2 * Copyright © 2013 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
28 #include "gt/intel_engine.h"
29 #include "gt/intel_gpu_commands.h"
32 #include "i915_memcpy.h"
35 * DOC: batch buffer command parser
38 * Certain OpenGL features (e.g. transform feedback, performance monitoring)
39 * require userspace code to submit batches containing commands such as
40 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
41 * generations of the hardware will noop these commands in "unsecure" batches
42 * (which includes all userspace batches submitted via i915) even though the
43 * commands may be safe and represent the intended programming model of the
46 * The software command parser is similar in operation to the command parsing
47 * done in hardware for unsecure batches. However, the software parser allows
48 * some operations that would be noop'd by hardware, if the parser determines
49 * the operation is safe, and submits the batch as "secure" to prevent hardware
53 * At a high level, the hardware (and software) checks attempt to prevent
54 * granting userspace undue privileges. There are three categories of privilege.
56 * First, commands which are explicitly defined as privileged or which should
57 * only be used by the kernel driver. The parser rejects such commands
59 * Second, commands which access registers. To support correct/enhanced
60 * userspace functionality, particularly certain OpenGL extensions, the parser
61 * provides a whitelist of registers which userspace may safely access
63 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
64 * The parser always rejects such commands.
66 * The majority of the problematic commands fall in the MI_* range, with only a
67 * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
70 * Each engine maintains tables of commands and registers which the parser
71 * uses in scanning batch buffers submitted to that engine.
73 * Since the set of commands that the parser must check for is significantly
74 * smaller than the number of commands supported, the parser tables contain only
75 * those commands required by the parser. This generally works because command
76 * opcode ranges have standard command length encodings. So for commands that
77 * the parser does not need to check, it can easily skip them. This is
78 * implemented via a per-engine length decoding vfunc.
80 * Unfortunately, there are a number of commands that do not follow the standard
81 * length encoding for their opcode range, primarily amongst the MI_* commands.
82 * To handle this, the parser provides a way to define explicit "skip" entries
83 * in the per-engine command tables.
85 * Other command table entries map fairly directly to high level categories
86 * mentioned above: rejected, register whitelist. The parser implements a number
87 * of checks, including the privileged memory checks, via a general bitmasking
92 * A command that requires special handling by the command parser.
94 struct drm_i915_cmd_descriptor {
96 * Flags describing how the command parser processes the command.
98 * CMD_DESC_FIXED: The command has a fixed length if this is set,
99 * a length mask if not set
100 * CMD_DESC_SKIP: The command is allowed but does not follow the
101 * standard length encoding for the opcode range in
103 * CMD_DESC_REJECT: The command is never allowed
104 * CMD_DESC_REGISTER: The command should be checked against the
105 * register whitelist for the appropriate ring
108 #define CMD_DESC_FIXED (1<<0)
109 #define CMD_DESC_SKIP (1<<1)
110 #define CMD_DESC_REJECT (1<<2)
111 #define CMD_DESC_REGISTER (1<<3)
112 #define CMD_DESC_BITMASK (1<<4)
115 * The command's unique identification bits and the bitmask to get them.
116 * This isn't strictly the opcode field as defined in the spec and may
117 * also include type, subtype, and/or subop fields.
125 * The command's length. The command is either fixed length (i.e. does
126 * not include a length field) or has a length field mask. The flag
127 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
128 * a length mask. All command entries in a command table must include
129 * length information.
137 * Describes where to find a register address in the command to check
138 * against the ring's register whitelist. Only valid if flags has the
139 * CMD_DESC_REGISTER bit set.
141 * A non-zero step value implies that the command may access multiple
142 * registers in sequence (e.g. LRI), in that case step gives the
143 * distance in dwords between individual offset fields.
151 #define MAX_CMD_DESC_BITMASKS 3
153 * Describes command checks where a particular dword is masked and
154 * compared against an expected value. If the command does not match
155 * the expected value, the parser rejects it. Only valid if flags has
156 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
159 * If the check specifies a non-zero condition_mask then the parser
160 * only performs the check when the bits specified by condition_mask
167 u32 condition_offset;
169 } bits[MAX_CMD_DESC_BITMASKS];
173 * A table of commands requiring special handling by the command parser.
175 * Each engine has an array of tables. Each table consists of an array of
176 * command descriptors, which must be sorted with command opcodes in
179 struct drm_i915_cmd_table {
180 const struct drm_i915_cmd_descriptor *table;
184 #define STD_MI_OPCODE_SHIFT (32 - 9)
185 #define STD_3D_OPCODE_SHIFT (32 - 16)
186 #define STD_2D_OPCODE_SHIFT (32 - 10)
187 #define STD_MFX_OPCODE_SHIFT (32 - 16)
188 #define MIN_OPCODE_SHIFT 16
190 #define CMD(op, opm, f, lm, fl, ...) \
192 .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \
193 .cmd = { (op & ~0u << (opm)), ~0u << (opm) }, \
194 .length = { (lm) }, \
198 /* Convenience macros to compress the tables */
199 #define SMI STD_MI_OPCODE_SHIFT
200 #define S3D STD_3D_OPCODE_SHIFT
201 #define S2D STD_2D_OPCODE_SHIFT
202 #define SMFX STD_MFX_OPCODE_SHIFT
204 #define S CMD_DESC_SKIP
205 #define R CMD_DESC_REJECT
206 #define W CMD_DESC_REGISTER
207 #define B CMD_DESC_BITMASK
209 /* Command Mask Fixed Len Action
210 ---------------------------------------------------------- */
211 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = {
212 CMD( MI_NOOP, SMI, F, 1, S ),
213 CMD( MI_USER_INTERRUPT, SMI, F, 1, R ),
214 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ),
215 CMD( MI_ARB_CHECK, SMI, F, 1, S ),
216 CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
217 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
218 CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ),
219 CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ),
220 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
221 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
222 CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B,
223 .reg = { .offset = 1, .mask = 0x007FFFFC },
226 .mask = MI_GLOBAL_GTT,
229 CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B,
230 .reg = { .offset = 1, .mask = 0x007FFFFC },
233 .mask = MI_GLOBAL_GTT,
237 * MI_BATCH_BUFFER_START requires some special handling. It's not
238 * really a 'skip' action but it doesn't seem like it's worth adding
239 * a new action. See intel_engine_cmd_parser().
241 CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ),
244 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = {
245 CMD( MI_FLUSH, SMI, F, 1, S ),
246 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
247 CMD( MI_PREDICATE, SMI, F, 1, S ),
248 CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ),
249 CMD( MI_SET_APPID, SMI, F, 1, S ),
250 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
251 CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ),
252 CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ),
253 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B,
256 .mask = MI_GLOBAL_GTT,
259 CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ),
260 CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B,
263 .mask = MI_GLOBAL_GTT,
266 CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B,
269 .mask = MI_REPORT_PERF_COUNT_GGTT,
272 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
275 .mask = MI_GLOBAL_GTT,
278 CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ),
279 CMD( PIPELINE_SELECT, S3D, F, 1, S ),
280 CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B,
283 .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
286 CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ),
287 CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ),
288 CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ),
289 CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B,
292 .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
297 .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
298 PIPE_CONTROL_STORE_DATA_INDEX),
300 .condition_offset = 1,
301 .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
305 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
306 CMD( MI_SET_PREDICATE, SMI, F, 1, S ),
307 CMD( MI_RS_CONTROL, SMI, F, 1, S ),
308 CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ),
309 CMD( MI_SET_APPID, SMI, F, 1, S ),
310 CMD( MI_RS_CONTEXT, SMI, F, 1, S ),
311 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
312 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
313 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
314 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
315 CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ),
316 CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ),
317 CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ),
318 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ),
319 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ),
321 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ),
322 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ),
323 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ),
324 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ),
325 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ),
328 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = {
329 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
330 CMD( MI_SET_APPID, SMI, F, 1, S ),
331 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
334 .mask = MI_GLOBAL_GTT,
337 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
338 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
341 .mask = MI_FLUSH_DW_NOTIFY,
346 .mask = MI_FLUSH_DW_USE_GTT,
348 .condition_offset = 0,
349 .condition_mask = MI_FLUSH_DW_OP_MASK,
353 .mask = MI_FLUSH_DW_STORE_INDEX,
355 .condition_offset = 0,
356 .condition_mask = MI_FLUSH_DW_OP_MASK,
358 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
361 .mask = MI_GLOBAL_GTT,
365 * MFX_WAIT doesn't fit the way we handle length for most commands.
366 * It has a length field but it uses a non-standard length bias.
367 * It is always 1 dword though, so just treat it as fixed length.
369 CMD( MFX_WAIT, SMFX, F, 1, S ),
372 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = {
373 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
374 CMD( MI_SET_APPID, SMI, F, 1, S ),
375 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
378 .mask = MI_GLOBAL_GTT,
381 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
382 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
385 .mask = MI_FLUSH_DW_NOTIFY,
390 .mask = MI_FLUSH_DW_USE_GTT,
392 .condition_offset = 0,
393 .condition_mask = MI_FLUSH_DW_OP_MASK,
397 .mask = MI_FLUSH_DW_STORE_INDEX,
399 .condition_offset = 0,
400 .condition_mask = MI_FLUSH_DW_OP_MASK,
402 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
405 .mask = MI_GLOBAL_GTT,
410 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = {
411 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
412 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B,
415 .mask = MI_GLOBAL_GTT,
418 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
419 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
422 .mask = MI_FLUSH_DW_NOTIFY,
427 .mask = MI_FLUSH_DW_USE_GTT,
429 .condition_offset = 0,
430 .condition_mask = MI_FLUSH_DW_OP_MASK,
434 .mask = MI_FLUSH_DW_STORE_INDEX,
436 .condition_offset = 0,
437 .condition_mask = MI_FLUSH_DW_OP_MASK,
439 CMD( COLOR_BLT, S2D, !F, 0x3F, S ),
440 CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ),
443 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
444 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
445 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
449 * For Gen9 we can still rely on the h/w to enforce cmd security, and only
450 * need to re-enforce the register access checks. We therefore only need to
451 * teach the cmdparser how to find the end of each command, and identify
452 * register accesses. The table doesn't need to reject any commands, and so
453 * the only commands listed here are:
454 * 1) Those that touch registers
455 * 2) Those that do not have the default 8-bit length
457 * Note that the default MI length mask chosen for this table is 0xFF, not
458 * the 0x3F used on older devices. This is because the vast majority of MI
459 * cmds on Gen9 use a standard 8-bit Length field.
460 * All the Gen9 blitter instructions are standard 0xFF length mask, and
461 * none allow access to non-general registers, so in fact no BLT cmds are
462 * included in the table at all.
465 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = {
466 CMD( MI_NOOP, SMI, F, 1, S ),
467 CMD( MI_USER_INTERRUPT, SMI, F, 1, S ),
468 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ),
469 CMD( MI_FLUSH, SMI, F, 1, S ),
470 CMD( MI_ARB_CHECK, SMI, F, 1, S ),
471 CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
472 CMD( MI_ARB_ON_OFF, SMI, F, 1, S ),
473 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
474 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ),
475 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ),
476 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ),
477 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
478 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
479 CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ),
480 CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W,
481 .reg = { .offset = 1, .mask = 0x007FFFFC } ),
482 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ),
483 CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W,
484 .reg = { .offset = 1, .mask = 0x007FFFFC } ),
485 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
486 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
489 * We allow BB_START but apply further checks. We just sanitize the
492 #define MI_BB_START_OPERAND_MASK GENMASK(SMI-1, 0)
493 #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1)
494 CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B,
497 .mask = MI_BB_START_OPERAND_MASK,
498 .expected = MI_BB_START_OPERAND_EXPECT,
502 static const struct drm_i915_cmd_descriptor noop_desc =
503 CMD(MI_NOOP, SMI, F, 1, S);
516 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = {
517 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
518 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
521 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = {
522 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
523 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
524 { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
527 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = {
528 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
529 { gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) },
532 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = {
533 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
534 { gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) },
537 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = {
538 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
539 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
542 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = {
543 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
544 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
545 { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
548 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = {
549 { gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) },
554 * Register whitelists, sorted by increasing register offset.
558 * An individual whitelist entry granting access to register addr. If
559 * mask is non-zero the argument of immediate register writes will be
560 * AND-ed with mask, and the command will be rejected if the result
561 * doesn't match value.
563 * Registers with non-zero mask are only allowed to be written using
566 struct drm_i915_reg_descriptor {
572 /* Convenience macro for adding 32-bit registers. */
573 #define REG32(_reg, ...) \
574 { .addr = (_reg), __VA_ARGS__ }
576 #define REG32_IDX(_reg, idx) \
577 { .addr = _reg(idx) }
580 * Convenience macro for adding 64-bit registers.
582 * Some registers that userspace accesses are 64 bits. The register
583 * access commands only allow 32-bit accesses. Hence, we have to include
584 * entries for both halves of the 64-bit registers.
586 #define REG64(_reg) \
588 { .addr = _reg ## _UDW }
590 #define REG64_IDX(_reg, idx) \
591 { .addr = _reg(idx) }, \
592 { .addr = _reg ## _UDW(idx) }
594 static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
595 REG64(GPGPU_THREADS_DISPATCHED),
596 REG64(HS_INVOCATION_COUNT),
597 REG64(DS_INVOCATION_COUNT),
598 REG64(IA_VERTICES_COUNT),
599 REG64(IA_PRIMITIVES_COUNT),
600 REG64(VS_INVOCATION_COUNT),
601 REG64(GS_INVOCATION_COUNT),
602 REG64(GS_PRIMITIVES_COUNT),
603 REG64(CL_INVOCATION_COUNT),
604 REG64(CL_PRIMITIVES_COUNT),
605 REG64(PS_INVOCATION_COUNT),
606 REG64(PS_DEPTH_COUNT),
607 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
608 REG64(MI_PREDICATE_SRC0),
609 REG64(MI_PREDICATE_SRC1),
610 REG32(GEN7_3DPRIM_END_OFFSET),
611 REG32(GEN7_3DPRIM_START_VERTEX),
612 REG32(GEN7_3DPRIM_VERTEX_COUNT),
613 REG32(GEN7_3DPRIM_INSTANCE_COUNT),
614 REG32(GEN7_3DPRIM_START_INSTANCE),
615 REG32(GEN7_3DPRIM_BASE_VERTEX),
616 REG32(GEN7_GPGPU_DISPATCHDIMX),
617 REG32(GEN7_GPGPU_DISPATCHDIMY),
618 REG32(GEN7_GPGPU_DISPATCHDIMZ),
619 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
620 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
621 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
622 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
623 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
624 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
625 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
626 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
627 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
628 REG32(GEN7_SO_WRITE_OFFSET(0)),
629 REG32(GEN7_SO_WRITE_OFFSET(1)),
630 REG32(GEN7_SO_WRITE_OFFSET(2)),
631 REG32(GEN7_SO_WRITE_OFFSET(3)),
632 REG32(GEN7_L3SQCREG1),
633 REG32(GEN7_L3CNTLREG2),
634 REG32(GEN7_L3CNTLREG3),
635 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
638 static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
639 REG64_IDX(HSW_CS_GPR, 0),
640 REG64_IDX(HSW_CS_GPR, 1),
641 REG64_IDX(HSW_CS_GPR, 2),
642 REG64_IDX(HSW_CS_GPR, 3),
643 REG64_IDX(HSW_CS_GPR, 4),
644 REG64_IDX(HSW_CS_GPR, 5),
645 REG64_IDX(HSW_CS_GPR, 6),
646 REG64_IDX(HSW_CS_GPR, 7),
647 REG64_IDX(HSW_CS_GPR, 8),
648 REG64_IDX(HSW_CS_GPR, 9),
649 REG64_IDX(HSW_CS_GPR, 10),
650 REG64_IDX(HSW_CS_GPR, 11),
651 REG64_IDX(HSW_CS_GPR, 12),
652 REG64_IDX(HSW_CS_GPR, 13),
653 REG64_IDX(HSW_CS_GPR, 14),
654 REG64_IDX(HSW_CS_GPR, 15),
656 .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
658 REG32(HSW_ROW_CHICKEN3,
659 .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
660 HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
664 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
665 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
666 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
668 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
671 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = {
672 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
673 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
675 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
676 REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE),
677 REG64_IDX(BCS_GPR, 0),
678 REG64_IDX(BCS_GPR, 1),
679 REG64_IDX(BCS_GPR, 2),
680 REG64_IDX(BCS_GPR, 3),
681 REG64_IDX(BCS_GPR, 4),
682 REG64_IDX(BCS_GPR, 5),
683 REG64_IDX(BCS_GPR, 6),
684 REG64_IDX(BCS_GPR, 7),
685 REG64_IDX(BCS_GPR, 8),
686 REG64_IDX(BCS_GPR, 9),
687 REG64_IDX(BCS_GPR, 10),
688 REG64_IDX(BCS_GPR, 11),
689 REG64_IDX(BCS_GPR, 12),
690 REG64_IDX(BCS_GPR, 13),
691 REG64_IDX(BCS_GPR, 14),
692 REG64_IDX(BCS_GPR, 15),
698 struct drm_i915_reg_table {
699 const struct drm_i915_reg_descriptor *regs;
703 static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
704 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
707 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
708 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
711 static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
712 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
713 { hsw_render_regs, ARRAY_SIZE(hsw_render_regs) },
716 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
717 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
720 static const struct drm_i915_reg_table gen9_blt_reg_tables[] = {
721 { gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) },
724 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
726 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
728 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
730 if (client == INSTR_MI_CLIENT)
732 else if (client == INSTR_RC_CLIENT) {
733 if (subclient == INSTR_MEDIA_SUBCLIENT)
739 DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
743 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
745 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
747 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
748 u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
750 if (client == INSTR_MI_CLIENT)
752 else if (client == INSTR_RC_CLIENT) {
753 if (subclient == INSTR_MEDIA_SUBCLIENT) {
762 DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
766 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
768 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
770 if (client == INSTR_MI_CLIENT)
772 else if (client == INSTR_BC_CLIENT)
775 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
779 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header)
781 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
783 if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT)
786 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
790 static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
791 const struct drm_i915_cmd_table *cmd_tables,
797 if (!cmd_tables || cmd_table_count == 0)
800 for (i = 0; i < cmd_table_count; i++) {
801 const struct drm_i915_cmd_table *table = &cmd_tables[i];
805 for (j = 0; j < table->count; j++) {
806 const struct drm_i915_cmd_descriptor *desc =
808 u32 curr = desc->cmd.value & desc->cmd.mask;
810 if (curr < previous) {
811 drm_err(&engine->i915->drm,
812 "CMD: %s [%d] command table not sorted: "
813 "table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
814 engine->name, engine->id,
815 i, j, curr, previous);
826 static bool check_sorted(const struct intel_engine_cs *engine,
827 const struct drm_i915_reg_descriptor *reg_table,
834 for (i = 0; i < reg_count; i++) {
835 u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
837 if (curr < previous) {
838 drm_err(&engine->i915->drm,
839 "CMD: %s [%d] register table not sorted: "
840 "entry=%d reg=0x%08X prev=0x%08X\n",
841 engine->name, engine->id,
852 static bool validate_regs_sorted(struct intel_engine_cs *engine)
855 const struct drm_i915_reg_table *table;
857 for (i = 0; i < engine->reg_table_count; i++) {
858 table = &engine->reg_tables[i];
859 if (!check_sorted(engine, table->regs, table->num_regs))
867 const struct drm_i915_cmd_descriptor *desc;
868 struct hlist_node node;
872 * Different command ranges have different numbers of bits for the opcode. For
873 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
874 * problem is that, for example, MI commands use bits 22:16 for other fields
875 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
876 * we mask a command from a batch it could hash to the wrong bucket due to
877 * non-opcode bits being set. But if we don't include those bits, some 3D
878 * commands may hash to the same bucket due to not including opcode bits that
879 * make the command unique. For now, we will risk hashing to the same bucket.
881 static inline u32 cmd_header_key(u32 x)
883 switch (x >> INSTR_CLIENT_SHIFT) {
885 case INSTR_MI_CLIENT:
886 return x >> STD_MI_OPCODE_SHIFT;
887 case INSTR_RC_CLIENT:
888 return x >> STD_3D_OPCODE_SHIFT;
889 case INSTR_BC_CLIENT:
890 return x >> STD_2D_OPCODE_SHIFT;
894 static int init_hash_table(struct intel_engine_cs *engine,
895 const struct drm_i915_cmd_table *cmd_tables,
900 hash_init(engine->cmd_hash);
902 for (i = 0; i < cmd_table_count; i++) {
903 const struct drm_i915_cmd_table *table = &cmd_tables[i];
905 for (j = 0; j < table->count; j++) {
906 const struct drm_i915_cmd_descriptor *desc =
908 struct cmd_node *desc_node =
909 kmalloc(sizeof(*desc_node), GFP_KERNEL);
914 desc_node->desc = desc;
915 hash_add(engine->cmd_hash, &desc_node->node,
916 cmd_header_key(desc->cmd.value));
923 static void fini_hash_table(struct intel_engine_cs *engine)
925 struct hlist_node *tmp;
926 struct cmd_node *desc_node;
929 hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
930 hash_del(&desc_node->node);
936 * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
937 * @engine: the engine to initialize
939 * Optionally initializes fields related to batch buffer command parsing in the
940 * struct intel_engine_cs based on whether the platform requires software
943 int intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
945 const struct drm_i915_cmd_table *cmd_tables;
949 if (!IS_GEN(engine->i915, 7) && !(IS_GEN(engine->i915, 9) &&
950 engine->class == COPY_ENGINE_CLASS))
953 switch (engine->class) {
955 if (IS_HASWELL(engine->i915)) {
956 cmd_tables = hsw_render_ring_cmd_table;
958 ARRAY_SIZE(hsw_render_ring_cmd_table);
960 cmd_tables = gen7_render_cmd_table;
961 cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table);
964 if (IS_HASWELL(engine->i915)) {
965 engine->reg_tables = hsw_render_reg_tables;
966 engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
968 engine->reg_tables = ivb_render_reg_tables;
969 engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
971 engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
973 case VIDEO_DECODE_CLASS:
974 cmd_tables = gen7_video_cmd_table;
975 cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table);
976 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
978 case COPY_ENGINE_CLASS:
979 engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
980 if (IS_GEN(engine->i915, 9)) {
981 cmd_tables = gen9_blt_cmd_table;
982 cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table);
983 engine->get_cmd_length_mask =
984 gen9_blt_get_cmd_length_mask;
986 /* BCS Engine unsafe without parser */
987 engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER;
988 } else if (IS_HASWELL(engine->i915)) {
989 cmd_tables = hsw_blt_ring_cmd_table;
990 cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table);
992 cmd_tables = gen7_blt_cmd_table;
993 cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table);
996 if (IS_GEN(engine->i915, 9)) {
997 engine->reg_tables = gen9_blt_reg_tables;
998 engine->reg_table_count =
999 ARRAY_SIZE(gen9_blt_reg_tables);
1000 } else if (IS_HASWELL(engine->i915)) {
1001 engine->reg_tables = hsw_blt_reg_tables;
1002 engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
1004 engine->reg_tables = ivb_blt_reg_tables;
1005 engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
1008 case VIDEO_ENHANCEMENT_CLASS:
1009 cmd_tables = hsw_vebox_cmd_table;
1010 cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table);
1011 /* VECS can use the same length_mask function as VCS */
1012 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
1015 MISSING_CASE(engine->class);
1019 if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
1020 drm_err(&engine->i915->drm,
1021 "%s: command descriptions are not sorted\n",
1025 if (!validate_regs_sorted(engine)) {
1026 drm_err(&engine->i915->drm,
1027 "%s: registers are not sorted\n", engine->name);
1031 ret = init_hash_table(engine, cmd_tables, cmd_table_count);
1033 drm_err(&engine->i915->drm,
1034 "%s: initialised failed!\n", engine->name);
1035 fini_hash_table(engine);
1039 engine->flags |= I915_ENGINE_USING_CMD_PARSER;
1042 if (intel_engine_requires_cmd_parser(engine) &&
1043 !intel_engine_using_cmd_parser(engine))
1050 * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
1051 * @engine: the engine to clean up
1053 * Releases any resources related to command parsing that may have been
1054 * initialized for the specified engine.
1056 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
1058 if (!intel_engine_using_cmd_parser(engine))
1061 fini_hash_table(engine);
1064 static const struct drm_i915_cmd_descriptor*
1065 find_cmd_in_table(struct intel_engine_cs *engine,
1068 struct cmd_node *desc_node;
1070 hash_for_each_possible(engine->cmd_hash, desc_node, node,
1071 cmd_header_key(cmd_header)) {
1072 const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
1073 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1081 * Returns a pointer to a descriptor for the command specified by cmd_header.
1083 * The caller must supply space for a default descriptor via the default_desc
1084 * parameter. If no descriptor for the specified command exists in the engine's
1085 * command parser tables, this function fills in default_desc based on the
1086 * engine's default length encoding and returns default_desc.
1088 static const struct drm_i915_cmd_descriptor*
1089 find_cmd(struct intel_engine_cs *engine,
1091 const struct drm_i915_cmd_descriptor *desc,
1092 struct drm_i915_cmd_descriptor *default_desc)
1096 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1099 desc = find_cmd_in_table(engine, cmd_header);
1103 mask = engine->get_cmd_length_mask(cmd_header);
1107 default_desc->cmd.value = cmd_header;
1108 default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
1109 default_desc->length.mask = mask;
1110 default_desc->flags = CMD_DESC_SKIP;
1111 return default_desc;
1114 static const struct drm_i915_reg_descriptor *
1115 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
1117 int start = 0, end = count;
1118 while (start < end) {
1119 int mid = start + (end - start) / 2;
1120 int ret = addr - i915_mmio_reg_offset(table[mid].addr);
1131 static const struct drm_i915_reg_descriptor *
1132 find_reg(const struct intel_engine_cs *engine, u32 addr)
1134 const struct drm_i915_reg_table *table = engine->reg_tables;
1135 const struct drm_i915_reg_descriptor *reg = NULL;
1136 int count = engine->reg_table_count;
1138 for (; !reg && (count > 0); ++table, --count)
1139 reg = __find_reg(table->regs, table->num_regs, addr);
1144 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
1145 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
1146 struct drm_i915_gem_object *src_obj,
1147 unsigned long offset, unsigned long length,
1148 void *dst, const void *src)
1150 bool needs_clflush =
1151 !(src_obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ);
1154 GEM_BUG_ON(!needs_clflush);
1155 i915_unaligned_memcpy_from_wc(dst, src + offset, length);
1157 struct scatterlist *sg;
1159 unsigned int x, sg_ofs;
1160 unsigned long remain;
1163 * We can avoid clflushing partial cachelines before the write
1164 * if we only every write full cache-lines. Since we know that
1165 * both the source and destination are in multiples of
1166 * PAGE_SIZE, we can simply round up to the next cacheline.
1167 * We don't care about copying too much here as we only
1168 * validate up to the end of the batch.
1171 if (!(dst_obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
1172 remain = round_up(remain,
1173 boot_cpu_data.x86_clflush_size);
1176 x = offset_in_page(offset);
1177 sg = i915_gem_object_get_sg(src_obj, offset >> PAGE_SHIFT, &sg_ofs, false);
1180 unsigned long sg_max = sg->length >> PAGE_SHIFT;
1182 for (; remain && sg_ofs < sg_max; sg_ofs++) {
1183 unsigned long len = min(remain, PAGE_SIZE - x);
1186 map = kmap_atomic(nth_page(sg_page(sg), sg_ofs));
1188 drm_clflush_virt_range(map + x, len);
1189 memcpy(ptr, map + x, len);
1202 memset32(dst + length, 0, (dst_obj->base.size - length) / sizeof(u32));
1204 /* dst_obj is returned with vmap pinned */
1208 static inline bool cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc,
1211 return desc->cmd.value == (cmd & desc->cmd.mask);
1214 static bool check_cmd(const struct intel_engine_cs *engine,
1215 const struct drm_i915_cmd_descriptor *desc,
1216 const u32 *cmd, u32 length)
1218 if (desc->flags & CMD_DESC_SKIP)
1221 if (desc->flags & CMD_DESC_REJECT) {
1222 DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd);
1226 if (desc->flags & CMD_DESC_REGISTER) {
1228 * Get the distance between individual register offset
1229 * fields if the command can perform more than one
1232 const u32 step = desc->reg.step ? desc->reg.step : length;
1235 for (offset = desc->reg.offset; offset < length;
1237 const u32 reg_addr = cmd[offset] & desc->reg.mask;
1238 const struct drm_i915_reg_descriptor *reg =
1239 find_reg(engine, reg_addr);
1242 DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n",
1243 reg_addr, *cmd, engine->name);
1248 * Check the value written to the register against the
1249 * allowed mask/value pair given in the whitelist entry.
1252 if (cmd_desc_is(desc, MI_LOAD_REGISTER_MEM)) {
1253 DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n",
1258 if (cmd_desc_is(desc, MI_LOAD_REGISTER_REG)) {
1259 DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n",
1264 if (cmd_desc_is(desc, MI_LOAD_REGISTER_IMM(1)) &&
1265 (offset + 2 > length ||
1266 (cmd[offset + 1] & reg->mask) != reg->value)) {
1267 DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n",
1275 if (desc->flags & CMD_DESC_BITMASK) {
1278 for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1281 if (desc->bits[i].mask == 0)
1284 if (desc->bits[i].condition_mask != 0) {
1286 desc->bits[i].condition_offset;
1287 u32 condition = cmd[offset] &
1288 desc->bits[i].condition_mask;
1294 if (desc->bits[i].offset >= length) {
1295 DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n",
1296 *cmd, engine->name);
1300 dword = cmd[desc->bits[i].offset] &
1303 if (dword != desc->bits[i].expected) {
1304 DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n",
1307 desc->bits[i].expected,
1308 dword, engine->name);
1317 static int check_bbstart(u32 *cmd, u32 offset, u32 length,
1321 const unsigned long *jump_whitelist)
1323 u64 jump_offset, jump_target;
1324 u32 target_cmd_offset, target_cmd_index;
1326 /* For igt compatibility on older platforms */
1327 if (!jump_whitelist) {
1328 DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n");
1333 DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n",
1338 jump_target = *(u64 *)(cmd + 1);
1339 jump_offset = jump_target - batch_addr;
1342 * Any underflow of jump_target is guaranteed to be outside the range
1343 * of a u32, so >= test catches both too large and too small
1345 if (jump_offset >= batch_length) {
1346 DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n",
1352 * This cannot overflow a u32 because we already checked jump_offset
1353 * is within the BB, and the batch_length is a u32
1355 target_cmd_offset = lower_32_bits(jump_offset);
1356 target_cmd_index = target_cmd_offset / sizeof(u32);
1358 *(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset;
1360 if (target_cmd_index == offset)
1363 if (!test_bit(target_cmd_index, jump_whitelist)) {
1364 DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n",
1372 unsigned long *intel_engine_cmd_parser_alloc_jump_whitelist(u32 batch_length,
1381 * We expect batch_length to be less than 256KiB for known users,
1382 * i.e. we need at most an 8KiB bitmap allocation which should be
1383 * reasonably cheap due to kmalloc caches.
1386 /* Prefer to report transient allocation failure rather than hit oom */
1387 jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)),
1388 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
1390 return ERR_PTR(-ENOMEM);
1395 #define LENGTH_BIAS 2
1398 * intel_engine_cmd_parser() - parse a batch buffer for privilege violations
1399 * @engine: the engine on which the batch is to execute
1400 * @batch: the batch buffer in question
1401 * @batch_offset: byte offset in the batch at which execution starts
1402 * @batch_length: length of the commands in batch_obj
1403 * @shadow: validated copy of the batch buffer in question
1404 * @trampoline: whether to emit a conditional trampoline at the end of the batch
1406 * Parses the specified batch buffer looking for privilege violations as
1407 * described in the overview.
1409 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1410 * if the batch appears legal but should use hardware parsing
1412 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
1413 struct i915_vma *batch,
1414 unsigned long batch_offset,
1415 unsigned long batch_length,
1416 struct i915_vma *shadow,
1417 unsigned long *jump_whitelist,
1419 const void *batch_map)
1421 u32 *cmd, *batch_end, offset = 0;
1422 struct drm_i915_cmd_descriptor default_desc = noop_desc;
1423 const struct drm_i915_cmd_descriptor *desc = &default_desc;
1424 u64 batch_addr, shadow_addr;
1426 bool trampoline = !jump_whitelist;
1428 GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd)));
1429 GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd)));
1430 GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length,
1432 GEM_BUG_ON(!batch_length);
1434 cmd = copy_batch(shadow->obj, batch->obj, batch_offset, batch_length,
1435 shadow_map, batch_map);
1437 shadow_addr = gen8_canonical_addr(shadow->node.start);
1438 batch_addr = gen8_canonical_addr(batch->node.start + batch_offset);
1441 * We use the batch length as size because the shadow object is as
1442 * large or larger and copy_batch() will write MI_NOPs to the extra
1443 * space. Parsing should be faster in some cases this way.
1445 batch_end = cmd + batch_length / sizeof(*batch_end);
1446 while (*cmd != MI_BATCH_BUFFER_END) {
1449 if (*cmd != MI_NOOP) { /* MI_NOOP == 0 */
1450 desc = find_cmd(engine, *cmd, desc, &default_desc);
1452 DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd);
1457 if (desc->flags & CMD_DESC_FIXED)
1458 length = desc->length.fixed;
1460 length = (*cmd & desc->length.mask) + LENGTH_BIAS;
1462 if ((batch_end - cmd) < length) {
1463 DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1471 if (!check_cmd(engine, desc, cmd, length)) {
1476 if (cmd_desc_is(desc, MI_BATCH_BUFFER_START)) {
1477 ret = check_bbstart(cmd, offset, length, batch_length,
1478 batch_addr, shadow_addr,
1484 if (!IS_ERR_OR_NULL(jump_whitelist))
1485 __set_bit(offset, jump_whitelist);
1489 if (cmd >= batch_end) {
1490 DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1498 * With the trampoline, the shadow is executed twice.
1500 * 1 - starting at offset 0, in privileged mode
1501 * 2 - starting at offset batch_len, as non-privileged
1503 * Only if the batch is valid and safe to execute, do we
1504 * allow the first privileged execution to proceed. If not,
1505 * we terminate the first batch and use the second batchbuffer
1506 * entry to chain to the original unsafe non-privileged batch,
1507 * leaving it to the HW to validate.
1509 *batch_end = MI_BATCH_BUFFER_END;
1512 /* Batch unsafe to execute with privileges, cancel! */
1513 cmd = page_mask_bits(shadow->obj->mm.mapping);
1514 *cmd = MI_BATCH_BUFFER_END;
1516 /* If batch is unsafe but valid, jump to the original */
1517 if (ret == -EACCES) {
1520 flags = MI_BATCH_NON_SECURE_I965;
1521 if (IS_HASWELL(engine->i915))
1522 flags = MI_BATCH_NON_SECURE_HSW;
1524 GEM_BUG_ON(!IS_GEN_RANGE(engine->i915, 6, 7));
1525 __gen6_emit_bb_start(batch_end,
1529 ret = 0; /* allow execution */
1534 i915_gem_object_flush_map(shadow->obj);
1540 * i915_cmd_parser_get_version() - get the cmd parser version number
1541 * @dev_priv: i915 device private
1543 * The cmd parser maintains a simple increasing integer version number suitable
1544 * for passing to userspace clients to determine what operations are permitted.
1546 * Return: the current version number of the cmd parser
1548 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1550 struct intel_engine_cs *engine;
1551 bool active = false;
1553 /* If the command parser is not enabled, report 0 - unsupported */
1554 for_each_uabi_engine(engine, dev_priv) {
1555 if (intel_engine_using_cmd_parser(engine)) {
1564 * Command parser version history
1566 * 1. Initial version. Checks batches and reports violations, but leaves
1567 * hardware parsing enabled (so does not allow new use cases).
1568 * 2. Allow access to the MI_PREDICATE_SRC0 and
1569 * MI_PREDICATE_SRC1 registers.
1570 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1571 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1572 * 5. GPGPU dispatch compute indirect registers.
1573 * 6. TIMESTAMP register and Haswell CS GPR registers
1574 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
1575 * 8. Don't report cmd_check() failures as EINVAL errors to userspace;
1576 * rely on the HW to NOOP disallowed commands as it would without
1577 * the parser enabled.
1578 * 9. Don't whitelist or handle oacontrol specially, as ownership
1579 * for oacontrol state is moving to i915-perf.
1580 * 10. Support for Gen9 BCS Parsing