from
7544                  * cma are possible.  Set to zero if no cma regions are set up.
7545                  */
7546                 hugetlb_cma_size = 0;
7547 }
7548
7549 static void __init hugetlb_cma_check(void)
7550 {
7551         if (!hugetlb_cma_size || cma_reserve_called)
7552                 return;
7553
7554         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7555 }
7556
7557 #endif /* CONFIG_CMA */
This page took 0.462461 seconds and 4 git commands to generate.